A new quest for physics beyond the Standard Model

Claudia Frugiuele

The quest for BSM physics

What is dark matter ?

Why is the Higgs light?

Energy frontier

Standard model gauge couplings

1 GeV

Mass

Coupling

The quest for BSM physics

What is dark matter ?

Why is the Higgs light?

Energy frontier

Standard model gauge couplings

What about light (sub GeV) particles very weakly coupled to the SM?

Mass

Dark sectors

Sectors containing new particles which interact with the visible sector, beyond gravitation, via unknown forces

Overlap with many crucial long standing questions of particle physics

A new quest for physics beyond the Standard Model

- **Direct probe**: searching for MeV-GeV invisible particles @ neutrino facilities
- Indirect probe: searching for new dark forces via atomic spectroscopy

Strontium atomic clock

MiniBooNE neutrino detector

The universe is dark

What is Dark Matter (DM) made of? Requires at least one new particle to exist today

DM model landscape is broad

Theoretical guidance is crucial

Not a complete list, U.S. Cosmic vision 2017

DM model landscape is broad

Theoretical guidance is crucial

Not a complete list, U.S. Cosmic vision 2017

Thermal DM acquires its abundance through thermal contact with the Standard Model bath. DM mass range: 1 keV-100 TeV

Most of the experimental efforts focus on a small region

Ubiquitous in SM extensions aimed to solve the hierarchy problem

Going beyond WIMPS?

Focus on the sub-GeV window

Direct detection experiments lose sensitivity& LHC has a limited reach. New experimental strategy required

MeV-GeV thermal DM

An MeV-GeV particle interacting with the visible sector via new MeV-GeV forces could account for the observed DM abundance in the universe

$$\epsilon F_{\mu
u}F'^{\mu
u}$$
 $g_{A'}^{\rm SM} = \epsilon e x_{\rm f}$ g_{A}^{ϕ}

Dark Photon portal: MeV-GeV gauge boson kinetically mixed with the photon

[Holdom 1985]

Experimental probes

1. DM-electron direct detection experiments (e.g. Essig et al. 2012)

2. Low energy/ high intensity experiment

New experimental program is needed

An impressive future effort

Intensity frontier: fixed targets and low energy colliders

Dark photon invisible decay

Next generation direct detections experiments

U.S. Cosmic vision 2017

An impressive future effort

Intensity frontier: fixed targets and low energy colliders

Dark photon invisible decay

Next generation direct detections experiments

U.S. Cosmic vision 2017

A new quest for physics beyond the Standard Model

- Direct probe: searching for MeV-GeV dark matter
 @ neutrino facilities
- Indirect probe: searching for dark forces via atomic spectroscopy

Strontium atomic clock

MiniBooNE neutrino detector

Neutrino facilities

Original goal: measuring neutrino masses and mixings

Neutrino facilities

New proposal goal: use neutrino facilities to search for DM

[Batell, Pospelov Ritz, 2009]

A relativistic DM beam is produced along the neutrino one. DM particles also enter the detector and scatter off electrons and nuclei

How is the DM beam produced?

MeV-GeV gauge boson kinetically mixed with the photon $\,g_{A'}^{
m SM}=\epsilon e x_{
m f}$

NeV-GeV scalar DM (no tension with cosmology) $g^{\phi}_{A'} \sim \mathcal{O}(1)$

On shell production of the mediators is essential

• Production via meson decay

Type of signature: MeV-GeV mediator decaying into DM

High intensity experiments: order 10²⁰ protons on target per year!

How do we detect DM ?

Two observables

- DM-nucleus scattering
- DM-electron scattering

Main challenge: suppression of neutrino background.

Currently only one experimental collaboration (MiniBooNE) is performing DM searches

DM search @ MiniBooNE

MiniBooNE:800 tons detector

- Light DM analysis in beam dump mode [A.A. Aguilar-Arevalo et al. 2017]
- Constraints for sub-GeV vector mediator
- Light DM program calls for a dedicated run to suppress the neutrino background ?

Building a DM program@ accelator neutrino facilities

- Rich and diverse experimental program
- We are sitting on many datas which might be used to search for DM symbiotically to the neutrino program
- Massive future experimental effort (SBND, ICARUS, HyperK, DUNE)
- **Complementarity** to future direct detection experiments (nucleon-DM)
- **Broad class of signals** to explore (extend the effort to visible decays, other light dark matter scenarios)

DM-electron scattering

Neutrinos @ Main Injector (NuMI)

[**CF**, 2017]

Many possibilities (and existing data) to explore DM parameter space

NOvA as a DM detector

NOvA as a DM detector

Symbiotic neutrino/DM programs

- NOvA dedicated analysis to light dark matter
- Study of potential sensitivity of liquid argon detectors such as SBND and ICARUS 8 GeV FNAL Booster beam line
- Prospects to probe DM at DUNE? Study for a dedicated detector
- Study of the sensitivity to non-minimal dark sectors both @ FNAL facilities and @ CERN (i.e. NA62)

Signature for Pseudo-Dirac thermal dark matter @SBND **CF**,Palamara,Szelc, in progress

Symbiotic neutrino/DM programs

- NOvA dedicated analysis to light dark matter
- Study of potential sensitivity of liquid argon detectors such as SBND and ICARUS 8 GeV FNAL Booster beam line
- Prospects to probe DM at DUNE? Study for a dedicated detector

SHiP

Neutrino detector: looking for invisible signatures

SHiP

DM-quark scattering

[Dobrescu, **CF** 2014] [Dobrescu, Coloma, **CF**, Harnik 2015] [**CF** 2017]

Complementarity with direct detection program for sub-GeV mass range

DM search @ MiniBooNE

MiniBooNE:800 tons detector

- Light DM analysis in beam dump mode [A.A. Aguilar-Arevalo et al. 2017]
- Constraints for sub-GeV vector mediator
- Light DM program calls for a dedicated run to suppress the neutrino background ?

Off-axis detectors for DM

Difference angular distribution of DM and neutrino flux

Is it possible to build a DM program symbiotic to the neutrino one? YES- a crucial role is played by off-axis detectors

Off-axis detectors for DM

Deep inelastic scattering events

Neutrinos @ Main Injector (NuMI)

Many possibilities (and existing data) to explore DM parameter space

DM-quark scattering in MiniBooNE

Similar location as future detector ICARUS!

DM-quark scattering in MiniBooNE

UV dependent constraints from anomalies [Dobrescu, CF, 2014] [Dror et.al ,2017]

Symbiotic neutrino/DM programs

- MiniBooNE dedicated analysis to light dark matter
- ICARUS: similar location as MiniBooNE: plan to set up the dedicated analysis, possible triggers.

Laboratory probes

- Direct probe: searching for MeV-GeV DM@ neutrino facilities
- Indirect probe: searching for long/medium range dark forces via atomic spectroscopy

Strontium atomic clock

MiniBooNE neutrino detector

Atomic probes of new physics

Atomic spectroscopy measurements reached an extraordinary precision (relative error 10⁻¹⁶-10⁻¹⁸)

Strontium atomic clock

How can we exploit such a precision to probe fundamental physics?

Spin independent dark forces

This gives rise to an additional contribution to the frequency shift.

$$\delta \nu_i = y_e y_N X_i$$
 $X_i \simeq \int d^3 r \, \frac{e^{-m_\phi r}}{r} \left[|\psi_b(r)|^2 - |\psi_a(r)|^2 \right]$

How do we probe this new contribution?

A) Precise theoretical prediction versus experimental measurement (few electrons atoms)

B) A new observable to distinguish new physics signal from "QED background" (also many electrons atoms)

Probing new physics with Isotope shift

atoms with the same number of protons but different number of neutrons

Focus on spin-less isotopes of a given element A and A'

[Berengut, Budker, Delaunay, Flambaum, **CF,** Fuchs, Grojean, Harnik, Ozeri, Perez, Soreq, 2017]. [Delauney, **CF**, Fuchs, Soreq, 2017]

Isotope Shifts Spectroscopy

Consider an atomic optical transition

and consider two spin-less isotopes of a given element A and A'

$$u_i^A \quad \nu_i^{A'}$$

Is the frequency different? How?

$$\nu_i^{AA'} = \nu_i^A - \nu_i^{A'}$$

QED effects cancel. Uncertainty greatly reduced

Isotope Shifts Spectroscopy

Consider an atomic optical transition

and consider two spin-less isotopes of a given element A and A'

$$u_i^A \quad \nu_i^{A'}$$

Is the frequency different? How?

$$\nu_i^{AA'} = \nu_i^A - \nu_i^{A'}$$

New Physics contribution only slightly reduced (A-A')/A (at most one order of magnitude suppression for heavy atoms)

$$(\Delta \nu_i^{AA'})_{\rm NP} = y_e y_N (A - A') X_i$$

Isotope Shifts Spectroscopy

QED effects cancel up to:

Key point: electronic and nuclear dependence is factorised

King's linearity

Given 2 transitions for the same isotopes A and A'

 $F_{21} \equiv F_2/F_1$ i = 1, 2 Slope $K_{21} \equiv K_2/K_1 - F_{21}K_1$ Offset

At what level does this relation hold?

[Flaumbam et al 2017 for theory estimates]

King's Plot

Considering then 3 pairs of isotopes

King's linearity

Adding the contribution of a new spin independent dark force [CF et al, 2017] Neutron coupling

$$m\nu_2 = F_{21}m\nu_1 + K_{21} + y_e y_n AA' X_{21}$$

NP electronic factors Xi: the only theoretical inputs (depend on mediator mass) calculated using many-body perturbation theory [Berengut et al. 2005]

$$X_{21} = X_2 - F_{21}X_1$$

Non linearity from BSM unless: $X_i \propto F_i$ Short range interactions

King's Plot

Adding the contribution of a new spin independent dark force $m\nu_2=F_{21}m\nu_1+K_{21}+y_ey_nAA'X_{21}$

If data gives a linear King's plot:

[CF et al,2017]

Constraints on new physics!

Projections for clock transitions

[CF et al ,2017]

Projections for clock transitions

[CF et al ,2017]

What about few electron atoms?

Exploiting precision of theoretical predictions and comparing it with experiments

0.0 Helium 3,4 and H/D IS measurements

[Delauney, CF, Fuchs, Soreq 2017]

Perspectives with positronium

In order to overcome existing bounds from astro and g-2 a precision several orders beyond state of the art would be needed

Perspectives with muonium

Spin independent

Perspectives with muonium

Spin independent

More to explore

Are there similar observables sensitive to spin-dependent forces?

Study the sensitivity of exotic atoms (e.g. muonic atoms) both to spin-independent and spin-dependent forces. [**cf**,C.Peset,in progress]

Perspectives for future measurements (FAMU,CREMA..) and theory improvements

Outlook

The quest for dark sectors is in full swing

Highly multidisciplinary effort between different branches of physics from particle to nuclear and atomic physics

A discovery could be around the corner: new data and measurements in the next few years will probe interesting regions of the parameter space.

Outlook

The quest for dark sectors is in full swing

Highly multidisciplinary effort between different branches of physics from particle to nuclear and atomic physics

A discovery could be around the corner: new data and measurements in the next few years will probe interesting regions of the parameter space.

Thank you!

Direct detection for scalar DM

Off axis detectors

Neutrino background "dies" faster than signal going off axis

[Dobrescu, Coloma, CF, Harnik, JHEP 2015]

NOvA as a DM detector

 $<\sigma v > \sim \alpha_D \epsilon^2 \frac{m_\chi^2}{m_A^2} \sim \frac{Y}{m_\chi^2}$ $Y \equiv \epsilon^2 \alpha_D \frac{m_\chi^4}{m_A^4}$

Dashed Green BDX proposed electron fixed target experiment

Solid Black Relic density (scalar)

[DeNeverville, CF, 2018, in progress]

Detector location off-axis location

