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1 Overview

• Introduction and history

• “Wilson’s NRG”

• Modern NRG

• Applications

2 Quantum impurity problems

What are they and why do they have this name? We generally mean a small quantum
mechanical system coupled to a large quantum mechanical system i.e. some small, finite
set of states coupled to some continuum system. Traditionally this comes about because
we have a physical situation like an iron (magnetic) impurity in gold. We can also find
examples of this in atoms adsorbed onto a surface. They are applicable to nano-scale
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physics, as well as being at the heart of techniques like DMFT. These models are applicable
to these kinds of physical situations.

2.1 Why are they interesting and hard?

In the 1930s, it was noticed that some samples of gold didn’t have the resistance profile as a
function of temperature that was expected. Instead of going to zero, as would be expected
from a simple phonon model, but instead had a minimum. This wasn’t understood, but
it was shown that the minimum scaled in the impurity density as Tmin ∝ c

1/5
imp, so the

impurities were definitely important.

T

R

Figure 1: Resistance minimum as a function of temperature i.e. the Kondo effect

Kondo modelled this by a Hamiltonian of the form

HSd =
∑
k

εkc
†
k,σck.σ + JS · S0 (1)

This is a very common kind of Hamiltonian for quantum impurity models. Kondo
performed perturbation theory to third order in J and found that

R = cPhononT
5 +Rimp + cimp(J2 + ρJ3 lnD/T ) (2)

This has a minimum that occurs as observed, but we have a resistance that diverges at
low T . In the best-case scenario we find that

J2 = ρJ3 logD/T (3)

i.e.
TK = De−1/ρJ (4)

Anderson proposed the idea that can be understood now as perturbative one-loop RG.
What he did was to take the conduction band that runs between energies [−D,D]. He
then integrated out the energies about the edge of the band on a scale δD. These give rise
to one-loop Feynman diagrams. Doing this gives an effective model with a new J and a
smaller D. Iterating this gives rise to a scaling equation

dρJ

d lnD
= −2(ρJ)2 (5)
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And therefore
D̃e−1/ρJ̃ = De−1/ρJ = TK (6)

For a very weakly coupled impurity i.e. a small but non-zero J , the coupling will
eventually, at some very low energy, scale to infinity. This is a partial solution that gives
us some idea of what’s going on, but it’s not fantastic as it’s perturbative in J , which still
eventually blows up.

3 Wilson’s NRG

The perturbative approach is doomed to fail, as we can’t consistently take a small param-
eter in which to perform the calculation. What we really want is a fully non-perturbative
technique that uses RG. The cost is that we have to do it numerically. There are four key
steps to this RG procedure

1. Logarithmic discretisation

2. Mapping to a one-dimensional chain (Wilson chain)

3. Iterative diagonalisation procedure

4. Successive Hilbert space truncation

In many ways this is a bespoke technique and is set up specifically for quantum impurity
problems. This is an essentially exact solution (i.e. can reach arbitrary degree of accuracy).
This will give us a complete crossover from a free spin at high temperature to the strong-
coupling fixed point. We will consider not the Kondo model, but instead the Anderson
impurity model. We have a charge degree of freedom which is coupled by some hopping.

Traditionally, one would calculate with flat bands, but we can handle a band with a
generic density of states ρ(ω). The Hamiltonian is given by

H =
∑
k

εkc
†
k,σck,σ +

∑
σ

εdd
†
σdσ + Un↑n↓ +

∑
σ,k

Vkd
†
σck,σ + h.c. (7)

The effect of the bath on the impurity is all contained in the function

∆(ω) := π
∑
k

Vkδ(ω − εk) (8)

Which is essentially the imaginary part of the local density of states i.e.

∆(ω) = −V 2ImGloc(ω) = V 2ρ(ω) (9)

The form of ρ(ω) can have a profound effect on what happens. In a flat band, we find
a normal Anderson model, but we can get very different physics in general. We consider
here the flat band i.e. a constant density of states at the Fermi level.

3



ρ(ω)

ω

δD

δD

2D

Figure 2: Flat density of states

1−1 Λ−1−Λ−1 Λ−2−Λ−2

Figure 3: Logarithmic discretisation

3.1 Logarithmic discretisation

This is the key step and therefore requires some motivation. We want to look at expo-
nentially small excitations which effect the physics. If we wrote down a physical model, it
would have to be exponentially long. We therefore discretise logarithmically so that we can
reach exponentially small excitations in a linear chain length. If, for simplicity, we scale
everything by the bandwidth D s.t. we work in a band running from [−1, 1], we partition
this by some parameter λ into logarithmic intervals, we can then assign a pole at each Λ−n

such that ∫
dωρ(ω) = γ±2n (10)∫

dωρ(ω)ω∫
dωρ(ω)

= ξ±n (11)

We can now sample exponentially finely around the Fermi point. We can now write

1−1 Λ−1−Λ−1 Λ−2−Λ−2

Figure 4: Logarithmic discretisation example weights

4



V

ε0

f0

t0
ε1

f1

t1
ε2

f2

t2
ε3

f3

t3
ε4

f4

t4

Figure 5: One-dimensional chain

H = Himp +
∑
n,σ

ξ+n a
†
n,σan,σ + ξ−n b

†
nσbn,σ + V

∑
n,σ

d†σ

(√
γ+n
π
an,σ +

√
γ−n
π
bn,σ

)
+ h.c. (12)

We can consider these as Fourier modes. We have thrown away some states, but we
have discarded them in a controlled fashion. We have discarded the states which couple
indirectly, but as we take Λ → 1 we recover the model exactly again. We now have an
infinite but discretised version on the model.

3.2 Mapping to a one-dimensional chain

This is a Lanczos-type algorithm: we start with a seed orbital. This gives us an infinite
chain with the impurity at one end. For the flat-band case, we can show that

tn
n�1→ 1

2
(1 + Λ−1)Λ−n/2 (13)

We can now really see the RG structure. If we added an extra orbital, then each
successive orbital tells us about finer energy scales in the problem. These orbitals can be
thought of physically as being energy shells around the impurity, but this is not necessarily
the best way to think about it.

We now have a one-dimensional chain with nice properties. We still have an infinite
chain, and we wish to do numerics. So, where does this leave us?

3.3 Iterative diagonalisation

The crux of the calculation is that these couplings fall off exponentially fast. We can there-
fore think about diagonalising some finite chain and then adding more onto it, diagonalising
at every step. We can now define the whole Hamiltonian as

H = lim
N→∞

[
Λ−(N−1)/2HN

]
(14)

Hn = Λ(n−1)/2

[
Himp + V

∑
σ

(
d†σf0,σ + h.c.

)
+

n∑
σ,m=0

εmf
†
n,σfm,σ +

n∑
σ,m=0

tmf
†
m,σfm,σ + h.c.

]
(15)
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We can now define a transformation between the two

R(HN) = HN+1 (16)

Going to a larger Hilbert space and looking at lower energy scales means that R can be
understood as some sort of RG step. We will end up looking at the flow of the energy
levels as we iterate. This gives us a way to step between chain sizes. We still have the
problem of diagonalising longer and longer chains.

3.4 Successive Hilbert space truncation

In DMRG we have to work hard to decide what states to throw away. Here, the story is
very different, as we know we can throw away the high energy states. This is because if
we have a high-energy state, we know that adding on more states only changes the energy
levels on a smaller scale, so the high energy states will never change the low-energy physics.
We take our energy levels, rescale them by Λ1/2, couple the new states of the chain and
then truncate the high-energy states. We therefore expect to see comparable energy scales
between steps and observe the flow of the energy levels.

This is difficult to understand physically. It would be easier if we could calculate
thermodynamic quantities to have a grip on this. If we consider a Wilson chain of length
N , there is a temperature at which all states we keep are full anyway and everything we
throw away is always empty. There is therefore a temperature at which the chain is very
well described by the model. Note that the energy levels are many-particle energy levels
and are therefore not local quantities.

TN =
Λ−(N−1)/2

β̄
(17)

We normally calculate impurity contributions i.e. the differences of quantities between
those of the free model and that with the impurity.

We then find that the impurity has a certain behaviour as a function of temperature.
Plotting as a function of this temperature, we can find the full crossover as a function of
temperature.

4 Applications

The original formulation of the NRG and of DMRG look very different. It is only fairly
recently that all of the concepts have been linked and this is under the conceptual frame-
work of MPS. Every time we couple another orbital, we are performing a matrix product.
In order to calculate dynamical quantities, we want to reconceptualise DMRG. Instead of
starting with a chain of length 1 and build up, we actually start with a chain of length
N and turn on couplings successively. We then have that the states of each iteration are
given by
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Figure 6: Overall procedure
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Figure 7: Anderson impurity model results
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|se〉n = |s〉n ⊗ |e〉n (18)

Each action of the NRG procedure plucks a state from the environment and couples it
to the system. This is just a matrix product, the matrices are those which diagonalise each
set of state successively. The bond order in the DMRG language is the number of states
we keep at each iteration.

If we consider all of the discarded states that were thrown away, if we were to keep all
of them we would have a complete basis. We can then write down a density matrix and
then calculate, for example, impurity Greens functions

Gimp = 〈〈dσ, d†σ〉〉ω (19)

and indeed calculate essentially anything we want. In addition, the link to DMRG
gives us a way to sense check the NRG procedure, as we can see how much weight we are
throwing away at each state.

5 Closing remarks

DMFT : Map a lattice (correlated) onto a single impurity with a dynamic band which
changes and self-consistently work out structure of conduction band. This is a local self-
energy for each site instead of have non-local correlations.
Multiple-impurity : can get critical physics with two-channel Kondo or quantum dots
Spin-boson models can be examined via these techniques.

Despite being originally reasonably niche, there are many more applications being de-
veloped.
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