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The physics of the early universe is encoded in spatial correlations
between cosmological structures at late times:

A central challenge of modern cosmology is to construct a consistent
history of the universe that explains these correlations.




The correlations can be traced back to primordial correlations at
the beginning of the hot big bang.

To explain the observed fluctuations in the CMB, these fluctuations
must be created before the hot big bang!



What is the space of consistent histories?

* What are the rules that consistent correlators have to satisfy?
e How are these rules encoded in the boundary observables?



Similar questions have been asked for scattering amplitudes:

In that case, the rules of quantum mechanics and relativity are very
constraining.



Does a similar rigidity exist for cosmological correlators?

Goal: Develop an understanding of cosmological correlators that
parallels our understanding of flat-space scattering amplitudes.



The connection to scattering amplitudes is also relevant because
the early universe was like a giant cosmological collider:
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particle
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particle
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Chen and Wang

DB and Green

Noumi, Yamaguchi and Yokoyama
Arkani-Hamed and Maldacena
Arkani-Hamed, DB, Lee and Pimentel

During inflation, the rapid expansion can produce very massive

particles (~1014 GeV) whose decays lead to nontrivial correlations.
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* These correlations are tracers of the inflationary dynamics.
e They leaving an imprint in the distribution of galaxies.

iy, 10 billion yrs

<< 1 sec

Goal: Develop a systematic way to predict these signals.



Any Questions?
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Bootstrap Philosophy

Lagrangian

i o equations of motion
Physical Principles —» — Observables

, spacetime evolution
(Lorentz, locality, ...)

Feynman diagrams

1 1
S:/d4$£ 5 M¢5’”¢—§m2¢2—|—'“

b !

locality  Lorentz parameters




Bootstrap Philosophy

Lagrangian

equations of

Physical Principles —»

IoN
—» QObservables

spaceti olution

(Lorentz, locality, ...)
Eefnman diagra

\/

Modern scattering
amplitudes programme



Why Bootstrap?

e Computations using Feynman diagrams are complicated.

gluon

+ 22 diagrams



Why Bootstrap?

e Computations using Feynman diagrams are complicated.
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Why Bootstrap?

* Physical answers are simple.
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Why Bootstrap?

* Physical answers are simple.

thousands of diagrams,
each involving hundreds of terms

graviton

(12)*[34]*
stu

M(17273747)

DeWitt [1967]



S-matrix Bootstrap

e Bootstrap methods are very powerful.

 Massless 3pt amplitudes are fixed by Lorentz invariance:
[ (12)® \°
T =\ 13)23)

* Higher-point amplitudes are constrained by locality:

e

pl + p2)?

Benincasa and Cachazo [2007]



S-matrix Bootstrap

e Bootstrap methods are very powerful.

e Consistent factorisation is a nontrivial constraint:

Opy...ps
R
e Only consistent for spins S = {0, %, , %, 2}
A
YM  SUSY

Benincasa and Cachazo [2007]
McGady and Rodina [2010]



Any Questions?
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The Challenge

Cosmological correlators are hard to compute.

|. Scalar correlators

No analytic results, even for tree-level exchange.

ll. Tensor correlators

No results beyond three-point functions.



Inflation — De Sitter

If inflation is correct, then all primordial correlations live on the boundary
of an approximate de Sitter spacetime:

==y

* [sometries of dS become conformal symmetries on the boundary.
* This constrains the correlations of weakly interacting particles.




De Sitter — Inflation

Inflationary three-point functions are obtained from de Sitter four-point
functions by evaluating one of the external legs on the background:
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We can therefore study de Sitter four-point functions as the fundamental
building blocks of inflationary correlators.



Kinematics

The kinematical data of correlators and amplitudes is similar:
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A Flat-Space Limit

The total-energy singularity is a flat-space limit:
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Note that this limit cannot be accessed for physical momenta.
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Symmetries

If the couplings between particles are weak, then the primordial
correlations inherit the symmetries of the quasi-de Sitter spacetime:
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Ward Identities

Invariance under dilatations and SCTs imply the following Ward identities:

0 = 9—Z(An—7€nalgn) I
i n=1 -

0= |(An=3)0;, — (kn-0; )0z + 5105, 07 )| F
n=1 L -

Bzowski, McFadden and Skenderis [2014]
Arkani-Hamed and Maldacena [2015]
Arkani-Hamed, DB, Lee and Pimentel [2018]



Ward Identities

These Ward identities dictate how the strength of the correlations
changes as we change the external momenta:

Bzowski, McFadden and Skenderis [2014]
Arkani-Hamed and Maldacena [2015]
Arkani-Hamed, DB, Lee and Pimentel [2018]



Singularities

The solutions to the Ward identities can be classified by their singularities:

A\
E—0

e
EL EFT

EXPANSION

Contact solutions only
have total-energy poles.

LY

EXCHANGE

Exchange solutions have
additional partial-energy poles.

Arkani-Hamed, DB, Lee and Pimentel [2018]



Exchange Solutions

There are distinct solutions for distinct microscopic processes during
inflation:

LA

m = 2H
CONFORMALLY
o D COUPLED SCALARS
— T n
WEIGHT-SHIFTING M,5=0
OPERATORS MASSIVE SCALAR

Remarkably, all solutions can be reduced to a unique building block.

Arkani-Hamed, DB, Lee and Pimentel [2018]



Seed Solution

The explicit solution for the seed function is

m [ U an —Tr 1
F = Z Crrm (M) U (5) + e ™ (e"Mg(u,v) + c.c.)
i _I—I_
ANALYTIC NON-ANALYTIC

where u = s/(k1 +k2) and v =s/(ks + k4) .

More complicated correlators are generated by weight-shifting.

Arkani-Hamed, DB, Lee and Pimentel [2018]
DB, Duaso Pueyo, Joyce, Lee and Pimentel [2019]



The Collapsed Limit

In the collapsed limit, the solution oscillates:

lim = sin|M log(s)]

s—0

Noumi, Yamaguchi and Yokoyama [2013]

Arkani-Hamed and Maldacena [2015]
Arkani-Hamed, DB, Lee and Pimentel [2018]



Particle Production

These oscillations are a key signature of particle production during
inflation:

1Mt

Oscillations in the superhorizon evolution become oscillations in the
boundary correlations at late times.



Cosmological Collider Physics

This signal is the analog of resonances in collider physics:
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Any Questions?



New
Developments



So far, we have studied the correlations of scalar fields.

Arkani-Hamed, DB, Lee and Pimentel [2018]
DB, Duaso Pueyo, Joyce, Lee and Pimentel [2019]

Now, we would like to extend the bootstrap to spinning
correlators, especially to flelds with spin.

DB, Duaso Pueyo, Joyce, Lee and Pimentel [2020]



Massless Particles in Flat Space

* Massless bosons mediate long-range forces:

* The interactions of massless particles are highly constrained:

spin 2 = GR

spin1=YM

Weinberg
Benincasa and Cachazo
McGady and Rodina

1964
2007]

2010]



Massless Particles in Inflation

e Fluctuations of all massless fields are amplified during inflation.
e Every inflationary model has two massless modes:

0, Yij

scalar tensor

* Not much is known about tensor correlators beyond 3pt functions.
e Direct computations of spinning correlators are very complicated.
e Bootstrap methods are a necessity, not a luxury.



Two Approaches

In our new paper, we derive a large class of spinning correlators in de
Sitter space. We use two different approaches:

1) Spin-raising operators

spinning correlator scalar seed

2) Singularities

In the following, | will describe the second approach.

DB, Duaso Pueyo, Joyce, Lee and Pimentel [2020]



Singularities of Cosmological Correlators

The four-point function is controlled by three singularities:

Raju [2012]
Maldacena and Pimentel [2011]
Arkani-Hamed, Benincasa, and Postnikov [2017]



Singularities of Cosmological Correlators

The four-point function is controlled by three singularities:

AgXFg FSXAS

e Correlators of massless spinning particles can be constructed
by gluing together these factorisation channels. cf. BCFW [2005]

e Not all theories will be consistent with locality. Benincasa and Cachazo [2007]
McGady and Rodina [2014]



A Simple Example

Consider Compton scattering in de Sitter space.

e The factorisation limits of the s-channel are

lim 2/ 2/ SEL
E; 50 Er, Egr(kss — s)
EL — /C12 + S
lim 2/ E/ _ E3 ks &1 ko Er =k3s + s
ERr—0 Er FEr(kiz — s) E = k1o + k34

* The unigque solution that is consistent with these limits is

(€1 - k2) (& - Fa)
ELERE

* The total energy singularity has the correct residue. ErEp r20. g

4




A More Complicated Example

Consider Compton scattering of gravitons.

e The solution in the s-channel is
fixed by factorisation

— —

RGRARCRA

1 2skq ks n 2k1ks + Ep ks + Epky
B\ b E

1 2k1k k 1
173 _|_ﬁ_|__
ErEr \ E° E? F

fixed by total / N fixed by conformal
energy singularity symmetry




A More Complicated Example

Consider Compton scattering of gravitons.

e The solution in the s-channel is

— —

RGRARCRA

1 2skq ks n 2k1ks + Ep ks + Epky
B\ b E

1 lekg klg 1
+ 24 =
ErEr \ E° E? FE

f— fixed by factorisation

e The solution in the u-channel is

o 1 [(2kks  EL\ .- = — -
= E]%E]%z( o2 +E>N(§17§37/€2,k4)

1 2k1k’3 k‘lg 1 oL .
2 T k
L ER ( E3 T E2 T E) M(€17€37 2,k4)

_l_

fixed by total / \ fixed by conformal
energy singularity symmetry



One Channel Is Not Enough

So far, we have constructed the individual channels separately.
But, these channels are not physical (like Feynman diagrams).

 The sum of all channels is constrained by

1) Gauge invariance

4

4 <A?(17 ¢E2 ngg ¢E4> - Z 6@<¢Ea_|_g’¢]23 ¢E4>

a—=2

current conservation = Ward-Takahashi identity

2) Lorentz symmetry

Conformal invariance of the correlator implies Lorentz invariance
of the total energy singularity. Neither is automatic!



Charge Conservation

Consider the correlator of one photon and three scalars:

At ¢ ¢ @
P <
€9 €4 €3
s-channel t-channel u-channel

* The flat-space limit of the s-channel is not Lorentz-invariant:

E—0 €2 (<12><24><41> <14><Zﬂ> 1)

\
/4

€2 E ST 2]€1 T
T Ak not Lorentz-invariant
flat-space

amplitude



Charge Conservation

Consider the correlator of one photon and three scalars:

Ao b 9

.
—
YIS

s-channel t-channel

* Adding the t-channel, we get

E—0
T >

Lorentz-violation disappears when

1/ (12)(24)(41)
E (62

ST

62—|—€4:O

-

u-channel

charge
conservation



Discovering Yang-Mills (without gauge symmetry)

Consider two gluons and two scalars:

f4 ¢a GJB ¢b

T4 8 T oA 8 T pasc 7€

s-channel t-channel u-channel

* The sum of all channels is only consistent if

the couplings satisfy the Lie algebra. —+

(AmB)
A B ABCC fac Lep
[T , 1 ]ab = f Tab contact

* Consistency also fixes the contact term required by gauge invariance.



Equivalence Principle (without falling elevators)

Consider one graviton and three scalars:

oo o @

s-channel t-channel u-channel

e The individual channels are not consistent.
* The sum of all channels is consistent if and only if




Equivalence Principle (without falling elevators)

Consider two gravitons and two scalars:

s-channel t-channel u-channel

* The sum of all channels is only consistent if
all gravitational couplings are universal: 4

2

Re

Rqg — RKp = KReg contact




Any Questions?



Conclusions

We have only scratched the surface of a fascinating subject:

Observational : Cosmological
Inflation

Cosmology Collider Physics

Cosmological Bootstrap

Scattering

CFT/Holography Amplitudes

Much more remains to be discovered.



Thank you for your attention!



