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This presentation is based on arXiv: 2005.03676 with Noam Chai,
Soumyadeep Chaudhuri, Chang-Ha Choi , Eliezer Rabinovici, and
Misha Smolkin.

And also ongoing work.
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Many Hamiltonians can exhibit symmetry breaking at zero
temperature. For instance, ferromagnets, massless QCD, the Neél
phase etc. We usually think that if we heat these systems up, i.e.
study instead of the vacuum the thermal state

e*ﬁH

then all the symmetries are restored for sufficiently small 5. (I am
talking about ordinary symmetries only.)
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Indeed, most phase diagrams for quantum critical points look like

this (phase diagram of LiHoF4 as measured by Bitko and
co-workers)

Figure 1: Quantum criticality in a ferromagnet.
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It is the ordered phase that is capped off not the disordered.
Symmetry should be restored at high enough temperature.

@ One reason is that at finite temperature we minimize
F=E-ST.

At large T the dominant contribution is from high entropy
states and those are disordered. Or so we are taught in school.

@ A much more highbrow reason is that finite temperature CFT
is sometimes dual to a black brane in AdS. For the latter, the
AdS/CMT community proved essentially a no-go theorem — it
has no hair and hence no symmetry breaking in the CFT.
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The question is therefore clear: Consider a CFT in d+1 space-time
dimensions and turn on some temperature T. The physics is
independent of T as long as T is nonzero. Can symmetry breaking
take place? If so the phase diagram would have to look like the
following:

Ordered Disordered

CFT Relevant op
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We can also start from a CFT with some chemical potential u for
our symmetry and temperature 7. Then there is a nontrivial phase
diagram as a function of T/u. The typical situation is

T << superfluid + fluid — —broken symmetry
T>p: fluid — —all symmetries are restored

This kind of situation was studied extensively in the AdS/CMT
literature. The low temperature phase is a hairy BH, the hair
coming from symmetry breaking (bulk superconductivity) and the
high temperature phase is a standard RN black hole.
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In summary: experiments, the no-hair theorem, and
thermodynamic arguments all suggest that the expectation values
of order parameters must vanish at high temperature

B < Be: Tr(Oe_BH) =0.

Is this really true?
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Weinberg constructed in 74" a model with "intermediate symmetry
breaking” — that is a situation where there is an RG flow and for
some intermediate temperatures there is spontaneous symmetry
breaking while at T = 0 there is none. It was not possible to
analyze it at very high temperatures since it was not UV complete
so the question we are after could not be posed.
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There are also materials such as the sodium potassium tartrate
(KNaC4H406-4H20) which has a higher crystal symmetry between
—18°C-24°C than at lower temperatures.

Here we want to ask about the ultimate high temperature limit,
which translates to a well defined problem in the space of allowed
CFTs.
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The question is:

Are there unitary, local, nontrivial CFTs (with finitely many dofs)
which break a global symmetry at finite temperature?

Here we construct an example in 4 — e space-time dimensions that
does so, for 0 < € < €.. Since CFTs in fractional dimensions are
not full fledged unitary theories, this is not yet a definitive solution
of the problem. The theory we construct has several conceptually
interesting properties and some of the results carry over to e = 1.
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o Free CFTs: trivial.
e Experimentally studied CFTs: Ising, O(2), some deconfined

critical points, all display normal behavior, with a disordered
phase above the CFT.

@ Weakly coupled CFTs where we may hope to compute the
answer.

@ AdS constructions...
e Maybe general theorems?! (we will see some!)
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Because for some purposes finite temperature is the same as the
theory on a circle, one can draw some immediate conclusions:

@ In 1+1 dimensions no symmetry breaking can occur at finite
temperature. This follows also from modular invariance right
away.

@ In 2+1 dimensions no continuous symmetry breaking can
occur at finite temperature (Coleman-Mermin-Wagner).

Zohar Komargodski The High Temperature Limit of QFT



There are familiar subtleties with QFT on a circle. We review them
through the ¢* model in 341 dimensions.

Sl 10,
L =500 = 72" .

At zero temperature the model is free at long distances. Now take

a circle of radius % and Fourier expand. The most important

terms are

1 1 B
5(060)* = ;A8 g0 + 62 05D |l -
' n#0

The dynamics of ¢g is now in three dimensions and the quartic
interactions becomes strong and non-perturbative!
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1 1 A3t
S(@60) — N+ R Y o2
' n#0

The strong coupling scale of ¢q is A ~ AS~L. This is the source of
the famous infrared issues in thermal field theory — the zero mode
dynamics may be strong even if the original model is tractable at
zero temperature.
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1

1 Ap1
5(000)* — A8 g + 52 95D 1onl® -
n#0

Luckily in this model we are saved from strong coupling dynamics
thanks to the loops of ¢,. These loops generate a mass for ¢q:

d3k 1 A A
2 =\ -1 / __- -2 - - —2 .
o= AP % (2m)° k2 4 2" ; =24

------
* .

0
------

o ®o
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The mass is at the scale mg ~ v/A3~! while the strong coupling
scale is A ~ A\3~! so we are saved by the mere factor of v/A. The
mode ¢ is massive and it decouples before the interactions
become strong. We can then safely conclude that since m% > 0 the
thermal vacuum is at the origin and the Z; symmetry is unbroken.
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Our ultimate interest is in the thermal behavior of interacting
CFTs so let us cover some of the possible constructions:

@ Vector Models in the € Expansion or large N limit: this is
what we will study today.

@ Weakly coupled conformal gauge theories of the Banks-Zaks
type: Some comments at the end.

@ 2+1 dimensional fixed points with lots of matter or large
Chern-Simons coefficients. Some comments at the end.

@ AdS constructions (very interesting recent work by Buchel).

@ A thermal bootstrap approach — if time permits.
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We consider models with N scalar fields ¢;, i = 1,..., N and
potential

1.
V= E)\ijkIQSiQSjﬁbkﬁbl

in 4 — € space-time dimensions. We will first take ¢ << 1 the
smallest parameter in the problem.
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- 1 - . ‘
6)‘ijkl = 167 (AijmnAmnk/ +2 permutatmns)

It is convenient to rescale out the factors of ¢ and ﬁ by defining

A= ﬁ in terms of which the fixed point equations become
Nijki = NjjmnAmnki -+ 2 permutations

These are rather complicated equations and the solutions are not
classified. But there are lots of known classes of solutions. Some
of the solutions correspond to fixed points which are theoretically
and experimentally interesting.
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Upon turning on temperature, one generates thermal masses given
by

B2 2 5 L0
j)\ijkk =~ Njjkk

2 _
M;; = 3
From the fixed point equation

Mi? ~ NijmnAmnkk + 2XikmnAmnjik

The last term is obviously positive definite. The first term is not
necessarily positive definite.
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Nijki = NjjmnAmnki -+ 2 permutations

A useful way to attack these equations is by the symmetry group
of the solution. The maximal possible symmetry group is O(N)
and this is preserved for

Nijkt = ¢ (8ii0k + 0incdj + irdjkc)

with o = ﬁ, which is the famous O(N) invariant fixed point.

The thermal mass is %—iéﬁ” > ¢i¢i. Clearly the vacuum is at the
origin and we have a standard thermal gap (“Debye screening”).
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Ajjkl = AijmnAmnkl + 2 permutations

We can discuss solutions which preserve some subgroup

G < O(N). Suppose that the fundamental representation of O(N)
is irreducible as a representation of G. This is the same as
assuming that the only quadratic invariant of G is > _; ¢i¢;. In this
case we can prove a no-go theorem: no symmetry breaking occurs
at finite temperature!
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This no-go theorem covers a large class of examples, e.g. the
O(N) models, the cubic, tetrahedral, bi-fundamental, MN,
tetragonal, and the Michel fixed points. See [Rychkov-Stergiou] for
more information about these various classes.
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A class of models that has two quadratic Casimirs are the
bi-conical models with symmetry group O(m) x O(N — m):

V =25 [a(@R)? + BB + 2B F)

where qgl is a vector of length m and 52 is of length N — m. The
fixed point equations are (for nonzero 7):

a=(m+8)a®+(N—mp?,

B=(N—-m+8)3>+m?,
l=a(m+2)+B(N—m+2)+4y.
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The easiest case is the equal rank case 2m = N. The equations are
explicitly solvable and one finds the O(N) point
(a=p=7v= ﬁ) as well as a new onel!

m

a=F=5 716

_ 4-m
7_2m2+16

The thermal mass eigenvalues are both > 0 and hence the

symmetry is unbroken again.

2m 2-1—16
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The non-equal rank case is not as explicitly solvable. But there is a
very nice way to understand the physics of it through the large

rank limit. Rescale the couplings so that there is a convenient large
rank limit:

&=Na, B=NB, 5=Ny
We will also denote
x=m/N .
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Some curious facts hold true in the leading order of the large rank
limit:
Fact 1: For any x, there is a “circle” of fixed points!

1
527705:7:0
1—-z

free O(m) x critical O(N —m)
!

CD} critical O(N)

1
(127,/8:’}/:0
T

critical O(m) x free O(N — m)
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Fact 2: At any point on the conformal manifold with v < 0, there
is a moduli space of vacua at zero temperature. This is because
afi = ~? is always satisfied. Hence the zero temperature potential

IS
v (vVad —vE4)"

We therefore have a moduli space

{o=2a3)

This moduli space is connected to the origin.
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As usual at the origin of the moduli space we have a (large rank)
conformal theory while away from the origin we have some NGBs
and a dilaton.

o

Dilaton+NGBs

CFT ¢2
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What happens to this moduli space of vacua as we turn on
temperature 51?7 One should certainly expects that it would
disappear but instead it is deformed!

2

i
NGBs

2

b3 ¢7 — ¢3 =CNB™?
o7
3
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C is an O(1) function on the half circle v < 0. It may vanish at
some isolated points. Whether C <0 or C >0 or C =0 is very
important — it tells us which symmetry breaking patterns are
allowed.

These facts about the large rank theories are correct at any finite e.
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When we take finite rank corrections into account only ONE fixed
point survives with v < 0. And out of the thermal moduli space of
vacua, only ONE vacuum survives.

More elaborate calculations are required to understand the phase
diagram completely for all finite € and large finite N. See the
recent work by [Chai, Rabinovici, Sinha, Smolkin].
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X = % is an “atypical” example of this. It turns out that only the
fixed point o = 8 =1, v = —1 survives with v < 0. But that one
happens to have C = 0 so the moduli space of vacua ¢? = gﬁ% is
not deformed in the large rank limit. To understand whether
symmetry breaking takes place or not we need to go beyond the
large rank limit and the answer is qb% = d)% =0.
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That C = 0 is the case for equal rank can be seen also from our
explicit solution for the thermal masses:

6N

M2 ——
N2 + 32

O(1/N) .

By contrast, barring cancelations, the thermal masses should be
O(1) in the large rank limit.
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For x # % the fixed point that survives the finite rank corrections
has C # 0. Therefore symmetry breaking at finite temperature can
be established from the leading large N computation. If x > 1/2
then C < 0 and if x < 1/2 then C > 0. This also naturally
explains why C =0 for x = 1/2.
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Now we know which hyperbola we get for x € (0,1) we need to
decide where the vacuum is on the hyperbola. This requires
another computation beyond the large rank limit. But the answer
is very simple! It is the vertex of the hyperbola: For x > 1/2 it is
of the form (¢2, #3) = (0, —CB72) and for x < 1/2 it is of the
form (42, 43) = (C52,0).
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So, for O(m) x O(N — m) symmetry, the smaller group of the two
is broken and if they are equal then none is broken.

Suppose we approach x = 1/2 from below. ~ N NGBs disappear.
The radius of the coset shrinks as we get close to x = 1/2. But at
x = 1/2 the theory is gapped at finite temperature. This would
make no sense as a phase diagram for continuous x. In the planar
theory, where x is continuous, x = 1/2 has a gapless critical point.

SO N$ SNr 1 Thermal Gap
SO(Nz — 1) \ /

- !
T = T2

Zohar Komargodski The High Temperature Limit of QFT



We have given a construction of a CFT which break a global
symmetry at any finite 3. We have approached the problem by
studying the vector model O(m) x O(N — m) at large N with fixed
m/N and showed that the moduli space of vacua is thermally
deformed to a hyperbola.

These conclusions hold for small finite €. It would be nice to know
if this holds all the way to € < 1. This requires a certain
resummation, but it is entirely doable.
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Since we are talking about continuous symmetry breaking
O(m) x O(N —m) — O(m—1) x O(N —m) ,

(m < N/2) this cannot occur at finite temperature in 2+1
dimensions. It can only be true for ¢ < 1. At € = 1 the thermal
Goldstone bosons living on S™~! are lifted by non-perturbative
effects. Their mass is tiny ~ e~N. So this is an interesting
violation of the idea that the gap at sufficiently high temperatures
should be of the order of the temperature!
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What we have achieved here is a construction of conformal vector
models in the € expansion that behave counter-intuitively at finite
temperature. But we have not constructed an example in integer
dimensions.
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Note the special case of m = 1 — this looks promising even in 2+1
dimensions. We are currently studying it. Quite remarkably the
answer depends on the (¢?¢?$?) OPE coefficient in the usual
critical O(N) model. But for some unknown reason this vanishes
all the way up to order 1/N>/2 (the order 1/N3/? was recently
heroically computed by Goykhman-Smolkin). Recall that a similar
OPE coefficient vanishes in 2d due to KW duality.

The m = 1 case therefore strangely remains unclear in 3d. In fact
at present it is unclear whether an example exists for more general
Chern-Simons matter theories for the same reason.
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Choi, Rabinovici, and Sumyadeep have tried to construct an
explicit 4d Banks-Zaks like fixed point that breaks a symmetry at
finite T. They have many a priori promising candidates but as far
as | know each one of them strangely fails to produce an example
in strictly 4d. Their upcoming paper constructs examples at
strictly N = oo in d = 4 but no examples are known for finite N.
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The problem of symmetry restoration at high temperature is
closely related to the problem of deconfinement at high
temperature. Indeed in 3d, if we gauge an ordinary Z, symmetry
we get a dual one-form Zy symmetry and if the former is broken
the latter would be unrbroken and vice versa.

So in 2+1d the “no-hair theorem” is really equivalent to high
temperature deconfinement.
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We learned that it is not impossible that a critical point would be
in a broken phase upon heating it up. At least not as far as models
in 4 — e dimensions are concerned. Are there such gauge theories
in 34+1 dimensions? In 241 dimensions? Is there a proof that this
is impossible? How come these models in fractional dimensions
exist? Why do they violate our intuition from thermodynamics?
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Thank You!
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Consider a conformal theory in 241 dimensions. We put it in a box
with sides L, L,,L,. For L, < Ly, L, we can think about it as the
high temperature limit and hence from thermodynamics:

log Z = efxly/Ls

with some f > 0.

It is useful to interpret this in the L, direction (L, is similar). In
this case the ground state energy is Ly/Lﬁ. It arises from
integrating out the KK modes on the z circle. So in the L,
direction this is a Casimir energy effect and the energy density in
the y direction is L;2.

Zohar Komargodski The High Temperature Limit of QFT



Furthermore, if there is a gap of the theory on the cylinder then
the effective action after reducing on the cylinder ought to be

fl;? / dxdy

and no further power corrections are possible due to locality. This
2 . .

means that log Z = etxLy/LZ is exact up to exponentially smaller

terms.
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Next we assume that there is a Zy symmetry. Furthermore we
assume it is broken at finite temperature in infinite space. In other
words we take Ly, L, = co and the claim is that Tr(Oe~LzH) +£ 0.
It is best to think about it first as a statement about the theory
quantized in the L, direction.
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This means that the theory in the directions x — y that we obtain
after reducing on the direction z has two vacua. In each the energy
density is of order fL;? and f is the same in the two vacua. In
finite volume in the x — y plane there are now two approximate
ground states each with a gap that scales like L, and their energy
difference is tiny:

AE ~ LJte b/t

with some positive c¢. The tension of the domain wall is simply
c/L,.
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We can therefore write the partition function from this
quantization in the direction L,. Neglecting exponentially small
corrections the two vacua have identical energies and we find

7 — 2efoLy/L§

the factor of 2 in front is due to the two-fold degeneracy. This
should be contrasted with the previous expression, which did not
have this log2 correction in the free energy (and in fact could not
have had any corrections besides the exponentially small ones).
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It is useful to include the exponentially small correction arising due
to the domain wall. Remember that the splitting of the two states
is symmetric:

7 = eflxby /L= LAE/2 | fluly [LZ+LAE/2 _ o fLily /L cosh(LyAE/2).

This is approximated by

Z =2eMb/E(1 4 12AE?/8) .
This represents exponentially small corrections of order e=2¢Ly/Lz,
The exponentially small corrections from ordinary particles in each
of these vacua are of order e 1x/Lz. These two types of corrections
should together combine to a Euclidean invariant partition function
where L, and L, are interchangeable.
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We therefore see that —2/og(AE)/L, must actually coincide with
the gap around each vacuum! In estimating AE from two
separated domain walls we are alluding to an instanton gas
approximation which may not hold true in general. But the
relation between AE and the lightest particle around each vacuum
is more general.
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For instance in the massive Schwinger model at § = 7 the domain
wall is an electron and the simplest excitation about the vacuum is
an electron-positron bound state. So we see that the relationship
works at weak coupling.
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We are now ready to interpret all of this in the L, quantization.
Up to exponentially small corrections we have Z = 2eflxLy/L2 The
log 2 correction is not consistent with the usual high temperature
effective theory, indicating that there are two vacua at high
temperature. We can use this result also on S? x S where this
log 2 entails a certain doubling of the operators at high dimension.
This means that the finite temperature theory is an ordinary fluid
appended by some Zy hair.
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It is now useful to consider g insertions. We can insert the charge
operator in essentially two distinct ways. One is such that it wraps
L, and the other that it does not.
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It is easier to begin with the case where it wraps z — y. We can
study this in terms of the Ly quantization. After the dimensional
reduction this looks like a Z; charge for the theory living on x — y.
Therefore we get

Z,, = —elxby /L= LBE)2 | ofluly [IEHLAE2 _ o oflxly /L2 Ginh (L, AE/2) .

which approximately is given by

Z, = 2efoLy/L§LXAE/2 — oflxly/Li=cly/Ls
zy

Recall that we also have contributions from massive particles in
each vacuum. These lead to exponentially smaller terms.
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It is instructive to interpret eflxly/Li=cly/Lz 3is0 in the L, and L,
quantizations. In L, quantization this looks like a defect Hilbert
space and we are at very low temperatures. Hence the contribution
is from the ground state only. We see that the ground state energy
has a negative Casimir energy density f/L2 and there is a positive
correction ¢/L, to the energy which can be viewed as the ground
state energy difference due to the twist in this channel, i.e. ¢/L; is
the domain wall tension, which is positive.
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It is also interesting to interpret this in L, quantization. We are
now studying a CFT in finite large volume and high temperature.
But we are in a defect Hilbert space. Here the puzzling thing is
that the contribution to the free energy (and entropy) from the
defect is negative: —cL,/L,. The defect creates a straight domain
wall in the two space dimensions extended along y. It is therefore
reasonable that the entropy be extensive along y. This
contribution is very much analogous to the g coefficient in 141
dimensions which is also obtained from a high temperature limit.
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A defect with a negative contribution to the entropy / heat
capacity / free energy is not in principle disallowed — for instance,
log g < 0 for the Dirichlet boundary conditions in the 141
dimensional Ising model. Here the situation is a little more extreme
since the defect also has negative heat capacity and not just
negative entropy (this is if one can sensibly separate the heat
capacity of the defect from the bulk which is not obvious).
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The contribution —cL, /L, come from the term —c/sz dy in the
effective action in the presence of a defect.
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