Searching for New Physics in LBL

Sandhya Choubey

KTH Royal Institute of Technology Stockholm, Sweden

combination of the mass eigenstates

Three Flavor Oscillations in Vacuum

• Flavor Eigenstates \neq Mass Eigenstates

 $P_{\beta\gamma}(L) = \delta_{\beta\gamma} - 4\sum_{i=1}^{\infty} Re\left(U_{\beta i}U_{\gamma i}^{\star}U_{\beta j}^{\star}U_{\gamma j}\right) \frac{\sin^2 \Delta m_{ij}^2 L}{4E}$

 $\pm 2\sum Im\left(U_{\beta i}U_{\gamma i}^{\star}U_{\beta j}^{\star}U_{\gamma j}\right)\frac{\sin\Delta m_{ij}^{2}L}{2E}$ j > 1

3 mixing angles

1 CP Phase

2 mass-squared diff

Next on the agenda

- * Confirmation of CP violation in neutrino oscillations
- * Measurement of the CP phase
- * Determination of neutrino mass ordering
- * Determining the "octant" of theta23
- * Looking for new physics in neutrino oscillations
- * Dirac or Majorana

Neutrino-less double beta decay

- * Supernova neutrinos Galactic SN / Diffuse SN neutrino background

Gd loaded SK

* Multi-messenger astronomy with UHE neutrinos at Neutrino Telescopes

Forthcoming Experiments

- * Long-baseline experiments T2HK, DUNE, ESSnuSB
- * LBL Reactor antineutrino experiments JUNO
- * SBL Reactor antineutrino experiments SBN, JSNS2....
- * Neutrino-less double beta decay nEXO,....

* Atmospheric neutrino experiments - INO, PINGU, ORCA, HK, ESSnuSB

CP Violation

* Why bother?

Important parameter in the neutrino mixing matrix

Key player in model of neutrino mass - pointer at the correct BSM theory

Pointer to leptogenesis

CP Violation

* If we observe a difference between flavor oscillations of neutrinos and antineutrino — CP violation

phase"

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix}$$

Atmospheric
Accelerator
Reactor
Accelerator

* CP dependence in neutrino oscillations comes from the phase δ_{CP} in the neutrino mixing matrix ... this phase is mostly referred to as the "Dirac CP

 $\left(\begin{array}{cccc} c_{12} & s_{12} & 0\\ -s_{12} & c_{12} & 0\\ 0 & 0 & 1 \end{array}\right) \left(\begin{array}{cccc} e^{i\alpha_1/2} & 0 & 0\\ 0 & e^{i\alpha_2/2} & 0\\ 0 & 0 & 1 \end{array}\right)$ Neutrinoless Solar double beta dk Reactor

The best method to see CP violation is to measure the oscillation probability

CP Violation

$$\nu_{\mu} \rightarrow \nu_{e}) \text{ in matter, upto second}$$

$$\alpha \equiv \Delta m_{21}^{2} / \Delta m_{31}^{2} \text{ and } \sin 2\theta_{13},$$

$$0.03 \qquad 0.3 \qquad 0$$

Cervera etal., hep-ph/0002108 Freund etal., hep-ph/0105071 See also, Agarwalla etal., arXiv:1302.6773 [hep-ph]

This channel suffers from: (Hierarchy – δ_{CP}) & (Octant – δ_{CP}) degeneracy! How can we break them?

Requirements

- * Intense beam
- * Big Detector
- * Low systematic uncertainty
- * Good energy resolution
- * Good particle ID
- * Low backgrounds

Candidate Experiments - T2HK

The Hyper-Kamiokande (HK) project is officially approved

HK is under construction and operations are scheduled to start in 2027

KEK will upgrade the JPARC accelerator beam for a high intensity nu bean

DM Indirect Detection

Solar Neutrinos

Atm Neutrinos

Hyper-Kamiokande Proto-Collaboration

18 countries, 82 institutes, ~390 people

T2HK

Candidate Experiments - DUNE

JUNE

Pone 17-kt Module m 66 m 66 m 66 m 10 m 1

◆ 1157 collaborators from 197 institutions in 33 countries (w/ CERN)!

DUNE

RUSSIA

 \le

٠

ESSnuSB

essist

• Baseline: SuperFGD-like detector adjacent to upstream er

- SuperFGD-like detector -(1-10) t total target
 - Thanks to ND280 upgrade project for support!

Near detecto

Possible addition – NINJA like emulsion/water detector

IN SCIENCE AND TECHNO DGY The novelty of this exp is that it will be the first neutrino experiment operating on the second oscillation maxima

Also T₂HKK

• 500 kt fiducial volume (~20xSuperK)

- Readout: ~240k 8" PMTs
- 30% optical coverage Far detector

65 m

TENERAL CONTRACTOR

ESSnuSB

ESSnuSB is a European Design Study project financed by the European Commission. It is composed of 15 participating institutes/organisations from 11 countries.

The project was initiated by the COST networking Project titled: "EuroNuNet". The activities of both projects, ESSnuSB and EuroNuNet are tightly intertwined. You can see the correspondance of activities between both projects here.

The best method to see CP violation is to measure the oscillation probability

CP Violation

$$\nu_{\mu} \rightarrow \nu_{e}) \text{ in matter, upto second}$$

$$\alpha \equiv \Delta m_{21}^{2} / \Delta m_{31}^{2} \text{ and } \sin 2\theta_{13},$$

$$0.03 \qquad 0.3 \qquad 0$$

Cervera etal., hep-ph/0002108 Freund etal., hep-ph/0105071 See also, Agarwalla etal., arXiv:1302.6773 [hep-ph]

This channel suffers from: (Hierarchy – δ_{CP}) & (Octant – δ_{CP}) degeneracy! How can we break them?

CP Violation - Challenges

easurement of the CP phase

What depends on sign of Δm_{31}^2

* Neutrino oscillation probabilities could depend on the sign of Δm_{31}^2

$$P_{\nu_{\alpha} \to \nu_{\beta}}(L, E) = \delta_{\alpha\beta} - 4 \sum_{k>j} \Re \left[U_{\alpha k}^{*} U_{\beta k} U_{\alpha j} U_{\beta j}^{*} \right] \sin^{2} \left(\frac{\Delta m_{k j}^{2} L}{4E} \right)$$
$$+ 2 \sum_{k>j} \Im \left[U_{\alpha k}^{*} U_{\beta k} U_{\alpha j} U_{\beta j}^{*} \right] \sin \left(\frac{\Delta m_{k j}^{2} L}{2E} \right)$$

* However, this is not an effective way of determining the sign of Δm_{kj}^2 due to the presence of "degeneracies"

Matter Effects

Forward scattering of ν_e and $\bar{\nu}_e$ with electrons in matter Effective potential

This effective potential modifies the neutrino mass and mixing in matter

 $(\Delta m^2)^m = \sqrt{(\Delta m^2 \cos 2\theta - A)^2 + (\Delta m^2)^2 \sin^2 2\theta}$ $\sin^{2} 2\theta_{m} = \frac{(\Delta m^{2})^{2} \sin^{2} 2\theta}{(\Delta m^{2} \cos 2\theta - A)^{2} + (\Delta m^{2})^{2} \sin^{2} 2\theta}$ $Relative sign \qquad A = 2E * (effective potential)$

Normal ordering -> matter effects for neutrinos Inverted ordering - matter effects for antineutrinos

 $-\sqrt{2}G_F N_e \langle W$ $A = 2\sqrt{2}G_F N_e E$ for neutrinos $A = -2\sqrt{2}G_F N_e E$ for antineutrinos

 $\overline{\nu}_e$

 $\sqrt{2}G_F N_e$

 ν_e

 e^{-}

W

 $\bar{\nu}_e$

eutrino Mass Ordering using Accelerator Beams

True Normal Ordering

True Inverted Ordering

New Physics in Neutrino Oscillations

- * Sterile neutrinos
- * Non-standard neutrino interactions
- * Neutrino decay
- * Non-Unitarity

* ...

*

* Lorentz invariance violation

Sterile Neutrinos LSND

* 3.8σ excess in antineutrinos at L/E ≈ 0.4-1.2 m/MeV

* requires presence of
sterile neutrino states
with ∆m² = 1 eV²

Tuesday 26 June 2012

Eriday 20 June 2012

MiniBooNE is consistent with LSND

Combined with LSND this is a greater than 6 sigma excess

Sterile Neutrinos

DayaBay, NEOS, DANSS, Neutrino-4

See Blennow, Coloma, Fernandez-Martinez, 1407.1317

$$\begin{aligned} \text{Neutrino Ose} \\ \text{At Long} \\ P_{\mu e}^{4\nu} &= P_1 + P_2(\delta_{13}) + P_3(\delta_{24}) + P_4(\delta_{13} + \delta_{24}) \\ P_1 &= \frac{1}{2} \sin^2 2\theta_{\mu e}^{4\nu} \\ &+ (a^2 \sin^2 2\theta_{\mu e}^{3\nu} - \frac{1}{4} \sin^2 2\theta_{13} \sin^2 2\theta_{\mu e}^{4\nu}) (\cos^2 \theta_{12} \sin^2 \Delta_{31} \\ &+ (b^2 a^2 - \frac{1}{4} a^2 \sin^2 2\theta_{12} \sin^2 2\theta_{\mu e}^{3\nu} - \frac{1}{4} \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \theta_{12} \sin^2 \theta_{12} \sin^2 \theta_{13} \\ P_2(\delta_{13}) &= ba^2 \sin 2\theta_{\mu e}^{3\nu} [\cos(\delta_{13}) (\cos 2\theta_{12} \sin^2 \Delta_{21} + \sin^2 \Delta_{31} - \sin \theta_{12} \sin(\delta_{13}) (\sin 2\Delta_{21} - \sin 2\Delta_{31} + \sin 2\Delta_{32})], \\ P_3(\delta_{24}) &= ba \sin 2\theta_{\mu e}^{4\nu} [\cos(\delta_{24}) (\cos 2\theta_{12} \cos^2 \theta_{13} \sin^2 \Delta_{21} \\ &+ \frac{1}{2} \sin(\delta_{24}) (\cos^2 \theta_{13} \sin 2\Delta_{21} + \sin^2 \theta_{13} (\sin 2\Delta_{33}) \\ P_4(\delta_{13} + \delta_{24}) &= a \sin 2\theta_{\mu e}^{3\nu} \sin 2\theta_{\mu e}^{4\nu} [\cos(\delta_{13} + \delta_{24}) (-\frac{1}{2} \\ &+ \cos 2\theta_{13} (\cos^2 \theta_{12} \sin^2 \Delta_{31} + \sin^2 \theta_{12} \sin^2 \theta_{13} \sin^2 \theta_{13} \sin^2 \theta_{14} \sin^2 \theta_{14} \\ &+ \frac{1}{2} \sin(\delta_{13} + \delta_{24}) (\cos^2 \theta_{12} \sin^2 \Delta_{31} + \sin^2 \theta_{12} \sin^2 \theta_{14} + \frac{1}{2} \sin(\delta_{13} + \delta_{24}) (\cos^2 \theta_{12} \sin^2 \Delta_{31} + \sin^2 \theta_{12} \sin^2 \theta_{14} + \frac{1}{2} \sin(\delta_{13} + \delta_{24}) (\cos^2 \theta_{12} \sin^2 \Delta_{31} + \sin^2 \theta_{12} \sin^2 \theta_{14} + \frac{1}{2} \sin(\delta_{13} + \delta_{24}) (\cos^2 \theta_{12} \sin^2 \Delta_{31} + \sin^2 \theta_{14} \sin^2 \theta_{14} \sin^2 \theta_{14} + \frac{1}{2} \sin(\delta_{13} + \delta_{24}) (\cos^2 \theta_{12} \sin^2 \Delta_{31} + \sin^2 \theta_{14} + \frac{1}{2} \sin(\delta_{13} + \delta_{24}) (\cos^2 \theta_{12} \sin^2 \Delta_{31} + \sin^2 \theta_{14} \sin^2 \theta_{14} + \frac{1}{2} \sin(\delta_{13} + \delta_{24}) (\cos^2 \theta_{12} \sin^2 \Delta_{31} + \sin^2 \theta_{14} + \frac{1}{2} \sin(\delta_{13} + \delta_{24}) (\cos^2 \theta_{14} + \sin^2 \theta_{14} + \sin^2 \theta_{14} + \frac{1}{2} \sin$$

cillations in 3+1 g Baseline

 $+\sin^2\theta_{12}\sin^2\Delta_{32})$ $\sin^2 2\theta_{\mu e}^{4\nu}) \sin^2 \Delta_{21} ,$ $n^2 \Delta_{32}$

 $\sin 2\theta_{\mu e}^{3\nu} = \sin 2\theta_{13} \sin \theta_{23}$ $b = \cos \theta_{13} \cos \theta_{23} \sin 2\theta_{12}$ $\sin 2\theta_{\mu e}^{4\nu} = \sin 2\theta_{14} \sin \theta_{24}$ $a = \cos \theta_{14} \cos \theta_{24}.$

- $-\sin^2\theta_{13}(\sin^2\Delta_{31}-\sin^2\Delta_{32}))$ $_{31} - \sin 2\Delta_{32}))],$
- $\sin^2 2\theta_{12} \cos^2 \theta_{13} \sin^2 \Delta_{21}$
- $(\Delta_{32}))$ $\mathrm{n}^2\,\theta_{12}\sin2\Delta_{32}\big)\big]\,,$

 $\Delta_{ij} = \frac{\Delta m_{ij}^2 L}{\Lambda F}$

Additional CP Violation

Neutrino oscillation probabilities differ for 3+0 and 3+1 schemes even for the far detector of the long-baseline experiments

Very rich body of literature

This dependence has phenomenological implications such as:

Measuring sterile neutrino paramaters at the LBL expts

This dependence has phenomenological implications such as:

Modifying the sensitivity of the experiment to standard oscillation params

This dependence has phenomenological implications such as:

Modifying the sensitivity of the experiment to standard oscillation params

This dependence has phenomenological implications such as: Affecting the measurement of CP phase δ_{13} δ_{13} **Precision** 10 3σ 3σ 3σ $3+1 \, \delta_{24} \, (\text{true}) = -90^{\circ}$ $3+1 \, \delta_{24} \, (true) = -90^{\circ}$ $3+1 \, \delta_{24} \, (\text{true}) = -90^{\circ}$ 3+0 3+03+0 δ_{13} (true) = -90° δ_{13} (true) = -90° δ_{13} (true) = -90° T2HKK T2HK DUNE \mathbf{X}^{7} \mathbf{X}^{3} 2σ 2σ 2σ -180-180-90 -90 -90 90 180 90 180 90 δ_{13} (test) δ_{13} (test)

Non-Standard Interactions

If there exist effective operators of the form $\mathcal{L}_{\rm NSI} = -2\sqrt{2}G_F \varepsilon_{\alpha\beta}^{ff'C} \left(\overline{\nu_{\alpha}}\gamma^{\mu}P_L\nu_{\beta}\right) \left(\overline{f}\gamma_{\mu}P_C f'\right)$

then they will modify neutrino evolution inside matter

$$\hat{H} = \frac{1}{2E} \left[U \operatorname{diag}(m_1^2, m_2^2, m_3^2) U^{\dagger} + \operatorname{diag}(m_1^2, m_3^2, m_3$$

These epsilon parameters are called matter NSIs

The corresponding epsilon parameters in an effective charged current operator are called source/detector NSIs

 $(A, 0, 0) + A\varepsilon^m$

Impact of Matter NSIs

$$\mathbf{i}\frac{\mathrm{d}}{\mathrm{d}t}\begin{bmatrix}\nu_{e}\\\nu_{\mu}\\\nu_{\tau}\end{bmatrix} = \frac{1}{2E} \begin{cases} U^{\dagger} \begin{bmatrix} 0 & 0 & 0\\ 0 & \Delta m_{21}^{2} & 0\\ 0 & 0 & \Delta m_{31}^{2} \end{cases}$$

$$| 4.2 \quad 0.3 \\ | c_{\alpha\beta}^m | < 0.3 \quad - \\ 3.0 \quad 0.04$$

 $\left\{\begin{array}{c|c|c}
1 + \varepsilon_{ee}^{m} & \varepsilon_{e\mu}^{m} & \varepsilon_{e\tau}^{m} \\
U + A & \varepsilon_{\mu e}^{m} & \varepsilon_{\mu\mu}^{m} & \varepsilon_{\mu\tau}^{m} \\
\varepsilon_{\tau e}^{m} & \varepsilon_{\tau\mu}^{m} & \varepsilon_{\tau\tau}^{m} \\
\end{array}\right\} \quad \nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}$

3.00.040.15

Biggio, blennow, Fernandez-Martinez, 0907.0097

Additional Matter Effect

NSI can change the probabilities, can lead to degeneracies and can change the sensitivity of the experiments

Impact of Matter NSIs

Impact of Matter NSIs on DUNE

Reduced sensitivity in delta
New degenerate solutions in theta23

Impact of Source/Detector NSIs

$$egin{aligned} |
u_{lpha}^{s}
angle &= |
u_{lpha}
angle + \sum_{\gamma=e,\mu, au} arepsilon_{lpha\gamma}|
u_{lpha}| &= \langle
u_{eta}| + \sum_{\gamma=e,\mu, au} arepsilon_{etaeta}\langle
u_{\gamma}|
\end{aligned}$$

and nine phases $\varphi_{\alpha\beta}^{s/d}$.

$$|\varepsilon_{\alpha\beta}^{s/d}| <$$

0.12

- The matrices ε^s and ε^d that represent the source and the detector NSIs, repectively, are in general complex matrices with 18 real parameters each. These are the nine amplitudes $|\varepsilon_{\alpha\beta}^{s/d}|$
 - - 0.018 0.13

Biggio, blennow, Fernandez-Martinez, 0907.0097

Apparent Non-Unitarity

Impact of Source/Detector NSIs

Correlations between matter and S/D NSIs lead to a new degenerate solution in theta23

Impact of S/D + Matter NSIs

Constraining NSIs with DUNE

Parameter	Only source/detector NSIs	Only matter NSIs	All NSIs	Current bound
$ arepsilon_{\mu e}^{s} $	0.017		0.022	0.026
$ arepsilon_{\mu\mu}^{s} $	0.070		0.065	0.078
$ arepsilon_{\mu au}^{s} $	0.009		0.014	0.013
$ arepsilon_{\mu e}^{d} $	0.021		0.023	0.025
$ \varepsilon^d_{ au e} $	0.028		0.035	0.041
$\varepsilon_{ee}^{m\prime}$		(-0.7, +0.8)	(-0.8, +0.9)	(-4.2, +4.2)
$ arepsilon_{\mu e}^{m} $		0.051	0.074	0.330
$ \varepsilon^m_{ au e} $		0.17	0.19	3.00
$ \varepsilon^m_{ au\mu} $		0.031	0.038	0.040
$\varepsilon^{m\prime}_{\tau\tau}$		(-0.08, +0.08)	(-0.08, +0.08)	(-0.15, +0.15)

TABLE I. Expected 90 % credible regions on NSI parameters from DUNE.

Blennow, S.C. Ohlsson, Pramanik, Raut, 1606.08851

Neutrino Decay

Allow for

 $\nu_i \to \nu' + J$

Chikashige, Mohapatra, Peccei, PLB 98, (1981) Gelmini, Roncadelli, PLB 99 (1981) Gelmini, Valle, PLB 142 (1984)

 $\tau_{i} = \frac{16\pi}{g_{dk}^{2}} \frac{m_{d}^{3}}{\Delta m^{2}(m_{i} + m_{d})^{2}}$

Acker, Pakvasa, Pantaleone, PRD 45 (1992

Allow for

Neutrino Decay

Choubey, Ghosh, Kempe, Ohlsson, 2010.16334

Experiment	90 % C.L. (3 σ) bound on τ_3/m_3 [s/e
$T2K + NO\nu A$	$2.3~(1.5) \times 10^{-12}$
T2K + MINOS	$2.8 (1.8) \times 10^{-12}$
SK + MINOS	$2.9~(0.54) \times 10^{-10}$
MOMENT	$2.8~(1.6) \times 10^{-11}$
SSnuSB (540 km)	$4.22~(1.68) \times 10^{-11}$
DUNE	$4.50~(2.38) \times 10^{-11}$
SSnuSB (360 km)	$4.95~(2.64) \times 10^{-11}$
JUNO	$9.3~(4.7) \times 10^{-11}$
INO	$1.51~(0.566) \times 10^{-10}$
KM3NeT-ORCA	$2.5~(1.4) \times 10^{-10}$
T2HK	$-(2.7) \times 10^{-11}$

Conclusion

- * CP violation is expected to be discovered at more than 5 sigma significance
- * This has far-reaching implications for theoretical models of neutrino mass and leptogenesis
- * Neutrino mass ordering should be discovered at high significance in DUNE and atmospheric neutrino experiments
- * Octant of theta23 is important for model building and will be probed
- * New Physics can affect the measurement of all of above and needs to be kept in mind
- * New physics itself can be studied at neutrino facilities

