Motivated by recent experiments on cold atomic gases in ultra high finesse optical cavities, we consider the problem of a two-band Bose--Hubbard model coupled to quantum light. Photoexcitation promotes carriers between the bands and we study the non-trivial interplay between Mott insulating behavior and superfluidity. The model displays a global U(1) X U(1) symmetry which supports the coexistence of Mott insulating and superfluid phases, and yields a rich phase diagram with multicritical points. This symmetry property is shared by several other problems of current experimental interest, including two-component Bose gases in optical lattices, and the bosonic BEC-BCS crossover problem for atom-molecule mixtures induced by a Feshbach resonance. We corroborate our findings by numerical simulations.