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Polymer induced depletion potentials in polymer-colloid mixtures
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The depletion interactions between two colloidal plates or between two colloidal spheres, induced
by interacting polymers in a good solvent, are calculated theoretically and by computer simulations.
A simple analytical theory is shown to be quantitatively accurate for the case of two plates. A related
depletion potential is derived for two spheres; it also agrees very well with direct computer
simulations. Theories based on ideal polymers show important deviations with increasing polymer
concentration: They overestimate the range of the depletion potential between two plates or two
spheres at all densities, with the largest relative change occurring in the dilute regime. They
underestimate the well depth at contact for the case of two plates, but overestimate it for two
spheres. Depletion potentials are also calculated using a coarse graining approach which represents
the polymers as “soft colloids;” good agreement is found in the dilute regime. Finally, the effect of
the polymers on colloid—colloid osmoatic virial coefficients is related to phase behavior of polymer—
colloid mixtures. ©2002 American Institute of Physic§DOI: 10.1063/1.1483299

I. INTRODUCTION tem for equilibrium and nonequilibrium behavior in soft mat-
) . ) _ ter science.
Effective potentials are a key to unlocking the equilib-  \yhereas the depletion interaction for ideal polymers is

rium behavior of many soft-matter systefrsThe basic phi- 4y quantitatively understood, the understanding of the

losophy behind this coarse-graining approach is that the inidepletion interaction induced by polymers with excluded

tial _effort n deriving these potenpals 1S re_COEJped when theyvolume interactions is at best qualitative. Experiments on the
are input into the well oiled machinery of liquid state thedry,

hen th di i latibr arch phase behavidt® and structurt?of polymer—colloid mix-
or when they are used in computer simulatiom arche- o5 ai56 show deviations from the simple AO mddéfas
typal example is the depletion potential, induced betwee

colloidal particles by nonadsorbing polymers. Asakura an o direct measurements of the depletion potentrals. The-

) retical attempts to directl Iculate th letion potential
Oosawa first showed that a bath of such polymers, charac-0 etical attempts to directly calculate the depletion potentials

terized by their radius of gyratioRy, induces an attractive ::c:)rnslir;ttee rr?tctlfrilg d p(t)rlggggs g]rﬂjurggtisr?altlﬂgor?leg%isrilcf;t
depletion interaction of rangB~ 2R, between two plates. o ’

. . 2 3'24 . .
Their calculation was exact for noninteracting polymers.s'mUIat'onS% RG theory**" as well an interesting new

Later, the same authors, and independently Wdﬁrived a ‘overlap approximation” method” All these approaches
deple'tion potential betwéen two colloidal hard sphet¢S) show significant deviations from ideal polymer behavior, but

by approximating théidea) polymers as penetrable spheres.many qugstions still remain. Th_is _is in contrast to binary HS
This is often termed the Asakura—Oosa@#D) model. colloid mixtures, V\{here the deviations from the AO potgntlal
A good example of the effective potential coarse-Can NOW be qztéaggltatlvely calculated with d_ensﬂy functional
graining approach is the calculation of the phase behavior gf€ory (DFT),™~*" and the effects of nonideality on the
polymer—colloid mixtures by Gast, Hall, and Rusbeind Phase .behaV|olr are fairly well l_mt-:ierstcﬁ?drhe goal of our
also by Lekkerkerkeet al® and Meijer and Frenkéf They ~ Paper is to derive a theory of similar accuracy for the deple-
found, using an AO depletion potential approach, that thdion potential induced by interacting polymers in a good sol-
fluid—fluid phase line of colloids of radiuR, becomes meta- Vent.
stable with respect to the fluid—solid phase line if the size ~ Before we proceed, an important caveat is that the deple-
ratio q=Ry/R; is less than about 0.35, in qualitative agree-tion potential becomes less relevant for phase behavior at
ment with experiment$° Their work demonstrates how an larger size ratiogy, since many-body interactions become
accurate knowledge of the depletion potential can lead to #ncreasingly important®***wheng>1, i.e., when the col-
good understanding of the equilibrium behavior of colloid loids are much smaller than the polymers, other approaches,
polymer mixtures. The latter are important not only becausavhich treat the polymers on a monomer level, are more rel-
of their relevance to many industrial and biological pro-evant. Examples include integral equation technigtissal-
cesses, but also because they form an important model syisg theory>>33 or renormalization group theorfRG).>* In
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this paper we concentrate on the regime whRges of the  Il. DEPLETION POTENTIAL BETWEEN TWO WALLS

order ofR; or smaller. ) A. Surface tension near a single wall

. We have recently perf_ormed a s_ystemafuc s_tudy of theyng the depletion potential at contact

insertion free-energy of a single colloidal particle in a bath of ) ) _

interacting polymerS (henceforth referred to as Paper | Immersing a single hard walor plate into a bath of
and found important deviations from ideal polymer behavior.,"onadsorbing polymers in a good solvent reduces the num-
In particular, we found that the range of the depletion laye®r Of configurations available to the polymers. This in turn
decreases with increasing densifyand that this effect is eSults in an entropically induced depletion layge) near
most pronounced in the dilute regime, where p*; here the wall, discussed in more detail, for example, in Paper I.
p* =47R3 is the overlap density. In the semidilute regime Associated with the creation of this depletion layer is an
Whepr/pg* >1, we found that the effects of the interactions INterfacial free energy cost per unit aréai.e., a wall-fluid
could be well described by scaling thedASince these one- Surface tensiory,(p), which typically depends on the 4b2U|k
body effects were not well captured biyonadditive HS-like density p, or equivalently the bulk chemical potential

models, we do not expect straightforward extensions of th&'1N9ing two such walls, of area, together from an infinite
DFT techniques that work so well for binary hard HS mix- distance apart to a distangewvhere the two depletion layers

tures, to also perform well for two-body depletion potentialsP€9/" tlo c_)verlarp])., chhanges.thehto]:[al free energy of tge poly-
in polymer—colloid mixtures. mer solution. This change in the free energy or grand poten-

To calculate the depletion potentials, we use a similanIial  per unit area is called the depletion potenti(x)
pletion p = (Q(X)— Q(x=2))/A.*> When x=0, i.e., when the two

approach to that used in Paper I, a combination of scalin I b ht int tact the depleti tential
theories and computer simulations. Since we found in Pap%/a S are brought Into contact, the depietion potential re-
uces to the simple form

| that the width of the depletion layer decreases with increas-
ing density, we expect a similar trend for_the range of the W(0)=—2yu(p), (1)
related depletion potential. Throughout this work we focus . .

on the dilute and semidilute reginf@s® of the polymers, reflecting the fact that the two depletion layers are com-
where the monomer density is low enough for detailed Pletely destroyed. . . .
monomer—monomer correlations to be unimportant; the melt [N Paper I, we used an extension of the Gibbs adsorption
here. Since our models are all athermal, weBetl/(kgT)

e[ dll(p")
=1 YW(p) = f ’
The paper is organized as follows: The case of the deple- 0

tion interaction between two plates is discussed in detail ifrhe gerivation of this equation can be found, for example, in

Sec. IIl. We show that it is closely related to the problem ofgets 25 and 43. HerEl(p) is the osmotic pressure of the
determining the surface tensiar,(p), which was solved in -

X ) polymer solution, and’(p) is the reduced adsorption near a
P_aper_l. Jqst as was foynd f%(p), the depletion poteptlal single wall, defined as
simplifies in the semidilute regime. In Sec. Ill, we discuss
the depletion interaction between two spheres. We compare . 1 9(Q%IA) o
the results of direct Monte CarléMC) simulations of the I'(p)=- b iu :f
interaction between two HS colloids induced by a bath of
self-avoiding walk(SAW) polymers to a potential derived whereQ®/A is the excess grand potential per unit area. In
within the Derjaguin approximatiotl. The Derjaguin ap- Paper I, we used computer simulations of a SAW polymer
proximation works much better than one would naively ex-solution in a good solvent near a wall to calculatg) and
pect because of a cancellation of errors related to the defok-(p) for several values gb/p* . As discussed in Paper I, the
mation of polymers around a sphere. Using an extension cBAW on a cubic lattice is a very good model for polymers in
the Derjaguin approximation, we derive a new semiempirical good solvent. In the scaling limit, where the lengtkends
depletion potential which appears to be nearly quantitativéowards infinity, its properties are universal, and agree with
for g<1, the regime where depletion potentials are mosexperiments on polymers in the same good solvent
relevant for the phase behavior and structure of polymer+egime®*3 For example, the radius of gyration scales as
colloid mixtures. We derive the scaling behavior with den-Ry~L", where v is the Flory exponent, taken to be
sity, and find important deviations from the AO model and=0.588 in this paper. By using an accurate fitting form
other ideal-polymer theories. We also calculate the depletiowhich takes into account the correct scaling behavior, we
potential between spheres within our new “polymers as sofexpressed’(p) for all densities in the dilute and semidilute
colloids” coarse-graining schent®; ** where each polymer regimes. When this was combined with a RG expression for
is represented by a single particle, interacting via a densitythe pressure, we were able to calculate the surface tension
dependent effective potential. Here we again find goody,(p) as a function of density through E(R). Our results
agreement with the direct MC results for the dilute regime,agreed very well with some recent RG calculatishs.
but for p/p* > 2, significant deviations occur. In Sec. IV, we Here we usey,(p) together with Eq.(1) to directly
discuss the effect of polymer density on the virial coeffi- calculate the depletion potential at contact, as shown in Fig.
cients between two colloids, and relate this to phase behavidr. These results are also compared to direct computer simu-
of polymer—colloid mixtures. lations of L=100 SAW polymers®3 Even though theL

I'(p')dp'. 2

p(z)

0

1) dz, (3
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FIG. 2. Depletion potential between two walls or pla#éx) per unit area

Rs. The symbols denote simulations far=100 SAW polymers, the
straight lines are the simple theory of Eg), which provides a near quan-
titative fit to the simulation data. The ran@g,(p=0)~2.15 is shown as a
vertical line. Note how much the range decreases with density, even for
these results in the dilute regime.

FIG. 1. Depletion potential between two walls or plates at corte(d)
=—2v,(p) per unit areaRé. The full line results from Eq(2), while the
long-dashed line comes from the simpler semidilute scaling expre&8jion
The diamonds denote previously publisied 100 SAW simulation results
(Ref. 39. The dashed line represents the simple ideal polymer 5(0),
given by Eq.(9), while the dot-dashed line shows the naive improvement
obtained by substituting the true polymer osmotic pressure for the ideal

polymer pressure. These two Asakura—Oosawa-type approximations brackgiptential decreases with/p*. In fact, as shown in Fig. 3,

the correct result. The inset shows the strength of the simpler semidilutfhe Iargest relative rate of decrease occurs in the dilute re-
scaling expression relative to the the full potential at contdotted ling.

The two coincide for higher densities. In the low density limit, the semidi- gime, so that ap/p* = 1, the range iD =125, about
lute scaling expression overestimates the true value at contact by a fact&8% of the low density limit ofD~2.15. In general, the

1s. range of a potential is not always unambiguously defffed.
Of course for our linear one it is, and this simple definition
would seem a very reasonable definition for the range of the

=100 simulations have not quite reached the scaling limitg)| gepletion potentials depicted in Fig. 2.

the well depths at contact are remarkably well reproduced, a

result also found by Tuinier and Lekkerkerkéwith a simi-  C. Scaling theory for the depletion potential
lar theory. in the semidilute regime
Further simplifications occur in the semidilute regime.
B. A simple theory for the depletion potential For example, when the scaling forfigor the osmotic pres-
The simplest approximation for the depletion potential at
finite separatiorx would be a linear form with a slope equal 4 : : . :
to the osmotic pressure. This follows becalilbg)X is pro-
portional to the work per unit area produced by the osmotic —— D=-2y/01
——-D,=-3T
pressure, 3F —-— D forideal polymers g
W(x)=W(0)+1II(p)x; x=<Dy(p),

W(x)=0; x>Dy(p), (4)
where the range is given by

W(0)  2yy(p)
PulP) = i)~ T

We note that this approximation is similar to that adopted by
Joanny, Leibler, and de Gennes who, in their pioneering
paper'® approximated the force between two plates as con- 0 . ‘ ) .
stant forx< 7&(p) and zero forx> 7&(p), whereg&(p) is the 0 2 4 0% 6 8 10
correlation length, the relevant length-scale in the semidilute PP

regime®3® This also results in a linear depletion potential.

In Fig. 2 we compare our simple linear potential to theFIG. 3. Comparison of the rand®,(p) of the depletion potential with the
direct SAW simulations. The overall agreement is striking.Simpler semidilute scaling expressioB&{p), both in units ofR;. As
The only(smal)deviation occurs at larger distancesinere  Sop°% PT®ass el o e semdiu regme, the o exresionscon
the true potential rounds off and develops a very small maxithe full expression. Note how much the range differs from the density inde-
mum before going to zer®. The rangeD,,(p) of this simple  pendent result for noninteracting polymdds,=4/y/7r~2.26.

D(p)

©)
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sure,IT~ p%”*~1) and the reduced adsorptidAhe —¢&(p)  dilute regime, the contact value of this naive “improvement”

~p~¥3v=1) gre used in Eq(2), then, as shown in Paper |, would scale asVi2Vq(0)= (4/\/m)TI(p)~ p3"/Cr~ 1= p2309

the integral simplifies and the potential at contact takes ofnstead of the correctW(0)~ p?”/G"~D~p1539 gcaling.

the very simple form, Even for p/p*=1 the differences are significan/(0)

B - o3 1539 =—0.93, whileW,4(0)= —0.54 andw/§""(0)=—1.68. For

Wsd 0)=311(p)T(p) = p™ 7= p™> ©  plp*=10, W(0)=~25.4, W((0)=—5.4, and W"{0)
The linear depletion potenti#t) then reduces to =—208! In other words, the simple heuristic ansatz is al-

B A Lo most never a real improvement; for interacting polymers, the
WsdX)=11(p)(3I'(p)+x);  X<Dgq Asakura—Oosawa potential between two plates is only accu-
W(x)=0; h>Dg, (7)  rate at the very lowest densities.

and the range simplifies

Dadp)= =3[ (p)~p "G D p 0770 ®
- ) , We now turn to the polymer induced depletion interac-

As can be seen in Figs. 1 and 3, these simple expressions f%n between two hard spheres. Similarly to the case of two
the \'/v.ell-depth. and the range WOI’i( remarkably well in thewalls, when the surfaces of two such spheres are brought to
semldllu_te_reglme, especially far/p >2 ) _ within a distance where their depletion layers begin to over-

Deviations do occur for low densities since according tolap, the total free energy of the system changes; this change
Egs.(1) and(2), W(x=0)~2II(p)T'(p) for p—0, the same  a4ain defines the depletion potential.
form as for ideal polymers. Equatid6) therefore overesti- Since we found in Paper | that the surface tensions asso-
mates the well depth by a factor 1.5, as can be seen in th§ated with the polymer depletion layers around a single
inset of Fig. 1. In the same limit the range of the depletiongphere show behavior which differs from that of ideal poly-
potential reduces to the functional folin= —2I'(p), so that  mers or that of the AO model, we expect to find qualitative
Eq. (8) also overestimates the range at low densities by gjfferences in the depletion potentials as well. The trends are
factor 1.5, as can be seen in Fig. 3. . expected to be similar to those found for the depletion po-

In the semidilute regime one can identiff¥'(p)  tential between two walls, namely that the range should de-
~—£(p).> Therefore the ansa@,(p) = 7¢&(p), originally  crease and the well depth should increase with increasing
postulated by Joannyetal,'® is very close toDs{p)  polymer concentration.
=—3I', the expression we derived for the range of the
depletion potential in the semidilute regime. Their potentialA. Full SAW polymer simulations

is therefore quite accurate in the semidilute regime, but over- 14 calculate the polymer induced depletion potential be-
estimates the range and the well-depth by a factor slightlyyeen two spheres directly, we performed grand-canonical

Ill. DEPLETION INTERACTIONS BETWEEN SPHERES

larger than 1.5 in the dilute limit. simulations ofL=500 SAW polymers on a lattice of size
240x 150x 150, and computed the osmotic pressure or force

D. Comparison with theories for noninteracting exerted on two hard spheres placed in the same simulation

polymers between two walls box. The configuration space of polymers was sampled in the

For completeness we compare the results obtained in thg;rand cgnonical ensemble With.a combination of configura—
previous section to those for ideal polymers, first obtained byional bias Monte Carlo and pivot movésThe depletion

Asakura and Oosawa in 1954Their (exacl depletion po- force on the spheres was obtained from the ratio of the ac-
tential can be quite accurately approximated by a simple linceptance of virtual inward and outward moves of the spheres.

ear form3® In Fig. 4 these forces are shown for three different size
ratios q=Ry/R;, namely,q=0.67, g=1.05, andq=1.68.
4 4 For the first two size ratios, we computed the forces at three
Wid(X)=P< BN +X> S J—;Rg’ densities,p/p* =0.58, p/p* =1.16, andp/p* =2.322 For
) g=1.68, this was only done for the lower two densities. As

expected, for a fixed size ratio, the range decreases, and the
Wig(x)=0; X>\/—— Rg- force at contact increases with increasing polymer density.
& For a given density, the range appears to contract slightly
However, for interacting polymers, this is only true in the with increasingg, as might be expected, since the polymers
limit p—0; the validity of this expression rapidly deterio- can deform more readily around the smaller colldisise the
rates with increasing density. As shown in Fig. 1, E9).  Appendix for further discussion of this pojnin each simu-
underestimates the well depth for all but the lowest densitiedation we keep the size of the polymers fixed, so that the
while, as shown in Fig. 3, it overestimates the range at allarger size ratios essentially correspond to smaller spheres-
densities. One might think that replacing the ideal pressureéThe computational cost scales with the size of the simula-
I1(p)=p in EQ.(9) by the pressure of an interacting polymer tion box, which roughly sets the number of polymers needed
system would bring an improvement for the well depth, everto achieve a density/p* in the accessible volume left by
if this does not improve the approximation for the range.the colloids.
Instead, as shown in Fig. 1, this naive approach leads to a The force can then be integrated to obtain the effective
severe overestimate of the well-depth. In fact, for the semidepletion potential,
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FIG. 4. Depletion forces between two spheres for three size rgties a
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FIG. 5. Depletion potentials between two spheres for the same set of pa-

function of x, the distance between the surface of the two spheres. Thgameters as in Fig. 4. These are compared to the semiempirical depletion
symbols denote. =500 SAW computer simulations for three densities: PotentialV(r) [Eq. (17)] for the same size ratios and densities.

plp*=0.58 (circles, p/p* =1.16 (squares p/p* =2.32 (diamond$, the

solid lines are to guide the eye. These are compared to results from the

Derjaguin approximation for the same size ratios and densipés*
=0.58 (dotted line$, p/p*=1.16 (dashed lines and p/p* =2.32 (dot-

dashed lines

F(y)dy.

(10

smoother than the forces. There may still be some residual
error in the potentials, which might explain why the range
for the highest density seems slightly larger for the potential
than for the force. Also, the errors are too large to determine
whether or not there is a repulsive bump in the potential. If it
does exist, it is probably very sméll.This is in contrast to
hard-core systems, where such bumps can be

Results are shown in Fig. 5 for the same parameters as pronounced’*®“°The weakness or absence of a repulsive
Fig. 4. Because the curves are integrated, they appedarrier in the case of interacting polymers can probably be
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traced to the very low monomer concentratmnFor shorter 1 . T
polymers, whose behavior deviates significantly from lthe

— o0 scaling limit, and where a substantial monomer density
¢ can more easily be achieved, such repulsive bumps might
occur more readily?

As expected, the range decreases while the force at con-
tact and the potential well-depth increase with increasing
polymer density. For a fixed density and polymer sig,
the force at contact and the well-depth decrease as the
spheres become smalléor g becomes larger The same
effect occurs for ideal polymerSwhere it has a simple geo-
metric origin: the volume of a depletion layer of a given
width ~Ry decreases with decreasing size of the hard
spheres.

—_—
x
—

>

_4 L .
0 0.5 1

1.5

B. The Derjaguin approximation for interacting

FIG. 6. Comparison of the&.=500 SAW computer simulations for the
polymers

depletion potential with the Derjaguin approximation of E@2) for g

In the case of two walls, the well-depth at contact has & 1:05- The symbols are the same as in Fig. 4.
clear interpretation in terms of the complete destruction of
two depletion layers, and can therefore be expressed as a . . . )
simple function of the wall—polymer surface tensigp(p), size ratios. Overall, the Derjaguin approxmaﬂqn overesti-
as shown in Eq(1). For two spheres, the depletion layers do™ates the well-depth, a consequence of the slightly longer
not completely overlap, and the depletion potential at contaci29ed forces found in Fig. 4. Again, the cancellation of

is related to the surface tension of polymers surrounding tw&'0rs found for the simpler AO model in the Appendix helps

spheres in a dumbbell type configuration. A simple expres-explain why Eq.(12) works reasonably well in a regime

sion for the well depth at contact in terms of the surface®VN€reé the Derjaguin approximation would normally break
tensiony(p) is therefore less obvious. down
One way to make contact with the two wall case is to use
the Derjaguin approximatiotl, which relates the force be- C. The Derjaguin approximation in the semidilute
tween two spheres of radil to the potential between two regime

walls, W(x), in the following way: We now turn to the scaling behavior of the depletion

FPe(x) = rRW(X), (1)  potential in the semidilute regime. By using the simple ex-
cpression for the rangB s p) given in Eq.(8), the Derjaguin

where x is the distance between the surfaces of the tw imation for the depleti tentidl?) red A
spheres. In principle this approximation should only be ac@Pproximation for the depietion poten reduces to

curate for very small size ratiog, i.e., for very large col-
loids. However, as shown in the Appendix, we expect there
to be a cancellation of errors, related to the deformation of . \Der
the polymers around spherical particles, which makes th&" X<Dsdp); Vs (x)=0 for x>D{p). For two walls,
Derjaguin approximation work much better than one wouldthe simplified expressio(8) for the range overestimates the
naively expect. This is confirmed in Fig. 4, where the Der-t'U€ range by a factor 1.5 in the low-density limit. Here the
jaguin expression for the force, taken from Ed) and Eq. oyeresumate is s!lghtly larger, since, as shown in the Appgn-
(11), is shown to be a surprisingly good approximation. It is dix, the deformat|op of the polymers around a single collmq
most accurate for the smallest as expected, but even for reducgs_the depletion layer width for dgcreasmg sphgre size
q=1.68, where normally one would not expect the Der-_Rc- Similarly the We!l—depth_at contact is also overestimated
jaguin approximation to be useful at all, it is still reasonable.n  the D!?W dgnslty limit, but now by a factor
By combining Eq.(4) with Egs.(10) and(11) we obtain I|mFH0Vsd }(0)/vPeY(0)=2.25. In the semidilute regime the
the following Derjaguin expression for the depletion poten-two expressions come closer for increasing density. For ex-
tial between two spheres: ample, atp/p*=2 the overestimate at contact is only
v221(0)/vPeI(0)=1.09, while forp/p* =4 the two expres-
sions are within 1% of each other. If in addition we assume
thatI'(p)~ — &(p) then the expression in EQL3) is again

VES(x) = — 2 Ro(p)[3F (p) +X1° (13)

a
ERcH(p)(DW(p)—X)2

VPer(x) = — (12)

for 0=<x=<D,(p); VP®I(x)=0 for x>D,(p). By the nature

of the Derjaguin approximatiom,,(p) is the same range as
found for two walls in Eq(5). This simple potential is com-
pared in Fig. 6 to the diredt=500 SAW simulation results

very similar to the form proposed by Joanetyal 18 for two

spheres(3 being replaced byr). Our arguments therefore
provide an a-posteori justification of the validity of their po-
tential for the semidilute regime. In the dilute regime it will

for g=1.05. The correspondence is surprisingly good giveroverestimate the attraction in the same way as([Eg).does.

the large size ratig|, although it is not quantitative as in the

Given that we now have a reasonably accurate depletion

wall-wall case. Similar results are found for the two otherpotential between two spheres, namely, EtR), it seems
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FIG. 7. Scaled depletion potentdP®i(x)/(7R.) for interacting polymers.
From top to bottom the densities gsgp* =0.2, 0.5, 1, 2, 5, and 10, respec-
tively. In the semidilute regime the well-depth increases fikR&°while the
range decreases ap °7’% Inset: Scaled well depth at contact
VPei(0)/(wR,) for interacting polymergsolid ling), compared to the scaled
well depth V,o(0)/(7wR.) for the AO potential of Eq.(Al) with Rao
=Rao given by Eq.(A3). The scaled AO potentials are shown B porveen two plates (Refs. 38, 3% The curve denotesW(0)

=10Ry, (dotted ling, R.= 2R, (dashed ling andR;=0.5R, (long-dashed  _ _, the expected result for the Deriaguin approximation
line). In contrast to the Derjaguin approximation expressions, the AO poten- 7ulp): xp . Jaguin approximation.

tial does not satisfy perfect scaling wiRy, . The well-depth scales linearly
with p. The range is RS | and is independent of.

FIG. 8. Comparison of the force at contact with the Derjaguin expression,
Eq. (12). The circles are taken from the SAW simulations depicted in Fig. 4.
On the scale of this graph, the three size ratios lead to virtually identical
results at each density. The triangles derfof@)/(=R.) from the fluctua-
tion bond model simulations of Yethiraj and DickméRef. 29. The dia-
monds are from previous= 100 SAW simulations o¥(0), theinteraction

I1(p) appropriate for polymers in a good solvent. For the
: . . : . : .. semidilute regime the FSV approach would then lead to an
fruitful to examine how this expression varies with denSIty'underestimate of the range by a factor 2/3, while for small

We do this in Fig. 7 for a number of densities in the dilute h the Deriaqui imation i i e it
and the semidilute regimes. Since within the Derjaguin apyv ere the Derjaguin approximation 1S quite accurate, -

A : ; . would underestimate the attraction at contact by a factor of
proximation the depletion potentiél2) always scales with . : : :
R., the curves in the plot can be used for all size ratios. OlabOUthM% Olg thefotherbht?nd, ||rt1hthe ﬁ'IfUte_ reg|me_,_th|s ap-
course one should keep in mind that the Derjaguin approxiproac should perform better, although for increasjngis

mation becomes progressively less accurate for decreasiri pected to overestimate the attraction at contact in a very

R./Rgy. With this caveat in mind, the well-depth at contact > llar way to the effects seen for th? AO model in Fig.
for polymers in a good solvent scales as 15(a). This is because the FSV model ignores the deforma-

, tion of polymers near a spherical surface. It would be better
V2e(0) ~ pv/(Br =1~ (0770 (14 to use theD(p) appropriate for a spherical particle; this re-

in the semidilute regime. This is exactly half the exponentSUItS in a potential similar in spirit to an interesting recent

with which the well-depth at contact scales for two walls in proposal by Tuinier and Lekkerkerk¥.

the semidilute regimgsee Eq(6)], which can be understood

as follows: Within the Derjaguin approximation the force

scales a¥ (0)= 7R.W(0)~ p2”/3*~1: the potential is then D. An accurate semiempirical depletion potential

obtained through/ 3Eq(lO) by integrating this force over a As can be seen in Fig. 4, the Derjaguin approximation

range D(p)~p """ 1. These two effects result in the soams 1o be particularly accurate for the force at contact. In

scalmg seen in Ec.(14).'On the other ha'nd, by nature of the fact, when we plofF (0)/(wR,) versusp/p* in Fig. 8, the

Derjaguin _approximation, the range is the same as thglgits for the three size ratios are very close to each other at

shown in Fig, 3 for the wall-wall case, i.e., it decreases liNGyach of the densities studied, and their value is well de-

Duw(p)~p " o . scribed byW(0)=—2v,,(p), as expected for the Derjaguin
An expression similar to Ec(.13l)9has been derived by ,n5roximation{see Eq(11)]. Furthermore, we analyzed the

Fleer, Scheutjens, and Vincef®SV).™" They replaceRao i computer simulation data of Dickman and Yethf&j®

the full AO potential(Al) by 2I'(p), and the density by  \yhich used the fluctuation bond mod&BM) for size ratios

I(p). In its original applications; the FSV theory was used ranging fromq= 1.3 toq=23.5, and find similar agreement in

with a self-consistent field theory to calculdfg¢p), and a  Fig. 8. Keep in mind that the FBM results are for shorter

simple Flory Huggins prescription fokl(p). This leads to  chains ( =20-100), and that the error bars appear to be

I'(p)~p~ M scaling behavior which is more appropriate larger than those in our simulations. Since tpr3.5 the

for polymers near the theta poifitHowever, one could eas- Derjaguin approximatioiil1) should not be valid at all, this

ily generalize the FSV approach and include fhgp) and  does suggest that the expression,
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F(0)=7RW(0)=—27R.yw(p), (15) at contact=(0) for two spheres in a bath of interacting poly-
hold b ¢ imat | d that th mers by a similar factor to that shown fa¥/(0) in Fig. 1.
may hold because of a@pproximatgsum rule, and that the In the inset of Fig. 7 we compare the scaled well-depth

agreement is not fortuitous. at contactv®®(0)/(wR,) for the Derjagui imati
- . jaguin approximation
The surprising accuracy of expressidb) for the force with that of the AO rr?odel, given in EqAL), where an

at contact can be exploited to derive a more accurate eﬁece'ffective range parameteFRe“ given by Eq.(A3) in the
AO .

tive potential than that found by the direct application of theAppendix, was used to take into account the deformation of

Derjaguin approximation. We assume the same linear forcg | polymers around the colloids. For a givRg, the well-

between two spheres as found in the previous two Secrionﬁ’epthVAo(O) scales linearly wittp, which is now anover-
but now with a modified range, '

estimatecompared to the result for interacting polymers. The

RS (R.) origin of this behavior can be easily understood; while the
Ds(p)=Duwlp) —g— (16)  strength of the force is strongly underestimated by the AO

9 model, the range is overestimated. Therefore the integral in
where the effective shrinking of the range due to the deforgg. (10) shows a compensation of errors. This explains why,
mation of the polymers around the HS has been taken intgt |ow densities, the AO approximation well depth is very
account via Eq(A3). Although this deformation effect is close to the interacting polymer result. For example dor
calculated for ideal polymers, we expect it to be a good first=0.1 we find forp/p* =1 thatV(0)/Vao(0)~0.93 while
approximation for therelative deformation of interacting for p/p* =10 this ratio is still only 0.56. Attempting a naive
polymers around a sphere. The resulting simple linear eXmprovement by replacing in the AO expression by the true

pression for the force can now be integrated up via®@  pressure of a polymer solution results in a worse approxima-
to give the depletion potential, tion for all densities.

T x \?
Vg(X)= ERCW(O)DS(p)< 1- m) 17

for x<Dg(p). V4(X)=0 for x>D¢(p). Our new semiempir- F. Polymers as soft colloids
ical potential works remarkably well, as can be seen in Fig. 5 When modeling polymer—colloid mixtures, the colloids

for the three size ratios. Even fge=1.68, corresponding to are usually treated as single particles. It thus seems natural
the smallest colloids, this potential is significantly better than y gep .

the Derjaguin expressiofl2), suggesting that Eq17) can to attempt the same for the polymers. We have recently suc-

. 29 . ceeded in modelin linear olymers as “soft
be considered a nearly quantitative representation of thé 9 Poly

: n 38—-41,5 H H
depletion potential induced between two spheres by SAV\?OIIC.JIdS’ 6\Nher§ each pol'ymer 'S replaged bya;mgle
o : . particle centered on its CM. Different coils interact via an
polymers for a surprisingly wide range afs. Since the

. o . .~ effective pair potential acting between their CM. These ef-
semiempirical potentigl 7) reduces to the regular Derjaguin fective interaction® (r;p) between the CM of the polymers
form (12), if D¢(p) is replaced byD,(p), its scaling prop- '

. . . . . _are extracted from the radial distribution functiay(s) with
erties with density are the same as those discussed in the . L : : . .
previous subsections. ah anstem—Zermke inversion technique. This prqcedure is
justified by a theorem which states that for any giygm)
and p there exists a unique pair-potential which reproduces
that radial distribution functio”’> Our v (r;p) have a near
Gaussian shape, with an amplitude of ordd;P and a
It is interesting to compare the results for interactingrange of the order of the radius of gyrati®y. For p/p*
polymers with the results for noninteracting polymers. First,<2 accurate analytic forms as a functionréR, and p/p*
just as was found for two walls, the range for the depletiorare availablé?!
potential is independent of density for noninteracting  Our inputg(r)’s were generated by computer simula-
polymers. This is true both for the simpler AO mofel, tions ofL=500 SAW polymers on a cubic lattice, and so the
as well as for more sophisticated theories and computedensity dependent effective potentials we derived will by
simulations>>***5For a givenRy, using a theory based on definition reproduce the same CM pair structure as found in
noninteracting polymers will always overestimate the rangehe underlying SAW polymer system. When used in conjunc-
compared to the interacting case. Since for our accuratéon with the compressibility equatiohthese potentials also
semiempirical potential the rand®,(p) is related toD,,(p) provide a very good representation of the equation of
by a density independent factor related dp the relative  state®>*!
overestimate in the range for the spherical case should be A similar coarse-graining procedure was followed to de-
close to that found when comparing a noninteracting theorgcribe polymers near a flat wafl;*° where even ideal poly-
to an interacting one for the range of the depletion potentiaimers form a depletion layer. If these were to be modeled as
between two plates, as done in Fig. 3. single particles, there would be no polymer—polymer inter-
For the case of two walls the absolute value of the well-action, but there would still be an effective polymer-wall
depth at contact given by ideal polymers or the AO modelinteraction ¢(z). We used direct simulations df =500
was underestimatedwith respect to the interacting case. SAW polymers to extract the density profi)¢z) near a hard
Within the Derjaguin picture of Eq(l1), this implies that wall. The ¢(z)’s which reproduce the density profile at each
noninteracting polymer models will underestimate the forcegiven bulk densityp were calculated using a wall-Ornstein—

E. Comparison with theories for noninteracting
polymers
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Zernike procedurd®® Again accurate analytic fits for den- 4
sities p/p* <2 are availablé?

Since our effective polymer—polymer potentials provide
a very accurate representation of the pres$l(g, while the
polymer—wall interactions are constrained to reproduce the

[ ' I ' I '
g=1.68 —

o(r)

correct density profil@(z), and therefore the correct adsorp- 1= —
tion I'(p), Eq.(2) implies that our soft-colloid approach will = .
reproduce the correct wall—fluid surface tensigy{p). This 0 ' :

explains why our soft-colloid approach reproduces the cor-
rect value forw(0),%° the depletion potential at contact
between two walls, since Edl) implies that this can be
expressed completely in terms f,(p). Similarly the slope
of the potential is given by the osmotic presslitg) which
is also accurately represented in the soft-colloid approach.
Deviations with respect to direct simulations were only ob-
served for larger distances where the soft-colloid approach
produced a more pronounced repulsive bump in the deple-
tion potentials’®3° 5
To calculate the depletion potential between spheres, we
need to first derive the effective sphere-polymer CM poten-
tial ¢(r) which would exactly reproduce the density profile
p(r) around a single sphere of radiRs. This can again be
done using an Ornstein—Zernik®Z) technique to invert the
density profileé! These density profiles were calculated in 1
Paper |, where we found that the range of the profiles shrinks 0 L ! \
with increasing density. The CM profiles can penetrate into 1 2 3 4
the spheres because the polymers can deform around them, f/ Rg
an eﬁeCt. Whlgh becomes more pr_onounced with decreasmIgIG. 9. The effective sphere—polymer potentiglr) as a function of, the
sphere sizéthis does not happen in the monomer rePréSeNgistance to the center of the sphere for increasing polymer concentration

tation of coursg Similarly, the effective potentialg(r), (from left to right. Theseg(r) are derived via an Ornstein—Zernike inver-
derived with our inverse OZ approach, become relativelysion technique such that they reproduce the CM density profiles around each

softer with decreasingzc as shown in Fig. 9.1 For a fixed sphere(Ref. 41). The arrows indicate the hard core radius of the spheres.
g the potentials become more repulsive for increasing den-

sity, just as was found for the polymer—wall ca@S&lote that

this behavior is the opposite to that of the density profiles.

Again, because these potentials are constrained to give ti}gr), and the correct one-body free ener’@;&?t(p) of im-

correct density profiles and related adsorptions, this soft COImersing a single sphere into a bath of polymers for all den-
loid picture should also correctly reproduce the surface teNgjties »/p* in the dilute and semidilute regimes, it is perhaps
sion ys(p) for a single sphere immersed in a bath of inter-g,yrising that for the case of two spheres, it breaks down

acting polymers. The same _r?[hOU|d hold for the related ON€xiher abruptly for higher densities. To further investigate
body insertion free energids;"(p) described in Paper |I. this issue, we plot the polymer CM density profiles for two

‘ , . . . spheres fixed at distanae=2.6Ry for q=1.05 andp/p*
1. Direct simulations of depletion potentials =2.32 in Fig. 11. This corresponds to a distance where the
for polymers as soft colloids SAW V(r) has effectively gone to zero. At this short distance

The simulation of the depletion potentials induced by thethe SAW polymers clearly penetrate more easily in between
“soft colloids” proceeds in a similar manner to the simula- the two colloids than the soft particles do, resulting in less
tions with SAW polymers, described in Sec. Il A. However, attraction between the colloids. A similar effect was found
the implementation is much simpler, because the interactionfor polymers between two walf§, but there the fact that
are smooth and both types of particles are in continuousum-rules constrain the value of the potential at contact
space. The simulations are also about two orders of magnimeans that this difference manifested itself instead in an en-
tude faster, since each polymer is represented by only onleanced repulsive bump in the potential. In both cases, we
particle, instead of the 500 units per polymer used for theattribute the error in the soft-colloid approach under strong
SAW model. These simulations are compareddgerl.05 in  confinement and higher densities to a breakdown in the “po-
Fig. 10 to the direct SAW simulations. The agreement is verytential superposition approximatiort® i.e., the assumption
good forp/p* =0.58 and reasonable farp* =1.16. How- that a polymer confined between two surfaces feels an inter-
ever for the highest density/p* =2.32, the soft-colloid ap- action which is simply the sum of the two interactionér)
proach breaks down. Exactly the same trend was found fowith each separate surface. While this would be correct for
the other two size ratiognot shown here Since the soft- simple fluids, it is not correct here, since the close presence
colloid approach reproduces the correct one-body densitiesf one wall affects the interaction of the polymers with the

()

o
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1 . T 2. Depletion potentials from the superposition
approximation

To understand further the nature of the depletion poten-
tials between the colloidal particles, mediated by the poly-
mers in the “soft colloid” picture, we now turn to the super-
position approximation, which expresses the two body
depletion interactions in terms of one-body properties of a
single colloid in a bath of soft polymers.

¢ // ’ O-—O SAW simulafions p=0.58 | If one colloidal particle is fixed at the origin, and one is
Va N Simulations gj;;g fixed atr, then one can define an inhomogeneous one-
4 e 501t CONlOIGS p=0.58 particle density of the soft colloids™>(r’;0,r) for that fixed
-4 ---- soft colloids p=1.16 ] configuration of the two colloidal particles. The effective
7 soft colloids p=2.32 force induced between two colloidal HS by the soft colloids
5 : * can then be written a%%°
0 05 1 1.5
xR, 9
F(r>=—f pO(r;0,0) = p(r')dr’, (18)

FIG. 10. Comparison of the direct SAW simulations of the depletion poten-

tial for g=1.05 to direct simulations within the polymers as soft colloids \yhere d’(r) is the interaction between the HS particles and

approac the soft colloids. This expression has an obvious intuitive
interpretation. The total force on a HS particleGats the

d wall. This i allv d he def bil faverage of the sum of its interactions with all the soft col-
second wall. This Is essentially due 1o the deformability o loids. If there are no other HS particles, then the equilibrium

the polymers, which is not correctly taken into account fordistribution will be spherically symmetric, and this force will

strong confinement. .be zero. However, if there is another HS particle at will

Fio. 11 for o/ o* = 1.16 h the diff in the d berturb the density distribution of the soft colloids, which
9. 11 Torp/p™=1.16 nowever, the diterences in the den- . iy tym result in a different total force acting on the

s!ty proflles are ;/(Ery SE.] all, dsuggeétlng that the. SOft'F;art'Cl?article at0. By definition, this is the effective or depletion
picture is no_t yet breaking down. Loarse-graining polymerg, .o F(r) acting on a particle &, induced by the presence
as soft colloids is expected to be most usefulder1, since . particle atr

once the polymers become much larger than the colloids, Equation(18) is in principle exact, but requires knowl-

they can wrap around the colloids, an effect not easily treategdge of the soft colloid density around two colloidal HS. By

in our coarse-graining S‘Fhe’.“e- Since tqnsl we have approximating the full(cylindrically symmetrig one-body
found that phase-separation in polymer-colloid mixture Set%ensityp(l)(r’;o,r) by a superposition of the one-body den-

in below p/p* ~1,7? the limit of physical stability is reached sity p(r) around an isolated single sphéPe
before we encounter problems with our coarse-graining ’

scheme for polymer—colloid mixtures. pM(r;0,0)=p(r")p(|r=r')/p, (19

the effective depletion forc€l8) can be entirely expressed in
terms of the(radially symmetri¢ problem of a single colloi-

dal sphere immersed in a polymer solution. The results of
such a calculation fol(r) are compared in Fig. 12 foy
=1.05. For all three densities, the superposition approxima-
tion closely follows the direct simulations for the soft
colloids. This implies that the full one-body density
pM(r’;0,r) does not differ much from the simple superpo-
sition of Eq.(19), even for the highest density considered,
plp* =2.32. The reason for this is most likely that the effec-
tive polymer—polymer CM interaction(r) is rather weak.

In a recent study, a similar good performance of the super-
position approximation was found for a low density hard-
core depletant when the HS-depletant interaction was fairly
long ranged® Good agreement was also found in a similar
study of star-polymer colloid mixturés$ where accurate star-
polymer—wall potentiafé are derived based on a coarse
FIG. 11. Comparison of the dirett=500 SAW simulations of the polymer  graining approacft In contrast, if the density of a hard-core
CM density profile to direct simulations within the polymers as soft colloids depletant increases, then the superposition approximation is
apg%z‘:h f?ﬂz f1-05 a”qor/lp* ?2-32&10% Sphl?feés ;t Ov_fmdtfhe g_ﬂlef is at known to break down for increasing packing fractf3i*

r==2. . e Tour gra w normaliz nsi | n e . -

averaggd over (0—1%°)l? (515—30°),e(ZOO—Sg’),eande(3soz/4?)°?witilaregiect The fact that th.e superpo;ltlon apprQX|matlon .Works
to the particle at the origin. The SAW polymers penetrate more easily beWell for the soft colloids at the higher densities also raises an
tween the colloids than the effective soft-colloids do. interesting question as to why the soft-colloid picture itself

— SAW
— Effective Potential < [ 4

0.5

Density
T

0.5
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X 2
> - 50ft colloids p=0.58
--~-- soft colloids p=1.16
-3 —-~— soft colloids p=2.32 E
o—-"—o superposition p=0.58
o——> superposition p=1.16
4 s—=- superposition p=2.32 4
superposition with new ¢(r)
-5 L L L

0 0.5 1 1.5 2

FIG. 12. Comparison of simulations of the depletion potentialcfer1.05 FIG. 13. Reduced virial coefficients as a function of polymer density: The
within the soft-colloid approach with the superposition approximation of symbols represent results from the computer simulations=65600 SAW
Egs.(18) and(19). The thin solid line denotes the superposition calculation polymers forq=0.67 (circles, q=1.05 (square} andq=1.68 (triangles.

with p(r) from p/p*=2.32, but the potential(r) from the p/p*=1.16 The straight lines are from Eq21). The good agreement shows that Eq.
calculation. This illustrates the sensitivity of the depletion potentials to(17) provides a good representation of the depletion potential.
colloid—polymer CM interactionp(r).

breaks down at the higher densities. By construction th®" fluid—fluid critical point can be correlated with the point

- - ok HS__ .
one-body density profiles are identical for the full ponmerWhergth_elgedSé;gq V'L'al QQGiff'C'e?Z__BZ<‘Bz HNS 15;
case and the soft-colloid picture. Presumably the reason f(ﬂere 2 — 16mR./3 Is the virial coefficient of a system

the difference in the two-body depletion interactions can pdvith radiusR; . For our depletion systems, the reduced virial

traced either to a large deviation from superposition for thecoeffluent is given by

full polymer case, or else to a breakdown of the potential 3
superposition approximation, as discussed in Ref. 39. The Bgzl_ﬁj
influence of changingy(r) is illustrated in Fig. 12, where we ¢
used the¢(r) appropriate forp/p*=1.16 to calculate the The direct simulation results depicted in Fig. 5 can be used
depletion potential with the density profiles fqs/p* to calculateB} , and the results are shown in Fig. 13 for
=2.32. This¢(r) is less repulsive than the trug(r), and  p/p* =0.58, p/p* =1.16, and forp/p* =2.32. As expected,
leads to a significant difference in the depletion potentialfor a given density/p*, theB; become progressively more
These depletion interactions are therefore quite sensitive taegative with decreasing. Although we don't include any
the exact form of(r). explicit error bars in our plots, these may be rather large for
In conclusion then, the superposition approximationincreasing attraction because they appear exponentially in
works remarkably well fop/p* <1, the regime where the EQ.(20).
soft-colloid picture provides the most accurate representation We found in the previous sections that a simple semi-
of the true depletion potentials. Since the density profilesempirical potentialV¢(x), given by Eq.(17), provides a
p(r) can be easily calculated by our wall-OZ approach, thishearly quantitative description of the depletion potentials be-
means that one only needs the polymer—colloid interactioween two spheres. It turns out that for this potential the
¢(r) and the polymer—polymer interactier(r) as input to  Virial coefficient can be integrated analytically,
reliably calculate the full two-body depletion interactions B
from the superposition approximation. 2

%xz(exp[—V(x)]—l)dx. (20)
RC

1
B_';S:W 2JRW| —6D(D+2R.)+3D

IV. SECOND VIRIAL COEFFICIENTS F{ﬂ-
Xexp =

AND PHASE DIAGRAMS 5 RWD|(D+4R;) + mRW(D +2Ro)°R;

A useful measure of the strength of an interaction is the )
second osmatic virial coefficiefd,, since this is experimen- +3 \/E(D —7RW(D+2R.)%)
tally accessible through a measurement of the osmotic pres- ~RDW
sure at low densitie®®® Such virial coefficients are very X Erfi \/CTD, (22)
sensitive to the strength and range of the depletion
interaction?® A recent stud§’ has shown that for many whereW=W(x=0) andD=D(p), i.e., the explicit density
simple systems consisting of a HS like repulsion with andependence has been suppressed for notational clarity. The
additional attractive potential, the location of the liguid—gasimaginary error function Eiif z] is defined as Efiz]/i; its
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values are real. As can be seen in Fig. 13, this expression
compares well with the direct simulation results, demonstrat-
ing that the potentiall7) is a good approximation to the true
depletion potential. For this reason, we also plot the theoret-
ical B, for two smallerqg’s. The densityp/p* at which one
would expect a(metastablg critical point and a related
fluid—fluid demixing decreases with decreasimgTo com- .
pare with experiments, one should keep in mind that our o' ="' [ | \ s 7y ; .
parametep/p* would be equal to the density in a reservoir \ 7 — RG
. . : ’ A OEq. (21)

of polymers kept at the same chemical potential as a full \ .
polymer—colloid mixturé? -2 \ 7

If the pair-potentials are of sufficiently short range, the ~—r
fluid—fluid transition becomes metastable with respect to the h
fluid—solid transition of the larger particlé$;%® which wid- e —
ens significantly. It has been recently found that this generic =0 1 2 3 4 5
widening of the fluid—solid transition is primarily driven by p/p*
the value of the potentlal at Cont&ﬁ? other details such _as FIG. 14. Virial coefficient from Eq(21) as a function of polymer density
the shape and range of the attractive part of the potential agg, large size ratiosq=5 (solid line), q=10 (dotted ling q=20 (dashed
less important. Roughly speaking, the fluid—solid liquidusiine), g=50 (long-dashed ling andg= 100 (dot-dashed ling Inset: Com-
curve widens to about half the packing fraction of the hard-parison of the minimum oB} as a function ofj to the asymptotic RG result
sphere freezing transition wheW(0)~2.5+0.52 When  min(B3)=1-0.5°*°t The agreement is remarkable.
combined with the criterion thaB%~—1.5 at the critical
density, this can be used for a rough prediction of the
below which the fluid—fluid transition is metastable with re-
spect to the fluid—solid one. The minimugnfor which the
fluid—fluid transition is still stable is between 0.3 and 0.5
which is colr:)sistent with other calculatilo?'@,ll“*30 and o \W(0)~ i3 while the range scales &%,(p)~p 077
exper|ment§: Of course one Sh?“'d keep in mind that the The depletion potential also takes on a simpler functional
Iqrger the Siz€ ratlaq,. the more m;gortant threg-body gnd form, given by Eq(6). These results differ significantly from
h|_ghe_r order interactions becorife’® These paw-po_tenﬂal _theories based on ideal polymers.
criteria should therefore become less accurate for increasing . 10 spheres, we find that the simple Derjaguin ap-

T
s s 0 20 40 60 80 100

potential (4) with a well-depth ofW(0)=—-2y,/(p), and a

slope of Il(p) is very accurate. The range decreases with
density, with the largest relative change occurring in the di-
'lute regime. In the semidilute regime, the well-depth scales

proximation works much better than expected due to a can-
cellation of errors related to the deformation of the polymers
around a sphere. Interestingly, the Derjaguin expression for
the force at contact seems particularly accurate, even for very
mIarge size ratiog]. We used this observation, together with a

S . : correction for the Derjaguin range, to derive the depletion
wh|c_h.|s based on the S'T“p"’t potential of EL7) also ShPWS potentialV¢(r) [Eq. (17)], which was shown to agree quan-
a minimum, as shown in Fig. 14. Even more surprisingly,

iderina h h ial derived. is that the mi Ctitatively with our direct computer simulation results. While
considering /OV,‘('i € potentlgl_ W?dsb e”éer; IS that tdehm'r_"'the excellent agreement with simulations is gratifying, fur-
mum is neap/p™ =1, as predicted by RG theory, and that it ther study is needed to understand why our main ansatz, that

0 H —1_ 0.401
clos_ely foIIovys th_e ag%/ mptotic '?W m|B§)—_1 0507 the force at contact is accurately approximated by the
derived by Eisenrieglef (see the inset of Fig. J4In con- Derjaguin approximation, works so well for such a wide

trast, when the simpler Derjaguin expressi@8) is used for range ofq.

2 » No minimum as a function q#/p* appears for large. The range of our potential scales with density in the
At present it is not clear why our expression B}, Ed.  syme way that the range for the two plates does. But in
(21), should agree so well with the RG results in this largeqqniast to the case of two plates, where the well depth at
Ry/Rc regime. contact is more attractive than that for ideal polymers, the

well depth at contact for two spheres is less attractive than
V. DISCUSSION AND CONCLUSION that _pr_edicted _by ideal polymoe7r7gheories. For example, i_n the
semidilute regimeY¢(0)~ —p~ """, compared to the scaling
We have used a combination of computer simulationf the AO potential,V,o(0)~—p. In other words, ideal
and theory to derive the depletion interactions induced byolymer theories overestimate both the raagel the well-
excluded volume polymers. Our main computer simulationdepth of the depletion potential between two spheres, in-
results are depicted in Figs. 4 and 5 and our main theoreticaluced by interacting polymers.
results are the depletion potential for two plates, given by We also calculated the depletion potential between
Eq. (4) and the depletion potential for two spheres, given byspheres induced by polymers coarse-grained as “soft col-
Eq. (17). loids.” For the dilute regime, good agreement with the direct
For two plates, we found that a simple linear depletionsimulations of SAW polymers was achieved. However, for

Both RG theory* and integral equation approacfe$
predict that for large enough, B} should go through a
minimum as a function op/p*, although the two theories
differ significantly on quantitative details. Experiments see
to show similar effect§® Remarkably, expressiori21),
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the highest densityp/p* =2.32, the polymers as soft col- which effects the depletion potential, and by extension, the
loids approach strongly overestimates the depth of the deplghase behavior.
tion potential. We traced this discrepancy to a breakdown of ~ Changing the solvent quality has a less obvious effect,
the potential superposition approximation, something alsaince bothll(p) andI'(p) are affected. For a given density,
found for two plates® However, since our coarse-graining we expect the absolute magnitudes of both to decrease, so
scheme is mainly useful fog<1, where phase-separation that the strength of the depletion potential should decrease as
sets in forp/p* =<1, this breakdown at high density is not well. Of course, for strong deviations from the case of non-
relevant to the equilibrium phase behavior of colloid—adsorbing polymers in a good solvent, some of the simplify-
polymer systems. In fact, we have recently used this schemi@g assumptions that went into the derivation of the depletion
to calculate the phase separation binodals of polymer-potentials may begin to break down. For example, for very
colloid mixtures for several size ratiap<1."? Direct simu-  Strong adsorption, the system may show bridging
lations of SAW polymers and colloids would be significantly flocculation?® or gelation’® A rich phenomenology may
more expensive. The advantage over directly using a paibe expected this will be the subject of an upcoming
potential such as Eq17), is that many-body interactions are investigation’®
also effectively taken into accouft.

Virial coefficients can provide a sensitive measure of theaACKNOWLEDGMENTS
quality of an effective potential. We were able to integrate
Eqg. (17) to derive an analytical representation of the virial
coefficient (21), which compares very well with the direct
simulation results. Surprisingly, this same analytic form
agrees quantitatively with RG results in the limi¢>1. Fur-
ther study is needed to clarify why E@1) works so well in
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structure, which depend only indirectly on the depletion in-
teractions. The most extensive direct measurements of the
depletion potential between spheres, carried out by VermAPPENDIX A: DERJAGUIN APPROXIMATION
et al,’® were on a system with semiflexible polymé¢BNA) ~ FOR THE ASAKURA-OOSAWA MODEL
which do not follow the same Scaling laws as the SAW pOly']_ Comparison for fixed parameter
mers we treated in this paper. However, given a good model
for the equation of state and the adsorptiofp) for these
polymers, it would be straightforward to calculate the deple-
tion potentials using methods derived in this paper. A de
tailed comparison with experiments will be the subject of an
upcoming review?

This paper has concerned itself with the case of mteract-
ing, non-adsorbing polymers in a good solvent. By taking _ Am 3
Egs. (1), (2), (4), and(17) together, it follows that accurate Vao(X)==p7(oep)*| 1= 7
depletion potentials can be calculated with only a knowledge
of the adsorptiod’(p) and the equation of staid(p). This
implies that the effect of changing solvent quality, or of add- 16

ing attractions or repulsions between the colloids and thguhich is exact within the confines of the AO model. Here we
polymers can be understood by seeing how they affect thesg;f,nedgcp Re+Rao. Similarly, the use of the Derjaguin

two quantities. Note that this is different from binary colloid approxmauor(ll) together with the linear AO potential be-
mixtures, where the effects of added interparticle attractionsween two plates results in

and repulsions have a more subtle effect on the resultant
depletion potential§? ' V() = . 5 Re(2Rao— )2, 0=x=2Rxo. (A2)

It is not hard to see that for polymers in a good solvent,
adding an attractiverepulsive polymer—colloid interaction Comparison of the two expressions at contact, where
results in a lesgmore attractive depletion potential, and v O(O)——pZ'ﬂ(R R2,+2R3,/3) and VR&i(0)=—p2m
possibly even to repulsive effective interactions. This followsx R RAO’ shows that the Derjaguin expressioh2) under-
sinceIl(p) is unchanged, and onl(p) is affected in an estimates the well depth at contact with respect to the exact
obvious way. An example where this may be relevant conexpressionAl), a discrepancy which gets relatively worse
cerns the common practice to stabilize colloidal particles byfor decreasingR./Rao. This is illustrated in Fig. 1&) for
a short polymer brush. The interaction of the free polymerghe same size ratios we used for the interacting polymers.
with the polymer brush can be quite subffequt our theory ~ Since the Derjaguin approximation is only valid for large
implies that it is only the overall change in the adsorptionR./R,g, this breakdown is expected.

RAO

The Asakura Oosawa model, where the ideal polymers
are modeled as interpenetrable spheres of raRjys, was
first introduced in 1958.Between two plates this results in
the linear depletion potential similar to E@), with a range
Rao, While between two spheres it results in the well-known
Asakura—Oosawa form,

X+ 2R,

Ocp

1 (x+2R.\3

], 0=x<2Rpgo (A1)
O-Cp
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approximation of the full AO model depletion potential,
which is itself a better approximation of the true depletion
potential induced by ideal polymers. Although the Derjaguin
approach does not capture the slight reduction in range, the
well-depth is much closer to the AO value.

Of course, this improvement arises from a cancellation
of errors. However, for the interacting polymers the deple-
1 tion potential between two walls is also well described by a
linear form, and we expect the same deformation effect to be
relevant for polymers near spheres. Therefore, we might
hope for a similar cancellation of errors when the Derjaguin
expression is used for interacting polymers.
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