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Neutrino Osci!ations

Nus are produced and detected by weak CC interactions

⇡+ ! µ+ + ⌫µFor example:

Their propagation is defined in terms of

 flavor eigenstates 

The flavor eigenstates can be written as a linear 
combination of the mass eigenstates 
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Neutrino Osci!ations
Assume that there are two generations of massive neutrinos

Neutrino Physics Concha Gonzalez-Garcia

2- Oscillations

For 2- : Convention , with

In real experiments
neutrinos are not monochromatic

Maximal sensitivity for

– No time to oscillate

– Averaged oscillations
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Neutrino Oscillations in Two Generations

Flavor Eigenstates != Mass Eigenstates

νµ = cos θ ν2 + sin θ ν3

νµ(t) = cos θ e−iE2 ν2 + sin θ e−iE3 ν3

Pµµ = 1 − sin2 2θ sin2

(
∆m2 L

4E

)

No dependence on the octant of θ

No dependence on the sign of ∆m2
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Three Flavor Oscillations in Vacuum

Flavor Eigenstates != Mass Eigenstates
|να〉 =

∑

i Uαi|νi〉
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3 mixing angles

1 CP Phase

2 mass-squared dif



Next on the agenda
Confirmation of CP violation in neutrino oscillations


Measurement of the CP phase


Determination of neutrino mass ordering


Determining the “octant” of theta23


Looking for new physics in neutrino oscillations


Dirac or Majorana


Supernova neutrinos - Galactic SN / Diffuse SN neutrino background


Multi-messenger astronomy with UHE neutrinos at Neutrino Telescopes

Gd loaded SK
Neutrino-less double 

beta decay



Forthcoming Experiments

Long-baseline experiments - T2HK, DUNE, ESSnuSB


Atmospheric neutrino experiments - INO, PINGU, ORCA, HK, ESSnuSB


LBL Reactor antineutrino experiments - JUNO


SBL Reactor antineutrino experiments - SBN, JSNS2…..


Neutrino-less double beta decay - nEXO,….



CP Violation
Why bother?


Important parameter in the neutrino mixing matrix

Key player in model of neutrino mass - pointer at the correct BSM theory

Pointer to leptogenesis



CP Violation
If we observe a difference between flavor oscillations of neutrinos and 
antineutrino           CP violation


 CP dependence in neutrino oscillations comes from the phase       in the 
neutrino mixing matrix … this phase is mostly referred to as the “Dirac CP 
phase”
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CP Violation
The best method to see CP violation is to measure the oscillation probability Three Flavor Effects in νµ ! νe  oscillation probability  

7/42 

θ13 Driven    

CP odd    

CP even    

Solar Term    

                          Cervera etal., hep-ph/0002108 
                            Freund etal., hep-ph/0105071  
See also, Agarwalla etal., arXiv:1302.6773 [hep-ph]    

0.09 

0.009 

0.0009 

0.03 0.3 

changes sign with sgn(         ) 
   key to resolve hierarchy!  

 changes sign with polarity 
 causes fake CP asymmetry!  

Resolves 
  octant    

This channel suffers from: (Hierarchy – δCP) & (Octant – δCP)  degeneracy! How can we break them? 
  S. K. Agarwalla, PHENO1@IISERM, IISER, Mohali, India, 6th April, 2016 !



Using Accelerator Beams



Requirements 

Intense beam 


Big Detector


Low systematic uncertainty 


Good energy resolution


Good particle ID


Low backgrounds



Candidate Experiments - T2HK



T2HK
The Hyper-Kamiokande (HK) project is officially approved

HK is under construction and operations are scheduled to start in 2027

KEK will upgrade the JPARC accelerator beam for a high intensity nu beam3rd generation underground water Cherenkov detector in Kamioka

Kamiokande

Birth of neutrino astrophysics

Super-Kamiokande

Discovery of neutrino oscillations

Hyper-Kamiokande

Explore new physics

(1983-1996) (1996 - ongoing) (start operation in 2027)

• Atmospheric and solar 
neutrino “anomaly”

• Supernova 1987A

• Proton decay: world best-limit
• Neutrino oscillation (atm/solar/LBL)

Ø All mixing angles and ∆"!#

• Extended search for proton decay
• Precision measurement of neutrino 

oscillation including CPV and MO
• Neutrino astrophysics

4
Experimental setup of Hyper-Kamiokande

Super-K Hyper-K
Overburden 1000 m 650 m

Number of ID PMT 11,000 40,000
Photo-coverage 40% 40% (×2 sensitivity)

Total/Fiducial vol. 50 / 22.5 kton 260 / 188 kton

× 8.4 fiducial volume (SK → HK)
× 2.6 beam power (J-PARC upgrade)
→More than 20 times statistics

J-PARC upgrade:
500 kW → 1.3MW

!!/!̅!
!"/!̅"

Near detectors
Hyper-K site

ND280

IWCDHyper-K

295km

6

Proton decay

SN neutrinos

DM Indirect 
Detection

Solar Neutrinos

Atm Neutrinos

Experimental setup of Hyper-Kamiokande

Super-K Hyper-K
Overburden 1000 m 650 m

Number of ID PMT 11,000 40,000
Photo-coverage 40% 40% (×2 sensitivity)

Total/Fiducial vol. 50 / 22.5 kton 260 / 188 kton

× 8.4 fiducial volume (SK → HK)
× 2.6 beam power (J-PARC upgrade)
→More than 20 times statistics

J-PARC upgrade:
500 kW → 1.3MW

!!/!̅!
!"/!̅"

Near detectors
Hyper-K site

ND280

IWCDHyper-K

295km

6

Experimental setup of Hyper-Kamiokande

Super-K Hyper-K
Overburden 1000 m 650 m

Number of ID PMT 11,000 40,000
Photo-coverage 40% 40% (×2 sensitivity)

Total/Fiducial vol. 50 / 22.5 kton 260 / 188 kton

× 8.4 fiducial volume (SK → HK)
× 2.6 beam power (J-PARC upgrade)
→More than 20 times statistics

J-PARC upgrade:
500 kW → 1.3MW

!!/!̅!
!"/!̅"

Near detectors
Hyper-K site

ND280

IWCDHyper-K

295km

6

JPARC 
neutrinos



T2HK
Hyper-Kamiokande Proto-Collaboration

As of June 2020

18 countries, 82 institutes, ~390 people

7



Candidate Experiments - DUNE



DUNE

DUNE’s Neutrino SourceDUNE’s Neutrino Source

7
Begins Taking Physics Data in 2026

FNALSURF

DUNE ND OverviewDUNE ND Overview

9

♦ DUNE ND located 574 m from neutrino beam target

♦ Primary purpose is to characterize neutrino beam and 
constrain cross section uncertainties in long-baseline 
neutrino oscillation analysis

ν ~574 m from target

Near detector

DUNE Far Detector (FD)DUNE Far Detector (FD)

12
Begins Taking Physics Data in 2026

FNALSURF

One 17-kt
Module

66 m

19 m

18 m

Far detectorDUNE Far Detector (FD)DUNE Far Detector (FD)

12
Begins Taking Physics Data in 2026

FNALSURF

One 17-kt
Module

66 m

19 m

18 m



DUNE

3

DUNE CollaborationDUNE Collaboration

♦ 1157 collaborators from 197 institutions in 33 countries (w/ CERN)!

May 2019 Collaboration Meeting



Candidate Experiments
ESSnuSB



ESSnuSB
ESSνSB ν energy distribution 

(without optimisation) 

Bari, 5 Jun 2019 B. Kliček, IRB. On behalf of ESSnuSB. 10 

at 100 km from the 
target and per year 
(in absence of 
oscillations) 

neutrinos anti-neutrinos 

• almost pure νμ beam 
• small νe 

contamination which 
could be used to 
measure νe cross-
sections in a near 
detector 

(Nucl. Phys. B 885 (2014) 127)  

Near detectors 

Bari, 5 Jun 2019 B. Kliček, IRB. On behalf of ESSnuSB. 11 

• Baseline: SuperFGD-like detector adjacent to upstream end of WC detector 
100m from target station 

• WC detector - 250t fiducial 
• SuperFGD-like detector – (1 – 10) t total target 

• Thanks to ND280 upgrade project for support! 
 
Possible addition – NINJA like emulsion/water detector 

Super-FGD like detector 

Far detector 

Bari, 5 Jun 2019 B. Kliček, IRB. On behalf of ESSnuSB. 12 

MEMPHYS like Cherenkov detector 
(MEgaton Mass PHYSics studied by LAGUNA) 

• 500 kt fiducial volume (~20xSuperK) 
• Readout: ~240k 8” PMTs 
• 30% optical coverage 

(arXiv: hep-ex/0607026) 

New 20" PMTs with higher QE and 
cheaper (see JUNO), the detection 
efficiency will improve the detector 
performance keeping the price 
constant, not yet taken into account. 

Can also be used for other purposes: 

• Proton decay 

• Astroparticles 

• Galactic SN ν 

• Supernovae "relics" 

• Solar Neutrinos 

• Atmospheric Neutrinos 
 

Far detector 

Bari, 5 Jun 2019 B. Kliček, IRB. On behalf of ESSnuSB. 12 
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• 30% optical coverage 

(arXiv: hep-ex/0607026) 

New 20" PMTs with higher QE and 
cheaper (see JUNO), the detection 
efficiency will improve the detector 
performance keeping the price 
constant, not yet taken into account. 

Can also be used for other purposes: 

• Proton decay 

• Astroparticles 

• Galactic SN ν 

• Supernovae "relics" 

• Solar Neutrinos 

• Atmospheric Neutrinos 
 

Far detector

The novelty of this exp

is that it will be the first 


neutrino experiment 

operating on the second 


oscillation maxima

Also T2HKK



ESSnuSB



CP Violation
The best method to see CP violation is to measure the oscillation probability Three Flavor Effects in νµ ! νe  oscillation probability  
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θ13 Driven    

CP odd    

CP even    

Solar Term    

                          Cervera etal., hep-ph/0002108 
                            Freund etal., hep-ph/0105071  
See also, Agarwalla etal., arXiv:1302.6773 [hep-ph]    

0.09 

0.009 

0.0009 

0.03 0.3 

changes sign with sgn(         ) 
   key to resolve hierarchy!  

 changes sign with polarity 
 causes fake CP asymmetry!  

Resolves 
  octant    

This channel suffers from: (Hierarchy – δCP) & (Octant – δCP)  degeneracy! How can we break them? 
  S. K. Agarwalla, PHENO1@IISERM, IISER, Mohali, India, 6th April, 2016 !



Sensitivity to CP ViolationPrecision measurement of neutrino oscillations

• Exclusion of sin >56 = 0
Ø ~8 < for >56 = −90° (favored by T2K)
Ø Good opportunity to make discovery of 
B8 violation in neutrino sector at >5 <

• Measurement of >56
Ø 23° for >78 = 90° /  7° for >78 = 0°

Significance to CP violation Fraction of $"# to exclude sin $"# = 0 Precision of $"# measurement

< 1% for ∆'899

1 − 3% for sin9 -98

$"#

*!$ vs. ∆"$!!

10 years
1.3MW

11

Syst. errors (T2K 2016 + improvements for Hyper-K) CP Violation SensitivityCP Violation Sensitivity

25

True Normal Ordering True Inverted Ordering

♦ Significant CP violation discovery potential over wide range of 
true δ

CP
 values in 7-10 years (staged)

Physics Performance 

Bari, 5 Jun 2019 B. Kliček, IRB. On behalf of ESSnuSB. 14 

• little dependence on mass hierarchy, 

• δCP coverage at 5 σ C.L. up to 60%, 

• δCP accuracy down to 6° at 0° and 180° 
(absence of CPV for these two values), 

• not yet optimised facility, 

• 5/10% systematic errors on signal/background. 

540 km 

5/5 yrs 

T2HK

DUNE

ESSnuSB



CP Violation - Challenges
Prospects for CP violation measurement 

Projected sensitivity to CPV

T2K syst. (2016)

Stat. only

• Reduction of systematic uncertainties has impact to CPV measurement 
Ø Uncertainties on neutrino interaction models are major components ⇒ Near detectors 

• On-axis beam monitor (MUMON and INGRID)
• Off-axis magnetized tracker (ND280) with upgrades

Ø Constraints on beam flux, neutrino interactions, wrong-sign components , etc.
• Intermediate water Cherenkov detector (IWCD)

Ø /: cross-section, 0; vs. 0<:=, NC and intrinsic /: BG , neutron multiplicity

Impact of systematic uncertainties 
after 10 years

12

Sensitivity Over TimeSensitivity Over Time

27

CP Violation Sensitivity Mass Ordering Sensitivity

♦ CP violation discovery if true δ
CP

 = -π/2 in ~7 years (staged)

♦ CP violation discovery for 50% of true δ
CP

 values in ~10 years

♦ Determination of neutrino mass ordering within first few years



Measurement of  the CP phasePrecision Precision δδ
CPCP

 Measurement Measurement

28

δ
CP

 Resolution θ
13

 vs. δ
CP

♦ δ
CP

 precision of 10°-20° in ~10 years (staged)

♦ θ
13

 measurement comparable with reactor experiments after 

~15 years (staged)

Physics Performance 

Bari, 5 Jun 2019 B. Kliček, IRB. On behalf of ESSnuSB. 14 

• little dependence on mass hierarchy, 

• δCP coverage at 5 σ C.L. up to 60%, 

• δCP accuracy down to 6° at 0° and 180° 
(absence of CPV for these two values), 

• not yet optimised facility, 

• 5/10% systematic errors on signal/background. 

540 km 

5/5 yrs 

DUNE

ESSnuSB



Neutrino Mass Ordering

Which is the 
right way?!

Sign of            is known

Sign of            is unknown
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What depends on sign of               

Neutrino oscillation probabilities could depend on the sign of 


However, this is not an effective way of determining the sign of             due to 
the presence of  “degeneracies”
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252 NEUTRINO OSCILLATIONS IN VACUUM

relation in eqn (7.28), we obtain

∑

k

|Uαk|2 |Uβk|2 = δαβ − 2
∑

k>j

"e
[
U∗

αk Uβk Uαj U∗
βj

]
, (7.36)

which allows one to write the oscillation probability as

Pνα→νβ
(L, E) = δαβ − 2

∑

k>j

"e
[
U∗

αk Uβk Uαj U∗
βj

]
[

1 − cos

(
∆m2

kjL

2E

)]

+ 2
∑

k>j

#m
[
U∗

αk Uβk Uαj U∗
βj

]
sin

(
∆m2

kjL

2E

)

, (7.37)

or in the form

Pνα→νβ
(L, E) = δαβ − 4

∑

k>j

"e
[
U∗

αk Uβk Uαj U∗
βj

]
sin2

(
∆m2

kjL

4E

)

+ 2
∑

k>j

#m
[
U∗

αk Uβk Uαj U∗
βj

]
sin

(
∆m2

kjL

2E

)

. (7.38)

The oscillation probabilities of the channels with α $= β are usually called transition
probabilities, whereas the oscillation probabilities of the channels with α = β are
usually called survival probabilities. Since, in the case of the survival probabilities,
the quartic products in eqn (7.25) are real and equal to |Uαk|2|Uαj|2, the survival
probabilities can be written in the simple form

Pνα→να(L, E) = 1 − 4
∑

k>j

|Uαk|2 |Uαj |2 sin2

(
∆m2

kjL

4E

)

. (7.39)

It is interesting to see for which values of |Uαk|2 and |Uβk|2 with α $= β, the
average transition probability in eqn (7.33) has its maximum. Since the values of
|Uαk|2 and |Uβk|2 are subject to the unitarity constraints

∑

k

|Uαk|2 = 1 and
∑

k

|Uβk|2 = 1 , (7.40)

we can use the method of the Lagrange multipliers and calculate the stationary
point of

f(|Uαk|2, |Uβk|2) =
∑

k

|Uαk|2 |Uβk|2 − a

(

1 −
∑

k

|Uαk|2
)

− b

(

1 −
∑

k

|Uβk|2
)

,

(7.41)
where a and b are the Lagrange multipliers. The stationary point is given by

0 =
df

d|Uαk|2
= |Uβk|2 + a , 0 =

df

d|Uβk|2
= |Uαk|2 + b . (7.42)
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Matter Effects

NEUTRINO–ELECTRON INTERACTIONS 137

W

νe e−

e− νe

+ Z
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ν̄e + e− → ν̄e + e−: charged current (a) and neutral current (b).

low-energy Lagrangian for the elastic scattering processes in eqns (5.6) and (5.7) is
given by
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with the coefficients gl
V and gl

A given in Table 3.6 (page 78). The first term on
the right-hand side is the charged-current contribution. The second term is the
neutral-current contribution. The charged-current contribution can be rearranged
with the Fierz transformation in eqn (2.508), leading to an expression which has the
same form as the neutral-current contribution. This allows us to write the effective
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FIG. 17: The MiniBooNE neutrino mode EQE
⌫ distributions, corresponding to the total 18.75⇥1020

POT neutrino data in the 150 < EQE
⌫ < 1250 MeV energy range, for ⌫e CCQE data (points with

statistical errors) and predicted backgrounds (colored histograms). The dashed histogram shows

the best fit to the neutrino-mode data assuming two-neutrino oscillations.
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FIG. 18: The MiniBooNE neutrino mode cos ✓ distributions, corresponding to the total 18.75⇥1020

POT neutrino data in the 150 < EQE
⌫ < 1250 MeV energy range, for ⌫e CCQE data (points with

statistical errors) and predicted backgrounds (colored histograms). The dashed histogram shows

the best fit to the neutrino-mode data assuming two-neutrino oscillations.

VI. BACKGROUND STUDIES AND CONSTRAINTS

Constraints have been placed on the various backgrounds in Table I by direct measure-

ments of these backgrounds in the MiniBooNE detector. The ⌫µ CC background has been

well measured [28] by using the Michel electrons from muon decay to identify the event topol-
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FIG. 8: The MiniBooNE neutrino mode cos ✓ distributions, corresponding to the total 18.75⇥1020

POT data in the 200 < EQE
⌫ < 1250 MeV energy range, for ⌫e CCQE data (points with statistical

errors) and background (colored histogram). The dashed histogram shows the best fit to the

neutrino-mode data assuming two-neutrino oscillations.
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⌫ distributions, corresponding to the total 18.75⇥1020

POT data in the 200 < EQE
⌫ < 3000 MeV energy range, for ⌫e CCQE data (points with statistical

errors) and predicted backgrounds (colored histograms). The constrained background is shown

as additional points with systematic error bars. The dashed histogram shows the best fit to the

neutrino-mode data assuming two-neutrino oscillations. The last bin is for the energy interval from

1500-3000 MeV.
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FIG. 1: The antineutrino mode (top) and neutrino mode (bot-
tom) EQE

⌫ distributions for ⌫e CCQE data (points with sta-
tistical errors) and background (histogram with systematic
errors).

ing the predicted e↵ects on the ⌫µ, ⌫̄µ, ⌫e, and ⌫̄e CCQE
rate from variations of parameters. These include uncer-
tainties in the neutrino and antineutrino flux estimates,
uncertainties in neutrino cross sections, most of which
are determined by in-situ cross-section measurements at
MiniBooNE [20, 23], uncertainties due to nuclear e↵ects,
and uncertainties in detector modeling and reconstruc-
tion. A covariance matrix in bins of EQE

⌫ is constructed
by considering the variation from each source of system-
atic uncertainty on the ⌫e and ⌫̄e CCQE signal, back-
ground, and ⌫µ and ⌫̄µ CCQE prediction as a function of
EQE

⌫ . This matrix includes correlations between any of
the ⌫e and ⌫̄e CCQE signal and background and ⌫µ and
⌫̄µ CCQE samples, and is used in the �2 calculation of
the oscillation fits.

Fig. 1 (top) shows the EQE
⌫ distribution for ⌫̄e CCQE

data and background in antineutrino mode over the full
available energy range. Each bin of reconstructed EQE

⌫

corresponds to a distribution of “true” generated neu-
trino energies, which can overlap adjacent bins. In an-
tineutrino mode, a total of 478 data events pass the
⌫̄e event selection requirements with 200 < EQE

⌫ <
1250 MeV, compared to a background expectation of
399.6±20.0(stat.)±20.3(syst.) events. For assessing the
probability that the expectation fluctuates up to this 478
observed value, the excess is then 78.4 ± 28.5 events or
a 2.8� e↵ect. Fig. 2 (top) shows the event excess as a
function of EQE

⌫ in antineutrino mode.

Many checks have been performed on the data, includ-
ing beam and detector stability checks that show that
the neutrino event rates are stable to < 2% and that
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FIG. 2: The antineutrino mode (top) and neutrino mode (bot-
tom) event excesses as a function of EQE

⌫ . (Error bars include
both the statistical and systematic uncertainties.) Also shown
are the expectations from the best two-neutrino fit for each
mode and for two example sets of oscillation parameters.

the detector energy response is stable to < 1% over the
entire run. In addition, the fractions of neutrino and an-
tineutrino events are stable over energy and time, and
the inferred external event rate corrections are similar in
both neutrino and antineutrino modes.

The MiniBooNE antineutrino data can be fit to
a two-neutrino oscillation model, where the probabil-
ity, P , of ⌫̄µ ! ⌫̄e oscillations is given by P =
sin2 2✓ sin2(1.27�m2L/E⌫), sin

2 2✓ = 4|Ue4|2|Uµ4|2, and
�m2 = �m2

41 = m2
4 � m2

1. The oscillation parame-
ters are extracted from a combined fit of the observed
EQE

⌫ event distributions for muon-like and electron-like
events. The fit assumes the same oscillation probabil-
ity for both the right-sign ⌫̄e and wrong-sign ⌫e, and
no significant ⌫µ, ⌫̄µ, ⌫e, or ⌫̄e disappearance. Using a
likelihood-ratio technique [4], the confidence level values
for the fitting statistic, ��2 = �2(point) � �2(best), as
a function of oscillation parameters, �m2 and sin2 2✓,
is determined from frequentist, fake data studies. The
critical values over the oscillation parameter space are
typically 2.0, the number of fit parameters, but can be
as a low as 1.0 at small sin2 2✓ or large �m2. With
this technique, the best antineutrino oscillation fit for
200 < EQE

⌫ < 3000 MeV occurs at (�m2, sin2 2✓) =
(0.043 eV2, 0.88) but there is little change in probabil-
ity in a broad region up to (�m2, sin2 2✓) = (0.8 eV2,
0.004) as shown in Fig. 3 (top). In the neutrino oscilla-
tion energy range of 200 < EQE

⌫ < 1250 MeV, the �2/ndf
for the above antineutrino-mode best-fit point is 5.0/7.0
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are determined by in-situ cross-section measurements at
MiniBooNE [20, 23], uncertainties due to nuclear e↵ects,
and uncertainties in detector modeling and reconstruc-
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⌫ is constructed
by considering the variation from each source of system-
atic uncertainty on the ⌫e and ⌫̄e CCQE signal, back-
ground, and ⌫µ and ⌫̄µ CCQE prediction as a function of
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⌫ . This matrix includes correlations between any of
the ⌫e and ⌫̄e CCQE signal and background and ⌫µ and
⌫̄µ CCQE samples, and is used in the �2 calculation of
the oscillation fits.

Fig. 1 (top) shows the EQE
⌫ distribution for ⌫̄e CCQE

data and background in antineutrino mode over the full
available energy range. Each bin of reconstructed EQE
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corresponds to a distribution of “true” generated neu-
trino energies, which can overlap adjacent bins. In an-
tineutrino mode, a total of 478 data events pass the
⌫̄e event selection requirements with 200 < EQE

⌫ <
1250 MeV, compared to a background expectation of
399.6±20.0(stat.)±20.3(syst.) events. For assessing the
probability that the expectation fluctuates up to this 478
observed value, the excess is then 78.4 ± 28.5 events or
a 2.8� e↵ect. Fig. 2 (top) shows the event excess as a
function of EQE

⌫ in antineutrino mode.

Many checks have been performed on the data, includ-
ing beam and detector stability checks that show that
the neutrino event rates are stable to < 2% and that
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FIG. 2: The antineutrino mode (top) and neutrino mode (bot-
tom) event excesses as a function of EQE

⌫ . (Error bars include
both the statistical and systematic uncertainties.) Also shown
are the expectations from the best two-neutrino fit for each
mode and for two example sets of oscillation parameters.

the detector energy response is stable to < 1% over the
entire run. In addition, the fractions of neutrino and an-
tineutrino events are stable over energy and time, and
the inferred external event rate corrections are similar in
both neutrino and antineutrino modes.

The MiniBooNE antineutrino data can be fit to
a two-neutrino oscillation model, where the probabil-
ity, P , of ⌫̄µ ! ⌫̄e oscillations is given by P =
sin2 2✓ sin2(1.27�m2L/E⌫), sin
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1. The oscillation parame-
ters are extracted from a combined fit of the observed
EQE

⌫ event distributions for muon-like and electron-like
events. The fit assumes the same oscillation probabil-
ity for both the right-sign ⌫̄e and wrong-sign ⌫e, and
no significant ⌫µ, ⌫̄µ, ⌫e, or ⌫̄e disappearance. Using a
likelihood-ratio technique [4], the confidence level values
for the fitting statistic, ��2 = �2(point) � �2(best), as
a function of oscillation parameters, �m2 and sin2 2✓,
is determined from frequentist, fake data studies. The
critical values over the oscillation parameter space are
typically 2.0, the number of fit parameters, but can be
as a low as 1.0 at small sin2 2✓ or large �m2. With
this technique, the best antineutrino oscillation fit for
200 < EQE

⌫ < 3000 MeV occurs at (�m2, sin2 2✓) =
(0.043 eV2, 0.88) but there is little change in probabil-
ity in a broad region up to (�m2, sin2 2✓) = (0.8 eV2,
0.004) as shown in Fig. 3 (top). In the neutrino oscilla-
tion energy range of 200 < EQE

⌫ < 1250 MeV, the �2/ndf
for the above antineutrino-mode best-fit point is 5.0/7.0

Improved Search for ⌫̄µ ! ⌫̄e Oscillations in the MiniBooNE Experiment

A. A. Aguilar-Arevalo12, B. C. Brown6, L. Bugel11, G. Cheng5, E. D. Church16, J. M. Conrad11, R. Dharmapalan1,
Z. Djurcic2, D. A. Finley6, R. Ford6, F. G. Garcia6, G. T. Garvey9, J. Grange7, W. Huelsnitz9, C. Ignarra11,

R. Imlay10, R. A. Johnson3, G. Karagiorgi5, T. Katori11, T. Kobilarcik6, W. C. Louis9, C. Mariani15, W. Marsh6,
G. B. Mills9, J. Mirabal9, C. D. Moore6, J. Mousseau7, P. Nienaber14, B. Osmanov7, Z. Pavlovic9,

D. Perevalov6, C. C. Polly6, H. Ray7, B. P. Roe13, A. D. Russell6, M. H. Shaevitz5, J. Spitz11, I. Stancu1,
R. Tayloe8, R. G. Van de Water9, D. H. White9, D. A. Wickremasinghe3, G. P. Zeller6, E. D. Zimmerman4

(The MiniBooNE Collaboration)
1University of Alabama; Tuscaloosa, AL 35487

2Argonne National Laboratory; Argonne, IL 60439
3University of Cincinnati; Cincinnati, OH 45221

4University of Colorado; Boulder, CO 80309
5Columbia University; New York, NY 10027

6Fermi National Accelerator Laboratory; Batavia, IL 60510
7University of Florida; Gainesville, FL 32611
8Indiana University; Bloomington, IN 47405

9Los Alamos National Laboratory; Los Alamos, NM 87545
10Louisiana State University; Baton Rouge, LA 70803

11Massachusetts Institute of Technology; Cambridge, MA 02139
12Instituto de Ciencias Nucleares,

Universidad Nacional Autónoma de México, D.F. 04510, México
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The MiniBooNE experiment at Fermilab reports results from an analysis of ⌫̄e appearance data
from 11.27⇥ 1020 protons on target in antineutrino mode, an increase of approximately a factor of
two over the previously reported results. An event excess of 78.4 ± 28.5 events (2.8�) is observed
in the energy range 200 < EQE

⌫ < 1250 MeV. If interpreted in a two-neutrino oscillation model,
⌫̄µ ! ⌫̄e, the best oscillation fit to the excess has a probability of 66% while the background-only
fit has a �2-probability of 0.5% relative to the best fit. The data are consistent with antineutrino
oscillations in the 0.01 < �m2 < 1.0 eV2 range and have some overlap with the evidence for
antineutrino oscillations from the Liquid Scintillator Neutrino Detector (LSND). All of the major
backgrounds are constrained by in-situ event measurements so non-oscillation explanations would
need to invoke new anomalous background processes. The neutrino mode running also shows an
excess at low energy of 162.0 ± 47.8 events (3.4�) but the energy distribution of the excess is
marginally compatible with a simple two neutrino oscillation formalism. Expanded models with
several sterile neutrinos can reduce the incompatibility by allowing for CP violating e↵ects between
neutrino and antineutrino oscillations.

There is growing evidence for short-baseline neutrino
anomalies occurring at an L/E⌫ ⇠ 1 m/MeV, where E⌫

is the neutrino energy and L is the distance that the neu-
trino travelled before detection. These anomalies include
the excess of events observed by the LSND [1] and Mini-
BooNE [2–4] experiments and the deficit of events ob-
served by reactor [5] and radioactive-source experiments
[6]. There have been several attempts to interpret these
anomalies in terms of 3+N neutrino oscillation models
involving three active neutrinos and N additional sterile
neutrinos [7–12]. (Other explanations include, for ex-
ample, Lorentz violation [13] and sterile neutrino decay
[14].) A main goal of MiniBooNE was to confirm or re-
fute the evidence for neutrino oscillations from LSND.
Of particular importance is the MiniBooNE search for

⌫̄µ ! ⌫̄e oscillations since this was the channel where
LSND observed an apparent signal. This paper presents
improved results and an oscillation analysis of the Mini-
BooNE ⌫̄e appearance data, corresponding to 11.27⇥1020

POT in antineutrino mode, which is approximately twice
the antineutrino data reported previously [4].

Even though the first goal of this article is a presen-
tation of the improved antineutrino results, a secondary
goal is to contrast and compare these results with im-
proved MiniBooNE neutrino measurements and, there-
fore, the details of both the neutrino and antineutrino
analysis will be given. Since the original neutrino result
publication [3], improvements to the analysis have been
made that a↵ect both the ⌫e and ⌫̄e appearance search.
These improvements are described and used in the anal-
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Combined with LSND this is a greater than 6 sigma excess 

MiniBooNE is consistent with LSND
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allowed regions. The black point shows the MiniBooNE best fit point. Also shown are 90% C.L.

limits from the KARMEN [26] and OPERA [27] experiments.

reconstructing as an electron candidate.) Fig. 23 shows the excess event radial distributions,

where di↵erent processes are normalized to explain the event excess, while Table III shows

the result of log-likelihood shape-only fits to the radial distribution and the multiplicative

factor that is required for each hypothesis to explain the observed event excess. The two-

neutrino oscillation hypothesis fits the radial distribution best with a �2 = 8.4/9ndf , while

the NC ⇡0 hypothesis has a worse fit with a �2 = 17.2/9ndf . Therefore, NC ⇡0 background

is strongly disfavored as an explanation for the MiniBooNE event excess. The intrinsic ⌫e

backgrounds have a worse �2 than the two-neutrino oscillation hypothesis due to higher

energy ⌫e events having a di↵erent radial distribution than lower energy ⌫e events.

Single-gamma backgrounds from external neutrino interactions (“dirt” backgrounds) are

19

Additional neutrino is needed

3+1scheme S. Goswami (1995)

3+2 scheme Karagiorgi et al (2006)

1+3+1 scheme Choubey,Haries,Ross(2006)

Sterile neutrinos are severely constrained in cosmology

Tension between LSND/MB and data from:
Karmen, NOMAD, E776, ICARUS, OPERA, MINOS,


CDHS, NOvA, IceCube, SK, DeepCore

Short-Baseline Neutrino Program - FNAL,US JSNS2 proposal at JPARC, Japan
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Fig. 1 Regions of L/E probed by the DUNE detector com-
pared to 3-flavor and 3+1-flavor neutrino disappearance and
appearance probabilities. The gray-shaded areas show the
range of true neutrino energies probed by the ND and FD.
The top axis shows true neutrino energy, increasing from right
to left. The top plot shows the probabilities assuming mix-
ing with one sterile neutrino with �m2

41 = 0.05 eV2, corre-
sponding to the slow oscillations regime. The middle plot as-
sumes mixing with one sterile neutrino with �m2

41 = 0.5 eV2,
corresponding to the intermediate oscillations regime. The
bottom plot includes mixing with one sterile neutrino with
�m2

41 = 50 eV2, corresponding to the rapid oscillations
regime. As an example, the slow sterile oscillations cause visi-
ble distortions in the three-flavor ⌫µ survival probability (blue
curve) for neutrino energies ⇠ 10GeV, well above the three-
flavor oscillation minimum.

GLoBES DUNE conceptual design report (CDR) con-
figuration already took into account the e↵ect of the
ND constraint. Thus, since we are now explicitly simu-
lating the ND, larger uncertainties have been adopted
but partially correlated between the di↵erent channels

in the ND and FD, so that their impact is reduced by
the combination of both data sets. The full set of sys-
tematic uncertainties employed in the sterile neutrino
studies is listed in Table 3.

Finally, for oscillations observed at the ND, the
uncertainty on the production point of the neutrinos
can play an important role. We have included an ad-
ditional 20% energy smearing, which produces a simi-
lar e↵ect given the L/E dependence of oscillations. We
implemented this smearing in the ND through multi-
plication of the migration matrices provided with the
GLoBES files by an additional matrix with the 20%
energy smearing obtained by integrating the Gaussian

Rc(E,E0) ⌘ 1

�(E)
p
2⇡

e
� (E�E0)2

2(�(E))2 , (4)

with �(E) = 0.2E in reconstructed energy E0, where E
is the true neutrino energy from simulation.

By default, GLoBES treats all systematic uncertain-
ties included in the fit as normalization shifts. How-
ever, depending on the value of �m2

41
, sterile mix-

ing will induce shape distortions in the measured en-
ergy spectrum beyond simple normalization shifts. As
a consequence, shape uncertainties are very relevant
for sterile neutrino searches, particularly in regions of
parameter space where the ND, with virtually infi-
nite statistics, has a dominant contribution. The cor-
rect inclusion of systematic uncertainties a↵ecting the
shape of the energy spectrum in the two-detector fit
GLoBES framework used for this analysis posed tech-
nical and computational challenges beyond the scope
of the study. Therefore, for each limit plot, we present
two limits bracketing the expected DUNE sensitivity
limit, namely: the black limit line, a best-case sce-
nario, where only normalization shifts are considered
in a ND+FD fit, where the ND statistics and shape
have the strongest impact; and the grey limit line, cor-
responding to a worst-case scenario where only the FD
is considered in the fit, together with a rate constraint
from the ND.

Studying the sensitivity to ✓14, the dominant chan-
nels are those regarding ⌫e disappearance. Therefore,
only the ⌫e CC sample is analyzed and the channels for
NC and ⌫µ CC disappearance are not taken into ac-
count, as they do not influence greatly the sensitivity
and they slow down the simulations. The sensitivity at
the 90% confidence level (CL), taking into account the
systematic uncertainties mentioned above, is shown in
Fig. 2, along with a comparison to current constraints.

For the ✓24 mixing angle, we analyze the ⌫µ CC
disappearance and the NC samples, which are the main

DUNE Collaboration, 2008:12769



Probing LSND with LBL 
Experiments

FIG. 4: Left: Exclusion contours at 3 & 4 � confidence levels for near detector of mass 5t with

di↵erent baselines. Right: Exclusion contours at 3 & 4 � confidence levels for near detector at 595

m baseline with di↵erent detector mass. We consider an exposure of 5+5 for ⌫µ + ⌫̄µ.

statistics at the higher baselines are 1/L2 suppressed, leading to loss of sensitivity for lower

mixing angles for which the oscillation probability is proportionally suppressed. However,

longer baselines allow for oscillations of lower �m2
41 better, leading for better sensitivity for

these parameter regions. The shorter baseline on the other hand has higher statistics due

to lower L, allowing it to measure lower mixing angles better, however, the oscillations for

lower �m2
41 do not develop and the corresponding sensitivity drops.

The right panel of Fig. 4 gives the variation of the exclusion limits as we vary the fiducial

mass. We have kept the baseline fixed at 595 m for all cases in this panel. Results for the

three benchmark masses of 5 t, 400 t and 1kt are shown. The 5 t is chosen for it is given in

DUNE near detector proposal [64], 400 t is chosen because it is going to be the mass of the

ProtoDUNE detector [67] and 1 kt is just another benchmark point. We can see that 400

t and 1 kt configurations can comfortably rule out the LSND result. The 5 t detector can

also almost rule out the LSND allowed region with about 3� C.L.. The figure also shows

that fiducial mass has reached its plateau at 400 t, such that any further increase in detector

mass and/or exposure does not change the sensitivity by any significant amount. So 400 t

10

DUNE Near Detector

Choubey,Pramanik,1604.04731 

See Blennow,Coloma,Fernandez-Martinez,1407.1317 

for ESSnuSB

we assume the same as that given for the DUNE far detector [68]. We vary this benchmark

systematic uncertainties to showcase their impact of the mass and mixing sensitivity.

We use the DUNE flux provided by [69] for this work. A beam power of 1.2 MW and

an exposure of 5 years in νµ and 5 years in ν̄µ mode is used in our analysis. We use the

GLoBES package [65, 66] for simulating the DUNE experiment. The neutrino oscillation

probabilities in the presence of sterile neutrino are calculated using snu, which is a neutrino

oscillation code for calculating oscillation probabilities for GLoBES in the presence of sterile

neutrino [70, 71].

III. RESULTS

As at short baselines, the oscillations due to ∆m2
31 and ∆m2

21 do not develop, at such

distance we can approximate the oscillation probability by an effective two generation frame-

work, which can be written as

P (νµ → νe) " sin2 2θµe sin
2(
∆m2L

4E
) (1)

where θµe is the effective mixing angle and∆m2 is the new mass squared difference. Through-

out this article we work in this approximation and study everything in terms of electron

appearance data only.

The Fig. 1 shows the probability of νµ going to νe as a function of energy at the 595 m

baseline, in presence of one extra sterile neutrino. The red solid curve depicts probability

for θµe = 10◦ and ∆m2 = 0.42 eV2. The blue solid, green dot-dashed and magenta dashed

curves are for θµe = 5◦ and ∆m2 = 0.42 eV2, 1.0 eV2 and 10.0 eV2, respectively. We see

that for higher mixing angles the amplitude of the oscillation increases, and for higher mass-

squared differences the oscillations become faster. In all of the cases depicted in Fig. 1,

we can see substantial oscillations between νµ and νe in presence of sterile neutrino. The

DUNE beam has huge flux in this energy window. Therefore, DUNE near detector should

be highly sensitive in this region of the parameter space.

Fig. 2 shows the event rates for 5 years exposure from a 1.2 MW beam at the near

detector for θµe = 5◦ and ∆m2 = 0.42 eV2 for the appearance channel. The left panel shows

the event rate when there is a sterile neutrino, whereas the right panel shows the event rate

when there is no sterile neutrino.We can see that oscillations due to the sterile neutrino state

6



Neutrino Oscillations in 3+1

At Long Baseline

mass-squared difference ∆m2
31 ! 2.5 × 10−3 eV2, and the LSND mass-squared difference

∆m2
41 ! 1 eV2. One can of course write the most general oscillation probabilities in terms

of these three mass-squared differences, six mixing angles and three phases. However, since

oscillation driven by a given mass-squared difference depends on the L/E of the experiment

concerned, the expression for the oscillation probabilities simplify accordingly. In particular,

the short-baseline experiments have a very small L/E such that sin2(∆m2
ijL/4E) ∼ 0 for

∆m2
21 and ∆m2

31 and only the terms for ∆m2
41 survive. This is the one-mass-scale-dominance

case, where only one oscillation frequency due to one mass scale survives. As a result

the short-baseline experiments depend on only “effective” sterile mixing angles, which are

combinations of the mixing angles θij in Eq. (1). More importantly, since they have only one

oscillation frequency, they do not depend on any CP violation phase. Hence, short-baseline

experiments are completely insensitive to the sterile phases for the 3+1 scenario.3

In long-baseline experiments such as T2HK and DUNE, the oscillations driven by ∆m2
31

dominate while those driven by ∆m2
21 are sub-dominant, while the very fast oscillations

driven by ∆m2
41 ∼ O(1eV2) get averaged out. The transition probability Pµe in the limit

sin2(∆m2
41L/4E) ∼ 1/2 and neglecting earth matter effect is [22]:

P 4ν
µe = P1 + P2(δ13) + P3(δ24) + P4(δ13 + δ24). (2)

Here P1 is the term independent of any phase, P2(δ13) depends only on δ13, P3(δ24) depends

only on δ24 and P4(δ13 + δ24) depends on the combination (δ13 + δ24). The full expression of

the different terms in Eq. (2) are as follows:

P1 =
1

2
sin2 2θ4νµe

+ (a2 sin2 2θ3νµe −
1

4
sin2 2θ13 sin

2 2θ4νµe)(cos
2 θ12 sin

2∆31 + sin2 θ12 sin
2 ∆32)

+ (b2a2 −
1

4
a2 sin2 2θ12 sin

2 2θ3νµe −
1

4
cos4 θ13 sin

2 2θ12 sin
2 2θ4νµe) sin

2∆21 , (3)

P2(δ13) = ba2 sin 2θ3νµe
[

cos(δ13)
(

cos 2θ12 sin
2∆21 + sin2∆31 − sin2∆32

)

−
1

2
sin(δ13)

(

sin 2∆21 − sin 2∆31 + sin 2∆32

)]

, (4)

3 In the 3+2 mass spectrum case, there are two sterile neutrinos and two mass squared difference that affect

the oscillations at very short baselines. In this case therefore, the short baseline experiments are sensitive

to the sterile CP phases.
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of these three mass-squared differences, six mixing angles and three phases. However, since

oscillation driven by a given mass-squared difference depends on the L/E of the experiment

concerned, the expression for the oscillation probabilities simplify accordingly. In particular,

the short-baseline experiments have a very small L/E such that sin2(∆m2
ijL/4E) ∼ 0 for

∆m2
21 and ∆m2

31 and only the terms for ∆m2
41 survive. This is the one-mass-scale-dominance

case, where only one oscillation frequency due to one mass scale survives. As a result

the short-baseline experiments depend on only “effective” sterile mixing angles, which are

combinations of the mixing angles θij in Eq. (1). More importantly, since they have only one

oscillation frequency, they do not depend on any CP violation phase. Hence, short-baseline

experiments are completely insensitive to the sterile phases for the 3+1 scenario.3

In long-baseline experiments such as T2HK and DUNE, the oscillations driven by ∆m2
31

dominate while those driven by ∆m2
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sin2(∆m2
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only on δ24 and P4(δ13 + δ24) depends on the combination (δ13 + δ24). The full expression of

the different terms in Eq. (2) are as follows:
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+ (a2 sin2 2θ3νµe −
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4
sin2 2θ13 sin

2 2θ4νµe)(cos
2 θ12 sin

2∆31 + sin2 θ12 sin
2 ∆32)
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a2 sin2 2θ12 sin
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cos4 θ13 sin

2 2θ12 sin
2 2θ4νµe) sin
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P3(δ24) = ba sin 2θ4νµe
[

cos(δ24)
(

cos 2θ12 cos
2 θ13 sin

2∆21 − sin2 θ13(sin
2∆31 − sin2∆32
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+
1
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sin(δ24)

(

cos2 θ13 sin 2∆21 + sin2 θ13(sin 2∆31 − sin 2∆32)
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, (5)

P4(δ13 + δ24) = a sin 2θ3νµe sin 2θ
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sin2 2θ12 cos

2 θ13 sin
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+ cos 2θ13(cos
2 θ12 sin

2∆31 + sin2 θ12 sin
2∆32)

)

+
1

2
sin(δ13 + δ24)

(

cos2 θ12 sin 2∆31 + sin2 θ12 sin 2∆32

)]

, (6)

where,

sin 2θ3νµe = sin 2θ13 sin θ23

b = cos θ13 cos θ23 sin 2θ12

sin 2θ4νµe = sin 2θ14 sin θ24

a = cos θ14 cos θ24. (7)

We can see from Eq. (2) that even though the ∆m2
41-driven oscillations are averaged out, the

CP phases associated with the sterile sector still appear in the neutrino oscillation probability

Pµe. This dependence comes in term P3(δ24) that depend only on the sterile phase δ24 as

well as in term P4(δ13 + δ24) which depends on combination of δ13 and δ24. Hence, we can

expect the next-generation long-baseline experiments to be sensitive to the sterile phases.

We will see the anti-correlation between δ13 and δ24 manifest in our results on measurement

of these phases in the long-baseline experiments. In fact, as has been pointed above, the

sterile CP phases cannot be measured in the short-baseline experiments which are dedicated

to measuring the sterile neutrino mixing. Hence, experiments like DUNE and T2HK are

the only place where δ24 can be measured in the 3+1 scenario. Note that in Eq. (2) the

probability Pµe does not depend on the mixing angle θ34, hence the corresponding phase

associated with this angle δ34 also does not appear. Once earth matter effects are taken into

account the probability Pµe picks up a θ34 dependence and hence depends on δ34 as well.

However, for DUNE and T2HK experiments earth matter effects are rather weak and hence

their corresponding sensitivity to δ34 cannot be expected to be strong. Therefore, as we will

see in the Results section, these experiments are mainly able to put constraints on δ24.

Prior to proceeding, we briefly discuss our simulation procedure as well as the present

statues of the neutrino oscillation parameters. For our analysis we have used GLoBES
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where,

sin 2θ3νµe = sin 2θ13 sin θ23 (7)

sin 2θ4νµe = sin 2θ14 sin θ24 (8)

X = cos θ14 cos θ24 (9)

Y = cos θ13 cos θ23 sin 2θ12 , (10)

and,

∆ij =
∆m2

ijL

4E
(11)

If we put the approximation ∆m2
21 = 0 and the condition δ13 + δ24 = 0 in Eq. (3-6), we get,

Pµe =
1

2
sin2(2θ4νµe)

+(X2 sin2(2θ3νµe)−
1

4
sin2(2θ13) sin

2(2θ4νµe)) sin
2(∆31)

+X sin(2θ3νµe) sin(2θ
4ν
µe) cos(2θ13) sin

2(∆31) . (12)

On the other hand, for values of ∆m2
41 <<1 eV2, the oscillations due to this mass scale will

survive the detector resolutions and show-up at the long-baseline detector. If we continue

using the approximation ∆m2
21 = 0 while allowing the ∆m2

41-driven oscillatory terms, the

expression for the probability becomes,

Pµe = sin2(2θ4νµe)[sin
2(θ13) sin

2(∆43) + cos2(θ13) sin
2(∆41)]

− cos(δ13 + δ24)X sin(2θ4νµe) sin(2θ
3ν
µe))[sin

2(∆43)− sin2(∆41)]

+
1

2
sin(δ13 + δ24)X sin(2θ4νµe) sin(2θ

3ν
µe))[sin(2∆43)− sin(2∆41)]

+(X2 sin2(2θ3νµe)−
1

4
sin2(2θ13) sin

2(2θ4νµe)) sin
2(∆31)

+ cos(δ13 + δ24)X sin(2θ3νµe) sin(2θ
4ν
µe) cos(2θ13) sin

2(∆31)

+
1

2
sin(δ13 + δ24)X sin(2θ3νµe) sin(2θ

4ν
µe) sin(2∆31) . (13)

If we use the condition δ24 + δ13 = 0 in Eq. (13) we get,

Pµe = sin2(2θ4νµe)[sin
2(θ13) sin

2(∆43) + cos2(θ13) sin
2(∆41)]

−X sin(2θ4νµe) sin(2θ
3ν
µe))[sin

2(∆43)− sin2(∆41)]

+(X2 sin2(2θ3νµe)−
1

4
sin2(2θ13) sin

2(2θ4νµe)) sin
2(∆31)

+X sin(2θ3νµe) sin(2θ
4ν
µe) cos(2θ13) sin

2(∆31) . (14)
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Figure 1: Pµe vs E⌫ in earth matter for 1300 km. Averaging has been done for �m2
4i induced oscillations.

In the left panel, the e↵ect of varying ✓34 within its allowed range is shown with all the CP phases kept

equal to 0. In the right panel, we show the e↵ect of varying CP violating phase �34 when ✓34 = 30
�
, and

the other phases are 0. For both panels, we set ✓14 = 20
�
and ✓24 = 10

�
, and the parameters related to the

3+0 sector at the best-fit values specified in Sec. 4.
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Figure 2: Pµe (both for vacuum and matter) for 3+0 (left panel) and 3+1 (right panel) vs. energy. The

red curves represent the CP conserving case, while the blue ones depict the case with phases set to non-zero

fixed values (see the plot label). For the blue curve in the left panel, the sole 3+0 phase �CP was taken

as 30
o
. Normal hierarchy is taken to be the true hierarchy here, and parameters related to the 3+0 sector

have been set at the best-fit values specified in Sec. 4.

3 A discussion of Neutrino-Antineutrino asymmetries in matter

The consideration of CP violation in terms of an asymmetry defined at the probability level

provides additional insight into the conclusions which can be reliably drawn from data if we

– 6 –
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This dependence has phenomenological implications such as: 

Measuring sterile neutrino paramaters at the LBL expts 

FIG. 6: The expected 95 % C.L contours in sin2 θ24(test)-sin2 θ14(test) plane. The colour code is

same as Fig. 3.
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41(test) plane shown in

the left panel and in the sin2 θ24(test)-∆m2
41(test) plane shown in the right panel. The data in these

plots correspond to standard three-generation oscillation scenario with no sterile mixing while the

fit is done in the 3+1 framework to obtain the exclusion contours. The colour code is same as

Fig. 3.
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This dependence has phenomenological implications such as: 

Modifying the sensitivity of the experiment to standard oscillation params 

more phases ✓24 and ✓34 in addition to the standard CP phase �13. So while studying CP

violation sensitivity of these experiments in the presence of sterile neutrinos, we consider

the following two situations:

1. CP is violated and we do not know the source of its violation. That is, it can be due

to any of the three phases.

2. CP is violated and we know the source of its violation. For instance, say we assume

that it is due to the standard Dirac CP phase �13.

As explained above, we have presented our results for two sets of sterile mixing angles and

for each set we fix the standard oscillation parameters to their best fit values in ‘data’ and

vary all the three true phases in their full range [�⇡, ⇡]. While answering the question of

CP violation in the first scenario, we generate the data at a given true value of �13, �24 and

�34 and calculate the ��
2
min by considering all the eight possible CP conserving scenarios in

the ‘fit’. We marginalise over a fine grid of ✓14, ✓24, ✓34 in their allowed range in the ‘fit’. In

addition, we have marginalised over the test ✓13 in its 3� allowed range.
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FIG. 4: The expected CP violation sensitivity of T2HK (JD⇥2), T2HKK (JD+KD) and

DUNE+JD+KD under the assumption that we do not know the source of its violation. The

bands correspond to variation of �24 and �34 in the true parameter space. The results are for true

normal hierarchy.

The results of CP violation sensitivity in the first scenario are presented in Fig. 4. The

mass hierarchy is kept fixed as NH in both the ‘data’ as well as the ‘fit’ for this figure and in
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CP Violation 
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Figure 5. Discovery potential for excluding the wrong hierarchy (IH) as a function of true �13. In
both panels we have fixed ✓14 = ✓24 = 90. The left (right) panel refers to ✓34 = 0 (✓34 = 300). In
each panel, we give the results for the 3-flavor case (black line) and for the 3+1 scheme for four
di↵erent values of true �14. In the right panel the CP-phase �34 has been marginalized over its full
allowed range.

entrusted to the energy spectrum. A concrete example of this kind has been provided

in the previous subsection. To this regard it is important to underline the fundamental

di↵erence between the experiments (like DUNE) that make use of an on-axis broad-band

neutrino beam and those using an o↵-axis configuration (T2K and NO⌫A). In this last

case, there is basically no spectral information and, as a consequence, there are regions of

the parameters space where the MH discovery potential is almost zero (see for example

Fig. 14 in [18]). In a nutshell, in the o↵-axis configuration one has basically only the events

counting at disposal, while in the on-axis case, there is the extra information coming from

the spectral shape. Needless to say, the precondition to take advantage of this additional

information is a good understanding of all the ingredients that enter the calculation of the

event spectrum and a refined treatment of the related systematic uncertainties.

5 CP-violation searches in the 3+1 scheme

In this section we explore the impact of sterile neutrinos in the CPV searches of DUNE.

In the 3+1 scheme there are three CP-phases, which all can contribute to CPV. We first

discuss the discovery potential of the CPV induced by the standard 3-flavor CP-phase

�13 = �. We will show that, in general, it tends to deteriorate in the 3+1 scheme with

respect to the 3-flavor scheme. Then, we treat the sensitivity to the CPV induced by the

other two CP-phases �14 and �34. Finally, we assess the capability of reconstructing the

two phases �13 and �14.
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FIG. 2: Discovery potential for excluding the wrong octant as
a function of true �13 assuming the LO-NH (left panel) and
HO-NH (right panel) as the true choice. In each panel, we
present the results for the 3-flavor case (black line) and for
the 3+1 scheme for four di↵erent values of true �14. In the 3⌫
case we have marginalized over (✓23, �13) (test). In the 3+1
scheme, we have fixed ✓14 = ✓24 = 90 and ✓34 = 0 and we
have marginalized over (✓23, �13, �14) (test). In all cases we
have marginalized over the mass hierarchy.

Now, let us come to the 3+1 scheme. In this case
the third term in Eq. (12) is active. We can notice that
this term depends on the additional CP-phase �14 (test),
so its sign can been chosen independently of that of the
second term. This circumstance gives much more free-
dom in the 3+1 scheme and there is much more space for
degeneracy. The bi-event plot in Fig. 1 confirms such a
basic expectation. The graph now becomes a blob, which
can be seen as a convolution of an ensemble of ellipses
(see [48, 49]), and the separation between LO and HO
is lost even if one is considering both neutrino and an-
tineutrino events. To better understand this point, let fix
the LO as the true octant and a generic point of the red
LO blob which is located in the overlapping (red/green)
region. This point will correspond to sin2 ✓23 = 0.42 and
two values of the true CP-phases �LO13 and �LO14 . Since
this point is in the overlapping region it is also a point of
the green HO blob. This means that for sin2 ✓23 = 0.58
there exist a combination of two test CP-phases �HO

13 and
�HO
14 , which leads to the same number of neutrino and
antineutrino events.

Numerical results. In our simulations we use the
GLoBES software [58, 59]. For DUNE, we consider a
total exposure of 248 kt · MW · year, shared equally
between neutrino and antineutrino modes. For the de-
tails of the DUNE setup and of the statistical analysis
we refer the reader to our recent paper [49] and refer-
ences therein. Figure 2 displays the discovery potential
for identifying the true octant as a function of true �13.
The left (right) panel refers to the true choice LO-NH
(HO-NH). In both panels, for the sake of comparison,
we show the results for the 3-flavor case (represented by
the black curve). Concerning the 3+1 scheme, we draw
the curves corresponding to four representative values of
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FIG. 3: Discovery potential for excluding the wrong octant
in the space spanned by [sin2 ✓23, �13] (true). The left panel
corresponds to the 3-flavor case, while the right panel repre-
sents the 3+1 case. In the 3-flavor case we have marginalized
over (✓23, �13) (test). In the 3+1 case, in addition we have
marginalized away �14 (true) and �14 (test) since it is un-
known. The solid blue, dashed magenta and dotted black
curves correspond, respectively, to the 2�, 3�, and 4� confi-
dence levels.

true �14 (00, 1800,�900, 900). In the 3⌫ case we have
marginalized over (✓23, �13) (test). In the 3+1 scheme,
we have fixed ✓14 = ✓24 = 90 and ✓34 = 0 and we have
marginalized over (✓23, �13, �14) (test). In all cases we
have marginalized over the mass hierarchy. However, we
have checked that the minimum of ��2 is never reached
in the wrong hierarchy. This confirms that the mass hier-
archy is not a source of degeneracy in the determination
of the octant in DUNE.

The 3-flavor curves have already been discussed in the
literature (see for example [2, 8, 42]). Nonetheless, we
deem it useful to make the following remarks: i) a good
✓23 octant sensitivity for all values of �13 (true) can be
achieved with equal neutrino and antineutrino runs [8],
ii) the spectral information plays an important role in
distinguishing between the two octants for unfavorable
choices of true hierarchy and �13, and iii) always the
sensitivity is higher for the LO case compared to HO
irrespective of the hierarchy choice. For the first time,
during this work, we realized that that this last issue of
asymmetric sensitivity between LO and HO is related to
a synergistic e↵ect of the ⌫µ ! ⌫µ and ⌫µ ! ⌫e channels.
Basically, the ⌫µ ! ⌫µ channel fixes the test value of ✓23
in the octant opposite to its true value. However, such
a test value is not exactly equal to its octant symmetric
choice (i.e., ✓test23 6= ⇡/2 � ✓true23 ). This happens because
the ⌫µ ! ⌫µ survival probability contains higher order
octant-sensitive terms, which can been probed in high-
statistics experiments like DUNE. We find that these cor-
rections always go in the direction of increasing (decreas-
ing) the di↵erence | sin2 ✓test23 � sin2 ✓true23 | by ⇠ 15% with
respect to its default value |0.58 � 0.42| = 0.16 in the
LO (HO) case. Since the leading term of the ⌫µ ! ⌫e
appearance channel is sensitive to this di↵erence, the per-
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This dependence has phenomenological implications such as: 

Modifying the sensitivity of the experiment to standard oscillation params 
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FIG. 4: The expected precision on δ13 for the 3+0 and 3+1 scenarios. The left panel is for T2HK,

the middle panel is for T2HKK and the right panel is for DUNE. The blue dash-dotted curves are

for the 3+0 case and the red dashed curves are for 3+1 case in both theory and data. The curves

are δ24(true)= −90◦.

DUNE. The blue dashed curves are for the standard 3+0 case with no sterile neutrinos while

the red dash-dotted curves are for the 3+1 case with δ24 = −90◦ in data. The other standard

and sterile neutrino oscillation parameters are taken in data as described above and the fit

performed as before. The Fig. 4 shows that the expected precision on δ13 worsens when the

sterile neutrino is present. From Eq. (6) one can see that there is an anti-correlation between

δ13 and δ24 which makes the δ13 precision worse. For DUNE the effect is more compared to

T2HK and T2HKK. For T2HK the δ13 measurement is seen to be nearly unaffected. DUNE

measures δ24 worse than T2HK and T2HKK and hence the corresponding measurement of

δ13 worsens due to the anti-correlation mentioned above. Table II summarises the expected

precision on δ13 for the 3+0 and 3+1 scenario for four benchmark values of δ24(true). We see

that DUNE’s measurement of δ13 gets affected for all δ24 while effect on T2HK’s measurement

of δ13 is negligible.

IV. MEASUREMENT OF THE MIXING ANGLES

Prospects of measuring the sterile neutrino mixing angles at long-baseline experiments

DUNE [24] and T2HK [58] has been studied before. Here we study how well the sterile

mixing can be constrained by combining data from these experiments. We also present the

sensitivity of the individual experiment DUNE, T2HK and T2HKK. Here we consider two
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This dependence has phenomenological implications such as: 

Measuring the sterile CP phase 

FIG. 1: The χ2 vs. δ24(test). The black curves are for T2HK, the red curvess are for T2HKK

and the blue curves are for DUNE. The top left panel is for δ24(true)= 0◦, the top right panel is

for δ24(true)= 90◦, the bottom left panel is for δ24(true)= −90◦ and the bottom right panel is for

δ24(true)= 180◦.

The true values of the phases δ24 will be taken at some benchmark values and will be men-

tioned whenever needed. The true values of standard oscillation parameters are taken at

their current best-fit values, mentioned in Section II. The χ2 is marginalised over the relevant

oscillation parameters in the 3+1 scenario, as discussed in Section II, where the parameters

are allowed to vary within their current 3σ ranges. Although there are three phases in the

3+1 scenario, the role of the phase δ34 is weak. As was discussed in the previous section,

10

Excluded by T2HK

FIG. 2: Top panels show the appearance event spectrum for DUNE (left) and T2HK (right) for

different values of δ24 The green lines are for δ24 = −90◦, red lines are for δ24 = 0◦, the blue lines

are for δ24 = 90◦ and the dark red lines are for δ24 = 180◦. The lower panels show the appearance

event rates at the oscillation maximum as a function of δ24 for DUNE (left) and T2HK (right).

While the black curves give the expected number of events, the green and yellow bands show the

1σ and 3σ statistical uncertainties.

case of T2HK (see Table I).

In order to understand why the measurement of δ24 is expected to be better at T2HK

than DUNE, we show in Fig. 2 the expected electron events at DUNE (top left panel)

and T2HK (top right panel). The four lines in each panel show the expected events for

12
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Non-Standard Interactions
III. NSIS WITH THREE NEUTRINO FLAVORS

The phenomenological consequences of NSIs have been investigated in great detail in the

literature. The widely studied operators responsible for NSIs can be written as [12, 80–82]

LNSI = −2
√
2GF ε

ff ′C
αβ (ναγ

µPLνβ)
(

fγµPCf
′
)

, (9)

where εff
′C

αβ are NSI parameters, α, β = e, µ, τ , f, f ′ = e, u, d and C = L,R. If f #= f ′,

the NSIs are charged-current like, whereas if f = f ′, the NSIs are neutral-current like

and the NSI parameters are defined as εfCαβ ≡ εffCαβ . Note that the operators (9) are non-

renormalizable and they are also not gauge invariant. Thus, using the NSI operators in

equation (9), which lead to a so-called dimension-6 operator after heavy degrees of freedom

are integrated out, and the well-known relation GF/
√
2 % g2W/(8m2

W ),4 we find that the

effective NSI parameters are (see, e.g., [83–85] for discussions)

ε ∝
m2

W

m2
X

, (10)

where mW = (80.385 ± 0.015)GeV ∼ 0.1TeV is the W boson mass and mX is the mass

scale at which the NSIs are generated [10]. Note that the characteristic proportionality

relation (10) is at least valid for energies below the new physics scale mX , where the NSI

operators are effective. If the new physics scale, i.e. the NSI scale, is of the order of 1(10) TeV,

then one obtains effective NSI parameters of the order of εαβ ∼ 10−2(10−4).

In principle, NSIs can affect both (i) production and detection processes and (ii) propa-

gation in matter and (iii) one can have combinations of both effects. In the following, we will

first study production and detection NSIs, including the so-called zero-distance effect, and

then matter NSIs. In addition, we will present mappings with NSIs and discuss approximate

formulae for two neutrino flavors.

A. Production and detection NSIs and the zero-distance effect

In general, production and detection processes, which are based on charged-current in-

teraction processes, can be affected by charged-current like NSIs. For a realistic neutrino

4 The quantity gW is the coupling constant of the weak interaction.

10

If  there exist effective operators of  the form

then they will modify neutrino evolution inside matter

obtain

P (νs
α → νd

β ;L = 0) =
∑

i,j

J i
αβJ

j∗
αβ , (15)

which means that a neutrino flavor transition would already happen at the source before

the oscillation process has taken place. This is known as the zero-distance effect [96]. It

could be measured with a near detector close to the source. In the case that εs = εd = 0,

i.e. without production and detection NSIs, the first term reduces to

∑

i,j

J i
αβJ

j∗
αβ =

∑

i,j

U∗
αiUβiUαjU

∗
βj = δαβ , (16)

which is the first term in equation (6). Note that equation (13) is also usable to describe

neutrino oscillations with a non-unitary mixing matrix, e.g. in the minimal unitarity violation

model [89].

B. Matter NSIs

In order to describe neutrino propagation in matter with NSIs (assuming no effect of

production and detection NSIs, which were discussed in section IIIA), the simple effective

matter potential in equation (3) needs to be extended. Similar to standard matter effects,

NSIs can affect the neutrino propagation by coherent forward scattering in Earth matter.

The Earth matter effects are more or less involved depending on the specific terrestrial

neutrino oscillation experiment. In other words, the Hamiltonian in equation (3) is replaced

by an effective Hamiltonian, which governs the propagation of neutrino flavor states in

matter with NSIs, namely [12, 68–70]

Ĥ =
1

2E

[

Udiag(m2
1, m

2
2, m

2
3)U

† + diag(A, 0, 0) + Aεm
]

, (17)

where the matrix εm contains the (effective) matter NSI parameters εαβ (α, β = e, µ, τ),

which are defined as

εαβ ≡
∑

f,C

εfCαβ
Nf

Ne

(18)

with the parameters εfCαβ being entries of the Hermitian matrix εfC and giving the strengths

of the NSIs and the quantity Nf being the number density of a fermion of type f . Unlike εs

and εd, εm = (εαβ) is a Hermitian matrix describing NSIs in matter, where the superscript

12

These epsilon parameters are called matter NSIs

The corresponding epsilon parameters in an effective charged current 

operator are called source/detector NSIs
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Impact of Matter NSIs

and similarly at the detector,

〈νd
β| = 〈νβ|+

∑

γ=e,µ,τ

εdγβ〈νγ| . (5)

The matrices εs and εd that represent the source and the detector NSIs, repectively, are in

general complex matrices with 18 real parameters each. These are the nine amplitudes |εs/dαβ |

and nine phases ϕs/d
αβ .

The NC-like operators affect the propagation of neutrinos through matter, inducing more

terms similar to the matter potential. The modified time-evolution equation is

i
d

dt











νe

νµ

ντ











=
1

2E



















U †











0 0 0

0 ∆m2
21 0

0 0 ∆m2
31











U + A











1 + εmee εmeµ εmeτ

εmµe εmµµ εmµτ

εmτe εmτµ εmττ







































νe

νµ

ντ











. (6)

The entry 1 in the e− e position of the matter effect matrix stands for the standard matter

effect, while the parameters εmαβ represent the matter NSIs. Since the Hamiltonian has to

be Hermitian, we have the relations εmαβ = εmβα
∗. Thus, there are six amplitudes and three

phases, i.e. nine real parameters in the matter NSI matrix. Subtracting a constant multiple

of the identity matrix does not affect the eigenvectors, and hence, oscillation probabilities.

Therefore, we subtract the element εmµµ from all the diagonal elements. We define εmee
′ =

εmee−εmµµ and εmττ
′ = εmττ −εmµµ and treat these two new parameters as the physical parameters

of the system.

A comprehensive study of the bounds on NSI parameters has been carried out by the

authors of Ref. [13]. The 90 % bounds on the source/detector NSI parameters from their

study are as follows

|εs/dαβ | <











0.041 0.025 0.041

0.026 0.078 0.013

0.12 0.018 0.13











. (7)

For the matter NSI parameters, we follow the discussion in Ref. [14]. In that paper, the

authors have used the bounds from Ref. [13] along with more recent results from SK and

MINOS [1, 15, 16] to obtain the following bounds

|εmαβ| <











4.2 0.3 3.0

0.3 − 0.04

3.0 0.04 0.15











. (8)
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effect, while the parameters εmαβ represent the matter NSIs. Since the Hamiltonian has to

be Hermitian, we have the relations εmαβ = εmβα
∗. Thus, there are six amplitudes and three

phases, i.e. nine real parameters in the matter NSI matrix. Subtracting a constant multiple

of the identity matrix does not affect the eigenvectors, and hence, oscillation probabilities.

Therefore, we subtract the element εmµµ from all the diagonal elements. We define εmee
′ =

εmee−εmµµ and εmττ
′ = εmττ −εmµµ and treat these two new parameters as the physical parameters

of the system.

A comprehensive study of the bounds on NSI parameters has been carried out by the

authors of Ref. [13]. The 90 % bounds on the source/detector NSI parameters from their

study are as follows
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. (7)

For the matter NSI parameters, we follow the discussion in Ref. [14]. In that paper, the

authors have used the bounds from Ref. [13] along with more recent results from SK and

MINOS [1, 15, 16] to obtain the following bounds
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FIG. 1: The probability difference as a function of the nadir angle and the neutrino energy for three

different cases: the exact three-flavor expression (upper-left plot), the approximative three-flavor

expression (upper-right plot), and the exact two-flavor hybrid model expression (lower plot). The

following values of the neutrino parameters have been used: θ12 = 33.57◦, θ13 = 8.73◦, θ23 = 41.9◦,

δ = 0 (no leptonic CP-violation), ∆m2
21 = 7.45 × 10−5 eV2, ∆m2

31 = +2.417 × 10−3 eV2 (normal

neutrino mass hierarchy), and the non-zero NSI parameter values εµτ = 0.033 and εττ = 0.147.

the results in the upper-left plot of Fig. 1 with the results in the upper-right and lower plots.

First, in the case of the approximative three-flavor expression (upper-right plot), we find

that there appears a large region with energy larger than 30 GeV, and in addition, there are

several other areas with energies smaller than 15 GeV. Furthermore, note that the neutrino

energy of the largest maximal region has decreased from 25 GeV to 15 GeV. Second, in

the case of the two-flavor hybrid model expression (lower plot), we note that the largest

maximal region remains at around 25 GeV, but similar areas with energies smaller than

6
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FIG. 2: The relative probability difference AMH
µe as a function of the NSI parameters εeµ and εeτ for

cos θ = −1 (left panel) and cos θ = −0.55 (right panel). The neutrino parameter values used are

the same as in Fig. 1, except that εeµ and εeτ are non-zero, while all other NSI parameter values

have been set to zero.

between NH and IH changes in presence of NSI. In order to show the impact of NSI on the

mass hierarchy sensitivity, we present in Figs. 1 and 2 the contours of the relative difference

AMH
αβ between the neutrino oscillation probabilities Pαβ (including NSI) corresponding to NH

and IH. We define the relative probability difference AMH
αβ as follows (cf. the definition of the

total CP-asymmetry in Ref. [28])

AMH
αβ (θz) =

∆PMH
αβ (θz)

ΣPMH
αβ (θz)

=

∫

∆PMH
αβ (E, θz) dE

∫

ΣPMH
αβ (E, θz) dE

, (7)

where

∆PMH
αβ (E, θz) = PNH

αβ (E, θz)− P IH
αβ (E, θz) ,

ΣPMH
αβ (E, θz) = PNH

αβ (E, θz) + P IH
αβ (E, θz) ,

PNH
αβ and P IH

αβ being the να → νβ oscillation probability for NH and IH, respectively. In

each case, we calculate AMH
αβ for a particular zenith angle θz, while the energy dependence

is integrated out in the range (1-100) GeV.

In Fig. 1, we show the relative probability difference AMH
µµ in the εµτ -εττ plane, keeping

εeµ and εeτ fixed at zero.4 The probabilities are calculated numerically within the full three-

4 Here and throughout the rest of this work, we keep εµµ = 0.
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FIG. 1. Variation in the neutrino oscillation probability Pµe as a function of neutrino energy E with some

of the NSI parameters varied in their allowed range. The central dark curve corresponds to the case of no

NSIs. The values of the standard oscillation parameters used in generating these figures are θ12 = 33.5◦,

θ13 = 8.48◦, θ23 = 42◦, δ = −90◦, ∆m2
21 = 7.50× 10−5 eV2 and ∆m2

31 = 2.45× 10−3 eV2.
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Impact of  Matter NSIs on DUNE
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where A stands for the standard matter potential, �ij = (�m2
ij/2E), and P std

µµ is the

oscillation probability in absence of NSI. Note the di↵erent combination of oscillatory

phases in the terms in Eq. 4.2. The second term in principle should be subleading with

respect to the first term, since it depends quadratically on a combination of �✓23 (⇠ 0.05, in

our case) and ", as opposed to the first term which is linear. However, for energies matching

the oscillation peak, the first term will be strongly suppressed with the oscillatory phase.
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Figure 3. Left: Results from a fit in the ✓23 � � plane to simulated DUNE data alone, and
in combination with T2HK data. Three cases are shown for DUNE: the standard case when no
NSI are allowed in the fit, a case where marginalization is performed over NSI parameters within
previous constraints, and a case where no previous constraints are assumed over NSI during the
fit. The combination with T2HK data is only shown in the case where prior NSI constraints are
imposed in the fit. Right: same results, projected in the ✓23 � "̃µµ plane. The dot indicates the
true input values considered.

Due to the simultaneous dependence of Pµµ on �✓23 and "̃µµ, a degeneracy appears

in this plane. In fact, while in the standard scenario the DUNE experiment is able to

successfully resolve the octant of ✓23 (see Fig. 8 in App. A), when NSI are marginalized

over in the fit this is no longer the case, and the fake solution in the higher octant reappears.

This is explicitly shown in Fig. 3. The left panel shows the results projected onto the ✓23��

plane for three di↵erent scenarios: when no NSI are considered in the analysis (solid yellow),

when NSI are marginalized over within current priors (dashed green) and when NSI are

– 12 –

Coloma, 1511.06357

Reduced sensitivity in delta 
New degenerate solutions in theta23

FIG. 1: Bi-event plot for the DUNE setup. The ellipses represent the SM case, while the colored blobs correspond to SM+NSI
(see the legend). We take sin2 ✓23 = 0.42 (0.58) as benchmark value for the LO (HO). In the SM ellipses, the running parameter
is � varying in the range [�⇡,⇡]. In the SM+NSI blobs there are two running parameters, � and �eµ (or �e⌧ ), both varying in
their allowed ranges [�⇡,⇡].

(HO) octant. In the left (right) panel we have switched on the eµ (e⌧) coupling taking for its modulus |"eµ| = 0.05
(|"e⌧ | = 0.05) and varying the associated CP-phase �eµ (�e⌧ ) in its allowed interval [�⇡,⇡]. The graphs neatly show
that the ✓23 octant separation existing in the SM case is lost in the presence of NSI’s since the two separate ellipses
become overlapping blobs. We can understand how the blobs arise thinking them as a convolution of an infinite
ensemble of ellipses, each corresponding to a di↵erent value of the new phase (�eµ or �e⌧ ). The orientation of the
ellipses changes as a function of such new CP-phase covering a full area in the bi-event space. The shape of the colored
blobs is slightly di↵erent between the two cases of "eµ and "e⌧ as a result of the di↵erent functional dependency of the
transition probability. One can notice that in both panels there is also an overlap among the two hierarchies, which
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Impact of  Source/Detector NSIs

Finally, we explore the effect of runtime on the precision measurement at DUNE.

II. NEUTRINO OSCILLATIONS WITH NON-STANDARD INTERACTIONS

The presence of flavour off-diagonal operators beyond the SM is manifest in the phe-

nomenon of neutrino oscillations. In the standard picture of neutrino oscillations, a neutrino

produced at a source in association with a charged lepton !α is simply

|νs
α〉 = |να〉 , (1)

i.e. the weak-interaction eigenstate with isospin T 3 = +1/2. Similarly, a neutrino that

produces a charged lepton !β at a detector is

〈νd
β| = 〈νβ| , (2)

which is also the weak-interaction eigenstate. Between the source and the detector, the

propagation of neutrinos with energy E is governed by the time-evolution equation

i
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Here, U is the leptonic mixing matrix that is parametrized in terms of three mixing angles

θ12, θ13 and θ23 and one Dirac CP-violating phase δ. The evolution of neutrino states also

depends on the two independent mass-squared differences ∆m2
ij = m2

i −m2
j . When neutrinos

propagate through the earth, the coherent forward scattering of νe off electrons results in

the matter potential A = 2
√
2GFneE, where ne is the number density of electrons. Thus,

standard neutrino oscillation probabilities depend on six oscillation parameters, and are

modified by matter effects.

Beyond the SM, it is possible to have CC-like operators that affect the interactions of

neutrinos with charged leptons. If these operators are not diagonal in flavour basis, then

the production and the detection of neutrinos are affected. The neutrino state produced at

the source in association with the charged lepton !α then also has components of the other

flavours

|νs
α〉 = |να〉+

∑

γ=e,µ,τ

εsαγ|νγ〉 , (4)

4

and similarly at the detector,

〈νd
β| = 〈νβ|+

∑

γ=e,µ,τ

εdγβ〈νγ| . (5)

The matrices εs and εd that represent the source and the detector NSIs, repectively, are in

general complex matrices with 18 real parameters each. These are the nine amplitudes |εs/dαβ |

and nine phases ϕs/d
αβ .

The NC-like operators affect the propagation of neutrinos through matter, inducing more

terms similar to the matter potential. The modified time-evolution equation is
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The entry 1 in the e− e position of the matter effect matrix stands for the standard matter

effect, while the parameters εmαβ represent the matter NSIs. Since the Hamiltonian has to

be Hermitian, we have the relations εmαβ = εmβα
∗. Thus, there are six amplitudes and three

phases, i.e. nine real parameters in the matter NSI matrix. Subtracting a constant multiple

of the identity matrix does not affect the eigenvectors, and hence, oscillation probabilities.

Therefore, we subtract the element εmµµ from all the diagonal elements. We define εmee
′ =

εmee−εmµµ and εmττ
′ = εmττ −εmµµ and treat these two new parameters as the physical parameters

of the system.

A comprehensive study of the bounds on NSI parameters has been carried out by the

authors of Ref. [13]. The 90 % bounds on the source/detector NSI parameters from their

study are as follows

|εs/dαβ | <
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. (7)

For the matter NSI parameters, we follow the discussion in Ref. [14]. In that paper, the

authors have used the bounds from Ref. [13] along with more recent results from SK and

MINOS [1, 15, 16] to obtain the following bounds

|εmαβ| <
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∗. Thus, there are six amplitudes and three
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Therefore, we subtract the element εmµµ from all the diagonal elements. We define εmee
′ =
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of the system.
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and similarly at the detector,
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The matrices εs and εd that represent the source and the detector NSIs, repectively, are in

general complex matrices with 18 real parameters each. These are the nine amplitudes |εs/dαβ |

and nine phases ϕs/d
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The NC-like operators affect the propagation of neutrinos through matter, inducing more
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The entry 1 in the e− e position of the matter effect matrix stands for the standard matter

effect, while the parameters εmαβ represent the matter NSIs. Since the Hamiltonian has to

be Hermitian, we have the relations εmαβ = εmβα
∗. Thus, there are six amplitudes and three

phases, i.e. nine real parameters in the matter NSI matrix. Subtracting a constant multiple

of the identity matrix does not affect the eigenvectors, and hence, oscillation probabilities.

Therefore, we subtract the element εmµµ from all the diagonal elements. We define εmee
′ =

εmee−εmµµ and εmττ
′ = εmττ −εmµµ and treat these two new parameters as the physical parameters

of the system.

A comprehensive study of the bounds on NSI parameters has been carried out by the
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FIG. 1. Variation in the neutrino oscillation probability Pµe as a function of neutrino energy E with some

of the NSI parameters varied in their allowed range. The central dark curve corresponds to the case of no

NSIs. The values of the standard oscillation parameters used in generating these figures are θ12 = 33.5◦,

θ13 = 8.48◦, θ23 = 42◦, δ = −90◦, ∆m2
21 = 7.50× 10−5 eV2 and ∆m2

31 = 2.45× 10−3 eV2.

7

Blennow, S.C. Ohlsson, Pramanik, Raut, 1606.08851



Impact of  S/D + Matter NSIs

θ23 [o]
40 42 44 46 48 50 52

δ 
[o ]

-180

-120

-60

0

60

120

180
No NSIs
S/D NSIs
Matter NSIs
S/D + Matter NSIs

θ23 [o]
40 42 44 46 48 50 52

δ 
[o ]

-180

-120

-60

0

60

120

180
No NSIs
S/D NSIs
Matter NSIs
S/D + Matter NSIs

FIG. 2. Sensitivity of DUNE in the θ23 − δ plane. The simulated true values of these parameters are

42◦ and −90◦, respectively. The contours enclose the allowed region at 90 % credible regions obtained by

marginalizing over only the standard parameters, standard parameters and source/detector NSI parameters,

standard parameters and matter NSI parameters, and standard parameters and all NSI parameters. In the

left (right) panel, the true values of the NSI parameters are taken to be zero (non-zero).

all NSI phases are zero, and they are free to vary in the entire [−180◦, 180◦) range.

A. Effect on precision measurements at DUNE

The current generation of long-baseline neutrino oscillation experiments T2K and NOνA

are already collecting data and have provided a hint of the value of δ [25, 26]. This also

gives hints about the neutrino mass ordering and octant of θ23 [25, 27]. If the data collected

over the next few years do not confirm these hints, then it may be possible for DUNE to

make these measurements. At any rate, we expect that data from DUNE will enable us to

measure these unknown parameters at a higher confidence level.

It becomes important to question whether the presence of NSIs will adversely affect the

precision measurement of these parameters or not. Many recent studies have explored this

question for DUNE [6–10] in the context of matter NSIs. In Fig. 2, we show the effect of NSIs

on the precision measurement of θ23 and δ when the true values of these parameters are 42◦

9
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Constraining NSIs with DUNE
Parameter Only source/detector NSIs Only matter NSIs All NSIs Current bound

|εsµe| 0.017 0.022 0.026

|εsµµ| 0.070 0.065 0.078

|εsµτ | 0.009 0.014 0.013

|εdµe| 0.021 0.023 0.025

|εdτe| 0.028 0.035 0.041

εmee
′ (−0.7,+0.8) (−0.8,+0.9) (−4.2,+4.2)

|εmµe| 0.051 0.074 0.330

|εmτe| 0.17 0.19 3.00

|εmτµ| 0.031 0.038 0.040

εmττ
′ (−0.08,+0.08) (−0.08,+0.08) (−0.15,+0.15)

TABLE I. Expected 90 % credible regions on NSI parameters from DUNE.

shows that the main contribution to the sensitivity to these parameters comes from the

prior introduced for them. Data from DUNE itself contribute only to the extent of provid-

ing more statistics without any significant physics advantage. On the other hand, we find

that the bounds on matter NSI parameters are made substantially more stringent than the

existing bounds. In particular, the bounds on εmee
′, |εmµe| and |εmτe| are improved by a factor

of around five to 15, whereas the bounds on |εmτµ| and εmττ
′ are more or less the same. Our

results on the bounds on the matter NSI parameters are consistent with the ones obtained

in Ref. [8]. It is worth pointing out that the current bounds on the NSI parameters were

derived assuming the existence of only one NSI parameter at a time, whereas we have

obtained our bounds by allowing all relevant parameters to vary at the same time.

C. Correlations between source/detector and matter NSIs

Beyond the SM, CC-like and NC-like NSIs presumably arise from the same model of new

physics. Therefore, it is natural to assume that both source/detector and matter NSIs exist.

It is interesting to probe the presence of correlations between various kinds of NSI parameters

in neutrino oscillations. It is straightforward to pinpoint such correlations from the analytical

expressions for the oscillation probabilities given in Ref. [12]. The non-standard terms in
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FIG. 3: The appearance (left panels) and disappearance (right panels) channel neutrino probabil-

ities as a function of neutrino energy. The different lines are described in the legends and also in

the text. The top panels show the effect of ν3 decay for a larger value of τ3/m3 while the bottom

panels show the effect for a smaller value of τ3/m3.

while Pµµ increases at the oscillation maximum. The opposite trend is seen for the case

when the oscillatory term goes to zero. However, net probability for both appearance as

well as disappearance channels decrease in the case of decay. This is because in our model

the ν3 decays to invisible states which do not show-up at the detector. As expected, the

extent of decrease of the probability increases as we lower τ3/m3 or in other words increase

10

probability Pµe for the case with decay (shown by the red long-dashed lines) can be mimicked

to a large extent by the no decay scenario if we reduce the value of θ23. These probability

curves are shown by the green short-dashed lines. For the top panels we can achieve rea-

sonable matching between the decay and no decay scenario if the θ23 is reduced from 42◦

to 41.3◦ and θ13 is slightly changed from 8.5◦ to 8.3◦. The matching is such that the green

dashed lines is hidden below the red dashed lines in the top panels. In the lower panels,

since the ν3 lifetime is chosen to be significantly smaller, we see a more drastic effect of θ23.

In the lower panels the with decay case for Pµe at θ23 = 42◦ can be somewhat matched by

the no decay case if we take a much reduced θ23 = 28◦. However, the disappearance channel

is not matched between the red long-dashed and green short-dashed line for the value of θ23

that is needed to match the appearance channel for the decay and no decay cases.

This correlation between τ3/m3 and θ23 in Pµe can be understood as follows. No decay

corresponds to infinite τ3/m3. As we reduce τ3/m3, ν3 starts to decay into invisible states

reducing the net Pµe around the oscillation maximum. This reduction increases as we con-

tinue to lower τ3/m3. On the other hand, it is well known that Pµe increases linearly with

sin2 θ23 at leading order. Therefore, it is possible to obtain a given value of Pµe either by

reducing τ3/m3 or by reducing sin2 θ23. Therefore, it will be possible to compensate the

decrease in Pµe due to decay by increasing the value of sin2 θ23. Hence, if we generate the

appearance data taking decay, we will be able to fit it with a theory for stable neutrinos by

suitably reducing the value of sin2 θ23.

The correlation between τ3/m3 and θ23 for the survival channel on the other hand is

complicated. For simplicity, let us understand that within the two-generation framework

first, neglecting matter effects. The effect of three-generations will be discussed a little later

and the effect of earth matter is not crucial for the DUNE energies in this discussion. The

survival probability in the two-generation approximation is given by [35]

P 2G
µµ =

[

cos2 θ23 + sin2 θ23e
−

m3L

τ3E

]2

− sin2 2θ23e
−

m3L

2τ3E sin2

(

∆m2
31L

4E

)

. (3)

The Eq. (3) shows that decay affects both the oscillatory term as well as the constant term

in Pµµ, causing both to reduce. Therefore, it is not difficult to see that with decay included,

the value of θ23 should be increased to get the same Pµµ as in the no decay case. Hence,

in this case again if we generate the disappearance data taking decay, we will be able to fit

it with a theory for stable neutrinos by suitably reducing the value of θ23. However, note

12 L=1300 km

DUNE
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� (2.7)⇥ 10�11

Experiment 90 % C.L. (3�) bound on ⌧3/m3 [s/eV] Ref.

T2K + NO⌫A 2.3 (1.5)⇥ 10�12 [14]

T2K + MINOS 2.8 (1.8)⇥ 10�12 [15]

SK + MINOS 2.9 (0.54)⇥ 10�10 [20]

MOMENT 2.8 (1.6)⇥ 10�11 [17]

ESSnuSB (540 km) 4.22 (1.68)⇥ 10�11 This work

DUNE 4.50 (2.38)⇥ 10�11 [16]

ESSnuSB (360 km) 4.95 (2.64)⇥ 10�11 This work

JUNO 9.3 (4.7)⇥ 10�11 [25]

INO 1.51 (0.566)⇥ 10�10 [21]

KM3NeT-ORCA 2.5 (1.4)⇥ 10�10 [23]

Table 3. Comparison of bounds on ⌧3/m3 from di↵erent experiments. The bounds for T2K +
NO⌫A, T2K + MINOS, and SK+MINOS are obtained using real data.

L = 540 km. Similarly, for the discovery �2, one can see that the separation between

the red solid curve (which is the true point for the discovery �2) and the blue solid curve

(which is the test point for the discovery �2 for fixed ✓23) and the separation between the

red solid curve and the red dashed curve (which is the test point for the discovery �2 when

✓23 is minimized) is very similar for both L = 540 km and L = 360 km. This is why the

discovery �2 is not a↵ected by the ✓23 minimization.

Let us now briefly compare the bound on the decay parameter expected for the ESS-

nuSB experiment, with the corresponding values for other accelerator, atmospheric, and

reactor neutrino experiments. In Table 3, we list the (expected) bounds on ⌧3/m3 from

di↵erent experiments along with what has been obtained in this work. In this table,

the bounds for T2K + NO⌫A, T2K + MINOS, and SK+MINOS are obtained using real

data, whereas for the other experiments, the bounds correspond to numerical simulations

obtained by di↵erent groups. From this table, we note that the bounds obtained from

the ongoing atmospheric neutrino experiment SK along with MINOS, future atmospheric

experiment INO, and the atmospheric data of the future ultra-high energy neutrino experi-

ment KM3NeT-ORCA are one order of magnitude stronger than the bounds obtained from

future accelerator and reactor experiments. On the other hand, the bound obtained from

the currently running accelerator experiments T2K and NO⌫A, along with MINOS, are one

order of magnitude lower than the expected bounds from future accelerator and reactor

experiments. Among ESSnuSB, DUNE, MOMENT, and JUNO, the expected bound for

the JUNO experiment is the strongest and the one for MOMENT is weakest. The sensi-

tivity of ESSnuSB is slightly better than that of DUNE for the baseline option of 360 km

and worse for the baseline option of 540 km, but better than the one of MOMENT.
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tion when the ν3 state decays into a sterile state with
which it does not mix. Also given in section 2 are the
details of our simulation framework needed for the real
data analysis of T2K and NOvA. We next give our result
in section 3 and finally we conclude in section 4.

2. INVISIBLE NEUTRINO DECAY AND
SIMULATION FRAMEWORK

We assume that the ν3 state decays into a sterile neu-
trino and a singlet scalar (ν3 → ν̄4 + J).We also assume
that the neutrino mass eigenstate decays, therefore the

mass matrix as well as the decay matrix can be simul-
taneously diagonalised. In this case the mixing between
the flavor and the mass eigenstates can be written as,

(

να
νs

)

=

(

U 0
0 1

)(

νi
ν4

)

, (1)

where the greek indices represent the standard flavor
states i.e., e, µ, τ and the latin indices represent the
mass eigenstates. U is the standard PMNS matrix. Here
we assume NH i.e., m3 > m2 > m1. In presence of decay
the evolution equation in matter becomes:

i
d

dx





νe
νµ
ντ



 =



U





1

2E





0 0 0
0 ∆m2

21 0
0 0 ∆m2

31



− i
α3

2E





0 0 0
0 0 0
0 0 1







U † +





A 0 0
0 0 0
0 0 0













νe
νµ
ντ



 , (2)

where A = 2
√
2GFneE represents the matter poten-

tial due to neutrino electron scattering in matter, GF

is the Fermi coupling, E is the neutrino energy and ne is
the electron density. We solve Eq. (2) numerically using
Runge-Kutta with constant matter density.
The simulation is done using a modified version of

GLoBES, with modifications needed for real data analy-
sis.
For the analysis of NOvA we have taken a 14 kt detec-

tor at a baseline of 812 km with constant matter density.
We have taken 8.5% energy resolution for electron events
and 6% resolution for muon events. The signal efficiency
is chosen to be 99 % for electron events and 91 % for muon
events. We normalize the number of events to match the
best fit event spectra given in [8] for electrons (6.04×1020

POT) and in [16] for muons (8.85× 1020 POT).
For the analysis of T2K, we have taken a 22.5 kt detec-

tor at a baseline of 295 km with constant matter density.
The energy resolution is taken 8.5 %. The signal effi-
ciency is chosen to be 51.5 % for electron events and 90
% for muon events. We normalise the event spectra to
match the event spectra given in [13] which corresponds
to 7.482× 1020 POT in neutrino mode and 7.471× 1020

POT for anti-neutrino mode.

3. RESULTS

In Fig. 1 we show the constraint on τ3/m3 from the
current data of NOvA and T2K, where the latest ap-
pearance as well as disappearance data sets of both ex-
periments have been taken into consideration in the anal-
ysis. The green solid curve is obtained using NOvA data
alone, the dark red dotted curve is obtained using T2K
data alone, while the black dashed curve is obtained from
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FIG. 1: ∆χ2 = χ2−χ2
min vs τ3/m3 obtained from the analysis

of T2K data (red dashed line), NOvA data (solid green line)
and T2K+NOvA data (black long dashed line).

a combined analysis of NOvA and T2K data. The pa-
rameters θ23 and ∆m2

32 are marginalised in the fit over
their 3σ allowed ranges and δCP is marginalised over
its full range. It can be seen from the Fig. 1, that for
both experiments the no decay scenario is slightly dis-
favoured and the best-fit value from the fit comes for
non-zero decay. NOvA disfavors the no decay scenario
at 0.7σ and the best-fit value is τ3/m3 = 3.16 × 10−12

s/eV. T2K disfavors the no decay case at slightly more
than 1σ and the best-fit value is 1× 10−11 s/eV. For the
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Conclusion
CP violation is expected to be discovered at more than 5 sigma significance


This has far-reaching implications for theoretical models of neutrino mass 
and leptogenesis


Neutrino mass ordering should be discovered at high significance in DUNE 
and atmospheric neutrino experiments 


Octant of theta23 is important for model building and will be probed


New Physics can affect the measurement of all of above and needs to be kept 
in mind


New physics itself can be studied at neutrino facilities


