Can 4-derivative gravity make physical sense, despite having a ghost?

A) Introduction. B) Negative energy? C) Negative norm, positive energy? D) IR enhancements.

Alessandro Strumia, Pisa University, webinar at Oxford, 29/10/2020.

Motivation: would give a theory of quantum gravity

To get a theory of quantum gravity, write the most generic renormalizable Lagrangian with the graviton $g_{\mu\nu}$: it has dimension 0 so 4 derivatives. R_{\dots}^2 generated by loops, even starting from Einstein:

$$S = \int d^4x \sqrt{|\det g|} \left[\frac{R^2}{6f_0^2} + \frac{\frac{1}{3}R^2 - R_{\mu\nu}^2}{f_2^2} - \frac{1}{2}\bar{M}_{\rm Pl}^2R + \mathcal{L}_{\rm matter} \right]$$

Two gauge-like dimension-less constants $f_{0,2}$. Spectrum: extra states with spin 0 and 2 and masses $M_{0,2} \sim f_{0,2}M_{\text{Pl}}$. Einstein gravity at lower energy. Ghost with mass M_2 key to get renormalizable quantum gravity:

$$\begin{pmatrix} 4-\text{derivative} \\ \text{graviton propagator} \end{pmatrix} = \frac{1}{k^4 - M_2^2 k^2} = \frac{1}{M_2^2} \begin{bmatrix} \frac{1}{k^2} & -\frac{1}{k^2 - M_2^2} \end{bmatrix}$$

$$\underbrace{\frac{1}{k^2 - M_2^2}}_{\text{graviton }g} = \underbrace{\frac{1}{k^2 - M_2^2}}_{\text{ghost }g_2} \begin{bmatrix} \frac{1}{k^2} & -\frac{1}{k^2 - M_2^2} \end{bmatrix}$$

1403.4226, 1502.01334, 1512.01237, 1705.03896, 1709.04925, 1808.07883, 2007.05541. Good but not discussed: inflation, *h*, asymptotic freedom? Related ideas by Bender, Mannheim, Anselmi et al.

?

Ostrogradski classical no go

Gravity $g_{\mu\nu}(x,t) \supset \text{QFT} \phi(x,t) \approx \int_p \text{modes...}$ so focus on one mode q(t) with 4 time derivatives

$$\mathcal{L} = -\frac{1}{2}q\left(\frac{d^2}{dt^2} + \omega_1^2\right)\left(\frac{d^2}{dt^2} + \omega_2^2\right)q - V(q)$$

Describe canonically one 4-derivative q(t) as two 2-derivative $q_{1,2}(t)$:

$$\begin{cases} q_1 = q, \qquad p_1 = \frac{\delta S}{\delta \dot{q}_1} = (\omega_1^2 + \omega_2^2) \dot{q} + \ddot{q}, \\ q_2 = \dot{q}, \qquad p_2 = \frac{\delta S}{\delta \dot{q}_2} = -\ddot{q} \end{cases}$$

The Hamiltonian is unbounded from below

$$H = \sum_{i=1}^{2} p_i \dot{q}_i - \mathcal{L} = p_1 q_2 - \frac{\lambda^2}{2} p_2^2 - \frac{\omega_1^2 + \omega_2^2}{2} q_2^2 + \frac{\omega_1^2 \omega_2^2}{2} q_1^2 + V(q_1).$$

(More than 2 time derivatives) \Rightarrow (classical energy down to $-\infty$). Classical free solution is ok, but interactions can give run-away evolution

B) Is negative kinetic energy hopeless?

Or maybe it's similar to negative potential energy: meta-stability up to cosmological times?

B1) classical mechanics	\rightarrow	B2) quantum mechanics
\downarrow	$\mathbf{\mathbf{Y}}$	\downarrow
B3) classical field theory	\rightarrow	B4) quantum field theory

B1) Classical mechanics

Ghost miracle?

To see: solve numerically $\ddot{\ddot{q}} + (\omega_1^2 + \omega_2^2)\ddot{q} + \omega_1^2\omega_2^2q$ = interactions e.g. λq^3 :

How long can be stable? And why?

Ghost lockdown

One 4-derivative q(t) can be rewritten as two 2-derivative $q_{1,2}(t)$, Ostrogradski-like:

$$H = E_1 - E_2 + V \qquad E_i = \omega_i \frac{p_i^2 + q_i^2}{2} \qquad V = \frac{\lambda}{2} q_1^2 q_2^2$$

H constant, no extra constant of motion prevents run-away. Energies E_1 , E_2 grow and could go everywhere, but instead remain confined to a region if the coupling λ is small

Some physical systems are ghosts

Asteroid around the Lagrange point L4 e.g. Sun/Jupiter:

$$H = \frac{\vec{p}^{\,2}}{2m} + \omega(yp_x - xp_y) - \frac{GM_Sm}{|\vec{x} - \vec{x}_S|} - \frac{GM_Jm}{|\vec{x} - \vec{x}_J|}$$

in the rotating frame.

Expand as quadratic + interaction around L4

$$H_2 = \frac{p_x^2 + p_y^2}{2} + yp_x - xp_y + \frac{x^2}{8} - \frac{5y^2}{8} + \frac{\sqrt{27}}{4}(\frac{2M_J}{M_{J+S}} - 1)xy$$

for $\omega = m = 1$. Diagonalise through a canonical Sp rotation:

$$H_2 = \omega_1 \frac{p_1^2 + q_1^2}{2} - \omega_2 \frac{p_2^2 + q_2^2}{2}.$$

Check, asteroids are still there!

Similarly for an electron rotating in a constant magnetic field B_z with a destabilizing potential ω_0^2

$$H = \frac{(\vec{p} - e\vec{A})^2}{2m} + e\varphi = \frac{\vec{p}^2}{2m} + \omega_B(yp_x - xp_y) + \frac{m}{2}(\omega_B^2 - \omega_0^2)(x^2 + y^2) \qquad \omega_B = \frac{eB_z}{2m}$$

Birkhoff series

'Diagonalize' a classical Hamiltonian trough a canonical transformation from (q, p) to action-angle variables (J, Θ) such that

$$H(p_i, q_i) = H'(J_i)$$

makes motion trivial: $J_i = \text{cte}$ and $\Theta_i \propto t$. Harmonic oscillator:

$$q = \sqrt{\frac{2J}{m\omega}}\sin\Theta, \qquad p = \sqrt{2m\omega J}\cos\Theta.$$

Add small interactions, compute a perturbative Birkhoff series. Summarising books in 2 lines:

Smaller coupling \Rightarrow Birkhoff series converges \Rightarrow planets epycicle and stay, ghosts don't runaway. Larger coupling \Rightarrow Birkhoff series diverges \Rightarrow planets motion chaotic and escape, ghosts runaway. A free ghost is good. A weakly coupled ghost remains good.

In practice: compute more and more orders making the residual interaction smaller $\lambda \to \lambda^2 \to \lambda^3$...

$$H(p_i, q_i) = H'(J_i) + \lambda^N H_{\text{int}}(\Theta, J)$$

Example

Like a hidden integral of motion

NNNNNNNNNNNNNNNNNNNNNNN

Find order *n* such that small residual interaction λ^{n+1} gives maximal escape time $\tau > \max_n \tau_n$. Asymptotic series: bound strongest for finite *n* depending on coupling λ : non-trivial function of λ .

Order jumps in the figure: Birkhoff series contains $\lambda^{\dots}/(N_1\omega_1 - N_2\omega_2)$ where $N_{1,2}$ are any integers. It can get accidentally big even at small λ when **resonances** happen: planets escape, ghosts runaway.

Resonances

A resonant $q_1^2 q_2$ interaction behaves as a **broken chain** i.e. run-away

$$H' = \omega_1 J'_1 - \omega_2 J'_2 - \frac{\epsilon}{4} J_1 \sqrt{J_2} \sin(2\Theta'_1 + \Theta'_2)$$

=

On resonance the fate depends on the model. Will be relevant in field theory.

Classical mechanics: ghosts can be meta-stable and exist

Now we get off and explore terra incognita. Possibly without stomping on their graves.

B2) Quantum mechanics

Quantum mechanics

Adding a ghost the sign of E - V no longer tells if the wave function $\psi(q_1, q_2)$ oscillates or damps

$$H = \frac{p_1^2}{2} - \frac{p_2^2}{2} + V, \qquad V = \omega_1^2 \frac{q_1^2}{2} - \omega_2^2 \frac{q_2^2}{2} + \frac{\lambda}{2} q_1^2 q_2^2,$$

Does any ψ spread into $E_1 - E_2 \approx 0$ up to large *E* i.e. runaway? Compute numerically the bound ground state with no nodes

around
$$q_{1,2} \sim 0$$
: $\psi(q_1, q_2) \sim e^{-(\omega_1 q_1^2 + \omega_2 q_2^2)/2\hbar}$

Exponentially suppressed out-flowing probability current. Meta-stable like a normal particle trapped in a potential barrier:

e.g.
$$H = \frac{p_1^2}{2} + \frac{p_2^2}{2} + V$$
, $V = \omega_1^2 \frac{q_1^2}{2} + \omega_2^2 \frac{q_2^2}{2} - \frac{\lambda}{2} q_1^2 q_2^2$.

K-instability (ghost run-away) is exponentially suppressed like *V*-instability (tunnelling). Differences appear in the resonant case $\omega_1 \neq \omega_2$.

Quantum mechanics: getting more general

Tunnelling can be approximated semi-classically as $\psi = e^{iS/\hbar}$, such that

Schroedinger
$$\stackrel{\hbar \to 0}{=}$$
 Hamilton-Jacobi $\frac{\partial S}{\partial t} = -H\left(q_i, p_i = \frac{\partial W}{\partial q_i}\right)$

The classical action *S* and thereby the classical hidden integrals of motion still play a role, and keep ψ close to $q_{1,2} \sim 0$. For energy eigenstates: S(q, t) = W(q) - Et. Detail not yet overcomed:

WKB \approx HJ approximates multi-dof $q_i(t)$ tunnelling simpler than Schroedinger:

find the classical trajectory that minimises the barrier, $W = \min_{\vec{q}(t)} \int_0^{\vec{q}_{\text{release}}} dq \sqrt{2V}$, rate $\propto e^{-2W}$.

But $(\partial W/\partial q)^2 = 2(E - V)$ has two solutions with opposite signs of W. Ground-like state at $\lambda = 0$:

- Usual HJ solution for q_1 , bounce $W_1(q_1) = \lim_{t \to \infty} S$.
- Other sign for normalizable ghost $\psi(q_2)$: classical motion backwards in time, $W_2(q_2) = \lim_{t_F \to -\infty} S$

For $\lambda \neq 0$ we don't know how to use WKB to compute efficiently. And it's needed in QFT.

B3) Classical Field Theory

Classical field theory

For example two scalars $\varphi_{1,2}$, simpler than $g^{\mu\nu}$ and its ghost $g_2^{\mu\nu}$. Typical theory:

$$\mathcal{L} = \frac{(\partial_{\mu}\varphi_1)^2 - m_1^2\varphi_1^2}{2} - \frac{(\partial_{\mu}\varphi_2)^2 - m_2^2\varphi_2^2}{2} - \frac{\lambda}{2}\varphi_1^2\varphi_2^2.$$

Classical field theory is sick even without ghosts. Wants to equipartition energy among infinite modes giving black body divergence cut at $\omega \leq T/\hbar$. Ghost is co-morbidity. Classical can be computed:

Numeric. Classical field theory can be computed numerically on smart light-cone lattice.

Analytic. Expand field $\varphi(\vec{x}, t)$ as Fourier modes $q_{\vec{n}}(t)$ to use Birkhoff & co

$$\varphi(\vec{x},t) = \frac{1}{L^{d/2}} \sum_{\vec{n}=-\infty}^{\infty} q_{\vec{n}}(t) e^{i\vec{k}\cdot\vec{x}} \qquad \vec{k} = \frac{2\pi\vec{n}}{L} \qquad \omega_n^2 = m^2 + k^2$$

Resonances

Off-shell processes don't runaway. But lots of q_n with frequencies ω_n allow for lots of resonances. These on-shell processes are the usual decays, scatterings, etc.

• Resonant normal form of the complicated interaction $q_{n_1}q_{n'_1}q_{n_2}q_{n'_2}$ shows that local interactions like $\lambda \varphi_1^2 \varphi_2^2$ keep ghosts in chain

$$H \simeq \omega_{n_1} J_{n_1} + \omega_{n'_1} J_{n'_1} - \omega_{n_2} J_{n_2} - \omega_{n'_2} J_{n'_2} + \frac{\epsilon}{4} \Big[\Big(\frac{J_{n_1} J_{n_2}}{\omega_{n_1} \omega_{n_2}} + \frac{J_{n_1} J_{n'_2}}{\omega_{n_1} \omega_{n'_2}} + \frac{J_{n'_1} J_{n_2}}{\omega_{n'_1} \omega_{n_2}} + \frac{J_{n'_1} J_{n'_2}}{\omega_{n'_1} \omega_{n'_2}} \Big] + \frac{J_{n'_1} J_{n'_2}}{\omega_{n'_1} \omega_{n'_2}} \Big] + 2 \sqrt{\frac{J_{n_1} J_{n'_2} J_{n'_2}}{\omega_{n_1} \omega_{n'_2} \omega_{n'_2}}} \cos(\Theta_{n_1} + \Theta_{n'_1} + \Theta_{n_2} + \Theta_{n'_2}) \Big].$$

Each resonance is benign: does not allow run-away, but violates one hidden constant of motion at O(1).

One field has N = L/a dof, there are 2N hidden constants of motion, ~ N² resonances. In the continuum limit N² ≫ N: energy can flow φ₁ ↔ φ₂. Pictorially, too many ghosts escape from lockdown because locked by a loose chain.

Ambiguous situation: something good happens but not good enough?

Ghost entropy

Assume worst case scenario: mess wins, runaway possible.

Consider a system of ghost φ_2 interacting with normal φ_1 with temperatures $T_1 \neq T_2$. Do they thermalise to same $T \sim \langle E \rangle$? No, they cannot: $T_2 < 0$ and $T_1 > 0$. So, what happens? They maximise entropy $S = S_1 + S_2$. Since $S_2 = N_{dof} \ln |T_2|$, entropy is maximal for $T_1 \rightarrow \infty$ and $T_2 \rightarrow -\infty$. Heat flows in the direction where both $|T_{1,2}|$ grow. Run-away happens.

To see how fast solve *classical* Boltzmann eq.s for generic f(E) beyond the thermal limit.

(To start: $\varphi_{1,2}$ positive-energy; *quantum* Boltzmann equations are well known e.g. for $12 \leftrightarrow 1'2'$

$$\dot{\rho}_1 = -\int d\vec{k}_1 d\vec{k}_2 d\vec{k}_1' d\vec{k}_2' E_1 (2\pi)^{d+1} \delta(K_1 + K_2 - K_1' - K_2') |\mathscr{A}|^2 F \qquad \mathscr{A} = 2\hbar\lambda$$

 $F = f_1(E'_1)f_2(E'_2)[1 + f_1(E_1)][1 + f_2(E_2)] - f_1(E_1)f_2(E_2)[1 + f_1(E'_1)][1 + f_2(E'_2)]$

Bose-Einstein $f = 1/[e^{E/T} - 1]$ at equilibrium. Two classical limits: particle $(f \simeq e^{-E/T} \ll 1,$ ignore) and wave $(f \simeq T/E \gg 1)$. Thermalization rate $\dot{T}_1 \propto \lambda^2 T_1 T_2 (T_2 - T_1)$ agrees with numerics).

Ghost runs away in classical field theory

Next compute the ghost. Kinematics with E < 0 looks unusual. Trick: $\dot{\rho}_1$ remains the same using

$$\tilde{K}_{\mu} = -K_{\mu} \qquad f(E/T) = -[1 + f(\tilde{E}/T)]$$

i.e. (emission of negative energy) \leftrightarrow (absorption of positive energy). No thermal equilibrium, runaway rate equals the heat flow rate $\propto \lambda^2$, not exponentially suppressed $e^{-1/\lambda}$. Analytic \approx numerics:

Not a problem in 4 ∂ gravity: $\dot{T}/T \sim T^3 / M_{\rm Pl}^2 \ll H \sim T^2 / M_{\rm Pl}$. And $T \sim H_{\rm infl}$ during inflation

B4) Relativistic Quantum Field Theory

Relativistic Quantum Field Theory?

Rate for $\emptyset \leftrightarrow 11'22'$ etc from Bolztmann equation in the limit $T_1 \rightarrow 0^+, T_2 \rightarrow 0^-$: $F \rightarrow -1 \neq 0$ so

$$\dot{o}_1 = \int d\vec{k}_{\text{all}} E_1 (2\pi)^{d+1} \delta(K_1 + K_1' - \tilde{K}_2 - \tilde{K}_2') |\mathscr{A}|^2 = \text{coupling}^2 \cdots \int_{\sqrt{s}}^{\infty} dE \, E \, (E^2 - s)^{\frac{d}{2} - 1}$$

contains a divergent *dE* integral over the Lorentz group, $E = (K_1 + K'_1)_0$. Needed because \emptyset is Lorentz invariant. Ghost production rate is infinite: large enough that *K*-instability is excluded?

Same problem in old computations of vacuum decay [Okun et al.]: the critical bubble can be produced with any initial speed. And V < 0 allows ghost bubbles with m < 0. Is V-instability excluded?

Later, Coleman argued that the right way of computing is not particles, but O(4)-invariant bounce. This gives finite and exponentially suppressed $\Gamma_{V-\text{tunnelling}} \propto \exp(-W)$ of action, $W \sim 1/\lambda$.

- Dvali [1107.0956] doubts that V-instability is exponentially suppressed.
- Opposite extremum: maybe *K*-instability too is similarly exponentially suppressed?

We don't yet know.

Coleman extended MQ to QFT using simple WKB that doesn't generalize to ghosts. Maybe only way is a brute force computation QFT \rightarrow MQ as $\varphi_i(r)$ checking resonances? Next lockdown...

C) Negative norm, positive energy?

Quantization choices

Classical free solution:

$$q(t) = \frac{a_1 e^{-i\omega_1 t}}{\sqrt{2\omega_1(\omega_1^2 - \omega_2^2)}} + \frac{a_2 e^{-i\omega_2 t}}{\sqrt{2\omega_2(\omega_1^2 - \omega_2^2)}} + \text{h.c.}$$

Usual quantisation $a_1^{\dagger}|\tilde{0}\rangle = 0$ and $a_2|\tilde{0}\rangle = 0$ gives negative energy.

Fermions (1 derivative) too have negative classical energy, but positive-energy quantization exists... Alternative quantization $a_{1,2}|0\rangle = 0$ gives 'negative norm' (more precisely 'indefined product'):

$$[a, a^{\dagger}] = -1 \qquad |E_k\rangle = \frac{(a^{\dagger})^k}{\sqrt{k!}}|0\rangle \qquad \langle E_{k'}|E_k\rangle = (-1)^k \delta_{kk'}$$

and positive *H* eigenvalues

$$H = -\frac{p^2 + q^2}{2} = -\frac{aa^{\dagger} + a^{\dagger}a}{2} \qquad H|E_k\rangle = (k + \frac{1}{2})|E_k\rangle$$

so no run-away in transition amplitudes: $\int dt \, e^{-i(E_i - E_f)t} \rightarrow \delta(E_i - E_f)$.

Making sense of negative norm

Wrong no-go claim in the literature: negative norm gives non-normalizable wave-functions $\psi \sim e^{+x^2/2}$. Mistake: ψ computed using $\hat{q}|x\rangle = x|x\rangle$ i.e. positive norm $\langle x'|x'\rangle = \delta(x - x')$. Must use:

Pauli-Dirac negative-norm coordinate representation $\hat{q}|x\rangle = ix|x\rangle$, $\hat{p}|x\rangle = +\frac{d}{dx}|x\rangle$.

Then \hat{q} and \hat{p} are self-adjoint with respect to the indefinite norm $\langle x'|x \rangle = \delta(x' + x)$:

$$\langle x'|\hat{q}^{\dagger}|x\rangle \equiv \langle x|\hat{q}|x'\rangle^* = [ix'\delta(x+x')]^* = ix\delta(x+x') = \langle x'|q|x\rangle.$$

In this way, anti-symmetric $\psi(x)$ (odd levels of harmonic oscillator) have negative norm

$$\langle \psi' | \psi \rangle = \int dx \, \psi'^*(x) \psi(-x)$$

Ground state: solve $\langle x|a|0\rangle = 0$ with $\hat{a} = (\hat{q}+i\hat{p})/\sqrt{2}$, get $\psi_0 \propto e^{-x^2/2}$. Normalizable wave functions. Adding interactions, real $\hat{H}(\hat{q},\hat{p})$ is self-adjoint. Time evolution $e^{-i\hat{H}t}$ conserves the negative norm.

Born rule? Different attempts to get probabilities seem to converge to a simple idea. In some 'good' theories unusual \hat{H} gives usual diagonalization: eigenvalues E_{\pm} are real, eigenstates ψ_{\pm} evolve in time picking usual phases $e^{iE_{\pm}t}$. The constant negative norm is $|\psi_{\pm}|^2 - |\psi_{\pm}|^2$, the positive norm $|\psi_{\pm}|^2 + |\psi_{\pm}|^2$ is constant too: 'good' theory with negative norm describes non-local theory with positive norm. 'Good' ~ means weak coupling $|H_{ij}| \leq |H_{ii} - H_{jj}|$. Are relativistic QFT 'good'? I don't know. Pessimistically not, particle decay is mixing between ∞ degenerate states.

D) Infra-red divergences

What is a ghost?

An important part of the physics is trivial: $2 \rightarrow 4$ derivatives improve UV, worsen IR.

Compute tree-level scatterings, to avoid higher-order pinching subtleties.

Compute observable cross sections among asymptotic matter states. Like Lee-Wick and experimentalists: reconstruct g_2 from its decay products. What is a ghost? A ghost is what it does.

Result: IR-enhanced cross sections do **not** follow naive dimensional analysis:

Expect NDA
$$\sigma \sim \frac{\text{dimensionless couplings } f_{0,2}}{s}$$
. Get $\sigma \sim \sigma_{\text{Einstein}} \sim \frac{(s/M_{\text{Pl}}^2)^n}{M_{\text{Pl}}^2}$.

Bad news: ghosts don't make miracles, like cancelling $\sigma_g - \sigma_{g_2}$. Good news: ghosts don't make miracles, like cancelling $\sigma_g - \sigma_{g_2}$.

Cross section mediated by one gravi-ghost

Consider $2 \to 3$ or more such that one ghost has free $s_g \equiv k^2$. Exchange of massless ghost is IR-divergent: $P(k^2) = 1/k^4$ as $k^2 \to 0$ even if $k_{\mu} \neq 0$, not soft. So massive is IR enhanced by $1/M_2^2$. Decompose as Scattering × Propagator × Decay.

Phase space: $d\Phi = d\Phi_{\text{scattering}} ds_g d\Phi_{\text{decay}}/2\pi$. **Factorise** around gravi-ghost peak:

$$|P|^2 \simeq \frac{\pi}{M_2^5 |\Gamma_2|} \delta(s_g - M_2^2).$$

Ghost decay width agrees with its Im(propagator)

$$d\Gamma = -\frac{f_2^2}{M_2^3} |D|^2 d\Phi_{\text{decay}}.$$

Ghost production cross section:

$$d\sigma = -\frac{1}{2I} \frac{f_2^2}{M_2^2} |S|^2 d\Phi_{\text{scattering}}.$$

Example

$$\sigma(e\bar{e} \to \gamma g_2) \stackrel{s \gg M_2^2}{\simeq} -\frac{e^2 f_2^2}{48\pi M_2^2} = -\frac{e^2}{24\pi \bar{M}_{\text{Pl}}^2}$$

like $-\sigma(e\bar{e} \rightarrow \gamma g)$ in Einstein.

Ghostrahlung

Cross section mediated by *n* gravi-ghosts: same IR enhancement for each ghost

IR understood in QED, QCD, gravity: $m_{\gamma,G,g} = 0$ give long-range forces, invalidating LSZ. Compute what is observed, IR divergences canceled by virtual effects in the soft $k \rightarrow 0$ and collinear regions.

Newton potential $V \propto 1/r$ becomes $V \propto r$ for $M_2 = 0$: no free particles. IR enhancements in agravity involve a new Minkowskian region, soft $k^2 \sim M_2^2$ but non-soft k_{μ} . Agravity cross sections grow as big as in Einstein at $s \sim M_{\rm Pl}^2$. Einstein: Planckian gravitons are strongly coupled, make black holes?

Agravity: gravitons are **weakly coupled** and fly away carrying energy. Resummation of IR-enhanced ghost radiation presumably downgrades $s \gg M_{\text{Pl}}^2$ down to Planckian: perturbative classicalization?

Conclusions: can negative kinetic energy be ok?

Newton stopped at 2 derivatives: F = ma. More make quantum gravity renormalizable, give IR enhancements and ghosts. Two possible quantizations:

- 1) Positive energy, negative norm.
 - Wave-functions normalizable, norm conserved by interactions.
 - Probabilistic interpretation? Need to compute.
- 2) Negative energy, positive norm
 - Classical mechanics. Weakly-coupled ghosts could runaway but instead undergo lockdown, can be meta-stabile up to cosmologically large time. Seen in physical systems like Trojan asteroids. Resonances allow for partial or total energy flow.
 - Classical field theory. Too many ghosts escape lockdown: infinite benign resonances give energy flow. No thermal state, heat flows from negative T_{ghost} to positive T_{normal} because entropy maximal for $|T| \rightarrow \infty$. Rate \propto coupling², small in agravity where coupling $\sim E/M_{\text{Pl}}$.
 - Quantum mechanics: *K*-instability exponentially suppressed like *V*-instability if $\omega_1 \neq \omega_2$. But we don't know how to simply compute $\hat{a} \ la$ WKB.
 - Quantum field theory: ghost runaway rate $\propto \lambda^2 \times$ (divergent integral over Lorentz group). Might signal analogous of Coleman O(4) bubbles?