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1 Introduction

Often when considering a large number of trials, one will invoke either the law of large
numbers or the central limit theorem. In a sense, the central limit theorem is a more refined
version of the law of large numbers and in the same way, large deviations encapsulate more
again.

If we have N independent and identically distributed random variables {Xi}, i =
1, . . . , N , then we often wish to consider the distribution of the random variable

SN :=
1

N

N∑
i=1

Xi (1)

What do we already know about the probability distribution pSN (s)? The law of large
numbers tells us that for N → ∞ we converge to E[Xi] almost surely. The central limit
theorem tells us that pSN (s) is normally distributed near this mean value. However, nei-
ther of these generally provide information about the tails of the distributions and this
is precisely the remit of large deviations. Let us explore what happens for a couple of
common distributions for pX(x)

Where is this useful? Generically, one cares about this in situtations where we care not
only about the mean, but also about the extreme cases which can do a lot of damage

1. Actuarial applications

2. General insurance

3. Queuing and networks

We also care about it in physics, as it allows us to go beyond predictions of mean values,
which can be trivial. Consider a non-equilibrium scenario with a current flowing down a
wire.
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1.1 Some examples

1.1.1 Probability distributions and generating functions

We first briefly recap some results from probability theory

Definition 1.1 (Generating function). For a continiuous probability distribution p(x), we
define the generating function

f(k) =

∫
dxeikxp(x) =

∞∑
n=1

(ik)n〈xn〉
n!

(2)

And therefore the moments can be extracted from

〈xn〉 = (−i)ndnf

dkn
|k=0 (3)

Theorem 1.1. If we wish to find the probability distribution for a sum of random variables,
we have that

fSN (k) =

∫
dx1 . . . dxNe

i k
N

∑N
i=1 xip(x1) . . . p(xN) =

[
fX

(
k

N

)]N
(4)

Example 1.1 (Gaussian distribution). If we have that

pX(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 (5)

Then we can exactly calculate the distribution for pSN using our knowledge of Fourier
transforms. It is immediately transparent that we end up with a Gaussian and therefore
the central limit theorem is, in this case, exact.

Example 1.2 (Bernoulli distribution). In this case we begin with a discrete distribution,
but for large N the set of outcomes becomes dense and is appropriately described by a
continuous probability distribution.

p(m) = qm(1− q)N−m
(
N
m

)
(6)

Definition 1.2 (Large deviations principle). We note that in both of the previous cases
that the probability distributions are of the form

lim
N→∞

pSN (s) ≈ e−NI(s) (7)

We say that the probability density function satisfies a large deviations principle if the
following limit exists

lim
N→∞

− 1

N
pSN (s) = I(s) (8)

and I(s) is not everywhere 0. Such and I(s) is known as the rate function.
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2 Gärtner-Ellis theorem

Of course, these two cases are very particular and we don’t know: (a) whether many
distributions will even satisfy this large-deviations form and (b) how to calculate the rate
function for less tractable distributions. The Gärtner-Ellis theorem tells us exactly how to
do this

Theorem 2.1 (Gärtner-Ellis theorem).

λ(k) := lim
N→∞

1

N
lnE[eNkSN ] (9)

If λ(k) is differentiable, then SN satisfies a large deviations principles and I(s) is given by
the Legendre-Fenchel transform of λ(k) i.e.

I(s) = sup
k∈R

(ks− λ(k)) (10)

The proof of this is quite technical, but we can provide a heuristic proof of Varadhan’s
theorem

Theorem 2.2 (Varadhan’s theorem). If we consider some generating functional

Wn[f ] = E[enf(Sn)] =

∫
dspSn(s)enf(s) (11)

Then, if Sn satisfies an LDP, we have

Wn[f ] ≈
∫

dsen[f(s)−I(s)] (12)

and, for large n, we have the saddle-point approximation that

Wn[f ] ≈ en sups∈R[f(s)−I(s)] (13)

So, if we define

λ[f ] = lim
n→∞

1

n
lnWn[f ] = sup

s∈R
{f(s)− I(s)} (14)

If we define f = ks, then we have that

λ(k) = sup
s∈R
{ks− I(s)} (15)

This transformation is invertible is λ(k) is differentiable. This, of course, doesn’t tell us a
few of the key results of GE i.e. that pSN satisfies a LDP. This is, however, as close as we
can get without touching GE.
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Example 2.1 (Applying the Gärtner-Ellis theorem). We can prove the two assertions
earlier. For the binomial distribution

lim
N→∞

1

N
〈ekm〉 = ln(pek + 1− p) (16)

⇒ I(s) = s ln
s

p
+ (1− s) ln

1− s
1− p

(17)

Example 2.2 (Simple application of large deviations). There is an insurance company
which settles say, 1 claim a day and also receives p in premiums every day. The size of
the claims, however, are random and there is therefore a risk that in some long time T
that the total amount collected in premiums will not exceed the claims. This is therefore a
problem dealing with small probabilities concerning the sum of a large number of random
variables, which is precisely the remit of large deviations!

Using the property that the rate function is convex, the probability is bounded by

P (x > p) ∼ e−TI(p) (18)

If we demand that this is exponentially small, i.e. = e−r, then we simply have

I(p) =
r

T
(19)

As I(p) is convex we can solve this. If the claims we normally distributed with mean µ
and variance σ2, then, we would have

pGauss = µ+ σ

√
2r

T
(20)

Which can be interpreted as the mean plus some safety margin to account for the risk.

3 Large deviations in physics

3.1 Markov processes

Imagine we have now some probability distribution

p(X1, . . . , XN) = p(X1)
N−1∏
i=1

π(Xi+1|Xi) (21)

with p(X1) some initial PDF for X1 and π(Xi+1, Xi) a transition probability X1 → . . . XN .
If we wish to consider the current

QN =
1

N

N−1∑
i=1

f(xi, xi+1) (22)
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With f(x, x′) = 1− δx,x′ , then the Gärtner-Ellis theorem applies:

λ(k) = lim
N→∞

1

N
ln〈eNk

∑N−1
i=1 f(xi,xi+1)〉 (23)

Using the Markov property, we can examine

〈eNk
∑N−1
i=1 f(xi,xi+1)〉 =

∑
{xi}

p(x1)π(x2|x1)π(x3|x2) . . . π(xN |xN−1)ekf(x1,x2) . . . ekf(xN−1,xN )

(24)
If we define πk(xi|xj) = ekf(xi,xj), then we have

〈eNk
∑N−1
i=1 f(xi,xi+1)〉 =

∑
{xi}

Πk(xN |xN−1) . . .Πk(x2|x1)p(x1) (25)

We can read this as an iterated matrix equation

〈eNk
∑N−1
i=1 f(xi,xi+1)〉 =

∑
j

(
ΠN−1

k p(x1)
)
j

(26)

If this matrix has the appropriate properties, then it will have some spectrum of eigenval-
ues λ1, . . . , λN and this expectation value will be give by λN−1max + . . . , where the . . . are
exponential corrections. Therefore, we can write that

λ(k) = ln ζ(Π̃k) (27)

Where ζ(Π̃k) is the dominant eigenvalue of the “tilted matrix” associate with QN , given
by the elements

Π̃k(x, x′) = π(x|x′)ekq(x,x′) (28)

Example 3.1 (Simplest Markov chain). Imagine we have a two-state Markov system with
transition matrix

π(x|x′) =

{
1− α x = x′

α x 6= x′
(29)

Then, if we wish to consider the current

QN =
1

N

N−1∑
i=1

(1− δxi,xi+1
) (30)

Using the result from before, we simply wish to calculate the largest eigenvalue of the
matrix

Π̃k =

(
1− α αek

αek 1− α

)
(31)

which are simply λ = 1− α± αek. This gives us that the rate function is

I(s) = s ln

[
s(1− α)

α(1− s)

]
− ln

[
1− α + α

s(1− α)

α(1− s)

]
(32)

This has, intuitively, a minimum at s = α.
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