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In this paper, we explore the feasibility of using coarse-grained models to simulate the self-assembly
of DNA nanostructures. We introduce a simple model of DNA where each nucleotide is represented
by two interaction sites corresponding to the sugar-phosphate backbone and the base. Using this
model, we are able to simulate the self-assembly of both DNA duplexes and Holliday junctions from
single-stranded DNA. We find that assembly is most successful in the temperature window below
the melting temperatures of the target structure and above the melting temperature of misbonded
aggregates. Furthermore, in the case of the Holliday junction, we show how a hierarchical assembly
mechanism reduces the possibility of becoming trapped in misbonded configurations. The model is
also able to reproduce the relative melting temperatures of different structures accurately and allows
strand displacement to occur. © 2009 American Institute of Physics. #DOI: 10.1063/1.3055595$

I. INTRODUCTION

The ability to design nanostructures which accurately
self-assemble from simple units is central to the goal of en-
gineering objects and machines on the nanoscale. Without
self-assembly, structures must be laboriously constructed in a
step by step fashion. Double-stranded DNA !dsDNA" has the
ideal properties for a nanoscale building block,1,2 with struc-
tural length scales determined by the separation of base pairs,
the helical pitch, and its persistence length !approximately
0.33, 3.4,3 and 50 nm,4 respectively". Over these distances,
dsDNA acts as an almost rigid rod and so it is capable of
forming well-defined three-dimensional structures.

It is the selectivity of base pairing between single
strands, however, that makes DNA ideal for controlled self-
assembly. By designing sections of different strands to be
complementary, a certain configuration of a system of oligo-
nucleotides can be specified as the global minimum of the
energy landscape. In this way, the target structure !usually
consisting of branched double helices" can be “programed”
into the sequences. This approach was initially demonstrated
for a four-armed junction by the Seeman group in 1983.5

Such junctions and more rigid double crossover motifs6 can
then be used to create two-dimensional lattices.7,8 Yan et al.9

also constructed ribbons and two-dimensional lattices from
larger four-armed structures, each arm consisting of a junc-
tion of four strands. Furthermore, using Rothemund’s DNA
“origami” approach an almost arbitrary variety of two-
dimensional shapes can be created.10

Progress in forming three-dimensional DNA nanostruc-
tures was initially much slower. The Seeman group managed
to synthesize a DNA cube11 and a truncated octahedron,12 but
only after a long series of steps and with a low final yield.
More recently, approaches have been developed that allow

polyhedral cages, such as tetrahedra,13 trigonal bipyramids,14

octahedra,15,16 dodecahedra, and truncated icosahedra,17 to
be obtained in high yields simply by cooling solutions of
appropriately designed oligonucleotides from high tempera-
ture. Additional structures have also been produced using
preassembled modular building blocks incorporating other
organic molecules.18,19

In designing strand sequences, it is important to mini-
mize the stability of competing structures with respect to the
stability of the target configuration. In addition, if systems
can be designed to follow certain routes through configura-
tion space—for example, by the hierarchical assembly of
simple motifs20—the target can potentially be reached more
efficiently. A standard approach to hierarchical assembly,
such as that described by He et al.,17 involves choosing se-
quences so that bonds between different pairs of oligonucle-
otides become stable at different temperatures. This allows
certain motifs to form in isolation at high temperatures be-
fore bonding to each other as the solution is cooled. An al-
ternative, elegant system for programming assembly path-
ways has been proposed by Yin et al.,21 which relies on the
metastability of single-stranded loop structures and the pos-
sibility of catalyzing their interactions using other oligo-
nucleotides.

Given these recent experimental advances in creating
DNA nanostructures, it would be useful to have theoretical
models that allow further insights into the self-assembly pro-
cess. In particular, a successful model would be able to pro-
vide information on the formation pathways and free energy
landscape associated with the self-assembly, and as such
would be of use to experimentalists wishing to consider in-
creasingly more complex designs. Atomistic simulations of
DNA would offer potentially the most spatially detailed de-
scriptions of the self-assembly. However, they are computa-
tionally very expensive and are generally restricted to time
scales that are too short to study self-assembly.22

Statistical approaches such as that of Poland and
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Scheraga23 and the nearest-neighbor model24 use simple ex-
pressions for the free energy of helix and random coil states
to obtain equilibrium results for the bonding of two strands.
While the parameters in these models can be tuned to give
very accurate correspondence with experimental data,25,26

they give no information on the dynamics and formation
pathways and hence are only useful for ensuring that the
target structure has significantly lower free energy than com-
peting configurations. Furthermore, any description purely
based on secondary structure !i.e., which bases are paired" is
inherently incapable of accounting for topological effects
such as linking of looped structures.27

Coarse-grained or minimal models offer a compromise
between detail and computational simplicity, and are well
suited to the study of hybridization of oligonucleotides. The
aim of these models is to be capable of describing both the
thermodynamic and kinetic behaviors of systems, a vital fea-
ture if kinetic metastability is inherent in assembly
pathways.21 In developing such minimal models, the ap-
proach is usually to retain just those physical features of the
system that are essential to the behavior that is of interest.

The models of Dauxois et al.28 and modified versions
such as that proposed by Buyukdagli et al.29 constitute the
simplest class of dynamical models. Although these are dy-
namic models in the sense that the energy is a function of the
separation between each base, the nucleotides are con-
strained to move in one dimension. This lack of conforma-
tional freedom means that these models are incapable of cap-
turing the nuances of the self-assembly from single-stranded
DNA !ssDNA".

Recently, models have been proposed which capture the
helicity of dsDNA using two30 or three31 interaction sites per
nucleotide. These models, however, are optimized for study-
ing deviations from the ideal double-stranded state, and so
have not been used to examine self-assembly. Although they
have been used to study the thermal denaturation of dsDNA,
it is essential for our purposes to be able to simulate the
assembly of a structure from ssDNA as it is this process that
will reveal the kinetic traps and free energy landscape asso-
ciated with the formation of a particular DNA nanostructure.

Simpler, linear models, also with two interaction sites
per nucleotide, have been used to investigate duplex
hybridization,32 hairpin formation,33 and gelation of colloids
functionalized with oligonucleotides.34 These models all use
two interaction sites to represent one nucleotide, with back-
bone sites linked to each other to represent the sugar-
phosphate chain, and interaction sites which represent the
bases. This work investigates the possibility of extending the
use of such coarse-grained models to study the self-assembly
of nanostructures that involve multiple strands forming
branched duplexes. We hypothesize that the self-assembly
properties of DNA are dominated by the fact that ssDNA is a
semiflexible polymer with selective attractive interactions.
We introduce an extremely simple model, similar to that of
Starr and Sciortino, to test this hypothesis.34 This simplicity
enables us to explore the thermodynamics and kinetics of
self-assembly in the model in great depth, and hence exam-
ine the feasibility of simulating nanostructure formation
through minimal models.

We first describe the model in Sec. II, and then examine
its success in reproducing the general features of hybridiza-
tion in Sec. III A. Next in Sec. III B, we apply it to the
formation of a Holliday junction, a simple nanostructure con-
sisting of a four-armed cross.8

II. METHODS

A. Model

We introduce an off-lattice model inspired by that which
Starr and Sciortino used to study the gelation of four-armed
DNA dendrimers.34 As our aim is to reproduce the basic
physics with as simple a model as possible, we neglect con-
tributions to the interactions due to base stacking, and the
charge and asymmetry of the phosphate backbone. We do not
attempt to include the detailed geometrical structure of DNA
but instead represent the oligonucleotides as a chain of
monomer units, each corresponding to one nucleotide !Fig.
1". A monomer consists of a rod !chosen to be rigid for
simplicity" of length l with a repulsive backbone interaction
site at the center of the rod. In addition, each unit has a
bonding interaction site !or base" at a distance of 0.3l from
the backbone site !perpendicular to the rod". Each monomer
is also assigned a base type !A, G, C, and T" to model the
selective nature of bonding. In this model, we only consider
bonds between the complementary pairs A-T and G-C.

We do not explicitly include any solvent molecules in
our simulations but instead use effective potentials to de-
scribe the interactions between the DNA. Sites interact
through shifted-force Lennard-Jones !LJ" potentials, where,
as well as truncating and shifting the potential, an extra term
is included to ensure the force goes smoothly to zero at the
cutoff rc. For r!rc,

Vsf!r" = VLJ!r" − VLJ!rc" − !r − rc"%dVLJ

dr
%

r=rc

, !1"

where

(b)(a)

θ

φ

FIG. 1. !Color online" A schematic representation of the model. The thick
lines represent the rigid backbone monomer units and the large circles rep-
resent the repulsive LJ interactions at their centers. The smaller, darker
circles represent the bases. The panels illustrate the definitions of !a" the
bending angle between two units !"" and !b" the torsional angle !#" which is
found after the monomers have been rotated to lie parallel.
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VLJ!r" = 4$&'%

r
(12

− '%

r
(6) , !2"

and Vsf!r"=0 for r&rc. Backbone sites !except adjacent units
on the same strand" interact through Eq. !1" with %= l and
rc=21/6%. This purely repulsive interaction models the steric
repulsion between strands. Bonding sites !again excluding
adjacent units on a strand" interact via Eq. !1" with %
=0.35l and rc=2.5% for complementary bases !to allow for
attraction" and rc=21/6% for all other pairings. The depth of
the resulting potential well between complementary bases,
$base

eff , is 0.396$. In what follows, we will measure the tem-
perature in terms of a reduced temperature, T!=kBT /$base

eff .
The above choice of parameters ensures that the attractive
interaction between complementary bases is largely shielded
by backbone repulsion. Monomers therefore bond selectively
and can only bond strongly to one other monomer at a given
instant. These are the key features of Watson–Crick base
pairing that make DNA so useful for self-assembly.

The model also includes potentials between consecutive
monomers associated with bending and twisting the strand

Vbend = *k1!1 − cos!""" if " !
3'

4

( otherwise,
+ !3"

and

Vtwist = k2!1 − cos!#"" . !4"

We define " as the angle between the vectors along the ad-
jacent monomer rods. As previously mentioned, consecutive
backbone sites do not interact via LJ potentials. Instead, a
hard cutoff is introduced in Eq. !3" to reflect the fact that an
oligonucleotide cannot double back on itself. # is taken as
the angle between adjacent backbones to bonding site vec-
tors after the monomers have been rotated to lie parallel !Fig.
1". For simplicity, we choose the torsional potential to have a
minimum at #=0. Thus, neither ssDNA nor dsDNA will be
helical in our model.

k1 is chosen to be 0.1$ to give a persistence length, lps
=3.149l, at a reduced temperature of T!=0.096 77 for ss-
DNA. We obtain this result by simulating a single strand 70
bases in length, and using the definition35

lps =
,L · l1-

,l1-
, !5"

where L is the end to end vector of the strand, l1 is the vector
associated with the first monomer, and , - indicates a thermal
average. Taking l to be 6.3 Å, T!=0.096 77 is mapped to
24 °C and so the model is consistent with experimental data
for ssDNA in 0.445M NaCl solution.36,37 k2 is chosen to be
0.4$.

In neglecting the geometrical structure of a double helix,
we do not accurately represent certain types of bonding.
“Bulged” bonding occurs when consecutive bases in one of
the strands attach to nonconsecutive bases in the other
strand. “Internal loops” consist of stretches of noncomple-
mentary bases !either symmetric or asymmetric in the num-
ber of bases involved in each strand". “Hairpins” result when

a single strand doubles back and bonds to itself. The details
of these motifs are complicated but an empirical description
of their thermodynamic properties is given in Ref. 26. Im-
portantly, they are generally penalized due to the disruption
of the geometry of DNA in a way that is not well reproduced
by our model. In the case of the short strands we consider,
these motifs will only play a small role as the strands are not
specifically intended to have stable structures of these forms.
In fact, as the base sequences we use were designed to form
the Holliday junction, the possibility of forming these motifs
at relevant temperatures was deliberately avoided.38

For simplicity, we therefore include only two alterations
to the model. First, we define “kinked states” as those for
which the number of unpaired bases between two bonding
pairs on either side of a duplex is not equal !including asym-
metric loops and bulges". We impose an infinite energy pen-
alty on the formation of these kinked states if the total num-
ber of intermediate bases is less than 6. Second, we treat
complementary units within six bases of each other on the
same strand as noncomplementary but allow all other hair-
pins without penalty.

It should be also noted that this model neglects the di-
rectional asymmetry of the sugar-phosphate backbone.
Therefore, parallel and antiparallel bonding are possible in
our model, whereas parallel bonding does not occur in ex-
periment.

B. Monte Carlo simulation

In a fully atomistic model of DNA, the natural way to
simulate its dynamics would be to use molecular dynamics.
However, the best way to simulate the dynamics in a coarse-
grained model is an important, but not fully resolved, ques-
tion, and one that will depend on the nature of the model.
Clearly, for the current model, standard molecular dynamics
is inappropriate as it will lead to ballistic motion of the
strands between collisions because of the absence of explicit
solvent particles, whereas DNA in solution undergoes diffu-
sive Brownian motion. An alternative approach is to use the
Metropolis Monte Carlo !MC" algorithm39,40 where the
moves are restricted to be local, as it has been argued that
this can provide a reasonable approximation to the
dynamics.41–43 This is the approach that we use here to simu-
late the dynamics of self-assembly of DNA duplexes and
Holliday junctions. In particular, the local MC moves that we
use are the translation and rotation of whole strands and
bending of a strand about a particular monomer, thus ensur-
ing that the strands undergo an approximation to diffusive
Brownian motion in the simulations. Therefore, we expect
the MC simulations, which are all initiated with free single
strands, to mimic the real self-assembly processes in our
model. It is important to note that this will include, as well as
successful assembly into the target structure, kinetic trapping
in nonequilibrium configurations and that when the latter oc-
curs this reflects the inefficiency of the self-assembly under
those conditions.

Although a true measure of time is impossible in MC
simulations, an approximate time scale for diffusion-limited
processes can be found by comparing the diffusive properties
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of objects to experiment. By measuring the diffusion of iso-
lated strands, and assuming diffusion coefficients compa-
rable to those of double strands and hairpin loops of similar
length,44 we conclude that one step per strand corresponds to
a time scale of approximately 2 ps. Thus, our model allows
our systems to be studied on millisecond time scales.

At the end of the above MC simulations, our systems
will not necessarily have reached equilibrium, both because
the energy barriers to escape from misbonded configurations
can be difficult to overcome at low temperature and because
of the low rate of association at higher temperatures. There-
fore, as a comparison we also compute the equilibrium ther-
modynamic properties of our systems using umbrella
sampling.40,45 Formally, we can write the thermal average of
a function B!rN" in the canonical ensemble as

,B- =
. B

W!Q"
#W!Q"exp!− V/kBT"$drN

. 1
W!Q"

#W!Q"exp!− V/kBT"$drN

, !6"

where Q=Q!rN" is an order parameter or reaction coordinate
and V=V!rN" is the potential energy. We are free to choose
W!Q", and by taking the term in square brackets as the
weighting of states and keeping statistics for B /W and 1 /W
at each step, we can find ,B-. In standard Metropolis MC,
W=1, but by choosing W!Q" in such a way that those states
with intermediate values of Q are visited more frequently,
the effective free energy barrier between !meta"stable states
can be lowered allowing the system to pass easily between
the free energy minima and equilibrium to be reached.

To ensure that each value of Q is equally likely to be
sampled in an umbrella sampling simulation, one would
choose W!Q"=exp!)A!Q"", where A!Q" is the free energy as
a function of the order parameter. To achieve this, however,
would require knowledge of A!Q". Instead, there are stan-
dard methods to construct W!Q" iteratively, but for the cur-
rent examples it was possible to construct W!Q" manually,
because of the relative simplicity of the free energy profiles.

To a first approximation, the interaction between fully
bonded structures is negligible. Therefore, in the umbrella
sampling simulations, we consider systems containing the
minimum number of strands required to form a given object
!2 for a duplex and 4 for a Holliday junction". We then use
the relative weight of bound and free states to extrapolate the
expected fractional concentrations for larger systems.46 The
natural choice for the order parameter Q is the number of
correct bonds, where two monomers are defined to be
bonded if their energy of interaction is negative.

III. RESULTS

A. Duplex formation

We test the model by analyzing the duplex bonding of
two different complementary strands. We simulate systems
of ten oligonucleotides, initially not bonded, in a periodic
cell with a concentration of 5.49*10−5 molecules l−3 !or
3.65*10−4M". We separately consider strands consisting of
7 and 13 monomers, which correspond to two of the arms of

the Holliday junction studied experimentally by Malo and
co-workers8,38 and which we consider in Sec. III B

7 bases/G-A-G-T-T-A-G

C-T-A-A-C-T-C,
0 !7"

13 bases/G-C-G-A-T-G-A-G-C-A-G-G-A

T-C-C-T-G-C-T-C-A-T-C-G-C,
0 !8"

where we have listed strands in the 5!−3! sense for consis-
tency with the literature. The yields of correctly bonded and
misbonded structures at the end of the simulations are de-
picted in Fig. 2 as a function of temperature. We also display
the predicted equilibrium fraction of correctly bonded
strands for both systems obtained using umbrella sampling.
For convenience, we define a correctly bonded structure to
have more than 70% of the bonds of the complete duplex and
no bonds to other strands. Any other structure is recorded as
“misbonded.”

Figure 2 shows a maximum in the yield as a function of
temperature. Such behavior is typical of self-assembling
systems47–51 and reflects the thermodynamic and dynamic
constraints on the self-assembly process. First, the yield is
zero at high temperature where only the ssDNA is stable, and
rises just below the expected equilibrium value as the tem-
perature is decreased, the deviation arising due to the large
number of steps required to reach equilibrium. At low tem-
peratures, the yield falls away due to the presence of kinetic
traps which are now stable with respect to isolated strands, as
evidenced by the rise in “misbonded structures” in Fig. 2.
Thus, there is a nonmonotonic dependency of yield on tem-
perature and an optimum region for successful assembly,
which corresponds to the region where only the desired
structure is stable against thermal fluctuations. Figure 3 is a
snapshot from near the end of a simulation in this regime. It
should be noted that neglecting helicity has the effect of
increasing the flexibility of dsDNA in the direction perpen-
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FIG. 2. !Color online" Yields of correctly formed duplexes and misbonded
configurations at the end of our MC simulations !lines with data points, as
labeled" compared to the equilibrium probability of the strands adopting the
correct structure as obtained by umbrella sampling. The solid and dashed
lines represent the results for strands with 7 and 13 monomers, respectively.
The MC results are averages over ten runs of length 3*108 steps per strand
with ten strands in the simulation cell.
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dicular to the plane of bonding !a helix cannot bend in any
direction without disturbing its internal structure whereas a
“ladder” can".

The heat capacity obtained from umbrella sampling of
pair formation is shown in Fig. 4!a". The heat capacity peaks
indicate a transition from single strands to a duplex. As the
formation of duplexes is essentially a chemical equilibrium
between monomers and clusters of a definite size !in this
case 2", the width of the peaks will remain finite as the num-

ber of strands is increased. The transition does, however,
become increasingly narrow as the DNA strands become
longer, as is evident from comparing the heat capacity peaks
for the 7-mer and 13-mers.

Figures 4!b" shows the free energy profile, F!Q", for the
formation of a duplex. The initial peak at low Q is accounted
for by the entropic cost of bringing two strands together.
Once bonds are formed, however, adding extra bonds costs
much less entropy while providing a significant decrease in
energy, explaining the monotonic decrease in F!Q" beyond
Q=2. The rise between Q=1 and Q=2 is partly due to the
fact that in order to form two bonds between strands, the
relative orientation of strands must be specified whereas this
is not true for Q=1. Hence there is an additional entropy
penalty to the formation of the second bond. In addition,
there exist structures with only one correct bond that are
stabilized by additional incorrect bonds and these misbonded
configurations also contribute to F!1". The constant gradient
above Q=2 indicates that the energetic gain and entropic
cost of forming an extra bond are approximately constant at
a given temperature, which is consistent with the assump-
tions underlying nearest-neighbor models of DNA melting.24

In Fig. 5, we compare our melting curves to those pre-
dicted by a simple two-state model,24 using the same map-
ping of the reduced temperature as in Sec. II A. In the two-
state model, the molar concentrations of product !AB" and
reactants !A and B" are given by the equilibrium relation

#AB$
#A$#B$

= exp'− +H0 + T+S0

kBT
( , !9"

where +H0 and +S0 are assumed to be constants which de-
pend only on the strand sequences and the salt concentration
!we take #Na+$=0.445M as in Sec. II A". We use the en-
thalpy and entropy changes of duplex formation calculated

FIG. 3. !Color online" Snapshot of a fully assembled configuration in a MC
simulation of ten 13-base strands at T!=0.0971. Backbone sites are indi-
cated by the large spheres, and bases by smaller spheres.
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by “HYTHER,” 52 a program that estimates these values using
the “unified oligonucleotide nearest neighbor
parameters.” 25,53 The authors claim that the thermodynamic
parameters predicted by HYTHER give the melting tempera-
ture Tm !the temperature at which the fraction of bonded
strands is 1/2" of a duplex to within a standard error of
,2.2 °C.25 Figure 5 shows that our system reflects the melt-
ing temperatures predicted by the two-state model with rea-
sonable accuracy, excepting sequence dependent effects
which are not included in our model, because the interaction
energies between A-T and C-G complementary base pairs
have for simplicity been taken to be the same. The widths of
the transitions are seen to be of the same order but slightly
larger for our model. This feature, which is typical of coarse-
grained models,31 indicates that the degree of entropy loss on
hybridization is too small in our model, and is due to a fail-
ure to accurately incorporate all degrees of freedom which
become frozen on hybridization. However, the agreement is
sufficiently good that the basic features of physical DNA
assembly should be reproducible.

A further satisfying feature of the model is that “dis-
placement” was observed on several occasions. This process,
during which a misbonded pair of strands is broken up by a
third strand, is illustrated in Fig. 6. The third strand is able to
bond to the pair, as some bases are free in the misbonded
structure. Thermal fluctuations allow the new strand to bond
to sites previously involved in misbonding, in a process
known as “branch migration.” Eventually one of the mis-
bonded strands is completely displaced, leaving a correct du-
plex and an isolated single strand. This behavior is observed
in real DNA systems, and is the driving mechanism of some
nanomachines54 and DNA catalyzed reactions.21,55

B. Holliday junction

Encouraged by the above results, we next apply the
model to the formation of a Holliday junction. Holliday junc-
tions consist of four single strands which bind to form a
four-armed cross. In our case we consider a Holliday junc-
tion with two long arms !13 bases long" and two short arms
!7 bases long". We use the experimental base ordering of
Malo et al.38 with the “sticky ends” removed. !These sticky
ends consist of six unpaired bases on the end of arms and
their purpose is to allow the Holliday junctions to bond to-
gether to form a lattice." The sequences of the four DNA
strands and a schematic of the possible junctions that they
can form are shown in Fig. 7.

Initially we studied a system of 20 strands !five of each
type" that has the potential to form five separate junctions.
We use a concentration of 1.56*10−5 molecules l−3 !which
corresponds to 1.04*10−4M". The results are displayed in
Fig. 8.

The results are as expected for the bonding of the longer
arms !which we now describe as “--bonding”". The yield
again displays the characteristic nonmonotonic dependence
on temperature. We obtain very few complete junctions,
however, which is due to two effects. First, each simulation
is performed at constant temperature, which means the hier-
archical route to assembly is less favored than when the sys-
tem is cooled, as in the experiments.8,38 When the system is
gradually cooled, Fig. 8 suggests that at around Tm!-"
=0.111 we would expect to find a region in which only
--bonded dimers were stable with respect to ssDNA. If the
cooling was sufficiently slow on the time scale of bonding,
all strands would form --structures at around Tm!-". At

FIG. 6. !Color online" Snapshots illustrating four stages in the process of
displacement. !a" A third strand binds to a misbonded pair. !b" The third
strand is prevented from forming a complete duplex by the misbond. !c"
Thermal fluctuations cause bonds in the misbonded structure to break and be
replaced by the correct duplex. !d" The misbonded strand is displaced and
the correct duplex is formed.

1. CTAACT C // AA TGC CTT CTG GA
2. CGC ATG AGC AGG A // GA GTT AG
3. TGT TCC G // TC CTG CTC ATC GC
4. TCC AGAAGG CAT T // CG GAA CA

a) b)

FIG. 7. !Color online" A schematic showing the sequences of the strands
used in our Holliday junction simulations, and the alternative bound states
that are possible: !a" The square planar configuration and !b" the .-stacked
form.
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lower temperatures, when the Holliday junction becomes
stable with respect to the --bonded dimers, many competing
minima would then be inaccessible to the system as they
would require the disassociation of stable --bonded pairs.
The free energy landscape of two --structures forming a
Holliday junction is consequentially much simpler than that
of four single strands forming a junction at a given tempera-
ture. Therefore, one expects the yield for self-assembly at
constant temperature to be lower than when the system is
cooled, because there is only a relatively narrow temperature
window between where the Holliday junction becomes stable
and misbonded configurations start to appear. Indeed, the
shorter arms are only marginally more stable than some com-
peting minima, as evidenced by the rise in misbonded struc-
tures in Fig. 8 at temperatures just below where )-bonded
structures first appear.

Second, even in the temperature range where Holliday
junction formation is not hindered by the formation of mis-
bonded configurations, the yield is low because the Metropo-
lis MC algorithm artificially reduces the diffusion of bound
pairs, and hence the likelihood that two pairs of --bonded
strands come together to form a junction is also reduced.
This is because the acceptance probability of trial moves for
bonded strands is much lower than for isolated strands,56 due
to the energy penalty associated with trying to move a bound
pair apart.

Interestingly, examination of the equilibrium lines in
Fig. 8 shows that the Holliday junctions are actually stable at
a higher temperature than the individual shorter arms. This is
because the total loss of entropy when two --bonded dimers
bind together is considerably less than that for two short
arms in isolation !as fewer translational degrees of freedom
are lost", whereas the energy change is comparable. Thus,
there is a small temperature window at T!10.1 where hier-
archical assembly can occur at constant temperature as the
short arms are only stable once --bonding has taken place.
However, due to the deficiencies in the MC simulations men-
tioned above, the yield of Holliday junctions in this region is
practically zero. Instead, the maximum yield of Holliday
junctions occurs at lower temperatures where nonhierarchical
pathways that proceed by the addition of single strands be-
come feasible.

The above simulations were only able to successfully
model the first stage of the Holliday junction assembly,
namely, the formation of --bonded dimers. To probe the sec-
ond stage of assembly, we must first make two modifications
to our simulation approach to overcome the two deficiencies
mentioned above. First, we study systems initially consisting
of pairs of --bonded strands, which we assume have suc-
cessfully formed at some higher temperature—this is reason-
able given the results of our earlier simulations. Second, we
also include simple local cluster moves in addition to those
which move only one strand, i.e., translations, rotations, and
bending of pairs of --bonded strands. With these changes
incorporated, we simulate the same system for 7.5*108

steps per strand at a range of temperatures below Tm!-". It
should be noted that due to a change in the size of typical
moves, one move per strand now corresponds to approxi-
mately 10 ps.

We find that Holliday junctions form over a wide range
of intermediate temperatures, while kinetic traps at low tem-
perature lead to incomplete bonding and consequently to the
possibility of forming large clusters. A typical result from the
high-yield regime is shown in Fig. 9. As fully bonded Hol-
liday junctions are essentially inert, it is reasonable to ana-
lyze their assembly behavior by considering only one junc-
tion. The smaller system size has the effect of increasing the
assembly rate because the strands have less distance to dif-
fuse but does not affect the basic assembly mechanism. We
therefore simulated systems consisting of two --bonded
pairs with the same concentration as above.

We also introduced some modifications to the umbrella
sampling scheme in order to more efficiently compute the
thermodynamics of the second stage of Holliday junction
formation. As well as cluster moves, we also introduced a
“tethering” component in the weighting function W!Q". We
introduce a length rmin that corresponds to the shortest dis-
tance between any pair of backbone sites on different
strands. We then split Q=0 into two regions: We weight
those states with rmin!3l with W=1, but for rmin&3l we use
W=0.1. This enables us to increase the rate of transitions
between Q=0 and 1, and reduces the time spent simply
simulating the diffusion of --bonded dimers waiting for a
collision to occur.

The MC results are plotted in Fig. 10 along with the
equilibrium results obtained from umbrella sampling. With
the cluster moves in place, we now see a high yield of Hol-
liday junctions and a broad maximum in the yield as a func-
tion of temperature. The hierarchical pathway has the effect
suggested earlier. Namely, the temperature window over
which correct formation can occur is vastly increased, as the
most significant competing minima are inaccessible because
their formation would require dissociation of the --bonded
pairs.

The model is therefore consistent with the experimen-
tally observed hierarchical assembly of Holliday junctions as
the system is cooled.8,38 It should be noted, however, that the
junctions in our model usually form in the “square planar” as
opposed to the “.-stacked” shape !Fig. 7" that is observed
under normal experimental conditions. The preference for
one structure is a subtle consequence of the concentration of
cations and the precise helical geometry of DNA.57 This
level of detail is not included in our coarse-grained model, so

FIG. 9. !Color online" Snapshot showing five Holliday junctions formed at
T=0.0842 after 5.67*108 MC steps per strand.
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it is not surprising that it cannot reproduce the preference for
.-stacked structures. Moreover, it is relatively easy to see
why in our model, which forms “ladders” rather than helices,
a planar geometry is preferred for the junction.

Some of the equilibrium thermodynamic properties asso-
ciated with the formation of a Holliday junction are shown in
Fig. 11. In particular, Fig. 11!b" shows the free energy profile
for the formation of a Holliday junction from two --bonded
pairs. The initial peak and subsequent drop is very similar to
that for the duplexes and can be accounted for in the same
way. However, the formation of the two arms is not like the
zipping-up of a 14-base duplex, because there is much more
relative freedom of movement for the bases on either side of
the --bonded sections in the dimers than for consecutive
bases on single-stranded DNA. Thus, there is a rise between
M =7 and M =8 that is a result of the entropy penalty of
bringing together the two ends to make the second short arm.
We note that the penalty is much smaller than the initial cost
of bringing the two --bonded pairs together, and as a result,
the value of Tm for the junction is higher than for the short
arms in isolation, as noted earlier.

An interesting feature of Fig. 11!b" is the plateau be-
tween Q=6 and Q=7. In general, when two --bonded pairs
meet to form one short arm, there is an entropic penalty
associated with the excluded volume that the remaining
bases in the --structures represent to each other. This ex-
cluded volume is a large fraction of the total available space
if one complete short arm is formed, so that there are no free
monomers between the short arm and the --bonded sections.
As a consequence, there is not the usual free energy benefit
from forming the final bond in the short arm !the one closest
to the center of the Holliday junction", as the excluded vol-
ume penalty is large and those states that are allowed involve
distortion of the backbones and bonds near the center of the
Holliday junction. Although the details of this free energy
penalty and the other features in Fig. 11!b" will depend on
the exact geometry of the system, we expect the calculated
free energy profile to be representative of that for real DNA.

It is possible to extend the two-state model discussed in

Section III A to the formation of a Holliday junction by con-
sidering the concentrations of all four isolated strands, the
two --bonded intermediates and the junction itself. We as-
sume that Eq. !9" holds for every possible transition, use the
same thermodynamic parameters as before, and apply con-
servation of total strand number. To estimate +H0 and +S0
associated with the formation of a Holliday junction, we con-
struct a single strand by linking the ends of the oligonucle-
otides together with four nonbonding bases. The thermody-
namic parameters associated with the folding of this
structure are predicted by “UNAFold.” 58 The correction for
the fact that our strands are not connected by loops is dis-
cussed by Zuker.59 This leaves five simultaneous equations
!assuming perfect stoichiometry" which can be solved nu-
merically.

Figure 12 compares this extended two-state model
!ETSM" with the bulk thermodynamics predicted by um-
brella sampling !using the same temperature scaling as be-
fore". ETSM predictions for both stages of Holliday junction
formation agree well with our results, which again supports
our hypothesis that much of the physics of self-assembly can
be reproduced by a simple coarse-grained model. The extra
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width of the transitions in our model occurs for the same
reasons as mentioned in Sec. III A when discussing Fig. 5.

C. Negative design

The hierarchical pathway for the formation of the Holli-
day junction is one aspect of the sequence design that aids
the formation of the correct structure. The experimental base
ordering of the Holliday junction, however, was also chosen
to minimize the number of competing structures—a typical
example of “negative design.” 60 We illustrate the importance
of such negative design by considering a badly designed
junction, where the complementary seven-base sections con-
sist of just one base type each. We simulate a system of two
--bonded pairs with the short arms so modified under the
same conditions as for Fig. 10 and the results are shown in
Fig. 13. Although there is some probability of forming the
correct junction, the simulations are dominated by mis-
bonded junctions, such as the one depicted in Fig. 14. Al-

though these competing structures are energetically less
stable than the target junction because of the presence of
unpaired bases at the “dangling” ends, they are readily ac-
cessible because the likelihood that the first bonds formed
between two --bonded pairs are in the same registry as the
target structure is low. The yield of the correct Holliday junc-
tions will then depend on how readily the system is able
escape from these malformed junctions. Clearly, this process
is slow on the time scales of the current simulations, and is
also likely to hinder the location of the target structure in
experiment.

IV. DISCUSSION

In this paper, we have introduced a simple coarse-
grained model of DNA in order to test the feasibility of mod-
eling the self-assembly of DNA nanostructure by MC simu-
lations. Any such model involves a trade-off between detail
and computational simplicity, and here we deliberately chose
to keep the model as simple as possible in order to give us
the best chance of being able to probe the time scales rel-
evant to self-assembly. The model involves just two interac-
tion sites per nucleotide.

The results from our model are very encouraging. First,
we have shown that using our model it is feasible to model
the self-assembly of both DNA duplexes and a Holliday
junction. The latter represents, to the best of our knowledge,
the first example of the simulation of the self-assembly of a
DNA structure beyond a duplex. Second, the model succeeds
in reproducing many of the known thermodynamic and dy-
namic features of this self-assembly. For example, the equi-
librium melting curves agree well with those predicted by the
nearest-neighbor two-state model,25 which is known to pre-
dict melting temperatures very accurately. The model is also
able to capture important dynamical phenomena such as dis-
placement.

Third, by analyzing the thermodynamic and dynamic
constraints on assembly, we have been able to gain some
important physical insights into the nature of DNA self-
assembly and how to control it. For example, the optimal
conditions for self-assembly are in the temperature range just
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FIG. 14. !Color online" Example of a competing minimum for a badly
designed Holliday junction. The snapshot is taken from a simulation at T!

=0.0936.
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below the melting temperature of the target structure, where
this structure is the only one stable with respect to the pre-
cursors, be they ssDNA or some intermediate in a hierarchi-
cal assembly pathway. At lower temperatures, misbonded
configurations can be formed that act as kinetic traps and
reduce the assembly yield. Similar trade-offs between the
thermodynamic driving force and the kinetic accessibility
have been previously seen in a variety of self-assembling
systems,47–51 and also give rise to a maximum in the yield
near to and below the temperature at which the target struc-
ture becomes stable.

We have also seen how hierarchical self-assembly
through cooling can be a particularly useful strategy to aid
self-assembly, because the formation of stable intermediates
at higher temperatures simplifies the free energy landscape
for the assembly of the next stage in the hierarchy by reduc-
ing the number of misbonded configurations available to the
system. This simplification of the energy landscape is likely
to be a general feature of hierarchical self-assembly.

Thus, our results have confirmed the utility of using
coarse-grained DNA models to study the self-assembly of
DNA nanostructures, and supported our hypothesis that
much of the physics can be explained by describing DNA as
a semiflexible polymer with selective attractive interactions.
The model’s success in forming junctions in reasonable com-
putational time suggests that it will be possible to develop
further models that have an increased level of detail but
which can still access the time scales relevant to self-
assembly.

The model has also highlighted some features which it
would be advantageous to include in such models. For ex-
ample, greater accuracy in the details of oligonucleotide ge-
ometry, particularly the helicity of dsDNA, would allow fea-
tures such as the characteristically long persistence length of
hybridized strands to be reproduced and give the appropriate
degree of rigidity to simulated nanostructures. Such im-
provement might also allow more complicated motifs to be
accounted for, such as the preference for .-stacked Holliday
junctions that the current model could not reproduce.

It should be noted that if one is to introduce helicity in a
physically reasonable way, it should also allow for ssDNA to
undergo a stacking transition to a helical form. This transi-
tion may play a significant role in the thermodynamics and
kinetics of self-assembly.61 Previously proposed coarse-
grained DNA models that incorporate helicity have not been
designed to accurately reproduce this feature. Incorporating
extra degrees of freedom which are relevant to the stacking
transition, such as the rotation of the base with respect to the
sugar-base bond, may also help to increase the entropy
change on hybridization and hence make the transition nar-
rower as required.

The approximation to diffusive dynamics provided by
the local move Metropolis MC algorithm could also be im-
proved. Currently the “local” moves involve displacing, ro-
tating, or bending entire strands or pairs of strands—these
effectively constitute cluster moves of groups of strongly
bound nucleotides and result in slow relaxation and transla-
tion times within bound structures. More realistic dynamics
may be achievable by considering trial moves of individual

nucleotides and incorporating cluster moves in a more sys-
tematic fashion, such as in the “virtual move” MC algorithm
proposed by Whitelam and Geissler.51,62

One potential issue with any coarse graining is how it
preserves the different time scales in a system. In Sec. II B,
we assigned an approximate mapping between the number of
MC steps and physical time based on comparison of diffu-
sion coefficients. There are, however, other important time
scales in the system, such as the time scale for the internal
dynamics of an isolated strand and the time scale over which
the “zipping-up” of two strands occurs after a bond has been
formed. Comparisons of experimental diffusion
coefficients44 and melting and bubble formation from mo-
lecular dynamics simulations30,31 suggest a large separation
in time scale between diffusion-limited processes and those
that rely on the dynamics of individual nucleotides. Encour-
agingly, we observe a similar time scale separation in our
model: Zipping-up and thermal relaxation of isolated strands
occur over time scales shorter than 105 steps per strand,
whereas association typically required on the order of
107–108 steps per strand near the melting temperature !cor-
responding to tens or hundreds of microseconds". Further-
more, we would argue that it is this time scale separation,
and not the precise ratios of the relevant rate constants, that
is important to reproduce in self-assembly simulations.

We should also note that the mapping of the diffusion
constants between the model and experiment will not neces-
sarily ensure that the rate of association is accurate in our
model, because although the frequency of collisions in our
model should be correct, there is also the contribution to the
association rate from the probability that a collision will lead
to successful association. That we can reproduce the thermo-
dynamics of the DNA melting transitions implies that the
rates of association and disassociation have the right ratio but
not that they necessarily have the correct absolute value. For
example, it is conceivable that helicity !both in dsDNA and
possibly in ssDNA", which is not included in the current
model, will influence the likelihood that a collision is suc-
cessful.
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