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A central challenge of modern cosmology is to construct a consistent 
history of the universe that explains these correlations.

The physics of the early universe is encoded in spatial correlations 
between cosmological structures at late times:



The correlations can be traced back to primordial correlations at 
the beginning of the hot big bang.

To explain the observed fluctuations in the CMB, these fluctuations 
must be created before the hot big bang!

t = 0



t = 0

?

What is the space of consistent histories?

• What are the rules that consistent correlators have to satisfy?

• How are these rules encoded in the boundary observables?



Similar questions have been asked for scattering amplitudes:

?

In that case, the rules of quantum mechanics and relativity are very 
constraining.



?

Does a similar rigidity exist for cosmological correlators?

Goal: Develop an understanding of cosmological correlators that 
parallels our understanding of flat-space scattering amplitudes.



The connection to scattering amplitudes is also relevant because 
the early universe was like a giant cosmological collider:

Chen and Wang [2009]
DB and Green [2011]

Noumi, Yamaguchi and  Yokoyama [2013] 
Arkani-Hamed and Maldacena [2015]

Arkani-Hamed, DB, Lee and Pimentel [2018]
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During inflation, the rapid expansion can produce very massive 
particles ( 1014 GeV) whose decays lead to nontrivial correlations.



10 billion yrs

<< 1 sec

Goal: Develop a systematic way to predict these signals.

• These correlations are tracers of the inflationary dynamics.

• They leaving an imprint in the distribution of galaxies.



Any Questions?
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Why Bootstrap?

• Computations using Feynman diagrams are complicated.
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• Computations using Feynman diagrams are complicated.
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Why Bootstrap?



• Physical answers are simple.
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Why Bootstrap?



• Physical answers are simple.

thousands of diagrams, 

each involving hundreds of terms=

graviton

h12i4[34]4
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Why Bootstrap?



S-matrix Bootstrap

• Bootstrap methods are very powerful.

• Massless 3pt amplitudes are fixed by Lorentz invariance:

• Higher-point amplitudes are constrained by locality:
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Benincasa and Cachazo [2007]



S-matrix Bootstrap

• Bootstrap methods are very powerful.

�µ1...µS

hµ⌫

• Consistent factorisation is a nontrivial constraint:

S = { 0 , 1
2 , 1 , 3

2 , 2 }• Only consistent for spins

YM
GR

SUSY

Benincasa and Cachazo [2007]

McGady and Rodina [2010]



Any Questions?
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The Challenge

Cosmological correlators are hard to compute.

I. Scalar correlators

II. Tensor correlators

No analytic results, even for tree-level exchange.

No results beyond three-point functions.

= ?



If inflation is correct, then all primordial correlations live on the boundary 
of an approximate de Sitter spacetime:

• Isometries of dS become conformal symmetries on the boundary. 

• This constrains the correlations of weakly interacting particles. 

Inflation       De Sitter
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De Sitter       Inflation

Inflationary three-point functions are obtained from de Sitter four-point 
functions by evaluating one of the external legs on the background:

We can therefore study de Sitter four-point functions as the fundamental 
building blocks of inflationary correlators.



Kinematics

k3 k4

The kinematical data of correlators and amplitudes is similar: 

Raju [2012]

Maldacena and Pimentel [2011]
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A Flat-Space Limit

Note that this limit cannot be accessed for physical momenta.
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The total-energy singularity is a flat-space limit:



Symmetries

If the couplings between particles are weak, then the primordial 
correlations inherit the symmetries of the quasi-de Sitter spacetime:

2) Special Conformal Transformations1) Dilatations
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Ward Identities

Invariance under dilatations and SCTs imply the following Ward identities:
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Bzowski, McFadden and Skenderis [2014]
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Arkani-Hamed, DB, Lee and Pimentel [2018]



These Ward identities dictate how the strength of the correlations 
changes as we change the external momenta:

Ward Identities

Bzowski, McFadden and Skenderis [2014]

Arkani-Hamed and Maldacena [2015]


Arkani-Hamed, DB, Lee and Pimentel [2018]



Singularities

Arkani-Hamed, DB, Lee and Pimentel [2018]
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Contact solutions only 
have total-energy poles.
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Exchange solutions have 
additional partial-energy poles.
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The solutions to the Ward identities can be classified by their singularities:
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Exchange Solutions

There are distinct solutions for distinct microscopic processes during 
inflation:

Arkani-Hamed, DB, Lee and Pimentel [2018]

Remarkably, all solutions can be reduced to a unique building block.
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Seed Solution

More complicated correlators are generated by weight-shifting.
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The explicit solution for the seed function is
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Arkani-Hamed, DB, Lee and Pimentel [2018]
DB, Duaso Pueyo, Joyce, Lee and Pimentel [2019]



Noumi, Yamaguchi and Yokoyama [2013]
Arkani-Hamed and Maldacena [2015]


Arkani-Hamed, DB, Lee and Pimentel [2018]

The Collapsed Limit

In the collapsed limit, the solution oscillates:

lim
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Particle Production

These oscillations are a key signature of particle production during 
inflation:

Oscillations in the superhorizon evolution become oscillations in the 
boundary correlations at late times.



Cosmological Collider Physics
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This signal is the analog of resonances in collider physics:



Any Questions?



III. New 
Developments



So far, we have studied the correlations of scalar fields.

Now, we would like to extend the bootstrap to spinning 
correlators, especially to massless fields with spin.

Arkani-Hamed, DB, Lee and Pimentel [2018]

DB, Duaso Pueyo, Joyce, Lee and Pimentel [2019]

DB, Duaso Pueyo, Joyce, Lee and Pimentel [2020]



Massless Particles in Flat Space

• Massless bosons mediate long-range forces:

gravity electromagnetism

• The interactions of massless particles are highly constrained:

spin 2 = GR spin 1 = YM 

Weinberg [1964]

Benincasa and Cachazo [2007]


McGady and Rodina [2010]



Massless Particles in Inflation

scalar tensor

�ij�

• Fluctuations of all massless fields are amplified during inflation.

• Every inflationary model has two massless modes:

• Not much is known about tensor correlators beyond 3pt functions.

• Direct computations of spinning correlators are very complicated.

• Bootstrap methods are a necessity, not a luxury.
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Two Approaches

DB, Duaso Pueyo, Joyce, Lee and Pimentel [2020]

In our new paper, we derive a large class of spinning correlators in de 
Sitter space. We use two different approaches:

1) Spin-raising operators

2) Singularities

scalar seedspinning correlator

In the following, I will describe the second approach.
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Singularities of Cosmological Correlators

Raju [2012]

Maldacena and Pimentel [2011]


Arkani-Hamed, Benincasa, and Postnikov [2017] 

The four-point function is controlled by three singularities:



Singularities of Cosmological Correlators

The four-point function is controlled by three singularities:

F3 ⇥A3

ER
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• Correlators of massless spinning particles can be constructed 
by gluing together these factorisation channels.

• Not all theories will be consistent with locality. Benincasa and Cachazo [2007]

McGady and Rodina [2014]

cf. BCFW [2005]



A Simple Example

• The factorisation limits of the s-channel are

• The unique solution that is consistent with these limits is

hJ�J�is =
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Consider Compton scattering in de Sitter space.



A More Complicated Example

• The solution in the s-channel is
fixed by factorisation

fixed by total 

energy singularity

fixed by conformal 

symmetry
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Consider Compton scattering of gravitons.
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A More Complicated Example

• The solution in the s-channel is

• The solution in the u-channel is

fixed by total 

energy singularity

fixed by conformal 

symmetry

fixed by factorisation

Consider Compton scattering of gravitons.



One Channel Is Not Enough

• The sum of all channels is constrained by

1) Gauge invariance

2) Lorentz symmetry

So far, we have constructed the individual channels separately.

But, these channels are not physical (like Feynman diagrams).

current conservation = Ward-Takahashi identity
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Conformal invariance of the correlator implies Lorentz invariance 
of the total energy singularity. Neither is automatic!



s-channel t-channel u-channel
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• The flat-space limit of the s-channel is not Lorentz-invariant:

Consider the correlator of one photon and three scalars:

Charge Conservation
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Lorentz-violation disappears when e2 + e4 = 0 charge  
conservation

s-channel t-channel u-channel
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Consider the correlator of one photon and three scalars:

• Adding the t-channel, we get

Charge Conservation
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Discovering Yang-Mills (without gauge symmetry)

• The sum of all channels is only consistent if 
the couplings satisfy the Lie algebra:

[TA, TB ]ab = fABCTC
ab

+

contact

• Consistency also fixes the contact term required by gauge invariance.

+ +

s-channel t-channel u-channel

Consider two gluons and two scalars:



Equivalence Principle (without falling elevators)

hij � � �

2 4 3

s-channel t-channel u-channel

2 = 3 = 4

Consider one graviton and three scalars:

• The individual channels are not consistent.

• The sum of all channels is consistent if and only if

+ +
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Equivalence Principle (without falling elevators)

• The sum of all channels is only consistent if 
all gravitational couplings are universal:

+ +

+

contact

s-channel t-channel u-channel

a b

Consider two gravitons and two scalars:

a = b = c



Any Questions?
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Much more remains to be discovered.

Conclusions

We have only scratched the surface of a fascinating subject:



 

Thank you for your attention!


