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Abstract

We combine techniques from quantum and from classical density functional theory (DFT) to describe electron–ion

mixtures. For homogeneous systems, we show how to calculate ion–ion and ion–electron correlation functions within

Chihara’s quantum hypernetted chain approximation, which we derive within a DFT formulation. We also sketch out

how to apply the DFT formulation to inhomogeneous electron–ion mixtures, and use this to study the electron dis-

tribution at the liquid–solid interface of Al.

� 2002 Published by Elsevier Science B.V.

PACS: 71.22.+i; 61.10.-i; 61.20.Gy; 61.12.Bt

1. Introduction

Density functional theory (DFT) has proven
itself a remarkably successful tool in condensed
matter physics [1]. The foundations were laid in
1964, when Hohenberg and Kohn (HK) [2] proved
that the ground state energy of any quantum me-
chanical system could be described as a functional
of the one-body density only. Subsequently, Kohn
and Sham [3] developed an orbital based method
which could be applied to electronic systems, and

Mermin [4] extended the HK proof to finite tem-
peratures, opening up the possibility of using DFT
to calculate the free-energy of a statistical me-
chanical system. Since then many different practi-
cal methods have been developed to apply DFT to
electronic problems, with countless applications in
condensed matter physics, chemistry, and biology
[5]. Examples of electronic structure techniques
relevant to this paper are the ab initio molecular
dynamics (AIMD) method of Car and Parrinello
[6] and the orbital free ab initio molecular dy-
namics (OF-AIMD) scheme of Madden and co-
workers [7]. In a parallel development, the finite
temperature version of DFT has been widely used
to study classical systems, with myriad applica-
tions to phase-transitions and the theory of fluids
(in its broadest sense), see e.g. [8,9] for reviews.
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However, the classical and quantum versions of
DFT have rarely been combined – the two fields
have largely developed independently. In this pa-
per we will attempt to bring together these two
strands of DFT into one unified formalism, with
the aim of applying them to liquid metals. These
are ideal systems for which to test a mixed quan-
tum–classical DFT approach since they can be
viewed as binary mixtures of classical ions and
quantum electrons.

To begin, we first define a two-component free-
energy functional

F ½qI; qe� ¼ F id
I ½qI� þ F id

e ½qe� þ F ex½qI; qe�; ð1Þ
split into the usual way between the ideal free-
energies of the ions, F id

I , and the electrons, F id
e , and

the excess free-energy F ex, which is a functional of
both one-body densities qIðrÞ and qeðrÞ . This un-
ique intrinsic free-energy functional obeys the
variational principle:

dF ½qI; qe�
dqaðrÞ

þ /aðrÞ ¼ 0; ð2Þ

where the /aðrÞ are the external potentials which
uniquely induce the one-body densities qaðrÞ. This
principle is subject to the constraint that the inte-
gral of qaðrÞ equals Na, the total number of parti-
cles of species a equals fe; Ig. We will apply this
free-energy functional both to homogeneous and
to inhomogeneous liquid metals.

In Section 2 we use the DFT formulation
to derive the quantum Ornstein Zernike (QOZ)
equations. From these we can derive a set of inte-
gral equations, called the quantum hypernetted
chain approximation (QHNC) by Chihara [10],
which self-consistently solves for the ion–ion and
ion–electron pair correlation functions in a homo-
geneous liquid metal. (We note that similar equa-
tions have been derived by other authors. See, for
example, M.W.C. Dharma-Wardana and F. Perrot
in [5].) The great simplification of the QHNC ap-
proach is that the original many-centre electronic
problem is reduced to an effective one-centre prob-
lem, which is much easier to solve. As a specific
application, we study the ion–electron radial dis-
tribution function for a set of simple metals.

In Section 3 we extend this DFT formulation to
inhomogeneous fluids. By using a simple version

of this functional, we compare the electron density
profile at the liquid–solid interface of Al to the
recent simulations using OF-AIMD [11]. We end
with some conclusions.

2. Applying two-component DFT to homogeneous

liquid metals

2.1. Quantum Ornstein Zernike equations

DFT provides a nicely unified route to the
correlation functions of homogeneous fluids. To
begin, we first show how to derive the QOZ rela-
tions by defining the direct correlation function as
the second functional derivative of the excess free-
energy defined in Eq. (1):

1

b
Cabðr; r0Þ ¼


d2F ex

dqaðrÞdqbðr0Þ
¼ ðvabÞ


1 
 ðv0
abÞ


1
;

ð3Þ

where ðvabÞ

1

is the inverse susceptibility matrix of
the full system, and ðv0

abÞ

1

is the inverse suscep-
tibility matrix of the ideal system. These relation-
ships between direct correlation functions and
inverse susceptibilities are called the QOZ equa-
tions, and they hold for an arbitrary number of
components. If any components are classical, then
the susceptibilities can be connected to the pair-
correlations through the fluctuation–dissipation
theorem [12]:

lim
�h!0

vabðk; 0Þ ¼ 
bðq0
aq

0
bÞ

1=2SabðkÞ; ð4Þ

where the SabðkÞ are the structure factors, defined
in the usual way [13,14], (we have taken the ho-
mogeneous limit) and the q0

a are the homogeneous
limits of the densities qaðrÞ. Specializing to the
homogeneous limit for two-components, with one-
component being classical (the case at hand), the
QOZ equations reduce to a set of relationships
between the direct correlation functions and the
ion–ion and ion–electron pair correlation func-
tions, as well as the electron–electron susceptibili-
ties. The latter are still quantum-mechanical, and
cannot be simply connected to electron–electron
pair correlations.

A.A. Louis et al. / Journal of Non-Crystalline Solids 312–314 (2002) 60–68 61



2.2. Quantum hypernetted chain approximation

To make further progress, one needs a way of
solving the QOZ relations for a liquid metal. We
sketch the derivation here; for more details we
refer to reference [15] and to the original work of
Chihara [16,17]. As a first step, we use a quantum
version of the Percus trick [18] to relate the ho-
mogeneous two-body pair-correlation functions to
the one-body inhomogeneous density around a
single classical particle fixed at the origin. For the
ion–electron pair-correlation function we fix an
ion at the origin to find

gIeð0; rÞ ¼
qeðrjIÞ

q0
e

; ð5Þ

where qeðrjIÞ is the (interacting) valence electron
density. 1 A similar relationship can be found for
the ion–ion pair-correlation function, but this trick
cannot be used for the electron–electron pair-cor-
relation function, since one cannot ‘fix’ an electron
at one position. The next step is to solve for the
interacting one-body electron density. To do this,
one can use the Kohn–Sham trick [3], namely that
there exists a single-particle external potential
veffðrÞ which will induce in a non-interacting system
the same one-particle density qðrÞ as is found in
the full interacting system. This external effective
potential, felt by the non-interacting electrons or
non-interacting ions, follows from the Euler equa-
tions. If one further makes a functional Taylor
expansion around the equilibrium homogeneous
densities, then the following effective ion–ion and
ion–electron potentials result:

veff
aI ðrÞ ¼ vaIðrÞ 


1

b

X
c

qc

Z
Cacðjr
 r0jÞhcIðrÞdr0

þ 1

b
BaIðrÞ; ð6Þ

where the CacðrÞ are the homogeneous limits of the
direct correlation functions defined in Eq. (3), and
the Percus trick was used to rewrite ðqcðrjvcIÞ 
 q0

cÞ

in terms of the correlation functions hcIðrÞ ¼
gcIðrÞ 
 1. The remaining higher order terms are
lumped into the so-called bridge functions BabðrÞ,
well known in the theory of liquids [14,19]. Again,
we note that no such potential can be derived for
the electron–electron correlations. With that ca-
veat in mind, our formulation, derived from a
DFT approach, is still in principle exact.

To make progress, however, some approxima-
tions must be made, in particular to treat the
electron–electron correlations. We follow Chihara,
who made a series of such approximations to de-
rive the QHNC equations [10]. The most impor-
tant one is:

1. The valence electron correlations are treated in
the jellium approximation; i.e. the effect of the
ion–ion and ion–electron correlations on the
electron–electron correlations are ignored, and
the electron–electron direct-correlation function
is written as

CeeðkÞ ¼ 
bveeðkÞ½1 
 Gjell
ee ðk; q0

eÞ�; ð7Þ

where Gee is the local field factor for the elec-
tron gas [20,21]. This has the great advantage
that the QOZ relations (3) now reduce to only
two coupled equations for the ion–ion and the
ion–electron correlations. While this is the key
approximation that makes the QOZ relations
tractable, it is also the most important and
uncontrolled approximation in the QHNC
scheme. The fact that the effective pair poten-
tials derived from a linear response scheme
[13,20] are very sensitive to the exact form of
the local field factor also testifies to the im-
portance of the approximations in Eq. (7)to the
physics of a liquid metal.

QHNC also uses an implicit separation of the
valence electrons from the core electrons. This
approximation is closely related to the jellium
approximation discussed above, and is only
good when the core and valence electron energy
levels are well separated so that the ionic cor-
relations do not have a significant effect on the
core states; it is likely to break down near res-
onances.

1 In principle one could also define gIeðrÞ for all the electrons,

including the core-electrons, but since the core electron density

changes very little, they are not plotted for the sake of clarity.
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The other approximations used in QHNC are
much better understood, and are often encoun-
tered in either their electronic structure [20] or
liquid state theory context [14]. In descending
order of importance they are (for a more detailed
discussion see Ref. [15]).
2. The local density approximation (LDA) is used

for the one-centre ion–electron problem. This
approximation is well known and understood
in electronic-structure theory [20]. Although in
principle this approximation is similar to ap-
proximation 1 for CeeðQÞ, since the exchange
and correlation energy of an inhomogeneous
electron gas are approximated by the local en-
ergy density of jellium, there are a number of
reasons to believe the LDA is rather accurate
[5]. Various improvements to the LDA exist,
but these are not thought to be very important
for the simple metals we study.

3. The ion–electron bridge function, BIeðrÞ, is set
to 0, which is related to the hypernetted-chain
approximation, well known in liquid state the-
ory [14].

4. The ion–ion bridge function, BIIðrÞ, is approxi-
mated by the bridge-function of a hard-sphere
reference state. This is called the RHNC or
MHNC approximation in liquid state theory
[14,19], and is generally very accurate.

5. The bare ion–ion potential is taken to be purely
Coulombic. Again, this is an approximation
whose limitations are well understood [20].

In summary then, the QHNC approximation
achieves the following very important simplifica-
tion for the electronic problem: the original many-

centre electronic problem has been reduced to an
effective one-centre problem by replacing the direct
effect of the ions with an effective external poten-
tial, given by Eq. (6), that depends self-consistently
on the ion–ion correlations. This is depicted
schematically in Fig. 1. The main advantages
are that the ion–ion and ion–electron correlations
emerge naturally and on the same footing and that
the calculations are much more rapid than full
ab initio simulations. By using DFT to derive the
QHNC equations, their origin and meaning be-
come more transparent. For details on the (non-
trivial) numerical implementation of the QHNC
we refer to Refs. [15–17].

2.3. Applications of the QHNC to ion–electron
correlations

The ion–electron radial distribution function,
defined as the conditional probability of finding a
valence electron a distance r away, given that there
is an ion at the origin, can be written as

q0
egIeðrÞ ¼ nðrÞ þ q0

e

Z
V
nðr 
 r0ÞgIIðr0Þdr0; ð8Þ

where nðrÞ is the so-called ‘pseudo-atom’ density,
which, when superimposed according the ion–ion
radial-distribution function gIIðrÞ, gives the correct
value of the total electron density. The ion–elec-
tron radial distribution function and the related
pseudo-atom density, calculated with the QHNC
approach, are shown in Fig. 2 for a series of simple
metals. At short distances the probability of find-
ing an electron a distance r away is equal to the
pseudo-atom density, but further away the effects

Fig. 1. Schematic picture of the QHNC approximation: The original many-centre problem is reduced to an effective one-centre

problem.

A.A. Louis et al. / Journal of Non-Crystalline Solids 312–314 (2002) 60–68 63



of the other surrounding pseudo-atoms kick in.
Note that the QHNC is an all-electron calculation;
the oscillations near the core are correctly repro-
duced, in contrast to the traditional AIMD ap-
proaches, which rely on pseudo-potentials. The
ion–electron correlation functions calculated with
the QHNC compare very well for the cases where
AIMD simulations are available. However, it
turns out that for most of the metals in our set a
much simple linear response formalism also per-
forms remarkably well [22]. The surprising accu-
racy of the linear response arises from a quantum
interference effect between two length-scales: the
Fermi wave-vector and the core-size of the ions,
which makes the non-linear response terms much
less important than one might naively expect [22].
The accuracy of the QHNC also benefits from this
effect.

The only metal in our set where the QHNC
has difficulty is Ga. We found earlier [15] that
an ad-hoc change in the local field factor GeeðqÞ

seems to improve matters. We also found that the
d-electrons are close to a resonance. These two
points indicate that approximation 1, discussed
in the previous section, begins to break down
for Ga.

3. Applying two-component DFT to inhomogeneous
fluids

In this section we explore the possibilities of
studying inhomogeneous metals within a two-
component DFT formulation. The advantage of
treating metals directly as electron–ion mixtures in
this way is that we bypass the need for effective
(density dependent) ion–ion potentials, whose for-
mal status is not always clear [23]. Modern classical
DFT methods use input from the homoge-
neous liquid state [8,9,24,25]; the QHNC is ideally
suited to provide such input for a two-component
DFT.

Fig. 2. The ion–electron radial distribution functions as obtained from the QHNC approximation (––), OF-AIMD [34,35] (
) and

Car–Parrinello AIMD [36] (�). The dashed lines represent the pseudo-atom density nðrÞ=q0
e .
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One of the simplest approximations for the
DFT of an inhomogeneous system, first proposed
by Ramakrishnan and Yussouff (RY) [26,27], cor-
responds to truncating at second order a func-
tional Taylor expansion of the excess free-energy
around the homogeneous phase:

DF ex½qI; qe� ¼ 

X

a

X
b

Z
dr

Z
dr0 DqaðrÞ

� Cabðq0
a; q

0
b; jr
 r0jÞDqbðr0Þ; ð9Þ

where DF ex ¼ F ex½fqaðrÞg� 
 F ex
0 ðfq0

agÞ, and the
direct correlation functions Cabðq0

a; q
0
b; jr
 r0jÞ are

those of the homogeneous liquid phase. For met-
als, the QHNC provides CIIðrÞ and CIeðrÞ, while
CeeðrÞ is fixed by the jellium approximation. To-
gether, these correlation functions completely de-
termine the excess free-energy of Eq. (9).

To obtain the total free-energy, one then adds
the ideal contributions of the electrons and the
ions. For the ions, this ideal free-energy functional
has the form

bF id
I ½qI� ¼

Z
drqIðrÞfln½qIðrÞK3� 
 1g; ð10Þ

but for the electrons the exact form is not known,
and various approximations must be made. To
preserve the advantages of the current DFT ap-
proach, one needs a kinetic energy functional. A
number of forms have been proposed; some are
remarkably accurate, see e.g. [7] and references
therein. These kinetic energy functionals also vary
in the ease with which they can be implemented in
a full two-component DFT calculation [28].

Classical DFT has frequently been applied to
the freezing transition and the fluid–solid interface
of simple fluids [9]. The two-component DFT de-
scribed above provides a basis upon which to build
similar applications for metallic systems.

As a first application, we attempted to use the
two-component RY formalism described above to
calculate the freezing transition of Al. A very
similar approach was already implemented by one
of us [29] to study the freezing transition of H.
However, there a simpler semi-empirical prescrip-
tion was used for CIeðrÞ. Since H does not have a
core radius, the cancellation of higher order re-
sponse terms found for simple metals [22] does not

hold. This implies that the correlation functions
and also the freezing transition of H should be
more difficult to treat accurately than would be the
case for simple metals. Other properties of liquid
H, such as the metal–insulator transition [30] are
also much harder to treat. Partially for these rea-
sons, we would initially expect that the simple
metals are actually better systems on which to test
rudimentary DFTs.

The one-body densities of the solid phase are
parameterized by sums over the reciprocal lattice
vectors (r.l.v.) fGg:

qaðrÞ ¼ q0
a

X
fGg

nG
a exp½iG � r�: ð11Þ

For the ions a further, well established, simpli-
fication is to take the real-space density qIðrÞ as a
sum of Gaussians, centred on the lattice sites,
which implies nG

I ¼ exp½
G2=41�. With this density
parameterization and approximation, the full free-
energy functional for the difference between the
solid and the liquid state free-energy, taken from
Eqs. (1), (9) and (10), reduces to

bDF
NI

¼ 3

2
ln

1d2

p

� ��

 3

2

 ln 2

�
þ DF id

e ½qe�


 1

2

X
fGg

0ðnGI Þ
2q0

I ĉcIIðjGjÞ


 1

2

X
fGg

0ðnGe Þ
2q0

e ĉceeðjGjÞ



X
fGg

0nGI nGe q0
e ĉcIeðjGjÞ: ð12Þ

Here the ĉcabðjGjÞ are the Fourier transforms of the
direct correlation functions for the liquid state,
and the primes mean that the term G ¼ 0 should
be omitted in the sum. The first term between
brackets is the ideal free-energy of the ions (10),
written out in terms of the Gaussian parameter 1.

This free-energy can then be minimized through
the variational principle (2) to solve for the free-
energy difference between a given solid crystal
structure and the fluid phase. However, when we
attempted this for Al, with the direct correlation
functions given by the QHNC, we found that the
free-energy of the solid did not have a stable
minimum. This is a common problem encountered
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when applying a DFT to the freezing transition
(see e.g. Ref. [31]): If the full direct correlation
functions are used, then it is very hard to stabilize
the solid phase. If instead one uses the DFT for a
hard-sphere reference system, adding the attrac-
tive interactions as a perturbation, very good
agreement with experiment and simulation is re-
covered. Examples include phase diagrams [24],
the fluid–solid interface of the LJ fluid [32], and
a one-component treatment of the freezing of
Al [33], based on an effective pair potential. This
suggests that a successful two-component DFT
treatment of the freezing transition also needs to
pass via this route. Unfortunately this quickly
reduces to a theory similar to the one-compo-
nent DFT, which means introducing the effective
pair potentials we are trying to avoid in the first
place.

Another application of the two-component
DFT formalism is to examine the fluid–solid in-
terface of Al, for which Besson and Madden [11]
have recently completed extensive OF-AIMD
simulations. They found non-trivial behaviour,

with the ion–ion density profiles decaying from an
ordered structure to a smooth liquid structure
across several atomic layers. Similarly, they found
that the valence electron density also showed os-
cillations that decayed into the bulk liquid phase.
In principle, a two-component DFT would be
ideally suited to study this problem, since the ionic
and electronic density profiles come out on equal
footing. Unfortunately, the difficulties encoun-
tered when trying to treat the freezing transition
also make studying this problem very difficult.
Instead, we tackle a simpler problem: given the
ionic density profile, can we use our DFT to cal-
culate the electron density profile?

If the ionic density profiles are given, which
fixes the nG

I , then the electronic nG
e which satisfy

the variational principle (2) follows from Eq. (12):

nGe ¼ 
 nGI ĉcIeðGÞ
ðb=v0

eeðGÞÞ þ ðĉceeðGÞÞ ; ð13Þ

where we have made an additional approximation,
also made in [29], that the ideal electron contri-
bution DF id

e ½qe� is expanded to second order in nGe

Fig. 3. Electron density profiles from the OF-AIMD simulations [11] (––), compared to the QHNC–DFT results (–––) given by

Eq. (13), and linear response theory (� � �) with an empty-core pseudo-potential with Rc ¼ 1:153a0. Inset, comparison of ĉcIeðkÞ (––) and

the pseudo-potential vIeðkÞ (–––), both in Hartrees.
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(linear response). This is consistent with the spirit
of the RY DFT approach, and greatly simplifies
the minimization of the electronic degrees of
freedom, since they are now linearly coupled to the
ionic ones. Note that taking the lowest order ap-
proximation to the ion–electron direct correlation
function, CIeðrÞ � 
bvIeðrÞ in Eq. (13) would be
equivalent to a standard linear response calcula-
tion. Since we use the full CIeðrÞ, non-linear re-
sponse terms are included, although one would
need to use the full kinetic energy functional to be
completely consistent with the RY DFT approach
of Eq. (12). The results of using Eq. (13) are shown
in Fig. 3 as a function of the distance z along the
interface. (See Ref. [11] for details of parameters.)
The QHNC results are in fact less accurate than a
simpler linear-response approximation, which re-
places ĉcIeðGÞ, with an empty-core Ashcroft pseudo-
potential [13,20]. At first this may seem surprising,
but a careful look at the inset of Fig. 3 shows
that the difference results from the fact that
ĉcIeðGÞ is considerably smaller at G � 1:8, where the
strongest ionic scattering occurs. This difference
stems in part from the fact that the true pseudo-
potential in Al is known to be highly non-local [20]
because of the p character of the bonds, suggesting
that a local formulation, such as the simple linear
response DFT we employed, will not work well
together with the QHNC calculation which makes
no local pseudo-potential assumptions. Non-linear
response effects are also expected to be more im-
portant at the highly inhomogeneous fluid–fluid
interface. In contrast to the QHNC, the pseudo-
potential contains an empirically adjustable pa-
rameter that effectively includes non-local and
non-linear effects. To achieve accurate results with
a DFT based on the QHNC, one needs to treat
the two approaches at comparable levels of ap-
proximation. As is often encountered in con-
densed-matter physics, mixing different levels of
approximation does not work very well. Two ways
of improving this would be (1) to use QHNC with
the improved local pseudo-potentials used in the
OFMD [11] or (2) to use a more sophisticated
DFT approach. Although far from complete or
completely satisfactory, this first, and rather pri-
mitive, example of a two-component DFT used for
a liquid–solid interface suggests that our DFT

approach could in principle be fruitfully used to
study fluid–solid interfaces in simple metals.

4. Conclusions

In conclusion, we have shown how DFT pro-
vides a unified formalism from which to derive the
QOZ equations, and the related QHNC approach,
first pioneered by Chihara. The QHNC reduces
the many-centre electronic problem to an effec-
tive one-centre one. This dramatically reduces
the computational time needed to calculate ion–
electron and ion–ion correlation functions. It also
has the advantage that no explicit use of effective
pair potentials or pseudo-potentials is needed. The
most important approximation in the QHNC ap-
proach is to treat the electron–electron correla-
tions as those of jellium. It is not yet clear under
which conditions this approximation begins to
break down. With this caveat in mind, the other
approximations entering the QHNC are rea-
sonably well understood. We used the QHNC to
calculate the ion–electron radial distribution func-
tions for a number of simple metals, finding very
good agreement with ab initio molecular dynamics
calculations where these are available.

We have also discussed an exploratory appli-
cation of the simple RY DFT approach to liquid
metals as two-component electron–ion mixtures.
We found that the description of the freezing
transition suffers from a similar problem to that
found for classical simple fluids: the solid phase
does not develop a stable minimum if the full di-
rect correlation functions are used as input. This is
rather disappointing. Slightly more success was
found when we attempted to use the DFT to de-
scribe the inhomogeneous electron density at a
liquid–solid Al interface. Although this result was
only a partial application of the DFT, since the
ionic density profile came from the simulations, it
does suggest that developing a full fledged DFT
could be very fruitful. Finally, it is clear that our
rudimentary DFT approach is not yet accurate
enough, and could be improved in a number of
ways. We are attempting to generalize more so-
phisticated DFT schemes like the MDWA [25] or
GELA [8] to the two-component ion–electron
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problem. We are also studying the effect of using
different local field factors and different kinetic
energy functionals.
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