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Polymer induced depletion potentials in polymer-colloid mixtures
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The depletion interactions between two colloidal plates or between two colloidal spheres, induced
by interacting polymers in a good solvent, are calculated theoretically and by computer simulations.
A simple analytical theory is shown to be quantitatively accurate for the case of two plates. A related
depletion potential is derived for two spheres; it also agrees very well with direct computer
simulations. Theories based on ideal polymers show important deviations with increasing polymer
concentration: They overestimate the range of the depletion potential between two plates or two
spheres at all densities, with the largest relative change occurring in the dilute regime. They
underestimate the well depth at contact for the case of two plates, but overestimate it for two
spheres. Depletion potentials are also calculated using a coarse graining approach which represents
the polymers as ‘‘soft colloids;’’ good agreement is found in the dilute regime. Finally, the effect of
the polymers on colloid–colloid osmotic virial coefficients is related to phase behavior of polymer–
colloid mixtures. © 2002 American Institute of Physics.@DOI: 10.1063/1.1483299#
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I. INTRODUCTION

Effective potentials are a key to unlocking the equili
rium behavior of many soft-matter systems.1,2 The basic phi-
losophy behind this coarse-graining approach is that the
tial effort in deriving these potentials is recouped when th
are input into the well oiled machinery of liquid state theor3

or when they are used in computer simulations.4 An arche-
typal example is the depletion potential, induced betwe
colloidal particles by nonadsorbing polymers. Asakura a
Oosawa5 first showed that a bath of such polymers, char
terized by their radius of gyrationRg , induces an attractive
depletion interaction of rangeD'2Rg between two plates
Their calculation was exact for noninteracting polyme
Later, the same authors, and independently Vrij,6 derived a
depletion potential between two colloidal hard spheres~HS!
by approximating the~ideal! polymers as penetrable sphere
This is often termed the Asakura–Oosawa~AO! model.

A good example of the effective potential coars
graining approach is the calculation of the phase behavio
polymer–colloid mixtures by Gast, Hall, and Russel,7 and
also by Lekkerkerkeret al.8 and Meijer and Frenkel.30 They
found, using an AO depletion potential approach, that
fluid–fluid phase line of colloids of radiusRc becomes meta
stable with respect to the fluid–solid phase line if the s
ratio q5Rg /Rc is less than about 0.35, in qualitative agre
ment with experiments.9,10 Their work demonstrates how a
accurate knowledge of the depletion potential can lead
good understanding of the equilibrium behavior of collo
polymer mixtures. The latter are important not only beca
of their relevance to many industrial and biological pr
cesses, but also because they form an important model
1890021-9606/2002/117(4)/1893/15/$19.00

Downloaded 11 Jul 2002 to 131.111.116.196. Redistribution subject to A
i-
y

n
d
-

.

.

-
of

e

e
-

a

e

ys-

tem for equilibrium and nonequilibrium behavior in soft ma
ter science.

Whereas the depletion interaction for ideal polymers
now quantitatively understood, the understanding of
depletion interaction induced by polymers with exclud
volume interactions is at best qualitative. Experiments on
phase behavior9,10 and structure11,12of polymer–colloid mix-
tures also show deviations from the simple AO model,13,14as
do direct measurements of the depletion potentials.15–17The-
oretical attempts to directly calculate the depletion potent
for interacting polymers include scaling theory,18 self-
consistent field theory,19 perturbation theory,20,21 direct
simulations,22 RG theory,23,24 as well an interesting new
‘‘overlap approximation’’ method.25 All these approaches
show significant deviations from ideal polymer behavior, b
many questions still remain. This is in contrast to binary H
colloid mixtures, where the deviations from the AO potent
can now be quantitatively calculated with density function
theory ~DFT!,26–28 and the effects of nonideality on th
phase behavior are fairly well understood.29 The goal of our
paper is to derive a theory of similar accuracy for the dep
tion potential induced by interacting polymers in a good s
vent.

Before we proceed, an important caveat is that the de
tion potential becomes less relevant for phase behavio
larger size ratiosq, since many-body interactions becom
increasingly important.13,14,30Whenq@1, i.e., when the col-
loids are much smaller than the polymers, other approac
which treat the polymers on a monomer level, are more
evant. Examples include integral equation techniques,31 scal-
ing theory,32,33 or renormalization group theory~RG!.34 In
3 © 2002 American Institute of Physics
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1894 J. Chem. Phys., Vol. 117, No. 4, 22 July 2002 Louis et al.
this paper we concentrate on the regime whereRg is of the
order ofRc or smaller.

We have recently performed a systematic study of
insertion free-energy of a single colloidal particle in a bath
interacting polymers35 ~henceforth referred to as Paper!,
and found important deviations from ideal polymer behav
In particular, we found that the range of the depletion la
decreases with increasing densityr, and that this effect is
most pronounced in the dilute regime, wherer&r* ; here
r* 5 4

3pRg
3 is the overlap density. In the semidilute regim

wherer/r* .1, we found that the effects of the interactio
could be well described by scaling theory.33 Since these one
body effects were not well captured by~nonadditive! HS-like
models, we do not expect straightforward extensions of
DFT techniques that work so well for binary hard HS mi
tures, to also perform well for two-body depletion potentia
in polymer–colloid mixtures.

To calculate the depletion potentials, we use a sim
approach to that used in Paper I, a combination of sca
theories and computer simulations. Since we found in Pa
I that the width of the depletion layer decreases with incre
ing density, we expect a similar trend for the range of
related depletion potential. Throughout this work we foc
on the dilute and semidilute regimes33,36 of the polymers,
where the monomer densityc is low enough for detailed
monomer–monomer correlations to be unimportant; the m
regime, wherec becomes appreciable, will not be treat
here. Since our models are all athermal, we setb51/(kBT)
51.

The paper is organized as follows: The case of the de
tion interaction between two plates is discussed in detai
Sec. II. We show that it is closely related to the problem
determining the surface tensiongw(r), which was solved in
Paper I. Just as was found forgw(r), the depletion potentia
simplifies in the semidilute regime. In Sec. III, we discu
the depletion interaction between two spheres. We comp
the results of direct Monte Carlo~MC! simulations of the
interaction between two HS colloids induced by a bath
self-avoiding walk~SAW! polymers to a potential derive
within the Derjaguin approximation.37 The Derjaguin ap-
proximation works much better than one would naively e
pect because of a cancellation of errors related to the de
mation of polymers around a sphere. Using an extensio
the Derjaguin approximation, we derive a new semiempiri
depletion potential which appears to be nearly quantita
for q<1, the regime where depletion potentials are m
relevant for the phase behavior and structure of polym
colloid mixtures. We derive the scaling behavior with de
sity, and find important deviations from the AO model a
other ideal-polymer theories. We also calculate the deple
potential between spheres within our new ‘‘polymers as s
colloids’’ coarse-graining scheme,38–41 where each polyme
is represented by a single particle, interacting via a dens
dependent effective potential. Here we again find go
agreement with the direct MC results for the dilute regim
but for r/r* .2, significant deviations occur. In Sec. IV, w
discuss the effect of polymer density on the virial coe
cients between two colloids, and relate this to phase beha
of polymer–colloid mixtures.
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II. DEPLETION POTENTIAL BETWEEN TWO WALLS

A. Surface tension near a single wall
and the depletion potential at contact

Immersing a single hard wall~or plate! into a bath of
nonadsorbing polymers in a good solvent reduces the n
ber of configurations available to the polymers. This in tu
results in an entropically induced depletion layerr(z) near
the wall, discussed in more detail, for example, in Pape
Associated with the creation of this depletion layer is
interfacial free energy cost per unit areaA, i.e., a wall–fluid
surface tensiongw(r), which typically depends on the bul
density r, or equivalently the bulk chemical potentialm.42

Bringing two such walls, of areaA, together from an infinite
distance apart to a distancex where the two depletion layer
begin to overlap, changes the total free energy of the po
mer solution. This change in the free energy or grand pot
tial V per unit area is called the depletion potentialW(x)
[(V(x)2V(x5`))/A.42 When x50, i.e., when the two
walls are brought into contact, the depletion potential
duces to the simple form

W~0!522gw~r!, ~1!

reflecting the fact that the two depletion layers are co
pletely destroyed.

In Paper I, we used an extension of the Gibbs adsorp
equation to express the surface tension near a single wa

gw~r!52E
0

rS ]P~r8!

]r8 D Ĝ~r8!dr8. ~2!

The derivation of this equation can be found, for example
Refs. 25 and 43. HereP~r! is the osmotic pressure of th
polymer solution, andĜ(r) is the reduced adsorption near
single wall, defined as

Ĝ~r!52
1

r

]~Vex/A!

]m
5E

0

`S r~z!

r
21Ddz, ~3!

whereVex/A is the excess grand potential per unit area.
Paper I, we used computer simulations of a SAW polym
solution in a good solvent near a wall to calculater(z) and
Ĝ(r) for several values ofr/r* . As discussed in Paper I, th
SAW on a cubic lattice is a very good model for polymers
a good solvent. In the scaling limit, where the lengthL tends
towards infinity, its properties are universal, and agree w
experiments on polymers in the same good solv
regime.33,36 For example, the radius of gyration scales
Rg;Ln, where n is the Flory exponent, taken to ben
50.588 in this paper. By using an accurate fitting for
which takes into account the correct scaling behavior,
expressedĜ(r) for all densities in the dilute and semidilut
regimes. When this was combined with a RG expression
the pressure, we were able to calculate the surface ten
gw(r) as a function of density through Eq.~2!. Our results
agreed very well with some recent RG calculations.44

Here we usegw(r) together with Eq.~1! to directly
calculate the depletion potential at contact, as shown in
1. These results are also compared to direct computer s
lations of L5100 SAW polymers.38,39 Even though theL
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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1895J. Chem. Phys., Vol. 117, No. 4, 22 July 2002 Polymer induced depletion potentials
5100 simulations have not quite reached the scaling lim
the well depths at contact are remarkably well reproduce
result also found by Tuinier and Lekkerkerker25 with a simi-
lar theory.

B. A simple theory for the depletion potential

The simplest approximation for the depletion potentia
finite separationx would be a linear form with a slope equ
to the osmotic pressure. This follows becauseP(r)x is pro-
portional to the work per unit area produced by the osmo
pressure,

W~x!5W~0!1P~r!x; x<Dw~r!,

W~x!50; x.Dw~r!, ~4!

where the range is given by

Dw~r!52
W~0!

P~r!
5

2gw~r!

P~r!
. ~5!

We note that this approximation is similar to that adopted
Joanny, Leibler, and de Gennes who, in their pioneer
paper,18 approximated the force between two plates as c
stant forx<pj(r) and zero forx.pj(r), wherej~r! is the
correlation length, the relevant length-scale in the semidi
regime.33,36 This also results in a linear depletion potentia

In Fig. 2 we compare our simple linear potential to t
direct SAW simulations. The overall agreement is strikin
The only~small! deviation occurs at larger distancesx where
the true potential rounds off and develops a very small ma
mum before going to zero.45 The rangeDw(r) of this simple

FIG. 1. Depletion potential between two walls or plates at contactW(0)
522gw(r) per unit areaRg

2 . The full line results from Eq.~2!, while the
long-dashed line comes from the simpler semidilute scaling expression~6!.
The diamonds denote previously publishedL5100 SAW simulation results
~Ref. 39!. The dashed line represents the simple ideal polymer formWid(0),
given by Eq.~9!, while the dot-dashed line shows the naive improvem
obtained by substituting the true polymer osmotic pressure for the i
polymer pressure. These two Asakura–Oosawa-type approximations br
the correct result. The inset shows the strength of the simpler semid
scaling expression relative to the the full potential at contact~dotted line!.
The two coincide for higher densities. In the low density limit, the sem
lute scaling expression overestimates the true value at contact by a f
1.5.
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potential decreases withr/r* . In fact, as shown in Fig. 3
the largest relative rate of decrease occurs in the dilute
gime, so that atr/r* 51, the range isD51.25Rg , about
58% of the low density limit ofD'2.15. In general, the
range of a potential is not always unambiguously define46

Of course for our linear one it is, and this simple definitio
would seem a very reasonable definition for the range of
full depletion potentials depicted in Fig. 2.

C. Scaling theory for the depletion potential
in the semidilute regime

Further simplifications occur in the semidilute regim
For example, when the scaling forms33 for the osmotic pres-
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FIG. 2. Depletion potential between two walls or platesW(x) per unit area
Rg

2 . The symbols denote simulations forL5100 SAW polymers, the
straight lines are the simple theory of Eq.~4!, which provides a near quan
titative fit to the simulation data. The rangeDw(r50)'2.15 is shown as a
vertical line. Note how much the range decreases with density, even
these results in the dilute regime.

FIG. 3. Comparison of the rangeDw(r) of the depletion potential with the
simpler semidilute scaling expressionsDsd(r), both in units ofRg . As
density increases well into the semidilute regime, the two expressions c
cide. In the low density limit the semidilute expression is exactly 1.5 tim
the full expression. Note how much the range differs from the density in
pendent result for noninteracting polymersD id54/Ap'2.26.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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sure,P;r3n/(3n21) and the reduced adsorptionĜ'2j(r)
;r2n/(3n21) are used in Eq.~2!, then, as shown in Paper
the integral simplifies and the potential at contact takes
the very simple form,

Wsd~0!53P~r!Ĝ~r!;r2n/3n21'r1.539. ~6!

The linear depletion potential~4! then reduces to

Wsd~x!5P~r!~3Ĝ~r!1x!; x<Dsd

~7!
Wsd~x!50; h.Dsd,

and the range simplifies

Dsd~r!523Ĝ~r!;r2n/(3n21)'r20.770. ~8!

As can be seen in Figs. 1 and 3, these simple expression
the well-depth and the range work remarkably well in t
semidilute regime, especially forr/r* .2.

Deviations do occur for low densities since according
Eqs.~1! and~2!, W(x50)'2P(r)Ĝ(r) for r→0, the same
form as for ideal polymers. Equation~6! therefore overesti-
mates the well depth by a factor 1.5, as can be seen in
inset of Fig. 1. In the same limit the range of the deplet
potential reduces to the functional formD522Ĝ(r), so that
Eq. ~8! also overestimates the range at low densities b
factor 1.5, as can be seen in Fig. 3.

In the semidilute regime one can identifyĜ(r)
'2j(r).33 Therefore the ansatzDw(r)5pj(r), originally
postulated by Joannyet al.,18 is very close to Dsd(r)
523Ĝ, the expression we derived for the range of t
depletion potential in the semidilute regime. Their poten
is therefore quite accurate in the semidilute regime, but o
estimates the range and the well-depth by a factor slig
larger than 1.5 in the dilute limit.

D. Comparison with theories for noninteracting
polymers between two walls

For completeness we compare the results obtained in
previous section to those for ideal polymers, first obtained
Asakura and Oosawa in 1954.5 Their ~exact! depletion po-
tential can be quite accurately approximated by a simple
ear form,39

Wid~x!5rS 2
4

Ap
1xD ; x<

4

Ap
Rg ,

~9!

Wid~x!50; x.
4

Ap
Rg .

However, for interacting polymers, this is only true in th
limit r→0; the validity of this expression rapidly deterio
rates with increasing density. As shown in Fig. 1, Eq.~9!
underestimates the well depth for all but the lowest densit
while, as shown in Fig. 3, it overestimates the range at
densities. One might think that replacing the ideal press
P(r)5r in Eq. ~9! by the pressure of an interacting polym
system would bring an improvement for the well depth, ev
if this does not improve the approximation for the rang
Instead, as shown in Fig. 1, this naive approach leads
severe overestimate of the well-depth. In fact, for the se
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dilute regime, the contact value of this naive ‘‘improvemen
would scale asWid

naive(0)5(4/Ap)P(r);r3n/(3n21)'r2.309

instead of the correctW(0);r2n/(3n21)'r1.539 scaling.
Even for r/r* 51 the differences are significant:W(0)
520.93, whileWid(0)520.54 andWid

naive(0)521.68. For
r/r* 510, W(0)5225.4, Wid(0)525.4, and Wid

naive(0)
52208! In other words, the simple heuristic ansatz is
most never a real improvement; for interacting polymers,
Asakura–Oosawa potential between two plates is only ac
rate at the very lowest densities.

III. DEPLETION INTERACTIONS BETWEEN SPHERES

We now turn to the polymer induced depletion intera
tion between two hard spheres. Similarly to the case of t
walls, when the surfaces of two such spheres are brough
within a distance where their depletion layers begin to ov
lap, the total free energy of the system changes; this cha
again defines the depletion potential.

Since we found in Paper I that the surface tensions a
ciated with the polymer depletion layers around a sin
sphere show behavior which differs from that of ideal po
mers or that of the AO model, we expect to find qualitati
differences in the depletion potentials as well. The trends
expected to be similar to those found for the depletion
tential between two walls, namely that the range should
crease and the well depth should increase with increa
polymer concentration.

A. Full SAW polymer simulations

To calculate the polymer induced depletion potential b
tween two spheres directly, we performed grand-canon
simulations ofL5500 SAW polymers on a lattice of siz
24031503150, and computed the osmotic pressure or fo
exerted on two hard spheres placed in the same simula
box. The configuration space of polymers was sampled in
grand canonical ensemble with a combination of configu
tional bias Monte Carlo and pivot moves.4 The depletion
force on the spheres was obtained from the ratio of the
ceptance of virtual inward and outward moves of the sphe

In Fig. 4 these forces are shown for three different s
ratios q5Rg/Rc , namely,q50.67, q51.05, andq51.68.
For the first two size ratios, we computed the forces at th
densities,r/r* 50.58, r/r* 51.16, andr/r* 52.32.42 For
q51.68, this was only done for the lower two densities.
expected, for a fixed size ratio, the range decreases, and
force at contact increases with increasing polymer dens
For a given density, the range appears to contract slig
with increasingq, as might be expected, since the polyme
can deform more readily around the smaller colloids~see the
Appendix for further discussion of this point!. In each simu-
lation we keep the size of the polymers fixed, so that
larger size ratios essentially correspond to smaller sphe
.The computational cost scales with the size of the simu
tion box, which roughly sets the number of polymers need
to achieve a densityr/r* in the accessible volume left b
the colloids.

The force can then be integrated to obtain the effect
depletion potential,
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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V~x!52E
x

`

F~y!dy. ~10!

Results are shown in Fig. 5 for the same parameters a
Fig. 4. Because the curves are integrated, they ap

FIG. 4. Depletion forces between two spheres for three size ratiosq, as a
function of x, the distance between the surface of the two spheres.
symbols denoteL5500 SAW computer simulations for three densitie
r/r* 50.58 ~circles!, r/r* 51.16 ~squares!, r/r* 52.32 ~diamonds!, the
solid lines are to guide the eye. These are compared to results from
Derjaguin approximation for the same size ratios and densities:r/r*
50.58 ~dotted lines!, r/r* 51.16 ~dashed lines!, and r/r* 52.32 ~dot-
dashed lines!.
Downloaded 11 Jul 2002 to 131.111.116.196. Redistribution subject to A
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smoother than the forces. There may still be some resid
error in the potentials, which might explain why the ran
for the highest density seems slightly larger for the poten
than for the force. Also, the errors are too large to determ
whether or not there is a repulsive bump in the potential. I
does exist, it is probably very small.47 This is in contrast to
hard-core systems, where such bumps can
pronounced.20,48,49The weakness or absence of a repuls
barrier in the case of interacting polymers can probably

e

he

FIG. 5. Depletion potentials between two spheres for the same set o
rameters as in Fig. 4. These are compared to the semiempirical depl
potentialVs(r ) @Eq. ~17!# for the same size ratios and densities.
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1898 J. Chem. Phys., Vol. 117, No. 4, 22 July 2002 Louis et al.
traced to the very low monomer concentrationc. For shorter
polymers, whose behavior deviates significantly from theL
→` scaling limit, and where a substantial monomer dens
c can more easily be achieved, such repulsive bumps m
occur more readily.50

As expected, the range decreases while the force at
tact and the potential well-depth increase with increas
polymer density. For a fixed density and polymer sizeRg ,
the force at contact and the well-depth decrease as
spheres become smaller~or q becomes larger!. The same
effect occurs for ideal polymers,30 where it has a simple geo
metric origin: the volume of a depletion layer of a give
width ;Rg decreases with decreasing size of the h
spheres.

B. The Derjaguin approximation for interacting
polymers

In the case of two walls, the well-depth at contact ha
clear interpretation in terms of the complete destruction
two depletion layers, and can therefore be expressed
simple function of the wall–polymer surface tensiongw(r),
as shown in Eq.~1!. For two spheres, the depletion layers
not completely overlap, and the depletion potential at con
is related to the surface tension of polymers surrounding
spheres in a dumbbell type configuration. A simple expr
sion for the well depth at contact in terms of the surfa
tensiongs(r) is therefore less obvious.

One way to make contact with the two wall case is to u
the Derjaguin approximation,37 which relates the force be
tween two spheres of radiusRc to the potential between two
walls, W(x), in the following way:

FDerj~x!5pRcW~x!, ~11!

where x is the distance between the surfaces of the t
spheres. In principle this approximation should only be
curate for very small size ratiosq, i.e., for very large col-
loids. However, as shown in the Appendix, we expect th
to be a cancellation of errors, related to the deformation
the polymers around spherical particles, which makes
Derjaguin approximation work much better than one wo
naively expect. This is confirmed in Fig. 4, where the D
jaguin expression for the force, taken from Eq.~4! and Eq.
~11!, is shown to be a surprisingly good approximation. It
most accurate for the smallestq, as expected, but even fo
q51.68, where normally one would not expect the D
jaguin approximation to be useful at all, it is still reasonab

By combining Eq.~4! with Eqs.~10! and~11! we obtain
the following Derjaguin expression for the depletion pote
tial between two spheres:

VDerj~x!52
p

2
RcP~r!~Dw~r!2x!2 ~12!

for 0<x<Dw(r); VDerj(x)50 for x.Dw(r). By the nature
of the Derjaguin approximation,Dw(r) is the same range a
found for two walls in Eq.~5!. This simple potential is com
pared in Fig. 6 to the directL5500 SAW simulation results
for q51.05. The correspondence is surprisingly good giv
the large size ratioq, although it is not quantitative as in th
wall–wall case. Similar results are found for the two oth
Downloaded 11 Jul 2002 to 131.111.116.196. Redistribution subject to A
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size ratios. Overall, the Derjaguin approximation overe
mates the well-depth, a consequence of the slightly lon
ranged forces found in Fig. 4. Again, the cancellation
errors found for the simpler AO model in the Appendix hel
explain why Eq.~12! works reasonably well in a regim
where the Derjaguin approximation would normally bre
down.

C. The Derjaguin approximation in the semidilute
regime

We now turn to the scaling behavior of the depleti
potential in the semidilute regime. By using the simple e
pression for the rangeDsd(r) given in Eq.~8!, the Derjaguin
approximation for the depletion potential~12! reduces to

Vsd
Derj~x!52

p

2
RcP~r!@3Ĝ~r!1x#2 ~13!

for x<Dsd(r); Vsd
Derj(x)50 for x.Dsd(r). For two walls,

the simplified expression~8! for the range overestimates th
true range by a factor 1.5 in the low-density limit. Here t
overestimate is slightly larger, since, as shown in the App
dix, the deformation of the polymers around a single collo
reduces the depletion layer width for decreasing sphere
Rc . Similarly the well-depth at contact is also overestimat
in the low density limit, but now by a facto
lim

r→0
Vsd

Derj(0)/VDerj(0)52.25. In the semidilute regime th

two expressions come closer for increasing density. For
ample, at r/r* 52 the overestimate at contact is on
Vsd

Derj(0)/VDerj(0)51.09, while forr/r* 54 the two expres-
sions are within 1% of each other. If in addition we assu
that Ĝ(r)'2j(r) then the expression in Eq.~13! is again
very similar to the form proposed by Joannyet al.18 for two
spheres~3 being replaced byp!. Our arguments therefore
provide an a-posteori justification of the validity of their p
tential for the semidilute regime. In the dilute regime it w
overestimate the attraction in the same way as Eq.~13! does.

Given that we now have a reasonably accurate deple
potential between two spheres, namely, Eq.~12!, it seems

FIG. 6. Comparison of theL5500 SAW computer simulations for the
depletion potential with the Derjaguin approximation of Eq.~12! for q
51.05. The symbols are the same as in Fig. 4.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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fruitful to examine how this expression varies with densi
We do this in Fig. 7 for a number of densities in the dilu
and the semidilute regimes. Since within the Derjaguin
proximation the depletion potential~12! always scales with
Rc , the curves in the plot can be used for all size ratios.
course one should keep in mind that the Derjaguin appr
mation becomes progressively less accurate for decrea
Rc /Rg . With this caveat in mind, the well-depth at conta
for polymers in a good solvent scales as

Vsd
Derj~0!;rn/(3n21)'r0.770 ~14!

in the semidilute regime. This is exactly half the expone
with which the well-depth at contact scales for two walls
the semidilute regime@see Eq.~6!#, which can be understoo
as follows: Within the Derjaguin approximation the forc
scales asF(0)5pRcW(0);r2n/(3n21); the potential is then
obtained through Eq.~10! by integrating this force over a
range D(r);r2n/(3n21). These two effects result in th
scaling seen in Eq.~14!. On the other hand, by nature of th
Derjaguin approximation, the range is the same as
shown in Fig. 3 for the wall–wall case, i.e., it decreases l
Dw(r);r20.770.

An expression similar to Eq.~13! has been derived by
Fleer, Scheutjens, and Vincent~FSV!.19 They replaceRAO in
the full AO potential~A1! by 2Ĝ(r), and the densityr by
P~r!. In its original applications,51 the FSV theory was use
with a self-consistent field theory to calculateĜ(r), and a
simple Flory Huggins prescription forP~r!. This leads to
Ĝ(r);r2(1/2) scaling behavior which is more appropria
for polymers near the theta point.33 However, one could eas
ily generalize the FSV approach and include theĜ(r) and

FIG. 7. Scaled depletion potentialVDerj(x)/(pRc) for interacting polymers.
From top to bottom the densities arer/r* 50.2, 0.5, 1, 2, 5, and 10, respec
tively. In the semidilute regime the well-depth increases liker0.770while the
range decreases asr20.770. Inset: Scaled well depth at contac
VDerj(0)/(pRc) for interacting polymers~solid line!, compared to the scaled
well depth VAO(0)/(pRc) for the AO potential of Eq.~A1! with RAO

5RAO
eff given by Eq. ~A3!. The scaled AO potentials are shown forRc

510Rg , ~dotted line!, Rc52Rg ~dashed line!, andRc50.5Rg ~long-dashed
line!. In contrast to the Derjaguin approximation expressions, the AO po
tial does not satisfy perfect scaling withRc . The well-depth scales linearly
with r. The range is 2RAO

eff , and is independent ofr.
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P~r! appropriate for polymers in a good solvent. For t
semidilute regime the FSV approach would then lead to
underestimate of the range by a factor 2/3, while for smallq,
where the Derjaguin approximation is quite accurate,
would underestimate the attraction at contact by a facto
about 4/9. On the other hand, in the dilute regime, this
proach should perform better, although for increasingq it is
expected to overestimate the attraction at contact in a v
similar way to the effects seen for the AO model in Fi
15~a!. This is because the FSV model ignores the deform
tion of polymers near a spherical surface. It would be be
to use theD(r) appropriate for a spherical particle; this r
sults in a potential similar in spirit to an interesting rece
proposal by Tuinier and Lekkerkerker.52

D. An accurate semiempirical depletion potential

As can be seen in Fig. 4, the Derjaguin approximat
seems to be particularly accurate for the force at contact
fact, when we plotF(0)/(pRc) versusr/r* in Fig. 8, the
results for the three size ratios are very close to each oth
each of the densities studied, and their value is well
scribed byW(0)522gw(r), as expected for the Derjagui
approximation@see Eq.~11!#. Furthermore, we analyzed th
computer simulation data of Dickman and Yethiraj,22,53

which used the fluctuation bond model~FBM! for size ratios
ranging fromq51.3 toq53.5, and find similar agreement i
Fig. 8. Keep in mind that the FBM results are for shor
chains (L520– 100), and that the error bars appear to
larger than those in our simulations. Since forq53.5 the
Derjaguin approximation~11! should not be valid at all, this
does suggest that the expression,

n-

FIG. 8. Comparison of the force at contact with the Derjaguin express
Eq. ~11!. The circles are taken from the SAW simulations depicted in Fig
On the scale of this graph, the three size ratios lead to virtually ident
results at each density. The triangles denoteF(0)/(pRc) from the fluctua-
tion bond model simulations of Yethiraj and Dickman~Ref. 22!. The dia-
monds are from previousL5100 SAW simulations ofW(0), theinteraction
between two plates ~Refs. 38, 39!. The curve denotesW(0)
522gw(r), the expected result for the Derjaguin approximation.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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F~0!5pRcW~0!522pRcgw~r!, ~15!

may hold because of an~approximate! sum rule, and that the
agreement is not fortuitous.

The surprising accuracy of expression~15! for the force
at contact can be exploited to derive a more accurate ef
tive potential than that found by the direct application of t
Derjaguin approximation. We assume the same linear fo
between two spheres as found in the previous two secti
but now with a modified range,

Ds~r!5Dw~r!
RAO

eff ~Rc!

Rg
, ~16!

where the effective shrinking of the range due to the de
mation of the polymers around the HS has been taken
account via Eq.~A3!. Although this deformation effect is
calculated for ideal polymers, we expect it to be a good fi
approximation for therelative deformation of interacting
polymers around a sphere. The resulting simple linear
pression for the force can now be integrated up via Eq.~10!
to give the depletion potential,

Vs~x!5
p

2
RcW~0!Ds~r!S 12

x

Ds~r! D
2

~17!

for x<Ds(r). Vs(x)50 for x.Ds(r). Our new semiempir-
ical potential works remarkably well, as can be seen in Fig
for the three size ratios. Even forq51.68, corresponding to
the smallest colloids, this potential is significantly better th
the Derjaguin expression~12!, suggesting that Eq.~17! can
be considered a nearly quantitative representation of
depletion potential induced between two spheres by S
polymers for a surprisingly wide range ofq’s. Since the
semiempirical potential~17! reduces to the regular Derjagu
form ~12!, if Ds(r) is replaced byDw(r), its scaling prop-
erties with density are the same as those discussed in
previous subsections.

E. Comparison with theories for noninteracting
polymers

It is interesting to compare the results for interacti
polymers with the results for noninteracting polymers. Fir
just as was found for two walls, the range for the deplet
potential is independent of density for noninteracti
polymers. This is true both for the simpler AO mode6

as well as for more sophisticated theories and comp
simulations.30,54,55For a givenRg , using a theory based o
noninteracting polymers will always overestimate the ran
compared to the interacting case. Since for our accu
semiempirical potential the rangeDs(r) is related toDw(r)
by a density independent factor related toq, the relative
overestimate in the range for the spherical case should
close to that found when comparing a noninteracting the
to an interacting one for the range of the depletion poten
between two plates, as done in Fig. 3.

For the case of two walls the absolute value of the w
depth at contact given by ideal polymers or the AO mo
was underestimatedwith respect to the interacting cas
Within the Derjaguin picture of Eq.~11!, this implies that
noninteracting polymer models will underestimate the fo
Downloaded 11 Jul 2002 to 131.111.116.196. Redistribution subject to A
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at contactF(0) for two spheres in a bath of interacting pol
mers by a similar factor to that shown forW(0) in Fig. 1.

In the inset of Fig. 7 we compare the scaled well-dep
at contactVDerj(0)/(pRc) for the Derjaguin approximation
with that of the AO model, given in Eq.~A1!, where an
effective range parameterRAO

eff , given by Eq.~A3! in the
Appendix, was used to take into account the deformation
the polymers around the colloids. For a givenRc , the well-
depthVAO(0) scales linearly withr, which is now anover-
estimatecompared to the result for interacting polymers. T
origin of this behavior can be easily understood; while t
strength of the force is strongly underestimated by the
model, the range is overestimated. Therefore the integra
Eq. ~10! shows a compensation of errors. This explains w
at low densities, the AO approximation well depth is ve
close to the interacting polymer result. For example forq
50.1 we find forr/r* 51 that Vs(0)/VAO(0)'0.93 while
for r/r* 510 this ratio is still only 0.56. Attempting a naiv
improvement by replacingr in the AO expression by the tru
pressure of a polymer solution results in a worse approxim
tion for all densities.

F. Polymers as soft colloids

When modeling polymer–colloid mixtures, the colloid
are usually treated as single particles. It thus seems na
to attempt the same for the polymers. We have recently s
ceeded in modeling linear polymers as ‘‘so
colloids,’’ 38–41,56where each polymer is replaced by a sing
particle centered on its CM. Different coils interact via a
effective pair potential acting between their CM. These
fective interactionsv(r ;r) between the CM of the polymer
are extracted from the radial distribution functionsg(r ) with
an Ornstein–Zernike inversion technique. This procedur
justified by a theorem which states that for any giveng(r )
and r there exists a unique pair-potential which reproduc
that radial distribution function.57,58 Our v(r ;r) have a near
Gaussian shape, with an amplitude of order 2kBT and a
range of the order of the radius of gyrationRg . For r/r*
<2 accurate analytic forms as a function ofr /Rg andr/r*
are available.41

Our input g(r )’s were generated by computer simul
tions ofL5500 SAW polymers on a cubic lattice, and so t
density dependent effective potentials we derived will
definition reproduce the same CM pair structure as found
the underlying SAW polymer system. When used in conju
tion with the compressibility equation,3 these potentials also
provide a very good representation of the equation
state.39,41

A similar coarse-graining procedure was followed to d
scribe polymers near a flat wall,38,39 where even ideal poly-
mers form a depletion layer. If these were to be modeled
single particles, there would be no polymer–polymer int
action, but there would still be an effective polymer-wa
interaction f(z). We used direct simulations ofL5500
SAW polymers to extract the density profiler(z) near a hard
wall. Thef(z)’s which reproduce the density profile at ea
given bulk densityr were calculated using a wall-Ornstein
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Zernike procedure.38,39 Again accurate analytic fits for den
sitiesr/r* <2 are available.41

Since our effective polymer–polymer potentials provi
a very accurate representation of the pressureP~r!, while the
polymer–wall interactions are constrained to reproduce
correct density profiler(z), and therefore the correct adsor
tion Ĝ(r), Eq. ~2! implies that our soft-colloid approach wi
reproduce the correct wall–fluid surface tensiongw(r). This
explains why our soft-colloid approach reproduces the c
rect value forW(0),38,39 the depletion potential at contac
between two walls, since Eq.~1! implies that this can be
expressed completely in terms ofgw(r). Similarly the slope
of the potential is given by the osmotic pressureP~r! which
is also accurately represented in the soft-colloid approa
Deviations with respect to direct simulations were only o
served for larger distancesz, where the soft-colloid approac
produced a more pronounced repulsive bump in the de
tion potentials.38,39

To calculate the depletion potential between spheres
need to first derive the effective sphere-polymer CM pot
tial f(r ) which would exactly reproduce the density profi
r(r ) around a single sphere of radiusRc . This can again be
done using an Ornstein–Zernike~OZ! technique to invert the
density profiles.41 These density profiles were calculated
Paper I, where we found that the range of the profiles shri
with increasing density. The CM profiles can penetrate i
the spheres because the polymers can deform around t
an effect which becomes more pronounced with decrea
sphere size~this does not happen in the monomer repres
tation of course!. Similarly, the effective potentialsf(r ),
derived with our inverse OZ approach, become relativ
softer with decreasingRc , as shown in Fig. 9.41 For a fixed
q the potentials become more repulsive for increasing d
sity, just as was found for the polymer–wall case.39 Note that
this behavior is the opposite to that of the density profil
Again, because these potentials are constrained to give
correct density profiles and related adsorptions, this soft
loid picture should also correctly reproduce the surface t
sion gs(r) for a single sphere immersed in a bath of inte
acting polymers. The same should hold for the related o
body insertion free energiesF1

int(r) described in Paper I.

1. Direct simulations of depletion potentials
for polymers as soft colloids

The simulation of the depletion potentials induced by
‘‘soft colloids’’ proceeds in a similar manner to the simul
tions with SAW polymers, described in Sec. III A. Howeve
the implementation is much simpler, because the interact
are smooth and both types of particles are in continu
space. The simulations are also about two orders of ma
tude faster, since each polymer is represented by only
particle, instead of the 500 units per polymer used for
SAW model. These simulations are compared forq51.05 in
Fig. 10 to the direct SAW simulations. The agreement is v
good forr/r* 50.58 and reasonable forr/r* 51.16. How-
ever for the highest density,r/r* 52.32, the soft-colloid ap-
proach breaks down. Exactly the same trend was found
the other two size ratios~not shown here!. Since the soft-
colloid approach reproduces the correct one-body dens
Downloaded 11 Jul 2002 to 131.111.116.196. Redistribution subject to A
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r(r ), and the correct one-body free energyF1
int(r) of im-

mersing a single sphere into a bath of polymers for all d
sitiesr/r* in the dilute and semidilute regimes, it is perha
surprising that for the case of two spheres, it breaks do
rather abruptly for higher densities. To further investiga
this issue, we plot the polymer CM density profiles for tw
spheres fixed at distancer 52.6Rg for q51.05 andr/r*
52.32 in Fig. 11. This corresponds to a distance where
SAW V(r ) has effectively gone to zero. At this short distan
the SAW polymers clearly penetrate more easily in betwe
the two colloids than the soft particles do, resulting in le
attraction between the colloids. A similar effect was fou
for polymers between two walls,39 but there the fact tha
sum-rules constrain the value of the potential at cont
means that this difference manifested itself instead in an
hanced repulsive bump in the potential. In both cases,
attribute the error in the soft-colloid approach under stro
confinement and higher densities to a breakdown in the ‘‘
tential superposition approximation,’’39 i.e., the assumption
that a polymer confined between two surfaces feels an in
action which is simply the sum of the two interactionsf(r )
with each separate surface. While this would be correct
simple fluids, it is not correct here, since the close prese
of one wall affects the interaction of the polymers with t

FIG. 9. The effective sphere–polymer potentialf(r ) as a function ofr , the
distance to the center of the sphere for increasing polymer concentra
~from left to right!. Thesef(r ) are derived via an Ornstein–Zernike inve
sion technique such that they reproduce the CM density profiles around
sphere~Ref. 41!. The arrows indicate the hard core radius of the sphere
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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second wall. This is essentially due to the deformability
the polymers, which is not correctly taken into account
strong confinement.

When we do a similar analysis of the densities as don
Fig. 11 for r/r* 51.16 however, the differences in the de
sity profiles are very small, suggesting that the soft-part
picture is not yet breaking down. Coarse-graining polym
as soft colloids is expected to be most useful forq<1, since
once the polymers become much larger than the collo
they can wrap around the colloids, an effect not easily trea
in our coarse-graining scheme. Since forq<1, we have
found that phase-separation in polymer-colloid mixture s
in belowr/r* '1,72 the limit of physical stability is reached
before we encounter problems with our coarse-grain
scheme for polymer–colloid mixtures.

FIG. 10. Comparison of the direct SAW simulations of the depletion pot
tial for q51.05 to direct simulations within the polymers as soft colloi
approach.

FIG. 11. Comparison of the directL5500 SAW simulations of the polyme
CM density profile to direct simulations within the polymers as soft collo
approach forq51.05 andr/r* 52.32. One sphere is at 0, and the other is
r 52.6Rg . The four graphs show the normalized density at a distancer ,
averaged over (0 – 10°), (10– 20°), (20– 30°), and (30– 40°) with res
to the particle at the origin. The SAW polymers penetrate more easily
tween the colloids than the effective soft-colloids do.
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2. Depletion potentials from the superposition
approximation

To understand further the nature of the depletion pot
tials between the colloidal particles, mediated by the po
mers in the ‘‘soft colloid’’ picture, we now turn to the supe
position approximation, which expresses the two bo
depletion interactions in terms of one-body properties o
single colloid in a bath of soft polymers.

If one colloidal particle is fixed at the origin, and one
fixed at r , then one can define an inhomogeneous o
particle density of the soft colloidsr (1)(r 8;0,r ) for that fixed
configuration of the two colloidal particles. The effectiv
force induced between two colloidal HS by the soft colloi
can then be written as59,60

F~r !52E r (1)~r 8;0,r !
]

]r 8
f~r 8!dr 8, ~18!

wheref(r ) is the interaction between the HS particles a
the soft colloids. This expression has an obvious intuit
interpretation. The total force on a HS particle at0 is the
average of the sum of its interactions with all the soft c
loids. If there are no other HS particles, then the equilibriu
distribution will be spherically symmetric, and this force w
be zero. However, if there is another HS particle atr , it will
perturb the density distribution of the soft colloids, whic
will in turn result in a different total force acting on th
particle at0. By definition, this is the effective or depletio
force F(r ) acting on a particle at0, induced by the presenc
of a particle atr .

Equation~18! is in principle exact, but requires knowl
edge of the soft colloid density around two colloidal HS. B
approximating the full~cylindrically symmetric! one-body
densityr (1)(r 8;0,r ) by a superposition of the one-body de
sity r(r ) around an isolated single sphere,59

r (1)~r 8;0,r !5r~r 8!r~ ur2r 8u!/r, ~19!

the effective depletion force~18! can be entirely expressed i
terms of the~radially symmetric! problem of a single colloi-
dal sphere immersed in a polymer solution. The results
such a calculation forV(r ) are compared in Fig. 12 forq
51.05. For all three densities, the superposition approxim
tion closely follows the direct simulations for the so
colloids. This implies that the full one-body densi
r (1)(r 8;0,r ) does not differ much from the simple superp
sition of Eq. ~19!, even for the highest density considere
r/r* 52.32. The reason for this is most likely that the effe
tive polymer–polymer CM interactionv(r ) is rather weak.
In a recent study, a similar good performance of the sup
position approximation was found for a low density har
core depletant when the HS-depletant interaction was fa
long ranged.49 Good agreement was also found in a simi
study of star-polymer colloid mixtures,61 where accurate star
polymer–wall potentials62 are derived based on a coar
graining approach.63 In contrast, if the density of a hard-cor
depletant increases, then the superposition approximatio
known to break down for increasing packing fraction.60,64

The fact that the superposition approximation wor
well for the soft colloids at the higher densities also raises
interesting question as to why the soft-colloid picture its
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breaks down at the higher densities. By construction,
one-body density profiles are identical for the full polym
case and the soft-colloid picture. Presumably the reason
the difference in the two-body depletion interactions can
traced either to a large deviation from superposition for
full polymer case, or else to a breakdown of the poten
superposition approximation, as discussed in Ref. 39.
influence of changingf(r ) is illustrated in Fig. 12, where we
used thef(r ) appropriate forr/r* 51.16 to calculate the
depletion potential with the density profiles forr/r*
52.32. Thisf(r ) is less repulsive than the truef(r ), and
leads to a significant difference in the depletion potent
These depletion interactions are therefore quite sensitiv
the exact form off(r ).

In conclusion then, the superposition approximati
works remarkably well forr/r* <1, the regime where the
soft-colloid picture provides the most accurate representa
of the true depletion potentials. Since the density profi
r(r ) can be easily calculated by our wall-OZ approach, t
means that one only needs the polymer–colloid interac
f(r ) and the polymer–polymer interactionv(r ) as input to
reliably calculate the full two-body depletion interactio
from the superposition approximation.

IV. SECOND VIRIAL COEFFICIENTS
AND PHASE DIAGRAMS

A useful measure of the strength of an interaction is
second osmotic virial coefficientB2 , since this is experimen
tally accessible through a measurement of the osmotic p
sure at low densities.65,66 Such virial coefficients are very
sensitive to the strength and range of the deplet
interaction.28 A recent study67 has shown that for many
simple systems consisting of a HS like repulsion with
additional attractive potential, the location of the liquid–g

FIG. 12. Comparison of simulations of the depletion potential forq51.05
within the soft-colloid approach with the superposition approximation
Eqs.~18! and~19!. The thin solid line denotes the superposition calculat
with r(r ) from r/r* 52.32, but the potentialf(r ) from the r/r* 51.16
calculation. This illustrates the sensitivity of the depletion potentials
colloid–polymer CM interactionf(r ).
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or fluid–fluid critical point can be correlated with the poi
where the reduced virial coefficientB2* 5B2 /B2

HS'21.5;
hereB2

HS516pRc
3/3 is the virial coefficient of a HS system

with radiusRc . For our depletion systems, the reduced vir
coefficient is given by

B2* 512
3

4Rc
3 E

Rc

`

x2~exp@2V~x!#21!dx. ~20!

The direct simulation results depicted in Fig. 5 can be u
to calculateB2* , and the results are shown in Fig. 13 f
r/r* 50.58, r/r* 51.16, and forr/r* 52.32. As expected,
for a given densityr/r* , theB2* become progressively mor
negative with decreasingq. Although we don’t include any
explicit error bars in our plots, these may be rather large
increasing attraction because they appear exponentiall
Eq. ~20!.

We found in the previous sections that a simple se
empirical potentialVs(x), given by Eq. ~17!, provides a
nearly quantitative description of the depletion potentials
tween two spheres. It turns out that for this potential t
virial coefficient can be integrated analytically,

B2

B2
HS5

1

16pRc
9/2W3/2S 2ARcWS 26D~D12Rc!13D

3expFp2 RcWDG~D14Rc!1pRcW~D12Rc!
3RcD

13A2D~D2pRcW~D12Rc!
2!

3Erf i FApRcDW

2 G D , ~21!

whereW5W(x50) andD5Ds(r), i.e., the explicit density
dependence has been suppressed for notational clarity.
imaginary error function Erfi @z# is defined as Erf@ iz#/ i ; its

f

FIG. 13. Reduced virial coefficients as a function of polymer density: T
symbols represent results from the computer simulations ofL5500 SAW
polymers forq50.67 ~circles!, q51.05 ~squares!, andq51.68 ~triangles!.
The straight lines are from Eq.~21!. The good agreement shows that E
~17! provides a good representation of the depletion potential.
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values are real. As can be seen in Fig. 13, this expres
compares well with the direct simulation results, demonst
ing that the potential~17! is a good approximation to the tru
depletion potential. For this reason, we also plot the theo
ical B2 for two smallerq’s. The densityr/r* at which one
would expect a~metastable! critical point and a related
fluid–fluid demixing decreases with decreasingq. To com-
pare with experiments, one should keep in mind that
parameterr/r* would be equal to the density in a reservo
of polymers kept at the same chemical potential as a
polymer–colloid mixture.42

If the pair-potentials are of sufficiently short range, t
fluid–fluid transition becomes metastable with respect to
fluid–solid transition of the larger particles,7,8,68 which wid-
ens significantly. It has been recently found that this gen
widening of the fluid–solid transition is primarily driven b
the value of the potential at contact;2,69 other details such a
the shape and range of the attractive part of the potentia
less important. Roughly speaking, the fluid–solid liquid
curve widens to about half the packing fraction of the ha
sphere freezing transition whenV(0)'2.560.5.2 When
combined with the criterion thatB2* '21.5 at the critical
density, this can be used for a rough prediction of theq
below which the fluid–fluid transition is metastable with r
spect to the fluid–solid one. The minimumq for which the
fluid–fluid transition is still stable is between 0.3 and 0
which is consistent with other calculations,7,8,14,30 and
experiments.9,10 Of course one should keep in mind that t
larger the size ratioq, the more important three-body an
higher order interactions become.30,70 These pair-potentia
criteria should therefore become less accurate for increa
q.

Both RG theory34 and integral equation approaches31,71

predict that for large enoughq, B2* should go through a
minimum as a function ofr/r* , although the two theories
differ significantly on quantitative details. Experiments se
to show similar effects.66 Remarkably, expression~21!,
which is based on the simple potential of Eq.~17! also shows
a minimum, as shown in Fig. 14. Even more surprising
considering how the potential was derived, is that the m
mum is nearr/r* 51, as predicted by RG theory, and that
closely follows the asymptotic law min(B2* )5120.5q0.401,
derived by Eisenriegler34 ~see the inset of Fig. 14!. In con-
trast, when the simpler Derjaguin expression~12! is used for
B2* , no minimum as a function ofr/r* appears for largeq.
At present it is not clear why our expression forB2* , Eq.
~21!, should agree so well with the RG results in this lar
Rg /Rc regime.

V. DISCUSSION AND CONCLUSION

We have used a combination of computer simulatio
and theory to derive the depletion interactions induced
excluded volume polymers. Our main computer simulat
results are depicted in Figs. 4 and 5 and our main theore
results are the depletion potential for two plates, given
Eq. ~4! and the depletion potential for two spheres, given
Eq. ~17!.

For two plates, we found that a simple linear depleti
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potential ~4! with a well-depth ofW(0)522gw(r), and a
slope of P~r! is very accurate. The range decreases w
density, with the largest relative change occurring in the
lute regime. In the semidilute regime, the well-depth sca
asW(0);r1.539, while the range scales asDw(r);r20.770.
The depletion potential also takes on a simpler functio
form, given by Eq.~6!. These results differ significantly from
theories based on ideal polymers.

For two spheres, we find that the simple Derjaguin a
proximation works much better than expected due to a c
cellation of errors related to the deformation of the polym
around a sphere. Interestingly, the Derjaguin expression
the force at contact seems particularly accurate, even for v
large size ratiosq. We used this observation, together with
correction for the Derjaguin range, to derive the deplet
potentialVs(r ) @Eq. ~17!#, which was shown to agree quan
titatively with our direct computer simulation results. Whi
the excellent agreement with simulations is gratifying, fu
ther study is needed to understand why our main ansatz,
the force at contact is accurately approximated by
Derjaguin approximation, works so well for such a wid
range ofq.

The range of our potential scales with density in t
same way that the range for the two plates does. Bu
contrast to the case of two plates, where the well depth
contact is more attractive than that for ideal polymers,
well depth at contact for two spheres is less attractive t
that predicted by ideal polymer theories. For example, in
semidilute regime,Vs(0);2r0.770, compared to the scaling
of the AO potential,VAO(0);2r. In other words, ideal
polymer theories overestimate both the rangeand the well-
depth of the depletion potential between two spheres,
duced by interacting polymers.

We also calculated the depletion potential betwe
spheres induced by polymers coarse-grained as ‘‘soft
loids.’’ For the dilute regime, good agreement with the dire
simulations of SAW polymers was achieved. However,

FIG. 14. Virial coefficient from Eq.~21! as a function of polymer density
for large size ratios:q55 ~solid line!, q510 ~dotted line! q520 ~dashed
line!, q550 ~long-dashed line!, andq5100 ~dot-dashed line!. Inset: Com-
parison of the minimum ofB2* as a function ofq to the asymptotic RG result
min(B2* )5120.5q0.401. The agreement is remarkable.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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the highest density,r/r* 52.32, the polymers as soft co
loids approach strongly overestimates the depth of the de
tion potential. We traced this discrepancy to a breakdown
the potential superposition approximation, something a
found for two plates.39 However, since our coarse-grainin
scheme is mainly useful forq<1, where phase-separatio
sets in forr/r* <1, this breakdown at high density is no
relevant to the equilibrium phase behavior of colloid
polymer systems. In fact, we have recently used this sch
to calculate the phase separation binodals of polym
colloid mixtures for several size ratiosq<1.72 Direct simu-
lations of SAW polymers and colloids would be significan
more expensive. The advantage over directly using a p
potential such as Eq.~17!, is that many-body interactions ar
also effectively taken into account.72

Virial coefficients can provide a sensitive measure of
quality of an effective potential. We were able to integra
Eq. ~17! to derive an analytical representation of the vir
coefficient ~21!, which compares very well with the direc
simulation results. Surprisingly, this same analytic fo
agrees quantitatively with RG results in the limitq@1. Fur-
ther study is needed to clarify why Eq.~21! works so well in
this limit.

A careful comparison with experiments is complicat
by the fact that most measurements are of phase behavi
structure, which depend only indirectly on the depletion
teractions. The most extensive direct measurements of
depletion potential between spheres, carried out by Ve
et al.,16 were on a system with semiflexible polymers~DNA!
which do not follow the same scaling laws as the SAW po
mers we treated in this paper. However, given a good mo
for the equation of state and the adsorptionĜ(r) for these
polymers, it would be straightforward to calculate the dep
tion potentials using methods derived in this paper. A
tailed comparison with experiments will be the subject of
upcoming review.73

This paper has concerned itself with the case of inter
ing, non-adsorbing polymers in a good solvent. By tak
Eqs. ~1!, ~2!, ~4!, and ~17! together, it follows that accurat
depletion potentials can be calculated with only a knowled
of the adsorptionĜ(r) and the equation of stateP~r!. This
implies that the effect of changing solvent quality, or of ad
ing attractions or repulsions between the colloids and
polymers can be understood by seeing how they affect th
two quantities. Note that this is different from binary collo
mixtures, where the effects of added interparticle attracti
and repulsions have a more subtle effect on the resu
depletion potentials.49

It is not hard to see that for polymers in a good solve
adding an attractive~repulsive! polymer–colloid interaction
results in a less~more! attractive depletion potential, an
possibly even to repulsive effective interactions. This follo
since P~r! is unchanged, and onlyĜ(r) is affected in an
obvious way. An example where this may be relevant c
cerns the common practice to stabilize colloidal particles
a short polymer brush. The interaction of the free polym
with the polymer brush can be quite subtle,74 but our theory
implies that it is only the overall change in the adsorpti
Downloaded 11 Jul 2002 to 131.111.116.196. Redistribution subject to A
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which effects the depletion potential, and by extension,
phase behavior.

Changing the solvent quality has a less obvious effe
since bothP~r! and Ĝ(r) are affected. For a given densit
we expect the absolute magnitudes of both to decrease
that the strength of the depletion potential should decreas
well. Of course, for strong deviations from the case of no
adsorbing polymers in a good solvent, some of the simpl
ing assumptions that went into the derivation of the deplet
potentials may begin to break down. For example, for v
strong adsorption, the system may show bridgi
flocculation,50 or gelation.75 A rich phenomenology may
be expected; this will be the subject of an upcomi
investigation.76
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APPENDIX A: DERJAGUIN APPROXIMATION
FOR THE ASAKURA–OOSAWA MODEL

1. Comparison for fixed parameter RAO

The Asakura Oosawa model, where the ideal polym
are modeled as interpenetrable spheres of radiusRAO , was
first introduced in 1958.6 Between two plates this results i
the linear depletion potential similar to Eq.~9!, with a range
RAO , while between two spheres it results in the well-know
Asakura–Oosawa form,

VAO~x!52r
4p

3
~scp!

3H 12
3

4 S x12Rc

scp
D

1
1

16S x12Rc

scp
D 3J , 0<x<2RAO ~A1!

which is exact within the confines of the AO model. Here w
definedscp5Rc1RAO . Similarly, the use of the Derjaguin
approximation~11! together with the linear AO potential be
tween two plates results in

VAO
Derj~x!52r

p

2
Rc~2RAO2x!2, 0<x<2RAO . ~A2!

Comparison of the two expressions at contact, wh
VAO(0)52r2p(RcRAO

2 12RAO
3 /3) and VAO

Derj(0)52r2p
3RcRAO

2 , shows that the Derjaguin expression~A2! under-
estimates the well depth at contact with respect to the e
expression~A1!, a discrepancy which gets relatively wors
for decreasingRc /RAO . This is illustrated in Fig. 15~a! for
the same size ratios we used for the interacting polym
Since the Derjaguin approximation is only valid for larg
Rc /RAO , this breakdown is expected.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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2. Comparison with effective parameter RAO
eff

„Rg ,Rc…

Before using the AO model to describe polymers, on
needs to fix the parameterRAO . A common prescription has
been to takeRAO5Rg .6 However, between two walls, one
should takeRAO5(2/Ap)Rg , which corresponds to approxi-
mating the depletion layer of ideal polymers by a step fun
tion with the same depletion volume. This then results in
well-depth which is equal to that found for ideal polymers.39

However, for polymers of a given sizeRg , the width of
the depletion layer around a single sphere will decrease w
decreasingRc , because the polymers can partially wra
around the colloidal particles.30,77 By equating the one-body
insertion free energy for a HS sphere into a bath of A
model particles to that found for inserting a HS into a bath
ideal polymers, we found, in Paper I, an exact analytic pr
scription for the effective parameterRAO

eff ,

RAO
eff

Rg
5

1

q S S 11
6

Ap
q13q2D 1/3

21D , ~A3!

which decreases with decreasingRc as expected. Just be-
cause the one-body terms are equal does not mean that
same prescription forRAO will work for the two-body terms,
but direct computer simulations30 have shown that usingRAO

eff

in the full AO expression~A1! results in a much better ap-
proximation of the depletion potential between two spher
in a bath of ideal polymers, than using a prescription whic
fixes RAO independently ofRc .

With this in mind, we now compare again the Derjagui
expression~A2! with RAO52/ApRg to the full AO expres-
sion ~A1! but now with an effective AO radiusRAO

eff from
Eq. ~A3! appropriate to the desiredRc . As demonstrated in
Fig. 15~b!, the Derjaguin approach is now a more faithfu

FIG. 15. ~a! Comparison of the full Asakura–Oosawa model interactio
~A1! with RAO52/Ap to the Derjaguin approximation~A2! with the same
RAO . The hard sphere sizes are the same as in Fig. 5. The potentials, f
bottom to top, correspond toq51.68, q51.05, andq50.67 respectively.
The polymer density isr/r* 51. ~b! The same comparison as in~a!, but
now the decrease of the depletion layer range with decreasing sphere si
taken into account by using the effective AO parameterRAO

eff , defined in Eq.
~A3!, in the full AO expression~A1!. For the Derjaguin approximation
expressionRAO52/Ap is unchanged. The agreement is now much better
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approximation of the full AO model depletion potentia
which is itself a better approximation of the true depleti
potential induced by ideal polymers. Although the Derjagu
approach does not capture the slight reduction in range,
well-depth is much closer to the AO value.

Of course, this improvement arises from a cancellat
of errors. However, for the interacting polymers the dep
tion potential between two walls is also well described by
linear form, and we expect the same deformation effect to
relevant for polymers near spheres. Therefore, we m
hope for a similar cancellation of errors when the Derjag
expression is used for interacting polymers.
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