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Abstract

Variants of the usual Peccei-Quinn axion theory for the solution of
the strong CP problem allows to generate more general axion-like
terms in an effective Lagrangean beyond the Standard Model. One
of these extensions involves Stuckelberg axions and (gauged)
anomalous abelian symmetries. Similar interactions are generated
by other methods, for instance by a decoupling of chiral fermions
from the low energy spectrum in an anomaly-free theory. A third
possibility is encoded in a scale invariant theory, where an axion, a
dilaton and a dilatino are the anomaly multiplet of an N=1
Superconformal theory, in a nonlinear realization.
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General Results

Effective actions of Stuckelberg-type: SU(3)xSU(2)XU(1)_Y x U(1)’

Generalising a PQ global symmetry to a local U(1) symmetry
(Stuckelberg axion models). Predict a fundamental axion (gauged axion)
(the axi-Higgs) of a generic mass.

The mass is related to a misalignment potential which is generic.
It can cover the TeV region. Obviously, the misalignment has to be strong
For an axion at the Terascale.

Two models: MSLOM (Irges, Kiritsis, C.C.)
USSM-A (Lazarides, Irges, Mariano, C.C.) (Stuckelberg supermultiplet)

These models are built using a Wess-Zumino Lagrangean with an asymptotic and
elementary axion

Decoupling of a Heavy fermion and a gauged (anomaly free U(1) symmetry
Can also also be described by this class of models



ALTERNATIVE PATHS

AXIONS, DILATONS AS COMPOSITE

Conformal/superconformal anomaly

Dilaton interactions and the anomalous breaking of scale invariance of
the Standard Model

Delle Rose, Quintavalle, Serino, C.C.

JHEP 1306 (2013) 077

Superconformal sum rules and the spectral density flow of the composite
dilaton (ADD) multiplet in N=1 theories

Delle Rose, Costantini, Serino, C.C.

JHEP 1406 (2014) 136

Work to appear soon: Bandyopadhyay, Irges, Guzzi, Delle Rose, C.C.
“Heavy Axions and Dilatons”



A superconformal theory can generate these states due to the alignment of
The anomaly multiplet.
Nonlinear realization of the superconformal symmetry



Axions emerge as a candidate solution of the strong CP problem

The well known solution of the strong CP problem is due to
R. Peccei and H. Quinn (PQ)

It is based on the introduction of an extra U(1) global symmetry of the
SM broken by an anomaly.
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Ey — Mg — Eg x SU(3)
Ee — Mg — SO(10) x U(1)
SO(10) — My — SU(5) x U(1)
SO(10) — M, — SO(6) x SO(4)

SO(6) ~ SU(4)  SO(4) ~ SU(2) x SU(2)x
SU(4) — M4 — SU(3)C X U(]-)B—L
SU(5) — Ms — SU(3) x SU(2) x U(1)

Various effective models

E6 — SM X U(l)
E6—>M6—>M10—>M5—>SMXU(1)
E6 — M10 —>M{0 — SU(3)C X SU(Q)L X SU(2)R X U(l)B_L
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The Leverhulme Trust Generalization of the PQ proposal

Irges, Kiritsis, CC, 2005
U. of Crete, U. of Salento

Anomalous U(1) extension of the Standard Model
(N. Irges, S. Morelli, C.C.)

Phenomenology: M. Guzzi (Manchester U.), R. Armillis, C.C.
Susy extensions: Irges (Athens TU), A. Mariano (Salento U.), C.C.

Cosmology: G. Lazarides (Thessaloniki U.), A. Mariano (Salento), C.C.



The role played by anomalies and anomaly actions in QFT can be hardly
underestimated.

Anomalies describe the radiative breaking of a certain classical symmetry and
theorists have tried to use anomaly actions as a way to show the effect of the anomaly
(example: chiral dynamics and the pion, AVV anomaly)

but also have tried to cancel anomalies when these symmetries are gauged

Anomaly cancellation (for a gauge symmetry):
|. by charge assighment in gauge theory (Standard Model):
in the exact (unbroken ) phase of the theory, choose the representation

in such a way that anomalous chiral interactions cancel

2. by the introduction of extra sectors (axions, dilatons) in the form of local
actions (Wess Zumino actions)

3. More complex mechanisms such as “anomaly inflows” @
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Anomaly inflow on branes
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SUB3)e | SU2)y, | U(D)y Uy
Qr 3 2 1/6 2Q
UR 3 1 2/3 Zu
dr 3 1 -1/3 | 229 — 2y
L 1 2 -1/2 —329
eR 1 1 -1 —22Q — 2y
H 1 2 1/2 ZH
VR.k 1 1 0 2k
X 1 1 0 2y

k+p

Charge assignment of fermions and scalars in the U(1)" SM extension.

Constraints on Abelian Extensions of the
Standard Model from Two-Loop Vacuum

The Leverhulme Trust

Delle Rose, Marzo, C.C.
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Perturbativity regions with g'=0.1, g=0

Xp-L




D p-branes
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Label | Multiplicity | Gauge Group Name

stack a N, = SU(3) x U(1), | Baryonic brane

stack b Np =2 SU(2) x U(1) Left brane

stack ¢ N.=1 U(1l). Right brane

stack d Ng=1 U(1)g Leptonic brane

Leptonic

B Ny



; 1 1
Y =—§Qc—§QL+Q1

UQ@3), ? U2), UuQ). Q UuQ),

0(3,2,+1,—1,0,0)
u’(3,1,-1,0,—1,0)

dc‘(é’ 1,—1,0,0,—1) Lrges, Kiritsis, C.C.
On the effective theory of low-scale
L(1,2,0,+41,0,-1)

Orientifold vacua“
e(1,1,0,0, +1,+1)

Hu(1,2,0,4+1,+1,0)
Hy(1,2,0,—1,0,—1)



The study the effective field theory of

SM x U(1) x U(1) x U(1)
SU(3) x SU(2) x U(1), x U(2).....
from which the hypercharge is assigned to be anomaly free

These models are the object of an intense scrutiny by
many groups working on intersecting branes in the past.
Antoniadis, Kiritsis, Rizos, Tomaras
Antoniadis, Leontaris, Rizos
Ibanez, Marchesano, Rabadan,
Ghilencea, Ibanez, Irges, Quevedo
See. E. Kiritsis’ review on Phys. Rep.

What happens if you to have an anomalous
U(1) at low energy? What is its signature?



Gauged Stuckelberg axions: field theory realization of the
Green-Schwarz mechanism of string theory

The gauging procedure requires an anomalous abelian symmetry
(an anomalous U(1)) and a periodic potential in order to
make the axion physical.

But first we are going to review the PQ axion

cx
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Axions and the Strong CP Problem

Axions have appeared in physics in an attempt to solve the strong
CP problem of QCD.

Why is the GG term so small?
Consider an SU(2) gauge theory

G2, = 0,A% — 0,A% + ge?™ AL AS

G = 0uA, — OLA, + [Au, ALl G = G;,T°
A, — UAL U+ U9, UTT
G — UG, U™!



We look for minima of the Euclidean action

1
S = g2 d*xTrG,, G,
In a nonabelian theory a vanishing field strength is possible with
~1
A,=Uo,U

(pure gauge). Solutions of this condition are instanton
configurations, characterised by a topological number.

. y)
~167°Q(x) = Tr[Gu G| = Trlewas]20,(A,0A5 + §AVAQA5)],
.1 o8 1 2

G = §€FW045G ? Q(X) — 8MJM7 J,U — 8 26,“’/0‘5’4 (8 AB—|—3A Aﬁ)

For an SU(3) gauge theory such as QCD, similarly, the Lagrangean
then allows a total derivative term 6G G which is a boundary term,
but cannot be neglected. For instantons

~

G =G, /d4XGG~(X) = 327%n,



Therefore — There is a dimension-4 operator that we can write
down in the Standard Model (SM)

00GG

(violates Parity and Time reversal, CP is broken)

It Is a total derivative term and as such it does not contribute in
perturbation theory

Adding a total derivative term gives a zero momentum vertex in

perturbation theory, but it contributes non-perturbatively
How?



If we consider an instanton (Euclidean) configuration, then the
contribution to the path integral is

8772
_ S, —4g%fd4xFF _

~ € = €

» These configurations, at small coupling, give a negligible
contribution

» They are solutions of the classical eq. of motion of QCD,
which is scale invariant at classical level
However, the solution of the equation G = G involves an
Integration constant, the size of the instanton.

» The solution breaks scale invariance, because of the
Integration constant, which remains arbitrary.
It tells us where the energy of the configuration is localized.
At tree level g is constant, but at 1-loop it runs. Scale
invariance Is broken by renormalization.



In the functional integral we need to sum over all these
configurations.
Small instantons (R)

» — large scale A ~ 1/R
» — small coupling g(\) < 1

_ 8n%
» — large suppression in e &\ . The contribution is

perturbative, since g is small, but it is negligible.

The instanton contribution to the QCD action is dominated
by large instantons (g(\) large). Unfortunately the
contribution is non-perturbative.



» The running is controlled by the size of the instanton,
g =g(})

In the functional integral we need to sum over all these
configurations.
Small instantons (R)

» — large scale A ~ 1/R
» — small coupling g(\) <« 1

. g2
» — large suppression in e € (). The contribution is

perturbative, since g is small, but it is negligible.

The instanton contribution to the QCD action is dominated
by large instantons (g(\) large). Unfortunately the
contribution is non-perturbative.

» The saddle point approximation is not valid any more since
the action is O(1).



The partition function can be written in the form

e—8772/g2(>\)—i90

Y

and summing over instantons/anti instantons

Z ~ e 8™ /8°(N) o5 0o
I
6o is not directly observable. One expects the energy density to

dependen on 6y Notice, however, that QCD has a U(1)4 anomaly,
due to fermions. There is an axial symmetry

g — ge'”™

and the integration measure is not invariant

DgDg — DgDge iem2® ) FFd*x
Therefore 6y is not physical because it can be shifted by a field
redefinition

0o — 0y + 2«



But also the quark mass term gets a phase under the chiral
transformation

g Mqgr + h.c. — q‘LMqRezm + h.c.

therefore
argM — argM + 2«

and
0 =0y — argM

Is invariant under field redefinitions. If we have fermions in
complex representations of the gauge group, g is affected by field
redefinitions and is not physical, but 6 is physical. This can be
generalized to ns fermions.

6o — 6o + 2nra, ArgdetM — ArgdetM + 2nra

0 = 0p — ArgdetM
Is physical.



But also the quark mass term gets a phase under the chiral
transformation

g Mgr + h.c. — cTLMqRezia + h.c.

therefore
argM — argM + 2«

and
0 =6y — argM

Is invariant under field redefinitions. If we have fermions in
complex representations of the gauge group, 0y is affected by field
redefinitions and is not physical, but 6 is physical. This can be
generalized to nf fermions.

0o — 0y + 2nra, ArgdetM — ArgdetM + 2nra

0 = 6y — ArgdetM
Is physical.



Experimentally 6 is very small. We can set this value to zero
assuming a cancellation between

> 0 ( reated to gluon dynamics )
> ArgDetM ( related to the electroweak sector, Yukawas and
Higgs )
We can easily derive some properties of the vacuum energy as a
function of 6.

o~ VE(O) _ |/D¢e—5[¢]—32;29fFI:_d4x|

< /D¢]e_5[¢]_32;29fl__ﬁd4x| — o~ VE(6=0)

| E(0) = E(0)

lo

It is also even in §: E(0) = E(—0). Periodic of period 2.




We can eliminate the 6y term and bring it completely into the
fermion Mass matrix.

—|—i90/2 —i90/2

dL. — qL€ dr — gRrE€

Then
M — e—i90/2 Me—i90/2

It can be generalized to

+iQrbo/2 —iQfbp/2

qi — qre ak — qre

as far as
Ter =1

(global phase is 6p).



QCD with light quarks has a chiral symmetry (u,d)
U(2)y x URR)r = SU(2) x SU(2)r x U(1)y x U(1)a
broken by quark condensates and anomalies to
SU(2)y x U(1)y

with U(1)y =baryon number. Three NG-models 7=, 70 of the
broken chiral symmetry. We try to fix the low energy effective
action using the left-over global symmetries

Z[J] :/Dq)eiSQCD(¢)+J¢ :/Dﬂ_eiS(ﬂ',J)

F



U — eiﬂ'-T/f7T

L= %2 (77 |9.U"0"U| +2B0Tr MU' + M'U|)

f7r2 . .
E(0,m)= —T2Bo 2ReTr ([n(;” n(v)d] e’9/2EXPfL [

70

0

0

—T

)

5 /0 0 m, — my 2 . 2 0 7TO
— —mﬂfﬁ Cos? 5 + SIn 5 COS(f— - ¢(‘9))

my, + my
where 9
sin(¢) = Zj ; ZZ sin” 5
A minimum is obtained for (vev) 70 = f.¢(#) (with

m2 = Byo(m, + my)) Then

4m,my .50
E(0) = —maf®y |1 - - 2 =
(0) m, \/ (mu+md)25|n >

when the mass of any of the quarks goes to zero, the
6-dependence disappears.



For 0 =0 E(0) = —m2f?

Possible solutions. Can we use any existing SM symmetry?

After we turn on the Yukawa's only B and L are left as global
symmetries of the SM.

In the SM we have an anomalous symmetry B, baryon number and
L, lepton number (B-L is anomaly free).

But B is not anomalous respect to SU(3)., whence it cannot
produce a FzFz (gluon).

We then require an extra U(1)pgo global symmetry.

There is another solution: if Y, = 0 then we could rotate:

Uup — e UR

This symmetry would be anomalous under SU(3). and we could
erase the HFgFg term.
Notice that in the electroweak case we could also consider a "weak

CP” problem ~ HwFWIEW



In fact B is anomalous under SU(2),, electroweak quark doublets
therefore could be redefined under U(1)paryon, canceling the

corresponding weak-CP violating term.
A second type of protection from 6\, contributions come from the

fact that the theory is in a Higgs phase. The contribution is

—87r2
eew(W)? which are screened due to the masses of the W'sand Z.




KSVZ axion(Kim, Shifman, Vainshtein, Zakharov)

A pseudoscalar a(x) that shifts under a global U(1)pg symmetry
(NG mode) a(x) — a(x) + af, can do the job.

Use the Lagrangean

1
: 3;_3 FE +iG7"9,Q + 601 Qr

¢ has a typical mexican-hat potential, with (¢) = vpg. Then
. a(x)

P(x) = P\Cgpe “PQ and

A = -2 =
ﬁqbQLQR ~ Avpge PR QL Qr

We perform now a chiral field redefinition

\ _
Q- QR =e 2VPQ%Q —vpo Q] Qg

V2

. We will generate a term 0§ = 55— FF since the field

redefinition is anomalous under U(1)pQ



Now we can integrate out @ and p. We are left with an interaction

IV pp_ 20 pp
32m2vpg 32721,

for N quarks @, with VPTQ =N



DFSZ axion (PQ), (WW). This is generated using only scalars.
HU7 Hd7 ¢

Up to dimension-4 involves three mexican-hat types of potentials
for H,, Hy and ¢, and an extra contribution

VV/ which depends on

|HU|27 |Hd|27 ’¢‘27 |HUH:-r/|27 |HU ' Hd’27 H, - Hd(bz-

Collecting the phases, one can identify the NG mode of the U(1)pg
using the condition that it has to be orthogonal to the hypercharge
There are 3 phases. One of them will identify the Goldstone mode.
Orthogonality respect to the Goldstone of the Z boson is found by
looking at the bilinear mixing MzZ,,0" Gz

v j qu a(x) Vg i qqa(x) v ; q¢ a(x)
H,= —e "PQ H;, = —Ze PQ (b:—¢e YPQ

V2 V2




2 2

Vd
gy = —1 qu=2ﬁ qd=2p

absence of mixing with Gz: g5v2 — g5v5 = 0. v is the electroweak
vev (246 GeV).

By requiring that a(x) is canonically normalized:

VpQ = vq% + v?sin 23, with sin 8 = “u and cos 3 = *¢. Notice that
a(x) is associated mostly to ¢.

From the Yukawa couplings one gets

—YuqrLHuqr — YaqLHgdr

_ V, 2iasin?B—2- - V4 2iacos® (32—
—YuuL—“e "PQUR — Yqd; —=e€ "PQ dp

V2 V2

Doing a chiral redefinition

6 ~ C
0L = aF F q; " D — ——3d,agy"
327T2VPQ qL7y" PudL VPO uddy 7v5q




1 a 1
— — _ H _
L EQCD(Q O) + 3 8MJ + (fa 6’) 35,2

we can clearly redefine a(x) in order to absorbe 6.
Since f; is very large, then we can treat a(x) as an external source.
To determine its potential, we can then take V/(6) with 8 — a/f,

s

from which one can extract the axion mass

g
m m,my
m? = —Ff2 4

a f2°7 (my, + my)?




The breaking of the PQ symmetry 22 %N
takes place at a large scale f_a, but

The wiggling of the PQ potential a-->-<Yrr4
Occurs much later, at the QCD phase
transition Y

For a PQ axion a: m=C/f,, whilethe aFF interaction is
also suppressed by : a/f, FF with f = 1079 GeV



Experimental signatures

PVLAS (INFN)

CAST (Cern)




Optical activity

1 1 1. =
L= Fwl"™ + 50,00"p + 199 Fu I,
(
V-B =0,
9B L Y x E = 0, PVLAS-type

\ DSOZ_:C;E'B?
\VXB—%—?:—EB%—S;+§EXV¢7

. 1 L. Carcagni’, C.C.

(E — ~=gpB) = — ~gp 0B, 1
O(B + ?QVQOE) =§§90 LE. 1
H =B + §§SOE
1.
AE=E(L) - E(0) = igAQOH(O)' Optical activity



Gauging axionic symmetries

The chain of anomalous U(1) symmetries require

- One Stuckelberg term for each anomalous symmetry
- The U(1)’s are in a massive (Stuckelberg phase)

Possibility of describing axion-like particles.

The mass of the particle and its interactions with the photons are independent
quantities.

This brings us to a mechanism of cancelation of the gauge anomalies
of “Green-Schwarz” type



Compared to a Peccei-Quinn axion, the new axion is gauged

For a PQ axion a: m=C/f,, whilethe aFF interaction is
also suppressed by : a/f, FF with f, = 1079 GeV

In the case of these models, the mass of the axion and
its gauge interactions are unrelated

the mass is generated by the combination of the Higgs and
the Stuckelberg mechanisms combined
The interaction is controlled by the Stuckelberg mass (M, )

The axion shares the properties of a CP odd scalar

B B
XB 4:2 XB i‘
- + —_ -
B B
(A) (B)



Asymptotic axions for YVess Zumino
actions and gauge invariance

1 - .
L= —=F3+ipy"(0, +igpvysBu)Y

4
1 2 1 2 SR . . 5]
L=—7Fp— [ Fa+ iy (Ou +igad, +igpy’ Bu)y
Using a Stuckelberg axion and the inclusion of local counterterms
B, — B, —0,0
—Fp A F — Py N F
ABBB B B+aBAAM ANTA
b— b+ M6
1 2
5((%(9 + MB,)



One then considers the effective action

1 1
L=—=F%+ (B, +

1 - . b
4 2 _aub>2 + iy (0, + 19BY5)Y + an—Fp A Fp

M M

where the anomaly generated at one loop level by the fermion/v
removed by the Wess-Zumino counterterm

b
n—Fp NF
Anori'B B

Somehow, this mechanism is viewed, from the point of view of
QFT, as the mechanism of “Anomaly Cancellation”

But anomalies are not cancelled by local

D One could go
counterterms. One should notice that the g
mechanism of “anomaly cancellation”, in this case, is

== Xo a gauge where
based on introducing an extra field degree of / _
freedom (b(x)) b(x)=0.
In what sense, then
we cancel the anomaly?



(’\\/f\.' /\\/f\'\, i -
B B b d b {'~-.IJ
"\Vf‘v -"‘\_Vf‘-v o= 2 SNy ':I;.’

) . {ny
aWa O el Lo
VARV, NSNS -7 -
A (a) g 8 (c) A (d) B

A typical Bouchiat-Iliopoulos-Meyer amplitude and the axion counterterm to restore gauge

invariance in the R gauge in the WZ effective action.

@MQA&+C

bFy AF
M, o, BB

Lwyz =



Variants: Higgs-axion mixing
There are some
variants of this Lo = 10 +ipaaBa)ol — 3F3 — 1FB+ 3(Bub+ My B — A(1gf2 — 2 )2
Lagrangian which may . -
help us clarify this issue
In this case we consider a model with 2 U(l)’s. The two gauge fields are A and B.The fermion has

axial vector couplings to B and is vector coupled to A.
We have BBB and BAA anomalies.Vector field B is massive, A is massless

+0iy* (8, + ieA, +iggY By ) — MU dp — MURpd Uy,

B mass generated via a combination of the Stuckelberg + Higgs mechanisms. (9, +iggqpB.)o*

v

¢ s the Higgs field ( b+ M, B,)? = Mlo|* — <)

a 4

B field massive

C, C . by the Higgs and
Lo=—"2AbFs AFa+—3BbFg A Fp. o (Lp+ Lan) =0 Stuckelberg
M M wmechanism
- - /
Higgs-Axion Mixing in U(1) Models: massless axi- -
nggs A 2 1'—)‘ ), b)> - M? 4 )?) B,B* 1 -
g = (( L D1) (8,02)° (< h) +§ (M; + (gggpv)°’) BuB* — Em,oI
| 1 +B“()“ (M, b- + v9paApP, )
Q = E (l + @ TIO )

Goldstone mode is a combination of
Stuckelberg field and CP odd part of
the Higgs




| S oy -z I . LT T [J—
Ly = 5(uxp) +5 @uGp) + 5 (quhy)” + 5 MpBuB" — Smih my =vV2A,

2
+MgpB"9,G
The mass of the B gauge boson is a combination
| physical axion (axi-Higgs) XB of the Higgs and the Stuckelberg mechanism
| Higgs hq
| massive gauge boson B, 0, = arccos(M, /Mp)

_ 1 Iy , . [ —cosfp sinfp
X5 = pgp Ma9atda05v0), (82,b) = (x5,Cp) V= ( snf  cosf )
1

(gpgpv & + M, b),
e ; 4B9BY M,
Gp

b=axp+ aGpg = W\B = 2 "

The Stuckelberg has a gauge invariant physical component, XB
A massive axi-Higgs
(periodic potential)

ordinary Higgs potential V' =u’0"¢+ A (¢"0)*
' 4 —i b .
V’ = b (q')e_lqgg"““) + X3 (c;‘)e 18980, ) + 2X2 (0" 0) (G) ~Yp9p; " ) + c.c.

extra potential allowed by the
symmetry 1 M

e ofXs o 2N m, = —= massive axi-Higgs
CX‘ :-1 ?_'—3+ > + o .

~ o

QCX v W




L= - ltr G GH — 1t7- W, ww — 1 2 Fh

— 1@ +i7 92 “H"“—i—zq(H“gAl) ,,|2-|(a +z—7‘°”°+zq, 1) g ALY Hy[? Generic

QLia“D,‘QL,- + ub @ Dyup; + dpo* Dydpi extension

LLC’“ DnLLi + e;zzﬁpreRz + I/L,-E“'D“VR,;
/zJHTT (QLzU URJ) + !ng ( L 2d}z_7) + c.c.
”UHT (LLZU eRJ) =T ’}Q,JH ( Lia VRj) + c.c.

- EZ apa +glMlIAf1) + Elmn ol Af; A;r/n};;:y

S

+ Y (Dra' tr {GAG} + Fra' tr {W AW} + Cryna' F™ A F™)
I
+ V(H,, Hy,d").

The gauge symmetry under which this Lagrangian is invariant is

SU(3). x SU2)w x G4, Gy =[JU(n

Gauge kinetic =1
Stuckeberg mass terms
Chern Simons abelian interactions SU3) x SU(2) x U(1), x U(1)y x U(1)e x U(1)g-

uvpo AL Am n
Eimn€ A“AV Fpa Abelian CS terms



Higgs sector

1 |
|'D#Hu,|2 + |'D#Hd|2 + 5 Z(da} - ﬂ-vf[AI)Q
I

D Hu — dl T+Ur+ T-W~ E
T ( 1 + \/§g2( + ) + 9

R
gom3 W3, + §QYAZ t3 Z 091 Aﬁ) H,
I

5 o, 1 et L o i
D,H; = (dﬂ + 5% (T*W* 4+ T-W-) + 2%731&3# +5ov Ay + 5 > dhar Aﬁ) H,
I

Typical mass terms for the gauge bosons are generated both from
the Higgs and the Stuckleberg contributions

QZA[I AI g?”.}y +9YA +ung AI)
1 . ,
+7 (=9 Way + gy Ay + > dhar AL,
I



There will be bilinear mixings in the broken (electroweak) phase
Zr 9, { FC+ 10043 gy M,og,a',} +3" 214 8, { FudC" + fa5C* 4+ ar MIO'Z‘g,a’I} :
I J I

We can extract the NG modes by a rotation, identifying 1 single physical axion

Im H°
(| [
¢ .
= ox | &Y
ay

\ ./ \

The scalar potential has an ordinary 2-Higgs doublet part and an extra contribution

Veg= Y (ﬂgH;Ha + Aaa,(H;Ha)Q) — 20\a(HIH,) (H Hy) + 2N, | HE o H

a=u,d

VPQ _ b (HJHde—‘iY:I(QQ{—QCII)%) + Al(HlHde_iy:I(q{L_ch)%)Q

+ No(HIH,)(H| Hye™ 2130 ) 4 \o(HIH,)(H Hye™ 1%~ 0%0) 4 c.c.



The Standard Model with 1 extra anomalous U(1) and an axion

f | Q |ur |dr | L | er
q" | a5 | a2, | a3, | af | 4&,
The effective action has the structure given by
f | sue)e | s, | vy | v,
3 2 1/6 a8 S = So+Syuk+Sam+Swz+Scs
up 3 1 2/3 | q§+al
dp 3 1 —1/3 qg — qf
L 1 2 ~1/2 q?
eRr 1 1 -1 | ¢P—¢¥
H, 1 2 1/2 qB
H, 1 2 1/2 q7
Y B B SU(3) SU(2)
SeffSO+B\’\< —|—B\’\< —}—B\’\< —|—B\/‘Qi> +B _|_
Y Y B SU(3) SU(2)
Y B B SU(3) SU(2)

y Yy B SU(3) SU(2)



Axionic contributions

Swz = CBB<bFB/\FB>—|—ny<be/\Fy>—|—CYB<be/\FB>
+FBTr[FY ANFWV)) + DO Tr[FC A FC)),

Abelian/non-abelian Chern Simons terms

Scs = —|—d1<BY/\Fy>—|—d2<YB/\FB>
%_Cl<€ﬂypalgﬂ(jSLK2)>_+_C2<€uupalgﬂ(jSLK3)>.

vpo vpo

17 . 1 .. .
i) = (W (FWW + 5 927 W] Wj) + Cyclic] ,
1T 1 |
05%(3) = & G, <Ff,,p + 393 fachng> + cyclzc} :

With a single anomalous U(1) these terms care not essential.



V = VPQ(Hm Hd) + VP@(H?L) H,, b)

Vpg = piHIH, + p2H' Hy+ Mo (HSHL)? + Nag(HVHg)? — 2\q(HS H,) (H) Hy) + 2X, 4| HE 7o Hy|?

Vpg = Ao(HjHge 95 W) 4 Ay (HI Hge 9509307 )2 1\ (HT H,)(HT Hge~95(0—)307) 4

Ns(HJHy) (H] Hae 909051 ) 4 L.,

Hf Hy
H, = . Hy = d .
(s H,S V4 + Hg

This potential is characterized by two null eigenvalues corresponding to two neutral Goldstone modes
(G§,G%) and an eigenvalue corresponding to a massive state with an axion component (). In the

(ImHY, ImH?, b) CP-odd basis we get the following normalized eigenstates

1
G(l) = 7(0(1,0“,0) G(l) ImHg
\/U?L —l—vfl
2 G% = OX ImHS
1 B(qd — qu)vav; gB 4d — Qu)V3vy
Gj = AN2M o2 + v3
\/g%(qd—qu)2v§v3+2M2 (v2 +v2) ( \/v2 + 03 [v2 + 2 X b

1
X=7 2 2
\/gB(Qd — qu)*vavg + 2M?(vg + v7)

(vau,—vad,gB(Qd —qu)vdvu> (14)



Vg Uy 0

v v
N _ 98(q4—qu)vava 98(q4—qu)vivy VaMu
O* = U\/Q%(Qd_Qu)Q’U?iU%—FQMQ’UQ "U\/g% (qd—qu)Qv?iv%—l—QMQvQ \/g% (Qd_Qu)2’U§U%—|—2M2U2
V2Mu, _ V2Mug 98(9d—qu)vdvu
\/9%;(Qd—Qu)2v%UC2l—|—2M2v2 \/g%(qd—qu)Qv%v?l—l—QMQvQ \/9%;(Qd—Qu)QU%U§—|—2M2U2

where v = 4 /v2 4 v3.

X inherits WZ interaction since b can be related to the physical axion x and to the Goldstone modes

via this matrix
b = O5G)+ O0%Gh + O%x, Stuckelberg axion

Physical axi-Higgs (gauged axion)



The phase-dependent potential has a well-defined periodicity. To identify the corresponding phase in
the Higgs-neutral CP-odd sector we introduce a polar parametrization of the neutral components in

the broken electroweak phase

FJ(x)

1 . FO(x) 1
Hg N ﬁ (\/ivu 7 pg(.t)) e Viva Hg - 75 (\/§vd - pg(.r)) e Viug i (22)

where we have introduced the two phases F;, and Fj of the two neutral Higgs fields. The potential is

periodic with respect to the linear combination of fields

_ 98B(94 — qu) b =
() = =55 e) = Z—Fil(a) + o

and using the matrix OX to rotate on the physical basis, the phase describing the periodicity of the

Fi(z), (23)

potential turns out to be proportional to the physical axion, modulo a dimensionful constant (o)

0(z) = @ (24)

Ox

2uyvgM

\/ gh(9d — qu)?vjvg + 2M3(v] + v3)

Ox

Replaces f_a of Peccei Quinn

Notice that x (or, equivalently, #) is gauge invariant as one can check quite directly. In fact a U(1)p



The PQ axion feels the QCD vacuum via the a Gé

interaction fa,
The angle of misalignment is (l(l')
O =
fa
The mass is sizeable
1073 — 10 %eV
v
A4 4
A\QCD |
I
\,/*\./\_/\,7- >a
ry -—>
Tk,

PQ axion.
Vacuum misalignment
at the QCD phase
transition

If an axion has charges both
under SU(3) and SU(2)

we could consider the
possibility of sequential
misalignments. The dominant
misalignment clearly comes
from the largest potential
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gg=0.1, M;=1TeV, MLSOM charge assignment = f(-1,-1.4)
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several mass values. Here, for the PQ axion, we have

G. Lazarides, A.Mariano, C.C.



Since themass is an independent parameter, you can also

Consider the axi-Higgs tobe in the GeV range.
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tanp = 40, gg=0.2, M;=1TeV, f(-1,-1.4)
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Study of the branching ratios of the axi-Higgs. We analyze the dependence on the free parameters

Axions from Intersecting Branes and Decoupled Chiral Fermions

at the Large Hadron Collider
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M. Guzzi, C.C.



Anomalous extra Z prime

8 - 11 22 33 9y ¢ .9z .
D= |0 —igs (WpT + W2T? + WiT*) —iZ¥ B —i% 2By |
tan Oy = gy /go. 2
2 92 2 2 2
MZ = —4COS2 9W (/UHl +/UH2) |:1 + 0(5 ):|
SM?2 2
_ Z27' 2 9z .2 .2 2 .2 2.2 2
&€= M2 — M2 Mz = Zz(zHlle + 2, VH, T Z¢>U¢) [1 +O(e )}
/ 4 2 929z 2 2 2 2
OMzz = —m(zmvﬂl + 25,V )-
2 1 2 2.2 2 2 2
M; = 1 2M{ + g“v +NBB—\/(2M1 — g*v% + Ngg)~ +4g%2%
A, W
A s S W TSR A g4y
T 2 M2 4 T MF s BBTIUD Z | =0 A
/
M3 = i<2M12+92v2+NBB+\/(2M12—92U2+NBB)2+4g2xQB) Z B
~ 2 NBB
~ Mp+—2.
Iy 92 0
g g
A | g 2 g 2
Npp = (a7 %vi +af?vd) b, == (alvi +aivi) 9p- O%~ | Z2+0(e) —F+0(e) €1
—L2¢ e 1+ 0(€?)

M. Guzzi, C.C.



The UV/IR conspiracy of the anomaly

The possibility that axions are associated to a rearrangement of the
vacuum of a gauge theory cannot be excluded.

A similar rearrangement is possible for the conformalanomaly.

Follow the case of the QCD dynamics

The QCD U(1) anomaly responsible for the pion—> gamma gamma decay
Nonlinearly realised Lagrangean in the IR.

In the UV the action exhibits an anomaly pole

[l




Armillis, Delle Rose, Guzzi, C.C.

Anomalous U(1) Models in Four and Five Dimensions
and their Anomaly Poles

q
/

A
A

V’V q_‘k\

ad .
A
A

A())\W - A1<klak2)8[k17/~57ya )‘] +A2(k17k2)6[k27:u7 v, )\] —|—A3(k}1,k2)6[k1,k2,/ﬁ, )\]kly
+ A4(7€1,k2)€[7f17k2,/~% )\]k5+145(7€1,k2)5[7€1,/€2,% A]kﬁt‘|‘A6(k1,]€2)5[7€1,/€2,%)\]k§-

Ay(ki ko) = ki - ko Ag(ky, ko) + k% Ay(ky, ko),

A2<k1, ]fg) = /{Z% A5(]€1, kg) + k1 - ko A@(lﬁ, lﬂg), AG(klu kQ)

Rosenberg, 1963

_A4<k27 kl)
—As(ka, k1).



1 1 S1S9 (So — S S
Aq(s,81,82) = 2 g, {@(31,52) 152 { 32 ) + 51 (52 — s12) log [gl]

—55 (51 — s12) log [%} } ;

Nothing specific emerges from this computation in this parameterization

1 ) . y. 14+ py 72
P(r,y) = y{2ALia(pr) + Lin(py)] + I n(pr) In(py) +

where s = k%, sy = k%, sy = k3, s190 = ky - ky with 0 = s%, — 5159



The vertex in the longitudinal /transverse (L/T) for-

mulation and comparisons

Jg' [x] .
W)\,LLI/ _ L [WL)\,LLI/ o WTA/M/] /\M______ﬁx_n _____ FopF g
872 ’
(with wp, = —4i/s)
W (ki ko) = wi (K2 kL E3) 60 (ki ko) + wi) (K k3L E3) £5) (k1. ko)

+ oy (K2 k3, K2) ) (ke ka),

The anomaly is associated to a longitudinal component, which has a pole:
the anomaly pole (1/s). The transverse sector does not contribute to the anomaly.

: A
In the on-shell case (two photons on shell) A (5,0,0) = Wi (5,0,0) = ——— " clky oy o, 0],

T2 5



Conformal anomalies share the same behaviour

@ Anomaly poles as the common signature of chiral and conformal anomalies

Phys.Lett. B682 (2009) 322-327 Armillis, Delle Rose, C.C.

Conformal Anomalies and the Gravitational Effective Action: o
The T'JJ Correlator for a Chiral Fermion

Phys.Rev. D81 (2010) 085001

Giannotti and Mottola Phys.Rev. D79 (2009) 045014

The Trace Anomaly and Massless Scalar &
Degrees of Freedom in Gravity

& The general conformal bootstrap in momentum space for 3-point functions
confirms these results (Bzowski, McFadden, Skenderis)
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(a) (b) (c) '
1 2 / 2 2 Armillis et al
T = —— (26C* + 2V | E — =R ) +2c F , ,
H 8 3 Giannotti and Mottola

Sanom[gaA] —
é/d4a:\/—g/d4x’\/—g’ (E — gDR) Gy(z,x") [2[)02 + 0 (E — %DR) + QCFWFW]

33/

G4(zx,2") denotes the Green’s function of the differential operator defined by

2 1 2
Ay=V, (v“vy +2RM — gRg””) V=0 + 2RV, ¥V, + 5 (VFR)V, — S RO

_ ¢ 4. 4.0 /7 p(1) -1 aB)
Sanom|g; 4] = 6/d TV g/d TV =g By Fap P Exchange of an anomaly pole



1 form factor in the TVV is responsible for the anomaly

Appearance of sum rules as a signature of the anomaly away from the conformal point

This is a strong indication of compositeness in the IR realization of the anomaly action

(Serino, Marzo, Delle Rose, C C.)

Dilaton Interactions and the Anomalous Breaking
of Scale Invariance of the Standard Model



Superconformal Sum Rules and the Spectral Density Flow
of the Composite Dilaton (ADD) Multiplet in A/ = 1 Theories

Delle Rose, Costantini, Serino, C.C. JHEP 2014

(a) (b) (c)
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Anomaly form factors

3 SUM RULES for the anomalies (chiral and conformal)



Away from the conformal limit (nonzero mass)
Appearance of sum rules and spectral density flows

2
g T(R 11 -
Saxion - T An2 (T(A> - —)) /d4zd4 o'B ( )sz ZFaB(I)F B(ZIJ)
g _ I R 4y dd pv op 2P 5” 595 1
Sdilatino = 53 I'zd'e|0,9 ()0 0" F5 5 A(@) 5 Fap (@) + hec.
g’ (R) y 11 N
Sdilaton = —3-3 (T<A>—T) / d'd's (Oh(=) = 90 huul() 5= 1 Fapl@)F (a),
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The IR stricture of the N=1
Resort to the anomaly action in the Wess Zumino form
T'wzlg, 7] = /d4$\/§{ﬁa l% (F — ;DR) — % (? M O\T + (DT)2> — %(‘3)‘78)\7 Or + % ((9)‘7'(%\7)21

r 4 ( . R . 4 2 2
w0 | § 6 g (B0 =507 ) ourdpr - oo O g Pronn)’ | (a0

Conformal Trace Relations from the Dilaton Wess-Zumino Action

Delle Rose, Marzo, Serino, C.C.



(T(k)T(~k1)) = —4Bak’",

3
EOTEDT) = 8| = (8-t 51) (Falhasbac ko) + falhac ko) + falhacba ko)) + 6 3
=1

ET ) ThT () = {6 (0,45 ) | 3 ko, oy oy -

T{4,[(k’7,1 ,kig )7(]%3 ’ki4 )]}

+ fa(k1 ko, ks, ka) + fa(ka k1, ks, ka) + fa(ks k1, ko, ka) + fa(ka k1, k2, ks)]

— Ba > (ki ki)t +4 isz : (
(T{4,(kil,ki2)} i=1 >}

fS(ka7kb7kc) — k‘g kb 'kC7
falka, kv ke ka) = k2 (ko ke +kp - ka+ ke - kq) .

Delle Rose, Marzo, Serino



Conclusions

Stuckelberg models have introduced the concept of
gauging of an anomalous U(1) symmetry.

They predict an axion and an anomalous U(1)
In their susy version they predict a supersymmetric multiplet.
(fundammental)

But there are variants

Anomaly actions seem to indicate that we coudl also take a different route.

All the states that we come from the breaking of a dilatation current, assuming
A conformal symmetry in the UV are the anomaly poles of the
supersymmetric current. The presence of sum rules in N=1 theories away from
the conformal point seem to provide this indication

The symmetry should also appear as broken (spontaneously?)



