

The Cosmological Bootstrap

Daniel Baumann University of Amsterdam

Imperial / Oxford Seminar, 28 April 2020

Based on work with

Nima Arkani-Hamed, Hayden Lee, Guilherme Pimentel, Carlos Duaso Pueyo and Austin Joyce The physics of the early universe is encoded in **spatial correlations** between cosmological structures at late times:

A central challenge of modern cosmology is to construct a **consistent history** of the universe that explains these correlations.

The correlations can be traced back to **primordial correlations** at the beginning of the hot big bang.

To explain the observed fluctuations in the CMB, these fluctuations must be created **before the hot big bang**!

What is the space of consistent histories?

- What are the rules that consistent correlators have to satisfy?
- How are these rules encoded in the boundary observables?

Similar questions have been asked for scattering amplitudes:

In that case, the rules of **quantum mechanics** and **relativity** are very constraining.

Does a similar **rigidity** exist for cosmological correlators?

Goal: Develop an understanding of cosmological correlators that parallels our understanding of flat-space scattering amplitudes.

The connection to scattering amplitudes is also relevant because the early universe was like a giant **cosmological collider**:

During inflation, the rapid expansion can produce very **massive** particles ($\sim 10^{14}$ GeV) whose decays lead to nontrivial correlations.

- These correlations are tracers of the inflationary dynamics.
- They leaving an imprint in the distribution of galaxies.

Goal: Develop a systematic way to predict these signals.

Any Questions?

Outline

New Developments

S-matrix Bootstrap

Bootstrap Philosophy

Modern scattering amplitudes programme

• Computations using Feynman diagrams are complicated.

Computations using Feynman diagrams are complicated.

$$A(1^{h_1}2^{h_2}3^{h_3}4^{h_4}5^{h_5}) =$$

والم المراجع الم دور والمرد المردي الم م اي - مركز ، مركز به او دهمان ماران - مردو - مرجع من به او معرف مردو - مردو او مردو مردو - مردو e in cashe cashe ware can e at cashe cas به الد معدد والراح مورد من الله - والح - والح - والح - والم - و الله، والله، والله، الله الله، والله، والله، والله، والله، والله، والله، والله، والله، والله، الله، عله، والله، At 14. - Anda - Anda

ب غو دهوان دوران د ورود د و ب غو دوران د واخو دهود د و ب غل دوران د وان د ورود د و ب غل دوران دوران دور ب و ب عداد د و ب و د مران د الد ور معدي المراج ، المراج ، وي المراج ، والي ، والمراج ، والم ، والم ، والم ، والمراج ، والم ي، بونه، الان، الوه، له – في طله، الإن، لا في أو – في توام، لول، لوله، أو – أو - فواه، الوله، أو أو بالأه، أو أو - أو -A(34 - 44 - 41

الله ، والله ، والل الله ، والله ، وال الله ، والله ، وا

 \times 24 pages

 $p_1 \cdot p_4 \epsilon_2 \cdot p_1 \epsilon_1 \cdot \epsilon_3 \epsilon_4 \cdot \epsilon_5 \blacktriangleleft$

• Physical answers are simple.

$$A(1^{+}2^{+}3^{+}4^{+}5^{+}) = 0$$

$$A(1^{-}2^{+}3^{+}4^{+}5^{+}) = 0$$

$$A(1^{-}2^{-}3^{+}4^{+}5^{+}) = \frac{\langle 12 \rangle^{3}}{\langle 23 \rangle \langle 34 \rangle \langle 45 \rangle \langle 51 \rangle}$$

[spinor helicity variables]

$$p_{i}^{\mu} = \sigma_{a\dot{a}}^{\mu}\lambda_{i}^{a}\bar{\lambda}_{i}^{\dot{a}}$$
$$\langle ij\rangle = \lambda_{i}^{a}\lambda_{j}^{b}\epsilon_{ab}$$
$$[ij] = \bar{\lambda}_{i}^{\dot{a}}\bar{\lambda}_{j}^{\dot{b}}\epsilon_{\dot{a}\dot{b}}$$

Parke and Taylor [1985]

• Physical answers are simple.

thousands of diagrams, each involving hundreds of terms

$$M(1^{-}2^{-}3^{+}4^{+}) = \frac{\langle 12 \rangle^4 [34]^4}{stu}$$

DeWitt [1967]

S-matrix Bootstrap

- Bootstrap methods are very powerful.
 - Massless 3pt amplitudes are fixed by Lorentz invariance:

• Higher-point amplitudes are constrained by locality:

Benincasa and Cachazo [2007]

S-matrix Bootstrap

- Bootstrap methods are very powerful.
 - Consistent factorisation is a nontrivial constraint:

• Only consistent for spins $S = \{0, \frac{1}{2}, 1, \frac{3}{2}, 2\}$

Benincasa and Cachazo [2007] McGady and Rodina [2010]

Any Questions?

Cosmological Bootstrap

The Challenge

Cosmological correlators are hard to compute.

I. Scalar correlators

No analytic results, even for tree-level exchange.

II. Tensor correlators

No results beyond three-point functions.

Inflation → De Sitter

If inflation is correct, then all primordial correlations live on the boundary of an approximate de Sitter spacetime:

- Isometries of dS become conformal symmetries on the boundary.
- This constrains the correlations of weakly interacting particles.

De Sitter → **Inflation**

Inflationary three-point functions are obtained from de Sitter four-point functions by evaluating one of the external legs on the background:

We can therefore study de Sitter four-point functions as the fundamental building blocks of inflationary correlators.

Kinematics

The kinematical data of correlators and amplitudes is similar:

Maldacena and Pimentel [2011]

A Flat-Space Limit

The total-energy singularity is a flat-space limit:

Note that this limit cannot be accessed for physical momenta.

Symmetries

If the couplings between particles are weak, then the primordial correlations inherit the symmetries of the quasi-de Sitter spacetime:

$$\mathrm{d}s^2 = \frac{-\mathrm{d}t^2 + \mathrm{d}\vec{x}^2}{(Ht)^2}$$

1) **Dilatations**

$$t
ightarrow \lambda t$$

 $ec{x}
ightarrow \lambda ec{x}$

2) Special Conformal Transformations

$$t \to \left(1 - \vec{b} \cdot \vec{x}\right) t$$
$$\vec{x} \to \left(1 - 2\vec{b} \cdot \vec{x}\right) \vec{x} + \left(x^2 - t^2\right) \vec{b}$$

Ward Identities

Invariance under **dilatations** and **SCTs** imply the following **Ward identities**:

$$0 = \left[9 - \sum_{n=1}^{4} \left(\Delta_n - \vec{k}_n \cdot \partial_{\vec{k}_n}\right)\right] F$$
$$0 = \sum_{n=1}^{4} \left[(\Delta_n - 3)\partial_{\vec{k}_n} - (\vec{k}_n \cdot \partial_{\vec{k}_n})\partial_{\vec{k}_n} + \frac{\vec{k}_n}{2}(\partial_{\vec{k}_n} \cdot \partial_{\vec{k}_n})\right] F$$

Bzowski, McFadden and Skenderis [2014] Arkani-Hamed and Maldacena [2015] Arkani-Hamed, DB, Lee and Pimentel [2018]

Ward Identities

These Ward identities dictate how the strength of the correlations changes as we change the external momenta:

Bzowski, McFadden and Skenderis [2014] Arkani-Hamed and Maldacena [2015] Arkani-Hamed, DB, Lee and Pimentel [2018]

Singularities

The solutions to the Ward identities can be classified by their **singularities**:

Contact solutions only

have total-energy poles.

Exchange solutions have additional partial-energy poles.

Arkani-Hamed, DB, Lee and Pimentel [2018]

Exchange Solutions

There are **distinct solutions** for distinct microscopic processes during inflation:

Remarkably, all solutions can be reduced to a **unique building block**.

Arkani-Hamed, DB, Lee and Pimentel [2018]

Seed Solution

The explicit solution for the seed function is

$$F = \sum_{m,n} c_{mn}(M) u^{2m} \left(\frac{u}{v}\right)^{2n} + e^{-\pi M} \left(e^{iM}g(u,v) + \text{c.c.}\right)$$

$$NON-ANALYTIC$$

$$NON-ANALYTIC$$
where $u \equiv s/(k_1 + k_2)$ and $v \equiv s/(k_3 + k_4)$.

More complicated correlators are generated by weight-shifting.

Arkani-Hamed, DB, Lee and Pimentel [2018] DB, Duaso Pueyo, Joyce, Lee and Pimentel [2019]

The Collapsed Limit

In the collapsed limit, the solution oscillates:

Noumi, Yamaguchi and Yokoyama [2013] Arkani-Hamed and Maldacena [2015] Arkani-Hamed, DB, Lee and Pimentel [2018]

Particle Production

These oscillations are a key signature of **particle production** during inflation:

$$e^{iMt} \Rightarrow$$

Oscillations in the superhorizon evolution become oscillations in the boundary correlations at late times.

Cosmological Collider Physics

This signal is the analog of **resonances** in collider physics:

Any Questions?

New Developments

So far, we have studied the correlations of scalar fields.

Arkani-Hamed, DB, Lee and Pimentel [2018] DB, Duaso Pueyo, Joyce, Lee and Pimentel [2019]

Now, we would like to extend the bootstrap to **spinning correlators**, especially to **massless** fields with spin.

DB, Duaso Pueyo, Joyce, Lee and Pimentel [2020]

Massless Particles in Flat Space

• Massless bosons mediate long-range forces:

• The interactions of massless particles are highly constrained:

Weinberg [1964] Benincasa and Cachazo [2007] McGady and Rodina [2010]

Massless Particles in Inflation

- Fluctuations of all massless fields are amplified during inflation.
- Every inflationary model has two massless modes:

- Not much is known about tensor correlators beyond 3pt functions.
- Direct computations of spinning correlators are very complicated.
- Bootstrap methods are a necessity, not a luxury.

Two Approaches

In our new paper, we derive a large class of spinning correlators in de Sitter space. We use two different approaches:

1) Spin-raising operators

2) Singularities

In the following, I will describe the second approach.

DB, Duaso Pueyo, Joyce, Lee and Pimentel [2020]

Singularities of Cosmological Correlators

The four-point function is controlled by **three** singularities:

Raju [2012] Maldacena and Pimentel [2011] Arkani-Hamed, Benincasa, and Postnikov [2017]

Singularities of Cosmological Correlators

The four-point function is controlled by **three** singularities:

- Correlators of massless spinning particles can be constructed by gluing together these factorisation channels. cf. BCFW [2005]
- Not all theories will be consistent with locality.

Benincasa and Cachazo [2007] McGady and Rodina [2014]

A Simple Example

Consider **Compton scattering** in de Sitter space.

• The factorisation limits of the s-channel are

 $E_L \equiv k_{12} + s$ $E_R \equiv k_{34} + s$ $E \equiv k_{12} + k_{34}$

 $E_L E_R \xrightarrow{E \to 0} S$

• The unique solution that is consistent with these limits is

$$\langle J\phi J\phi \rangle_s = \frac{(\vec{\xi_1} \cdot \vec{k_2})(\vec{\xi_3} \cdot \vec{k_4})}{E_L E_R E}$$

• The total energy singularity has the correct residue.

A More Complicated Example

Consider Compton scattering of gravitons.

• The solution in the s-channel is

fixed by factorisation

$$= (\vec{\xi_1} \cdot \vec{k_2})^2 (\vec{\xi_3} \cdot \vec{k_4})^2 \left[\frac{1}{E_L^2 E_R^2} \left(\frac{2sk_1k_3}{E^2} + \frac{2k_1k_3 + E_Lk_3 + E_Rk_1}{E} \right) \right]$$
$$\frac{1}{E_L E_R} \left(\frac{2k_1k_3}{E^3} + \frac{k_{13}}{E^2} + \frac{1}{E} \right) \right]$$
fixed by total energy singularity fixed by conformal symmetry

A More Complicated Example

Consider Compton scattering of gravitons.

• The solution in the s-channel is

$$\begin{aligned} \vec{\xi}_{1} &= (\vec{\xi}_{1} \cdot \vec{k}_{2})^{2} (\vec{\xi}_{3} \cdot \vec{k}_{4})^{2} \left[\frac{1}{E_{L}^{2} E_{R}^{2}} \left(\frac{2sk_{1}k_{3}}{E^{2}} + \frac{2k_{1}k_{3} + E_{L}k_{3} + E_{R}k_{1}}{E} \right) \\ \frac{1}{E_{L}E_{R}} \left(\frac{2k_{1}k_{3}}{E^{3}} + \frac{k_{13}}{E^{2}} + \frac{1}{E} \right) \right] \end{aligned}$$

• The solution in the u-channel is

$$= \frac{1}{E_L^2 E_R^2} \left(\frac{2k_1 k_3}{E^2} + \frac{E_L}{E} \right) \mathcal{N}(\vec{\xi}_1, \vec{\xi}_3, \vec{k}_2, \vec{k}_4)$$

+
$$\frac{1}{E_L E_R} \left(\frac{2k_1 k_3}{E^3} + \frac{k_{13}}{E^2} + \frac{1}{E} \right) \mathcal{M}(\vec{\xi}_1, \vec{\xi}_3, \vec{k}_2, \vec{k}_4)$$

fixed by total energy singularity fixed by conformal symmetry

One Channel Is Not Enough

So far, we have constructed the individual channels separately. But, these channels are **not** physical (like Feynman diagrams).

- The sum of all channels is constrained by
 - 1) Gauge invariance

$$q_i \langle A^i_{\vec{q}} \phi_{\vec{k}_2} \phi_{\vec{k}_3} \phi_{\vec{k}_4} \rangle = \sum_{a=2}^4 e_a \langle \phi_{\vec{k}_a + \vec{q}} \phi_{\vec{k}_3} \phi_{\vec{k}_4} \rangle$$

current conservation = Ward-Takahashi identity

2) Lorentz symmetry

Conformal invariance of the correlator implies Lorentz invariance of the total energy singularity. Neither is automatic!

Charge Conservation

Consider the correlator of one photon and three scalars:

• The flat-space limit of the s-channel is not Lorentz-invariant:

Charge Conservation

Consider the correlator of one photon and three scalars:

• Adding the t-channel, we get

$$+ \underbrace{e_4} \xrightarrow{E \to 0} \frac{1}{E} \left(e_2 \frac{\langle 12 \rangle \langle \bar{2}\bar{4} \rangle \langle 41 \rangle}{ST} - (e_2 + e_4) \frac{\langle 14 \rangle \langle \bar{4}1 \rangle}{2k_1} \frac{1}{T} \right)$$

Lorentz-violation disappears when

$$e_2 + e_4 = 0$$

conservation

Discovering Yang-Mills (without gauge symmetry)

Consider two gluons and two scalars:

 The sum of all channels is only consistent if the couplings satisfy the Lie algebra:

$$[T^A, T^B]_{ab} = f^{ABC} T^C_{ab}$$

- contact
- Consistency also fixes the contact term required by gauge invariance.

Equivalence Principle (without falling elevators)

Consider one graviton and three scalars:

- The individual channels are not consistent.
- The sum of all channels is consistent if and only if

$$\kappa_2 = \kappa_3 = \kappa_4$$

Equivalence Principle (without falling elevators)

Consider two gravitons and two scalars:

• The sum of all channels is only consistent if all gravitational couplings are **universal**:

$$\kappa_a = \kappa_b = \kappa_c$$

Any Questions?

Conclusions

We have only scratched the surface of a fascinating subject:

Much more remains to be discovered.

Thank you for your attention!