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The Small-World Phenomenon

—

[Milgram’67, Watts ’99]

How connected are we really?
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The Small-World Phenomenon

—_—

[Milgram ’67, Watts ’99]

1967 Stanley Milgram attempted to quantify social connectivity in the US by: IS
* (dentifying random individualg in Nebragka

* [dentifying a target individual in Bogton

* Having the Nebragkang gend a letter to the target by mailing only comeone they
\_ knew and thought would be better placed to connect with the target s
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[Milgram ’67, Watts ’99]

In1967 Stanley Milgram attempted to quantify social connectivity in the US by:
* (dentifying random individualg in Nebragka

* [dentifying a target individual in Bogton

* Having the Nebragkang gend a letter to the target by mailing only comeone they

\_ Knew and thought would be better placed to connect with the target &
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The Small-World Phenomenon

—_—

In1967 Stanley Milgram attempted to quantify social connectivity in the US by:
* (dentifying random individualg in Nebragka
* [dentifying a target individual in Bogton

* Having the Nebragkang gend a letter to the target by mailing only comeone they
\_ knew and thought would be better placed to connect with the target

~

7

{ Milgram’s team tracked
the progresg of the
lefter by having
participants gend a

| posteard directly to the
regearcherg when they
mailed the letter. Thig
determined the linke and
nodeg in the social

Qcatwork ot

v

— How connected are we really?

/\
= e

[Milgram ’67, Watts ’99]

.

( What they found wag that:

* With a emall variance, the letter reac
* The eocial network exhibited a smal

complete strangerg were connected by a ghort acquaintance chain.

* Thie connectivity wag mediated by 4
study participants

ned the target by 6 mailinge
world phenomenon in that

number of highly connected

_/
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éee

[Watte ’99]

g A graph or network (& (V FE) is a collection of vertices V' = {v;, I =1... N} i)
and edges &/ C V' @ V' organiged in a particular way. 3

v%

1. Intro:Graph Then

B3 Distance
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éee

[Watts ’99]

/’ A graph or network G(V FE) ig a collection of vertices V' = {v;, [ =1... N} s
and edges L2 C V' & V organiged in 4 parhou[ar way.

g : L)

B

The organigation can be
regular like a lattice or
random like an Erdoe-Renyi
graph

| * The organigation can be
sparse or denge.

* [f every node ig connected to
every other node, the graph ig

called complete. =

9

E——

v%ﬁ%

Bl.Intro:Graph Then

Ba Distance 3. Clusters
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Network Properties

can be com

N,

puted from the adjacency metric ag k; = Z Ajj

(+ The degree of a node ig the number of edges connected to it and

1Y

[Newman’|8]
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Network Properties

can be computed from the ad]

N

(~ The degree of a node ig the number of edges connected to it and

acency metric a8 k; = Z "

1Y

[Newman

18]

[* The adjaceney matrix
(1 (i,j)€E
L0 (4J) ¢E
gives an unambiguous

repregentation of any simple
network

* Allows for a formulation of
network propertieg in termg of

matrix algebra.

NS
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Network Properties

[Newman’|8]

[ The degree of a node i¢ the number of edges connected to it and (s The adjacency matrix

Can be computed from the adjacency metric ag k; = Z Ajj i <f I Bl eRE
RS UG ) -

gives an unambiguous
repregentation of any simple
network

Pl 5% ; ~—* Allows for a formulation of
N network propertieg in termg of
matrix algebra.

CHE T i

(" The spectrum o (G) of the adjacency matrix ig a network P
| invariant that golves the characteristic polynomial

3 det (A — A) =0

A

2
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Network Properties

[Newman’|8]
[ The degree of a node i¢ the number of edges connected to it and (s The adjacency matrix |

Can be computed from the adjacency metric ag k; = Z Ajj i <f I Bl eRE
i o T | O (e

[* The network Laplacian 2 gives an unambiguoug

generaliges the idea of the ugual repregentation of any gimple
Laplacian to a network ag network

B G eE PRt Oy ~—* Allows for a formulation of

network propertieg in termg of

1 matrix algebra.
* [t can be related to the . &

d trix through /" J
aajacency matrix throug i) {feas el - —
- (v The spectrum o (G) of the adjacency matrix ig a network 3
ij — hiOig — A4y

| invariant that golves the characteristic polynomial
‘ det (A — A) =0
3 )

\ 0 otherwise

* Ugeful for the partitioning of
(he network. | =

p——

2
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dio =
|
I/g\
5 6
Gale =3

G = ) A= % diisli=
* Mean digtance between node | and all other nodeg:
i o 3
[1 = = di; = —
I 6 ; 19 9

* Mean distance between nodeg for the whole network:

s 4
=N L L
(1) n; -
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lrangitivit a2

The friend of my friend ig

The friend of my friend ig not
likely to be my friend

necesgarily my friend

* Pathg of length 2 and are closed form a loop. Networke with many loops are highly clustered.

* We quantify the clugtering of a network by the elustering coefficient

it of cloged pathe of length 2 6 x (# of triangleg) 3 x (# of triangleg)

# of pathe of length 2 # of pathg of length 2 # of connected tripleg

1)
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_ Small-World |

- — = R —

[Watts-Strogatz ’98, Watts ’99]
\

(A N-node small world network ic a graph in which:

* the typical distance between two randomly selected nodes in
the network L = 3=, di;/(N? — N) ~ log N
| ® there ig a large degree of elustering.

.

)
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_ Small-World |

T T T " e S = ===

[Watts-Strogatz ’98, Watts ’99]
\

(A N-node small world network ic a graph in which:

K égnallﬁworld networke i

. * the typieal distance between two randomly celected nodeg in
interpolate between the yp :

the network L = 3=, di;/(N? — N) ~ log N

ety .
properties of reqular graphg \fherelg a large degree of elustering.

' and the rapid gpreading of

a 2 ).
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__Smal-World Networke

[Watts-Strogatz ’98, Watts ’99]

T ) e An N-node emall world network ic graph in which: "
mall world networke
infe?‘ B oo iho * the typical distance between two randomly selected nodes in
p. . fhenefworkL:Zi#jdij/(Nz—N)NlogN
clutering (loealising) \ | :
, * there ig a large degree of clustering.

propertieg of reqular graphe S | /

' and the rapid gpreading of |

a 2
o y / x>
. . (Y e X / ~4 T 7
n rm .l- n n r n m < P b > Y A b
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Small worldness of a graph can be meagured by:

* The emallnese coefficient o = (C'/C,.)/(L/L,) which i > for g
small world network but very dependent on the network gize.

* The small world parameter w = 1 — |(L,./L — C/C})| which
| rangeg between O (reqular) and [ (emall world)

>/
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__Smal-World Networke

[Watts-Strogatz ’98, Watts ’99]

e ——\ (AnN-node small world network ic a graph in which: "
Small world networke  fifin I |
| * the typical distance between two randomly gelected nodes in
interpolate between the :
| 5 the network L = >~ di;/(N? — N) ~log N
clutering (loealising) \ | J ,
| * there ig a large degree of clustering.
propertieg of reqular graphe S | /
and the rapid spreading of 4]l '
information in random j LLLELEET AN, @cale_free networkelt P
\_networks. f SAAEE ST < apecal clage of emall word
N naturg
— S il -+l graphg that proliferate a large

Small worldness of a graph can be meagured by; number of hubs. Ag a regult,
the mean path length are

* The emallnese coefficient o = (C'/C,.)/(L/L,) which i > for g signifieantly chorter and SURl
small world network but very dependent on the network gize. [
J

le L ~loglog N
* The small world parameter w = 1 — |(L,./L — C/C})| which &
| rangeg between O (reqular) and [ (emall world)

>/

Jeff Murugan (UCT)



The atz Protocol

\_

—_—

[Watte-Strogatz 98]

| > Qtart with 3 reqular N-node lattice with k/2-nearest-neighbour edges. e
* At each node 12; :

* [terate through each edge (i, j) connecting 1; to n; # ny;

* With probability p, rewire the edge by replacing (2. j) with a random (%, k)}

Regular

Small-world

Random

A4
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The atz Protocol

[Wah‘s Strogatz O8]

(The reaulting gmall hI¢ [ > Qfart with reqular N- node lattice with k/2-nearest- nelghbour edgee.
world network inherite | | ® At each node 72; :

ite elustering * [terate through each edge (i, j) connecting 1; to n; # ny;
properties from the = * With probability p, rewire the edge by replacing (¢, ) with a random (%, k)}
- underlying lattice and ; ‘ \/ *’

Regular Small-world Random

ite ghort path length
from the random

long-range

kconnec’rions.
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The atz Protocol

==  ————

[Watte-Strogatz 98]
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The atz Protocol

—_—

[Watte-Strogatz 98]

(The regulting emall F | > Qtart with & reqular N-node lattice with k/2-nearect-neighbour edges.
world network inherite | | ® At each node 72; :

ite elustering * [terate through each edge (i, j) connecting 1; to n; # ny;
properties from the = * With probability p, rewire the edge by replacing (¢, ) with a random (%, k)}
- underlying lattice and : ‘ \V/ e
Regular Small-world Random
ite short path length P e
from the random Igr(/ )@

long-range 2\ <’
g .g K‘;;\{)
kconnec’nons. B

T T T T T T
1N
- \ . I T
~
Y
n o \
v.o - \
. \ | \
\
L \
\
\

[he clustering coefficient C; = 25, /(k;(k; — 1))
meagures how cliquey the graph is.

* The pathlength L = >, . d;; /(N (N — 1))
of the network ig the average of the shortegt geodesic

\ o
\
\ B
\

| J J

% between any two nodes. i Joff Marugan (UCT)
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~ Epidemic Spreading in a Small World

[Moore- Newman’ 00]




Cpidemic Spreading in a Small World

[Moore Newman ’00]

Sugceptible, Infectious and Removed interacting in a fully mixed way;

| 5 Tradlhonal epidemic modelg compartmentallse fhe population into )

S = —psx T = psx — yx =T
@bJQCffOS_I_CU_I_T:l ' y

S = [ =+ R

— —

e —




Cpidemic Spreading in a Small World

[Moore Newman ’00]

| 5 Tradlhonal epidemic modelg compartmentallse fhe population into )
Sugceptible, Infectious and Removed interacting in a fully mixed way;

s = —fBsx r = Bsx —yx =T
ejbjecffos—kw—krzl ' Y

o ot )
* Settingy = 0 in the
g — [ = R < SIR model reduceg to an Sl

model with logistic growth

roelt
1 — 2o + zoebt

x(t) =

of infected individuale which
always reaulte in an

epidemic.
N o
Jeff Murugan (UCT)

Fraction infected x




~___ Epidemic

solved ag a quadrature

du
1 —u— sge—Pu/v

* At late timeg

r—1—e P/
* The critical point 8 =
defines the epidemic
threshold below which there
ie no epidemic.
* [n the SIR model, the
bagic reproduction number

\, . The SIR model can be )

|

Ry = ny/OjZTTe77 = b
0 Y
\- _/

Sugceptible, Infectious and Removed interacting in afully mixed ay

Spreading World

[Moore-Newman’00]

( Traditional epidemic modele compartmentalise the population into )

S = —psx T = psx — yx r =T
aubjectto s +x +1r =1
Nl y %
R ' ngﬁingv = 0 in the A
g l < SIR model reduces to an S
-— model with logistie growth
1 T T Kﬁ\{ |
ptible ( ) > ‘ CCO €5t
0.8 | il N gj(t) —
5 1 —xg + zoel?
% 0.6 - \Rec eeeee d =
s | 1 |of infected individuale which
: M VA 1 |always reaulte in an
_——1_ | epidemic.
10 lli 20 \ég/‘r? @ J
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~__ Epidemic Spreading World

[Moore-Newman’00]

(* A uniform probability of A
interaction corregponds to 4
random network.

* Real social networke exhibit
clustering: two people are
————more likely to know each other
it they have a common

chuamfance. Y
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~__ Epidemic Spreading World

[Moore-Newman’00]

| g Important epidemiological parameters are suseeptibility of the ) o | )
population and transmissibility of the digeage. (* A uniform probability of )
* When an epidemic takes place can be mapped to a gtandard interaction corregpondg 1o 4
\percolaﬁon problem on a gmall-world network! | Y random network.
| ‘ Vo * Real social networke exhibit

clustering: two people are
————more likely to know each other
it they have a common

chuamfanoe. Y
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[Watson-Leath’74]

Percolation

137

LE]

*| DURACELL
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= e ——

— = —

[Wafso;:i_eafh 74]
® = Ratio of unblocked cites o total number of gitee (137 x 137)

*—0—0—0—0—0 00§
*—0—0—CO—0—0—0—0—90
e —0 0 06 0 0 ¢ 0 ¢
*—0—0— 00 O 0 0 ¢
*—0—0 00 0 0 0§
> —0—0—0—90—90 0 O—0
*—0—0—0—0—O—0—0—90
*—0—0—0—0—90—0—0—9
e —0 0 06 0 0 ¢ 0 ¢

| DURACELL

-
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[Watson-Leath’74]

*| DURACELL
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— = —

[Watson-Leath’74]

The amallegt value of ¢ at which no current flows i the pereolation threshold ¢

*| DURACELL

Jeff Murugan (UCT)



~__ Epidemic Spreading World

(* [mportant epidemiological parameters are sugceptibility of the ) o (Moore-Newnan'00}
population and transmissibility of the digeage. (* A uniform probability of )
* When an epidemic takes place can be mapped to a standard interaction corregpondg to a

\percolaﬁon problem on a small-world network! y random network.

- — A * Real social networke exhibit
| * Numerical regulte show that: _ clustering: fuio people are
«  Epidemice spread more rapidly in | ————more likely to know each other
highly susceptible populations | if they have a common
- The amount of time for an acquaintance. Y

epidemic to gpread ig given by the

average radius of connected . | germme—y|

clusters of eugceptible individuals. Lok “‘”: r ;_
- The infection curve flattens ag ¢ § | o 0{00

g increaged. S oo |- 4
- No epidemic outbreak takeg place : .

below the pereolation threshold. R

) | dme Jeff Murugan (UCT)




Quantum Small-Worlds [ - Hamittonian_

[TM-Hartmann-Shock ’(9]

N N 3
H = — 21:1 Zj:[—l—l Zkzl Az-ijS;—“

A
- bilad

(o Each vertex in the network accommodates a spin-1/2 state. N

* Edges repregent spin-exchange interactiong between stateg on the lattice.
* S = 207 ie the k’th Pauli epin matrix acting at site i

* The network topology ic encoded in the Nx\ adjaceney matrix A, ;
which will congigt of either I'e or O’g if we normalige the couplingg.

\ f

Jeff Murugan uer)



Quantur Small-Worlds [ - Hamittonian _

[TM-Hartmann-Shock ’19]

& Adjacency matrix with
black=l and white=0

4

1

e 500 1000 1500 2000

e FA Figenvalue
k-local regular | » .

N == Ay gpectrum
lattices with XS : )

\=Il qiteg. From

- top to bottom
kL) = Eaine
[4,05,8) i
(8,0.75,1.2) and

QIO,I.O,I.O)

= N W B~ O O

F 500 1000 1500 2000

10 HEEEEEEEEEE
HEEEEEEEE

ARSI
LA o

INS A2 OGNS
AR

- N W~ 0O O
R R R R R

<k
s

DY AT TR "
5 ettiegess
N 2

X A\,' N
AT

X7/

““““““““““““

500 1000 1500 2000
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Quantum Small-Worlds [ - Hamittonian_

i i

well-known and much-loved integrable aystem.

* For more general (reqular) couplingg, we can still golve the eigenvalue problem

@“H e < 2V C)

|* For nearest-neighbour interactiong thig is the XXX Heigenberg gpin chain,

a

1%

V-

N N 3
H = — 21:1 Zj:[—l—l Zkzl Az-ijS;—“

A
- bilad

[TM-Hartmann-Shock ’(9]

\ f

(o Each vertex in the network accommodates a spin-1/2 state. N

* Edges repregent spin-exchange interactiong between stateg on the lattice.
* S = 207 ie the k’th Pauli epin matrix acting at site i

* The network topology ic encoded in the Nx\ adjaceney matrix A, ;
which will congigt of either I'e or O’g if we normalige the couplingg.

Jeff Murugan uer)



Quantum Small-Worlds [ - Hamittonian
[TM-Hartmann-Shock ’19]

R
Implementing the |
Watte-Strogatz aibl=g TS
protocol for fixed From top to ‘

| k=4 and N=II. | bottom (p,C,L) =

- From top to (010450768
bottom the epin- 1(05,041173);

chaing differ only (075,023 G AN

in re-wiring Notice that even

wrobabilitg, a9

for large k the
gpectrum remaing

cloge 1o the

reqular chain

ezt %)
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_Diagnostic toole

==

[TM-Hartmann-Shock ’(9]

How do quantum small world gystems
scramble information?

Jeff Murugan (UCT)



_Diagnostic toole

How do quantum small world gystems
scramble information?

ﬂ

(v Serambling ig the =

| degrees of freedom.

==

[TM-Hartmann-Shock ’(9]

tendency of a many

body quantum gystem
to delocalize quantum
information over all itg

* [t can be diagnoged |

by the thermally
averaged

commutator gquared,
Clt)

* Equivalently, through
the OTOC
(AT(t)B1(0)A(t)B(0))
\_ f 5

Jeff Murugan (UCT)



_Diagnostic toole

infinite temperature four-point OTOC
Cp=0(t) = (¥|57(0)57(t):57(0)57 (t)|9) s=0

where [1)) ie ome pure gtate and S7 (¢ ) e 5%(0)e " ig the time-
\evolved Heigenberg gpin operator

- Tgéfudg scrambling in quantum amall- world networkg, we compute the -

/

Y

How do quantum small world gystems
scramble information?

ﬂ

(v Scramblmg o the )

| degrees of freedom.
* [t can be diagnoged

—_—

[J M Har’rmann Shock ’19]

tendency of a many

body quantum gystem
to delocalize quantum
information over all itg

by the thermally
averaged
commutator gquared,

Cl+)
* Equivalently, through

the OTOC
(AT(t)BT(0)A(t)B(0))
\- f 5

Jeff Murugan (UCT)



_Diagnostic toole

 To study serambling in quantum emall- world networke, we compute the
| infinite terperature four-point OTOC

Cp=0(t) = (¥|57(0)57(t):57(0)57 (t)|9) s=0
where [1)) ig some pure State and S7 (¢ ) = "' 52 (0)e ™" ig the time-
\evolved Heigenberg gpin operator

=

/

Y

How do quantum small world gystems

acramble information?
7L RNl 1

ﬂ

Gn alternative diagnogtic i the speetral form factor which i the analytic
continuation of the thermal partition function

(Z(B,t)|%) s
e
968 =z
* The SFF exhibite late time RMT behaviour and ig cloger to the OTOC
Qhan atandard RMT meagures.

~

7

e ——

(v Scramblmg o the )

| degrees of freedom.
* [t can be diagnoged

* Equivalently, through
the OTOC

—_—

[J M Har’rmann Shock ’19]

tendency of a many

body quantum gystem
to delocalize quantum
information over all itg

by the thermally
averaged
commutator gquared,

Clt)

(AT(t)B1(0)A(t)B(0))

\& f )
Jeff Murugan (UCT)




Quantum Small-Worldg [l - OTOC & SFF

[TM-Hartmann-Roga-Shock ’19]

—

ﬁgh‘e lattices with

(The O10C |
Cij(t) = 2(1 — Re(Co(t)))
random re-wiringe
of the lattice

following the Watte-

numerically
computed and plotted
 ag 4 function of the

Strogatz protocol.

e >

vertex degree k and
rewiring probability p
for (p)k) = (2,0);

(4,025),(4,075) | .«

3.0~
. gL

. 20+
1.5¢

1.0+
0.5

| * Vertex-wige correlators C'y ;(¢) for an initial digturbance at gite .

* We note that C'1;(t) ~ t° for 176 <b<623;176 <b < 322 and

73 <b <342 for p=0, 0.25 and O.75 regpectively.
A / Jeff Murugan (UCT)




~__Quantum Smalt-Worlds [l - OTOC & SFF

[TM-Hartmann-Rosga-Shock (9]

Gnﬁnh‘e temperature SFF for i g * * ~
B o of he netuork |SFF computed for 20 re-wirings (p ~ 1). There ig 4 clear
(regular lattice. No DRD Dip-Ramp-Dlateau behaviour with the plateau getting in at

| . around t=10, for N=7.89....

\ .behaviour. | ) (E s | * y

AV, v

L. 1oy * 0.100 0.100

2'2;? | 0.010 0.010

:IO'4 0.001 0.001

10-° E‘ Dl S SRS SR R P 10-4 :‘ VIR S 0 L ER A 104 :‘ AR, L L

0.01 0.10 1 10 100 1000 0.01 0.10 1 10 100 1000 0.01 0.10 1 10 100 1000

A

( QEF for | (black), 2 (bue) and 3 (red)
re-wirings of the gystem. The Dip-
Ramp-Plateau behaviour startg to

\manifest. 4
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~_ Quantum Small-Worldg (Il - Spectral Statigticg

[TM-Hartmann-Rosga-Shock (9]
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|* Neighbouring eigenvalues repel each other in random matrix theory
* To study the gpectral statistice we take a list of ordered, non-
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|* Neighbouring eigenvalues repel each other in random matrix theory
* To study the gpectral statistice we take a list of ordered, non-

degenerate energy eigenvalues and compute s; = Fr1q1 — E;

Qlf the g_gsfem ie chaotic, ps(s) = aps” exp(—bss?) b
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n. e

* Any short-range chaog
diagnostic will crucially depend

qystem.

N

on global symmetries of the |

L~

[TM-Hartmann-Roga-Shock ’19]

Qlf the gggfem ie chaotic, ps(s) = ags” exp(— bgs?)

|* Neighbouring eigenvalues repel each other in random matrix theory
* To study the gpectral statistice we take a list of ordered, non-

degenerate energy eigenvalues and compute s; = Fr1q1 — E;

oo,

but are much emaller for integrable systemg e.g. rp ~ 0.38629

_/
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eigenvalueg in different global S How cloge to RMT ia the * Nearegt neighbour
eymmetry sectorg. - digtributiong have
Quantum Small World? [
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I . They require the
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| L/ LAl \\ spectrum to be
(~ r-statistics i alocal gpectral obgervable capable of telling whether e g ‘
. . . 2. Only tell ug if the
amall elugters of energy eigenvalues digplay RMT behaviour .
* Given the energy epacingg, we define r; = Min(s;, sr41)/Max(s;, Sr41)| ;pecfrum i¢ globally
* The ratiog 7; take very gpecific valueg in RMT e.g. rcor = 0.53590 \_ M1 onool 3
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1
Spectral density, 13 sites, k=2, p = 5

P(E)

[TM-Hartmann-Rosga-Shock (9]

Spectral density, 13 sites, k=2, p =1
P(E)

Spectral density, 13 sites, k=2, p =1
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* The OTOC and SFF are begt understood for large N (and in, for example SYI large
k). However our numerice are regtricted to k <N <[l g0 we have a few-body gparse
quantum gystem. We need to understand such systems for larger values of N.
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* Quantum small-world systems offer a novel clage of many-body problems that
parametrically interpolate between integrable (regular) and chaotic (random) eystemg

* The OTOC and SFF are begt understood for large N (and in, for example SYI large
k). However our numerice are regtricted to k <N <[l g0 we have a few-body gparse
quantum gystem. We need to understand such systems for larger values of N.

* QOur computationg are regtricted to the very gimple infinite temperature limit
legpecially for the SFF). Finite temperature corrections are important and eubtle
and needs to be undergtood.

* While thig ig clearly a toy model, it i similar to table-top cold-atom experiments in
cavity QED studied in recent work by Swingle et.al. Can such models be phygically
realised?
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