
Can 4-derivative gravity make
physical sense, despite having a ghost?

A) Introduction. B) Negative energy? C) Negative norm, positive energy? D) IR enhancements.
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Motivation: would give a theory of quantum gravity
To get a theory of quantum gravity, write the most generic renormalizable Lagrangian with the gravi-
ton gµν: it has dimension 0 so 4 derivatives. R2

··· generated by loops, even starting from Einstein:
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Two gauge-like dimension-less constants f0,2. Spectrum: extra states with
spin 0 and 2 and masses M0,2 ∼ f0,2MPl. Einstein gravity at lower energy.
Ghost with mass M2 key to get renormalizable quantum gravity:(
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‘Ghosts’ are avoided like a plague by theorists and explored only by such as Dirac, Pauli,
Heisenberg, Pais, Uhlenbeck, Lee, Wick, Cutkosky, Coleman, Feynman, Hawking...

1403.4226, 1502.01334, 1512.01237, 1705.03896, 1709.04925, 1808.07883, 2007.05541. Good but
not discussed: inflation, h, asymptotic freedom? Related ideas by Bender, Mannheim, Anselmi et al.

http://arxiv.org/abs/1403.4226
http://arxiv.org/abs/1502.01334
http://arxiv.org/abs/1512.01237
http://arxiv.org/abs/1705.03896
http://arxiv.org/abs/1709.04925
http://arxiv.org/abs/1808.07883
http://arxiv.org/abs/2007.05541


Ostrogradski classical no go
Gravity gµν(x, t) ⊃ QFT φ(x, t) ≈

∫
p modes... so focus on one mode q(t) with 4 time derivatives
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q − V (q)

Describe canonically one 4-derivative q(t) as two 2-derivative q1,2(t):




q1 = q, p1 =
δS
δq̇1
= (ω2

1 + ω
2
2)q̇ +

...q,

q2 = q̇, p2 =
δS
δq̇2
= −q̈

The Hamiltonian is unbounded from below
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q21 + V (q1).

(More than 2 time derivatives)⇒ (classical energy down to −∞).
Classical free solution is ok, but interactions can give run-away evolution



B) Is negative kinetic energy hopeless?

Or maybe it’s similar to negative potential energy:
meta-stability up to cosmological times?

B1) classical mechanics → B2) quantum mechanics

↓ ↘ ↓

B3) classical field theory → B4) quantum field theory



B1) Classical mechanics



Ghost miracle?
To see: solve numerically ¨̈q + (ω2

1 + ω
2
2)q̈ + ω2

1ω
2
2q = interactions e.g. λq3:
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How long can be stable? And why?



Ghost lockdown
One 4-derivative q(t) can be rewritten as two 2-derivative q1,2(t), Ostrogradski-like:

H = E1 − E2 + V Ei = ωi
p2i + q2i

2
V =

λ

2
q21q22

H constant, no extra constant of motion prevents run-away. Energies E1, E2 grow and could go
everywhere, but instead remain confined to a region if the coupling λ is small



Well known mystery:
a century ago physicists analytically understood
why the solar system is long-lived, despite that
energy conservation allows planets to escape.

Poincaré, Birkhoff series,
Kolmogorov-Arnold-Moser theorem,

Nekhoroshev estimates...
Never heard? It’s in old dusty books.

Same math applies to ghosts.



Some physical systems are ghosts
Asteroid around the Lagrange point L4 e.g. Sun/Jupiter:

H =
~p 2

2m
+ ω(ypx − xpy) −

GMSm
|~x − ~xS |

−
GMJm
|~x − ~x J |

in the rotating frame.
Expand as quadratic + interaction around L4

H2 =
p2x + p2y

2
+ ypx − xpy +

x2

8
−
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8
+

√
27
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(
2MJ
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for ω = m = 1. Diagonalise through a canonical Sp rotation:

H2 = ω1
p21 + q21

2
−ω2

p22 + q22
2

.

Check, asteroids are still there!

Similarly for an electron rotating in a constant magnetic field Bz with a destabilizing potential ω2
0

H =
(~p − e ~A)2

2m
+ eϕ =

~p 2

2m
+ ωB(ypx − xpy) +

m
2

(ω2
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2
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2m

.



Birkhoff series
‘Diagonalize’ a classical Hamiltonian trough a canonical transformation from (q, p) to action-angle
variables (J,Θ) such that

H (pi, qi) = H′(Ji)

makes motion trivial: Ji = cte and Θi ∝ t. Harmonic oscillator:

q =

√
2J
mω

sinΘ, p =
√
2mωJ cosΘ.

Add small interactions, compute a perturbative Birkhoff series. Summarising books in 2 lines:

Smaller coupling
∼
⇒ Birkhoff series converges⇒ planets epycicle and stay, ghosts don’t runaway.

Larger coupling
∼
⇒ Birkhoff series divereges⇒ planets motion chaotic and escape, ghosts runaway.
A free ghost is good. A weakly coupled ghost remains good.

In practice: compute more and more orders making the residual interaction smaller λ → λ2 → λ3...

H (pi, qi) = H′(Ji) + λ
N Hint(Θ, J)



Example

Like a hidden integral of motion



NNNNNNNNNNNNNNNNNNNNNNNNLO
Find order n such that small residual interaction λn+1 gives maximal escape time τ > maxn τn.
Asymptotic series: bound strongest for finite n depending on coupling λ: non-trivial function of λ.
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Order jumps in the figure: Birkhoff series contains λ···/(N1ω1 − N2ω2) where N1,2 are any integers.
It can get accidentally big even at small λ when resonances happen: planets escape, ghosts runaway.



Resonances

To compute what happens: resonant normal forms, another
Arnold book: diagonalise everything but the resonance. Worst
resonance: leading order N1 = N2 = 1 i.e. ω1 = ω2. Hid-
den integrals of motion lost if ∆ω <∼ λJ/ω2

1,2. Leading order
decides. A resonant λq21q22 interaction behaves as a loose chain

H′ = ω1J′1−ω2J′2+
λJ′1J′2
2ω1ω2

[
1 +

1
2
cos 2(Θ′1 + Θ

′
2)

]
+· · · =
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A resonant q21q2 interaction behaves as a broken chain i.e. run-away:

H′ = ω1J′1 − ω2J′2 −
ε

4
J1

√
J2 sin(2Θ′1 + Θ

′
2) =

On resonance the fate depends on the model. Will be relevant in field theory.



Classical mechanics: ghosts can be meta-stable and exist

Now we get off and explore terra incognita.

Possibly without stomping on their graves.



B2) Quantum mechanics



Quantum mechanics
Adding a ghost the sign of E − V no longer tells if the wave function ψ(q1, q2) oscillates or damps

H =
p21
2
−

p22
2
+ V, V = ω2

1
q21
2
−ω2

2
q22
2
+
λ

2
q21q22, −

~2

2
∂2ψ

∂q21
+
~2

2
∂2ψ

∂q22
= (E − V )ψ.

Does any ψ spread into E1 − E2 ≈ 0 up to large E i.e. runaway?
Compute numerically the bound ground state with no nodes

around q1,2 ∼ 0: ψ(q1, q2) ∼ e−(ω1q21 +ω2q22)/2~

Exponentially suppressed out-flowing probability current.
Meta-stable like a normal particle trapped in a potential barrier:

e.g. H =
p21
2
+

p22
2
+ V, V = ω2

1
q21
2
+ω2

2
q22
2
−
λ

2
q21q22 .

K-instability (ghost run-away) is exponentially suppressed like V -instability (tunnelling).
Differences appear in the resonant case ω1 , ω2.



Quantum mechanics: getting more general
Tunnelling can be approximated semi-classically as ψ = eiS/~, such that

Schroedinger ~→0
= Hamilton-Jacobi

∂S
∂t
= −H

(
qi, pi =

∂W
∂qi

)
The classical action S and thereby the classical hidden integrals of motion still play a role, and keep
ψ close to q1,2 ∼ 0. For energy eigenstates: S(q, t) = W (q) − Et. Detail not yet overcomed:

WKB ≈ HJ approximates multi-dof qi(t) tunnelling simpler than Schroedinger:

find the classical trajectory that minimises the barrier, W = min
~q(t)

∫ ~qrelease

0
dq
√
2V, rate ∝ e−2W .

But (∂W/∂q)2 = 2(E − V ) has two solutions with opposite signs of W . Ground-like state at λ = 0:
• Usual HJ solution for q1, bounce W1(q1) = lim

tE→∞
S.

• Other sign for normalizable ghostψ(q2): classicalmotion backwards in time,W2(q2) = lim
tE→−∞

S

For λ , 0 we don’t know how to use WKB to compute efficiently. And it’s needed in QFT.



B3) Classical Field Theory



Classical field theory
For example two scalars ϕ1,2, simpler than gµν and its ghost gµν2 . Typical theory:

L =
(∂µϕ1)2 − m2

1ϕ
2
1

2
−

(∂µϕ2)2 − m2
2ϕ

2
2

2
−
λ

2
ϕ21ϕ

2
2 .

Classical field theory is sick even without ghosts. Wants to equipartition energy among infinite modes
giving black body divergence cut at ω <∼T/~. Ghost is co-morbidity. Classical can be computed:

Numeric. Classical field theory can be computed numerically on smart light-cone lattice.

Analytic. Expand field ϕ(~x, t) as Fourier modes q~n(t) to use Birkhoff & co

ϕ(~x, t) =
1

Ld/2

∞∑
~n=−∞

q~n(t)ei~k ·~x ~k =
2π~n

L
ω2

n = m2 + k2



Resonances
Off-shell processes don’t runaway. But lots of qn with frequencies ωn allow for lots of resonances.
These on-shell processes are the usual decays, scatterings, etc.

• Resonant normal formof the complicated interaction qn1qn′1
qn2qn′2

shows that local interactions like λ ϕ21ϕ
2
2 keep ghosts in chain

H 'ωn1 Jn1 + ωn′1 Jn′1 − ωn2 Jn2 − ωn′2 Jn′2 +
ε

4

[( Jn1 Jn2

ωn1ωn2

+
Jn1 Jn′2

ωn1ωn′2
+

Jn′1 Jn2

ωn′1ωn2

+

+
Jn′1 Jn′2

ωn′1ωn′2

)
+ 2

√
Jn1 Jn′1 Jn′2 Jn′2

ωn1ωn′1ωn′2ωn′2
cos(Θn1 + Θn′1 + Θn2 + Θn′2)

]
.

Each resonance is benign: does not allow run-away, but violates
one hidden constant of motion at O(1).

• One field has N = L/a dof, there are 2N hidden constants of
motion, ∼ N2 resonances. In the continuum limit N2 � N :
energy can flow ϕ1 ↔ ϕ2. Pictorially, too many ghosts escape
from lockdown because locked by a loose chain.

Ambiguous situation: something good happens but not good enough?



Ghost entropy
Assume worst case scenario: mess wins, runaway possible.

Consider a system of ghost ϕ2 interacting with normal ϕ1 with temperatures T1 , T2.
Do they thermalise to same T ∼ 〈E〉? No, they cannot: T2 < 0 and T1 > 0.
So, what happens? They maximise entropy S = S1 + S2. Since S2 = Ndof ln |T2 |, entropy is maximal
for T1 → ∞ and T2 → −∞. Heat flows in the direction where both |T1,2 | grow. Run-away happens.

To see how fast solve classical Boltzmann eq.s for generic f (E) beyond the thermal limit.

(To start: ϕ1,2 positive-energy; quantum Boltzmann equations are well known e.g. for 12↔ 1′2′

ρ̇1 = −

∫
d~k1d~k2d~k′1d~k′2 E1 (2π)d+1δ(K1 + K2 − K′1 − K′2) |A |2F A = 2~λ

F = f1(E′1) f2(E′2)[1 + f1(E1)][1 + f2(E2)] − f1(E1) f2(E2)[1 + f1(E′1)][1 + f2(E′2)]

Bose-Einstein f = 1/[eE/T − 1] at equilibrium. Two classical limits: particle ( f ' e−E/T � 1,
ignore) and wave ( f ' T/E � 1). Thermalization rate Ṫ1 ∝ λ2T1T2(T2 −T1) agrees with numerics).



Ghost runs away in classical field theory
Next compute the ghost. Kinematics with E < 0 looks unusual. Trick: ρ̇1 remains the same using

K̃µ = −Kµ f (E/T ) = −[1 + f (Ẽ/T )]

i.e. (emission of negative energy) ↔ (absorption of positive energy). No thermal equilibrium, run-
away rate equals the heat flow rate ∝ λ2, not exponentially suppressed e−1/λ. Analytic ≈ numerics:
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Not a problem in 4∂ gravity: Ṫ/T ∼ T3 /M2
Pl � H ∼ T2/MPl. And T ∼ Hinfl during inflation

.



B4) Relativistic Quantum Field Theory



Relativistic Quantum Field Theory?
Rate for ∅ ↔ 11′22′ etc from Bolztmann equation in the limit T1 → 0+, T2 → 0−: F → −1 , 0 so

ρ̇1 =

∫
d~kall E1 (2π)d+1δ(K1 + K′1 − K̃2 − K̃′2) |A |2 = coupling2 · · ·

∫ ∞

√
s

dE E (E2 − s)
d
2−1

contains a divergent dE integral over the Lorentz group, E = (K1 + K′1)0. Needed because ∅ is
Lorentz invariant. Ghost production rate is infinite: large enough that K-instability is excluded?

Same problem in old computations of vacuum decay [Okun et al.]: the critical bubble can be produced
with any initial speed. And V < 0 allows ghost bubbles with m < 0. Is V -instability excluded?

Later, Coleman argued that the right way of computing is not particles, but O(4)-invariant bounce.
This gives finite and exponentially suppressed ΓV-tunnelling ∝ exp(−W ) of action, W ∼ 1/λ.

• Dvali [1107.0956] doubts that V -instability is exponentially suppressed.
• Opposite extremum: maybe K-instability too is similarly exponentially suppressed?

We don’t yet know.

Coleman extended MQ to QFT using simple WKB that doesn’t generalize to ghosts. Maybe only
way is a brute force computation QFT→MQ as ϕi(r) checking resonances? Next lockdown...

https://inspirehep.net/literature/88934
https://arxiv.org/abs/1107.0956


C) Negative norm, positive energy?



Quantization choices
Classical free solution:

q(t) =
a1e−iω1t√

2ω1(ω2
1 − ω

2
2)
+

a2e−iω2t√
2ω2(ω2

1 − ω
2
2)
+ h.c.

Usual quantisation a†1 |0̃〉 = 0 and a2 |0̃〉 = 0 gives negative energy.

Fermions (1 derivative) too have negative classical energy, but positive-energy quantization exists...

Alternative quantization a1,2 |0〉 = 0 gives ‘negative norm’ (more precisely ‘indefined product’):

[a, a†] = −1 |Ek〉 =
(a†)k
√

k!
|0〉 〈Ek′ |Ek〉 = (−1)kδkk′

and positive H eigenvalues

H = −
p2 + q2

2
= −

aa† + a†a
2

H |Ek〉 = (k +
1
2

) |Ek〉

so no run-away in transition amplitudes:
∫

dt e−i(Ei−E f )t
→ δ(Ei − E f ).



Making sense of negative norm
Wrong no-go claim in the literature: negative norm gives non-normalizable wave-functions ψ ∼
e+x2/2. Mistake: ψ computed using q̂ |x〉 = x |x〉 i.e. positive norm 〈x′|x′〉 = δ(x − x′). Must use:

Pauli-Dirac negative-norm coordinate representation q̂ |x〉 = ix |x〉, p̂|x〉 = +
d
dx
|x〉.

Then q̂ and p̂ are self-adjoint with respect to the indefinite norm 〈x′|x〉 = δ(x′+ x):

〈x′|q̂† |x〉 ≡ 〈x |q̂ |x′〉∗ = [ix′δ(x + x′)]∗ = ixδ(x + x′) = 〈x′|q |x〉.

In this way, anti-symmetric ψ(x) (odd levels of harmonic oscillator) have negative norm

〈ψ′|ψ〉 =

∫
dx ψ′∗(x)ψ(−x).

Ground state: solve 〈x |a |0〉 = 0with â = (q̂+i p̂)/
√
2, getψ0 ∝ e−x2/2. Normalizable wave functions.

Adding interactions, real Ĥ (q̂, p̂) is self-adjoint. Time evolution e−iĤt conserves the negative norm.

Born rule? Different attempts to get probabilities seem to converge to a simple idea. In some ‘good’
theories unusual Ĥ gives usual diagonalization: eigenvalues E± are real, eigenstates ψ± evolve in
time picking usual phases eiE±t. The constant negative norm is |ψ+ |2 − |ψ− |2, the positive norm
|ψ+ |

2 + |ψ− |2 is constant too: ‘good’ theory with negative norm describes non-local theory with
positive norm. ‘Good’ ∼ means weak coupling |Hi j | <∼ |Hii − H j j |. Are relativistic QFT ‘good’? I
don’t know. Pessimistically not, particle decay is mixing between∞ degenerate states.



D) Infra-red divergences



What is a ghost?
An important part of the physics is trivial: 2→ 4 derivatives improve UV, worsen IR.

Compute tree-level scatterings, to avoid higher-order pinching subtleties.

Compute observable cross sections among asymptotic matter states. Like Lee-Wick and experimen-
talists: reconstruct g2 from its decay products. What is a ghost? A ghost is what it does.

Result: IR-enhanced cross sections do not follow naive dimensional analysis:

Expect NDA σ ∼
dimensionless couplings f0,2

s
. Get σ ∼ σEinstein ∼

(s/M2
Pl)

n

M2
Pl

.

Bad news: ghosts don’t make miracles, like cancelling σg − σg2.
Good news: ghosts don’t make miracles, like cancelling σg − σg2.



Cross section mediated by one gravi-ghost
Consider 2 → 3 or more such that one ghost has free sg ≡ k2. Exchange of massless ghost is
IR-divergent: P(k2) = 1/k4 as k2 → 0 even if kµ , 0, not soft. So massive is IR enhanced by 1/M2

2 .
Decompose as Scattering × Propagator × Decay.
Phase space: dΦ = dΦscatteringdsgdΦdecay/2π.
Factorise around gravi-ghost peak:

|P |2 '
π

M5
2 |Γ2 |

δ(sg − M2
2 ).

Ghost decay width agrees with its Im(propagator)

dΓ = −
f 22

M3
2
|D |2dΦdecay.

Ghost production cross section:

dσ = −
1
2I

f 22
M2
2
|S |2dΦscattering.
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σ(eē → γg2)
s�M2

2
' −

e2 f 22
48πM2

2
= −

e2

24πM̄2
Pl

like −σ(eē → γg) in Einstein.



Ghostrahlung
Cross section mediated by n gravi-ghosts: same IR enhancement for each ghost

σ ∼

naive
dimensional
analysis︷          ︸︸          ︷

(couplings)p

4πs
×

IR enhancement︷                                                              ︸︸                                                              ︷



( f 22
(4π)2

∫ s

0

s dsg
s2g

)n
M2 = 0, IR divergent(

s

M2
Pl

)n
M2 , 0, IR enhancement

E.g. production of two ghosts: σ(SS∗ → g2g2)
s�sg
'

f 42 s

960πs2g
∼

s

240πM̄4
Pl
. Big but IR.

IR understood in QED, QCD, gravity: mγ,G,g = 0 give long-range forces, invalidating LSZ. Compute
what is observed, IR divergences canceled by virtual effects in the soft k → 0 and collinear regions.

Newton potential V ∝ 1/r becomes V ∝ r for M2 = 0: no free particles. IR enhancements in agravity
involve a new Minkowskian region, soft k2 ∼ M2

2 but non-soft kµ. Agravity cross sections grow as
big as in Einstein at s ∼ M2

Pl. Einstein: Planckian gravitons are strongly coupled, make black holes?

Agravity: gravitons areweakly coupled and fly away carrying energy. Resummation of IR-enhanced
ghost radiation presumably downgrades s � M2

Pl down to Planckian: perturbative classicalization?



Conclusions: can negative kinetic energy be ok?
Newton stopped at 2 derivatives: F = ma. More make quantum gravity renormalizable, give IR
enhancements and ghosts. Two possible quantizations:

1) Positive energy, negative norm.
– Wave-functions normalizable, norm conserved by interactions.
– Probabilistic interpretation? Need to compute.

2) Negative energy, positive norm
– Classical mechanics. Weakly-coupled ghosts could runaway but instead undergo lockdown,

can be meta-stabile up to cosmologically large time. Seen in physical systems like Trojan
asteroids. Resonances allow for partial or total energy flow.

– Classical field theory. Too many ghosts escape lockdown: infinite benign resonances give
energy flow. No thermal state, heat flows from negative Tghost to positive Tnormal because
entropymaximal for |T | → ∞. Rate∝ coupling2, small in agravity where coupling∼ E/MPl.

– Quantum mechanics: K-instability exponentially suppressed like V -instability if ω1 , ω2.
But we don’t know how to simply compute à la WKB.

– Quantum field theory: ghost runaway rate ∝ λ2× (divergent integral over Lorentz group).
Might signal analogous of Coleman O(4) bubbles?


