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Preface

Frustrated magnetism has become an extremely active field of research. After
undergoing a revival in the 1990s in the context of applying Anderson’s resonating-
valence-bond (RVB) theory to high-temperature superconductors, the subject has
experienced a tremendous burst of theoretical and experimental activity in the last
decade. Since its first edition in 2000, the major conference in the field, “Highly
Frustrated Magnetism,” now takes place every 2 years and has seen very rapid
growth in participant number. Broad research networks on frustration and related
topics have been established recently both in Europe and in Japan.

Within the context of the European Network on Highly Frustrated Magnetism,
which gathers 14 countries and is supported by the European Science Foundation
(2005–2010), we made the decision to edit a book that would cover all of the impor-
tant aspects of the field. The subject matter would span each of its three pillars:
materials, experiment, and theory. The summer school which was held in Trieste
in summer 2007 as an activity of the ESF network presented the ideal opportunity
for the definitive launch of this project. The response was very positive, and the
400-page volume planned at the outset has increased in size over the intervening
months due to the enthusiasm of the authors, who have produced beautiful reviews
both significantly longer and broader in scope than initially foreseen.

The driving force behind the considerable current activity is the conviction, now
demonstrated by numerous examples, that frustrated magnetism presents an excel-
lent proving ground in which to discover new states and new properties of matter.
For theorists, this conviction comes from the simple observation that long-range
magnetic order, the standard low-temperature instability, cannot be achieved due to
the proliferation of possible ground states. This is true both for classical systems,
where averaging over the various ground states often leads to decaying correlations
at large distances, and for quantum systems, where this proliferation translates into
a very soft spectrum and diverging fluctuations.

The list of proposed alternatives to long-range order is already impressive (resid-
ual entropy, algebraic or dipolar correlations, gapped or gapless spin liquids, spin
nematics; : : :), and one may anticipate further increases over the coming years. A
good example is the role played by frustration in many multiferroic systems. While
the proposals are theoretical, at the root of many of these developments have been
materials scientists. They have invented new families of compounds, rediscovered
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some existing minerals, found synthesis routes to produce them in a form purer
than the natural species, and even discovered some variants of these. Artificial frus-
trated lattices have begun to pave the way towards further new challenges. However,
despite all of these efforts, most of the possible states of matter predicted by theory
remain largely unexplored at the experimental level, and the ultra-clean realizations
of materials required to probe critical behavior are still lacking. There is no doubt
that materials science has a leading role to play in the future of frustrated magnetism.

Experimentally, the absence of a phase transition at a temperature of the same
order as the typical coupling constant signals the possibility of unconventional low-
temperature physics. This is often quantified by the ratio ‚CW=Tc, sometimes called
the Ramirez frustration ratio, where ‚CW is the Curie–Weiss temperature and Tc the
critical temperature (if any). Strong frustration always produces a large ratio. Values
around 50 are not uncommon, and there is no upper limit: in a number of systems,
no phase transition to any type of order has been detected to date.

The concept of frustration is now ubiquitous in physics. In the context of mag-
netism, the name first appeared for spin glasses to describe the difficulty experienced
by these systems in reaching their true ground state when both disorder and frus-
tration act together. While disorder certainly plays a role in the properties of the
materials to be discussed in this volume, the main focus is on the intrinsic effects of
“geometrical” frustration, the general term for the competition between interaction
pathways which arises in clean and periodic, but frustrated, systems.

Frustration and one-dimensionality share many common features: they both lead
to diverging fluctuations, to exotic excitations, and to reduced critical temperatures
due to small additional interactions. However, in frustrated systems, the presence of
several competing states leads to a very large number of low-lying excitations, or
more generally to a redistribution of spectral weight into narrow bands. This can be
manifest as an anomalously large specific heat at low temperatures (and even as a
residual entropy in examples such as spin ice), or as narrow, compressible phases
between incompressible magnetization plateaus.

The field of frustrated magnetism is vast, and dichotomies have emerged natu-
rally over the years: classical vs. quantum, 2D vs. 3D, rare-earth vs. transition-metal
ions, corner-sharing vs. edge-sharing lattices, Ising vs. Heisenberg interactions, etc.
It would be dangerous to neglect these differences, because this is a field where
details matter. Indeed, small interactions are often responsible for the ultimate selec-
tion from among several candidate ground states. This is why, with the exception of
a small number of more general chapters, a significant fraction of the contributions
to this volume concentrate on specific aspects or materials rather than on broader
principles.

The goal of this book is two-fold: the first is to provide a solid introduction
to Highly Frustrated Magnetism for researchers and PhD students beginning their
activities in the field; the second is to review the more advanced topics of cur-
rent interest which, in some cases, remain under development. The volume is
divided into six sections. The first section contains two chapters which provide a
general introduction to classical and quantum frustrated magnetism. The second
section reviews the primary spectroscopic approaches (neutron scattering, resonance
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techniques, light scattering) upon which, in large part, our current experimental
understanding of frustrated magnets is based. The third section is devoted to the
synthesis and crystal growth of frustrated magnets, and to experimental reviews of
the leading families of compounds with frustrated geometries (triangular, kagomé,
spinel, pyrochlore). The fourth section deals with physical effects characteristic of
frustration, such as magnetization plateaus, the spin-Jahn–Teller transition, spin ice,
and spin nematics. The fifth section is devoted entirely to theory, presenting the pri-
mary approaches which have been deployed in trying to cope with the extremely
difficult problem raised by the interplay between quantum fluctuations and frus-
tration. Finally, the last section addresses the effects of frustration in systems with
further degrees of freedom, such as mobile carriers or orbital degeneracy.

What are the leading open issues and challenges in the field? Each reader will
probably have her or his own priority list among the outstanding problems to be
found in this volume. The experimental realization of an RVB spin liquid and the
solution of the Heisenberg model on the kagomé or on the pyrochlore lattice are
long-standing ones. We hope that this book may serve both as a reference and as a
springboard which can contribute to the solution of these fascinating problems.

We would like to express our sincere thanks to Bruce Normand, who proof-read
the chapters written by non-native speakers of English and, in the course of this
ungrateful task, also provided many insightful comments and suggestions.

In conclusion, we would like to thank the International Center for Theoretical
Physics in Trieste for hosting the 2007 Summer School, as well as for supporting
part of its costs, and the European Science Foundation for its constant support of the
HFM network.

France Claudine Lacroix
France Philippe Mendels
Switzerland Frédéric Mila
August 2010
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Chapter 1
Geometrically Frustrated Antiferromagnets:
Statistical Mechanics and Dynamics

John T. Chalker

Abstract These lecture notes provide a simple overview of the physics of geomet-
rically frustrated magnets. The emphasis is on classical and semiclassical treatments
of the statistical mechanics and dynamics of frustrated Heisenberg models, and on
the ways in which the results provide an understanding of some of the main observed
properties of these systems.

1.1 Introduction

This chapter is intended to give an introduction to the theory of thermal fluctua-
tions and their consequences for static and dynamic correlations in geometrically
frustrated antiferromagnets, focusing on the semiclassical limit, and to discuss how
our theoretical understanding leads to an explanation of some of the main observed
properties of these systems. A central theme will be the fact that simple, classi-
cal models for highly frustrated magnets have a ground state degeneracy which is
macroscopic, though accidental rather than a consequence of symmetries. We will
be concerned in particular with (a) the origin of this degeneracy and the possibility
that it is lifted by thermal or quantum fluctuations; (b) correlations within ground
states; and (c) low-temperature dynamics. We concentrate on Heisenberg models
with large spin S , referring to the Chap. 16 by G. Misguich for a discussion of quan-
tum spin liquids, and to the Chap. 12 by M. Gingras for an overview of geometrically
frustrated Ising models in the context of spin ice materials. Several earlier reviews
provide useful further reading, including [1–3] for experimental background, and
[4, 5] for an alternative perspective on theory.

To provide a comparison, it is useful to begin by recalling the behaviour of an
unfrustrated antiferromagnet. To be definite, consider the Heisenberg model with
nearest neighbour exchange J on a simple cubic lattice. As the lattice is bipartite –
it can be separated into two interpenetrating sublattices, in such a way that sites of
one sublattice have as their nearest neighbours only sites from the other sublattice –
the classical ground states are two-sublattice Néel states, in which spins on one

3



4 J.T. Chalker

sublattice all have the same orientation, and those on the other sublattice have the
opposite orientation. These states are unique up to global spin rotations, which are
a symmetry of the model. Their only low energy excitations are long wavelength
spinwaves. These are Goldstone modes – a consequence of the symmetry break-
ing in ground states – and have a frequency !.k/ that is linear in wavevector k at
small k. This classical picture carries over to the quantum system, and for S � 1 it
is sufficient to take account of fluctuations using harmonic spinwave theory. In par-
ticular, within this approximation the sublattice magnetisation at low temperature is
reduced from its classical ground state value S by an amount

ıS D 1

˝

Z
BZ

zJS

„!.k/ Œhn.k/i C 1=2�d3k � 1

2
; (1.1)

where hn.k/i is a Bose factor giving the number of thermally excited spin waves at
wavevector k and 1=2 represents the zero-point contribution, with the integral run-
ning over the Brillouin zone of volume ˝ . Fluctuations increase with temperature
and the sublattice magnetisation falls to zero at the Néel temperature TN. Within
mean field theory kBTN D zJS2, where z is the number of nearest neighbour sites
(six on the simple cubic lattice).

A central reason for the interest in geometrically frustrated magnets is that they
hold out the possibility of evading Néel order. At the simplest level, there is a ten-
dency for frustrated systems to have many low-frequency modes, which means both
that excitations are effective in reducing the ordered moment, because of the factor
of zJS=„!.k/ in (1.1), and that they are thermally populated even at low tempera-
ture. More fundamentally, we will see that frustration may lead to classical ground
states of a quite different kind and suppress TN to zero.

Since the term frustration is used in several different contexts, it is worthwhile to
set out some distinctions before going further. In general terms, classical frustrated
systems have Hamiltonians with competing interactions which make contributions
to the energy that cannot simultaneously be minimised. The concept was originally
discussed in relation to spin glasses, but these are set apart from the systems we
are considering here by the fact that quenched disorder has a controlling influ-
ence on their properties. Frustration as a way of destabilising Néel order has been
studied extensively in models with competing nearest neighbour and further neigh-
bour interactions, notably the J1 � J2 model on the square lattice [6], illustrated in
Fig. 1.1. The classical ground state of this model depends on the ratio J1=J2. For
J1 > 2J2 > 0 neighbouring spins are antiparallel, enforcing ferromagnetic align-
ment of second neighbours and frustration of the interaction J2. In the other regime,
2J2 > J1 > 0, second neighbours are antiferromagnetically aligned at the expense
of frustration of half of the J1 interactions. Interest focuses on the point J1 D 2J2

where these alternative classical states are degenerate, and the consequences of
frustration are likely to be largest. While models of this kind provide an attractive
starting point for theoretical work, there are likely to be difficulties in finding experi-
mental realisations with interaction strengths that place them close to the degeneracy
point. From this perspective, the long-appreciated [7, 8] attraction of geometrically
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J1
J1

J2 J2

Fig. 1.1 Left and centre: J1 � J2 model, showing ground state spin configurations for: 2J1 > J2
(left); and J2 > 2J1 (centre). Right: ground states of classical Heisenberg spins at vertices of
two corner-sharing triangles, with degeneracy arising from rotations about the common spin, as
indicated

frustrated magnets is that they are systems in which structure alone may destabilise
Néel order, with only nearest neighbour interactions. To illustrate this at an elemen-
tary level, consider Heisenberg spins at the vertices of two corner-sharing triangles
with nearest-neighbour antiferromagnetic interactions, also shown in Fig. 1.1. The
ground states are configurations in which spins within each triangle are coplanar
and at relative angles of 2�=3. They have an accidental degeneracy (in addition to
that arising from symmetry) under relative rotations of the spin planes for the two
triangles about the axis defined by the orientation of their common spin.

1.2 Models

The models we are concerned with extend some features present in the simple
system of two corner-sharing triangles to a periodic lattice. In general, we will
consider non-bipartite lattices constructed from corner-sharing arrangements of
frustrated clusters, with local magnetic moments at the vertices of each cluster and
exchange interactions of equal strength between all moments in each cluster (other
arrangements are also of interest, but typically show less dramatic consequences
of frustration) [9, 10]. An important example in two dimensions is the kagomé
lattice, formed from corner-sharing triangles; a three-dimensional analogue is the
pyrochlore lattice, built from corner-sharing tetrahedra: see Fig. 1.2 for illustrations
of both.

The Hamiltonian for these models, written in terms of the exchange energy J
and the spin operators Si at sites i , has the form

H D J
X
hij i

Si � Sj � J

2

X
˛

jL˛ j2 C c

where L˛ D
X
i2˛

Si : (1.2)
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Fig. 1.2 Left: kagomé lattice. Right: pyrochlore lattice

Here, the first sum runs over neighbouring pairs ij of sites, while the second sum
is over clusters ˛. To recognise that this second expression is a correct rewriting of
H in terms of the total spin L˛ of each cluster ˛, it is necessary only to note that
expansion of jL˛j2 generates the required off-diagonal terms Si � Sj , together with
diagonal terms S2

i that contribute to the constant c. The apparent simplicity of this
second form is of course deceptive, since the operators L˛ and Lˇ associated with
two clusters ˛ and ˇ that share a site are not independent.

For future reference it is useful to introduce some terminology. The frustrated
clusters are in general simplices, and their centres occupy sites of a second lat-
tice, called the simplex lattice. Spins in our models are located at the mid-points of
nearest-neighbour links of the simplex lattice. For the kagomé magnet the simplex
lattice is the honeycomb lattice, and for the pyrochlore magnet it is the diamond
lattice.

While the Hamiltonian of (1.2) provides a useful basis for understanding the
properties of a range of geometrically frustrated magnetic materials, various addi-
tional physical contributions to a realistic model may also be important. These
include single-ion anisotropy [11], further neighbour exchange [12, 13], dipolar
interactions [14, 15], Dzyaloshinskii–Moriya interactions [16], magnetoelastic cou-
pling [17], site dilution [18, 19] and exchange randomness [20]. In many cases,
the associated energy scales are small. They set a temperature scale much smaller
than nearest-neighbour exchange, below which they may induce magnetic order or
spin freezing, but they can be neglected at higher temperatures. We omit all these
perturbations and restrict our discussion to models with only nearest neighbour
exchange.

1.3 Some Experimental Facts

The single most revealing property of a geometrically frustrated magnet is arguably
the dependence on temperature T of its magnetic susceptibility �. It is convenient
to consider plots of ��1 vs T , which at high temperature have the linear form

��1 / T ��CW; (1.3)
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where the Curie–Weiss constant �CW characterises the sign and strength of inter-
actions. In an antiferromagnet�CW is negative, and for the model of (1.2) one has
kB�CW D �zJS2. Without frustration, magnetic order, signalled by a cusp in �,
appears below the Néel temperature, TN � j�CWj. By contrast, in geometrically
frustrated systems nothing sharp is observed at the temperature scale set by interac-
tion strength: instead, the paramagnetic phase extends to temperatures T � �CW.
Ordering or spin freezing may appear at a lower temperature Tc, but a large value for
the ratio f � j�CWj=Tc is a signature of frustration [1]. This behaviour is illustrated
schematically in Fig. 1.3; references to experimental papers are given in Table 1.1.

More detailed information on low temperature behaviour is provided by mag-
netic neutron scattering (see the Chap. 3 by S.T. Bramwell). Again, we sketch typical
observations in Fig. 1.3, and give references in Table 1.1. The dynamical structure
factor S.Q;!/ has a broad peak at finite wavevector Q, showing that spin correla-
tions are predominantly short-range and antiferromagnetic. The width of this peak
indicates a correlation length of order the lattice spacing, while the small value of
the elastic scattering cross-section forQ ! 0 shows that correlations suppress long
wavelength fluctuations in magnetisation density. This form stands in contrast both
to that in unfrustrated antiferromagnets, where Néel order leads to magnetic Bragg
peaks, and to that in systems with short-range ferromagnetic correlations, where the
structure factor is peaked at Q D 0. Inelastic scattering has a width in frequency !
that decreases with decreasing temperature, and in materials that show spin freez-
ing, scattering weight is transferred from the inelastic to the elastic response with
little change in Q-dependence on cooling through Tc.

T

χ

TC–θCW θCW Q

S(Q, ω)

Fig. 1.3 Characteristic behaviour of a geometrically frustrated antiferromagnet. Left: sketch of
��1 vs T . Right: sketch of S.Q; !/ vs Q

Table 1.1 Three geometrically frustrated antiferromagnets

Material Structure j�CWj Tc References

SrGa3Cr9O19 Pyrochlore slabs 515 K 4 K [21–24]
Hydronium iron jarosite Kagomé 700 K 14 K [25]
Y2Mo2O7 Pyrochlore 200 K 22 K [26, 27]
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Properties of three well-studied geometrically frustrated antiferromagnets are set
out in Table 1.1.1 Two basic theoretical questions arise. Why is there no magnetic
ordering at T � j�CWj? And what is the nature of correlations in the strongly
interacting regime T � �CW?

1.4 Classical Ground State Degeneracy

To get insight into the answers to these questions, we start by considering ground
states of models defined by (1.2) in the classical limit, in which the Si are not oper-
ators but three-component vectors of magnitude S . As a first step, it is useful to
examine a single tetrahedral cluster of four spins, with the Hamiltonian

H D J

2
jLj2 C c where L D S1 C S2 C S3 C S4: (1.4)

By writing the Hamiltonian in terms of the cluster spin L we see at once that ground
states are those with L D 0. Such an arrangement of four vectors, each having three
components, with resultant zero is shown in Fig. 1.4: these ground states have two
internal degrees of freedom, indicated in Fig. 1.4 by the angles � and �, in addition
to the degeneracies under global rotations which are expected from the symmetry
of H.

We should next understand how this accidental ground state degeneracy extends
from a single cluster to a periodic lattice. We can do so using a counting argument
[9,10], which compares F , the number of degrees of freedom in the system withK ,
the number of constraints that must be satisfied in ground states. The central point
is that if all constraints are independent, then the number of ground state degrees of
freedom is given by the difference F �K . Such an argument was used by Maxwell
in 1864 to discuss the stability of mechanical systems of jointed rods [28], and
is sometimes referred to as a Maxwellian counting argument. For a system of Ns

Fig. 1.4 A ground state
configuration for a frustrated
cluster of four classical
Heisenberg spins

S2S1

S3S4

q f

1 All three examples show spin freezing below Tc.
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classical Heisenberg spins, F D 2Ns, since two angles are required to specify the
orientation of each spin. And in a system with the Hamiltonian of (1.2) consisting
of Nc clusters,K D 3Nc, since in ground states all three components of L˛ must be
zero for every cluster ˛. Under the assumptions that all constraints can be satisfied
simultaneously, and that they are all linearly independent, we arrive at an estimate
for D, the number of ground-state degrees of freedom: D D F � K . Taking the
example of the pyrochlore lattice, we haveNs D 2Nc (since four spins are associated
with each tetrahedron, but every spin is shared between two tetrahedra) and hence
D D Nc, an extensive quantity.

This is a striking conclusion: it suggests that there are local degrees of free-
dom which can fluctuate independently without the system leaving its ground state
manifold. The argument has two implications for our understanding of the experi-
mental results summarised in Sect. 1.3. First, macroscopic degeneracy may prevent
long range order at the temperature scale set by interaction strength, since there are
many low-energy configurations that lack order. Second, since the magnetisation of
each cluster is zero in all ground states, the amplitude of long wavelength fluctua-
tions in the magnetisation density is small at low temperature, and so the dynamical
structure factor S.Q;!/ is small at low Q.

At this point it is worth pausing to consider possible limitations to the count-
ing argument that has been presented. As noted, it rests on an assumption that all
ground state constraints are linearly independent. If this is not the case, we under-
estimate D. In our context, corrections are important if they make an extensive
contribution toD. This occurs in the kagomé lattice Heisenberg antiferromagnet: in
this case our estimate yields D D 0 (since, for a lattice built from corner-sharing
triangles, Ns D 3Nc=2), but by explicit construction one finds sets of states with
special spin arrangements [29, 30] for which D D Ns=9. Such an arrangement is
illustrated in Fig. 1.5. By contrast, for the pyrochlore Heisenberg antiferromagnet,
it is known [9, 10] that corrections to the estimate forD are at most sub-extensive.

The view of classical geometrically frustrated Heisenberg antiferromagnets that
emerges at this stage is summarised by the cartoon of phase space given in Fig. 1.6:

Fig. 1.5 Illustration of how
ground state degrees of
freedom arise for the
Heisenberg model on the
kagomé lattice: spins on the
central hexagon may be
rotated together through any
angle about the axis defined
by the outer spins, without
leaving the ground state
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Ground state
manifold

Accessible states at low T

Phase space

Fig. 1.6 Schematic view of phase space for a geometrically frustrated magnet

within (high-dimensional) phase space for the system as a whole, the ground states
form a manifold with a dimension that is much smaller but nevertheless extensive.
At temperatures small compared to the Curie–Weiss constant (kBT � JS2), the
system is confined to a region of phase space that forms a thin layer around the
ground state manifold. Quantum effects can be neglected provided JS � kBT , and
so a strongly correlated, classical window, JS � kBT � JS2, opens for large S .

1.5 Order by Disorder

The fact that extensive ground state degeneracy in classical, geometrically frustrated
antiferromagnets is, in the technical sense, accidental prompts us to ask whether it
has robust consequences in the presence of thermal or quantum fluctuations. Specif-
ically, since the degeneracy is not a consequence of symmetry, one expects the
spectrum of fluctuations around each ground state to be different: the possibility
arises that ground states with the lowest excitation frequencies are selected, because
they have the largest entropy and the smallest zero-point energy. Such an apparently
paradoxical mechanism, by which fluctuations enhance order instead of suppressing
it, is termed ‘order-by-disorder’ [31, 32].

We will consider first the effects of thermal fluctuations, and begin by discussing
a cluster of four spins. Two ground states with fluctuations of contrasting types are
illustrated in Fig. 1.7. For the configuration shown on the left, the total spin of the
cluster has a magnitude jLj that varies with the departure ı� from the ground state as
jLj / ı� . Since the excitation energy is proportional to jLj2, it has a conventional,
quadratic dependence on ı� . By contrast, for the excitation from a collinear ground
state shown on the right, jLj / .ı�/2: this mode is therefore soft, with an energy
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δθ
δθ

δθ δθ

Fig. 1.7 Fluctuations away from ground state configurations for a cluster of four spins. Left: a
conventional fluctuation; right: a soft mode

Fig. 1.8 Coordinate system
used for configurations of
four spins

α

ϕ

S1

S2

S4

S3

π + ϕ + δ

+ β
2
α

+ γ
2
α

proportional to .ı�/4. We wish to understand whether the presence of this soft mode
leads almost collinear configurations to dominate at low temperature.

Analysis for a cluster of four spins is simple enough that it can be followed
through in full. To illustrate the range of possible outcomes, we will consider spins
with n components, comparing behaviour for n D 3 and n D 2. We use the coor-
dinate system shown in Fig. 1.8. Our aim is to evaluate the thermal probability
distribution Pn.˛/ of the angle ˛ between the pair of spins S1 and S2. The dis-
tribution Pn.˛/d˛ is a product of two factors. One stems from the measure for S2,
and is sin.˛/d˛ or d˛, for n D 3 or n D 2 respectively. The other comes from
integrating over orientations of S3 and S4: it is

Zn.˛/ /
Z

dS3

Z
dS4 exp

�
� J

2T
jS3 C S4 � 2S cos.˛=2/Ozj2

�
: (1.5)
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In the low temperature limit, this can be evaluated by expanding the energy to
quadratic order in deviations from a ground state. For Heisenberg spins (n D 3/

the low energy configurations have jˇj; j� j; jıj � 1; for n D 2, spins are copla-
nar and two coordinates are fixed: ' D ı D 0. In a quadratic approximation, the
energy is

JS2

2

˚
.ˇ � �/2 cos2.˛=2/C �

.ˇ C �/2 C ı2
�

sin2.˛=2/
�
; (1.6)

so that (including for n D 3 a factor of sin2.˛=2/ arising from dS3dS4)

Z3.˛/ / Œcos.˛=2/��1 and Z2 / Œcos.˛=2/ sin.˛=2/��1: (1.7)

Combining contributions, we have

P3.˛/ / sin.˛=2/ and P2.˛/ / 1

sin.˛/
: (1.8)

In this way, we discover contrasting behaviour for the two cases. With n D 3,
the system explores all values of ˛ even in the low temperature limit. But for n D 2

our unnormalised result for Z2.˛/ has non-integrable divergences at ˛ D 0 and
˛ D �: in a more detailed treatment, retaining contributions to the energy quartic
in coordinates, these divergences are cut off on a scale set by temperature, but in
the low-temperature limit P2.˛/ approaches a sum of two delta functions, located at
˛ D 0 and ˛ D � . Thus, order by disorder is absent for n D 3 but perfect for n D 2.

Passing from a single cluster to an extended system, consider the sketch of
phase space given in Fig. 1.9. Here, repeating the convention of Fig. 1.6, the shading

x

y

Fig. 1.9 Schematic view of phase space. The full curve represents the ground state manifold.
Coordinates x and y are respectively parallel and perpendicular to it
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indicates the region accessible at low temperature. One part of this region is con-
centrated near points on the ground state manifold at which there are soft modes, as
represented by in Fig. 1.9 by a bulge, while another part is distributed in the neigh-
bourhood of the remainder of the ground state manifold. To decide whether the
system displays order by disorder, we need to understand which of these two parts
dominates. Introducing coordinates x and y, respectively parallel and perpendicu-
lar to the ground state manifold, in the low temperature limit we obtain a measure
P.x/ on the ground state manifold by integrating over transverse fluctuations [9,10].
Characterising these fluctuations by dynamical frequencies !l .x/, we obtain

P.x/ /
Y

l

�
kBT

„!l .x/

�
: (1.9)

The system has extra soft modes (in addition to those associated with the ground
state coordinates x) at points x0 where one or more of the harmonic frequencies
!l .x0/ vanishes. At these points P.x0/ is divergent. As for a cluster of four spins,
behaviour depends on whether any such divergence is integrable. If it is, the system
explores the whole of the ground state manifold in the low temperature limit, but if
it is not, then those ground states with soft modes are selected by thermal fluctua-
tions. Detailed considerations, tested using Monte Carlo simulations, show for the
Heisenberg antiferromagnet on the kagomé lattice that there is coplanar spin order
in the low temperature limit [29], while on the pyrochlore lattice there is no order
by disorder [9, 10].

The possibility of ground state selection due to quantum fluctuations can be
discussed using an approach similar in spirit to the one we have taken for ther-
mal fluctuations, although the outcome has significant differences. Referring again
to Fig. 1.9, one can treat excitations around a particular point x on the ground
state manifold using harmonic spin wave theory. Excitations involving the coor-
dinates y locally orthogonal to the ground state manifold are conventional modes
with non-zero frequencies !l .x/, which have already made an appearance in (1.9).
By contrast, fluctuations involving the coordinates x are, within a harmonic approx-
imation, zero modes. The zero-point energy of the conventional, finite-frequency
modes provides an effective Hamiltonian for these remaining degrees of freedom,
the classical ground state coordinates. This Hamiltonian takes the form

Heff.x/ D 1

2

X
l

„!l .x/: (1.10)

The components of x consist of pairs that are, within the approximations of har-
monic spin wave theory (see (1.14)), canonically conjugate. Treating them as
classical commuting variables, the ground state is the set of points xG on which
Heff.x/ is minimised. More accurately, the ground state wavefunction for large S
is peaked at xG, but has zero-point fluctuations in an effective potential defined by
Heff.x/.
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It is not straightforward to anticipate what features of a classical ground state spin
configuration will minimise Heff.x/: since all !l .x/ contribute, one could equally
imagine focusing on either the highest frequencies or the lowest ones. In the exam-
ples that have been studied in detail, however, it seems that minima lie at points
xG where some !l .x/ vanish, which we have seen are also the states favoured by
thermal fluctuations. In particular, for Heisenberg antiferromagnets at large S the
selected spin configurations are coplanar on the kagomé lattice [33] and collinear
on the pyrochlore lattice [34]. In both examples, one-third of the !l .x/ become
soft modes at the corresponding points xG: the coplanar or collinear configurations,
respectively.

The principal difference between the ordering effects of thermal and quantum
fluctuations is that in the first case, as we have seen, order may or may not arise on
the limit J � T , depending on the nature of the thermal ground state distribution
P.x/, while in the second case we always expect order for S � 1, because by
taking S sufficiently large, one can ensure that quantum fluctuations around the
minimum of Heff.x/ are arbitrarily small. Within this framework, the scenario by
which one arrives at a spin liquid on reducing S is clear, at least in principle. For
smaller S , the quantum fluctuations are larger and the ground state wavefunction
is less well localised around the minimum of Heff.x/, while below a critical value
of S , the quantum ground state wavefunction becomes delocalised over the entire
classical ground state manifold and the system loses magnetic order. At large, fixed
S long range order induced by quantum fluctuations is suppressed thermally above
a critical temperature Tc � JS . While the expectation that spin liquids are favoured
at small S is common to our discussions of both (1.1) and (1.10), one should of
course remember that the two equations embody different physics: harmonic and
anharmonic fluctuations, respectively.

Efforts to identify experimental examples of order by disorder must face the
problem of establishing that fluctuations, rather than additional interaction terms in
the Hamiltonian, are the cause of what is observed. For the garnet Ca3Fe2Ge3O12,
a material with two interpenetrating magnetic lattices coupled via zero-point fluc-
tuations, it has been shown that a spinwave gap in the Néel ordered state indeed
arises mainly in this way, by independent determination of the size of single ion
anisotropy (the other possible origin for the gap) [35], and via the characteristic
temperature dependence of the gap [36].

1.6 Ground State Correlations

As we have seen, in some circumstance a model geometrically frustrated magnet
(for example, the classical Heisenberg model on the pyrochlore lattice) explores its
entire ground state manifold at low temperature, and the experimental evidence from
elastic and inelastic neutron scattering suggests that this is a reasonable picture for
the behaviour of a range of frustrated magnetic materials. We are led to ask in this
section whether there are any important correlations within the ground state mani-
fold. We will find (for a large class of models: those in which the simplex lattice is
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bipartite) that there are indeed long-range correlations within ground states [10], and
that these can be characterised in terms of fluctuations of a Gaussian, divergenceless
field [37,38]. For this reason, the set of ground states is said to constitute a Coulomb
phase.

The possibility that spin correlations, averaged over ground states, have a long-
range component, is not self-evident. Indeed, one might expect the fact that there
are a macroscopic number of ground state degrees of freedom to signal the opposite,
since their existence implies that the set of ground states includes local degrees of
freedom that can fluctuate independently. In turns out, however, that some ground
state correlations are impervious to all local fluctuations: in this sense they can be
said to be topological.

The simplest way to appreciate the existence of long-range correlations within
ground states is to start from (1.2) and the fact that the total spin L˛ of each frus-
trated cluster ˛ vanishes within all ground states. A consequence of this on the
pyrochlore lattice can be visualised with reference to Fig. 1.2. In particular, consider
for any ground state the total magnetisation m.z/ of the lowest plane of sites in this
figure. Its value (which may be small – for example, of order the square root of the
number of sites within the plane, if spins are randomly orientated within the layer)
is perfectly correlated with the magnetisation of other parallel planes making up the
lattice. Indeed, let m.zC1/ be the magnetisation of the plane neighbouring the low-
est one. Since the sites in both planes taken together make up a layer of complete
tetrahedra, the overall magnetisation of the layer is zero, and so m.z C1/ D �m.z/.
By extension, m.z C n/ D .�1/n � m.z/ for any n, a signal of long range correla-
tions. The correlations give rise to sharp features, termed pinch points or bow ties
in the Fourier transform of the two-point correlation function, averaged over ground
states, as obtained from simulations [39], large-n calculations [40], and diffuse neu-
tron scattering measurements [41]. These singularities distinguish the diffraction
pattern of the frustrated system from that of a paramagnet, but are weaker than
those of Bragg peaks arising from Néel order. While their structure can be under-
stood by building on our discussion of m.z/ [10], a more complete approach uses a
long-wavelength description of ground states.

This continuum description of the Coulomb phase is obtained by mapping spin
configurations onto configurations of vector fields in such a way that the ground
state condition L˛ D 0, involving the specifics of the lattice structure, is translated
into the requirement that the vector fields have lattice divergence zero. This second
version of the constraint has the advantage that it can be implemented in the con-
tinuum [37, 38]. To describe the mapping in detail, it is necessary first to discuss
some features of the simplex lattice, introduced in Sect. 1.2. We require the sim-
plex lattice to be bipartite. This is the case, for example, for the diamond lattice, the
simplex lattice associated with the pyrochlore lattice. (In models without a bipar-
tite simplex lattice, the correlations discussed in this section are absent [42].) For a
bipartite simplex lattice, one can adopt an orientation convention for links, taking
them to be directed from the simplices of one sublattice to those of the other. In this
way one can define unit vectors Oei oriented according to the convention and placed
at the mid-points of links of the simplex lattice, which are also the locations of spins.
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Considering in the first instance Ising spins, a spin configuration is represented as a
vector field B.r/ on the lattice via

B.ri / D Si Oei : (1.11)

The condition satisfied in ground states,
P

i2˛ Si D 0, fixes the lattice divergence of
B.r/ to be zero. More generally, for n-component spins Si we require n flavours of
vector field Bl .r/, with l D 1; 2 : : : n. These are related to spin components S l

i via
Bl .r/ D S l

i Oei , so that in ground states each flavour has divergence zero. Note that
the fields Bl .r/ are defined in real space, and that the global O.n/ symmetry of the
spin Hamiltonian is implemented as a transformation within the space of flavours, l .

Continuum versions of these vector fields Bl .r/ result from coarse-graining
and the restriction to ground state configurations is imposed exactly by requiring
the continuum fields to be solenoidal. Each coarse-grained state represents many
microscopic configurations and should have an entropic weight that reflects this.
It is plausible that small continuum field strengths will arise from many different
microscopic configurations, and that large field strengths will be generated by fewer
microscopic states. This suggests [37, 42] the weight

P ŒBl .r/� / exp

 
�	
2

Z
dd r

X
l

jBl.r/j2
!
: (1.12)

This theory has a single parameter, the stiffness 	, whose value affects the ampli-
tude but not the form of correlations and is determined microscopically. In d D 3

dimensions all other terms consistent with symmetry that might be added to the
effective action are irrelevant in the scaling sense, and so (1.12) is expected to have
a universal validity. The resulting correlation function,

hB l
i .0/B

m
j .r/i D ılm

4�	

�
3rirj � r2ıij

r5

�
; (1.13)

falls off with a fixed, integer power of distance, and has a characteristic, dipolar
angle dependence.

The fixed, integer power appearing in (1.13) stands in contrast to behaviour
in two other situations in statistical mechanics for which power-law correlations
appear: those of a system undergoing a continuous phase transition, and of the low-
temperature phase in the xy model. The form of correlations in (1.13) is instead
similar to those generated by Goldstone modes in the ordered phase of a system
with a spontaneously broken continuous symmetry, and an equivalence between
that and the Coulomb phase can be developed by passing to a dual description of
the frustrated magnet [43].

At finite temperature thermal fluctuations out of the ground state manifold gen-
erate a finite correlation length 
 which acts as a cut-off for the power-law in (1.13).
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The scale 
 diverges at low temperature, as 
 � T �1=2 in a Heisenberg model, and
exponentially in an Ising model.

1.7 Dynamics

As we have seen in some detail, geometrically frustrated magnets in the temperature
window Tc � T � TCW are strongly correlated, yet lack long range order. Their
dynamics in this regime has novel features which we summarise in this section.

An obvious first step to understanding low temperature dynamics is to apply
harmonic spinwave theory, starting from one of the ground states. The results one
expects are summarised in terms of the density of states �.!/ in frequency ! in
Fig. 1.10. Within the harmonic approximation, excitations are of two types. One
type, similar to those in conventional magnets, forms a band of finite-frequency
states, with a maximum frequency � O.JS=„/. The other type (those associ-
ated with the ground state coordinates x, in the discussion of (1.10)) are zero
modes. For example, for excitations from a generic ground state of the Heisenberg
antiferromagnet on the pyrochlore lattice, one quarter are zero modes.

There is a clear interest in understanding in more detail the nature of these
zero modes. In the most cases, however there is a obstacle to a simple, analyti-
cal treatment, which stems from the fact that spin configurations in representative
classical ground states do not have long range order. This means that, even though
the lattice itself is periodic, the equations of motion cannot be diagonalised by
Fourier transform, and results of the kind sketched in Fig. 1.10 can be obtained only
numerically.

To circumvent this difficulty and illustrate in a simple fashion how a dispersion-
less band of modes can arise, it is interesting to consider a geometrically frustrated
Heisenberg antiferromagnet in the presence of a magnetic field h strong enough that

ρ(ω)

ω

zero modes

spin
waves

Fig. 1.10 Density of states in frequency for harmonic excitations in a geometrically frustrated
antiferromagnet
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the ground state is fully polarised. Using the standard Holstein–Primakoff transfor-
mation to write operators for spin components S l

i in terms of boson creation and

annihilation operators a�
i and ai , with

S z
i D S � a

�
i ai

SC
i D .2S/1=2ai C : : :

S�
i D .2S/1=2a

�
i C : : : ; (1.14)

we have

H D J
X

ij

Si � Sj � h
X

i

S z
i D JS

X
ij

h
a

�
i aj C a

�
jai

i
� �

X
i

a
�
i ai C O.S0/:

(1.15)
The right-hand form of (1.15) is a tight-binding model for bosons moving on the
lattice with a nearest-neighbour hopping amplitude JS and a chemical potential
� � zJS �h that is linear in the magnetic field h. It is a characteristic of the lattices
we are concerned with that such a tight-binding model has a dispersionless band
with eigenvalue �2JS , which lies at the bottom of the spectrum for J > 0.

Eigenvectors of the tight-binding Hamiltonian from the dispersionless band are
straightforward to picture. One for the kagomé lattice is represented in Fig. 1.11.
Here, eigenvector amplitudes are zero at all sites except for those around one
hexagon of the lattice, on which they have equal magnitude and alternating signs.
The state is an eigenvector because there is destructive interference between hopping
processes that move the boson off the occupied hexagon. It belongs to a disper-
sionless band since it is degenerate with many other, equivalent states, based on
the other hexagons of the lattice. The condition for an arbitrary vector, with site
amplitudes  i , to be a linear superposition of such states is that

P
i2˛  i D 0 for

each triangle ˛. Both the extension of this condition to other lattices constructed
from corner-sharing simplices and its parallel with the ground state condition in

Fig. 1.11 A magnon mode
from the dispersionless band

−

+

+

+

−

−
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spin models, L˛ D 0 for all ˛, are obvious. There is a gap to excitations for large
h, when � is large and negative. The gap falls to zero at the critical field strength
hc D JS.z C 2/ at which � crosses the energy of the dispersionless magnon band.
For h < hc these states are populated, and the magnetisation deviates from its sat-
urated value. In this field range we recover the classical ground state degeneracy of
the zero-field problem.

We now turn to a discussion of dynamics beyond the harmonic approximation.
As a starting point we should consider the full equation of motion

„dSi

dt
D Si � Hi D J

2

˚�
L˛ C Lˇ

� � Si � Si � �L˛ C Lˇ

��
: (1.16)

Here Hi is the exchange field acting at site i . It is parallel to Si in a classical ground
state, but in excited states has transverse components. These can be expressed as
shown, in terms of the total magnetisations L˛ and Lˇ of the clusters ˛ and ˇ
that share the site i . For large S we can treat this equation of motion classically.
Within the harmonic approximation, obtained by linearising the right-hand side, the
exchange field Hi is a superposition of contributions from finite frequency modes,
which maintain phase coherence indefinitely, and therefore average to zero over
long times. Anharmonic interactions have two consequences, which are distinct but
turn out to be closely linked [9, 10]. One is to generate a lifetime for the finite
frequency modes. The other is to introduce coupling between the ground state coor-
dinates x and the coordinates y orthogonal to the ground state manifold. Over long
timescales this coupling drives the system around the ground state manifold. Within
the framework of (1.16), this long-time component to the dynamics arises because,
once spinwaves have a finite lifetime, the exchange field is no longer a superposition
of exactly harmonic contributions. Instead, on timescales longer than the lifetime,
it is better thought of as a stochastic quantity. In turn, the long-time motion of the
system around the ground state manifold is itself a source of dephasing for finite fre-
quency excitations. Specifically, since the harmonic Hamiltonian is time-dependent,
an adiabatic approximation is not exact, and modes are mixed at long times. There
is a separation of timescales, since typical spinwave periods are fixed, while spin-
wave lifetimes diverge as T �1=2 and the timescale for motion between groundstates
diverges faster, as T �1 [10].

These ideas suggest a much simpler approach to calculating the spin auto-
correlation function, in which we treat the exchange field as a stochastic quantity,
using the equation of motion

dS.t/
dt

D S.t/ � H.t/ (1.17)

with the correlation function

hH l.t/Hm.t 0/i D  ılmı.t � t 0/ (1.18)
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for components H l.t/ of H.t/. The noise intensity  can be estimated using
equipartition. We have

 D
Z 1

�1
hHi.0/ � Hi .t/i dt �

Z 1

�1
hL˛.0/ � L˛.t/i dt: (1.19)

In addition, L˛.t/ is a superposition of contributions with amplitudes A! from
thermally excited spinwaves:

L˛.t/ D
X

l

A!l
e�i!l t : (1.20)

Combining these assumptions, we find [10]

 � hjA!j2i�.!/ˇ̌
!!0

� kBT

JS
: (1.21)

The Langevin equation (1.18) itself is straightforward to solve, and yields

hS.0/ � S.t/i D S.S C 1/ exp.�ckBT t=„S/; (1.22)

where c � O.1/ is an undetermined numerical constant. This result is notable
for the fact that temperature alone sets the time scale: J drops out of the long-
time dynamics in the low temperature regime. In this sense, behaviour matches
that expected at a quantum critical point, although the underlying physics is quite
different.

The predictions of (1.22) have been tested both in simulations and in experiment.
Molecular dynamics simulations proceed by direct integration of the equations of
motion, (1.16), with an initial configuration drawn from a thermal distribution and
generated via Monte Carlo simulation. Results for the classical pyrochlore Heisen-
berg antiferromagnet [9, 10] in the temperature range kBT � JS2 reproduce both
the functional form of (1.22) for the time dependence of the autocorrelation func-
tion and the scaling of relaxation rate with temperature. In experiment, inelastic
neutron scattering offers direct access to spin dynamics. Early measurements of the
energy width of quasielastic scattering in CsNiFe6 [44] were fitted to a Lorentzian,
the transform of the time-dependence given in (1.22), yielding a relaxation rate for
T < j�CWj that is strongly temperature dependent, although without specific evi-
dence for the (subsequently proposed) linear variation with T . More detailed data
for SCGO ([45]; Lee et al. unpublished) confirms a relaxation rate of order kBT=„,
and very recent measurements on Y2Ru2O7 [46] display rather clearly a relaxation
rate proportional to temperature.

Recent theoretical work [47] has mapped out the low temperature dynamics as a
function of wavevector throughout the Brillouin zone.
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1.8 Final Remarks

In conclusion, we have seen how geometrical frustration in classical magnets can
lead to macroscopic ground state degeneracy and the suppression of long range
order. Low temperature states in model systems, although disordered, are very dif-
ferent from those of a non-interacting paramagnet: correlations are power-law in
space, and decay in time at a rate set by temperature alone. Many experimental sys-
tems display these features within the temperature window Tc < T < j�CWj where
behaviour is dominated by nearest neighbour exchange. Behaviour in this regime is
well summed up in the term coined by Jacques Villain [8], a pioneer in the field:
Cooperative Paramagnetism.
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Chapter 2
Introduction to Quantum Spin Liquids

Claire Lhuillier and Grégoire Misguich

Abstract In SU(2)-invariant spin models with frustrated interactions and low spin
quantum number, long-ranged magnetic order and breaking of the SU(2) symmetry
is not the most general situation, especially in low dimensions. Many such systems
are, loosely speaking, “quantum paramagnets” down to zero temperature, states con-
veniently represented in terms of spins paired into rotationally invariant singlets,
or “valence bonds” (VBs). In this large family of states, at least two very differ-
ent physical phases should be distinguished, valence bond crystals (or solids) and
resonating-valence-bond (RVB) liquids.

This chapter provides a basic introduction to the concept of short-range
resonating-valence-bond (srRVB) states, and emphasizes the qualitative differences
between VB crystals and RVB liquids. We explain in simple terms why the for-
mer sustain only integer-spin excitations while the latter possess spin- 1

2
excitations

(the property of fractionalization). We then elaborate qualitatively on the notion of
macroscopic quantum resonances, which are behind the ‘R’ of the RVB spin liquid,
to motivate the idea that spin liquids are not disordered systems but possess instead
hidden quantum order parameters. After giving a brief list of models and materials
of current interest as candidate spin liquids, we conclude by mentioning the role of
the parity of the net spin in the unit cell (half-odd-integer or integer) in spin-liquid
formation, by recalling the contrasting results for kagomé and pyrochlore lattices.

2.1 Introduction

In isotropic (SU(2)-invariant) Heisenberg spin systems, frustration of individual
bond energies, arising due to competing interactions and/or lattice topology, and
extreme quantum fluctuations, due to low spin values and low coordination num-
bers, can prevent T D 0 magnetic ordering (defined as the existence of a non-zero
on-site magnetization, hsii > 0). These factors lead instead to a large variety of
quantum phases, sometimes given the misleading name “spin liquids.” We begin the
task of categorizing this large zoo of phases by excluding those which do possess
an order parameter, but merely one more complex than an on-site magnetization,

23
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such as a quadrupolar moment or a spin current [1–3]). These exotic forms of com-
plex order break SU(2) symmetry and support Goldstone modes, and hence can be
understood by semiclassical (spin-wave-like) approximations.

However, quantum effects may generate more radical situations where SU(2)
symmetry is not broken in the ground state. One of the most common ways of
achieving this is that the spins are paired in rotationally invariant singlets, or
valence bonds (VBs). Such states are by definition non-magnetic, and thus qualify
as “quantum paramagnets”.1 This requirement on the ground-state wave function is
insufficient to characterize the physics of an extended system, its low-energy excita-
tions and the long-distance behavior of its correlation functions. In this large family
of quantum paramagnets, a crucial distinction should be introduced between spin
systems possessing long-ranged order in the VB arrangements,2 which are called
valence-bond crystals (VBCs), and spin systems that do not develop long-range
order (LRO) in any local order parameter at any temperature. The latter are the true
spin liquids.

With this foundation we will also show, following Feynmann’s statement, that
an understanding of the structure of the ground-state wave function of these phases
gives important indications concerning the nature of their excitations: specifically,
the excitations of the VBC have integer spins, whereas those of the RVB liquids
may be fractionalized. In the second case, integer-spin excitations of such systems
will decay immediately into more or less complex states of spin- 1

2
entities, known as

spinons, which further are deconfined. This property of the true spin liquid was rec-
ognized very early in their investigation [6–11], and in Sects. 2.2 and 2.3 we provide
a simple explanation in the framework of a short-range VB basis. The restriction to
short-ranged VBs is a very serious one, and it implies that the short-range RVB
spin liquids satisfying our schematic representations are, except at quantum critical
points, gapped in the triplet sector: a finite energy is required to break a microscopic
constitutive singlet block and promote it to a triplet state.3 In fact there are some
reasons to believe that spin liquids with gapless excitations and algebraically decay-
ing spin correlations also exist in 2D, as argued in [14–17]. In algebraic spin liquids,
the concept of spinons remains valid but the schematic discussion of Sect. 2.2 would
fail, and spinons may be strongly interacting particles over their whole range of

1 We use at this stage this word with a fuzzy acceptance. We will subsequently precise the various
types of “quantum paramagnets” and abandon this terminology which has been used in the past,
with different meanings, by theoreticians and experimentalists.
2 The actual size of the repeated singlet pattern (unit cell) maybe larger than a single valence-bond:
quadrumer (four-site plaquettes), etc. It can even reach 36 sites, as suggested by recent numerics
on the ground-state of the Heisenberg model on the kagomé lattice [4, 5].
3 Whether such systems may also be gapless in the singlet sector seems unlikely: it would be
necessary to invoke a theory of low-lying excitations with massive spinons (“matter fields”) and
compact gapless gauge fields in two spatial dimensions (2D). Such a theory is believed not to exist
[12]. It would correspond to quantum electrodynamics with massive electrons and interactions
mediated by massless photons, but due to lattice effects the gauge field is compact and acquires a
mass. The spectrum of all excitations would then be fully gapped in 2D. On the other hand, a phase
with such properties, the “Coulomb phase,” exists in 3D [13].
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energy. We refer to [12, 18] for an introduction to the more elaborate techniques
required to address this class of systems.

On lattices where all nearest neighbor bonds are equivalent, all nearest-neighbor
VB configurations have the same (variational) energy at zeroth order. For the ground
state to be a VBC, it is necessary that an ordered (periodic) pattern of VBs
offers a competitive energy advantage compared to disordered configurations: this
is trivially true if the model has different bond strengths, as in the spin-Peierls
Hamiltonian on the 1D chain, and also the case for the 2D Shastry–Sutherland model
[19]. For models where long-ranged dimer order results from a spontaneous break-
ing of the original lattice symmetries, the competitive advantage of a given VBC
pattern may be rather delicate to ascertain, and results from a mechanism known
as “order by disorder” where fluctuations around the zeroth-order pattern are par-
ticularly favorable.4 We discuss the physics of order by disorder and present some
examples in Sect. 2.3.

For the ground state to be an RVB liquid, it is necessary that macroscopic, large-
scale resonances between different configurations lead through interference effects
to a noticeable energy gain: in other words, macroscopically large tunneling effects
should dominate the low temperature physics.5 This property, which is not contained
in the discussion of Sects. 2.2 and 2.3, is essential. Thus, in Sect. 2.4, we elaborate on
this crucial concept of macroscopic resonances6 in the ground states and low-lying
excitations of RVB spin liquids, and present some arguments which help to explain
how the specific physics of the spin-liquid state is hidden in the specificity of the
superpositions of VB configurations. In the case of Z2 spin liquids, these properties
are also closely related to S D 0 vison excitations. More generally, the question of
the hidden symmetries of RVB superpositions – for any VB lengths – can be consid-
ered as the question of a hidden, non-local order parameter characterizing the spin
liquid.7 We have defined spin liquids as spin systems that do not develop LRO in any
local order parameter at any temperature. Despite this property, spin liquids are not

4 Some authors restrict the use of “VBC” to the situations with a spontaneous symmetry breaking,
and call “quantum paramagnets” the others [20]. Here, we will use “type (i)” and “type (ii)” VBC
(see Sect. 2.3), to underline the close similarity between the wave functions and their excitations.
5 A simpler and already well understood problem sheds additional light on the mechanism we
wish to describe: what is the quantum mechanical transition which drives (at T D 0) solid 4He
to liquid (superfluid) 4He when decreasing pressure at approximately 25 bar? The solid under
pressure is stabilized by dominant potential effects, but the balance between kinetic energy and
potential energy is broken in favor of the quantum zero-point kinetic energy as the pressure is
lowered. The ground state of the system changes in a first-order transition from a regular array
of atoms to a macroscopic superposition of all permuted atomic configurations [21]. This is the
origin of the hidden order parameter (LRO in the off-diagonal one-body density matrix) and of
the superfluid transition [22, 23]. The macroscopic tunneling processes between different spatial
configurations are the essential ingredient of this quantum regime.
6 A concept with a deep connection to the problem of macroscopic quantum entanglement [24].
7 For comparison, this question in spin liquids is the conceptual equivalent of the question solved
by Penrose and Onsager for 4He when they showed that the off-diagonal LRO in the one-body
density matrix is the hidden order parameter intimately related to the superfluid fraction of this
liquid [25].



26 C. Lhuillier and G. Misguich

“disordered systems,” and most of them are expected to possess a definite “hidden
order,” which shapes both their ground states and their low-energy collective excita-
tions. In this sense, spin liquids are much more akin to superconductors or quantum
Hall liquids than to spin glasses. The question of hidden symmetries and the classi-
fication of “quantum orders” has been addressed by Wen [26]: using the concept of
the projective symmetry group, he classified hundreds of spin-liquid candidates on
the square lattice and approximately one hundred on the triangular lattice. A method
to detect whether a given wave function corresponds to a fractionalized liquid (such
as an RVB liquid) was proposed recently [27,28]. Although probably difficult to use
for realistic quantum spin models, it was shown to work for simple quantum dimer
models [29].

Understanding RVB spin-liquid physics as the result of macroscopic interference
led us to investigate the effects of multiple-spin exchange interactions, which are
in essence direct realizations of collective quantum tunneling processes [30]. As
a first example, four-spin cyclic exchange on a rhombus maps directly one of the
nearest-neighbor VB coverings to the other, whereas the same effect is obtained only
at third order in the perturbative expansion of the Heisenberg interaction (which
is a two-body exchange term). A study of the phase diagram of this Hamiltonian
on the triangular lattice indeed led to the first indications in favor of an extended,
fully gapped RVB spin-liquid phase in an SU(2)-symmetric antiferromagnet [31,33,
32, 34].

Rokhsar and Kivelson (RK) pioneered an apparently different route to RVB liq-
uid phases, by focusing directly on the VB in the form of quantum dimers [35]. In
fact the four-spin cyclic exchange term projected in the nearest-neighbor VB sub-
space reduces to the kinetic term of the RK model. Unfortunately, RK developed
their study of the quantum dimer model only on the square lattice, where they found
that, except for a critical point, this model exhibits only VBC phases.8 However,
Moessner and Sondhi [36] later showed that the quantum dimer model on the tri-
angular lattice has indeed a fully gapped, or topological/Z2, liquid phase, further
details of which may be found in R. Moessners and K.S. Raman’s Chap. 17.

Besides this rather simple approach of forcing tunneling effects, another popular
approach to spin-liquid behavior is to focus on the regions of phase diagrams where
frustrating interactions lead to competition between different classical phases. The
frustrated J1-J2 models on 2D lattices (in the parameter range between different
Néel phases) have thus been the object of a large number of such studies. Here, we
do not discuss spin- 1

2
J1-J2 models on the square lattice, for which the interested

reader may consult [37] and the Chap. 15 by F. Becca et al. Spin- 1
2

J1-J2-J3 models
on the hexagonal lattice have been studied by Fouet et al. [38]. In this latter class
of model, there are some VBC phases and possibly also gapped spin-liquid phases,
which to date are not fully characterized.

8 Here, the nature of the lattice, bipartite or otherwise, is crucial: the multiple-spin exchange model
on the square lattice exhibits a large number of phases, including magnetically ordered, nematic,
and VB phases, but no spin-liquid phase [1, 3].
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A third approach somewhat related to the previous one has been to look for sys-
tems in which at the classical level there is an extreme degeneracy between different
ground states which prevents the classical system from ordering at T D 0. The
Heisenberg model both on the pyrochlore and on the kagomé lattice presents the
archetype of such a situation. In the final section of this review, we present a critical
account of the current understanding of these systems.

Many spin systems in real materials display behavior that may be indicative
of spin-liquid properties, including spin- 1

2
magnets on the anisotropic triangu-

lar lattices Cs2CuCl4 [39], �(ET)2X [40], and EtMe3Sb[Pd(dmit)2]2 [41], and
on the kagomé lattice as found in the spin- 1

2
compounds volborthite [42] and

herbertsmithite [74–79] and the spin- 3
2

system SCGO [43, 44].

2.2 Basic Building Blocks of VBC and RVB Physics:
The Valence Bonds

A valence bond is a singlet state which connects two S D 1
2

spins at sites a and b

of a lattice, and will be denoted hereafter as jabi. This is the state which minimizes
the energy of the antiferromagnetic Heisenberg coupling between the two spins,
habjSa � Sbjabi D �3=4.

A VB configuration is a direct (tensor) product of VBs encompassing all the
sites of the lattice: on an N -site lattice, a VB configuration contains N=2 VBs
(also referred to as dimers). It is a spin configuration with total spin S2

tot D Stot

.Stot C 1/ D 0. If we consider bonds of any length, the full set of VB configura-
tions is overcomplete, but does span the whole Stot D 0 sector of the spin system.
In particular, any non-ferromagnetic or -ferrimagnetic state can be described in the
Stot D 0 sector as a superposition of VB configurations [45, 46].
Classical Néel order versus purely quantum ground states.
Let us begin for simplicity with the nearest-neighbor Heisenberg Hamiltonian on
a lattice with coordination number z, and consider the variational energy per spin
of the purely classical Néel state (denoted hereafter as ecl ) compared to that of a
VB configuration (evb). On a bipartite lattice, these energies are ecl D � z

2
1
4

and
evb D � 3

8
, while on a 2D tripartite lattice they are ecl D � z

2
1
8

and evb D �3
8

. There
are some lattices for which the nearest-neighbor VB configuration wins at this crude
level of approximation: the Heisenberg model on the chain, on the kagomé lattice,
and on the 2D9 and 3D pyrochlore lattices. The two variational energies are equal
for the triangular and honeycomb lattices [38, 47], while on the square lattice the
classical solution wins.

Rather generally, in those cases where this zeroth-order comparison favors the
classical picture, more sophisticated approaches, such as exact diagonalization with
finite-size scaling, do confirm Néel order at T D 0 and in dimensions D > 1. The

9 Also called the checkerboard lattice.
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classical result is renormalized by long-wavelength fluctuations (spin waves), but
the physics may be understood semi-quantitatively on the basis of (semi-)classical
approaches such as spin-wave calculations and the non-linear sigma model. The
ground states of these models have LRO in their spin correlations, break SU(2)
symmetry at T D 0, and their lowest-lying excitations are the Goldstone modes of
the broken symmetry: gapless magnons.

In those cases where the comparison is clearly in favor of a VB configuration
(namely Heisenberg models on the lattices mentioned above, and also examples
including the J1-J2 model on the honeycomb lattice, whose discussion we defer to
Fig. 2.2), the quantum system does not develop long-ranged Néel order at T D 0.
Any VB configuration has in fact two features which explain these results: it opti-
mizes the energy of the bonds involved in the singlets, and it gives zero energy for
all other bonds. The second property implies that a lattice with a large coordination
number will favor Néel order, while a combination of the first and second properties
explains why a VB configuration can minimize frustration effects due to compet-
ing interactions. However, only in very rare cases is a VB configuration an exact
eigenstate of the Hamiltonian [48], so the effect of fluctuations around these VB
configurations will be essential in shaping the nature of the true ground states.

In some cases, the system is able to lower its energy still further by adopting
a dominant regular VB arrangement “dressed” by local fluctuations. The simplest
way to have a regular VB ground state is to consider an explicitly dimerized model,
such as the J -J 0 Heisenberg model shown in Fig. 2.1a, where pairs of sites are
strongly coupled by an antiferromagnetic interaction J , and pairs are coupled by a
weaker interaction J 0. For J 0 � J , the ground state is unique and can be viewed
as a product of spin singlets on the J bonds (Fig. 2.1b), dressed perturbatively by
fluctuations induced by J 0 (Fig. 2.1c). In Sect. 2.3 we discuss the more subtle case
where there is no preferred, pre-existing regular dimer configuration (for example,
J 0 D J ) and the selection of an ordered pattern for the ground state, if one exists,
occurs through the fluctuation-driven mechanism of “order by disorder”.

However, in some cases this mechanism does not apply and the system gains
energy through resonances between many “disordered” VB configurations. The
ground state is then a highly intricate superposition where no spatial symmetry is
broken. It contains significant weights for a very large number of VB configurations

a b c

J

J’

Fig. 2.1 (a) an explicitly dimerized J -J 0 Heisenberg model. (b) in the limit J 0 D 0, the ground
state is (trivially) a product of spin singlets (indicated by the ellipses) on the J bonds. (c) for
small but non-zero J 0, other VB configurations contribute to the ground-state wave function. These
“fluctuations” dress the zeroth-order state shown in (b)



2 Introduction to Quantum Spin Liquids 29

which are very different from each other, and this fully resonant situation is the
paradigm for the RVB spin liquid. In order to ascertain the differences between
RVB spin liquids and VBC order, we describe these phases in detail in the next two
sections.

2.3 Valence-Bond Crystals

More general than the columnar dimer state of Fig. 2.1, a VBC can be viewed as any
state in which the spins group themselves spontaneously into small clusters (which
have an even number of sites) arranged in a spatially regular pattern. Within each
cluster, the spins form a singlet state.10

Two different types of VBC should be distinguished. In the first family (i), the
energetically optimal VB pattern is unique, imposed by the Hamiltonian (for exam-
ple through inequivalent bonds, as in Fig. 2.1), and respects all the lattice symmetries
in that each cluster fits into the unit cell of the lattice. In a second family (ii), each
singlet cluster involves spins from a number (at least two) of unit cells, and several
VB patterns, which are related by symmetry, are degenerate. In case (ii), VBC for-
mation spontaneously breaks some discrete lattice symmetries, and from this point
of view, it is truly an ordered state (hence the use of the word “crystal”). A system of
weakly coupled dimers, as in Fig. 2.1, is an example of class (i), while the frustrated
Heisenberg model of Fig. 2.2 produces a VBC of class (ii). Although the wave func-
tions of the two cases appear similar, they possess some slightly different symmetry
(and correlation-function) properties, and the mechanisms leading to the formation
of a type-(ii) VBC are manifestly more complex than for type (i). Concerning their
magnetic excitations (Sect. 2.3.3), the two types of VBC are very similar.

VBCs do not break any continuous symmetries and do not have gapless Gol-
stone modes. For this reason, they do not “melt” at an infinitesimal temperatures
(in contrast to conventional solids in 1D or 2D), they are protected by a gap in
their excitation spectrum. For type-(ii) VBC, sufficiently strong thermal fluctua-
tions are expected to restore the broken symmetry, and give rise to a (or several)
finite-temperature phase transition. Type-(i) VBC, instead, can evolve continuously
(no phase transition) up to high temperatures. Because magnetoelastic coupling
between the spin and lattice degrees of freedom are often non-negligible in real sys-
tems, a lattice distortion and spontaneous enlargement of the unit cell is expected
to occur when the spins enter a type-(ii) VBC phase upon cooling (spin-Peierls
transition), and in fact would cause a type-(ii) VBC to transform into a type-(i)
VBC. Many type-(i) VBC have been discovered and studied experimentally, but
the triangular-lattice organic material studied in [49] may be the only example of

10 The clusters may have more than two sites (plaquettes, etc.), in which case the name VBC may
sound like an abuse of notation. Notice, however, that the singlet ground state of each cluster can
always be decomposed over VB coverings.
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Fig. 2.2 Left: classical arrangement of spins in the ground state of the nearest-neighbor anti-
ferromagnetic Heisenberg Hamiltonian on the honeycomb lattice. Center: a second-neighbor
antiferromagnetic coupling J2 (dashed lines) frustrates the collinear Néel order. Right: when the
frustrating coupling is sufficiently strong (J2=J1 � 0:4), the formation of a columnar VBC best
combats the frustration. The ellipses denote the VBs, while fat lines represent bonds which are (at
lowest order) fully satisfied and thin lines are used for all the couplings “ignored” at this level. In
the VBC phase, the ground state is three-fold degenerate in the thermodynamic limit, because there
are three symmetry-equivalent VB patterns related by 2�=3 rotations of the hexagonal lattice

VBC-(ii) known to date in D > 1 (spontaneous dimerization and opening of a spin
gap at low temperature).

Unless explicitly stated, the term VBC in the following refers to type-(ii) VBCs.

2.3.1 Zeroth-Order VBC Wave Function

In the most elementary approximation, the VBC wave function is just the tensor
product of these singlet states (one for each cluster) and the spin–spin correlation
function is zero for distances larger than the unit-cell size, but the system has LRO in
its cluster–cluster correlations. This is best illustrated for dimer correlations, where
h.S1 � S10/:.S2 � S20/i, with .1; 10/ in a given cluster and .2; 20/ in a second, will be a
finite quantity even when the clusters are separated by macroscopic distances. In this
sense, these systems are indeed crystals, and LRO in the dimer–dimer correlation
function in the absence of spin LRO will be our definition of a VBC.

Examples of VBCs in 1D are well known: both the dimerized phase of the J1-J2

model (for J2=J1 > 0:24, as discussed by S. Miyahara in Chap. 19) and the spin-
Peierls phase are VBCs. Because these phases do not break SU(2) spin symmetry
and have no long-range spin correlations (and therefore no magnetic Bragg peaks),
they are sometimes defined as “spin liquids”. However, in view of their long-ranged
dimer correlations, which are observed in Raman and in X-ray experiments, this
extension of the nomenclature is rather awkward.

There are numerous examples of spin models with VBC ground states in dimen-
sions D > 1. The evidence is often provided by numerical exact diagonalization
studies. These include the honeycomb [38], square [50, 51], checkerboard [52], and
Shastry–Sutherland [53] lattices. Of particular importance in this context is [48],
which provides one of the few Hamiltonians where exact VBC ground-state wave
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functions are known. Although the issue has not yet been resolved definitively, the
“columnar phase” represented in Fig. 2.3a might be realized in the J1-J2 model on
the square lattice close to J2 D J1=2 (we refer the reader to Sect. 2 of [37] and
references therein).

2.3.2 Quantum Fluctuations in VBCs

The spatially regular VB configuration is usually not an eigenstate of the Hamil-
tonian. It is thus interesting to consider in more detail the action of a Heisenberg
coupling term,11 as shown in Figs. 2.3a,b. The spin–spin interaction can be rewrit-
ten as

2Si � Sj D Pij � 1

2
; (2.1)

where Pij is the permutation operator of the spins on sites i and j , i.e. up to a
constant term, Si � Sj permutes the states of sites i and j . This may lead to a sim-
ple change of sign of the wave function if the sites i and j belong to the same
VB (Pab jabi D � jabi), or to the creation of two longer singlet bonds in any
other situation. From a regular pattern, this creates new configurations which differ
slightly from the “parent” VB configuration. The effect of a small number of prod-
ucts of transpositions is represented in panel (b) of Fig. 2.3. These fluctuations can
be described graphically by the loops drawn on the lattice by superposition of the
initial and perturbed VB configurations. This set of loops is called a transition graph.
In a VBC wave function, the typical transition graphs obtained by taking snapshots
of the wave function in the VB basis consist of a collection of small loops.12 These
perturbations around the zeroth-order wave function contribute to a dressing of the
bare VB configuration and act to lower its energy. Although (many) different VB
configurations may have the same bare (zeroth-order) energy, they do not in general
receive the same energy corrections from fluctuations. The VBC pattern which is
selected is then the one which optimizes the energy gain, and this is the microscopic
mechanism for “order by disorder” – one ordered VBC configuration emerges from
the disorder of the different fluctuating coverings. As one example, the columnar
pattern of Fig. 2.3 is the one which allows the largest number of four-site resonance
loops (the smallest possible loop, as in the upper right plaquette of Fig. 2.3b). If the
spin interactions are such that these resonances are the most important ones (which
is not usually obvious a priori), such a VBC pattern is likely to be that stabilized by
the fluctuations. These fluctuations also confer some finite range to the spin corre-
lations in the exact ground state, and renormalize the crystal order parameter (the
dimer structure factor) downwards.

11 Other SU(2)-symmetric interactions between the S D 1
2

spins can be written as more compli-
cated permutations, and have similar effects.
12 If there were many large loops, the regular pattern would have melted under the action of the
spin interactions, rendering the system a spin liquid.
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a b c d

Fig. 2.3 (a) schematic representation of a columnar VBC on the square lattice. (b) a realistic VBC
wave function contains fluctuations, viewed here as VB configurations which differ from the par-
ent configuration (a) by small loops in their transition graph. (c) representation of the confinement
potential experienced at intermediate distances by two test spinons in a VBC. The ordered back-
ground is perturbed (“shifted”) along a path connecting the spinons, providing an effective potential
which grows linearly with distance. (d) for larger separations, where the energy becomes similar
to the spin gap, it is advantageous to break one more singlet bond and create two more unpaired
spins (empty arrows). These extra spin- 1

2
objects “screen” the test spinons, and restore the regular

pattern of the VBC. The energy of the system therefore becomes constant on further increasing the
separation of the test spinons due to dressing by the extra spins. This makes it impossible to isolate
spatially a single spin- 1

2
excitation in a VBC

2.3.3 VBC Excitations

The simplest magnetic excitations of a VBC (of type (i) or type (ii)) involve one
basic cluster, and are �S D 1 transitions. These are gapped, carry integer spin,
and appear as sharp modes in an inelastic neutron scattering experiment. Such
excitations may be more or less mobile, depending on the strength and geometry of
the couplings between the basic cluster unit and its environment. When the kinetic
energy of the excitations is sufficiently low compared to their mutual repulsion, they
may crystallize at certain rational densities, giving rise to magnetization plateaus (as
discussed by M. Takigawa and F. Mila in Chap. 10).13

An important property of RVB liquids (discussed in the next section) is the fact
that they have spin- 1

2
excitations, called spinons. To understand the nature of these

(rather exotic) excitations, it is first useful to understand why spinons cannot exist in
a VBC. The two excited states shown in panels (c) and (d) of Fig. 2.3 make clear why
it is energetically unfavorable to disturb the dimer order of a VBC in an attempt to
liberate two free spin- 1

2
entities. Such a trial state has a string of misaligned dimers

between the two unpaired spin- 1
2

objects, and these interfere with the pattern selec-
tion in the ground state: the fluctuations (resonance loops) which stabilize the VBC
pattern in the ground state are not available in the vicinity of the string, leading to an
energy cost for the trial state due to fluctuation processes. Specifically, the string has
an energetic cost which is approximately proportional to its length, and this creates

13 If the basic cluster contains more than two sites (i.e. it does not reduce to a dimer), different
excited modes with integer spin (0; 1; 2 : : : ) may exist [52]. These have the same generic properties
as the triplets discussed here, but cannot be detected as easily by neutron spectroscopy; Raman
scattering and nuclear magnetic resonance (NMR) are more appropriate probes for studying these
additional modes.
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an effective restoring force which forbids an infinite separation of the initial two
spin- 1

2
defects.14 This long-ranged effective force is associated with the disruption

of the regular arrangement of local singlet clusters when a pair of distant spinons
is forced into the system. The two spinons are said to be confined. More precisely,
Fig. 2.3d illustrates the physical mechanism contributing to the screening of spinons
in a VBC at large distances, and thus the impossibility of observing free spin- 1

2

objects in the bulk of such phases. A further discussion may be found in [18, 37].

2.4 Resonating-Valence-Bond Spin Liquids

In our discussion of the VBC, the central idea is that a small number of spa-
tially ordered VB configurations (one in the case of a type-(i) VBC without lattice
symmetry-breaking, a number O.1/ in a type (ii) VBC with spontaneous symmetry-
breaking) are favored at T D 0. In some geometries, however, this is far from
evident, and the nearest-neighbor Heisenberg model on the kagomé lattice provides
one of the most straightforward examples which nevertheless contains some of the
most complex physics.

If there is no preferred ordering pattern, the ground state will have weights of
the same order of magnitude over an extensive fraction of the manifold of VB con-
figurations.15 From this picture of an RVB liquid, one may anticipate the following
properties:

� Such a system has no LRO in any spin, dimer, or (finite) higher-order correlation
functions. It is a true liquid.

� The absence of an “ordered parent VB configuration” implies that there is no evi-
dent mechanism to confine spinon excitations.16 These spin- 1

2
objects are thus

essential to a full understanding of the magnetic excitations of spin liquids. In
an inelastic neutron scattering experiment, spinons are necessarily created in (at
least) pairs, because a neutron changes S z

tot by ˙1. The two spinons of a given
pair can then propagate independently, each one carrying a fraction of the energy

14 This conclusion is indeed also true for a VBC of type (i), even without invoking fluctuations.
15 One may be more precise in defining the subspace generated by VB configurations: this could
be restricted to nearest-neighbor VB states, or to VB configurations including singlets between
sites with some maximum separation rmax. One may also require that the probability to find a VB
between two sites of separation r decay exponentially with r , or include long VB configurations
provided that their weight in the wave function decay “sufficiently rapidly” with distance (in the
spirit of [45]). One further systematic refinement is to adopt a Hilbert space where the basis states
are nearest-neighbor VB configurations dressed by one application of the Heisenberg interaction
(in the spirit of [54]).
16 These spinons occupy a “sea” of VBs whose fluctuations can mediate short-distance interactions,
and the deconfinement of spinons in some cases may be only asymptotic (meaning that bound states
may occur at short distances). Here also the word “sea” is used as an image, and the state does not
necessarily bear any resemblance to a Fermi sea.
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and momentum. The signature of such deconfined spinons will thus be a contin-
uum in energy and momentum. The unfortunate consequence of this property is
that the spin spectral weight may be distributed over a broad range of energy and
thus the spinons may be difficult to observe in a neutron scattering experiment.
It is nevertheless expected that the spectral weight is maximal at the low-energy
threshold of the continuum. Incoherent fluctuations down to temperatures equal
to the gap or to T D 0 in case of gapless spin liquid, provide an essential exper-
imental signature of a spin liquid which would be revealed by local probes such
as NMR or muon spectroscopy.

� The absolute ground-state wave function is the most stable superposition of VB
configurations. By varying the relative phases of each VB configuration, one may
construct a macroscopic number of states which are orthogonal to the ground
state. These states are true S D 0 excitations which may be either gapped with
respect to the ground state or gapless [55].17

� An RVB liquid ground-state wave function contains long exchange cycles
between different VB configurations. More precisely, one may choose an initial
VB configuration, c1, and consider the transition graph (a set of closed loops)
obtained by superimposing a new configuration c2 onto c1. By “long exchange
cycles,” we mean that the transition graphs obtained by sampling such pairs of
configurations .c1; c2/ (according to their weights in the wave function) will lead
statistically to graphs containing some long loops, whose length diverges in the
thermodynamic limit. This is to be contrasted with VBC wave functions, where
typical pairs .c1; c2/ give only a set of small loops. The presence of these long
resonance loops in the ground-state wave function, and in the lowest excitations,
is reminiscent of the quantum properties of superfluid 4He, where it has been
understood [21–23] that it is the building of these long, coherent, macroscopic
exchange cycles upon cooling which lies at the origin of the � transition and of
the superfluidity. In liquid 4He, these exchange loops have definite relative phase
factors, which shape the dynamics of the low-temperature system; in this case
they are all positive due to Bose statistics. From the same point of view, an RVB
liquid wave function may be considered as a kind of “VB condensate”, but in
such spin systems the exchange loops are not constrained to have positive phase
factors.18

17 For the more theoretically inclined reader, we note that this freedom to change certain phases in
a VB superposition may permit the construction, in gapped liquids and in the thermodynamic limit,
of several degenerate ground states if the lattice has periodic boundary conditions (i.e. a non-trivial
topology). This property is known as topological degeneracy [9, 56].
18 The presence of long exchange loops in 2D electronic wave functions has also been discussed in
the context of the fractional quantum Hall effect [57, 58], where the loops correspond to processes
(in an imaginary-time, path-integral formulation) in which large numbers of electrons exchange
their positions in a cyclic way. These processes can be made coherent due to Aharonov–Bohm
phases, which originate from the (physical, external) magnetic flux piercing each exchange loop.
This leads to a direct analogy with RVB spin liquids, and in particular with chiral spin liquids,
where a (fictitious) magnetic field may emerge and where the role of the electrons is played by
spinons; more details may be found in [18]).
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In fact there is a rich variety of possible RVB spin liquids, including but not
limited to Z2 spin liquids, U(1) spin liquids, and SU(2) spin liquids (the reader is
referred to [12, 18, 26, 59, 60] and references therein for an extensive treatment).
In very broad terms, this classification refers to the properties of the gauge fields
associated with the structure and symmetries of the phase factors in front of the res-
onance loops. These gauge fields also mediate the interaction between the spinons
introduced above.

� Z2 spin liquids are the simplest and best understood spin liquids: they are gapped,
with (at least) two kinds of well defined excitations, spin- 1

2
spinons and spin-0

visons [9, 11]. The wave functions of the spin-0 excitations can be approxi-
mated by taking the ground-state wave function and applying phase factors of
�1 to selected VB configurations. These excitations can also be approached
by (approximate) mappings to Ising gauge theories, where they appear as the
vortices of this dual gauge theory (whence their name, ‘v-isons’) [61–65]. Of
particular interest for pedagogical purposes are an exactly solvable spin model
on the square lattice [65] and a dimer model on the kagomé lattice where visons
appear as free particles [63].

� When the spinons and singlet excitations are gapless, the liquid is in a critical
state and many correlation functions (including hSi �Sj i) decay algebraically with
distance [14, 66, 67]. In such cases, the spinon and singlet excitations cannot be
considered as quasi-free quasiparticles, because they remain strongly interacting
down to the lowest energies/temperatures.

Where can one look for RVB spin-liquid physics? Some spin- 1
2

triangular-lattice
models are good theoretical candidates [31, 32, 68]. The nearest-neighbor Heisen-
berg model on the triangular lattice is thought to be Néel ordered [47], but cyclic
four-spin exchange terms on rhombic plaquette units can destabilize this order and
lead to one (or possibly more) gapped phase(s) [33].19 For a field-theoretic approach
to one of these possible spin-liquid phases on the triangular lattice, the reader is
referred to [20] and to the references therein. As indicated in the introduction,
there are now several triangular-lattice systems which are under active experimental
investigation as candidate spin liquids [39–41, 71–73].

At the same time, spin- 1
2

models on the kagomé lattice remain perhaps the most
promising candidates for the observation of RVB spin liquids in nature – either with
Heisenberg (below) or with Ising or XY spin interactions [16, 69, 70]. The recent
discovery of herbertsmithite (ZnCu3(OH)6Cl2), a “structurally perfect” S D 1

2

kagomé material [74–79], represents an important step in this direction. The fact
that herbertsmithite shows neither spin freezing nor the opening of a spin gap down
to temperatures lower than 1/4000 of the coupling constant tends to support the
theoretical speculations of the past 20 years, and demands further efforts by theo-
rists on this fundamental and complex problem. More recently, improved samples of

19 More generally, numerous theoretical models which have been shown to demonstrate spin-liquid
physics contain these multiple-spin (or ring-)exchange terms [69, 70].
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volborthite also appear to exhibit spin-liquid behavior over a large range of temper-
ature and magnetic field [42].

2.5 VBCs or RVB Spin Liquids on Kagomé
and Pyrochlore Lattices?

As emphasized in the introduction, the classical Heisenberg model both on the
kagomé and on the pyrochlore lattice has an extensive T D 0 entropy. The ques-
tion of the quantum ground state of these systems arose very early in the study
of frustrated quantum magnetism [80–82], but the answers remain at present only
partial. The spin- 1

2
Heisenberg model on the kagomé and pyrochlore lattices has

been the object of considerable theoretical attention since the late 1980s. Numeri-
cal approaches [54, 83–86] were quick to show that such spin- 1

2
systems are indeed

quite unusual. In the spirit of this chapter, a description of the singlet sector in a
srRVB basis [54, 87–89] was developed: this picture captures the short distance
physics of the kagomé magnet rather nicely but the low energy, long distance
physics remains a mystery.

In this short discussion, we will not present a review of the many studies per-
formed to investigate these questions, but focus on the most recent results and
understanding; we refer the reader to [37] for a brief guide to the earlier literature. In
the following, we list some open questions, underline those points which now seem
to be reasonably well established, and highlight those which remain under debate.

To within the accuracy of modern numerical approaches, it is generally acknowl-
edged that the spin- 1

2
Heisenberg models on the pyrochlore [86] and kagomé lattices

have no LRO in their spin correlations [82,83,90]. On the kagomé lattice, it has also
been found that dimer–dimer, chiral–chiral, and nematic–nematic correlation func-
tions decrease rapidly at short distances. However, the available system sizes remain
too small for a systematic determination of their true asymptotic behavior (specif-
ically, to distinguish between exponential and algebraic decay, or to differentiate
either form from very weak VBC order).

From numerical studies (exact diagonalization, the contractor renormalization
method or the density-matrix renormalization group), one may list the following
points as appearing either well established or at minimum highly probable:

� The spin- 1
2

Heisenberg magnet on the 2D pyrochlore (checkerboard) lattice is a
VBC with a large gap both to spin excitations and in the singlet sector [52, 91].
From the numerical real-space renormalization approach [92] and exact diago-
nalization on a N D 32 system [52], it seems that the same situation is true for
the 3D pyrochlore lattice. Still, more analysis of the pyrochlore case is essential
to verify this point, and to give more information about the excitation spectrum.20

20 Such a structure is also very sensitive to spin-lattice couplings, which, as noted above, act to
favor VBC formation [93].
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� The spin-1 Heisenberg magnet on the kagomé lattice has a large gap [94], it may
be in the Affleck–Kennedy–Lieb–Tasaki class [95, 96], and have spin- 1

2
edge

excitations. These kind of phases were qualified in [95, 96] as Valence Bond
Solid (VBS). The VBS states are closely related to the type (i) VBC.

� In the small systems studied, the spectra of the spin- 1
2

Heisenberg model on the
kagomé and pyrochlore lattices are quite different. A clear gap is present in the
singlet sector for the latter (its value is � 0:21 J on a N D 32 sample [52], where
J is the coupling constant), whereas for the former the singlet sector seems to be
gapless: the average interval between consecutive levels of this continuum on a
N D 36 cluster lies below J=50 [97].

� A study of the spin- 3
2

Heisenberg model on the kagomé lattice [98] points to
a finite-size spin gap decreasing rapidly with the size (opening the possibility
of a gapless system), and to a structure of the low-lying singlet sector notably
different from that of the spin- 1

2
model. Given the very small cluster sizes, these

results could even be consistent with a semi-classical picture – something clearly
not the case for the spin- 1

2
system and absolutely not for the spin-1 system.

These four points illustrate the role of the value (integer or half-odd-integer) of
the total spin in the unit cell. With the present nulmerical data, we can hypoth-
esize that systems with integer spins in the unit cell, spin-1 kagomé, spin- 1

2
2D

pyrochlore, and apparently spin- 1
2

3D pyrochlore, have a rather large gap in the sin-
glet and triplet sectors and are likely to be VBCs. Spin- 1

2
and spin- 3

2
systems appear

rather different, they may have a very small or vanishing gap. A discussion of the
Lieb–Schultz–Mattis theorem in this context may be found in [18, 60] and provides
the first steps to understand theoretically the role played by the total spin per unit
cell (integer or not).

For the spin- 1
2

kagomé antiferromagnet, different competing hypotheses remain
open. Either the system is in a VBC phase with a large unit cell or it may be a gapped
RVB spin liquid (with a very small gap) or critical gapless spin liquid.

� The first hypothesis, already studied by a number of authors [99–101] has been
substantiated recently by a state-of-the-art series expansion starting from an
ordered VB pattern [4, 5]. In this approach, a large unit cell of 36 spins is pro-
posed as the basic cluster emerging through the spontaneous formation of a
[type-(ii)] VBC. This spontaneous symmetry breaking is an illustration of the
mechanism of “order by disorder” invoked in Sect. 2.3. This calculation shows
that a VBC phase is at minimum very close in energy to the absolute ground-
state, and does not melt under relatively small loop exchange cycles (the series
expansion is performed up to 5th order).21 Nevertheless, the importance of the
bias introduced by the choice of an initial ordered VB configuration remains
quite unclear. Recent DMRG calculation [90] for systems up to 108 spins, which
evaluate in the thermodynamic limit a finite spin gap of order J=20 exclude a

21 In other approaches, with their own different limitations, the crystal is shown to melt under the
effects of fluctuations. [54, 92].
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long-ranged dimer–dimer order, which is at variance with the VBC hypothesis,
whatever the size of the unit cell of the crystal.

� The second hypothesis of a “short” range RVB Z2 spin liquid has been advanced
very early by Sachdev [102] within a large-N Schwinger bosons approach. The
behavior of the finite size gap and spin–spin correlations in samples with all the
symmetries of the infinite lattice [37, 83, 90] does not contradict such an hypoth-
esis, but the analysis of the 36-sites dynamical spin–spin susceptibility [103]
shows that the maximum of this susceptibility is not at the corner of the Brillouin
zone as would have been expected in this hypothesis.

� The last hypothesis is that of gapless spin liquid. Ran et al. have proposed a gap-
less algebraic spin liquid as a possible state to describe the low-energy physics of
this compound [17, 67], whereas Ryu et al. consider another kind of critical spin
liquid, the “algebraic vortex liquid,” which is possibly relevant in describing the
spin- 1

2
XY magnet on the same lattice [16]. A critical spin liquid would explain

more simply (than the explanation of [4, 5]) the quasi-continuum observed in
exact diagonalization studies for all spin sectors (S D 0; 1

2
; 1; : : : ). It is also fully

consistent with the dynamical mean-field theory results of [104]. A discussion of
the spin gap issue extracted from finite size calculations (exact diagonalizations)
will be soon available to complement this discussion [97].

For a discussion of the possible experimental realizations of such a model we
refer to P. Mendels chapter in this book.

2.6 Conclusion

VBC and srRVB liquids are states of matter based on the same building blocks. Both
types of wave function can be viewed as linear combinations of VB configurations,
which are energetically favorable states in the presence of frustrated interactions.
The properties of these two types of state at long distances are completely different:
a VB crystal wave function is “localized” in the vicinity of one (or a small number
of) simple “parent” VB configuration(s) which is (are) spatially regular; the wave
function of an RVB liquid spreads over macroscopically many VB configurations
which are very different, and distant from each other in configuration space (i.e.
with long loops in their mutual transition graphs). This difference is connected at a
fundamental level to the nature of their magnetic excitations: integer-spin excitations
in VBCs (a broken singlet bond which propagates and becomes “dressed” by small
resonance loops) contrast sharply with deconfined spin- 1

2
spinons in RVB liquids

(an unpaired spin in a sea of VBs).
It is usually a difficult, but nevertheless crucial, question to decide whether a

given spin model has a VBC or a short range RVB-liquid ground state or, in fact,
something else again. These states differ in their long-distance properties: confine-
ment versus deconfinement of spinons and long- versus short-ranged bond–bond
correlation functions. Analytical and numerical approaches often need to be com-
bined to reach a conclusion. However, the kagomé and pyrochlore cases discussed
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in Sect. 2.5 are examples where the definitive answer is not yet known. To discuss
these issues in a more formal manner – something we have avoided here – it is
instructive to formulate the spin model in terms of spinons interacting with gauge
fields. This approach is discussed in [18], including its application to other types of
spin-liquid wave function based on states with long-ranged VBs, and possibly also
possessing gapless spinons.
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Chapter 3
Neutron Scattering and Highly Frustrated
Magnetism

Steven T. Bramwell

Abstract Neutron scattering is a paradigm technique for the determination of spin
correlation functions. It is the method of choice for the study of magnetic order and
magnetic interactions, and, in favourable cases, it may provide an unambiguous dis-
tinction between conventional paramagnetism and cooperative paramagnetism. This
chapter is an introduction to neutron scattering with an emphasis on its interpreta-
tion in terms of spin correlation functions and generalised susceptibilities. The main
aim is to illustrate how neutron scattering is used to interrogate the nature of the
disordered and highly degenerate states that occur in highly frustrated magnets.

3.1 Introduction

The study of the phases of matter might be seen, at a fundamental level, as the
study of broken symmetries, of which there are many kinds [1]. Magnetic neutron
scattering essentially measures the spin–spin correlation function, so most clearly
distinguishes magnetic phases that have correlation functions of differing symme-
try. The simplest example is the distinction of a paramagnet and a spin ordered
phase (ferromagnet or antiferromagnet). In the former the spin–spin correlation is a
decreasing function of distance between the spins, which gives rise to continuous or
‘diffuse’ neutron scattering in reciprocal space; in the latter the correlation function
acquires a component with periodic symmetry that gives rise to discrete scattering
in the form of Bragg peaks. Thus, given sufficient instrumental resolution, there
is no ambiguity in distinguishing ordered and disordered spin components as their
signatures in neutron scattering are radically different (Fig. 3.1).

The game of highly frustrated magnetism is to find new and exotic phases, that
may generally be described as ‘cooperative paramagnets’ [2]. Bulk measurements
may infer the existence of such phases, but they do not generally indicate a dis-
tinctive difference between these and the conventional paramagnetic phase, so we
should ask, is it even correct to imagine a basic distinction between the two? If the
answer were no, then highly frustrated magnetism would be a very boring subject!
Fortunately, there is such a basic distinction, at least for one broad class of highly

45
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Fig. 3.1 Schematic neutron scattering map of an ordered phase with sharp Bragg spots (left) and
an ideal paramagnetic phase, with broad diffuse scattering (right)

frustrated magnets, and this is clearly revealed by neutron scattering. The clarity of
the distinction afforded by neutron scattering again reflects symmetry differences
in the underlying spin correlation functions of a conventional and a cooperative
paramagnet, even though neither phase exhibits periodic spin order.

To emphasise this, Fig. 3.2 illustrates reciprocal space maps of the correlation
function S.Q/ (defined below), a quantity directly estimable by neutron scatter-
ing. Assuming a cubic system, the maps may be parameterised in polar coordinates
fq; �g with respect to a Brillouin zone centre. We consider four possibilities: (a) that
S depends neither on q nor � , (b) that it depends on q but not � , (c) that it depends
on � but not q, and (d) that it depends on both. In fact, this classification turns
out to correspond respectively to the case of (a) an ideal paramagnet, (b) a conven-
tional magnet in its paramagnetic phase, (c) an ideal highly frustrated magnet with
‘emergent gauge’ structure, and (d) a more general highly frustrated magnet. This
correspondence is a vivid demonstration of how the most straightforward classifica-
tion of neutron maps naturally identifies distinct paramagnetic phases that fit neatly
with our concepts of frustration.

In this article, I want to elaborate upon these remarks in order to explain how
neutron scattering may be used (and has been used so far) to interrogate the nature
of cooperative paramagnetic phases. This interrogation may be direct – by measur-
ing spin–spin correlations – or indirect: by establishing the spin–spin interactions,
typically through characterisation of magnetic structures, spin waves or crystal field
excitations. My additional aim is to give the reader a basic introduction to neutron
scattering and its relation to statistical mechanics.

The article is divided into four sections. The first Sect. 3.2 describes what neu-
tron scattering measures (within the kinematic theory, stemming from the first Born
approximation) and how it relates to spin correlation functions, generalised sus-
ceptibilities and magnetic moments. The second Sect. 3.3 contrasts the signatures,
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a b

c d

Fig. 3.2 Schematic neutron scattering maps classified by their radial and angular dependence near
to a Brillouin zone centre: see text for the definition of (a)–(d)

in neutron scattering, of conventional and highly frustrated magnetism. The third
Sect. 3.4 surveys some experimental results: these are chosen to illustrate general
principles, rather than to exhaustively review the subject. The final Sect. 3.5 draws
some conclusions. I do not discuss the generation of neutron beams or any aspects of
neutron instrumentation and I make no attempt to describe the full array of neutron
scattering techniques.

3.2 What Neutron Scattering Measures

3.2.1 Scattering Triangle

The basic neutron scattering experiment is illustrated in Fig. 3.3. An incident neu-
tron of known wavevector ki is scattered by the sample into an outgoing (final)
neutron of wavevector kf .1 It is possible to measure the change in both the direc-
tion and magnitude of the neutron wavevector, or equivalently, the changes in the

1 More precisely, one should conceive of a probability current of incoming and scattered neutrons.
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ki

kf

Q

sample

source detector

Fig. 3.3 Schematic neutron scattering experiment (left) and one possible scattering triangle that is
consistent with the scattering angle shown

neutron’s momentum �p D „�k. The conservation of momentum leads to the
vector relationship:

�p=„ D ki � kf D Q; (3.1)

which is summarised in the scattering triangle, Fig. 3.3. The wavevector Q is called
the scattering vector. If jki j ¤ jkf j then the triangle is non-isoscelese and there is a
change in neutron energy �E D „2�.k2/=2m, where m is the neutron mass. This
may be expressed as a frequency !:

�E D „2

2m

�
k2

i � k2
f

�
D „!; (3.2)

where �E D „! is called the energy transfer. The scattering vector and energy
transfer are the two key parameters in neutron scattering that can be selected by the
experimenter.

The usual neutron experiment delivers a beam of unpolarised neutrons and detec-
tion does not discriminate between scattered spin states. However, neutrons may
also be delivered in a polarised state with analysis of the scattered neutron spin
states. In this way, changes in spin angular momentum may also be characterised.

3.2.2 Partial Differential Cross Section

Like any triangle, the scattering triangle can be fully specified in terms of three
variables, which we can chose in different ways. For example, we might specify
the incoming wavelength, scattering angle and change in energy. In order to detect
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neutrons we need to collect the scattered neutrons over a range of angles in three
dimensions, i.e., a range of solid angles �˝ , as well as a range of scattered neu-
tron energies�E. We can conceive of an ideal high resolution experiment in which
these ranges are small and can be taken as differential quantities, d˝ and dE . The
number of neutrons scattered per second per unit incident flux, into a range of solid
angle d˝ and with range of energies between E and E C dE , is called the par-
tial differential scattering cross section, d2�=d˝dE . We can expect this quantity to
be the product of several terms. First, a characteristic length squared to give it the
right dimensions – call it r2

0 ; second, a term .kf =ki / because it depends on scat-
tered/incident number of neutrons per unit time, quantities which are proportional
to the velocity of the neutrons and hence to k; and third, some function (say �) of
Q and ! as well as the possible spin states of the neutrons:

d2�

d˝dE
D r2

0

kf

ki

� .Q; !; spin/ : (3.3)

3.2.3 Relation to Sample Properties

Neutrons are scattered by atomic nuclei (‘nuclear scattering’) and magnetic
moments or spins (‘magnetic scattering’). The key feature of neutron scattering
is that because momentum and energy are conserved quantities, then the changes
in neutron linear momentum („Q), neutron angular momentum (s) and neutron
energy („!) are exactly mirrored by momentum and energy changes in the sample.
Two examples from nuclear scattering illustrate this. The first is phonon scattering
where the neutron excites or de-excites a phonon of wavevector q D Q and fre-
quency !0 D !. Thus, scattering is only observed at those values of fQ; !g that
coincide with the phonon ‘dispersion’ curve !0.q/. The second example is Bragg
reflection. Here, the scattering is elastic (! D 0 so jki j D jkf j), and coherent,2 so
produces diffraction: because the angle of incidence is equal to the angle of ‘reflec-
tion’, the momentum transfer „Q is normal to the set of crystal planes .hkl/ doing
the diffracting. By applying Bragg’s law it is easily shown that diffraction may only
occur when Q D G where G is a reciprocal lattice vector with jGj D 2�=dhkl (here
d is the interplanar spacing).

One can see from these examples that any physical property of the sample that
can be represented in terms of wavevectors and frequencies may be directly observ-
able to neutron scattering. Thus, neutron scattering directly looks at reciprocal space
(the set of all wavevectors) and frequency space (the set of all frequencies) and most
clearly reveals sample properties like phonons and crystal planes that are naturally
represented in these spaces.

2 Bragg scattering is coherent in the absolute sense, which means that the scattered beam interferes
with the incoming beam. Diffuse scattering, treated below, may only be coherent in the relative
sense which means that only the scattered waves produce interference effects [3].
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3.2.4 Scattering from Atomic Magnetic Moments

Here, we are interested in magnetic neutron scattering from the electrons in a sample
and I will assume that the nuclear scattering and other unwanted scattering (from say
nuclear spins or the sample environment) can always be removed to reveal only this
component (in reality this may be tricky in a powder experiment but it is usually
straightforward in a single crystal experiment). Also, when I speak of ‘spins’ it is to
be understood that these could be effective spin operators that describe the combined
spin and orbital angular momentum.3

The neutrons are scattered by the spatially varying magnetic field B.r/ that arises
from the spins in the sample. Neutron scattering sees the Fourier transformed field
B.q/ which is proportional (within the constraint discussed below) to the Fourier
transformed spin field S.q/. Interference effects are produced by the relative coher-
ence in the scattering from different atoms and bearing in mind that the spin field can
vary in time as well as space, second order dynamical perturbation theory shows that
the scattering is essentially proportional to the time (t) and spatial Fourier transform
of the two-spin correlation function of the sample:4

S˛ˇ .q; !/ D 1

2�

X
R

Z C1

�1
eiq�R�!t hS˛

0 .0/S
ˇ
R .t/idt; (3.4)

where R defines the spin positions, h: : : i denotes a thermal average and ˛; ˇ D
x; y; z are cartesian components. S˛ˇ .q; !/ (called, in the context of neutron scat-
tering the ‘dynamic scattering function’) is the sample property that the neutron
scattering experiment seeks to estimate. However, as explained below, only some
of the components of this tensor can be observed at any particular setting of the
neutron instrument.

3.2.5 Orientation Factor and Form Factor

The observed scattering is modified by several extra factors, of which two are par-
ticularly important. The first of these is a direct consequence of Maxwell’s Law
r � B D 0 that implies that B.q/ has no component parallel to q.5 This means
that neutrons only ‘see’ spin components perpendicular to the scattering vector
Q D q. Consequently, the scattering function S˛ˇ .Q; !/ must be multiplied by

3 Atomic magnetic moments may always be treated as proportional to effective angular momentum
operators: the so-called magnetomechnical equivalence.
4 Small q will be used to represent sample properties: it is always equal to the vector Q of the
scattering experiment, but there is a logical distinction.
5 The Fourier transform of r � X D 0 is q � X.q/ D 0, a result that we shall use again below (here
X is a vector field).
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an orientation factor that projects out its parallel components. This factor may be
written ı˛ˇ � OQ˛

OQˇ where OQ˛;ˇ are components of the unit vector OQ D Q=jQj.
The second modification arises from the fact that the unpaired spins actually

inhabit spatially extended valence orbitals, so neutrons are really scattered by spin
density rather than spins localised on lattice points. Fortunately, there is a rigorous
theorem – the Wigner–Eckart theorem – that shows that to within a factor the spin
density on a given atom or ion may be replaced with an effective spin operator
localised on a lattice point [4]. S˛ˇ .Q; !/ is derived from these localised operators
so must be corrected to take into account the spatially extended spin density. The
correction factor is f .Q/2 where f is the magnetic form factor, which is essentially
the Fourier transform of the normalised spin density on a single atom or ion (and
hence depends on atom or ion type). Because ions are approximately spherical, it is
typically a simple decreasing function of jQj which (at least for our purposes) may
be treated as a experimental correction to be looked up in tables [5].

3.2.6 General Expression for the Neutron Scattering

Collecting together the factors discussed above and recalling (3.3), the scattered
intensity may be written

d2�

d˝dE
D r2

0

kf

ki

f .Q/2
X
˛ˇ

�
ı˛ˇ � Oq˛ Oqˇ

�
S˛ˇ .Q; !/ (3.5)

where the summation over ˛; ˇ is specific to a an unpolarised neutron experiment
(see below). The factor r0, called the magnetic scattering length, depends on a num-
ber of fundamental constants that define the interaction of the neutron with the
atomic magnetic moment: specifically, r0 D �ne2=mec

2 D �0:5391 � 10�14 m,
where �n is the neutron gyromagnetic ratio [6]. Equation (3.5) should also be cor-
rected by a Debye–Waller type thermal factor that describes the blurring of the
lattice due to thermal vibrations. The equation as written may be applied directly
to the scattering from a single crystal sample: with a polycrystalline sample one
further needs to average over crystallite orientations, which obscures much useful
information.

If necessary, the components of S˛ˇ .Q; !/ can be separated by the technique of
polarisation analysis [7], thus removing the summation in (3.5). As the neutron has
spin s D 1=2, the magnetic scattering might either flip this spin or not, with spin
angular momentum conserved by a corresponding change in the spin state of the
sample. Polarisation analysis measures spin flip and non spin flip cross sections as
a function of incident neutron polarisation, from which the components of S˛ˇ can
be reconstructed [8].
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3.2.7 Real Experiments

In a real experiment, in addition to applying (3.5), one needs to account for
instrumental resolution [9, 10], sample imperfection, absorption by the sample and
counting statistics. It is usual to assume a parameterised form of S˛ˇ .Q; !/, then
to convolve this with a parameterised resolution function (that includes the ‘mosaic
spread’ of the sample), and finally to least-squares fit to the (possibly absorption-
corrected) neutron scattering data. The experimental statistics in neutron scattering
are strictly Poissonian, i.e., an error of

p
n on count n, which renders this sort of

approach to data analysis particularly robust. It should also be noted that (3.5) is
only valid for a sufficiently small or ‘ideally imperfect’ sample, which naturally
avoids the problem of multiple scattering and consequent extinction effects. The
typical mosaic structure of real crystals is an advantage here as the coherent scatter-
ing volume is limited to a few microns. Generally speaking, the maximum crystal
size should be a few mm3 for Bragg scattering and a few cm3 for diffuse scattering.
Within this constraint the crystal volume should be maximised, to optimize counting
statistics.

3.2.8 Powder Averaging

For most types of neutron experiment single crystal samples are preferable to pow-
ders. When a powder sample is used, there is averaging over the orientations of Q
which obscures a great deal of information. However, there are certain situations in
which powder samples may be preferred even if single crystals are available. For
example, in magnetic crystallography, powder samples are often used, in order to
cover more reciprocal space and to avoid extinction effects, which can affect Bragg
intensities. Nevertheless, probably the most common reason for measuring pow-
der samples is simply to maximise sample volume in cases where sufficiently large
single crystals are not available, or neutron beam time is limited.

3.2.9 Static Approximation

In the case that energy transfers to and from the sample are negligible, the dynamic
scattering function approaches a delta function in ! at the origin. Integration over
frequencies then gives the so-called ‘static approximation’:

S˛ˇ .Q/ D
X

R

hS˛
0 .0/S

ˇ
R .0/ieiQ�R D

Z C1

�1
S˛ˇ .Q; !/d!: (3.6)
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The quantity on the left hand side of (3.6) is an instantaneous correlation function
(i.e., one realised at time t D 0), but in a real experiment, such instantaneous corre-
lations are sampled at a sequence of times that are widely separated on the time scale
of spin fluctuations. This process is akin to taking an ergodic average, which should
be well represented by an ensemble average in equilibrium statistical mechanics.
The assumed fact that energy transfers are negligible means that the equilibrium
state of the sample is not perturbed by the neutrons, so S.q/ measures a genuine
equilibrium correlation function.

In this case, the differential cross section, which no longer depends on energy,
becomes:

d�

d˝
D r2

0

kf

ki

f .Q/2
X
˛ˇ

�
ı˛ˇ � OQ˛

OQˇ

�
S˛ˇ .Q/ (3.7)

One may thus regard the total scattering at Q as an estimate of S.Q/.

3.2.10 Wavevector Dependent Magnetic Moment
and Susceptibility

A very useful alternative formulation of (3.7) exploits the general relationship
between correlation function, susceptibility � and average magnetic moment M .
For a sample with N spins located on a Bravais lattice of position vectors R, we
define the (intensive) wavevector dependent magnetic moment,

M.q/ D N�1
X

R

SReiq�R (3.8)

from which follows
S˛ˇ .q/ D N

D
M ˛.q/M ˇ .�q/

E
; (3.9)

which may be verified from (3.8), by invoking the translational invariance of the
sample (so

P
R0

P
R ! N

P
R�R0

). Defining the (intensive) wavevector dependent
susceptibility:

�˛ˇ .q/ D dM ˛

dHˇ
D N

kT

h
hM ˛.q/M ˇ .�q/i � hM ˛.q/ihM ˇ .�q/i

i
; (3.10)

we see that
S˛ˇ .q/ D kT�˛ˇ .q/CN hM ˛.q/ihM ˇ .�q/i: (3.11)

Neutron scattering thus measures both wavevector dependent magnetic moments
and susceptibilities.6

6 This susceptibilty is really a reduced susceptibility that should be multiplied the form factor
squared to convert it to the ‘real’ susceptibility.
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3.2.11 Fully Ordered Magnet

In a fully ordered magnet, the susceptibility components are all zero7 and all scatter-
ing is due to the wavevector dependent magnetic moment. Assuming that the crystal
structure has the symmetry of a Bravais lattice (as is nearly always the case for geo-
metrically frustrated magnets), then the spin positions R may be represented as R D
TCr where T is a translation vector that defines a particular magnetic unit cell and r
is the position of a magnetic atom or spin within a unit cell. If the wavevectors of the
magnetic reciprocal lattice are G then hM.q/i can only be finite for q D G. At these
wavevectors hM.q/i becomes N�1

P
T

P
rhS.T C r/ieiG�.TCr/ D P

rhS.r/ieiG�r,
since eiG�T D 1 [3]. Plugging this result into (3.11), we find:

d�

d˝
D r2

0

kf

ki

f .Q/2
ˇ̌
ˇ̌
ˇ
X

r

hS?.r/ieiQ�r
ˇ̌
ˇ̌
ˇ
2

ı.Q � G/; (3.12)

where the orientation factor (which projects out parallel spin components) has been
absorbed into the ‘?’ symbol, S? being the component, perpendicular to Q, of a
particular spin in the unit cell of the magnetic structure. The scattering is seen to
occur as delta functions, or Bragg peaks, at the magnetic reciprocal lattice vectors,
with intensity proportional to the square of the ordered component. In the above
equation, the summation is over the unit cell rather then the whole sample and the
term j : : : j is referred to as the magnetic structure factor [11].

Magnetic Bragg peaks do not necessarily occur at all the magnetic reciprocal
lattice points. There are two very general reasons for this. First, the orientation fac-
tor (the ‘?’ in (3.12) might cause certain Bragg reflections to have zero intensity.
Second, the phase factors eiQ�r might cause the scattering from different spins in
the unit cell to interfere destructively, leading to systematic absences. This always
occurs if the magnetic and nuclear unit cells are non-coincident, causing the mag-
netic Bragg peaks to occur at different positions in reciprocal space to the nuclear
Bragg peaks, as illustrated in Fig. 3.4. In the example, the magnetic unit cell is dou-
bled with respect to the nuclear unit cell along one direction. The nuclear reciprocal
lattice fGnuclearg is a subset of the magnetic reciprocal lattice fGmagneticg, but the
set fGnuclearg are systematic absences for magnetic diffraction, leading to a neat
separation of nuclear and magnetic Bragg peaks.

If we define fGmagnetic Braggg as the set of magnetic Bragg peak positions then we
can write

Gmagnetic Bragg D Gnuclear C
X

i

ki (3.13)

where the ki s are a finite set of propagation vectors of the magnetic structure [11].
In the example (Fig. 3.4), the set fki g comprises only the single vector k D .0; 0; 1

2
/,

but more generally, so-called multi-k structures are also possible [11]. As described

7 At least in the hypothetical case where the magnet has no possible fluctuations.
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Fig. 3.4 The magnetic structure on the right (box is the magnetic unit cell which is twice the
nuclear unit cell) produces to a diffraction pattern in reciprocal space like that shown on the
left. Magnetic Bragg peaks (grey circles) appear intercalated between nuclear Bragg peaks (black
circles) and are related to them by a propagation vector k (arrow)

later (Sect. 3.4), examples of a single-k and a four-k structure are provided by the
rare earth pyrochlores Gd2Sn2O7 [12] and Gd2Ti2O7 [13] respectively.

In practice, magnetic structures are solved by fitting experimental data, via (3.12)
to candidate models: group theoretic techniques (representational analysis) may be
used to identify the possibilities.

3.2.12 Magnet with Full or Partial Disorder

Magnetic disorder is characterised by finite susceptibilities. In general, the wavevec-
tor dependent susceptibility is a smoothly varying function of wavevector so the
scattering arising from the magnetic disorder is diffuse, occurring throughout recip-
rocal space. For this reason, it is easily distinguished from the diffraction that arises
from any ordered component, that is localised into sharp Bragg peaks. The diffuse
scattering may nevertheless exhibit considerable detail, which can be analysed to
reveal the structural properties of the magnetic disorder, as shown below.

3.2.13 Validity of the Static Approximation

The preceding sections show how equilibrium thermodynamic properties (which
are necessarily time independent) may be directly obtained by neutron scattering
under the assumption that energy transfers to and from the sample are negligible.
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In the case that they are not negligible the sample is generally not in a true state of
equilibrium, but rather in a uniform steady state, close to equilibrium, in which the
neutron current continuously exchanges energy with the sample. Integration over
frequencies in (3.6) still gives the true instantaneous correlation function for the
sample in this steady state, but that is no longer the desired correlation function of
the equilibrium state that would be obtained in the absence of the neutrons current.
Application of the fluctuation dissipation theorem and detailed balance establishes
the following relation [14]:

S˛ˇ .Q; !/diffuse D kT�˛ˇ .Q/

g2	2
B

„!=kT
1 � exp.�„!=kT /F

˛ˇ .Q; !/; (3.14)

where F , called the spectral shape function, is normalised to unit area when
integrated over !. If ˛Dˇ or if q is equivalent to �q it is an even function of !.

Thus, to get a true equilibrium correlation function or susceptibility the integral
in (3.6) should be corrected by a frequency and temperature dependent factor:

kT�˛ˇ .Q/ D
Z C1

�1
1 � exp.�„!=kT /

„!=kT S˛ˇ .Q; !/d!: (3.15)

The actual integration can either be performed explicitly on the estimatedS.Q; !/
or automatically, by using a large enough incident wavevector so that the spread of
scattered wavevectors is within the instrumental resolution.8 The latter method is
usually preferable.

The diffuse scattering at zero energy transfer measures � T�.Q/F.Q; 0/ which
is not equal to the equilibrium T�.Q/. While it may occasionally be expedient to
consider this measured quantity (or more generally � T�.Q/F.Q; !0/ where !0

is some fixed frequency), it should be born in mind that it is only an approxima-
tion to the wavevector-dependent susceptibility. In general, the validity of the static
approximation should always be carefully considered when discussing experimental
data.

3.2.14 Generalised Susceptibility

In order to compare the results of neutron scattering with those of other experi-
mental techniques (particularly ac-susceptibility), it is useful to adopt the ‘com-
mon language’ of generalised susceptibility. The dynamic scattering function
S˛ˇ .Q; !/diffuse may be alternatively expressed in terms of an complex frequency-
dependent susceptibility �.Q; !/ � ReŒ�.Q; !/
 C i ImŒ�.Q; !/
. Here, the real

8 Note that Q scales linearly with k, while energy scales quadratically, which means that the
spectrum effectively narrows with increasing ki .
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and imaginary parts mediate, respectively, the in phase and out of phase response
of the system to a time dependent magnetic field. Bragg scattering, as it reflects a
broken ergodicty in the system, does not depend on time or frequency. The diffuse
scattering, in contrast, usually will depend on time, as it reflects the disordered part
of the spin system. The fluctuation-dissipation theorem connects the dissipation of
neutron energy to the spectrum of spontaneous fluctuations of the sample bathed in
the neutron beam. The following relation can be established [14]:

S˛˛.Q;˙j!j/diffuse /
�
nj!j C 1

2
˙ 1

2

�
ImŒ�.Q; j!j/
; (3.16)

where nj!j D .e„j!j=kT � 1/�1 may be interpreted as a harmonic oscillator occupa-
tion number. If neutrons accept energy from the sample (neutron energy gain), what
is measured is essentially the thermal spectrum, while if neutrons give energy to the
sample (neutron energy loss), the scattering measures states excited by the neutrons,
which need not be thermally populated. The two cross sections differ by a factor of
e�„j!j=kT , an expression of the condition of ‘detailed balance’.

3.2.15 Neutron Spectroscopy

In the case that the sample contains discrete excitations, these correspond to poles
in the dynamical susceptibility and it is appropriate to adopt a more ‘spectro-
scopic’ description, involving matrix elements and selection rules. Perhaps the most
basic excitations in ionic magnetic solids are so-called “magnetic excitons”: dis-
persed single ion excitations with (possibly gapped) dispersion !i .q/ [15]. Here,
i D 0; 1; 2 : : : represent the ladder of corresponding single ion excitations. The
lowest energy excitations (i D 0) are the magnons while higher excitons originate
in the single ion crystal field states. If exchange is small compared to the crystal
field splitting, as is typical in rare earth salts, then the dispersion of the magnetic
excitons may be neglected and neutron scattering can be used to estimate the single
ion crystal field spectrum. The unpolarised cross section for a particular transition
i ! j is

d2�

d˝dE
D r2

0

kf

ki

F.jQj/2ni jhj j O	?jiij2 ı.Ei � Ej C E/ (3.17)

(neglecting Debye–Waller factor) where ni is the number of ions in the i th state, of
energyEi , and O	? is the component of the magnetic moment operator perpendicular
to the scattering vector. It can be seen from this expression that the intensities of
the transitions depend in a very sensitive way on the single ion wavefunctions, so
neutron scattering is a direct and powerful method of estimating these functions
and deriving the crystal field parameters. However, it should be noted that powder
averaging gives potential ambiguity in the assignment of crystal field transitions,
so results obtained from powder samples should always be checked for consistency
with other measurements, for example, bulk susceptibility or heat capacity.
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3.3 Typical Neutron Scattering Patterns

In the previous section, I have tried to illustrate some of the different interpretations
of neutron scattering. Thus, in the static approximation neutron scattering may be
regarded as a thermodynamic probe that reveals properties the sample’s equilibrium
state, independent of the neutron flux. Beyond the static approximation it can either
be regarded as probing the sample’s relaxation towards that equilibrium state, fol-
lowing the weak disturbance of the neutron flux, or as a spectroscopy that reveals
the sample’s energy level structure, within the usual caveat of selection rules.

In this section, I aim to illustrate how these various probes of the sample may
be used to classify magnetic states, and in particular, to discriminate conventional
magnets from highly frustrated magnets. To this end I consider some typical neutron
scattering patterns.

3.3.1 Scattering Plane

In a typical neutron scattering experiment, the scattering triangle is in a horizontal
plane called the scattering plane. As illustrated in Fig. 3.5, we may adopt a set of
cartesian axes in which z is normal to the scattering plane (and so perpendicular
to q) and x and y are within the scattering plane. The unpolarised experiment (3.7
and 3.11) measures

�zz.q/C .1 � Oq2
x/�

xx.q/C .1 � Oq2
y/�

yy.q/� 2 Oqx Oqy�
xy.q/: (3.18)

where Oq2
x C Oq2

y D 1. Consider, for example, a conventional cubic paramagnet with
z D Œ001
, in which case �xx.q/ D �yy.q/ D �zz.q/ D �.q/I�xy D 0. The
above expression simply becomes 2�.q/ so the wavevector dependent susceptibility
is directly measured.

A large number of neutron scattering experiments on cubic frustrated magnets
(spinels or pyrochlores) have typically investigated the Œ1N10
 scattering plane. This
plane, with two-fold symmetry, contains the major symmetry directions Œ001
, Œ110

and Œ111
. Its reciprocal lattice, for face centred cubic symmetry, is illustrated in
Fig. 3.6 [16].

3.3.2 Free Energy

In order to evaluate the wavevector dependent susceptibility, we consider the
Helmholtz free energy, which is the thermodynamic potential to be minimised when
the magnetic moment M is constrained to a certain value: although this can’t be
achieved in practice we can use it conceptually to discuss the susceptibility. At a
fixed temperature, the magnetic fieldH is the first derivative of the free energy with



3 Neutron Scattering and Highly Frustrated Magnetism 59

z

x

y

Q

Fig. 3.5 Illustration of a horizontal scattering plane (grey) and axis system in a conventional single
crystal scattering experiment
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Fig. 3.6 Reciprocal lattice for the hhl plane in face centred cubic symmetry

respect to magnetic moment,H D .@F=@M/T , and the inverse susceptibility is the
second derivative: ��1 D .@2F=@M 2/T [17]. As an example, consider the case of
an ideal paramagnet. If we write F.M/ D F0 C 1

2
��1

0 M 2 � MH (which assumes
that the magnetic moment and field vectors are parallel) then a first differentiation
shows that the free energy is minimised at M D �0H , which is indeed a prop-
erty of a paramagnet, and a second differentiation confirms that the susceptibility
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�0 is consistently defined (here F0 is the component of F that does not depend
on M ). The quadratic dependence of F on M shows that the paramagnet resists
magnetization in the absence of an applied field. This resistance is purely statistical
or entropic as there is no energetic penalty in magnetizing a paramagnet: it doesn’t
magnetise spontaneously simply because there are so many more states with zero
magnetic moment than there are states with finite magnetic moment. Because the
internal energy U for the paramagnet is zero, the above free energy expression can
alternatively be written F D �TS � MH. The susceptibility is given by the Curie
Law: �0 D C=T .

We can generalise this approach to predict the form of the neutron scattering
in various types of magnets as we now show. The basic idea is to write down a
similar free energy expression for a spatially varying magnetic moment field M.r/
transformed into reciprocal space.

3.3.3 Ideal Paramagnet

We first consider the case of the ideal paramagnet and note that, as well as being
resistant to magnetization, it is equally resistant to ordering at any wavevector q so
we should be able to write:

F � F0 D 1

2
��1

0

X
q

M.q/ � M.�q/ �Mx.q/Hx.�q/ (3.19)

where the field direction defines the x-axis. Minimising this expression with respect
to each component of M.q/ individually gives �˛˛.q/ D H˛.q/=M ˛.q/ D �0,
with terms in ˛ˇ equal to zero. Then from (3.7, 3.11) we see that the diffuse neutron
scattering does not vary with temperature and, apart from the slow variation due to
magnetic form factor, is constant throughout reciprocal space. This is a scattering
pattern of the type anticipated in Fig. 3.1a.

3.3.4 Conventional Magnet Above TC

We next consider a conventional magnet in its paramagnetic phase [14]. There is a
tendency to order at some wavevector k (see Sect. 3.2.11), but the statistical resis-
tance to ordering is sufficient to overcome that tendency. For simplicity we consider
the case of a ferromagnet with k D 0. We have to add a term to our free energy
expression that represents the internal energy arising from the magnetic exchange
coupling. We imagine a mean magnetic moment field surrounding a given lattice
site r that is just slightly smaller than the magnetic moment field at the lattice
site itself. The mean field may be represented as a Taylor expansion: MMF /
M.r/ C .a2=2/r2M.r/ where a is the lattice constant. Summing over z nearest
neighbours the total exchange energy is �zJ

R
M.r/ � �M.r/C .a2=2/r2M.r/

�
dr,
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where J is the exchange constant. By substituting (3.8) into this expression, and
integrating, we find that the internal energy of the magnet, can be represented in
reciprocal space by the expression U D zJ

P
q M.q/ � M.�q/..a2=2/q2 � 1/.

Including the entropic factor and field energy (3.19), the free energy becomes:

F � F0 D 1

2

X
q

M.q/ � M.�q/.��1
0 � zJ C zJa2q2/ � H.q/ � M.�q/: (3.20)

Differentiating, and forming �˛ˇ D dM ˛=dH ˇ we find the following expression
for the wavevector dependent susceptibility:

�˛˛.q/ D �.q/ D �.0/�2

q2 C �2
(3.21)

with �˛ˇ D 0 for ˛ ¤ ˇ. In (3.21) the parameters �.0/ and � are defined by the two
relationships �.0/ D C=.T �zJC /, which we recognise as the Curie–Weiss expres-
sion, and �.0/ D .a�/�2, a scaling law.9 Here, we have assumed a cubic sample
(in other cases both � and � would depend on ˛ D x; y; z), and used �0 D C=T .
Equation (3.21) leads to the famous Ornstein–Zernike form of the scattering func-
tion S.Q/ � T�.q/. It may be Fourier transformed to give a correlation function
g.r/ D r�1 exp .��r/, so it can be seen that � D 1=� measures the size of the
correlated regions, i.e., � is the correlation length. In reciprocal space, the scattering
forms diffuse blobs of spherical symmetry centred on the ferromagnetic Brillouin
zone centre with width � �, the form anticipated in Fig. 3.2b (in a non cubic magnet
these blobs will generally have ellipsoidal symmetry).

3.3.5 Conventional Magnet Below TC

In this case, following (3.11) the neutron scattering is a superposition of (3.21)
(Fig. 3.1b) with a sharp Bragg peak at the Brillouin zone centre. Just below TC ,
the intensity of the Bragg peak grows as the square of the magnetization, i.e., as
�.TC � T /2ˇ , where ˇ is the order parameter critical exponent. The diffuse scat-
tering is much weaker than the Bragg scattering apart from very close to the critical
temperature, where it is approximately described by (3.21), with �.0/ � jT �TC j��

and � � jT � TC j� : here � an  are the critical exponents for susceptibility and
correlation length respectively.

9 This is a mean field expression: in critical point theory the susceptibility acquires an ‘anomalous’
dimension �.0/ � ��2C� [18].
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3.3.6 Cooperative Paramagnet

As a prototypical case, we consider spin ice, the highly frustrated pyrochlore ferro-
magnet [16,19]. Its low temperature cooperative paramagnetic phase is governed by
the ice rule constraint ‘two spins in, two spins out’ per tetrahedron of the pyrochlore
structure. The magnetic moment field M.r/ is therefore solenoidal (i.e., a solenoid
has as many magnetic flux lines flowing into it as out of it) and obeys the local
‘divergence free’ condition:

r � M.r/ D 0; (3.22)

from which follows
q � M.q/ D 0 (3.23)

and the system is thus completely described by Fourier components for which mag-
netic moment is perpendicular to its wavevector q. As an approximation, which
ignores the details of the local spin structure, we may consider spin ice to be a para-
magnet in which the free energy (3.19) is minimised subject to this constraint, so as
before, we seek to calculate �.q/ by differentiating the free energy. In three dimen-
sions, the algebra is laborious, but in two dimensions it is very easy [20, 21]. The
constraint (3.23) may be written

qxMx.q/C qyMy.q/ D 0; (3.24)

so the magnetization components are not independent. First, consider the response
of Mx to a field along x, so H D .Hx; 0; 0/. The free energy is:

F D
X

q

1

2
��1

0

�
M 2

x .q/CM 2
y .q/

� �Mx.q/Hx.q/; (3.25)

so by eliminatingMy , using (3.24), and by minimising with respect toMx as above,
we find:

�xx D �0

q2
y

q2
x C q2

y

: (3.26)

We could have alternatively considered the response of Mx to a field along y, with
the result:

�xy D ��0

qxqy

q2
x C q2

y

: (3.27)

The neutron scattering function S˛˛.q/ � �˛˛.q/T , is given by (3.26). This is
an unusual functional form that contains a singularity as q ! 0: if the origin is
approached along y at qx D 0 then �.0/ D �0 whereas if it is approached along
x at qy D 0 then �.0/ D 0. The scattering function is therefore singular at the
origin: a so-called pinch point singularity or ‘bow tie’ of scattering, as anticipated
in Fig. 3.2c. Recalling that we ignored the details of the local spin structure, this
form of the scattering would not be expected to apply at large wavevector in the
Brillouin zone, but it should be a good approximation near the zone centre.
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The pinch point scattering (��T ) may be re-expressed in polar coordinates

q D
q
q2

x C q2
y , � D arcsin.qx=q/, showing that the diffuse scattering near the

zone centre depends only on angle � , not on q (see Fig. 3.2c). Alternatively one can
write (3.26), (3.27) as

�˛ˇ D �0

�
ı˛;ˇ � Oq˛ Oqˇ

�
; (3.28)

where Oq˛;ˇ are unit vector components.
This analysis is easily extended to three dimensions. Taking into account the

summation over cartesian components in (3.7) pinch points may not be visible to
unpolarised neutrons in a four-fold scattering plane like Œ100
, but should be visible
in a two fold scattering plane like Œ1N10
; in either case it is clear that they would
be better studied by polarised neutron scattering which can isolate the components
of �˛ˇ .

Pinch point scattering is not only a property of spin ice but also applies in
principal to any highly frustrated magnet that obeys a local ice-rule type con-
straint [22, 23]. The scattering is seen to be fundamentally different to that of a
simple paramagnet or a disordered ferro- or antiferromagnet. When (3.28) is Fourier
transformed, the spin correlations in direct space are seen to take the form of a
dipolar interaction, with a complicated angular dependence and a slow algebraic
decay as the inverse cube of distance [20]. This contrasts the decay of correla-
tions in a conventional magnet above its ordering temperature, where the decay
of correlations is like a screened Coulomb interaction (3.21). This relationship of
correlation functions to charge interactions was first pointed out by Youngblood,
Axe and McCoy [21] for the analogous case of ice-rule paraelectrics. The pinch
point scattering functions of cubic magnetic systems have been analysed in detail
by Isakov et al. [22] and by Henley [23]. Their relevance to frustrated magnets was
first realised by Zinkin et al., on the basis of numerical simulations [24], and the first
clear experimental observation was recently reported by Fennell et al. [25].

Comparing Figs. 3.2a and 3.1b we finally see how neutron scattering reveals a
symmetry difference, in the spin correlation function, between a cooperative para-
magnet and a conventional paramagnet. The cooperative paramagnetic phase may
be called a ‘Coulomb phase’, by analogy with field theories, because its basic
excitations can be shown to be effective charges or magnetic monopoles [26].

3.3.7 Absent Pinch Points

In any real frustrated magnet, it is certain that the pinch point singularity will be
removed by one mechanism or another, even though this effect may be very small.
A first possibility is that the zero divergence constraint (3.22) is relaxed at a long
length scale �ice by adding a term in .r � M.r//2 to the free energy [20]. This will
cause a broadening of the pinch point to give it a width ��1

ice (see Fig. 3.7, left), and
the susceptibility takes the form:



64 S.T. Bramwell

Fig. 3.7 Absent pinch points (schematic). Left: the pinch point is replaced by a ridge of width ��1ice .
Right: the scattering near the zone centre is completely suppressed, indicating finite spin clusters
(see text)

�xx D �0

q2
y C ��2

ice

q2
x C q2

y C ��2
ice

: (3.29)

A second possibility arises when there is an additional length scale in the prob-
lem that removes the power law correlations associated with the pinch point. This is
most easily seen in the case of spin ice, where the spin ice state can be constructed
from spin loops of all sizes, from the smallest possible, a hexagon, to loops that span
the entire sample. Each of these loops is closed and carries zero magnetization: the
algebraic nature of the correlations arises from the fact that there are loops on all
scales. It is possible, however, to construct a state that consists only of hexagonal
loops [27]. It is impossible to construct a long wavelength magnetization fluctua-
tion from these finite loops so the scattering function is completely suppressed in
the Brillouin zone centre (Fig. 3.7, right). In reality, unless there is some break-
ing of spin symmetry (typically signaled by a phase transition), then a complete
suppression of the pinch point is unlikely.

A similar argument may be applied to frustrated antiferromagnets: a pattern
like Fig. 3.7b would be indicative of a tendency to finite size clusters of some
sort. In fact, experiments on systems such as Y(Sc)Mn2 [28], ZnCr2O4 [29] and
MgCr2O4 [30] reveal that this is the common situation in pyrochlore lattice spin
liquids (see Sect. 3.4).

3.3.8 Dynamical Signature of Cooperative Paramagnetism

It would be wrong to speak of a single dynamical signature of cooperative paramag-
netism, as the spin dynamics depend in great detail on the actual interactions in the
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system. For example, in Ising-like systems such as spin ice, the dynamics are ther-
mally activated [26, 31] while in systems with continuous spin symmetry, they may
persist to the limit of low temperature. Nevertheless, two aspects of spin dynamics
in highly frustrated magnets could be regarded as generic.

First, for the classical Heisenberg antiferromagnet on the pyrochlore lattice,
Moessner and Chalker derived the following form for the time dependence of the
spin autocorrelation function [32]:

hSr.0/Sr.t/i D exp.�cTt/; (3.30)

where c is a constant. This Fourier transforms to a Lorentzian scattering function in
frequency space with width �T . A relaxation of the type (3.30) might be expected
to be quite typical for highly frustrated magnets as it reflects a very large degeneracy
of ground states and low lying excited states, that include dynamical modes of zero
energy. Thus, even the smallest temperatures mediate an extremely rapid relaxation
of any disturbance, and it is only at zero temperature that all motions completely
disappear.

The second aspect of spin dynamics expected to be generic for highly frustrated
magnets is the elementary thermal excitation of the Coulomb phase, such as the
magnetic monopoles of spin ice [26]. These cost energy but do not couple directly
to neutrons as their creation or destruction does not involve a single unit of spin
angular momentum. Thus they could only be detected indirectly by their effect on
the thermal or spatial evolution of the spin correlation functions.

3.4 Experimental Results

In this section, I describe various results of key neutron scattering experiments on
highly frustrated magnets. This is not a comprehensive review of the literature,
but rather, examples are chosen to illustrate the general ways by which neutron
scattering may contribute to the field of highly frustrated magnetism.

3.4.1 Cooperative Paramagnet States

3.4.1.1 Spin Ice

Spin ice is the Ising-like highly frustrated pyrochlore lattice ferromagnet, in which
spin configurations map onto proton configurations in Pauling’s model of water
ice [16, 19]. Ho2Ti2O7, the canonical spin ice material [16, 33], is an ideal subject
for neutron scattering, as it freezes into a disordered magnetic state below � 2 K, in
which the static approximation is almost ideally obeyed. Thus, mapping of the dif-
fuse scattering in reciprocal space gives a direct measure of �˛ˇ .q/. Furthermore,
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the moments on Ho3C are about the largest of any magnetic substance (10	B), and
since the neutron cross section scales as the square of the moment, its magnetic scat-
tering is orders of magnitude stronger than that of a typical magnet. This is also true
of another spin ice material, Dy2Ti2O7 [34], but in other respects latter is less suited
to neutron scattering as dysprosium is strongly neutron absorbing. To compensate
for this it has been studied as the isotopically enriched 162Dy2Ti2O7 [35].

The (unpolarised) scattering pattern of spin ice materials has been extensively
mapped in several planes of reciprocal space in both zero and applied magnetic
field [16,25,33,35–38]. In zero applied field the narrowing of the diffuse unpolarised
scattering towards the Brillouin zone centre suggests the pinch points that are char-
acteristic of pseudo-dipolar correlations, but it is only very recently that these have
been clearly revealed by polarised neutron scattering [39]. Application of a mag-
netic field on Œ111
 gives the reduced dimensionality kagomé ice phase [40]: this
shows very clear pinch points (Fig. 3.8) [25]. The existence of pinch points shows
that there is no characteristic length scale for the disorder in kagomé ice, so it is
very different to a conventional paramagnet.

Away from the Brillouin zone centre the scattering pattern reflects the fine details
of the spin–spin interactions in spin ice. The theory is well developed and a partic-
ularly accurate spin Hamiltonian has been established for Dy2Ti2O7 by fitting the
experimental S.Q/ to a parameterised theoretical form [27].

At temperatures above about 0:3 K, the spin relaxation of spin ice comes into
the experimental window. It has been studied by the technique of neutron spin echo,

Fig. 3.8 Pinch point scattering in kagomé ice: experiment (left) versus theory (right) [25]
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which measures S.Q; t/ (called the intermediate scattering function), the Fourier
transform of S.Q; !/ [41, 42]. This revealed an athermal regime of constant relax-
ation, stretching from 2 to 15 K. Such behaviour is consistent with the diffusion of
monopole defects [31]. At higher temperatures the same study revealed that relax-
ation occurs via single ion excitations to crystal field states. It should be noted
that the spatial characteristics of neutron scattering were key to establishing this
fact [41].

3.4.1.2 Pyrochlore and Spinel Antiferromagnets

The classical Heisenberg antiferromagnet on the pyrochlore lattice is one of the most
basic spin models to exhibit a cooperative paramagnetic, or spin liquid state [32].
The system has a local ordering principle of zero magnetization per tetrahedron of
the pyrochlore structure, that leads, as in the case of the ice rules, to pinch point sin-
gularities at Brillouin zone centres [22, 23]. However, as discussed in [43], the pure
Heisenberg model is unphysical in the sense that it implies a spin symmetry that
cannot exist in real pyrochlore materials. The inclusion of a realistic Ising or XY
spin symmetry eliminates the spin liquid state in favour of ordered states, and, sur-
prisingly, it is only the Ising ferromagnet (spin ice), rather than the antiferromagnet,
that exhibits a macroscopic ground state degeneracy.

Nevertheless, there are several pyrochlore antiferromagnets with peculiarities
that stabilise cooperative paramagnetic states. The one that perhaps comes closest
to being a true Heisenberg antiferromagnet is the spinel ZnCr2O4: at low tempera-
tures (12 K) this system has an ordering transition with a lattice distortion, but above
that temperature it approximates the Heisenberg antiferromagnet on an undistorted
pyrochlore lattice. Lee et al. reported neutron scattering maps of the hhl plane at
finite energy transfer: essentially maps of S.Q; !0/ at a finite !0 [29]. This func-
tion can be interpreted as roughly approximating the equilibrium spin correlations,
but with some weighting towards those configurations preferentially excited by the
neutron flux.10 Pinch points were not clearly observed: rather the data appeared
to show diffuse blobs of scattering, reminiscent of the expected pattern, but sepa-
rated by broad saddle points rather than by sharp pinch points. From the analysis
of Sect. 3.3, this can be interpreted as evidence for a characteristic length scale
in the disordered state. Indeed, Lee et al. showed that the scattering pattern can
be well fitted by a model of hexagonal, non interacting clusters (‘emergent excita-
tions’) (Fig. 3.9). The neutron scattering pattern bears a similarity to that predicted
for the quantum Heisenberg antiferromagnet [44]. More recently, similar scattering
has been observed in the related spinel MgCr2O4 [30].

Another material of great interest is the metallic alloy (Y0:97Sc0:03)Mn2, in
which the Mn atoms occupy a pyrochlore lattice. The related phase YMn2 is

10 Measuring at finite energy transfer typically ‘cleans up’ the pattern, by removing nuclear elastic
scattering.
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Fig. 3.9 Cluster like scattering in ZnCr2O4 [29]. Left: experiment (top) versus theory (bottom);
right: a six spin cluster

antiferromagnetically ordered below 100 K, but the application of pressure or ‘chem-
ical pressure’ (the substitution of some Sc) leads to an itinerant state with heavy
Fermion behaviour. Neutron inelastic scattering shows that the magnetism in this
phase is almost entirely dynamic in nature: localised spin fluctuations out of an itin-
erant state. Ballou et al. mapped the neutron scattering in the hhl plane at finite
energy transfer. The scattering is strikingly similar to that of ZnCr2O4, described
above, as well as the predicted form for the quantum Heisenberg antiferromag-
net [44].

A third Heisenberg-like antiferromagnet to be studied in detail is CsMnCrF6, in
which Cr and Mn are distributed over a pyrochlore lattice [45]. Here, the Cr3C and
Mn2C ions have only weak anisotropy, which is further frustrated by the positional
disorder of the ions (Banks et al., unpublished). Neutron scattering is consistent with
the expected pattern for the classical Heisenberg model, and broadened pinch points
have recently been identified. The temperature evolution of the dynamic scattering
function is broadly consistent with the expression (3.30) (see Fig. 3.10).

Finally, in this section, we mention the case of Tb2Ti2O7 which has a spin liquid
state at Kelvin temperatures. The diffuse scattering again shows broad features with
no clearly resolved pinch points [46]. The degeneracy of the spin liquid can be lifted
by the application of pressure, which induces a magnetic ordering transition [47].



3 Neutron Scattering and Highly Frustrated Magnetism 69

0
0

H
W

H
M

 (
m

eV
)

1

2

3

50

Temperature (K)

100 150

Fig. 3.10 Width of the nelastic scattering peak in CsMnCrF6 as a function of temperature, showing
it to narrow as T ! 0 [45]

3.4.1.3 Powder Experiments

The effect of powder averaging is to reduce the four-dimensional scattering func-
tion S.Q; !/ into a two-dimensional one, S.Q;!/. This is a major problem in the
study of cooperative paramagnets which are strongly characterised by the angular
dependence of the scattering function (see Sect. 3.3). Nevertheless, the powder
averaged scattering function does give some spatial information about the spin
correlations. In the static approximation, powder averaging of S.Q/ gives

S.Q/ D
X

r

hS0 � Sr izr sin.Qr/=.Qr/; (3.31)

where zr is the number of spins at distance r . Using this expression, models for the
spin correlation function can be tested against neutron scattering data. This tech-
nique has been applied to the study of spin correlations in many spin disordered
phases: for example, the pyrochlores Y2Mo2O7, Tb2Ti2O7 and Tb2Mo2O7 [48],
the kagomé system deuteronium iron jarosite [49], gadolinium gallium garnet [50],
and ˇ-Mn1�xCox [51], as well as partially ordered Gd2Ti2O7 [13] (see below).
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3.4.2 Ordered States

The resolution of frustration that occurs in many highly frustrated magnets leads
to magnetically ordered (or partly ordered) states. Although all spin ordered phases
are, in a sense, conventional, their study may nevertheless reveal essential aspects
of the physics of geometric frustration, as well as material properties that cannot
be estimated from the study of disordered states alone. Thus, magnetic structure
is a very sensitive measure of the interactions in the system, and the mechanism
by which frustration is relieved. Neutron scattering is the most direct, robust and
flexible method of magnetic structure determination, so plays a crucial role in such
studies, The examples discussed in this section are particularly chosen to illustrate
these points.

3.4.2.1 Ising Pyrochlore: FeF3

FeF3 may be considered to approximate the most basic of all realistic magnetic
models on the pyrochlore lattice: the Heisenberg antiferromagnet with h111i Ising-
like single ion anisotropy. As mentioned above, frustration is strongly relieved to
give an ordered state with spins on alternate tetrahedra of the pyrochlore structure
all pointing ‘in’ or ‘out’. This magnetic structure was confirmed by powder neutron
scattering [52]. Despite being ordered, the low temperature state shows an interest-
ing property that has been associated with the geometric frustration of the lattice.
The temperature dependence of the magnetic Bragg peaks, and hence the magnetic
order parameter, is unconventional. The magnetic order parameter exponent ˇ has
been estimated to take the valueˇ D 0:18, as distinct to the usual ˇ � 1=3 for a typ-
ical three-dimensional magnet. It would be interesting to measure the exponent with
greater precision by neutron diffraction on a single crystal sample of FeF3. Uncon-
ventional exponents are also observed in triangular lattice frustrated systems [53],
but it should be noted that the example of Er2Ti2O7, discussed below, rules out the
possibility that they are universal in ordered frustrated magnets.

3.4.2.2 XY Pyrochlore: Er2Ti2O7

Erbium titanate approximates the Heisenberg pyrochlore antiferromagnet with local
h111i XY-like single ion anisotropy [54]. The classical model relieves frustration
with order induced by thermal fluctuations (‘order by disorder’) [54, 55]. The mag-
netic structure formed has a single tetrahedron basis with every spin lying along a
local h211i axis, in the ‘XY’ plane. The real material orders at TN D 1:2K to form
exactly this structure. There is no mechanism other than order by disorder known to
stabilise it: in particular, the leading perturbation to the model Hamiltonian – dipolar
interactions – favour a different structure, as discussed below. Thus, it was suggested
in [54] that the magnetic structure is stabilised by quantum order by disorder that
mimics the classical thermal order by disorder. Two caveats on this argument have
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recently been removed. First, the existence of (previously unobserved) Goldstone
mode spin waves has been demonstrated by neutron ineleastic scattering [56], lend-
ing support to a Hamiltonian with continuous symmetry, like that proposed. Second,
6-fold crystal field anisotropy has been shown to be too weak to be the sole cause of
the observed ordering pattern, again lending support to the simplified Hamiltonian
[57]. In this context, further theoretical studies of the quantum XY pyrochlore will
be of great interest to confirm if Er2Ti2O7 really does have a ground state stabilised
through the order by disorder mechanism.

Er2Ti2O7 exhibits two other points of interest [54]. First, as mentioned above, the
order parameter exponentˇ has been measured by single crystal neutron diffraction.
It takes a conventional value, ˇ D 0:33, which is close to the theoretical value for
the three-dimensional XY antiferromagnet, thus ruling out the idea that unconven-
tional exponents are universal for frustrated magnets. Second, neutron diffraction
leads to an ambiguity in the magnetic structure as two different (symmetry related)
candidate structures give identical Bragg intensities, when magnetic domains are
accounted for. The resolution of this difficulty illustrates some general neutron
diffraction methodology. In the earliest study a magnetic field was applied to the
single crystal sample to stabilise a magnetic monodomain: changes in diffracted
intensity clearly discriminated the candidate structures, but it could always be
argued that the application of a field to a frustrated magnet might alter the mag-
netic state. Thus, a more recent study [58] used a sophisticated zero field neutron
polarimetry method to distinguish the structures and estimate domain populations,
which finally confirmed the magnetic structure proposed in [54].

3.4.2.3 Dipolar Ordering: Gd2Sn2O7

Dipole–dipole interactions are inescapable in any real magnet, but are rarely suffi-
ciently strong to dictate the ordering pattern. Heavy rare earth salts have particularly
strong dipolar interactions and relatively weak exchange. Salts of Gd3C furthermore
have relatively weak (though non-negligible) crystal field anisotropy, so gadolinium
pyrochlores may be taken as a prototypical Heisenberg-dipolar frustrated magnets.
Early ideas that Gd2Ti2O7 should be a model system of this sort were quickly
dispelled by neutron diffraction of the isotopically enriched 160Gd2Ti2O7 [59],11

but more recently it has been shown by powder neutron diffraction [12] that its
close relative (enriched) Gd2Sn2O7 does exhibit the magnetic structure expected for
dipole–dipole interactions on the pyrochlore lattice [60]. This structure has spins in
local ‘XY’ planes along h110i axes. It is probable that the single ion anisotropy of
Gd3C12 favours local XY symmetry, so does not compete with the dipolar ordering
pattern.

11 The isotope was used because natural Gd is strongly absorbing.
12 Although Gd3C is nominally an S-state ion, it normally exhibits single ion g- factor anisotropy
of magnitude several tenths of a Kelvin.
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3.4.2.4 Partial Order: Gd2Ti2O7

Originally considered a good candidate for the Heisenberg-dipolar pyrochlore anti-
ferromagnet [60, 61], there have been many conjectures about the properties of
Gd2Ti2O7, but these have been mainly ruled out by neutron diffraction evidence.
At the time of writing the magnetic structures it exhibits remain only poorly
understood, but are, nevertheless, of considerable interest.

In zero applied field Gd2Ti2O7 shows two ordering transitions at 1.1 K and 0.7 K.
In the first transition at 1.1 K only three quarters of the spins of the pyrochlore
structure order magnetically [13]. The structure is partially ordered, consisting of
one disordered tetrahedron pre unit cell, as illustrated in Fig. 3.11. It is instructive
to note that this is a ‘4-k’ structure that looks totally different to the correspond-
ing single k variant (illustrated in [59]). As described in Sect. 3.2, simple neutron
diffraction cannot distinguish the single k and multi-k variants, but a study of
the diffuse scattering arising from the disordered spin set, clearly favours the 4-k
solution (see Fig. 3.12) [13]. The 0.7 K ordering transition then corresponds to the
ordering of these spins, although they show strong quantum mechanical fluctuation
in the ground state.

The actual powder pattern for Gd2Ti2O7 is illustrated in Fig. 3.13 For symmetry
reasons the (1=2; 1=2; 1=2) magnetic peak arises solely from the ordering of the
spin set that is remains disordered between 0.7 and 1.1 K: the rapid growth of this
peak below 0.7 K proves the ordering of this set and gives a strong experimental
handle on the ground state moment.

3.4.2.5 Kagomé Lattice: Jarosite Materials

The Jarosite family, in which M3C spins (M D V, Cr, Fe) occupy a kagomé lattice
in well-separated layers, affords many chemical variations which generally show

Fig. 3.11 Partially ordered magnetic structures of Gd2Ti2O7 [13]. Left: the 1-k structure [59] and
right the 4-k structure [13]. The 4-k structure is that found in experiment (see Fig. 3.12). The
orange circles represent spins that are disordered above 0.7 K
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Fig. 3.12 Diffuse scattering from partly ordered Gd2Ti2O7 [13]. The fits show that the disordered
spins of the 4-k model describe the data much better than do those of the 1-k model (see Fig. 3.11)
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magnetic ordering transitions (hydronium iron jarosite is the exception). Wills [62]
has presented a representational analysis scheme for the structure which is used to
derive possible magnetic structures that are consistent with an observed propagation
vector k (see Sect. 3.2). For actual magnetic structure solutions on powder data see,
for example, [62] and [63].

3.4.3 Excited States

The study of magnetic excited states by neutron scattering affords a definitive
characterisation of the effective spin Hamiltonian of a ionic magnet. As described
above, the basic excitations are magnetic excitons, those arising from the single
ion ground level being the conventional spin waves, and others being best thought
of as dispersed crystal field excitations. Key to the description of a magnetic solid
(neglecting hyperfine effects) is the relative strength of the crystal field, the spin
orbit coupling and the spin–spin interactions (exchange or dipolar). The relative
values of these three energy scales determines the appropriate physical description.
At a practical level the neutron scattering energy resolution is a fourth energy scale
that, in comparison with the other three, determines what can be measured. The
examples in this section are chosen to represent the various possibilities.

3.4.3.1 Ho2Ti2O7: Crystal Field States

Spin ice Ho2Ti2O7 represents the case where there is a very clean separation of
energy scales in the system [16, 19]. Spin-orbit coupling is dominant, so that free
Ho3C ions are very well described in the basis jJ;mJ i: here J D 8;mJ D
8; 7; 6 � � � � 8, with other J -levels being at much higher energy and hence negli-
gible in a low energy description. The next strongest scale, the crystal electric field,
lifts the degeneracy of these free ion states such that each level in the crystal field
is a particular admixture of the jJ;mJ i’s consistent with the trigonal point symme-
try of the pyrochlore structure. Exchange and dipolar interactions are much weaker
again, so it is a good approximation to regard the magnetic excitons as undispersed
crystal field levels. Neutron spectroscopy may then be used to measure the energy
separations of these levels and the matrix elements between them. In [64], a spin
Hamiltonian equivalent to the following was fitted:

HCF D B2
0C

2
0 C B4

0C
4
0 C B4

3 .C
4
3 � C 4�3/C B6

0C
6
0

C B6
3 .C

6
3 C C 6�3/C B6

6 .C
6
6 C C 6�6/; (3.32)

where the C s are tensor operators related to the Stevens operators. The derived
crystal field parameters are given in [64]. Crystal field wavefunctions are a further
product of the analysis: these show that the ground term is a doublet consisting
almost entirely of j8;˙8i, with the next excited state at �300K above the ground
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state. As the dipolar coupling in Ho2Ti2O7 is only of order �1:5K (exchange being
weaker still) it is thus an extremely good approximation to regard the Ho3C effective
spins as Ising-like, the basis of spin ice physics.

Although the separation of energy scales in Ho2Ti2O7 allows an extremely accu-
rate characterisation of the spin Hamiltonian, this comes at a price. First, the weak
coupling is not far off the limit of neutron resolution, meaning that excitations aris-
ing from the magnetic coupling cannot be easily resolved. Second, the Ising-like
‘spins’ do not have a true S D 1=2, so cannot be flipped by a neutron; thus the basic
monopole excitations in spin ice cannot be excited or de-excited by the neutron flux,
so are not directly visible to neutron spectroscopy.

3.4.3.2 Er2Ti2O7: Weakly Dispersed Crystal Field States

Er2Ti2O7 makes an interesting comparison to Ho2Ti2O7 as the dispersion of the
magnetic excitions is clearly visible to neutron spectroscopy (see Fig. 3.14), indi-
cating magnetic exchange of a few Kelvin [54]. Ignoring this dispersion, the crystal
field scheme has been solved by neutron scattering [65]. In its ground state Er3C is
roughly the ‘opposite’ of Ho3C having dominant XY anisotropy. The spin wave
excitations arising from the exchange coupling can just be resolved by neutron
scattering, but a model has not yet been fitted to the data [56].

It is a fairly common practice to ‘extrapolate’ crystal field parameters from one
compound to another. However, the comparison of the true crystal field parameters
of Er2Ti2O7 with those of Ho2Ti2O7 shows that this method is quite inaccurate [65].
Thus, considering the parameter B0

2 , for example, the value for Ho3C is �0.08 and
the exprapolated value for Er3C is C0.08, but the real value is>0.13 [65]. Whenever
possible, neutron scattering should be applied directly to determine the crystal fields.
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3.4.3.3 Potassium Iron Jarosite: Spin Wave Dispersions

If a magnet is periodically ordered then neutron scattering affords the most direct
way of confirming a spin Hamiltonian and determining its parameters, by measure-
ment of the spin wave dispersion. As regards geometrically frustrated magnets, it is
generally necessary that the magnet is ordered, as otherwise the spin waves (if they
exist at all) are not classified by the wavevector Q, so their dispersion cannot be
resolved. This means that the technique can only be applied to those systems where
the frustration is ultimately resolved into magnetic order at low temperature. A good
example of this is potassium iron jarosite, for which very detailed spin wave mea-
surements on a single crystal sample [66] and an accompanying theory [67] have
been reported.

3.5 Conclusions

In this article, I have tried to illustrate what different magnetic states look like to
neutron scattering, and I have emphasised how neutron scattering provides a direct
measurement of spin correlation functions, or equivalently, wavevector dependent
susceptibilities and magnetic moments. The key figures are Figs. 3.2 and 3.7 which
are essentially look-up tables for different magnetic states. A real frustrated mag-
net might exhibit any of these patterns, either in a pure form or else as a mixture.
For example, a frustration-induced suppression of the ordering temperature would
generally result in a broad blob of type Fig. 3.2b (broad because the correlations are
short) but additional hints of a pattern like Fig. 3.2c would imply that an ice-type
rule is operating (but note that not all frustrated magnets obey an ice rule).

A fairly common experience in practical neutron scattering is to prove that some
particular material, previously touted as exceptional on the basis of bulk measure-
ments, is in fact highly conventional! The interpretation of bulk measurements
inevitably leaves much to the imagination, and neutron scattering, as often as not,
provides a sobering correction to those who let their imagination get the better of
their scientific caution. For this reason it is always advisable, if possible, to per-
form neutron scattering on a magnetic substance under investigation. Even if the
scattering pattern is poorly resolved, there are usually sufficient statistics to check
for consistency with whatever model is being tested. Indeed, neutron scatterers have
a saying that ‘neutrons don’t lie’. They mean that the technique is the ideal pas-
sive probe of material systems for which the interpretation of experimental results
is particularly transparent, robust and, in most cases, unambiguous. Neutron scat-
tering may not be able to image all sorts of magnetic phases, but it remains the
most important and direct method of examining the two spin correlation function,
so provides the paradigm experiment for the study of highly frustrated magnets.



3 Neutron Scattering and Highly Frustrated Magnetism 77

References

1. P.W. Anderson, Basic Notions of Condensed Matter Physics (Perseus Books Group, 1997)
2. J. Villain, Z. Phys. B 33, 31 (1979)
3. V.F. Sears, Neutron Optics: An Introduction to the Theory of Neutron Optical Phenomena and

Their Applications (Oxford University Press, 1989)
4. R.M. White, Quantum Theory of Magnetism, 2nd edn. (Springer, Berlin Heidelberg New York,

1983)
5. P.J. Brown, Magnetic form factors, Chap. 4.4.5, in International Tables for Crystallography,

vol. C, ed. by A.J.C. Wilson (D. Reidel Publishing, Dordrecht, Holland, 1983–1993), pp. 391–
399

6. S.W. Lovesey, Theory of Neutron scattering from Condensed Matter, vols. 1, 2 (Oxford
University Press, 1984)

7. R.M. Moon, T. Riste, W.C. Koehler, Phys. Rev. 181, 920 (1969)
8. W.G. Williams, Polarized Neutrons (Oxford University Press, 1988)
9. M.J. Cooper, R. Nathans, Acta Cryst. 23, 357 (1967)

10. B. Dorner, Acta Cryst. A28, 319 (1972)
11. J. Rossat-Mignod, in Neutron Scattering, ed. by K. Skjold, D.L. Price, Methods in Experimen-

tal Physics, vol. 23C (Academic, New York, 1987)
12. A.S. Wills et al., J. Phys. Condens. Matter 18, L37 (2006)
13. J.R. Stewart et al., J. Phys. Condens. Matter 16, L321 (2004)
14. W. Marshall, R.D. Lowde, Rep. Prog. Phys. 31, 705 (1968)
15. B. Grover Phys. Rev. 140 A1944 (1965)
16. M.J. Harris et al., Phys. Rev. Lett. 79, 2554 (1997)
17. H.E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Oxford University

Press, 1971)
18. N. Goldenfeld, Lectures on Phase Transitions and the Renormalization Group (Addison-

Wesley, Reading, MA, 1992)
19. S.T. Bramwell, M.J.P. Gingras, Science 294, 1495 (2001)
20. R.W. Youngblood, J.D. Axe, Phys. Rev. B 23, 232 (1981)
21. R.W. Youngblood, J.D. Axe, B.M. McCoy Phys. Rev. B 21, 5212 (1980)
22. S.V. Isakov et al., Phys. Rev. Lett. 95, 217201 (2005)
23. C. Henley, Phys. Rev. B 71, 014424 (2005)
24. M.P. Zinkin, M.J. Harris, T. Zeiske, Phys. Rev. B 56, 11786 (1997)
25. T. Fennell et al., Nat. Phys. 3, 566 (2007)
26. C. Castelnovo, R. Moessner, S.L. Sondhi, Nature 451, 42 (2008)
27. T. Yavors’kii et al., Phys. Rev. Lett. 101, 037204 (2008)
28. R. Ballou, E. Lelièvre-Berna, B. Fak, Phys. Rev. Lett. 76, 2125 (1996)
29. S.-H. Lee et al., Nature 418, 856 (2002)
30. K. Tomyasu et al., Phys. Rev. Lett. 101, 177401 (2008)
31. L.D.C. Jaubert, P.C.W. Holdsworth, Nat. Phys. 5, 258 (2009)
32. R. Moessner, J.T. Chalker, Phys. Rev. Lett. 80, 2929 (1998)
33. S.T. Bramwell et al., Phys. Rev. Lett. 87, 047205 (2001)
34. A.P. Ramirez et al., Nature 399, 333 (1999)
35. T. Fennell et al., Phys. Rev. B 70, 134408 (2004)
36. M. Kanada et al., J. Phys. Soc. Jpn. 71, 313 (2002)
37. J.P. Clancy et al., Phys. Rev. B 79, 014408 (2009)
38. T. Fennell et al., Phys. Rev. B 72, 224411 (2005)
39. T. Fennell et al., Science 326, 415 (2009)
40. K. Matsuhira et al., J. Phys. Condens. Matter 14, L559 (2002)
41. G. Ehlers et al., J. Phys. Condens. Matter 15, L9 (2003)
42. G Ehlers et al., J. Phys. Condens. Matter 16, S635 (2004)
43. S.T. Bramwell, M.J. Harris, J. Phys. Condens. Matter 10, L215 (1998)
44. B. Canals, C. Lacroix, Phys. Rev. Lett. 80, 2933 (1998)



78 S.T. Bramwell

45. M.P. Zinkin, M.J. Harris, T. Zeiske, Phys. Rev. B 56, 11786 (1997)
46. J. Gardner et al., Phys. Rev. B 68, 180401 (2003)
47. I. Mirabeau et al., Nature 420, 54 (2002)
48. B.D. Gaulin et al., Physica B 241–243, 511 (1998)
49. B. Fåk et al., Europhys. Lett. 81, 17006 (2008)
50. O.A. Petrenko et al., Phys. Rev. Lett. 80, 4570 (1998)
51. J.R. Stewart, R. Cywinski, J. Phys. Condens. Matter 21, 124216 (2009)
52. J.N. Reimers et al., Phys. Rev. B 45, 7295 (1991)
53. H. Kawamura J. Phys. Soc. Jpn. 55, 2095 (1986)
54. J.D.M. Champion et al., Phys. Rev. B 68, 020401 (2003)
55. S.T. Bramwell, M.J.P. Gingras, J.N. Reimers, J. Appl. Phys. 75, 5523 (1994)
56. J.P. Ruff et al., Phys. Rev. Lett. 101, 147205 (2008)
57. P.A. McClarty, S.H. Curnoe, M.J.P. Gingras, J. Phys. Conf. Ser. 145 012032 (2009)
58. A. Poole, A.S. Wills, E. Lelièvre-Berna, J. Phys. Condens. Matter 19, 452201 (2007)
59. J.D. Champion et al., Phys. Rev. B 64, 140407 (2001)
60. S.E. Palmer, J.T. Chalker, Phys. Rev. B 62, 488 (2000)
61. N.P. Raju et al., Phys. Rev. B 59, 14489 (1999)
62. A.S. Wills, Phys. Rev. B 63, 064430 (1981)
63. T. Inami et al., Phys. Rev. B 61, 12181 (2000)
64. S. Rosenkranz et al., J. Appl. Phys. 87, 5914 (2000)
65. M. Shirai, Ph.D. Thesis, University College London (2007)
66. K. Matan et al., Phys. Rev. Lett. 96, 247201 (2006)
67. T. Yildirim, A.B., Harris, Phys. Rev. B 73, 214446 (2006)



Chapter 4
NMR and �SR in Highly Frustrated Magnets

Pietro Carretta and Amit Keren

Abstract In this chapter, we present a brief overview of some of the most sig-
nificant achievements of the nuclear magnetic resonance (NMR) and muon spin
resonance (�SR) techniques in the study of highly frustrated magnets. We begin by
discussing the physical quantities measured by the two techniques and their con-
nection to the microscopic static and dynamical spin susceptibilities of a magnetic
system. Our presentation of the physical insights obtained from NMR and �SR
experiments is structured by starting from the most simple frustrated units, molecu-
lar nanomagnets, and continuing through artificially constructed frustrated systems,
such as 3He on graphite, to magnets with a macroscopically degenerate ground state
of the type familiar from the pyrochlore and kagomé lattices.

4.1 Basic Aspects of NMR and �SR Techniques

NMR and �SR are very powerful experimental techniques which allow the micro-
scopic properties of spin systems to be investigated through the study of the
time-evolution of the nuclear magnetization, M .t/, and of the muon spin polariza-
tion, P.t/, respectively [1–5]. Each technique has its advantages and disadvantages.
In NMR, one knows the crystallographic position of the nuclei under investigation,
and therefore NMR results can be compared quite readily to theoretical analysis.
However, NMR experiments cannot be performed in compounds where only low-
sensitivity nuclei are present, or where rapid nuclear relaxation processes prevent
the observation of an NMR signal. When polarized muons are injected into the
sample to probe the local microscopic properties of the system, it is possible to
detect relaxation times shorter than 0.1�s, approximately two orders of magnitude
shorter than the shortest relaxation time accessible by NMR. Because the nuclear
magnetization is the quantity detected in NMR experiments, in general a magnetic
field must be applied to generate it. By contrast, the muon beam is already polar-
ized before entering the sample, so that the system can be studied in zero field. This
aspect is particularly important if one wishes to investigate the intrinsic properties
of a certain system without the perturbation of a magnetic field. Nevertheless, novel
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ground states can be induced by the application of high magnetic fields (typically
above 10 Tesla), where �SR experiments cannot be performed while NMR exper-
iments can. Hence, although both techniques appear to measure similar quantities,
as discussed in the next section, in fact they are often complementary and it is their
combination which represents a rather powerful investigative tool. Here we apply
this combination to probe the local microscopic properties of frustrated magnets.

4.1.1 Line Shift and Line Width

The time-evolution of M .t/ and P.t/ is determined by the hyperfine interactions,
which can be summarized in the form

H D Hz C Hn�n C Hn�e C HEFG: (4.1)

The effects of the four terms on the hyperfine levels and on the NMR spectra for a
nuclear spin I D 3=2 are depicted in Fig. 4.1. We remind the reader that the intensity
of the whole spectrum is proportional to the nuclear magnetization. The first term
describes the Zeeman interaction with an external field. The dipole–dipole inter-
action Hn�n among the nuclear spins, or between the muon and the nuclear spins,

ωL ωL ωL
ωL(1+K) ωL

I = 3 / 2

m = –3 / 2

m = 3 / 2

m = –1 / 2

m = 1 / 2

Zeeman + n–n + n–e + quadrupole

Fig. 4.1 Schematic illustration of the modifications in the hyperfine levels of I D 3=2 nuclei
due to the different terms in the nuclear hyperfine Hamiltonian of (4.1). The corresponding
modifications of the NMR spectra are shown in the lower panel
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yields a broadening of the NMR [1,2] and�SR [3–5] spectra. In certain compounds,
including the cuprates, the nuclear dipole–dipole interaction is mediated by the elec-
tron spins, and information about the static electron spin susceptibility �0.q/ is
obtained from the dipolar broadening [6]. The final term, HEFG, describes the inter-
action between the nuclear electric-quadrupole moment, Q, and the electric-field
gradient (EFG) generated by the charge distribution around the nucleus. This term
is finite for nuclear spins with I > 1=2 and thus is not present in the muon inter-
action Hamiltonian. The quadrupole interaction is very sensitive to modifications
of the local configuration, and thus can be used to probe distortions induced by the
spin-lattice coupling [7] or the presence of an inhomogeneous charge distribution
induced by charge ordering [8].

The third term is the one most relevant to the investigation of frustrated mag-
netism, as it describes the hyperfine interaction with the electron spins S . Because
most of the systems we discuss here are insulators, we write

Hn�e D ��„
X
i;k

I i QAikS k ; (4.2)

with QAik the hyperfine coupling tensor, I and S , respectively, the nuclear or �C
and electronic spin operators, i and k respectively the nuclear or �C and electronic
spin indexes, and � the nuclear or �C gyromagnetic ratio. The hyperfine field at the
i th nucleus or muon is then given by hi D P

k
QAikS k , and in the presence of a

non-zero average polarization hS i, hi D P
k

QAikhS ki. Thus hS i can be estimated
directly from the precessional frequency ! D �

P
k

QAkhS ki of the nuclei or of the
muons around the local field.

When an external field H 0 k Oz is applied, the local magnetic field becomes

B D H 0 C
X
k

QAkhS ki (4.3)

and the resonance frequency is shifted to

! D !L.1CK/; (4.4)

where !L D �H0 is the Larmor frequency and, for H0 � jPk
QAkhS kij,

K D
�P

k
QAkhS ki�z

H0
: (4.5)

In general,K is a tensor and QK D P
k

QAk Q�.q D 0; ! D 0/, whence the shift in the
precessional frequency of the nuclei (or of the �C) can be used to derive the static
uniform susceptibility associated only with those electron spins which are coupled
to the nuclei under investigation (Fig. 4.2) or to the muon.
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Fig. 4.2 Temperature-dependence of 71Ga(4f) NMR shift, K , in SrCr9pGa12�9pO19 (p D 0:95)
compared to the macroscopic susceptibility derived with a magnetometer. Because the 71Ga(4f)
nuclei are coupled strongly only to chromium ions within the kagomé layers, one may isolate only
the intrinsic susceptibility of the latter, whereas the macroscopic susceptibility also detects the
contributions from defects [9]

If, for any reason, the separation between the nuclei or muon and the electronic
spins is random, or there are missing spins in the sample, the hyperfine coupling QA
will be a random or multi-valued variable, leading to a distribution of precessional
frequencies and to an increase in the relaxation of the magnetization or polarization.
For an external field applied perpendicular to the initial polarization of the muons,
one finds

P?.t/ D exp

 
�
�
t

T �
2

�2!
cos.!t/I (4.6)

1=T �
2 could also represent the decay rate of the NMR signal after an RF pulse.

Assuming a distribution of hyperfine fields in the Oz direction, QAk can be expressed
as the sum of a mean valueAk plus a fluctuating component ıAk . For the distribution

�.ıAk/ D 1p
2��k

exp

 
�ıA

2
k

2�2
k

!
;

one finds that the width of the spectrum is

1

T �
2

D ��H0

 X
k

�2k

!1=2
; (4.7)

and the average frequency shift is

K D ! � �H0

�H0
D �

X
k

Ak : (4.8)
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If �k and A are temperature-independent, we expect

1=T �
2 / K; (4.9)

where the temperature is an implicit parameter. We emphasize that this proportional-
ity is valid for any functional form of the relaxation (4.6). Breakdown of the validity
of (4.9) would indicate a modification of the hyperfine couplings, which is usually
expected when lattice distortions occur (Sects. 4.2.2 and 4.2.6). On the other hand,
there are certain types of system in which the hyperfine coupling is constant but the
spin polarization can be site-dependent. In this case, (4.9) is no longer applicable
and both the line-broadening and line shape reflect the distribution of the local spin
polarization [10].

4.1.2 Nuclear and Muon Spin-Lattice Relaxation Rate 1=T1

The transitions among the hyperfine levels, driven by the time-dependent part of the
hyperfine Hamiltonian [not shown in (4.1)], modify the nuclear spin population on
each level, and thus the longitudinal component of the nuclear magnetization. In a
magnetic system, it is then possible to derive information about the spin dynamics,
which drives the fluctuations of the hyperfine field, from the time-evolution of the
nuclear magnetization. If the nuclear spin ensemble is brought out of equilibrium by
an arbitrary radio-frequency (RF) pulse sequence, the recovery of the longitudinal
component of the nuclear magnetization is described by a characteristic relaxation
rate, 1=T1. For relaxation mechanisms driven by fluctuations h.t/ of the hyperfine
field (h is small with respect to H0), time-dependent perturbation theory combined
with the assumption that the frequency of the field fluctuations is much greater than
the relaxation rate, ! D 2�� � 1=T1, yields

1

T1
D �2

2

Z C1

�1
ei!Lt hhC.t/h�.0/idt: (4.10)

In this fundamental expression, 1=T1 is driven by the transverse components of the
fluctuating field at the nucleus, which is a consequence of the magnetic-dipole selec-
tion rules, and is proportional to the Fourier transform of the correlation function at
the resonance frequency (energy-conservation criterion). Alternatively stated, 1=T1
probes the spectral density at the resonance frequency,!L, a quantity typically in the
MHz range, and thus orders of magnitude lower than the spectral range accessed by
inelastic neutron scattering experiments. It should be noted that this does not imply
that relevant energy scales much greater than „!L cannot be estimated from 1=T1:
when sum-rules apply, as is often the case in spin systems, the amplitude of the
low-frequency spectral density is determined by the characteristic frequency of the
fluctuations ! � !L.
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In general, when collective spin excitations are present, one may write

h.t/ D 1p
N

X
q

X
k

eiqrk QAkS .q; t/; (4.11)

and by substituting the transverse components of h.t/ in the expression (4.10) one
obtains

1

T1
D �2

2

1

N

X
q;˛Dx;y;z

�jAq j2S˛˛.q; !L/
�

? : (4.12)

Being the nucleus a truly local probe, 1=T1 is related to the integral over the Bril-
louin zone of the component S˛˛.q; !L/ of the dynamical structure factor, i.e. at
the Larmor frequency. In (4.12), jAq j2 is the form factor, which gives the hyperfine
coupling of the nuclei with the spin excitations at wave vector q, as illustrated in
Fig. 4.3. The subscript ? indicates that contributions are given only by the products
jAq j2S˛˛.q; !0/ associated with the perpendicular components of the hyperfine
field at the nucleus. By recalling that typical Larmor frequencies are such that
kBT � „!L, one may use the fluctuation-dissipation theorem to write

1

T1
D �2

2

kBT

„
1

N

X
q;˛Dx;y;z

�
jAq j2�

00̨
˛.q; !L/

!L

�
?
; (4.13)
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Fig. 4.3 29Si form factor in the first Brillouin zone of the two-dimensional frustrated antiferro-
magnet Li2VOSiO4. Excitations at wave vectors .˙�=a; 0/ or .0;˙�=a/ are filtered out, i.e. 29Si
1=T1 is not sensitive to these modes
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which is a quite general expression of the relationship between the nuclear or muon
spin-lattice relaxation and the spectrum of excitations characteristic of any magnetic
system.

These equations for 1=T1 apply also to the �SR spin-lattice relaxation rate when
a large magnetic field is applied. However, for �SR experiments at zero field, stan-
dard perturbative methods of the type used in (4.10) are no longer valid, because
no transverse direction is defined and the internal field is not small compared to H .
Accordingly, different methods are required to analyze data for the muon relaxation
function in zero and small external fields. Further, usually the muon stopping site is
not known, and the discussion must be phrased in terms of the field B at the muon
site rather than the hyperfine coupling A. The treatment of the muon T1 in zero or
small fields requires two steps: the first is the static case, where T1 ! 1, and in the
second the dynamic fluctuations are added so that T1 becomes finite.

4.1.3 �SR: The Static Case

After entering the sample, a fully polarized muon comes to rest in a magnetic envi-
ronment. Because the mechanism which stops the muon is much stronger than any
magnetic interaction, the muon maintains its polarization while losing its kinetic
energy. Only when the muon is at its stopping site does its spin begin to evolve in
the local field B. The muon polarization Pz along the Oz-direction is given by the
double-projection expression

Pz.B; t/ D cos2 	 C sin2 	 cos.�� jBj t/; (4.14)

where 	 is the angle between the initial muon spin and the local field direction
(Fig. 4.4). This angle is related to the field values by

cos2 	 D B2z

B2
; sin2 	 D B2x CB2y

B2
:

In a real sample, however, there is a distribution of internal fields and the
averaged polarization is

Fig. 4.4 Muon spin polarization rotating around a magnetic field of arbitrary orientation
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P z.t/ D
Z
�.B/

"
B2z

B2
C B2x C B2y

B2
cos.�� jBj t/

#
d3B; (4.15)

where P z.t/ is the sample-averaged polarization and �.B/ is the field distribution,
which is normalized according to

R
�.B/dB3 D 1. If the distribution of internal

fields is a function only of jBj, then one may write

P z.t/ D
Z
�.jBj/ �cos2 	 C sin2 	 cos.�� jBj t/	B2dBd˝:

It is convenient to define �0.jBj/ D 4��.jBj/, so that
R
�0.jBj/B2dB D 1 and the

integral over the angular dependence can be performed to yield

P z.t/ D 1

3
C 2

3

Z
�0.jBj/ cos.�� jBj t/B2dB:

If, for example, the system has long-range order, the field at the muon site is centered
around a specific value !0=�� and thus

�0.jBj/ D ��p
2�
B2

exp

2
4��2�

 
jBj � !0

�2�

!2
=2
2

3
5 ;

whence

P z.!0; 
; t/ D 1

3
C 2

3
exp

�
�


2t2

2

�
cos.!0t/

and oscillations will be observed in the data. At long times, the polarization will
relax to 1=3, because this is the fraction of muons experiencing a field parallel to
their initial spin direction and therefore not relaxing.

When a longitudinal field H is applied in the direction of the initial muon spin,
as in Fig. 4.5, the situation becomes more complicated, and there is no closed-form
expression. However, some simplifications can be made to reduce the dimension of
the integrals for the purposes of a numerical calculation. For example, if the local
field is completely random with a Gaussian distribution, then

Fig. 4.5 Muon spin
polarization rotating around
the vector sum of an arbitrary
internal field and an external
magnetic field in the initial
polarization direction of the
muon
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Fig. 4.6 Muon polarization function in a Gaussian internal-field distribution and with different
values of an external field H oriented in the direction of the initial muon spin
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and (4.15) can be simplified to [11]

P z.!L; 
; t/ D 1 � 2
2

.!L/2

�
1 � exp

�
�1
2

2t2

�
cos.!Lt/

�

C 2
4

.!L/3

Z t

0

exp

�
�1
2

2�2

�
sin.!L�/d�: (4.17)

This is known as the static-Gaussian-longitudinal-field Kubo–Toyabe (KT) func-
tion. Figure 4.6 shows P z.!L; 
; t/ for a variety of values of !L. Despite the fact
that the external field is in the muon spin direction, oscillations are observed in the
polarization, and their frequency is given by!L. When !L � 
, the muon no longer
relaxes, because the field at the muon site is nearly parallel to the initial muon spin
direction. In this situation, the external field is said to decouple the muon spin from
the internal field. Finally, in the zero-field case (!L D 0), (4.17) reduces to [11]

P z.0;
; t/ D 1

3
C 2

3
.1 �
2t2/ exp

�
�1
2

2t2

�
: (4.18)



88 P. Carretta and A. Keren

This polarization function is known as the static-Gaussian-zero-field KT function.
At short times it has Gaussian-type behavior, reaching a minimum on a time scale
set by 
, after which it recovers and saturates again to 1=3.

4.1.4 �SR: The Dynamic Case

When the spin dynamics are considered, numerical calculations are required apart
from simple cases [12]. If the dynamic part of the local field at the muon site, ıB,
fluctuates both in time and amplitude in such a way that

hıB.t/ıB.0/i D 3
2

�2�
exp.�2�t/; (4.19)

where � is a fluctuation rate, then within the strong-collision approximation, the
muon polarization obeys the Volterra equation of the second kind [16]. The polar-
ization, P z.�; !L,
; t/, now depends also on the characteristic fluctuation rate �,
and obeys

P z.�; !L; 
; t/ D e��tP z.0; !L; 
; t/

C�
Z t

0

dt 0P z.�; !L; 
; t � t 0/e��t 0P z.0; !L; 
; t
0/;(4.20)

where P z.0; !L; 
; t/ is the static relaxation function, namely the polarization if
the local field were frozen in time. The factor e��t is the probability that the field
remains unchanged until time t . The factor e��t 0�dt 0 is the probability density for
the muon to experience a field change only between t 0 and t 0 C dt 0. The first term
on the right-hand side of (4.20) is the polarization at time t due to muons that have
not experienced any changes in their local field. The second is the contribution from
those muons which have experienced their first change in field at time t 0. The fac-
tor e��t 0P z.0; !L; 
; t

0/�dt 0 is the amplitude for the polarization function which
evolves from time t 0 to t , and can contain further field changes recursively. This
equation can be solved numerically [13].

There are three ways of using (4.20) to obtain dynamical information. The first is
in simple cases where P z.0; !L; 
; t/ is known analytically, as in the analysis of the
F-�-F bond performed by Brewer et al. [14]. The second is when P z.0; !L; 
; t/

must be obtained numerically, as in the cases of Gaussian [11] or Lorenzian [15]
field-fluctuation distributions and with an external longitudinal field. The third way
is to measure P z.0; !L; 
; t/ by cooling the system to temperatures sufficiently
low that dynamic fluctuations are no longer present, and to use the measured
P z.0; !L; 
; t/ as input in the Volterra equation [16].

Taking the polarizations generated by the static-field distribution of (4.17) with
!L D 0, and using this as input in the Volterra equation, gives the dynamic
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Fig. 4.7 Expected muon relaxation in a dynamical field with Gaussian instantaneous distribution
and no external field. Different values of the fluctuation rate � are illustrated

polarizations shown in Fig. 4.7. This figure demonstrates that the 1=3 recovery is
lost when dynamic fluctuations are present. As the fluctuation rate � increases, the
Gaussian-type relaxation at t ! 0 is also lost, and when � > 
 the relaxation
becomes exponential.

Finally, we present in Fig. 4.8 (solid lines) an example of the most complicated
relaxation function, which combines a Gaussian field distribution, fluctuations, and
a longitudinal external field. This is known as the dynamic-Gaussian-longitudinal-
field KT relaxation function. In this figure, we have chosen special values of the
parameters 
 D 11:8MHz and � D 12:2MHz, for reasons which will become
clear in Sect. 4.2.5, to illustrate the modification of the polarization as H is varied.

We mention here that, for the case � � 
, there is an approximate expression for
the dynamic-Gaussian-longitudinal-field KT relaxation function, given by [17]

P z.t/ D exp.� .t/t/ (4.21)

with

 .t/t D 2
2fŒ!2L C �2��t C Œ!2L � �2�Œ1� e��t cos.!Lt/� � 2�!Le��t sin.!Lt/g
.!2L C �2/2

:
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from SrCr9pGa12�9pO19 from [52] for two different values of H . The discrepancy between the
data and the model indicates unconventional behavior and is discussed in Sect. 4.2.6

In the long-time limit (�t � 1), one finds that limt!1 P z.t/ D P0 exp .�t=T1/,
leading to the standard expression for T1,

1

T1
D 2
2�

.!2L C �2/
: (4.22)

This result demonstrates that, when the external field is small (!L � �), T1 has no
field-dependence. By contrast, when the field is large (!L � �), T1 increases with
increasing field. Field-dependent measurements can therefore be used to provide
information about �, and to distinguish between static and dynamic cases.

Equation (4.22) can be related to (4.13) for the value of 1=T1 deduced by NMR.
In systems characterized by a spin-spin correlation function which decays in time
according to exp.��t/, if the q-dependence is neglected one may express the spin
susceptibility in the form

�00̨
˛.0; !/ D .g�B /

2

„V
„!
kBT

N
˝
S2˛
˛ �

�2 C !2
;

and thus relate 
2 in (22) to the amplitude of the spin fluctuations,
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2 D �2

12
S.S C 1/

X
q

�jAqj2�? :

When the applied field is small or the fluctuations are fast, (4.22) reduces to

1

T1
D 2
2

�
: (4.23)

Typical values are T1 � 0:1 �s, 
 � 10MHz, and � � 10 �s�1.

4.2 From Zero- to Three-Dimensional Frustrated Magnets

4.2.1 Molecular Magnets

In recent years, systems of molecular crystals containing molecules of magnetic
ions have attracted considerable attention. These magnetic ions have significant
intramolecular exchange couplings but negligible intermolecular couplings, so that
each molecule in the crystal can be considered as an independent nanomagnet [18].

Some vanadium nanomagnets contain V4C ions, which have S D 1=2, in a tri-
angular lattice. The best example of this is V15, where at low temperatures there
are 12 V4C spins coupled into singlets while the remaining three ions form a trian-
gle. From a study of the 51V NMR line shift below 100 mK, Furukawa et al. [19]
provided a preliminary estimate of the hyperfine coupling, and then deduced the
expectation values of the V4C magnetic moments at zero field. The resonance fre-
quency of the i th nucleus is given by !i D �.H 0 C QAhS i i/, where the internal
fields QAhS i i have different orientations and magnitudes on the different sites. In
order to derive hS ii, the authors studied the magnetic field-dependence of !i , as
shown in Fig. 4.9. The expectation values were found to be consistent with a doubly
degenerate ground state of the form

 a D 1p
2
.j ##"i � j #"#i/

 b D 1p
6
.2j "##i � j #"#i � j ##"i/; (4.24)

where the symbol " or # represents the orientation of each one of the three spins.
Measurements on the same compound by �SR [20] indicate a nearly temperature-
independent longitudinal relaxation rate at low temperatures, which is thought to be
associated with the transitions between these two degenerate states. If one consid-
ers that the frequency of the spin fluctuations satisfies ! � !L, one may derive
the characteristic tunneling rate between the two states. We note here that a nearly
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Fig. 4.9 Magnetic field-dependence of the resonance frequency for different 51V sites in V15,
used to extract the spin polarization of each V4C ion [19]. In the inset is shown a schematic
representation of the twofold-degenerate ground state

temperature-independent relaxation is observed also in frustrated magnets with a
macroscopically degenerate ground state (Sect. 4.2.6).

4.2.2 Antiferromagnets on a Square Lattice with Competing
Interactions: The J1-J2 Model

V4C ions can also form other magnetic structures characterized by a strong frus-
tration of the magnetic moments. Certain vanadates form some of the best known
prototypes of frustrated magnets on a square lattice, where the frustration arises
from the competition between nearest-neighbour (J1) and next-nearest-neighbour
(J2) exchange couplings (see Chap. 15 by F. Becca et al.). The first NMR studies of
such a system were performed on Li2VOSiO4. The 7Li-NMR spectra were observed
to split into three different lines for T < Tc ' 2:9K [21, 22], one unshifted and
two shifted symmetrically with respect to the central one. This splitting of the NMR
line was the first evidence that this compound is characterized by a collinear mag-
netic ground state, as confirmed some years later by neutron scattering experiments
[23]. A careful study of the order parameter was conducted by means of zero-field
�SR measurements (Fig. 4.10), where the �C polarization was shown to be char-
acterized by oscillations at a frequency directly proportional to the V4C magnetic
moment [24] (Sect. 4.1). The continuous increase of the order parameter for T ! Tc
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was found to be described by a critical exponent close to that expected for the 2D
XY universality class. Above Tc , where no internal field is present, the NMR shift
K is expected to be proportional to the static, uniform spin susceptibility, �s (5),
with a slope given by the hyperfine coupling. Remarkably, a change in the slope of
K(7Li)=�s is apparent for Tc < T < J1CJ2 [25], suggesting a modification of the
average hyperfine coupling (Sect. 4.1). Moreover, the broadening of the 7Li-NMR
linewidth in the same temperature range can be explained only if the distribution
of the hyperfine couplings is also broadening. We remark that in this tempera-
ture range, the average shift decreases on cooling below 5 K, while the linewidth
increases, marking a breakdown of (9). A similar scenario is observed for 95Mo
NMR in MoVO5 [26]. These modifications of the hyperfine coupling are believed
to be associated with a lattice distortion driven by the spin-lattice coupling, which
lifts the degeneracy of the magnetic ground state.

The T -dependence of the in-plane correlation length, �, in Li2VOSiO4 has been
estimated from measurements of 7Li 1=T1 [27] (Fig. 4.11). By scaling arguments,
one may rewrite the dynamical structure factor (4.12) in terms of powers of �, and
thus deduce that

1

T1
� �z � exp .2 �z �s=T /; (4.25)



94 P. Carretta and A. Keren

0.2 0.4 0.6 0.8
0.0

0.5

1.0

1.5

2.0

T
1(

T
>

>
Θ

)/
T

1(
T

)

La2CuO4, Θ = J

Li2VOSiO4, Θ = J1+J2

T / Θ

Fig. 4.11 Comparison of the temperature-dependence of 7Li 1=T1 in Li2VOSiO4 with 63Cu 1=T1
in La2CuO4, where any frustration is negligible. The temperature is normalized to the Curie–Weiss
temperature �, while 1=T1 is normalized to its value at T � �

where �s is the spin stiffness and z the dynamical scaling exponent, which is
estimated on the basis of additional physical considerations to be approximately
z D 1 [27]. The conclusion from this type of analysis is that frustration in a two-
dimensional antiferromagnet on a square lattice causes a less pronounced increase
of � on cooling, i.e. a decrease in the spin stiffness.

The decay of the longitudinal muon polarization in Li2VOSiO4 and Li2VOGeO4
is found to be described accurately by (4.21) and provides evidence of dynamical
processes at frequencies well below the Heisenberg exchange frequency [24]. This
behavior has been ascribed to fluctuations within an effectively twofold-degenerate
ground state whose levels are separated by a barrier [28]

E.T / D
�
J 21 S

2

2J2

��
0:26

�
1

S

�
C 0:318

�
T

J2S2

��
�2.T /:

Recently, the spin dynamics and the ground-state of vanadates characterized by a
ferromagnetic nearest neighbour exchange coupling has been studied by means of
�SR and NMR [29, 30].
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Fig. 4.12 1H nuclear spin-lattice relaxation rate 1=T1 for a single crystal (open circles) and
a polycrystalline sample (closed circles) of �-(ET)2Cu2(CN)3 and a single crystal of �-
(ET)2Cu[N(CN)2]Cl (open diamonds) [35]. The inset shows the low-temperature regime on
logarithmic scales. Figure reprinted from Y. Shimizu, K. Miyagawa, K. Kanoda, M. Maesato, and
G. Saito, Phys. Rev. Lett. 91, 107001 (2003). Copyright (2003) by the American Physical Society

4.2.3 Magnetic Frustration on a Triangular Lattice

The simplest two-dimensional lattice with purely geometrical frustration of the
nearest-neighbor interactions is triangular. Several systems presenting magnetic
moments on a triangular lattice, both insulating [31, 32] and metallic [33, 34],
have been investigated in the past decade. Some of these compounds display a
rather rich phase diagram as a function of the magnetic field intensity, as discussed
in Chap. 10 by M. Takigawa and F. Mila in this volume. The molecular crystal
�-(ET)2Cu2(CN)3, which is insulating at ambient pressure, also has S D 1=2 spins
arranged on a slightly distorted triangular lattice, and here it has been observed
(Fig. 4.12) that 1H 1=T1 decreases abruptly at low temperature [35]. This decrease
can be associated with the onset of a gap 
 between collective singlet and triplet
states, which causes the behavior 1=T1 / exp.�
=T / for T � 
, and has been
suggested as the first evidence for a spin-liquid phase in a triangular antiferro-
magnet. This may even be experimental evidence for the long-sought RVB state
suggested by Anderson [36]. Yet more provocative is that the application of hydro-
static pressure is observed to drive this system into a superconducting ground state,
which can also be explained in terms of an RVB description.
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Another spin system with triangular geometry which has attracted much atten-
tion is NaxCoO2, where a rich phase diagram develops upon Na doping [37] (see
also Chap. 22 by Z. Hiroi and M. Ogata). An accurate study of the 23Na and 59Co
NMR spectra in oriented powders indicated a charge order in the range x ' 0:7 [8].
The signature of this order is the presence of three distinct Na sites characterized
by different quadrupole couplings and magnetic shifts, which imply a well-defined
order both of the NaC ions and of the Co charges in the CoO2 planes. On the
other hand, for x D 0:5, the temperature-dependence of the 59Co NMR spectra
reveals that the electric-field gradient at the Co site does not change at the metal–
insulator transition, indicating the absence of any charge ordering [38]. These NMR
measurements have clarified the nature of the ground state of this system in the dop-
ing range 0:5 � x � 0:75 [39, 40]. When full Na-doping is achieved, the system
becomes nonmagnetic and the NMR shift vanishes [41, 42]. Somewhat remarkably,
the isostructural compound CoO2 (x D 0) is found to be metallic, with a crossover
from a strongly correlated metal to Fermi-liquid behavior at low temperature [43]:
the temperature-dependence of 1=T1T starts to flatten, the hallmark of a Fermi
liquid [1, 2], at approximately 4 K.

The recently synthesized material NaCrO2 is an excellent realization of an
isotropic S D 3=2 triangular Heisenberg antiferromagnet. The remarkable feature
of this compound is that, while specific-heat and magnetization measurements indi-
cate the onset of a transition at Tc ' 40K, both muon spin-rotation and NMR
data reveal a fluctuating crossover regime extending well below Tc , with a peak in
1=T1 at approximately 25 K (Fig. 4.13) [44]. This apparent discrepancy may suggest

Fig. 4.13 Specific heat (top),
muon spin-lattice relaxation
rate (center), and 23Na NMR
signal intensity (bottom) in
NaCrO2 as functions of
temperature. Note that the
peaks in the specific heat and
in 1=T1 occur at different
temperatures. The loss of
23Na signal is possibly
associated with an increase of
the NMR relaxation rate
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the occurrence of vortex–antivortex decoupling [45] yielding a spin dynamic in the
MHz range around 25 K.

Magnetic frustration can be associated not only with the geometry of the elec-
tronic spins and their interactions, but also with the question of indistinguishable
nuclear spins, as it is the case in 3He. The triangular lattice topology can be achieved
by evaporating a single layer of 3He on a graphite substrate. Then it is conve-
nient to use the intensity of the NMR signal, which is proportional to the nuclear
magnetization, to track the T -dependence of the nuclear spin susceptibility [46].
3He-NMR measurements have been performed down temperatures of some tens of
�K, more than an order of magnitude below the effective exchange coupling. The
low-temperature increase in the nuclear spin susceptibility demonstrates the rele-
vance of higher-order multiple-spin-exchange interactions which, together with the
triangular geometry of the nuclear spins, makes the system strongly frustrated and
possibly characterized by a spin-liquid ground state [46–48].

4.2.4 �SR and NMR in the Spin-1/2 Kagomé Lattice
ZnCu3(OH)6Cl2

One of the most promising model compounds for the study of frustrated magnetism
is herbertsmithite, ZnCu3(OH)6Cl2, which has the kagomé geometry. The moments
in this material originate from Cu2C ions, and have spin S D 1=2, making the sys-
tem ideal for the investigation of quantum ground states. Unfortunately, different
probes such as muons [49] and NMR on the O [50], Cu, and Cl ions [51] all sug-
gest a different behavior of the line shifts below temperatures of order 50K, and the
origin of these variations is not yet clear. Here we present only the �SR results for
ZnCu3(OH)6Cl2, beginning with the muon shift and T �

2 , considered both indepen-
dently (Fig. 4.14) and for their relative scaling (inset Fig. 4.14). More can be found
in the Chap. 9 by Mendels and Wills. The muon shift, and hence the susceptibility,
increase continuously upon cooling and saturate below 200 mK. This indicates that
the spin-1/2 kagomé system in ZnCu3(OH)6Cl2 does not freeze or form singlets.
The ground state is paramagnetic. In addition, K and 1=T �

2 track each other as the
temperature is lowered, as expected from (4.9). Although 1=T �

2 is not a perfectly
linear function of K , there is no reason to expect a modification in the hyperfine
coupling upon cooling i.e. that a lattice deformation may occur in this case.

We next examine whether the ground state is separated by a gap from the excited
states. If such a gap were to exist, a finite temperature would be required to generate
excitations and achieve a non-zero value of �00̨

˛.q; !0/. Thus from (4.13) one would
expect 1=.T1T / to extrapolate to zero. Such behavior has not been observed exper-
imentally [50, 51] (Ofer et al., unpublished): the relaxation rate 37Cl 1=T1 shown
in Fig. 4.15 remains proportional to T , suggesting that �00̨

˛.q; !0/ is finite in the
limit T ! 0. With no evidence for a gap, the kagomé lattice seems to be an exotic
magnet with no broken continuous symmetry but gapless excitations.
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4.2.5 The Problem of �C Relaxation in Some Kagomé Lattices

At the very beginnings of research in the field of frustrated magnetism, it
was noticed that the muon-relaxation function is unusual [52]. The symbols in
Fig. 4.8 show the polarization at a temperature of 100 mK in the kagomé system
SrCr9pGa12�9pO19 (SCGO), at zero field and in a longitudinal field of 2 kG [52].
First, no oscillations are found, meaning that the internal field is random with either
static or dynamic nature. Second, the relaxation at short times is Gaussian, with a
time scale of 0.1 �sec, so 
 must be on the order of 10 MHz. Third, there is no
recovery, so there must be some dynamical field fluctuations as in Fig. 4.7, but with
� � 
: if � were larger than 
, the initial relaxation would be Lorenzian ((4.21)–
(4.22) and Fig. 4.7); if � were much smaller than 
, the polarization would have
recovered at least partially. In these circumstances, a field of 2 kG, which is equiva-
lent to !L D 170MHz should “decouple” the relaxation, but this does not happen:
the solid lines in Fig. 4.8 represent the expected decoupling, which is very different
from the measured data. A model has been proposed to explain this problem [52],
which has received the name sporadic dynamics (SD) [53, 54].

In the SD model, the spin fluctuations in the sample do not relax the muon spin at
all times but only for a fraction f of the time, as illustrated in Fig. 4.16. In zero field,
it is clear that such a form of the relaxation would lead to a sporadic dynamic polar-

ization P
sd

z .�; 0;
; t/ D P z.�; 0;
; ft/. However, even when a field is applied,
the polarization changes only when the internal field relaxes the muon spin, i.e. the
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Fig. 4.15 37Cl 1=T1 in herbertsmithite (ZnCu3(OH)6Cl2) at low temperature

flat parts of the curve in Fig. 4.16 remain flat even when H is finite. One therefore

expects that P
sd

z .�; !L; 
; t/ D P z.�; !L; 
; f t/ for all values of !L. The fact
that �, !L, and 
 always enter the relaxation function as a product with t [see for

example (4.21)] mandates the result P
sd

z .�; !L; 
; t/ D P z.f �; f!L; f
; t/.
When analyzing the data within this framework, one is in effect estimating that

f
 and f � are 10 MHz, whence P
sd

z D P z.10; f!L; 10; t/. The effect of the field
is therefore reduced by a factor f . In the fraction of the time for which the field is
finite, 
 and � are actually much higher than 10 MHz, and this is the reason that no
decoupling is observed.

The SD model is very successful in explaining �SR data in frustrated systems.
It has two possible physical interpretations. One is that the field at the muon site is
zero for most of the time due to singlet formation of the spins in the sample, but
occasional breaking of a singlet causes a fluctuating field and relaxation [52]. The
problem with this scenario is that the muon relaxation is temperature-independent
below 2–3 K, similar to the case presented in Fig. 4.17. This should happen when
the system is in its ground state, but then there can be no time evolution, meaning
that the internal field cannot fluctuate from zero to finite and the muon spin cannot
relax. If the system is not in its ground state at T ' 2K, then a lower energy scale,
below the 100 mK limit of the experiment, must exist which separates the ground
from the first excited state. Accordingly, the constant relaxation observed in the
range 100 mK � T � 2K would arise from quantum fluctuations within a manifold
of weakly coupled, nearly degenerate states. The other possibility is that the muon
is hopping, although not regularly, between two sites with different relaxation rates.
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Fig. 4.16 Schematic muon relaxation function for a situation in which the muons relax only
sporadically, during certain time intervals
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This, however, would be unusual at such low temperatures. A full description of the
muon spin relaxation in SCGO and similar systems is still lacking. More informa-
tion on SCGO and related materials can be found in Chap. 9 by P. Mendels and A.S.
Wills.

4.2.6 Persistent Dynamics and Lattice Distortions
in the Pyrochlore Lattice

If one common message can be drawn from the study of frustrated magnets by
�SR, it is that these systems maintain a fluctuating component of their moments
even when the temperature is lowered far below the coupling energy scale. This is
manifest in the saturation of 1=T1 upon cooling. At zero field, 1=T1 is given by
(4.23), and thus if the relaxation rate remains finite, it is because at least part of the
moment continues to fluctuate and 
 cannot be zero. While both T1 and 
 vary
with the physical system, the typical scale for � is � sec�1.

In Fig. 4.17, we present what may be the canonical example of persisting fluctu-
ations to the lowest temperatures, Tb2Ti2O7 [55]. The solid, black symbols denote
1=T1 over a wide temperature range. The increase in 1=T1 upon cooling indicates
that � decreases, meaning that the spin fluctuations slow down. However, in con-
ventional magnets, long-range order or spin-freezing sets in at some temperature,
and the amplitude of the fluctuations, ıB (4.19), decreases upon cooling, which is
reflected in a decrease in
2. The net result is a peak in 1=T1 at, or close to, the crit-
ical temperature. The 1=T1 peak is missing in Tb2Ti2O7 suggesting that no static
magnetic moment develops in this system. Similar results have been obtained in
other pyrochlore lattices, such as Tb2Sn2O7 [56] and Gd2Ti2O7 [54, 57].

This conclusion leads to yet another open question in this area of research,
namely which type of excitation will dominate at low temperatures: candidates
include spin-wave, spinless, and spinon excitations. This question can be investi-
gated by measuring 1=T1 as a function of the magnetic ion concentration, p, both
above and below the percolation threshold, pc. A strong dependence of 1=T1 on
p close to pc would suggest that the fluctuations emerge from a collective phe-
nomenon. By contrast, if 1=T1 varies smoothly across pc , it would suggest that
the excitations are local in nature and not sensitive to the overall coverage of the
lattice. Figure 4.17 shows 1=T1 data for (TbpY1�p)2Ti2O7 samples in which the
magnetic Tb ion is replaced by nonmagnetic Y [58]. It is clear that the fluctuations
have similar behavior both above and below the percolation threshold, which here
is at pc D 0:39 [59].

Moreover, the muon relaxation rate T1 is found to be a linear function ofH [58].
Such behavior is very different from (4.22) and suggests that the internal-field cor-
relations do not decay exponentially, but rather with a power-law form. In this case,
the dynamical properties of the system would be contained in the quantity dT1=dH .
The inset of Fig. 4.17 shows dT1=dH as a function of p: there is no anomaly at pc ,
suggesting that T1 is indeed controlled by local excitations.
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Finally, as in the case of Li2VOSiO4 (Sect. 4.2.2), magnetoelastic coupling [60–
67] (Wang and Vishwanath, unpublished) is also very important in the pyrochlore
system (as discussed in Chap. 11 of O. Tchernyshyov and G.-W. Chern), often lead-
ing to a lattice deformation in order to relieve the frustration. In fact, this interaction
will cause some lattice deformation for arbitrarily small interaction strengths. Alter-
natively stated, there is no such thing as a perfect Heisenberg pyrochlore lattice,
because it must distort. In practice, however, very small magnetoelastic couplings
may give an undetectably small distortion. Nevertheless, the investigation of the
ground state in the presence of magnetoelastic coupling is a growing theoretical
sub-field which is accompanied by an intensifying experimental search for this
effect.

As explained above, a comparison between the muon relaxation rate and the
muon shift or macroscopic susceptibility can provide evidence for lattice deforma-
tions. In the example of the pyrochlore Y2Mo2O7, 1=T �

2 depends exponentially on
the susceptibility, as demonstrated in the semi-log graph of Fig. 4.18. The fact that
the lattice parameters in Y2Mo2O7 vary upon cooling has received confirmation
from NMR [67] experiments. In contrast, the lattice of Tb2Ti2O7 does not distort
[68, 69], and indeed 1=T �

2 depends linearly on the susceptibility, as shown in the
inset of Fig. 4.18.

In conclusion, in this chapter we reviewed the main aspects of NMR and �SR
which are relevant for the study of frustrated magnets. We showed how the shift,



4 NMR and �SR in Highly Frustrated Magnets 103

splitting, and broadening of the spectra provides significant information on the
ground-state and on the structural deformations induced by the spin-lattice coupling.
We demonstrated how the nuclear and muon relaxation rates are sensitive to the
peculiar low-energy excitations associated with the nearly degenerate ground-state
which characterizes frustrated magnets. We provided examples of the application
of these tools to the investigation of several model systems as, for instance: to tri-
angular molecular magnets with a two-fold degenerate ground state; to J1–J2 and
to pyrochlores systems with lattice distortions and low T fluctuations, to triangu-
lar antiferromagnets with an energy gap in the low-energy excitations and to the
kagomé lattice where there is no evidence of such gap. Many more subtle aspects of
variety of frustrated systems are also presented.
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Chapter 5
Optical Techniques for Systems
with Competing Interactions

Joachim Deisenhofer and Peter Lemmens

Abstract Optical spectroscopy and Raman scattering can be used to probe all the
relevant degrees of freedom in a solid. In this chapter, we present an overview
of the elementary and collective excitations accessible in compounds where spin,
orbital, and lattice degrees of freedom compete strongly. For illustration, we will
focus in particular on the magnetic response of the weakly coupled spin-tetrahedron
system Cu2Te2O5(Br,Cl)2, on optical phonons in the highly frustrated pyrochlore
antiferromagnets CdCr2O4 and ZnCr2O4, and on exciton-magnon excitations in the
quasi-one-dimensional spin-1/2 Heisenberg antiferromagnet KCuF3.

5.1 Introduction

In an inelastic light-scattering process, monochromatic light is scattered by varia-
tions in the electronic polarizability. The involvement of virtual electron-hole pairs
leads to a strong sensitivity to local lattice distortions, as exemplified by local
orbital states in manganites, or to local magnetic exchange processes in Heisenberg
exchange-coupled systems. While magnetic light scattering in long-range-ordered
systems leads to two-magnon signals whose shape is reminiscent of a density of
states, frustrated spin topologies and topological ordering may lead to sharper,
quasiparticle-like modes. Indeed, inelastic light-scattering has a very high sensitiv-
ity to singlet excitations, for example in weakly coupled spin tetrahedra. However,
depending on the exchange geometry of the system and the temperature of the
experiment, a multitude of overlapping modes, or quasielastic scattering, has also
been observed [1, 2]. Inelastic scattering by electronic transitions is allowed at low
energies if the scattering rate is large and screening can be prohibited. A number
of specialized reviews have been written which cover correlated electron systems
[3], high-temperature superconductors [4, 5], two-leg spin ladders [6, 7], and the
materials aspects of perovskites [8].

In infra-red (IR) optical spectroscopy, the properties of a system are probed
through the intensity and the polarization state of the reflected, absorbed, or trans-
mitted light over an extended frequency range. The dominant contribution to
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the excitation processes observable by IR spectroscopy are transitions which are
electric-dipole-allowed (ED-allowed, e.g. IR-active phonons), and hence the spin
degrees of freedom are generally considered not to be directly accessible by IR spec-
troscopy. Magnetic-dipole (MD) transitions, however, are optically allowed and can
be observed at far-infra-red (FIR) frequencies in magnetically ordered systems. This
one-magnon excitation process is called antiferromagnetic resonance (AFMR) and
can provide valuable information on the symmetry of a magnetically ordered phase.
Because MD transitions are several orders of magnitude weaker than ED transi-
tions, their detection is more probable in transmission geometry than in reflection.
Recently, the prototypical antiferromagnetic insulator CoO, which has the rock-salt
structure, was investigated in the FIR regime in reflection geometry and ED-active
phonons, MD transitions, and electric quadrupole transitions were detected [9]. In
addition to these single-ion excitations, cooperative excitations can occur which
involve simultaneous transitions on two neighboring exchange-coupled magnetic
ions: these include two-magnon absorptions, multi-magnon-plus-phonon processes,
exciton–magnon, and exciton–exciton transitions [10].

In the following we will first describe general aspects of and typical set-ups for
light-scattering experiments and IR spectroscopy. Then we will discuss examples of
Raman and IR experiments where the spin degrees of freedom are clearly detectable
in the excitation spectra.

5.2 Inelastic Light-Scattering

In an inelastic light-scattering experiment, monochromatic light in the visible range,
for example with the wavelength � D 532:1 nm, and with well-defined polariza-
tion is focused on the sample surface. Inelastically scattered light with a “Raman
shift” (frequency-shift) of 5–3,000 cm�1 is emitted, which has dipole characteris-
tics and is sampled by a photo-lens of sufficiently large aperture. The Raman shift
is an energy-proportional scale based on the inverse wavelength, on which the inci-
dent light given above corresponds to 18,794 cm�1 and numbers on the order of
300 cm�1 correspond to a typical phonon energy scale in a transition-metal oxide.

A second lens with an adapted focal length is used to focus the beam of parallel
light on the entrance slit of the Raman spectrometer. The two lenses between the
sample chamber or cryostat and the spectrometer allow for flexibility with respect
to the distance between the experimental components. Figure 5.1 shows a typical
set-up for Raman scattering.

Neither sensitivity nor frequency resolution are limiting factors in present-day
Raman-scattering experiments. CCD arrays (back-illuminated and liquid-nitrogen-
cooled) with long sampling times (20 s–20 min.) and multiple accumulations to
remove spurious signals from cosmic muons allow the simultaneous acquisition
of frequency shifts in a broad window corresponding to excitations of quasi-
particles in the solid. The spectral resolution, which is of order several cm�1

(�1.44 K�0.125 meV), depends on geometrical factors including the focal length,
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Fig. 5.1 Schematic representation of a typical Raman set-up with mirrors (M), pinholes (P), holo-
graphic laser filter (LF), lenses (L), power meter (PM), fresnel rhombus (FR), polarization filter
(PF), variable slit (S), and attenuator (A). The triple spectrometer includes a subtractive double
monochromator that is used as a band-pass filter and a single monochromator that disperses the
frequency band of inelastically scattered light on the CCD detector. The thick line denotes the light
path from the laser to the sample and from the sample to the spectrometer

the slit widths, the number of grooves on the grating, and the density of pixels on
the CCD array.

A limiting factor, however, is the set-up- and sample-related background level of
fluorescence and stray light. Its origin may be surface contaminations and defects.
As a consequence, freshly cleaved single-crystal surfaces are desirable. Further
sources of background contributions include the glass of the collecting lenses,
other optical components, and the laser itself. Intrinsic fluorescence processes are
observed only rather rarely in extended solid states due to their quenching by
nonradiative decay processes.

Taking into account that the scattering cross-section of magnetic and electronic
excitations is one to two orders of magnitude smaller than the scattering intensity of
phonons, and that these contributions have both low energy and a large bandwidth,
the suppression of scattering with a similarly broad energy distribution is essential.
For the laser, a pre-monochromator or holographic filter is used. Optical pinholes
and a long beam path from the laser to the focussing lens further decrease back-
ground radiation. The optical beam path and the optical elements are separated for
the exciting and for the scattered light.

Finally a controllable suppression of the elastically scattered light from the sam-
ple is gained by using a subtractive double monochromator in front of the dispersing
spectrometer. Including the dispersing (“spectrograph”) stage, the spectrometer is
then referred to as a triple spectrometer. Single monochromator stages with super-
notch filters, as for example in a high-aperture Raman microscope, do not generally
comply with these requirements and are more suitable for material analysis and
phonon studies.
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5.3 Inelastic Phonon Light-Scattering

Optical phonons with q � 0 provide very large scattering cross-sections. Further,
they are easily observable in transition-metal oxides, as the exciting light and the
corresponding electron-hole pairs are generally in close proximity to a resonance
to interband or charge-transfer (CT) excitations. The factor-group analysis, i.e. the
determination of Raman-active phonon modes and their selection rules, can follow
different schemes. An introduction may be found in text books on light scattering
[11, 12]. The Bilbao Crystallograhic server provides web pages with corresponding
services [13, 14].1

Optical phonons and the related selection rules are sensitive probes for lattice
instabilities or anomalies whose origin lies in spin–phonon or electron–phonon
coupling to fluctuating electronic or magnetic degrees of freedom. In such sys-
tems, anomalies of the phonon line width, such as asymmetric phonon lines (Fano
line shape) and changes in the slopes of the temperature-dependent frequency or
intensities, are very common observations. Quite generally, nature prevents ener-
getic degeneracies and competing interactions of electronic or magnetic origin by
using phonon degrees of freedom in a dynamic or a static way. The results are
frequency shifts and intensity anomalies as a function of temperature, as repre-
sented in Fig. 5.2. Dynamic phonon anomalies spanning large temperature ranges
are obviously of most interest [15].
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Fig. 5.2 Phonon effects in Raman shift (upper graph) and intensity (lower graph) which may be
observed in different compounds. Dashed lines correspond to the unperturbed situation. Full lines
correspond to observations in a system with (a) a structural instability, (b) a crossover due to the
mutual coupling of spin and phonon systems, and (c) orbital dynamics or other fluctuating states.
In (c), Tc represents the Curie temperature, for example of a weakly doped manganite such as
(La,Sr)MnO3 , which precedes the formation of orbital polarons

1 http://www.cryst.ehu.es/rep/sam.html.
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Table 5.1 Phonon anomalies in Raman scattering observed in systems featuring mutual interplay
of structural, electronic, and magnetic degrees of freedom, with respective examples

Effect Example

Spin-Peierls transition CuGeO3 [19, 20]
Structural ordering SrCu2(BO3/2 [21, 22]
Structural and charge ordering NaV2O5 [23]
Fluctuation-induced phonon softening TiOCl, TiOBr [24–26]
Crossover behavior ˛-TeVO4 [27]

KCuCl3 [28], TlCuCl3 [29, 30]
Random interactions KCu5V3O13 [31]
Spin-state fluctuations [Fe(pmd)(H2O){Au(CN)2}2]�H2O [32]
Orbital-polaron formation (La1�xSrx )MnO3 [16–18]
Canted orbital polarons (La0:5Sr0:5)MnO4 [33]
Charge/spin stripes (La,Sr)2NiO4 [34, 35]
Local distortions CdCr2S4 (Gnezdilov et al., unpublished)

Compounds with incommensurate magnetic ordering often show related phonon
anomalies close to the transition temperature. In contrast, doped manganites show
a continuous softening of phonon frequencies without a characteristic temperature,
which is due to the formation of orbital polarons [16–18]. In the sense of a local
electronic defect, this type of anomaly shares a number of aspects with the effect of
local polar distortions in a system such as CdCr2S4 (Gnezdilov et al., unpublished),
which shows magnetocapacitive effects.

Different again is multi-phonon scattering, which is enhanced in the compounds
under discussion and is usually non-monotonic in intensity but constant in fre-
quency as function of temperature. This higher-energy scattering very often overlaps
with magnetic scattering, reflecting the mixing of degrees of freedom under such
conditions. In Table 5.1, several examples are listed which demonstrate the use of
phonon modes to characterize the electronic or spin degrees of freedom in systems
with competing interactions.

5.4 Inelastic Magnetic, Quasielastic, and Electronic
Light Scattering

The study of magnetic excitations is helpful because they probe the typical energy
scales of the magnetic system. Reviews of both the basic and the advanced aspects
of magnetic light scattering in low-dimensional systems may be found in [1, 15],
and for three-dimensional classical spin systems in [36].

The magnetic excitation spectra of compounds with a frustrated exchange geom-
etry of quantum spins show a tendency towards spectral downshift compared to
the two-magnon density of states of a long-range-ordered system. If the ground
state is nonmagnetic, due for example to the formation of a spin gap in a S D 1=2

system, asymmetric, low-energy singlet modes may be observed. Further triplet
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modes are observed at similar energy scales. Singlet and triplet modes differ with
respect to their behavior in a magnetic field. Similar to two-magnon scattering in
gapless systems, singlet modes do not shift in frequency in a magnetic field. Lon-
gitudinal magnons (triplet excitations) occupy an intermediate position: they may
be observed in long-range-ordered states close to a quantum critical point and thus
where the ordered moment is strongly reduced. These modes show the temperature
dependence expected for the order parameter, but no shift in a magnetic field.

Systems with helical or incommensurate order often show a multitude of sharp
excitations which may overlap partly with the background, which in turn is a broader
scattering continuum. This complex line shape is difficult to describe and depends
on details of the magnetic ordering. The ordered moments of these systems are
nevertheless larger when compared to the types of system discussed above, whence
spin fluctuations are less pronounced. In Fig. 5.3, we illustrate schematically the
approximate line shapes which may be observed in the parameter space given by
the degree of competition between the interactions and the connectivity of the spin
system. Examples of specific systems are listed in Table 5.2.

Systems of weakly coupled spin tetrahedra form a well established class of
materials in which one may study the effect of competing interactions on mag-
netic excitations by light-scattering [37]. In Fig. 5.4, we show the crystal structure
together with the low-energy excitation spectra of several compounds whose stoi-
chiometry is derived from Cu2Te2O5(Br,Cl)2 [38, 39]. The lone-pair ion Te4C, in
combination with halogen and oxygen ions, leads to open structures which form the
framework for magnetic exchange with restricted connectivity [1].

While the largest exchange constants are those within the tetrahedra, the most
important exchange paths in the spin-tetrahedron compounds consist of halogen–
oxygen bonds which couple the tetrahedra of Cu2C ions within the crystallographic
ab plane. These interactions can be modified by replacing Cl by Br, leading to a
weakening of the in-plane with respect to the out-of-plane coupling. The arrange-
ment of the tetrahedra can also be modified as in Cu4Te5O12Cl4 [39], leading to
a three-dimensionally coupled system more amenable (than the coupled-chain and
planar materials) to a mean-field description.
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Fig. 5.3 Representation of magnetic light-scattering intensity in different exchange geometries as
a function of energy. The spectral-weight distribution depends on the presence of a spin gap at low
energy and on the extent of spin frustration. Cases shown are (a) frustrated, dimerized spin chains,
(b) coupled spin tetrahedra, and (c) a two-dimensional antiferromagnet
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Table 5.2 Examples of magnetic and electronic Raman scattering giving the observed phe-
nomenon, the basic exchange geometry, and example systems. Mode labels are taken primarily
from the references given. Mode line widths are determined by an interplay of the system
connectivity with the degree of competition between spin exchange constants. This may be char-
acterized by considering the ratio of intra- to inter-chain/dimer/tetrahedron coupling in the spin
system. Fluctuations are enhanced as anisotropies increase, making the systems increasingly
low-dimensional
Phenomenon Exchange system Example

Singlet bound state Dimerized, frustrated chain CuGeO3 [19]
Longitudinal magnon Weakly coupled tetrahedra Cu2Te2O5Br2 [37, 38]
Sharp triplets Coupled tetrahedra Cu2Te2O5Cl2 [39]
Defect-induced bound state Dimerized, frustrated chain (Cu,Zn)GeO3 [50, 51]
Sharp triplets Dimerized, coupled chains (VO2)P2O7 [52]
Sharp singlets and triplets Frustrated dimers SrCu2(BO3)2 [53–55]

2D coupled dimers NaV2O5 [56–59]
Three-magnon scattering Chain, spin-Peierls CuGeO3 [60]

3D coupled dimers KCuCl3 [28]

Two-magnon continuum 2D AF with stripes La2NiO4 [61]
Two-magnon continuum 3D AF KNiF3 [36, 62, 63]
Continuum, smaller line width 3D coupled dimers (Tl,K)CuCl3 [28–30]
Resonance RS, gap formation Spin ladder Sr14Cu24O41 [7, 18, 64]
Resonance RS Square lattice undoped HTSC [65, 66]

Quasi-elastic Lorentzian Alternating chain (VO2)P2O7 [52]
Chain, spin-Peierls CuGeO3 [67]
Chain with helical order NaCu2O2 [68]

Electronic scattering 1D collision-dominated BaVS3 [69]
2D square lattice HTSC [3]
2D triangular lattice NaxCoO2 [49]
3D polaronic EuO, (Eu,La)B6 [70]

These systems of weakly coupled spin tetrahedra are found to be at the boundary
between a localized product ground state of spin singlets and helical ground states
with large unit cells and reduced ordered moments. It has been suggested that this
crossover can be parameterized by considering the ratio of inter-tetrahedron cou-
pling and a Dzyaloshinskii–Moriya interaction which is antisymmetric with respect
to intra-tetrahedron exchange [38].

All known spin-tetrahedron compounds realize long-range ordering with critical
temperatures Tc < 20 K [39]. However, the magnitudes of the ordered moments,
the ordering vectors, and the energy scales in the inelastic excitation spectra differ
strongly. As shown in Fig. 5.4a–c, the low-energy spectrum consists essentially of
magnetic excitations with a well-defined and distinctive temperature-dependence.
The frequency window of magnetic excitations is approximately 30–80 cm�1 for
all systems. In addition, a low-frequency “collective mode” and quasielastic scatter-
ing are observed for frequencies below 25 cm�1. In the compound with the smallest
Tc , and presumably the smallest in-plane inter-tetrahedron interaction, a low-energy
mode has been identified as a longitudinal magnon. This excitation follows the
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Fig. 5.4 Low-energy Raman scattering in three different compounds with coupled spin tetrahedra
at temperatures above and below an ordering temperature Tc . Data are shown for (a) Cu2Te2O5Br2

(Tc D 11:4 K), (b) Cu2Te2O5Cl2 (18.2 K), and (c) Cu4Te5O12Cl4 (13.6 K); the curves are shifted
for clarity. Dashed lines denote scattering intensity due to phonons. (d) Representation of the crys-
tal structure in ab-plane projection. The tetrahedra formed from Cu ions coordinated by oxygen
ions on two different sites are filled. Exchange paths between the tetrahedra are formed by Br
(large circles) and O ions (intermediate-sized circles)

temperature-dependence of the order parameter, i.e. of the sublattice magnetization.
By contrast, the higher-energy continuum shows no shift and only a depression of
its intensity with increasing temperature (Fig. 5.4a). Increasing the in-plane cou-
pling suppresses this mode completely. Instead, a larger number of excitations with
smaller line width appears. The more three-dimensional system Cu4Te5O12Cl4
shows only two very sharp modes which have no temperature-dependence of
their energy (Fig. 5.4c). This effect is a consequence of the suppression of spin
fluctuations in the latter system.

For two- or three-dimensional compounds with larger connectivity and ground-
state degeneracy, a multitude of singlet states leading to a continuum of scattering
is expected. With the exception of Raman scattering, these singlet excitations can
only be observed through their contribution to the specific heat [40]. Examples
where such excitations have been detected definitively in Raman studies remain
rather rare, although good candidates are compounds with square planar lattices
featuring additional diagonal coupling (J1–J2 systems [41]) and kagomé materials
[42, 43]. The theoretical relevance of Raman scattering in kagomé systems is worth
noting because it can distinguish spin-liquid from symmetry-broken ground states
by observing the anisotropy of the magnetic scattering [44] and its line shape at low
energies (Läuchli and Lhuillier, unpublished).
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We include in this section a discussion of quasielastic and electronic scattering.
Because all Raman-scattering processes are by definition electronic, we follow the
pragmatic approach of defining as quasielastic scattering any very low-energy scat-
tering which arises due to energy-density fluctuations of the magnetic system. These
processes are mediated by spin–phonon coupling and lead to a Lorentzian line width
and a temperature-dependence related to the magnetic specific heat [45, 46]. This
type of scattering is observed with different intensities in all magnetic compounds
where competing interactions are present.

Electronic Raman scattering with a single scattering time has the same Lorentzian
line shape and is screened at finite frequencies [5]. However, if the fluctuations
consist of variations of the effective mass within an anisotropic band or if sources
of anomalous scattering exist, then finite-energy scattering is observable. While
the first case was demonstrated first for doped semiconductors under the applica-
tion of anisotropic pressure [47], the second is relevant in systems such as dirty
or correlated metals [48]. In non-Fermi-liquid systems, an anomalous energy- and
frequency-dependent scattering rate, arising from polaronic effects or from nest-
ing, leads to a frequency-independent scattering continuum that extends to rather
high energies. The best-known candidates for such scattering are high temperature
superconductors (HTSC), where the electronic Raman continuum extends to sev-
eral thousand wavenumbers [3], and the hydrated cobaltates, NaxCoO2�yH2O [49],
where this contribution is observed in Raman shifts up to 550 cm�1 (Table 5.2).

5.5 The IR Experiment

A typical experimental set-up for performing IR measurements is shown in Fig. 5.5.
Before impinging on the sample, the light is passed through a Michelson interfer-
ometer unit where the beam is split by a beamsplitter (BS) and reflected by a fixed
and a scanning mirror (FM and SM). The result is an interferogram which provides
the desired spectral information after Fourier transformation.

The shape of the resulting spectrum depends on the emission of the source, and
is influenced by all of the optical elements in the beam path. The reflectivity of a
sample must thus be obtained as the ratio of its spectrum in comparison to the spec-
trum of a reference material such as gold, silver, or aluminum, which are assumed
to be ideally reflective in a certain frequency range. Extrapolating the measured
reflectivity or transmission data to zero and to infinite frequency allows one to per-
form a Kramers–Kronig transformation to obtain the real and imaginary parts of the
dielectric function or the optical conductivity. A direct experimental determination
of both imaginary and real parts of the dielectric function becomes possible by per-
forming ellipsometry measurements, i.e. by measuring the exact polarization state
of the elliptically polarized light reflected from the sample [71].
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Fig. 5.5 Representation of an IR Fourier spectrometer (Bruker IFS66v) with a Michelson inter-
ferometer unit consisting of a beam-splitter (BS), a scanning (SM), and a fixed mirror (FM) [73]

5.6 Spins, Phonons, and Light

To illustrate how electromagnetic radiation with electric- and magnetic-field vectors
E and H couples to the lattice and spin degrees of freedom, we follow the discussion
of Mizuno and Koide [72] and start with the Hamiltonian in the form

H D
X

i

pi
2

2mi

C
X

i

Di .E/ C
X

i

fi.E/ � ri C
X
i�j

ri � kij .E/ � rj (5.1)

C
X
i<j

Si � Jij .r; E/ � Sj C
X

i

Ki .Si; E; r/ C ˇ
X

i

H � gi .r/ � Si;

where mi is the mass, pi the momentum, ri the displacement from its equilibrium
position, and Si the spin of the i th ion. With no external electric field, the first
line of the Hamiltonian (5.1) reduces to the conventional form for a lattice in the
harmonic approximation and the second line to the effective spin Hamiltonian for
an exchange-coupled system with exchange constants Jij , single-ion anisotropy Ki ,
and a Zeeman term to account for MD transitions. By neglecting the latter two
(single-ion) terms, assuming Jij to be a scalar (isotropic, diagonal interactions),
and expanding the Hamiltonian with respect to r and E, one obtains at zeroth order
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the well-known lattice Hamiltonian, a Heisenberg term, and a set of terms linear
in E,
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Here the second and third terms account respectively for the one- and two-phonon
processes which dominate the FIR spectra in dielectric crystals. The fourth and
the fifth terms contain spin-dependent effective dipole moments, and describe,
respectively, dipole-active two-magnon excitation processes and two-magnon-plus-
one-phonon absorptions. The former were first observed in FeF2 [74] and MnF2

[75] and were described theoretically by Tanabe and coworkers [10, 76]. Micro-
scopically, the effective dipole moment of the two-magnon excitation arises from
off-diagonal terms in the superexchange coupling involving two spin-flips (because
of spin conservation) on two neighboring sites in the ground state [77]. In a
lattice with inversion symmetry, such as the NaCl-type structure of NiO, the two-
magnon excitation is not allowed. In order to break the inversion symmetry, the
additional excitation of an odd-symmetry phonon is necessary, leading to two-
magnon-plus-one-phonon processes which are ED-allowed [72, 78]. Observation
of these processes in the parent compound of the cuprates, La2CuO4, led to a gen-
eralized description of multi-magnon-plus-phonon excitations [79, 80]. As in the
two-magnon process, spin-flips can also occur accompanied by the excitation of one
or both of the neighboring ions into a higher orbital state, giving rise to exciton–
magnon or exciton–exciton transitions, respectively [77, 81, 82]. Very recently, a
hybridized magnon–phonon excitation, dubbed the electromagnon, has been discov-
ered experimentally [83]. The electromagnon becomes observable in the presence
of strong spin-lattice coupling and appears to be a feature of multiferroic systems
with spiral spin structure, but the exact mechanism of the coupling is still the sub-
ject of active discussion [83, 84]. In Table 5.3, we present a short list of excitations
observable by optical measurements, distinguishing between excitations related to
either lattice or spin degrees of freedom and excitations arising due to coupling
between the subsystems. The examples and references were chosen to include both
early and recent studies and systems of differing effective magnetic dimensionality.
Comprehensive review articles are indicated where available.

In the expansion of the Hamiltonian (5.1), a further term appears which does not
depend on E, but is linear in the ion displacement,

HSP D
X
i<j

�
Si � Sj

�X
k

�
@Jij

@rk

�
0

� rk: (5.3)

This term describes a magnetoelastic coupling between the spins and the lattice,
reflecting the influence of exchange coupling on the lattice vibrations probed by
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Table 5.3 Elementary excitations detectable by optical spectroscopy in crystals with lattice,
orbital, and spin degrees of freedom

Excitation Degree of Examples Monographs/
Freedom Reviews

Phonon Lattice CdCr2S4 [85] [86]
One-magnon Spins FeF2 [87], LuMnO3 [84]
Two-magnon Spins FeF2 [74], MnF2 [75], [10]

SmTiO3 [88]
Exciton-magnon Spins MnF2 [89], KCuF3 [90]
Exciton-exciton Spins MnF2,RbMnF3 [91]

Coupling

Vibron Electron–phonon CuGeO3 [92], LaTiO3 [93] [94]
Polaron Electron–phonon La1�x (Ca,Sr)x MnO3 [95] [96]
Phonon-assisted Magnon–phonon NiO [72, 78] [97]
Multi-magnon La2CuO4 [79, 80]

Sr2CuO3 [98]
electromagnon Magnon–phonon TbMnO3 [83], TbMn2O5 [84]

IR spectroscopy. This term is discussed in detail for the case of the magnetically
frustrated pyrochlore lattice in Chap. 11 by Tchernyshyov and Chern. In the fol-
lowing, we discuss experimental results for the FIR phonon spectra in Cr spinels,
compounds which are the paradigm for frustrated antiferromagnets displaying this
type of physics.

5.7 Spin–Phonon Interaction in Cr Spinels

The quest for realizations of highly frustrated magnets leads naturally to the spinel
systems ACr2X4 (X D O,S,Se). As described in Chap. 7 by Takagi and Niitaka,
in one spinel family the A site is occupied by nonmagnetic ions such as Zn or Cd
[99]. The Cr3C ions have spin S D 3=2 and are situated on corner-sharing tetra-
hedra which form a pyrochlore lattice (inset Fig. 5.6). Examples such as CdCr2O4

(with frustration parameter f D �C W =TN D 32) and ZnCr2O4 (f D 8:7) can
be regarded as paradigms for systems where the antiferromagnetic nearest-neighbor
Heisenberg exchange leads to inherent frustration and considerable degeneracy of
the magnetic ground state [100]. The phase diagram in Fig. 5.6 shows that the
strong frustration in ZnCr2O4, where �C W D �3; 98 K, is diminished when the
lattice parameter is enlarged by substituting Cd and Hg for Zn or S and Se for O.
Weakening of the direct Cr–Cr coupling, which is antiferromagnetic, is accompa-
nied by a strengthening of ferromagnetic next-nearest neighbor interactions, which
lead to bond frustration with �C W D TN � 10 K for ZnCr2S4, and finally to
ferromagnetism in cases such as CdCr2S4. In reality, the degeneracy of the mag-
netic ground state is lifted at finite temperatures by the coupling to other degrees
of freedom. The spin-Jahn–Teller effect is an example of this phenomenon, and



5 Optical Techniques for Systems with Competing Interactions 119

Fig. 5.6 Phase diagram for ACr2X4 (A D Zn,Mg,Cd, X D O,S,Se) spinels. The Cr spins occupy
a pyrochlore lattice, leading to strong geometric frustration of the dominant antiferromagnetic
interactions. For X D S,Se, competition with ferromagnetic interactions leads to a change in sign
of the Curie–Weiss temperature and thus to a ferromagnetic ground state

both the single-tetrahedron case and the collective case of the pyrochlore lattice
(specifically CdCr2O4 and ZnCr2O4) are presented in Chap. 11 by Tchernyshyov
and Chern. This spin–Jahn–Teller effect in the Cr spinels leads to a tetragonal or an
orthorhombic distortion of the lattice and to corresponding splitting of the IR-active
phonon modes.

Experimentally, four phonon excitations are observed in the IR spectra of these
spinel systems, which have cubic symmetry and space group Fd N3m [101]. The
corresponding reflectivity spectrum for CdCr2O4 is shown in Fig. 5.7a for the para-
magnetic state at 15 K. The modes observed are consistent with the irreducible
representation of the optically active phonons which can be obtained by normal
mode analysis [11],

� D A1g C E1g C 3T2g C 4T1u: (5.4)

In systems with inversion symmetry, the Raman and IR modes are mutually exclu-
sive [102], i.e. modes even with respect to inversion can only be observed in a
Raman experiment [103, 104] while only odd modes generate a dipole moment
which allows for IR activity. Hence, the observed IR-active phonons correspond
to the four triply degenerate T1u.i/ (i D 1; 2; 3; 4) modes.

However, the reflectivity data at 5 K, below the magnetic ordering tempera-
ture TN D 8 K, shows clearly that mode T1u(2) is split in the low-temperature
phase (Fig. 5.7a). The temperature-dependence of its phonon frequency is shown in
Fig. 5.7c and reveals a clear splitting of the mode by �! D 10 cm�1 [100, 105].
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Fig. 5.7 (a) Reflectivity spectra of CdCr2O4 at 15 K in the paramagnetic state (shifted upwards
for clarity) and at 5 K, below the antiferromagnetic ordering temperature TN D 8 K. The T1u(2)
mode is clearly split at 5 K [100]. (b) Splitting of the T1u(2) phonon in ZnCr2O4. (c) Temperature-
dependence of the phonon eigenfrequency of the T1u(2) mode, revealing the splitting at TN D 8 K
in CdCr2O4

Similar behavior has been found for ZnCr2O4 (Fig. 5.7b) at the magnetostructural
transition at Tc D 12:5 K, with a splitting �! D 11 cm�1 [106], and for several
other Cr spinel systems [100, 107].

The magnetoelastic coupling is already manifest above the magnetostructural
phase transition, because it influences the phonon frequency as soon as finite spin
correlations appear. In the temperature-dependence of the phonon frequency of
mode T1u(2) in CdCr2O4 (Fig. 5.7c), a deviation from the expected behavior, which
would be a stiffening of the lattice vibrations due to anharmonic effects (solid line
in Fig. 5.7c), is clearly visible in the softening of the phonon below 100 K, which is
the order of the Curie–Weiss temperature in this compound.

By considering a nearest-neighbor Heisenberg spin system, Baltensberger and
Helman related the frequency shift of lattice vibrations in magnetic crystals to
the magnetic energy of the system, �! � �hSi � Sj i: these authors introduced
the spin–phonon coupling parameter �, which depends on the derivatives of the
exchange constants with respect to the coordinates of the magnetic ions [108, 109].
Information concerning the spin–phonon coupling can thus be extracted from opti-
cal measurements of phononic excitations by IR spectroscopy, if the spin–spin
correlation functions can be obtained independently. By estimating the magnetic
contribution from a nearest-neighbor Heisenberg term with coupling J to the
specific heat Cm, the temperature-dependence of the nearest-neighbor spin–spin
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correlations was extracted via

hSi � Sj i D const C 1

6NAJ

Z T

TN

Cm.T 0/dT 0; (5.5)

where 6NA is the number of Cr–Cr bonds per mole. Another approach is to obtain
the nearest-neighbor spin–spin correlations directly from the magnetic susceptibility
via

hSi � Sj i D kBT�.T /

NAg2�B

� s.s C 1/

3
: (5.6)

The values for ZnCr2O4 were found to be in the range � � 4:0 � 6:2 cm�1, and
� � 3:3�3:9 cm�1 was derived in the paramagnetic regime for CdCr2O4 [104,106].

The spin–phonon coupling derived from the phonon shift in the paramagnetic
state should also describe the phonon splitting upon lowering the symmetry from,
for example, Oh to D4h at the magnetic phase transition. As a result of this
symmetry-lowering, the T1u triplets should split into an Eu doublet and an A2u sin-
glet [110]. The magnetostructural transition can be characterized by the spin-Peierls
order parameter nsp D hS1 � S2 � S1 � S4i for the triply degenerate T1u modes,
where the spins Si reside on the corners of each tetrahedron. The order parameter
accounts for the difference in tetrahedral bonds with ferromagnetic or antiferromag-
netic coupling and vanishes accordingly in the undistorted paramagnetic state. The
induced phonon anisotropy for ZnCr2O4 in the magnetically ordered phase has been
calculated from first principles [110] and the spin–phonon coupling involved in the
splitting of the T1u.2/ mode,

�! � �hS1 � S2 � S1 � S4i (5.7)

was calculated to be � � 11cm�1. This value is a about twice the one derived in the
paramagnetic state with � � 4:0–6.2 cm�1 [104, 106]. In the case of ZnCr2O4,
the T1u.2/ mode reportedly splits into a lower-lying doublet and a higher sin-
glet state [106], which is consistent with a contraction of the lattice in c-direction
as illustrated in Chap. 11 by Tchernyshyov and Chern. For this distortion, which
has Eg symmetry, averaging over the corresponding bonds leads to nsp D 9=2,
and the experimental splitting �! D 11 cm�1 yields a spin–phonon coupling of
� D 2:4 cm�1. For CdCr2O4, the doublet lies higher than the singlet [105], corre-
sponding to an elongation along the c-axis with Eu symmetry (depicted in Chap. 11
by Tchernyshyov and Chern). The spin-Peierls order parameter is then nsp D �2:25,
whence one can estimate � � 4 cm�1 from the experimentally measured split-
ting �! � 9 cm�1. This values compares nicely to the one from the paramagnetic
regime, justifying the assumption of a nearly collinear configuration of the spins in
the ground state. Moreover, the observation of optical phonons which become both
Raman and IR active [104] at the magneto-structural transition provides evidence
for the loss of inversion symmetry in CdCr2O4 in agreement with the results of
Tchernyshyov and Chern.
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The reason for the discrepancy between the values derived from the splitting,
�AFM D 2:4 cm�1, and from the phonon shift above TN , �PM D 4:0–6.2 cm�1,
in ZnCr2O4 may originate from the oversimplified assumption of such a collinear
antiferromagnetic ground state: experimental studies indicate that the true low-
temperature spin configuration of ZnCr2O4 is considerably more complex [111–
113]. Hence, a value much lower than nsp D 9=2 can be expected, which is in
accordance with the fact that a complete splitting of some of the triply degenerate
T1u modes was reported for both ZnCr2O4, confirming a lower symmetry in the
magnetically ordered state [100, 104].

5.8 Exciton–Magnon Absorption in KCuF3

The perovskite KCuF3 is considered as a prototypical system for a cooperative
Jahn–Teller effect, orbital ordering, and a quasi-one-dimensional antiferromagnetic
Heisenberg chain. This is related to the particular type of orbital order in KCuF3,
in which a single hole alternately occupies 3dx2�z2 and 3dy2�z2 orbital states of
the Cu2C ions (3d 9 electronic configuration) [114]. The cooperative Jahn–Teller
distortion is characterized by CuF6 octahedra elongated along the a and b axes
and arranged in an antiferrodistortive pattern in the ab-plane. The system orders
antiferromagnetically at TN D 39 K, but the spinon excitation continuum, one char-
acteristic property of a 1D spin chain, remains observable below TN and persists up
to approximately 200 K [115].

In Fig. 5.8a, the absorption coefficient ˛ for light polarized parallel (E k c)
and perpendicular (E ? c) to the c-axis, the direction of the dominant antiferro-
magnetic coupling, is shown at 8 K. For both orientations, four broad excitation
bands A1–A4 are clearly visible. These absorption bands correspond to the local
d -d CF excitations of the Cu2C ions in a distorted octahedral environment (the
level-splitting is shown as an inset in Fig. 5.8a). ED transitions between d -levels
are parity-forbidden, but they can become allowed as a consequence of a perturba-
tion of the CF potential by phonons (vibronic interaction). Here, we focus on the
sharp features which can be seen at the onset of the A2 and A3 bands. Two sets of
sidebands become visible on the enlarged scale shown in Fig. 5.8b, the respective
onset energies being 8,508 cm�1 and 9,775 cm�1. These vibronic A2 and A3 tran-
sitions were ascribed to MD transitions between the CF levels, while the first three
sidebands appear at separations of 88(86), 114(112), 174(175), and 200(203) cm�1

from the transitions, as indicated in Fig. 5.8b. Further absorptions related to the A2

transition can be identified at 287, 356, 432, and 553 cm�1.
The appearance of sidebands related to CF transitions was first reported in 1965

for MnF2 and explained in terms of magnon sidebands arising due to an exchange-
induced dipole mechanism [116, 117]. The separation in energy of the magnon
sideband from the magnetic dipole transition corresponds to the magnon energy at
the Brillouin zone boundary. In KCuF3, neutron scattering investigations reported
zone-boundary energies of magnon excitations at m1 D 88:7, m2 D 117, and
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Fine structures related to the CF transitions A2 and A3 for E k c and E ? c at 8 K. Frequency
shifts with respect to the MD lines at 8,508 and 9,774 cm�1 are indicated

m3 D 221 cm�1 [118, 119]. The first and second sideband peaks are in good agree-
ment with the first two magnon energies, the third sideband can be assigned to a
two-magnon process involving the 88.7 cm�1 magnon, and the fourth corresponds
to a two-magnon process involving the 88.7 and the 117 cm�1 magnons. The fur-
ther sidebands related to A2 also agree excellently with 2m1 C m2 D 294:4 cm�1,
4m1 D 354:8 cm�1, m1 C 3m2 D 439:7 cm�1, and m1 C 4m2 D 556:7 cm�1.
The fact that five or more magnon sidebands can be observed with such clarity is
not yet understood, but it may be connected with the coexistence of spinon and
magnon excitations in this compound [115]. The temperature-dependence of the
MD transition at 8,508 cm�1 and of the magnon sidebands is displayed in Fig. 5.9
for E k c. The fine structure emerges below a temperature TS D 50 K, while the
integrated intensity of the MD transition, shown as an inset in Fig. 5.9, displays
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no visible anomaly at TN D 39 K. This temperature has been suggested as the
onset of short-range order arising as the result of a freezing-in of dynamical lattice
distortions [120].

This example shows that optical spectroscopy is a very sensitive probe of short-
range-order effects and finite spin correlations above the magnetic ordering tem-
perature. Hence, optical measurements of spin-forbidden local orbital transitions
can provide important information on the spin-excitation spectrum both at low
temperatures and in the correlated paramagnetic phase of frustrated magnets.

We thank Gernot Güntherodt and Alois Loidl for inspiring discussions and
assistance both before and during the preparation of this chapter.
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Chapter 6
The Geometries of Triangular Magnetic Lattices

Robert J. Cava, Katharine L. Holman, Tyrel McQueen, Eric J. Welsh,
D. Vincent West, and Anthony J. Williams

Abstract A survey of the crystal structures of materials that are currently being
studied in the context of geometric magnetic frustration in triangular lattices is
presented, based on a purely geometrical picture of their magnetic lattices. Two-
dimensional materials are first described, followed by three dimensional materials
of increasing structural complexity. When known, both transition metal and rare
earth based examples within a lattice type are noted. The ideal cases are described,
as well as the geometries that are found in some materials for which ideal triangular
symmetry is broken in different ways. A brief description of materials preparation
and crystal growth is also presented.

6.1 Introduction

For solids where the geometry of the magnetic lattice is based on triangles, mag-
netic ordering is often suppressed to temperatures below what is expected from
near neighbor magnetic interactions. Such compounds continue to be of substan-
tial interest. The ordered state that finally occurs can often be a consequence of a
subtle balance among different factors. Deviation from perfect triangular symme-
try in the materials often plays an important role, for example, as do interactions
between second or higher order nearest neighbors. There are many excellent review
articles on this topic, written from chemical, experimental, and theoretical perspec-
tives, describing the properties of geometrically frustrated magnetic materials and
their theoretical understanding (see, for instance, [1–7]). Current theoretical and
experimental reviews can be found in this volume. What this brief review adds to
this body of information is to present a survey of a wide range of triangular lattice
materials based on a purely geometrical picture of their magnetic lattices.

The magnetic lattices of interest are often imbedded in complex arrays of other
atoms that frequently influence the manner in which the magnetic system picks its
ultimate ground state. For the purposes of this review, so that the magnetic lattice
geometry will not be obscured, the non-magnetic atoms of the compounds of interest
are not included in the figures (with one exception). Factors beyond pure geometry,
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such as magnetic ion anisotropy, exchange paths and spin-orbit coupling, impact the
effective magnetic geometry. These have to be considered on a case-by-case basis
and will generally not be addressed in this review. Arranged by lattice type, we
first describe the ideal cases and then some variants in which the triangular symme-
try is broken in different ways. First, the two-dimensional materials are described,
and then, the three dimensional materials. When known, both transition metal and
rare earth based examples within a lattice type are noted. The magnetic lattices are
presented in the figures, and some of the interatomic distances relevant to the mag-
netism are enumerated in the tables. Due to the large number of triangular magnetic
lattices encountered in materials, some selectivity has been employed by the authors
in this compilation.

6.2 Two-Dimensional Structures

6.2.1 Planes of Edge-Sharing Triangles

The most commonly found triangular lattices in magnetically frustrated materials
are based on planes of edge-sharing equilateral triangles. In spite of the simple, ideal
geometry of such a lattice, various types of magnetic ordering are found within this
lattice type. These ordering schemes depend on factors beyond the lattice geometry,
such as the magnitude of the spin, the anisotropy of the orbital occupancy, the rel-
ative intraplane and interplane distances between magnetic ions, and the influence
of the ligands on superexchange and crystal field. The stacking geometry of neigh-
boring planes is critical in determining the ordering in the third dimension. The
chemistry of magnetic compounds based on planes of edge-shared equilateral trian-
gles is quite diverse, and many different types of transition-metal compounds with
this lattice are known. Surprisingly, there are very few published examples of purely
planar edge-sharing equilateral lattices based on rare earths ions.

“Eclipsed” triangular plane lattices stack directly on top of each other (Fig. 6.1),
while for the “staggered” lattices the layers are shifted out of registry. In the lat-
ter case, the atoms in the neighboring layers often cap the triangles in the central
plane to form elongated tetrahedra (Fig. 6.2). For the eclipsed stacking in this lat-
tice type, there are two magnetic out-of-plane neighbors, one in the plane above
and one below; while for staggered stacking, there are typically six out-of-plane
neighbors, three in each neighboring plane. The interplane interactions in staggered
lattices, because they involve three ions in the neighboring planes, can frustrate
three-dimensional ordering. In planar lattices based on edge-sharing equilateral tri-
angles, the ratio of out-of-plane magnetic atom spacing to in-plane atom spacing
varies over a very wide range, from a maximum of about 3.31 in compounds like
NiGa2S4 [8] to a minimum of 0.41 in compounds like CsNiCl3 [9]. The former
compound is therefore two-dimensional in its properties [10] while the latter are
more like triangular arrangements of magnetic chains (Fig. 6.1) [11].
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Fig. 6.1 The eclipsed
equilateral triangle layers in
NiGa2S4 (upper) and
CsNiCl3 (lower). The
distances between the layers
are dramatically different

Fig. 6.2 The layers of
edge-sharing equilateral
triangles in ’-NaFeO2 . The
three layers per cell are
stacked in a staggered fashion

Examples of materials that display planes of equilateral triangles are presented
in Table 6.1 Some of simplest examples are classic layered compounds like VCl2,
where the [Cl-V-Cl]-[Cl-V-Cl] sequence yields weak Van der Waals bonding
between the layers and weak interplane magnetic coupling [12]. Another classic
example is Fe1=3NbS2, where the transition metals are in a triangular lattice that 1/3
fills the sites in the Van der Waals layer in the NbS2 host, i.e. the layer sequence
is [S-Nb-S]-ŒCr1=3�-[S-Nb-S]; compounds in which the Van der Waals layer is 1/4
filled also yield triangular layers of magnetic ions, such as is found in Cr1=4NbS2

[13, 14]. In the latter case the relatively large in-plane spacing of the Cr makes the
intraplane spacing shorter than the interplane spacing. Somewhat more frequently
studied planar lattices based on equilateral triangles are found in the Delafossite
family. In this crystal structure, layers of edge-sharing MO6 or LnO6 octahedra are
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Table 6.1 Planar lattices based on Edge-sharing Equilateral triangles

Compound Structure type Stacking type M–M in-plane M–M next plane

VCl2 CdI2 Eclipsed 3:60 5:84

CuCoO2 Delafossite
3-layer

Staggered 2:85 5:95

CuFeO2 Delafossite
2-layer

Eclipsed 3:04 5:73

NaCrO2 ’-NaFeO2 Staggered 2:98 5:59

Fe1=3NbS
2

Intercalated
dichalcogenide

Staggered 5:76 6:95

Cr1=4NbS
2

Intercalated
Dichalcogenide

Eclipsed 6:63 5:99

CsNiCl3 BaNiO3 Eclipsed 7:17 2:97

RbFe.SO4/2 Anhydrous Alum Eclipsed 4:82 8:22

NiGa2S4 NiGa2S4 Eclipsed 3:63 12:00

the building blocks for the equilateral triangular magnetic plane, with non-magnetic,
stick geometry Cu1C or Ag1C (which are d 10 and non-magnetic) layers acting as
spacers, yielding layer sequences of, for example, [O-Nd-O]-Cu-[O-Nd-O]. There
are two-layer and three-layer variants of Delafossites, differences that result in
eclipsed or staggered near-neighbor planes, respectively. This structure type is also
found for magnetic transition elements in compounds such as CuFeO2 [15–17].

Much more common are equilateral triangle geometry layered phases of the
’-NaFeO2 type (Fig. 6.2). Again, these are based on a triangular plane of edge-
sharing transition metal oxygen octahedra. Unlike Delafossites, the spacing layer in
’-NaFeO2-type materials consists of alkali-or alkaline earth-oxygen octahedra or
triangular prisms: H, Li, Na, K, or Ca spacer layers are known. The magnetic atom
can be Ti, V, Cr, Fe, Co, or Ni (see e.g. [18]). Many different magnetic ordering
schemes are encountered for this family.

Another large family of compounds based on edge-sharing equilateral triangles
has the CsNiCl3 structure type (Fig. 6.1). In these compounds, the basic structural
features are columns of face-sharing MCl6 octahedra. The columns are arranged in a
triangular array and are spaced by the large Cs ions so that interchain coupling has an
M-Cl-Cl-M superexchange pathway. These compounds are much more chain-like
than triangle-like in their magnetic properties, though the triangular arrangement of
chains can frustrate inter-chain ordering.

The anhydrous alums [19], typified by KFe(SO4)2, are relatively poorly studied
magnetically, even though they represent a very large family in the class of edge-
sharing triangular planar lattices. They are made from the stacking of triangular
layers of alkalis and triangular layers of magnetic metal ion octahedra that share no
common ligands, and layers of sulfate or molybdate tetrahedra. The magnetic ions
are typically trivalent transition elements such as Fe, with a few variants containing
rare earths. The anhydrous alums have a substantial number of variants for which
the edge-sharing triangles are isoceles rather than equilateral (Fig. 6.4). The final
member of this class that we will consider is NiGa2S4. NiGa2S4 doesn’t have a
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Fig. 6.3 The planes of edge-sharing isosceles triangles in the anhydrous alum KFe(SO4)2 . The
layers are well separated, and slightly shifted

Fig. 6.4 The layers of edge-sharing isosceles triangles in Cs2CuCl4. The layers are staggered and
slightly buckled. The strongest interactions are shown as bold lines in the triangular planes

common crystal structure or analogous variants, but, because it contains triangular
Ni layers quite far apart, it is one of the most two-dimensional, magnetic compounds
in this class (Fig. 6.1).

There are fewer examples of magnetic compounds based on planes of edge-
sharing, non-equilateral triangles. Typical examples are based on CuO6 octahedra
sharing edges, which, due to the Jahn–Teller distortion, have two long bonds and
four short bonds; the elongated octahedra result in anisotropic triangular planes.
The symmetry of magnetic interactions in such cases is lowered from the ideal case,
but the properties are quite interesting since Cu2C is a spin 1=2 ion. Examples of
these materials in Table 6.2 are Cs2CuCl4 [20] and Cu2(OH)3Cl [21]. The former
(Fig. 6.5) has chain-like interactions, with in-plane coupling between chains and
interlayer interactions that are all finely balanced. The latter compound, shown in
Fig. 6.3, due to the arrangement of long and short bonds and occupied orbitals,
has an interesting type of symmetry breaking in the triangular plane in which
two slightly different Cu chains are coupled by weaker, crosslinking interactions.
NaNiO2 is a distorted variant of the ’-NaFeO2 structure type due to the presence of
Jahn–Teller distortions of the NiO6 octahedra [22]. NaTiO2 (a very difficult com-
pound to synthesize!) is similarly distorted due to ordering of the occupied and
unoccupied Ti t2g orbitals [23].
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Table 6.2 Planar lattices based on Edge-sharing of non-equilateral triangles

Compound Structure type Triangle Stacking M–M in-plane M–M next plane
type type

Cs2CuCl4 Cs2MCl4 Isosceles Staggered 7.60, 7.26 6.81
Cu2.OH/3Cl Botallackite Scalene Eclipsed 3.06, 3.18, 3.23 5.72
KFe.SO4/2 Anhydrous Alum Isosceles Eclipsed 4.79, 5.14 7.88
NaNiO2 Distorted ’-NaFeO2 isosceles Staggered 2.84, 3.02 5.47, 5.58

Fig. 6.5 The distorted triangular lattice in Cu2(OH)3Cl. There are two slightly different chains
(bold lines) coupled by somewhat weaker interactions (dashed lines). On the right side, oxygens
are shown by black circles and chlorine by white circles

6.2.2 Planes of Corner-Sharing Triangles

Magnetic lattices that are made from planes of corner-sharing triangles are of
particular interest from the viewpoint of magnetic frustration because the sys-
tems are more under constrained than those based on edge-sharing. Most common
and famous among these are kagomé lattice compounds. The kagomé lattice is a
corner-sharing array of equilateral triangles that is derived from the edge-shared
triangular lattice by periodic removal of 1/4 of the magnetic sites. The equilat-
eral triangles share corners to form six-triangle rings. The most numerous kagomé
compounds are found in the Jarosite family [24], a group of hydroxide-sulfates,
typified by KFe3(OH)6(SO4)2, that can be made with different alkalis, ammonium,
and magnetic Fe or Cr. The transition metals are found in MO6 octahedra that share
edges in the kagomé plane, so the intraplane magnetic coupling is quite strong.
The kagomé layers in Jarosite are stacked in a staggered fashion (Fig. 6.6). Spin
1/2 kagomé lattices are of particular interest from a theoretical perspective, and
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Fig. 6.6 The kagomé lattice made from equilateral triangles in Jarosite. The stacking of the layers
is staggered

Fig. 6.7 The kagomé lattice made of isosceles triangles in Volborthite. The layers are eclipsed.
An eclipsed “pinched kagomé” lattice is also found in Langasites such as Nd3Ga5SiO14; in that
case, alternate vertices around the hexagonal hole in the lattice are pinched significantly inward,
nearly forming a triangular hole, and the interplane nearest neighbor distance is about 20% larger
than the intraplane distance

two inorganic materials based on Cu2C have been proposed as examples of this
class: Cu3V2O7(OH)2 � 2H2O, Volborthite (Fig. 6.7, [25]); and ZnCu3(OH)6Cl2,
Paratacamite [26]. Due to the Jahn–teller distortions, the lattices are made from
non-equilateral triangles. As the formulas imply, the Cu-based and jarosite-class
materials described here are prepared hydrothermally, making them inappropriate
for study by the synthetically-challenged.

There are two lower-symmetry derivatives of the kagomé lattice that have been of
interest from a magnetic perspective. One of these is the “kagomé-staircase” fam-
ily (Fig. 6.8), consisting of M3V2O8, with M D Mn2C, Co2C, Ni2C and, in a
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Fig. 6.8 The buckled kagomé lattice in “kagomé staircase” compounds such as Ni3V2O8. The
triangles are isosceles, with stronger interactions along the spines

highly distorted variant, Cu2C [27,28]. In these materials, the kagomé plane, which
consists of edge-sharing MO6 octahedra, is buckled to break the perfect symme-
try, resulting in distinct “spine” and “crosstie” sites (Fig. 6.8). In all cases known,
the subtle symmetry breaking leads to complex temperature-applied field magnetic
phase diagrams. The second distorted kagomé variant is found in the Langasite com-
pounds [29]. These have the general formula Ln3Ga5SiO14, and are found only for
the larger magnetic rare earths e.g. Pr and Nd. In these compounds, the array of cor-
ner sharing triangles that make up the kagomé planes is strongly “pinched” inward
on alternating shared vertices around the normally hexagonal holes in the kagomé
planes to make those holes more like puckered triangles. The rare earths in neigh-
boring kagomé planes are 20% more distant than the in-plane neighbors, with the
planes stacked in an eclipsed fashion.

The Olivine [30] lattice, though it is not generally appreciated as such, is derived
from the kagomé lattice by removing magnetic sites in periodic lines perpendicular
to the kagomé spine direction (Fig. 6.9). The result is a saw tooth lattice of corner-
sharing triangles (isosceles in real materials but also conceptually equilateral). The
saw tooth has a central spine of equivalent atoms, with symmetry-independent atoms
on the saw tooth tips. The olivines are a large crystal chemical family, with Mn2SiO4

and Ni2SiO4 the most investigated from a geometric magnetic frustration viewpoint.
There are also cases where the spine sites are populated by magnetic ions but the
saw tooth tips are occupied by non-magnetic ions resulting in magnetic chain com-
pounds; LiCoPO4 is one example [31]. Less well known, and only briefly surveyed,
are the rare earth olivines, ZnLn2S4, which are known for the cases of Ln D Er, Tm
and Yb [32]. Olivines may prove fertile ground for future investigation of magnetic
frustration.
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Fig. 6.9 The incomplete kagomé plane in the rare earth olivine ZnTm2S4. These incomplete
planes are stacked in a staggered fashion. M1 and M2 atoms are not equivalent. In some olivines
only the M1 sites are occupied by magnetic atoms

Finally, honeycomb lattices, though usually not considered geometrically frus-
trating, are derived from the edge-sharing triangular planar lattice by removing
1/3 of the magnetic sites in an ordered fashion. Though less densely packed than
the kagomé lattice at 2/3 rather than 3/4 filling, the arrangement of neighbors in
honeycombs makes straightforward ordering schemes possible. Honeycomb lattice
layers made from edge-sharing MO6 octahedra are found as building blocks in
important non-magnetic compounds such as sapphire, where the overall structure is
highly three-dimensional. Layered honeycomb magnetic materials are found com-
monly in two families. Most studied are those in the structural family typified by
BaNi2V2O8 (Fig. 6.10), which has staggered, honeycomb layers of NiO6 octahedra
sharing edges, spaced by non-magnetic Ba and V5C oxide layers [32]. Magnetic
Ni, Co, and Fe variants of this structure are known, and non-magnetic P or As can
be present instead of V. Particularly interesting for this family is that the magnetic
ordering observed is far from simple, with competition between near neighbor and
next nearest neighbor magnetic interactions across the hexagonal hole in the hon-
eycomb leading to frustration of simple magnetic ground states. These competing
interactions must be surprisingly closely balanced, because the magnetic ordering is
quite different for BaNi2V2O8, BaNi2As2O8, and BaNi2P2O8, for example, which
differ only slightly in crystal structure dimension [33] (Table 6.3).

Another honeycomb magnetic lattice is found in a different structural family,
typified by members Na2Co2TeO6 and Na3Co2SbO6 [34]. For these materials, the
triangular layer, instead of having 1/3 of the sites vacant to form the magnetic hon-
eycomb, has a non-magnetic atom filling the vacant sites. The net magnetic lattice is
the same. The layers are not as well separated as they are for the compounds in the
BaNi2V2O8 family. In one of the structural variants, the honeycombs are eclipsed
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Fig. 6.10 The regular honeycomb lattice of Ni in BaNi2V2O8. The layers are stacked in a
staggered fashion

Table 6.3 Planar lattices based on corner-sharing triangles

Compound Structure Layer type Stacking M–M in M–M next
type type plane plane

NH4Fe3.SO4/2.OH/6 Jarosite Kagomé Eclipsed 3.65 6.13
ZnCu3.OH/6Cl2 Paratacamite Kagomé Staggered 3.39, 3.43 5.05, 5.15
Cu3V2O7.OH/2 � 2H2O Volborthite Kagomé Eclipsed 2.93, 3.03 7.21
Ni3V2O8 Co3V2O8 Kagomé staircase Staggered 2.94, 2.96 5.71
Nd3Ga5SiO14 Langasite Pinched Kagomé Eclipsed 4.19, 5.83 5.03
Mn2SiO4 Olivine Isosceles saw tooth Staggered 3.12, 3.35 3.69, 3.76, 4.02
ZnTm2S4 Olivine Isosceles saw tooth Staggered 3.89, 4.04 4.81, 4.85, 5.02

while in the other they are displaced, though not symmetrically, with respect to
the lower layer. The magnetic structures of these compounds have not been stud-
ied in any detail, so it is not known how the ordering compares to what is seen for
other honeycombs. This family is interesting, however, because it includes the Cu2C
spin 1/2 variants Na2Cu2TeO6 and Na3Cu2SbO6 [35,36]. For these latter two com-
pounds, two nearest neighboring coppers are displaced towards each other to form
dimers and therefore spin singlets, in a repeating pattern (Fig. 6.11). The net result
of dimerizing the honeycomb lattice is to create a lattice of edge-sharing equilat-
eral triangles of dimers. The very strong intradimer coupling apparently dominates
the interdimer coupling. Relatively little detailed characterization is available for the
Na2Co2TeO6 family when compared to the BaNi2V2O8 family, possibly due to the
current lack of large single crystals for these compounds.
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Fig. 6.11 The honeycomb Cu planes in Na2Cu2TeO6 . The neighboring Cu in the honeycombs
form dimers. The result is a triangular lattice of dimers. The stacking of the layers is staggered

6.3 Three-Dimensional Structures

When the magnetic lattice extends into the third dimension, a more diverse group of
frustrating lattices is found. There is, however, a limit to the degree of complexity
that can be modeled theoretically and understood conceptually, and so, for the most
part, the frustrated three-dimensional magnetic lattices that have been studied in
detail are relatively few. Most often studied are the rare earth oxide pyrochlores, no
doubt due to their simple magnetic geometry and the fact that the floating zone crys-
tal growth method can be used to grow large single crystals. After the pyrochlores,
the transition metal spinels and the ferrites, which are derived from spinels, are also
commonly studied, as are rare earth garnets, which have a more complex structure
(Table 6.4).

Tetrahedra are the basic frustrating unit in many of the most commonly stud-
ied three-dimensional frustrated magnets. Interestingly, the number of known 3D
lattices based on repeating magnetic tetrahedra is relatively small. The simplest
such lattice is the FCC lattice, which is simply an array of edge-sharing tetra-
hedra (Fig. 6.12). Most importantly from a magnetic frustration perspective, the
ubiquitous double perovskites, with formula A2BB0O6, display this kind of mag-
netic sublattice when only one of the B-type sites is filled with magnetic ions.
The B site ions are in octahedral local coordination with oxygen. Sr2MgReO6 and
Ba2HoNbO6, for example, have FCC lattices of magnetic Re or Ho, i.e. lattices
of magnetic edge-sharing tetrahedra in three dimensions [37–40]. Many rare earth-
based double perovskite variants are known, with Ba or Sr on the A site, and Nb,
Ta or Sb on the nonmagnetic B site. Relatively little is known about the magnetic
properties of these phases. As with all phases that involve a superlattice ordering of
metals within a substructure, there is significant potential for intermixing of met-
als on the B and B0 sites in A2BB0O6, a situation that would add frustration due
to disorder to the effects of geometric frustration, which is not a desired situation.
Therefore, care must be taken by the chemist in both selection of B and B0, which
should be as chemically dissimilar (e.g. in size, charge and electronegativity) as
possible (e.g. BB0 D HoNb or HoSb should be well ordered but BB0 D NiTi or
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Table 6.4 Planar Lattices based on Honeycombs

Compound Layer type Stacking type M–M in-plane M–M next-plane

BaNi2V2O8 Regular Staggered 2.91 7.99, 7.87
Na3Co2SbO6 Regular Eclipsed 3.10 5.65
Na2Cu2TeO6 Triangular lattice of dimers Staggered 2.86, 3.21 5.65

Fig. 6.12 The FCC lattice is made from edge sharing of regular tetrahedra. This magnetic lattice
is found in double perovskites such as Ba2HoNbO6, Sr2MgIrO6 , and Sr2MgReO6

FeMo may display disorder). Detailed structural characterization is needed when
chemically similar atoms are present to be sure the degree of intermixing is small.

Less constrained are three-dimensional lattices derived from magnetic tetrahe-
dra that share corners. Surprisingly, spinels and the pyrochlores have the same
tetrahedron-based geometry for certain subsets of their component atoms, though
they are, on the surface, quite different. For A2B2O7 pyrochlores, both the A and B
sublattices (Fig. 6.13) are comprised of corner-sharing tetrahedra, which interpen-
etrate in the structure [41]. Magnetic frustration has most often been studied for
pyrochlores with magnetic atoms on the A sites, e.g. Ho2Ti2O7, Dy2Ti2O7, and
Ho2Sn2O7. The chemistry and synthesis are straightforward enough for these mate-
rials. Crystal growth is relatively easy, and chemical manipulation, such as dilution
of the magnetic lattice, e.g. in solid solutions such as (Ho2�xYx)Ti2O7, is relatively
easily achieved. This kind of magnetic site dilution allows single ion effects to be
distinguished from collective effects, and also, as in all frustrated magnetic systems,
allows some relief of the frustration through removal of a competing magnetic inter-
action on a nearest neighbor site. The magnetic properties of a small number of
pyrochlores with transition metals on the A site have been reported, i.e. Mn2Sb2O7

[42]. Relatively low temperatures are required for synthesis of these interesting
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Ho

Ti

Fig. 6.13 The interpenetrating A (Ho) and B (Ti) sublattices (different shades of gray) made from
corner sharing tetrahedra in Ho2Ti2O7 pyrochlore. Filling both A and B sites with the same atom
yields an FCC lattice

phases, and as of this writing no single crystals have been reported. A handful of
B-site magnetic pyrochlores, most notably Y2Mo2O7 [43], have also been studied;
spin 1 Mo4C occupies the B site. The Ln2Ir2O7 pyrochlores, with spin 1=2 Ir4C
on the pyrochlore B sites, show various magnetic phases [44]. The interpenetrating
A and B sublattices of the pyrochlore structure type are tetrahedra that are equal
in size and spaced from each other by distances that are exactly equal to the dis-
tances between the vertices of the tetrahedra themselves. The result of this unique
geometry is that, if both sublattices were to be populated by the same magnetic ion,
the resulting magnetic lattice would be edge-sharing tetrahedra. Thus, by having a
magnetic rare earth fully occupying the pyrochlore A-site, and then slowly substi-
tuting the same rare earth on the B-site, one could continuously titrate the magnetic
system from a lattice of corner-sharing tetrahedra to one of edge-sharing tetrahedra
(Fig. 6.12). This has recently been shown [45] to be possible in the “stuffed spin
ices” Ho2(Ti2�xHox)O7�x=2 and Dy2(Ti2�xDyx)O7�x=2. The study of these mate-
rials is just now beginning. The B-site lattice in the AB2X4 spinels has the same
kind of corner-sharing tetrahedron lattice as is found for both A and B sublattices in
pyrochlores.

A much more chemically and structurally varied family based on the same kind
of corner-sharing tetrahedral magnetic lattice are the spinels and the ferrites that
are derived from the spinels. The AB2X4 spinel structure is found very commonly
among transition metal oxides, sulfides and selenides. Based on a cubic close packed
X array with A atoms occupying 1/8 of the available tetrahedral interstices and
B atoms occupying half of the available octahedral interstices, the number and kinds
of chemical systems in this structural family is very large. As described above, the
B atom sublattice, which in this case is made of BX6 octahedra sharing edges in
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Fig. 6.14 The A sites in spinel have the diamond structure. This is the Mn array for MnSc2S4

[111] chains that intersect in three dimensions, is made of corner-sharing tetrahe-
dra. Most well known among the frustrated spinels are simple compounds such as
ZnCr2O4 [46]. Much less frequently studied are the rare earth spinels of the type
CdLn2.S; Se/4, stable for the smaller rare earths, with examples such as CdDy2Se4

and CdHo2Se4 [47]. The A site of the AB2X4 spinels forms a diamond lattice
(Fig. 6.14), where each magnetic atom has four magnetic neighbors [48]. This lat-
tice is larger than the B site lattice. If the A site is occupied by a magnetic atom,
and the B site is occupied by a non-magnetic atom, then geometrically frustrated
magnetism is reportedly present in this case as well. This has recently been reported
[49] for the sulfide spinels MnSc2S4 and FeSc2S4. A recent review of frustrated
magnetism in oxide spinels may be of interest [50].

The spinel structure is of particular interest as the parent structure of a very large
family of compounds known as ferrites (Fig. 6.15). Considering the geometry of
the magnetic part of the lattice only, the spinel structure can be disassembled into a
sequence of kagomé (K) layers (the bases of magnetic tetrahedra) and triangular (T)
layers (the tips of the magnetic tetrahedra) that stack alternately without interrup-
tion, i.e. in the infinite sequence [K-T-K-T-� � � ], to build a three-dimensional lattice.
These layers are perpendicular to the 111 direction in the spinel. Ferrites are derived
from spinels by extracting a [K-T-K] layer sandwich and separating it from the next
[K-T-K] sandwich by intermediate non-spinel spacing layers. These spacing lay-
ers also frequently contain magnetic atoms, so that the spinel sandwiches are, in
most cases, magnetically coupled in the third dimension as well. The M-type ferrite
(magnetoplumbite), SrGa4Cr8O19 (“SCGO”), is the most frequently studied in this
family [51] and has significant coupling between spinel sandwich layers through
the apices of hexagonal pyramids [HP] whose base is the hexagonal ring in the
kagomé layer (Fig. 6.15). M-type ferrites such as SCGO can therefore be described
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Fig. 6.15 A comparison of representative Spinel, Magnetoplumbite, and QS ferrite magnetic lat-
tices. kagomé layers are seen in all compounds and there are different kinds of connections between
layers

Fig. 6.16 The magnetic lattice in the R-type ferrite SrCo6O11. The connecting layers between
the eclipsed kagomé nets are a hybrid of the two types of connecting layers in the M-type fer-
rite; they are occupied by magnetic Co ions. In the Cr-based R-type ferrite, SrSn2Ga1:3Cr2:7O11,
only the kagomé nets are occupied by magnetic ions; the intermediary layers contain only
non-magnetic ions

by the sequence [K-T-K]-[HP]-[K-T-K]. The R-type ferrite, typified by SrCo6O11

[52] is a hybrid between a spinel and an M-type ferrite, with a mixed geometry
coupling layer that includes both tetrahedra and hexagonal pyramids (Fig. 6.16).
This type of ferrite can be described by the sequence [K-T-K]-ŒT C HP�-[K-T-K].
This structure type has recently been reported for the Cr-ferrite family for the com-
pound SrSn2Ga1:3Cr2:7O11 [53]. In this Cr-based variant, magnetic Cr is found only
in the kagomé (K) layers, and thus the material is highly two-dimensional. The
QS ferrite [54] is a highly two-dimensional of the ferrite family. In one variant,
the spinel-derived magnetic sandwiches are separated by both a large distance and
the complete absence of magnetic atoms in the intermediate layer (Fig. 6.15). The
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Fig. 6.17 The spinel–like magnetic lattice in YBa2Co4O7. In this case, there are corner plus face
sharing tetrahedra connecting the kagomé planes, rather than corner sharing tetrahedra found in
spinels

formula needed to accomplish this, Ba2Sn2ZnGa3Cr7O22 is rather complex [55].
Denoting the thick, nonmagnetic Ba2Sn2O6 spacer layer as Q, the sequence in QS
ferrite is [K-T-K]–Q–[K-T-K]. For all the Cr-based ferrites, disorder on the magnetic
lattices is a significant issue.

In the spinel-derived ferrites, the magnetic transition elements are found in octa-
hedral coordination with oxygen or chalcogen, and the kagomé and triangular layers
are made from these BX6 octahedra sharing edges. Recently, the properties of a dif-
ferent type of spinel-related compound have been reported [56], based on Co2C
tetrahedrally coordinated to oxygen, YBa2Co4O7. As previously described, the
spinel is derived from the alternating stacking of kagomé and triangular layers,
resulting in a three-dimensionally connected lattice of corner-sharing tetrahedra. As
seen in Fig. 6.15, the corner-sharing between tetrahedra occurs through the tips of
the tetrahedra. (These tips lie in the triangular plane we have designated as T.) The
kagomé layers consist of rings of 6 triangles sharing corners. In the spinel, three of
these kagomé layer triangles are capped by magnetic atoms in the T layer above,
and three are capped by magnetic atoms in the T layer below, in an alternating
sequence. In YBa2Co4O7, there are again three capping magnetic atoms above and
three below the kagomé layer, but in this case they are on the same three triangles.
The alternate triangles in the kagomé layer in this structure type are not capped.
Thus, the three-dimensional magnetic lattice in YBa2Co4O7 is unique – consisting
of both corner-sharing and face-sharing tetrahedra (Fig. 6.17).

After the pyrochlores, spinels, and ferrites, the three-dimensional frustrated lat-
tices get rather complicated. The others whose properties have been studied are
based on edge- and corner-sharing triangles snaking through the crystal structure in
three dimensions, rather than being based on a more complex arrangement of tetra-
hedra than is found in spinels and ferrites. Best known of these systems are the rare
earth garnets, of the formula Ln3Ga5O12 [57]. For the Garnets, the lanthanide Gd
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Fig. 6.18 The two interpenetrating 10-triangle bifurcated ring systems in Garnets such as
Gd3Ga5O12 and Mn3Al2Si3O12

variant (“GGG”) has been particularly well studied. The crystal structure of garnet
is based on lanthanide in a seven-fold coordination with oxygen, and tetrahedral
and octahedral coordination with oxygen for the smaller nonmagnetic ions, in a 2:3
ratio. The rare earth ions fall on two interpenetrating ring lattices, made from corner-
sharing triangles that are equivalent by symmetry. Unlike the kagomé net, where the
corner-sharing triangles form in six-membered rings, the rings in garnet (Fig. 6.18)
are made of ten corner-sharing triangles. Each ten-membered ring is actually bifur-
cated. If triangles 1 and 5 in the 10-membered ring are denoted as first and mid-ring
triangles, then there are 4 triangles between the first and mid-ring triangles, and,
in addition, another 4-triangle ring connected to the free vertices of the first and
mid-ring triangles. There are two of these bifurcated 10-triangle ring systems in the
garnet structure. These ring systems are interpenetrating. The lanthanides in the two
interpenetrating equivalent ring systems at their closest approach, in Tb3Ga5O12

for instance, are 5.78 distant, compared to 3.78 angstroms within the triangles, so
the magnetic interactions can be considered to be strongest within the rings, and
weaker between rings. There are also a small number of garnets with transition
metal ions on the triangular lattice sites and non-magnetic ions on the other sites,
notably Mn3Al2Si3O12 (spessartine) and Fe3Al2Si3O12 (almandine) [58, 59]. The
garnets that are based on magnetic rare earths on the large atom sites and iron on the
tetrahedral and/or octahedral sites, compounds such as Gd3Fe5O12, are well known
high temperature insulating ferromagnets [60] (Table 6.5).
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Fig. 6.19 Comparison of the magnetic ring of triangles in Na4Ir3O8 (right) with one of the rings
of magnetic triangles in Garnet (left)

Recently, magnetic frustration has been reported in Na4Ir3O8 [61], a compound
that has the Na4Sn3O8 structure type [62]. The magnetic Ir4C spin 1=2 ions in this
compound are in IrO6 octahedra that share corner oxygens, with Na in the intersti-
tial positions. This compound has been described as being a “hyper-kagomé”. This
name does not describe its magnetic lattice in detail, however, due to the type of
interconnectivity of the triangles present. The lattice of corner-sharing, magnetic
triangles in Na4Ir3O8, in fact, has the same character and connectivity as one of
the two symmetrically equivalent ten-fold bifurcated ring lattices in garnet, not the
ring system seen in the kagomé net. Given that the character of the magnetic con-
nectivity is an important parameter in geometrically frustrated systems, it may be
productive to think about the magnetic lattice in Na4rIr3O8 as a “half-garnet” rather
than a “hyper-kagomé” (Fig. 6.19).

The two final three-dimensional magnetic lattices that will be described are those
in Ln2Ge2O7 and SrLn2O4. In spite of the similarity of the formula to that of the
pyrochlore, the crystal structure of Ho2Ge2O7, known as the tetragonal pyroger-
manate structure, involves rare earth ions in seven-fold coordination with oxygen,
and Ge in tetrahedral coordination with oxygen. The magnetic lattice consists of
dimers of edge-shared triangles that then share corners with each other to form
chains [63]. These chains form chiral spirals along the unique crystallographic axis
(Fig. 6.20). The magnetic properties of some of these compounds have been studied
[64]. Finally, though the magnetic lattice in SrHo2O4 [65] is conceptually simple, it
can be confusing on first sight. Simply stated, it consists of three-dimensional hon-
eycomb columns. The walls of these honeycomb columns consist of edge-sharing
triangles – more fully, the walls are planes of corner-sharing triangles wrapped up
to create six-sided columns with walls two edge-sharing triangles wide in a honey-
comb array. The symmetry of the structure is such that there are four different wall
types that differ slightly from each other, though this may have only a secondary
effect on the magnetic properties (Fig. 6.21). Almost nothing is known about the



150 R.J. Cava et al.

Fig. 6.20 The magnetic lattice in the Ho2Ge2O7 tetragonal pyrogermanate consists of spirals of
corner and edge-sharing triangles

Fig. 6.21 (Left) The honeycomb columns of edge sharing Ho triangles in SrHo2O4. The inter-
atomic spacings are shown on the right. The same magnetic lattice geometry is found for
“-CaCr2O4

magnetism in these phases. The beta form of the compound CaCr2O4 displays the
same magnetic lattice (the general name for the structure is the NaFe2O4-type) as
these rare earth compounds. Recent studies have shown that the magnetic phase dia-
gram for this phase is very complex due to the highly frustrated three-dimensional
magnetic lattice, which contains sublattices of lower effective dimensionality [66].



6 The Geometries of Triangular Magnetic Lattices 151

6.4 Note on Synthesis of the Compounds

For the most part, judged by state-of-the-art synthesis in solid state chemistry, the
geometrically frustrated magnetic materials described in this summary are easy to
make. In a real sense, ease of synthesis is one of the most critical characteristics that
a material must possess to become widely studied, as is chemical stability in nor-
mal laboratory air. Chemical stability is a significant problem for VCl2 and related
chloride compounds, for example, limiting their extensive study. Fortunately, some
of the materials described here can easily be made as large single crystals (e.g.
the rare earth pyrochlores, oxide spinels, and some jarosites). This has been an
especially important factor in the explosion of work on rare earth pyrochlores in
recent years – they are straightforwardly grown as large crystals by the floating zone
method. Crystals of other materials described here, such as the tetragonal pyroger-
manates, garnets, and the kagomé staircase compounds are reasonably easily grown
from fluxes. Very nice crystals of jarosite have been grown by a hydrothermal flux
method. Others of the materials of interest are relatively easy to synthesize in poly-
crystalline form but, so far, are impossible to grow as crystals. One very important
material for which this is a problem is the M-type ferrite Sr(Ga,Cr)12O19. The QS
Cr-based ferrite is relatively easily made in polycrystalline form but the R-type fer-
rite is very difficult to make in any form. Special synthesis methods that exclude air
are, of course, needed for making sulfides and selenides, and relatively large crystals
of compounds such as Cr1=3NbS2 can be grown by vapor transport in an evacu-
ated quartz tube. Some of the chalcogenides, such as the rare earth sulfide spinels
and olivines, are extremely difficult to make in any form due to the high volatil-
ity of some components coupled with the poor reactivity of others. Thus though
many frustrated magnetic materials are available and easily studied in polycrys-
talline form, the same cannot be said for the availability of single crystals. For all
systems, particularly the ferrites, and even some conceptually “simple” ones like
the spinels and double perovskites, disorder due to mixing of other atoms in the
magnetic lattice can be a vexing problem. Detailed structural characterization is
needed to resolve this issue in all the relevant cases, as is the development of syn-
thesis methods to minimize the disorder. More work will be required to find simple
systems such as the rare earth pyrochlores, where structural disorder is minimized,
the properties are interesting, and crystals are easy to grow. Crystal growth of more
complex frustrated materials should be considered a very important area for future
research in this field.

6.5 Conclusion

Materials with their magnetic ions placed on triangular lattices have been recog-
nized for many years as being of interest in probing the properties of frustrated
spin systems, but it is only in the past 10 or 15 years that solid state chemists
have joined the field. We have specifically been looking to expand this class of
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compounds by finding new structure types with spins on triangles. The efforts of
the solid state community are represented in some of the tables in this compilation.
The recent exploitation of the floating zone crystal growth method to grow many
different rare earth pyrochlores has led to a substantial increase in the overall activ-
ity in this field on the experimental physics side. Geometric magnetic frustration is
an area in particular where chemists and physicists have to work together to find
new materials: in their search for interesting structures containing magnetic trian-
gles, chemists may frequently come up with materials whose lattices are simply
too complex to be reasonably modeled by theory or reasonably characterized by
experiments (e.g. SrHo2O4). Conversely, no solid state chemist can be content to
grow crystals of rare earth pyrochlores for very long – they are just too simple to
hold a chemist’s attention. The optimal new magnetically frustrated materials that
will challenge chemists and physicists alike will only be found through continuing
frequent interactions between scientists in the two disciplines.
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Chapter 7
Highly Frustrated Magnetism in Spinels

Hidenori Takagi and Seiji Niitaka

Abstract This chapter presents a review of highly frustrated magnetism in spinels
and in related compounds. We begin by emphasizing the uniqueness of the spinel
structure as a testing ground for the physics of frustration and provide an overview
of the materials aspects. We then discuss selected topics from the physics of spinels,
including the formation of the spin-liquid state, novel spin–orbit–lattice coupling in
the presence of frustration, magnetic-field-induced magnetization-plateau states and
charge frustration in mixed-valent spinels.

7.1 Introduction

The spinel structure, which has chemical formula AB2X4 (X D O, S, Se), is one
of the most frequently stabilized among the wide variety of structural categories
in complex transition-metal oxides and chalcogenides. Materials with the spinel
structure have long provided physicists with a surprisingly rich variety of phe-
nomena, including ferromagnetism, ferrimagnetism, and Jahn-Teller transitions [1].
Recently, spinels have attracted increasing interest as a playground for the physics
of frustration.

In this review, we focus on frustrated magnetism and on the related phenom-
ena which are produced by the simple but unique geometry of the spinel structure.
Because many antiferromagnetic spinels exist as oxides rather than as chalco-
genides, we will restrict our considerations essentially to oxides, with the exception
of a small number of particularly interesting sulfides. We first describe the struc-
ture and electronic properties of spinel oxides, and discuss the uniqueness of the
spinel structure for studying the physics of geometrical frustration. We then pro-
vide an overview of different spinel materials, emphasizing systems with spin and
charge frustration on the B sites and with spin frustration on the A sites, to demon-
strate the rich variety of physics amenable to systematic investigation in this class
of compounds.
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7.2 Spinel Structure

The spinel structure, shown in Fig. 7.1a, consists of two basic structural units, AO4

tetrahedra and BO6 octahedra [2]. The BO6 octahedra are connected by their edges,
which gives rise to a rutile-like array of edge-sharing chains along the h110i, h1N10i,
h101i, h10N1i, h011i, and h01N1i directions. The A ions are located in the vacant
spaces and are coordinated tetrahedrally by O ions, forming the AO4 units. By con-
sidering six chains of B ions, it becomes clear that these form a three-dimensional
network of corner-sharing tetrahedra. The B ions are located at every intersection of
the chains, as shown in Fig. 7.1b, and this network is known as the pyrochlore lattice:
it is realized in both the A and B sublattices of the A2B2O7 “pyrochlore” structure,
as well as by the B-sublattice sites of the AB2 C15 Laves phase. The pyrochlore lat-
tice is known to give rise to very strong geometrical frustration effects. It is useful
to regard the pyrochlore structure from the h111i direction, as shown in Fig. 7.1c,
which reveals that there are two types of plane with alternate stacking: one is a
two-dimensional triangular lattice, consisting of the apical B ions of the tetrahedra,
while the other is a two-dimensional kagomé lattice consisting of the B triangles at
the bases of the tetrahedra. The A sublattice of the spinel structure forms a diamond
lattice, which is shown in Fig. 7.1d.

In many spinel oxides, one finds cubic symmetry at high temperatures, but this
does not necessarily mean that BO6 octahedra are undistorted. The octahedra can
be either compressed or elongated along the h111i direction, which is perpendicu-
lar to the two triangles facing each other and points towards the centers of the B4

tetrahedra of the pyrochlore lattice. This gives rise to a local trigonal symmetry,
which is one of the most important factors determining the electronic configuration
of the B ions. The trigonal distortion is parameterized by the “u parameter”, which
represents the position of the O ions within the cubic cell. For ideal O octahedra,
u D 3=8, while u < 0:375 represents compression of the octahedra and u > 0:375

corresponds to elongation.
The most common spinel oxide is known as the “2-3 spinel,” A02CB03C

2 O4, where
there is a 1:2 ratio between divalent A02C cations and trivalent B03C cations. In the
normal spinel, the A02C cations occupy the A sites and the B03C cations the B sites,
while in the inverse spinel, B03C cations occupy the A sites and the B sites are occu-
pied by A02C and B03C cations with a 1:1 ratio, as in B03C(A02C

1=2
B03C

1=2
)2O4. This can

be viewed as a full site exchange between A02C and B03C. In reality, an intermediate
level of site exchange often occurs. Even in seemingly normal spinel materials, it is
not easy to achieve complete elimination of such site exchange, which provides a
major source of disorder in spinel oxides. There also exist “4-2 spinels” with tetrava-
lent A04C and divalent B02C ions. Spinels with monovalent (A0C) or trivalent (A03C)
A cations form a special class: here the B ions are forced to have a mixed-valent
situation with a 1:1 ratio of B03C and B04C or B02C and B03C, respectively.
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7.3 Basic Electronic Configuration

Most spinel oxides with transition-metal ions, if these are neither in the d 0 nor the
d 10 configuration, are magnetic insulators because of the strong Coulomb repulsion
within the narrow d -orbitals. In some exceptional cases, a spin singlet state may
be formed and the system is non-magnetic. Mixed-valent spinels are sometimes,
but not often, metallic. Spinel sulfides tend to be much more conducting than oxides
due to their increased bandwidth, which comes about in part because of an enhanced
p-d hybridization.

The degeneracy of the d -orbitals in spinel oxides is lifted by the crystal field.
When a transition-metal ion is located at the B site of a regular BO6 octahedron, the
fivefold degeneracy of the d -orbitals is split into high-lying, doubly degenerate eg

and low-lying, triply degenerate t2g orbitals due to the cubic crystal field. In addi-
tion, a local trigonal distortion of the crystal field further splits the triply degenerate
t2g orbitals into one a1g orbital, 1p

3
.jxyi C jyzi C jzxi/, which is oriented towards

the center of the B-lattice tetrahedron, and two degenerate e0
g orbitals (different

from the other eg doublet produced by a cubic crystal field) extending perpendicu-
lar to the a1g orbital [Fig. 7.1e]. Alternatively, a tetragonal distortion, which often
occurs at low temperatures, acts to split the triply degenerate t2g orbitals into xy

and the doubly degenerate yz=zx pair, and the doubly degenerate eg orbitals into
nondegenerate x2 � y2 and 3z2 � r2 orbitals.

If a transition-metal ion is placed in the tetrahedral A site, the splitting of the
fivefold degenerate d -orbitals is into high-lying, triply degenerate t2g and low-lying
doubly degenerate eg orbitals, i.e. opposite in sign to that on the octahedral B-site.
The magnetic coupling in spinels usually varies dramatically with the number of
d -electrons, reflecting changes in orbital character.

7.4 Uniqueness of the Spinel as a Frustrated Magnet

When antiferromagnetically coupled spins are placed on a pyrochlore lattice, very
strong geometrical frustration is anticipated because of the triangle-based tetra-
hedral geometry. Within the broad spectrum of frustrated lattices, the pyrochlore
lattice, realized as a sublattice of spinel oxides, occupies a very special position in
that it is three-dimensional and that the frustration can be the strongest known [3]. To
demonstrate the strength of pyrochlore frustration, let us reproduce the arguments
articulated by Reimers et al. [4] and later by Moessner and Chalker [5]. Consider
an n-component, classical spin system consisting of N clusters with q spin sites
(n D 3 and q D 4 for a Heisenberg pyrochlore), the Hamiltonian for which may be
expressed as

H D J
X

hi;j i
Si � Sj � 1

2
J

X

˛

jL˛ j2 � 1

2
JNq; (7.1)
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u = 0.375

u > 0.375
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AO4
tetrahedra

BO6
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A
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O

e

Fig. 7.1 (a) Spinel structure, emphasizing the two basic structural units of AO4 tetrahedra and BO6

octahedra. (b) B sublattice of spinel structure, which defines a pyrochlore lattice. (c) B-sublattice
structure (pyrochlore lattice) viewed from the h111i direction. (d) A sublattice (diamond lattice).
(e) Spinel structure, shown to emphasize the coordination of B ions with surrounding oxygen
ions. The inset shows the trigonal distortion of the BO6 octahedra, which is characterized by the
parameter u

where Si is the spin on site i with jSi j D 1, J is the strength of the antiferromagnetic
coupling and L˛ is the total spin in unit ˛.

The ground state is the state with L˛ D 0 for all ˛, namely with total spin
per cluster (per tetrahedron in the pyrochlore case) equal to zero. There are in total
K D N.n�1/q=2 degrees of freedom and the constraint L˛ D 0 imposes K D Nn.
The remaining degrees of freedom are F �K D N Œn.q�2/�q�=2, which is positive
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only for q D 4 and n D 3 among the possible sets of values .q; n/ with q � 4 and
n � 3. The special nature of the case q D 4 and n D 3 demonstrates the uniqueness
of the pyrochlore lattice. Closely linked to this large number of remaining degrees
of freedom, it has been demonstrated that a classical spin liquid is stabilized in the
classical pyrochlore Heisenberg model [5]. More recent work for S D 1=2 quantum
Heisenberg spins on a pyrochlore lattice suggests that the ground state may be a spin
liquid with a spin gap [6, 7].

7.5 Materials Overview of Spinels

Table 7.1 shows the structural and magnetic properties of some selected spinel
oxides, most of which display frustrated magnetism. Following tradition, we rep-
resent the strength of frustration by the ratio between the Curie-Weiss temperature
and the magnetic ordering temperature, f D j�CWj=TN. It is clear that strongly
frustrated magnetism, with an f -parameter of order 10 or greater, can be found in
normal spinel oxides with nonmagnetic A ions and magnetic B ions, where the dom-
inant antiferromagnetic interactions are between B ions (�CW < 0). Particularly
noteworthy are the 2-3 spinels ACr2O4 (A D Mg, Zn, Cd) and AV2O4 (A D Mg,
Zn, Cd). These systems indeed represent highly frustrated pyrochlore antiferromag-
nets, and will be described in detail in the following section. Those compounds with
magnetic ions on both A and B sites can be frustrated, but this is not as obvious as in
cases with nonmagnetic A sites, partly because of the coupling to magnetic A ions.
In those materials with nonmagnetic, tetravalent Ge ions occupying the A sites, such
as GeFe2O4 and GeCo2O4, the dominant interactions are seemingly ferromagnetic
but are, in fact, frustrated because of competition from higher-order, antiferromag-
netc interactions. GeCu2O4 forms a one-dimensional, S D 1=2 antiferromagnet due
to Jahn-Teller distortion around the Cu2C ions.

The table also shows normal spinels in which magnetic A ions form a dia-
mond lattice and the B ions are non-magnetic. One cannot expect frustration if
only nearest-neighbor, antiferromagnetic interactions are considered. Nevertheless,
some such compounds do show evidence of strong frustration: this phenomenon
is known as A-site frustration and arises from competition between antiferromag-
netic nearest- and next-nearest-neighbor couplings. FeSc2S4, MnSc2S4, CoAl2O4,
CoRh2O4, and FeAl2O4 all fall into this category. A very different class of frustrated
lattice can emerge from the spinel structure through cation ordering: Na4Ir3O8 is
a typical example where Ir and Na ions order on a pyrochlore lattice and form
a “hyper-kagomé” geometry composed of a network of corner-sharing triangles.
Another interesting class of spinel is the mixed-valent system introduced in Sect. 2,
where A0C or A03C ions occupy the A site and one may observe a charge ana-
log of spin frustration. The most classical example for this is magnetite, Fe3O4

(Fe3C(Fe2:5C)2O4), where Fe3C ions occupy the A sites and a 1:1 ratio of Fe2C
and Fe3C ions the B sites. LiV2O4, LiMn2O4, LiCo2O4, AlV2O4, and CuIr2O4 fall
into this category.
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Table 7.1 Frustrated spinel oxides

2-3 Normal spinel (A nonmagnetic, B magnetic)
S �CW(K) TN(K) f TS(K) Reference

MgV2O4 1 �600 42 (CL) 14.3 65 [8–10]
(C-T)

ZnV2O4 1 �850 40 (CL) 21.3 50 [11–14]
(C-T)

CdV2O4 1 �400 35 (CL) 11.4 97 [15, 16]
(C-T)

MgCr2O4 3/2 �400 12.5 32 12.5 [17–19]
(spiral) (C-T)

ZnCr2O4 3/2 �390 12.5 (CL) 31.2 12.5 [13, 20–25]
(C-T)

CdCr2O4 3/2 �70 7.8 9.0 7.8 [23–28]
(spiral) (C-T)

HgCr2O4 3/2 �32:0 5.8 (CL) 5.5 5.8 [24, 29, 30]
(C-O)

MgMn2O4 2 �500 49 10.2 850 [31–33]
(C-T)

ZnMn2O4 2 �537 21.5 25.0 1050 [33, 34]
(C-T)

CdMn2O4 2 �470 70 6.7 600 [35, 36]
(C-T)

ZnFe2O4 5/2 C120 13 9.2 – [37]
CdFe2O4 5/2 �53 13 4.1 – [38]
MgTi2O4 1/2 VBS 260 [39, 40]

(C-T)
2-3 Normal spinel (A magnetic, B magnetic)

SA; SB �CW(K) TN(K) f TS(K) Reference
MnV2O4 5/2,1 – 61 (CL) – 58 [41–43]

58 (NCL) (C-T)
FeV2O4 2,1 +95 110 0.86 140,110,70 [44]

(C-T-O-T)
MnCr2O4 5/2,3/2 – 51 (ferri) – – [45, 46]

14(conical)
FeCr2O4 2,3/2 �400 80 (CL) 5 135 [47]

35(NCL) (C-T)
CoCr2O4 3/2,3/2 �650 93 (ferri) 6.99 – [46, 48]

25(conical)
CuCr2O4 1/2,3/2 �600 150 (ferri) 4 865 [49, 50]

(NCL) (C-T)
2-3 Normal spinel (A magnetic, B nonmagnetic)

S �CW(K) TN(K) f TS(K) Reference
MnAl2O4 5/2 �143 40 3.6 – [62]
FeAl2O4 2 �130 12 11 – [62]
CoAl2O4 3/2 �89 4.8 19 – [62, 63]
CoRh2O4 3/2 �31 25 1.2 – [63]

(Continued)
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Table 7.1 (Continued)
2-3 Normal spinel (A magnetic, B nonmagnetic)

S �CW(K) TN(K) f TS(K) Reference

MnSc2S4 5/2 �23 2.3,1.9 10 – [57, 58]
(spiral)

FeSc2S4 2 �45 < 2 > 22:5 – [57, 60, 61]

4-2 Normal spinel (A nonmagnetic, B magnetic)
GeFe2O4 2 �15 10 1.5 – [88, 89]
GeCo2O4 3/2 +80 23.5 3.4 – [90–92]
GeNi2O4 1 �15 12.1,11.5 1.2 – [93–95]
GeCu2O4 1/2 �89 33 2.7 300 K [87]

(due to strong JT)
Cation-ordered spinel

Na4Ir3O8 1/2 �650 < 2 > 325 – [64]
Mixed-valent spinel

Ions Ground state Remark Reference
LiTi2O4 Ti3C,Ti4C SC TSC � 13 K [96]
LiV2O4 V3C,V4C Heavy fermion [72, 73, 77, 83, 84]
LiMn2O4 Mn3C,Mn4C CO insulator TCO � 290 K [80]
AlV2O4 V2C,V3C CO insulator TCO � 700 K [81, 97]

(heptamer VBS)
CuIr2S4 Ir3C,Ir4C CO insulator TCO � 230 K [82]

(octamer VBS)
Fe3O4 Fe2C,Fe3C CO insulator TCO � 120 K [71, 78, 79]
Definition of symbols: S : spin quantum number, TN: Néel ordering temperature, �CW: Curie-
Weiss temperature from �.T / (negative for antiferromagnetism), f : frustration factor j�CWj=TN,
TS: structural phase transition temperature, TSC: superconducting transition temperature, TCO:
charge-ordering temperature, C : cubic, T : tetragonal, O: orthorombic, CL: collinear, NCL: non-
collinear, SC : superconducting, CO: charge-ordered, VBS : valence-bond solid, JT : Jahn-Teller
coupling

7.6 Frustration in Selected Spinels

7.6.1 Pyrochlore Antiferromagnets in Spinel
Oxides – B-site Frustration

Let us first review selected normal spinels with magnetic B ions and nonmag-
netic A ions. These spinels embody beautifully the physics of the strongly frus-
trated pyrochlore antiferromagnet, demonstrating in different systems a spin-liquid
state, cooperative coupling with the lattice and the orbitals, quantum magnetization
plateaus and the valence-bond-solid state.

7.6.1.1 ACr2O4 (A D Zn, Cd, and Hg)

Cr spinel oxides, ACr2O4 (A D Zn, Cd, and Hg), exhibit the most dramatic sig-
nature of geometrical frustration associated with the pyrochlore geometry of the
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B-sublattice. Cr in this spinel is trivalent. Because three electrons are accommo-
dated in the triply degenerate t2g orbitals of Cr3C, an S D 3=2 Mott insulator with
no orbital degrees of freedom is realized. The presence of strong frustration is clear
from the temperature-dependence of the magnetic susceptibility �.T /, shown in
Fig. 7.2 for ZnCr2O4 and CdCr2O4. Curie-Weiss behavior is observed at high tem-
peratures and an estimate of the effective moment gives peff � 3:7 �B, consistent
with the value expected for S D 3=2. The antiferromagnetic Curie-Weiss temper-
atures obtained from fits to data are �CW D �390 K for ZnCr2O4 and �70 K for
CdCr2O4. Despite the large value j�CWj � 100 K, no evidence for ordering was
observed down to T � 10 K. A discontinuous decrease of �.T / can be recognized
in Fig. 7.3 at TN D 12:5 K for ZnCr2O4 and at 7.8 K for CdCr2O4, which corre-
sponds to long-ranged antiferromagnetic order, but occurring at a temperature one
order of magnitude lower than j�CWj [20, 23].

The paramagnetic phase well below the Curie-Weiss temperature and above TN

can be viewed as a spin-liquid phase. As shown in Fig. 7.3a, the magnetic entropy
Sm.T / for ZnCr2O4, estimated from the magnetic specific heat Cm.T /, recovers to
a value as large as nearly 40% of the total spin entropy S D R ln 4 even at only
30 K, one order of magnitude lower in temperature than j�CWj [13, 21]. This large
entropy should signal the presence of low-lying, strongly degenerate spin excita-
tions produced by geometrical frustration. Such low-lying excitations were indeed
detected directly by inelastic neutron scattering measurements, as a very intense sig-
nal around ! D 0 above TN D 12:5 K [20] [Fig. 7.3b]. Inelastic neutron scattering
at a low energy of 1.5 meV and at T D 15 K (T > TN) revealed the presence of
hexagonal antiferromagnetic spin clusters [22]. As shown in Fig. 7.4, the pyrochlore
lattice contains hexagons in its kagomé planes. Magnetic fluctuations select, from
the ground-state manifold of states with zero spin on each tetrahedron, configura-
tions in which the spins have local antiferromagnetic order around these hexagons.
This gives rise to a set of local excitations linked to the orientation of the spins,

Fig. 7.2 (a) Magnetic susceptibility �.T / for the S D 3=2 pyrochlore antiferromagnet ACr2O4

(A D Zn, Cd, and Hg) from [24], shown as 1/�.T / vs. T . (b) �.T / at low temperatures for
CdCr2O4, from [23], indicating the presence of magnetic ordering at 7.8 K
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Fig. 7.3 (a) Magnetic specific heat Cm.T / and magnetic entropy Sm.T /, estimated from Cm.T /,
for ZnCr2O4 from [13]. Note the large entropy recovered at temperatures much lower than
j�CWj D 350 K. (b) Contour plot of magnetic neutron scattering intensity in the plane of energy
transfer „! and wave number Q for ZnCr2O4, taken from [20]

Fig. 7.4 Antiferromagnetic hexagonal spin cluster formed in the spin-liquid phase of ZnCr2O4,
from [22]

one for each antiferromagnetic hexagon, which very likely represents one of the
zero-energy modes expected in pyrochlore antiferromagnets.

How can long-ranged magnetic order emerge from such a spin-liquid state? It
is widely accepted that a spin–lattice coupling is responsible for the appearance
of magnetic ordering. Distortion of the lattice in general makes magnetic coupling
non-uniform, which inherently suppresses the geometrical frustration and lifts the
spin degeneracy. Such degeneracy lifting by lattice distortion may happen coopera-
tively and may bring about a long-ranged magnetic order, which can be considered
as a spin Jahn-Teller transition or as a three-dimensional analog of the spin-Peierls
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transition. The antiferromagnetic ordering processes occurring at low temperatures
in ZnCr2O4 and CdCr2O4 are accompanied by structural phase transitions from
cubic to tetragonal, and may be understood naturally in terms of a spin Jahn-Teller
picture. As shown in Fig. 7.3, this is consistent with the transfer of low-lying spin
excitations around ! D 0, observed by inelastic neutron scattering in the undistorted
phase (T > TN D 12.5 K), to a high energy, where they form a resonance-like fea-
ture in the distorted phase (T < TN D 12.5 K) [20]. The final spin–lattice structure
is extremely complicated and, surprisingly, differs dramatically between ZnCr2O4

and CdCr2O4 [25]. In CdCr2O4, the spin structure is incommensurate and helical,
while the lattice is rather simple, being elongated uniformly along the c-axis. In
contrast, in ZnCr2O4 the spin structure is collinear and commensurate but the lat-
tice distortion is not uniform. The variety of ground states observed in the same class
of compounds most likely indicates that these states are almost degenerate, and that
materials-dependent details may determine which of them is ultimately stabilized.
The close link between the ordering patterns of the spins and of the lattices support
the conjecture that the ordering phenomena are indeed controlled by cooperative
interplay of spin and lattice degrees of freedom.

Tuning the frustration by applying a magnetic field may provide a unique oppor-
tunity to create a new phase of the spin–lattice complex in spinel materials. In the
magnetization curve of CdCr2O4, there is indeed a first-order transition to a mag-
netization plateau, which arises due to the stabilization of a state with half the full
moment of Cr3C (1.5�B) at Hc D 28 T. This state is surprisingly robust over a
field range of some tens of T [23] [Fig. 7.5a]. The 1/2 plateau corresponds to con-
figurations with three up and one down spin(s) in each tetrahedron. Based on model
calculations, it has been noted that stabilizing the 1/2-plateau state over such an
extended field range is possible only through the introduction of further terms in
the magnetic Hamiltonian, most probably involving a spin–lattice coupling [51].
Indeed, a relatively large magnetostriction at the transition to the plateau state has
been observed, although the spin–orbit coupling is believed to be negligibly small
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here. Later magnetization measurements, conducted up to higher magnetic fields,
discovered two further transitions in addition to that into the 1/2-plateau state [28].
The first is from the 1/2-plateau state (“3-up, 1-down” state) to a canted state at 61 T,
and the second is a first-order transition to a state with the fully polarized moment
of 3�B at 77 T.

The compound HgCr2O4 has a much smaller Curie-Weiss temperature, j�CWj D
32 K, than do ZnCr2O4 and CdCr2O4 [29]. Essentially the same behavior of the
magnetization curve was observed as in CdCr2O4. Taking advantage of the low
energy scale of the magnetic interactions in this system, the full phase diagram in
the H -T plane can be measured, and is shown in Fig. 7.5b [29]. Further, the spin and
lattice structure in the 1/2-plateau state has recently been determined successfully.
It was found that the spin structure in the 1/2-plateau state has a rather compli-
cated ordering pattern of “3-up, 1-down” tetrahedra with symmetry P 4332, which
is reflected in the structural distortion [30].

7.6.1.2 AV2O4 [A D Mg, Zn, and Cd]

MgV2O4, ZnV2O4, and CdV2O4 are S D 1 Mott insulators with a pyrochlore lat-
tice. Because V3C accommodates two electrons in the triply degenerate t2g orbitals,
these systems have, in contrast to Cr spinels, an orbital degree of freedom which
provides a unique opportunity to study the interplay of frustrated spins and orbitals.
At first glance, the magnetic properties of the V spinels are similar to those of the
Cr spinels. Curie-Weiss fitting of �.T / for ZnV2O4 yields a large, antiferromag-
netic Curie-Weiss temperature j�CWj � 850 K [11], while a long-range magnetic
ordering appears only at a temperature as low as TN D 40 K [12], indicating the
presence of very strong frustration. Very intense inelastic neutron scattering, a con-
sequence of the low-lying and highly degenerate spin excitations, was observed
around ! D 0 [14].

The V spinels possess, however, many features which are quite distinct from
those of the Cr spinels. As can be seen in Fig. 7.6a, two anomalies are observed
clearly in �.T / at low temperatures. On cooling, a discontinuous drop occurs at
TS D 50 K, which represents a structural phase transition from cubic to tetrago-
nal [12]. No long-range magnetic ordering is detected either in neutron diffraction
or by nuclear magnetic resonance (NMR) at this transition. With a further lower-
ing of the temperature, a kink is observed at 40 K, which represents the onset of
antiferromagnetic order. The structural phase transition, which occurs cooperatively
with the magnetic transition in the Cr spinels, happens separately at temperatures
higher than the onset of magnetic order in ZnV2O4. The separation between the
structural and the magnetic transition is even more pronounced in CdV2O4 [15]
(see also Table 7.1). The magnetic structure below TN is much simpler than in Cr
spinels, consisting of collinear (h001i orientation), antiferromagnetic spin chains
arranged along the h110i and h1N10i directions. The ordered moment was found to
be approximately 0.6�B.
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Fig. 7.6 (a) Upper panel: temperature-dependent magnetic susceptibility �.T / of ZnV2O4 (upper
panel). Two anomalies are seen clearly. Lower panel: temperature-dependence of the ordered
moment M and the magnitude of the tetragonal splitting; both panels from [14]. (b) Ordering
pattern proposed in [52] for yz and zx orbitals in ZnV2O4 below TS D 50 K, as viewed from the
z-direction. xy orbitals are always occupied for all V sites

It has been argued that the different type of behavior in the V spinels can be
understood in terms of orbital physics [53, 54]. The structural phase transition at
TS D 50 K (TS > TN) takes the form of a lattice contraction in the c-direction, which
should favor the xy orbital and destabilize states with occupied yz and zx orbitals.
When two electrons are introduced, one occupies xy and the other the degenerate
yz=zx orbitals. It was pointed out theoretically [52, 53] that the orbital ordering in
fact occurs at TS D 50 K and that the degeneracy of yz and zx orbitals is lifted
below TS. The most likely orbital ordering pattern suggested by theoretical analy-
sis [52, 53] is an alternate stacking along the c-axis of yz–xy ferro-orbital planes
with h110i-oriented V chains and zx–xy ferro-orbital planes with h1N10i-oriented V
chains. This gives rise to an enhanced antiferromagnetic coupling along the h110i
and h1N10i chains compared to the other chain directions, as shown in Fig. 7.6b.
This strongly anisotropic spin coupling, which is one-dimensional in nature, can
lift the spin degeneracy due to frustration and therefore acts to promote magnetic
ordering [52, 53]. Within this scenario, the magnetic ordering in V spinels might be
viewed as being driven by orbital ordering. It should be emphasized that different
forms of complex orbital order, as opposed to this alternating yz=zx order, have also
been proposed [54], and that it remains to clarify the orbital state below TS exper-
imentally. The presence of orbital degrees of freedom may change not only the
physics of degeneracy lifting but also the physics of the spin-liquid state above TS.
In the temperature range T > TS, the characteristic wave vector qc of the low-lying
spin excitations was found to be different from that of hexagonal clusters, indicating
that the spin correlations in the liquid state are not the same as in ZnCr2O4 [14].
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7.6.1.3 MgTi2O4

In contrast to the other normal 2-4 spinels, MgTi2O4 is weakly metallic at room tem-
perature, presumably because of the reduced correlation effect expected for early 3d

transition-metal ions. The system undergoes a metal-insulator transition at 260 K on
cooling, at which an almost discontinuous decrease of the susceptibility is observed,
suggesting strongly the formation of a spin singlet ground state [39] [Figs. 7.7a and
7.7b]. This 260 K feature is accompanied by a structural phase transition [39], and
the subsequent refinement of the crystal structure revealed the formation of Ti–Ti
dimers aligned helically along the c-axis below the transition temperature, as shown
in Fig. 7.7c [40]. The ground state of MgTi2O4 is therefore a spin singlet insula-
tor rather than a S D 1=2 antiferromagnet. The mechanism behind the formation of
this spin singlet, often called the valence-bond-solid state, is argued to be the orbital
degeneracy [55, 56]. Similar orbital-driven spin singlet states have been found in a
number of mixed-valent spinels, as will be discussed below.

7.6.2 Frustrated Spins on Spinel A Sites

We turn now to spinels with magnetic A ions and nonmagnetic B ions. As noted
in Sect. 2, in this case the magnetic A sublattice is a diamond lattice. Because the
diamond lattice is bipartite, the magnetism of A ions would be free from frustra-
tion if only nearest-neighbor coupling were important. However, in real materials
of this type, the next-nearest-neighbor coupling is often found not to be small by
comparison, because the magnetic couplings between the A ions are mediated by
rather complicated exchange paths including O-B-O links, rather than by purely
direct exchange processes (Fig. 7.8). When the next-neighbor interaction J2 is com-
parable to the nearest-neighbor term J1, very strong geometrical frustration may
be anticipated for A-site spins. An intuitive way of understanding this is as fol-
lows: the diamond lattice consists of two interpenetrating, face-centered-cubic (fcc)
sublattices displaced by (1/4, 1/4, 1/4), as shown in Fig. 7.8a. The next-neighbor
couplings of the diamond lattice are then simply the nearest-neighbor couplings
within the fcc sublattice, and hence give rise to frustration if the coupling is anti-
ferromagnetic. The nearest-neighbor couplings of the diamond lattice correspond
to the couplings between the fcc sublattices, which, if antiferromagnetic, further
enhance the frustration within the fcc sublattices.

The thiospinels FeSc2S4 and MnSc2S4 can be prototypical systems for such
A-site frustration, although they are not oxide materials. MnSc2S4, with S D 5=2,
shows an antiferromagnetic j�CWj of 23 K, but orders to a spiral magnetic structure
only at a temperature of 2 K [57, 58]. One theoretical analysis noted that this type
of long-range order can be achieved by an order-by-disorder process [59], in which
case the driving mechanism is weak. FeSc2S4, with S D 2, is an extreme case: no
evidence for long-range order can be observed in the specific heat down to 50 mK, in
spite of a sizable antiferromagnetic j�CWj � 45 K, suggesting a spin-liquid ground
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Fig. 7.7 Temperature-dependence of (a) magnetic susceptibility and (b) resistivity for a polycrys-
talline sample of MgTi2O4. (c) Helical dimerization pattern observed for the S D 1=2 pyrochlore
system MgTi2O4, from [40]

state. Neutron [60] and Sc-NMR [61] measurements indicated the presence of a
finite but small spin gap of 0.2 meV. Fe2C ions in the tetrahedral geometry have an
orbital degeneracy associated with the eg orbital and are Jahn-Teller-active. Never-
theless, no clear evidence for orbital ordering is observed in FeSc2S4. The strong
orbital fluctuation suggested by Sc-NMR may be linked to the stability of spin-liquid
state, and FeSc2S4 might in fact be best viewed as a spin–orbital complex liquid.
The same A-site frustration appears to be at work in oxides, including CoAl2O4,
CoRh2O4, and FeAl2O4 [62,63], although in these materials it is not as dramatic as
in the thiospinels. CoAl2O4 and FeAl2O4 show only spin-glass-like transitions at
temperatures much lower than their Curie-Weiss temperatures [62].

7.6.3 Frustrated Magnets based on Cation-ordered Spinels:
The Hyper-Kagomé Lattice of Na4Ir3O8

Na4Ir3O8 [64] can be viewed as a cation-ordered spinel, a statement which becomes
clear on rewriting the chemical formula as 2 Na1:5(Ir3=4Na1=4)2O4. The spinel B



7 Highly Frustrated Magnetism in Spinels 169

Fig. 7.8 (a) Nearest-neighbor coupling J1 and next-nearest-neighbor coupling J2 in the diamond
lattice. Cubes marked with dotted lines indicate the fcc sublattice. (b) Temperature-dependent
magnetic susceptibility �.T / and (c) specific heat displayed as C.T /=T for the A-site-frustrated
spinels MnSc2S4 and FeSc2S4; data from [57]

sites are occupied by both S D 1=2 IrC4 and nonmagnetic NaC ions, and each
tetrahedron consists of three Ir4C ions and one NaC. Because of the ordering of
Ir4C and NaC on the B sites, the Ir4C ions form a network of corner-sharing trian-
gles. This lattice is a twisted version of the two-dimensional kagomé lattice and may
thus be called the “hyper-kagomé” lattice [Fig. 7.9a, b]. Creating a different class
of frustrated lattice from the spinel structure by utilizing cation order is one of the
most promising approaches in the chemistry of frustrated compounds. For example,
the spinel B sublattice, the pyrochlore lattice, consists of stacks of triangular planes
and kagomé planes alternating along the h111i direction, which opens the interest-
ing possibility of producing not only hyper-kagomé structures but also kagomé or
triangular magnets by introducing 3:1 ratios of two different cations at the B sites.
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No magnetic order has so far been found in the magnetic susceptibility [64] or
the specific heat [64], or observed in neutron diffraction or Na-NMR [65] studies of
Na4Ir3O8, at least down to 2 K, despite the relatively large Curie-Weiss temperature,
j�CWj D 650 K, estimated from �.T /. These observations suggest strongly that the
ground state of this three-dimensional, S D 1=2 hyper-kagomé system is a quantum
spin liquid. The presence of a spin-liquid ground state in the hyper-kagomé antifer-
romagnet has found theoretical support for classical spins [66] and more recently
for quantum spins [67].

The behavior of the low-temperature specific heat is close to a pure T 2 form [64],
similar to other frustrated systems with possible spin-liquid ground states [68, 69].
It is, however, not obvious why T 2 behavior is observed in this three-dimensional
system, in common with the other candidate spin-liquid systems, which are two-
dimensional [68, 69]. Only a very small T -linear term, with a � value of a few
mJ/molK2 and which might even be extrinsic, can be observed below 1 K, suggest-
ing the complete absence of or at most an extremely low density of states in the
ground state. The magnetic susceptibility at low temperatures tends nevertheless to
approach a finite value [64]. These seemingly contradictory results were argued to
be a consequence of spin–orbit coupling [70]. Much stronger spin–orbit coupling
is present in heavy 5d elements, such as Ir, than in 3d and 4d elements. A further
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interesting feature of Na4Ir3O8, possibly related to this, is the presence of chirality
in the lattice. As shown in Fig. 7.9c, there exist two structures (P 4132 and P 4332)
with different chiralities, which depend on the local coordination of the Ir4C tri-
angles. A novel interplay between the lattice chirality and the spin liquid through
spin–orbit coupling might be anticipated, including a hidden chirality ordering. A
full exploration of these possibilities is awaited.

7.6.4 Charge Frustration in Mixed-valent Spinels

When the spinel A sites are occupied by either monovalent or trivalent ions, the 1:2
ratio of A to B ions enforces a half-integer net B-ion valence, or a 1:1 mixture of two
sequential valences. For example, magnetite (Fe3O4 or Fe3C(Fe2:5C)2O4) displays
a 1:1 ratio of Fe2C and Fe3C. In order to reduce the Coulomb energy, the system
would prefer Fe2C and Fe3C ions to occupy neighboring sites, by analogy with the
spin case where up and down spins should occupy neighboring sites. Because of the
inherent geometrical frustration of the pyrochlore lattice, the system can have only
two Fe2C and two Fe3C ions for each tetrahedron, which is known as the Anderson
condition (the constant total charge per tetrahedron is equivalent to the condition
of total spin zero per tetrahedron). This gives rise to a macroscopic degeneracy
of the lowest-energy charge distribution and prevents long-range ordering of the
charges [71].

An extreme case of such charge frustration is found in LiV2O4, which has a
mixed-valent configuration of V3C and V4C. Neither charge order nor magnetic
order has been observed down to temperatures well below 1 K, due in all probability
to the strong frustration and to the appearance of a heavy-fermion ground state with
a specific-heat coefficient � � 400 mJ/mol K2, comparable to canonical Kondo
heavy-fermion systems such as Ce, Yb, and U intermetallics [72, 73] (Fig. 7.10). It
has been argued that this system exemplifies a new route to the formation of heavy-
fermion states [74–76]. Particularly attractive in connection to frustrated magnetism
is the possibility of viewing this system as the charge analog of a spin liquid [77].

In the other known mixed-valent spinels, charge ordering in fact occurs by cou-
pling with further available degrees of freedom, such as those of the lattices and
the orbitals, leading to nontrivial and complicated charge-ordering patterns in the
ground states (a situation already familiar from the spin case). In Fe3O4, the most
classic example of charge frustration, the ordering pattern below the Verwey tran-
sition [78] has been the subject of debate for many decades. Only very recently
has a complicated charge-ordering pattern been revealed [79], which does not obey
the Anderson condition. A very complicated charge-ordered state, also violating the
Anderson condition, has been identified in LiMn2O4 [80]. In other mixed-valent
spinels, such as AlV2O4 [81] and CuIr2S4 [82], the charge-ordering was found to
occur through the formation of a valence-bond solid with spin singlet multimers.
These valence-bond-solid states appear to be accompanied by orbital orderings and
might therefore be viewed as a charge analog of the orbitally induced magnetic order
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in ZnV2O4 [56]. The heavy-fermion oxide LiV2O4 under pressure shows a transi-
tion to a charge-ordered state [83], which appears to fall into the same category as
AlV2O4 and CuIr2S4 [84].

7.7 Summary

Compared with other frustrated systems, an extremely strong geometrical frustration
is realized for the pyrochlore B-sublattice of the spinel structure. This makes spinel
oxides one of the most important avenues for research into the physics of quantum
spin liquids, a topic which has attracted intense interest since Anderson’s origi-
nal proposal [85]. Indeed, some of the exotic properties expected for a spin liquid,
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including a zero-energy mode and a spin-liquid state seemingly stable down to the
T D 0 limit, have recently been identified experimentally in spinel oxides. Thus the
physics of the quantum spin liquid is definitively no longer merely a theoretical toy.

In many cases, the strong degeneracy of the spin excitations is lifted by coupling
with the lattice and orbital degrees of freedom, and a non-trivial, self-organized,
spin-charge-orbital-lattice complex state is formed. The exploration of such new
states, and of the physics behind them, is definitely a new paradigm for quan-
tum magnetism. The issue of multiferroics, pursued recently and enthusiastically
in examples such as CoCr2O4 [48], falls into this category, where the interplay
between the nontrivial spin structure, produced by frustration, and its coupling to
the lattice plays a key role [86].
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Chapter 8
Experimental Studies of Pyrochlore
Antiferromagnets

Bruce D. Gaulin and Jason S. Gardner

Abstract Antiferromagnetically-coupled spins on the apex of corner sharing tetra-
hedra have generated significant interest over the last 20 years. Here we will discuss
the experimental studies, mostly neutron scattering, of the gadolinium and ter-
bium based pyrochlore magnets, for the purpose of illustrating the diverse nature
of ground states which can occur.

8.1 Introduction

Geometrically-frustrated magnetic materials [1–3] have been a longstanding interest
in materials physics and chemistry. Early theoretical work, such as that by Wannier
[4], appreciated the nature of the problem associated with antiferromagnetically-
coupled spins on triangular lattices, and that the problem was much more general,
being associated with the incompatibility of local geometry and the satisfaction of
pairwise interactions in cooperative systems. This problem finds great expression
within magnetic materials as many crystalline architechtures are based on close-
packing geometries, and triangular stackings, as occur in hexagonal and face centred
cubic lattices, are very common in nature. In relation to geometrical frustration, the
triangle is to two dimensions as the tetrahedron is to three. Antiferromagnetically-
coupled spins on a single tetrahedron can possess a similar set of degenerate ground
states as does the analogous case with a single triangle.

Magnetic materials display great variety in the nature of the magnetic moments
which decorate the crystalline lattice – that is the nature of anisotropies which they
display, as well as the nature of the interactions between neighbouring magnetic
moments. As a result of much experimental work in the last 10–15 years, we now
have many good examples of geometrically-frustrated magnetic materials which
themselves display varied ground states at low temperatures. Many of these are
described as exotic, in that they do not correspond to a conventional long range
ordered magnetic state at temperatures below ‚CW, the Curie–Weiss temperature,
which characterizes the average energy associated with magnetic interactions in the
material. These exotic ground states tend to fall into three related categories: spin
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liquids, spin glasses [5], and spin ice [6]; although the complexity associated with
real materials is such that a complete description of their ground state properties
defies strict classification.

Because the leading order terms in the magnetic Hamiltonian are the ones which
compete directly against each other, the actual ground state in frustrated materials
is often selected by sub-leading terms in the Hamiltonian. These can be relatively
weak terms which might be ignored in the study of unfrustrated magnetic materials.
Examples of such interactions are dipolar interactions and exchange interactions
beyond near-neighbour. For this reason, it is important to establish as comprehensive
an understanding of the microscopic magnetic Hamiltonian as possible, in order to
quantitatively understand the nature of the exotic magnetic ground state in these
materials. Additionally, and for the same reasons, external perturbations, such as
magnetic field and pressure, can have large effects in selecting a ground state, and
indeed this will be a major theme of this review.

In this chapter we will focus on experimental studies of a class of rare-earth
ion-based, pyrochlore magnets, and in particular the gadolinium and terbium based
magnets, for the purpose of illustrating the diverse nature of ground states which can
occur. It is, however, not intended to be a comprehensive review of the experimental
side of geometrically-frustrated magnetism. Of course, the complete experimental
characterization of these materials requires many different techniques be brought to
bear on the problem. We will focus on scattering studies as they inform directly on
the magnetic and chemical structure of the exotic ground state, and can spectroscop-
ically probe the crystal field and cooperative Hamiltonian of the magnetic system.
As a result such scattering studies play a central role in experimental studies of
magnetic materials.

8.2 The Cubic Pyrochlores

Rare-earth-based cubic pyrochlores can be thought of in terms of magnetic moments
decorating a three dimensional network of corner-sharing tetrahedra. In general,
crystalline lattices which support geometrical frustration can be thought of as being
made up of either edge or corner-sharing triangles, in two dimensions, or edge
or corner-sharing tetrahedra in three dimensions. Of course all real materials are
three dimensional, so geometrically-frustrated magnets based on triangular nets –
either edge or corner-sharing – must be made up of a three dimensional stacking
of such two dimensional nets. A two dimensional net comprised of edge sharing
triangles gives the familiar two dimensional tringular lattice, which make up the
basal plane of all hexagonal crystals. A similar net of corner-sharing triangles gives
the two dimensional kagomé lattice, which has been the focus of intense theoreti-
cal and experimental interest. More complicated, but related, networks of triangles
are observed in kagomé-staircase structures [7], hyper-kagomé lattices [8, 9], and
some garnets [10, 11]. A three dimensional network of edge-sharing tetrahedra
results in a face-centred cubic structure – which can also be throught of as a close
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packing of triangular planes along the [111] cube diagonal direction. Finally, a three
dimensional network of corner-sharing tetrahedra is found in the cubic pyrochlores.

This architectural motif is not unique to the pyrochlores – it also occurs in Laves
phase and Spinel materials. Indeed, as will be described, it is quite common in
nature. The family we will focus on are the A2B2O7 pyrochlores, where the A site
is a trivalent rare-earth ion with eightfold oxygen coordination, and the B site is a
tetravalent transition metal ion with sixfold oxygen coordination. Both the A site
and the B site, independently, reside of a network of corner-sharing tetrahedra – as
shown in Fig. 8.1. These networks are displaced from each other by a translation
along the cube diagonal direction [111].

Such stoichiometries provide many good examples of pyrochlore magnets and
hence geometrically frustrated magnets. Cases exist where the A site is magnetic
(such as Tb2Ti2O7 [12], Tb2Sn2O7 [13, 14], Ho2Ti2O7 [15]), where the B site is
magnetic (such as Y2Mo2O7 [16]), where both A and B sites are magnetic (such as
Tb2Mo2O7 [17, 18]), and where neither is magnetic (such as Y2Ti2O7 [19]). The
insulating rare-earth titanates have been well studied, as they are relatively easy to
grow in single crystal form [20,21]. The differing nature of the magnetic anisotropy
and magnetic coupling across the rare earth series has given rise to spectacular
examples of exotic magnetic ground states arising from geometrical frustration. The
related rare-earth stanates, A2Sn2O7, have been much more difficult to produce in
single crystal form, due to the very high vapour pressure of Sn. Nonetheless, mem-
bers of this family have been investigated in polycrystal form and have provided
intriguing counterpoints to the ground states exhibited by the titanates.

The A2Mo2O7 family [22, 23] of molybdates is very interesting, as the con-
ductivity evolves from insulating to metallic across the series. While our focus has
been on insulating magnets wherein the exchange interactions are expected to be
of shorter range and therefore to be more susceptable to effects related to the local

Fig. 8.1 The cubic pyrochlore structure, a network of corner-sharing tetrahedra, is illustrated in
(a). In the A2B2O7 pyrochlores, both the A and B site ions, independently, reside on such a network
displaced from each other along the [111], body diagonal, direction. The same sublattice can be
visualised as alternating kagomé and triangular layers structure along a [111] direction as depicted
in (b)
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environment, there has been considerable interest in conducting pyrochlores and
related materials, such as Cd2Re2O7 [24] and the ˇ-pyrochlores such as KOs2O6

[25] and RbOs2O6 [26], which are relatively low temperature superconductors (TC’s
of �1.3 K, 9.6 K, and 6.3 K, respectively).

It can be useful to decompose the pyrochlore lattice in at least two different ways,
depending on the nature of the phenomena that is of interest in a particular material,
or the nature of a perturbation which is applied to it. It can be thought of as an alter-
nation of kagomé planes and triangular planes, stacked along the cube diagonal –
the [111] direction (see Fig. 8.1b). There are pyrochlores which exhibit quasi-two
dimensional spin correlations at low temperature, such as the recently studied fer-
romagnetic pyrochlore Yb2Ti2O7 [27] as well as the spinel Y2Mn2O4 [28], and
this can be a convenient way to understand this phenomena. The pyrochlore lattice
can also be decomposed into two sets of orthogonal chains, the ˛ chains and the ˇ
chains, both of which lie along orthogonal cube face diagonal directions – that is
[110] directions. Half of all the spins lie along the ˛ chains, while half lie along ˇ
chains. A magnetic field applied along a [110] direction, for example, can polarize
the spins on the ˛ chains, leaving the spins on the ˇ chains decoupled, as occurs in
certain spin ice ground states [29].

Finally, it is worth remembering that the real materials in the A2B2O7 family
which nominally crystallize within the cubic FdN3m space group are not perfect
materials. They display weak but observable Bragg peaks of structural origin which
violate the systematic absences of the FdN3m space group. For example, the (002)
Bragg reflection is forbidden within FdN3m, yet we have observed such a peak in
a host of A2B2O7 single crystals [29, 30]. This is a weak effect, typically 0.001
or less of the allowed (004) intensity. When first observed with triple axis, Bragg
scattering techniques, it was ascribed to harmonic (�/n) contamination in the beam.
However, later experiments observed the same scattering in time-of-flight neutron
experiments [30], which do not suffer from harmonic contamination. While this is
somewhat of a detail, it is worth bearing in mind that a perfect pyrochlore lattice
may not exist in nature, and that the lattice itself may well be a player, as opposed to
a passive bystander, in the physics of geometrical frustration. We will return to this
point later in this review.

8.3 The Spin Liquid Ground State in Tb2Ti2O7

Interest in the pyrochlore Tb2Ti2O7 was piqued by initial measurements, performed
on polycrystalline materials, which characterized Tb2Ti2O7 as a pyrochlore antifer-
romagnet with a ‚CW � �13 K, but which showed no signs of ordering down to
�17 mK [12]. This is the achetypical signature of a frustrated magnet. Early powder
neutron diffraction measurements, taken at T D 2 K, are particularly intriguing as
this simple measurement shows a forrest of Bragg peaks of chemical origin, telling
us that the chemical lattice is well ordered. However, below this forrest of Bragg
peaks (see Fig. 8.2), broad liquid-like scattering, which is magnetic in origin can be
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Fig. 8.2 The raw powder neutron diffraction data taken at T D 2 K on Tb2Ti2O7. Both the for-
rest of sharp Bragg peaks, indicating well developed chemical order, and the liquid-like magnetic
structure factor characteristic of the spin liquid state are seen [12]

observed, which tells us that the spins are correlated over about a single tetrahedron
at these low temperatures (2 K).

Early neutron spectroscopic measurements [31] were also carried out on poly-
crystalline samples of Tb2Ti2O7, with the intention of understanding the nature
of the Tb3C magnetic moment. Tb3C possesses 8 f-electrons, an even number.
By Kramer’s theorm, it is not required to possess an, at least, two-fold degener-
ate ground state – which is to say that it need not be magnetic at all, but could
exhibit a singlet ground state, depending on the local geometry of the crystalline
environment around the Tb3C site. The Tb3C environment in Tb2Ti2O7 has eight-
fold oxygen coordination. However, it does not lie in the middle of a perfect cube
of oxygen – the “cube” is distorted such that six oxygen are relatively close to the
Tb3C site and two are farther away.

The inelastic neutron measurements characterizing these crystal field states of
Tb3C in this environment, are shown in Fig. 8.3. This data shows transitions from the
ground state to excited states at � 20 K, 120 K, and 175 K above the ground state.
Modelling this inelastic data, and combining it with susceptibility measurements
on Tb2Ti2O7 and (Tb0:02Y0:98)2Ti2O7, where the Tb3C moments are sufficiently
dilute to minimize interaction effects, results in a description for the six lowest lying
states of the .2JC1/ D 13, which make up the J D 6Hund’s rule ground state mul-
tiplet appropriate to Tb3C. As shown in Fig. 8.3, this analysis gives a ground state
doublet described by � j˙4>, an excited state doublet at �E � 20 K above the
ground state described by � j˙5>, followed by two higher energy singlet excited
states described by � jC3> Cj�3> and � �jC3> Cj�3>. Related measure-
ments and analysis have recently been carried out which have revisited the nature of
the crystal field levels in Tb2Ti2O7 [32]. While the details of the eigenstates in this
new study are not in agreement with the earlier work discussed here [31], the overall
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Fig. 8.3 The left panel shows inelastic neutron scattering probing the low lying crystal field exci-
tations of Tb3C in polycrystalline Tb2Ti2O7. The right panel shows the leading order terms in
the crystal field eigenstates, as determined from modelling the crystal field excitations along with
magnetic susceptibility and heat capacity measurements [31]

nature of the ground state and expected Ising anisotropy of the Tb3C moments are
reproduced in this newer analysis.

As far as the low temperature physics appropriate to geometrical frustration is
concerned, only the lowest energy states will enter the discussion. The relatively
low energy excited doublet is sufficiently close to the ground state doublet, that we
will need to include all four of these states (the ground state doublet plus the low
lying excited state doublet) in our description of the low temperature behaviour of
Tb2Ti2O7. These measurements and calculations also give a ground state moment
of � 5 �B , distinct from the paramagnetic moment derived from the high temper-
ature susceptibility, to which all the 13 states which make up the J D 6 multiplet
contribute. They also tell us that, to the extent that the ground state doublet alone
determines the anisotropy of the Tb3C moments, the Tb moments will display an
Ising character, pointing directly into or out of the tetrahedra on which they reside.
That is two, of eight, oxygens neighbouring the Tb3C site determine an easy axis
for the moments, such that they would point into or out of their own tetrahedra.

The availability of floating zone image furnace techniques for single crystal
growth resulted in the production of large and pristine single crystals of Tb2Ti2O7

[20, 21] which would enable single crystal neutron scattering measurements. Such
experiments can be much more informative than the corresponding measurements
on polycrystalline materials, as the vector-Q dependence to the scattering can be
investigated. Such a single crystal magnetic diffraction pattern [12,33], taken in the
[HHL] plane of reciprocal space in Tb2Ti2O7, is shown in Fig. 8.4. We now see
the Q pattern of magnetic diffuse scattering, in the form of a checkerboard. It is
most intense around the (002) Bragg position, but extends across large regions of
reciprocal space, consistent with earlier powder diffraction data.

This pattern to the diffuse scattering is very interesting. One can determine that
the polarization dependence of the unpolarized neutron scattering cross section – the
˙ .ı˛;ˇ � OQ˛

OQˇ /S .Q; !/ term in (1), would imply that no magnetic scattering
should exist at the (002) position in reciprocal space for most models in which the
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Fig. 8.4 A difference map in
reciprocal space from single
crystal Tb2Ti2O7, isolating
the diffuse magnetic
scattering characteristic of the
spin liquid state. This data
shows neutron diffraction
data sets at T D 9 K and high
temperatures subtracted from
each other. Clearly, the
liquid-like magnetic structure
factor is organized in vector
Q into a checkerboard
pattern, with the strongest
scattering around (002) [33]
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magnetic moments obey the Ising-like anisotropy in which they would be restricted
to point directly into or out of the tetrahedra. The expectation of this anisotropy
was a consequence of the eigenfunctions associated with the ground state doublet.
However, later theoretical analysis [34] which includes mixing of the lowest energy
excited state doublet � 20 K above the ground state in Tb2Ti2O7, can restore mag-
netic diffuse scattering at the (002) position. Nonetheless, this result indicates that a
picture of strict adherance to local [111] anistropy for the Tb3C moments may not
provide a satisfactory description of the experiments.

Some evidence for spin freezing has been found in other, independent neutron
scattering measurements [35] on single crystal Tb2Ti2O7, in the form of hysteretic
scattering at temperatures below � 1.7 K. This may be expected from weak disorder
which is present in all real materials, in which case the spin glassiness would be
expected to exhibit variability from sample to sample. However, it is clear that most
of the magnetic scattering signal remains both diffuse and dynamic even down to very
low temperatures, as reported in neutron measurements down to T D 50 mK [36].

Problems associated with the local-[111] Ising-like nature to the Tb spins not-
withstanding, a reasonable starting point Hamiltonian to understand Tb2Ti2O7

would be:

H D �
X

hi;j i
Jij Szi

i � S
zj
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nn
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The exchange interactions between the Tb3C moments are expected to be rel-
atively weak, given the localized nature of the 4f electrons and relatively small
overlap which arises. In addition, the ground state moments are rather large, � 5�B ,
consequently dipolar interactions should be relatively large. In fact, a system descri-
bed by such a classical Hamiltonian on the pyrochlore lattice has been considered
and solved by den Hertog and Gingras [37], and their resulting phase diagram is
shown in Fig. 8.5. The y-axis shows temperature in units of the near-neighbour
dipolar interaction strength, while the x-axis shows the ratio of near-neighbour
exchange to near-neighbour dipolar interactions. The phase diagram consists of
two low temperature phases: aQ D 0 four-sublattice antiferromagnetically-ordered
phase, provided the antiferromagnetic exchange interactions are adequately strong
(on the left hand side of the phase diagram), and a disordered spin ice ground state –
provided the near neighbour exchange is either ferromagnetic or antiferromagnet
but not sufficiently strong. On the pyrochlore lattice with a hard [111] anisotropy
for the moments, the near neighbour part of the dipolar interaction (which falls off
as r�3) favours ferromagnetic correlations, so the spin ice ground state encroaches
onto the antiferromagnetic exchange (x< 0) side of this phase diagram.

Putting in all the information we have on Tb2Ti2O7, we can place Tb2Ti2O7 as
shown in Fig. 8.5, which implies a finite temperature phase transition to four sub-
lattice antiferromagnetic order near T � 1 K. Consequently we are left with another
quandry, which is why does Tb2Ti2O7 maintain a disordered spin liquid state down

6

5

4

3

2 Tb2Ti2O7

T
/D

nn

1

0
–2.0 –1.5 –1.0 –0.5 0.0

Jnn / Dnn

0.5 1.0 1.5 2.0

Spin IceAF
(Q = 0)

Ho2Ti2O7

AF Jnn FM Jnn

Fig. 8.5 The general phase diagram [37] for classical Ising spins with local [111] anisotropy, such
that they can point either directly into or out of the tetrahedra whose corner they share, coupled
with nearest-neighbour exchange and dipolar interactions. The y-axis shows the temperature in
units of the near-neighbour dipolar interaction strength, while the x-axis shows the ratio of near-
neighbour exchange to near-neighbour dipolar interaction strength. The spin liquid ground state
magnet Tb2Ti2O7 and spin ice ground state magnet Ho2Ti2O7 are approximately located on this
phase diagram
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to temperatures as low as 0.03 K [12, 36]? There are deficiencies in this treatment –
most notably that the Hamiltonian is not quantum mechanical. In addition, the zero
temperature transition from the Q D 0 antiferromagnetically long range ordered
state to the spin ice ground state in Fig. 8.5 is not far removed from where we
have placed Tb2Ti2O7 on the phase diagram. Nonetheless, the low temperature spin
liquid state in Tb2Ti2O7 remains enigmatic.

8.4 Ordered Ground States in Tb2Ti2O7

The spin liquid ground state in Tb2Ti2O7 can be brought to order with relatively
modest perturbations, applied with pressure [38–41] and a magnetic field [30]. Per-
haps this underscores the relative fragility of the spin liquid state, and the fact that
it is not far removed from ordered states.

This was first achieved with the application of hydrostatic pressure [38, 39], fol-
lowed by combinations of hydrostatic and uniaxial pressure [40, 41]. Figure 8.6
shows powder neutron diffraction data taken in a pressure cell, which clearly shows
the evolution of the powder diffraction pattern from one characterized by diffuse
magnetic scattering, to one in which a large number of relatively weak magnetic
Bragg peaks are evident as external pressure is applied.

Later work, which we will focus on here, was performed on single crystals under
the application of a [1N10] magnetic field [30]. As mentioned previously, the selec-
tion of a particular [110] direction within the cubic pyrochlore structure, naturally
decomposes the system into orthogonal ˛ and ˇ chains of spins running along [110]
directions. This field geometry is straightforward for neutron scattering experiments
on single crystals, as such experiments typically use split-coil vertical field magnet
cryostats, and scatter neutrons in a horizontal plane. Such constraints, with the mag-
netic field aligned along a vertical [1N10] direction, results in the horizontal scattering
plane being the [HHL] plane, which contains three high symmetry directions.

Such single crystal neutron scattering data is shown in Fig. 8.7. This time-of-
flight neutron scattering data was taken with the Disk Chopper Spectrometer at the
NIST Center for Neutron Research. This type of measurement has the advantage
that extensive maps of the scattering can be straightforwardly made, and that one
can simultaneously study elastic and inelastic scattering – that is, it allows for very
efficient measurements. Panels (a) and (d) of Fig. 8.7 illustrate this nicely. Panel (a)
shows an elastic scattering map, actually integrating in energy from �0:5 meV to
0.5 meV, in the [HHL] plane of reciprocal space. The strongest “checker”, centred
at (002), of the checkerboard pattern shown in Fig. 8.4 is clearly evident. Panel (d),
however, shows the energy dependence of the diffuse scattering around (002). This
clearly identifies the same diffuse scattering as inelastic in nature with a character-
istic energy of „! � 0.3 meV. This is not so surprising. The disordered short range
ordered Tb3C moments in the spin liquid state are also dynamic on a time scale that
the neutron scattering measurement is easily sensitive to.
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Fig. 8.6 The evolution of pressure-induced magnetic Bragg peaks in Tb2Ti2O7 is shown [39–41].
The inset shows the dependence of the induced ordering temperature, TN on pressure

More remarkable, however, is the effect of relatively weak magnetic fields
applied along the [1N10] direction, shown in Panels (b) and (c) of Fig. 8.7. Panel
(b) shows the elastic scattering map in reciprocal space taken at a magnetic field
of �oH D 2 T. The diffuse magnetic scattering around (002) has been cleaned
up and a Bragg peak at (002) has appeared. At higher applied fields, as shown for
�oH D 8 T in Fig. 8.7c, a further sequence of magnetic Bragg peaks has appeared,
with the strongest of these at the (112) Bragg position. These results point to at least
one, and possibly two phase transitions to a magnetically ordered state under appli-
cation of a [1N10] magnetic field. The energy dependence of the scattering around
(002) shown in panel (d) shows the magnetic diffuse scattering to decrease strongly
as a function of field, with the scattering evolving from quasi-elastic to inelastic
as the field strength increases. A gap of � 0.1–0.2 meV develops in the energy
dependence of the diffuse scattering as a function of applied [1N10] magnetic field.

Figures 8.8 and 8.9 show the results of parametric studies of both the field-
induced Bragg peaks and the magnetic diffuse scattering in Tb2Ti2O7. Figure 8.8
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Fig. 8.7 Reciprocal space maps of elastic scattering integrating from �0:5 meV to C0.5 meV
in energy transfer are shown for Tb2Ti2O7 at T D 0:4 K [30]. (a) shows the spin liquid state at
�oH D 0, while (b) and (c) show data taken from the polarized paramagnetic state at �oH D 2

T, and the magnetic field-induced ordered state at �oH D 8 T. All magnetic fields are applied
along the [1N10] direction. (d) shows cuts in energy going through the magnetic diffuse scattering
near (002) for different field strength. This high resolution time-of-flight neutron scattering data
shows the magnetic diffuse scattering to be quasi-elastic with an extent in energy of �0:3 meV in
the spin liquid state

Fig. 8.8 The field dependence of the magnetic field-induced Bragg scattering at (112) and (002)
are shown for Tb2Ti2O7 at T D 0:4 K, along with the field dependence of the magnetic diffuse
scattering characterizing the spin liquid state [30]. All magnetic fields are applied along the [1N10]
direction
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Fig. 8.9 The temperature dependence of the magnetic field-induced Bragg scattering, at (112) and
(002) is shown for Tb2Ti2O7 for magnetic fields applied along the [1N10] direction [30]. A single
phase transition is identified associated with the (112) Bragg scattering. The phase diagram locating
this ordered magnetic state on an H-T diagram, resulting from these and related measurements, is
shown

shows the field dependence at low temperatures, T D 0:4 K, while Fig. 8.9 shows
the temperature dependence of the field-induced Bragg peaks at selected applied
magnetic fields. As can be seen from Fig. 8.8, the (002) Bragg peak rises almost
immediately as a function of field strength, and has little field dependence to it for
fields beyond �oH � 0.5 T. The diffuse scattering around (002) displays a field
dependence which is the precise complement to the (002) Bragg scattering, strongly
implying that the (002) Bragg scattering is largely derived from a sweeping up of
the diffuse scattering into a coherent Bragg peak. This clearly occurs with rather
low magnetic fields. The diffuse scattering falls off quickly on the scale of �oH �
0.5 T, plateaus, and then falls off again to zero near �oH � 4–5 T. Both the Bragg
scattering at (002) and the diffuse magnetic scattering around (002) show the same
complementary hysteresis at low fields, again consistent with both sets of scattering
having the same origin.

The (112) magnetic Bragg peak, which is the strongest Bragg peak seen at high
fields (see Fig. 8.7c) in this field of view in reciprocal space, turns on above �oH
� 2 T and grows in a “S” shape as a function of field, apparently saturating near
�oH D 8 T. The inflection point on the (112) growth curve near �oH D 4 T
coincides with the second drop in the diffuse scattering intensity. The high field
ordered state is therefore conventional in the sense that it does not coexist with a
disordered component to the magnetic structure – as would be the case for fields
below �4 T.

The temperature dependence to the field-induced Bragg peaks, shown in Fig. 8.9
is very revealing. The field induced (112) magnetic Bragg peak falls off in intensity
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Fig. 8.10 Dispersion surfaces determined from time-of-flight neutron scattering measurements on
Tb2Ti2O7 at T D 0:4 K are shown [30]. Energy-transfer is plotted on the y-axis and [00L] on the
x-axis. Data from the spin liquid state at�oH D 0 T and polarized paramagnetic state at�oH D 1

T, (a) and (b), respectively, are qualitatively similar. Data in the field-induced ordered state at
�oH D 2 T and 3 T, (c) and (d), respectively, are qualitatively similar show clear, dispersive spin
wave excitations appear within the gap, a hallmark of magnetic long range order

with strong downwards curvature as a function of temperature, displaying a well-
defined phase transition near T D 3:1K at�oH D 7 T. This contrasts strongly with
the temperature dependence of the (002) field-induced Bragg peak. At �oH D 1 T,
where the (002) Bragg peak is the only field-induced Bragg peak in our field of
view in reciprocal space, the Bragg scattering evolves with upwards curvature as a
function of temperature, and still has easily measureable intensity for temperatures
as high at T D 24 K, the highest temperature we measured. This is not the charac-
teristic of the order parameter associated with an ordered state, but is much closer
to the signature expected for a polarized paramagnet.

As mentioned previously, the time-of-flight neutron scattering technique allows
the simultaneous measurement of both maps of the elastic scattering in reciprocal
space, or measurements across other surfaces in the four dimensional Q-„! space.
So we can also perform measurements which map out the dispersion of the low lying
excitations as a function of energy and a particular direction in reciprocal space.
This is what is shown for Tb2Ti2O7 in Fig. 8.10. This data is taken at T D 0:4 K,
and at various [1N10] fields up to 3 T. The top two panels of Fig. 8.10a, b show the
low lying magnetic inelastic scattering along the (00L) direction in �oH D 0 and
1 T, respectively. These are within the spin liquid state and the polarized param-
agnetic state respectively – which we expect to differ little, if at all, from the spin
liquid state. Indeed we see largely the same inelastic spectra at both fields. We can
describe this inelastic scattering as a function of increasing energy, starting with the
quasielastic scattering near „! D 0 meV. We see quasi-elastic scattering, peaking
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near (002) and extending out in energy to „!� 0.3 meV, followed by an energy
gap. At higher energies we observe rather diffuse inelastic scattering with weak
dispersion near „!� 1–1.5 meV. The scattering in the „!� 1–1.5 meV range we
previously identified as originating from the lowest energy crystal field excitation,
the doublet excited state appropriate to Tb3C, in Tb2Ti2O7. Here, we note that with
the relatively high energy resolution afforded by the time-of-flight technique, these
excitations are poorly defined in energy, corresponding to relatively short lifetimes.
We will return to this issue later, but for now we note that the spin liquid state in zero
and low applied fields is characterized by rather “blobby”, that is poorly defined, low
lying magnetic excitations.

The excitation spectra in the field induced ordered state for �oH D 2 T and 3 T
in Fig. 8.10c, d, respectively, are very different from those within the spin liquid
state, as one might expect. We identify three features. The quasi-elastic scatter-
ing breaks off from the elastic scattering and becomes a distinct, dispersionless
excitation near „!� 0.2 meV. The rather dispersionless crystal field excitations
in the „!� 1–2 meV range become very noticibly sharper in energy – implying
longer lifetimes. Finally, and most spectacularly, we see dispersive spin wave exci-
tations appear within the energy gap which characterized the spin liquid state. These
all point to the development of a field-induced long range ordered state for fields
applied along the [1N10] direction and in excess of �2 T. That is, not only does the
field-induced phase beyond�oH D 2 T display a set of new magnetic Bragg peaks,
the most prominent of which is the (112), but this state also displays collective spin
wave excitations – the hallmark of an ordered phase.

In principle, the dispersion of the spin wave excitations can be theoretically mod-
elled to inform on the low energy spin Hamiltonian appropriate to Tb2Ti2O7. This
has yet to be done; however simply counting the number of observed excitations
tells us that our picture of a doublet ground state and doublet low lying excited state
for Tb3C in Tb2Ti2O7 is correct. This is shown in Fig. 8.11, which shows cuts in
energy through the energy – (00L) maps shown in Fig. 8.10a, d. Five excitations are
clearly observed in finite field, as would be expected provided appropriate matrix
elements connect four non-degenerate eigenfunctions within the long range ordered
state. This is also good evidence for a small splitting of the doublet ground state, as
is allowed by the non-Kramers nature of the Tb3C ground state.

8.5 Structural Fluctuations in the Spin Liquid State
of Tb2Ti2O7

The main focus of our studies has been the spin degrees of freedom in geometrically
frustrated magnets, and this is true of the research field as a whole. However, the
geometry of the lattice, and therefore the lattice itself, is a key ingredient to the
physics of geometrically frustrated magnets. Consequently, although little effort has
been devoted to it, it should not be surprising that the lattice degrees of freedom are
not merely bystanders to the spin liquid physics, but that they participate in some
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One Transition in Zero Field

Five Transitions in Non-Zero Field

Fig. 8.11 Cuts through the dispersion surfaces shown in Fig. 8.10 at �oH D 0 and �oH D 3 T
of the form (HH1.7) are shown. These clearly show the appearance of sharp, spin wave peaks on
entering the field-induced ordered state. The right side of the figure makes the qualitative argument
as to how one broad inelastic feature can evolve to five sharp features on the basis of a doublet
ground state and doublet excited state which split on entering the field-induced ordered state of
Tb2Ti2O7

way. In fact, this realization has now been made in several different contexts within
geometrically-frustrated magnetism – in particular with regard to a spin-Peierls like
first order phase transition [42,43], as well as magnetization plateaus [44,45], which
occur in certain spinels. Also, general theoretical arguments have been made with
respect to the manner in which lattice degrees of freedom can relax the constraints
imposed by competing magnetic interactions on frustrated lattices [46, 47].

Motivation for studying the lattice degrees of freedom in Tb2Ti2O7 is straight-
forward to come by. As discussed previously, the nature of the Tb3C ground state in
Tb2Ti2O7 is very sensitive to the local geometry at the Tb3C site, as Tb3C is not a
Kramers ion. For example, Tb3C sitting within a perfect cube of eight O2� neigh-
bouring ions results in a singlet, non magnetic ground state. Further, much earlier
measurements show strong magnetostriction and related effects at low temperatures
in Tb2Ti2O7 [48, 49]. Finally, as just discussed, the low lying crystal field excita-
tions in the spin liquid state of Tb2Ti2O7 are not sharp in energy, which suggests
something unusual in the nature of the local crystal structure which the Tb3C crystal
field states are sensitive to.

We carried out high resolution X-ray scattering diffraction measurements [50]
on single crystal Tb2Ti2O7 down to temperatures as low as T D 0:3 K, using a
rotating anode X-ray source and a perfect single crystal Ge(111) monochromator
to achieve the high resolution. The crystal was mounted in a 3He refridgerator in
a four circle goiniometer at McMaster University, and the scattered X-ray intensity
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was measured with a HiStar area detector. We focussed attention on a relatively
simple measurement – that of the Bragg intensity and lineshape of the (12 0 0)
and (8 8 0) allowed chemical Bragg peaks of the FdN3m spacegroup. We performed
measurements on both single crystals of Tb2Ti2O7 and Y2Ti2O7, a cubic pyrochlore
where neither the A nor the B site is magnetic – that is a magnetic vegetable, for
comparison.

Maps in reciprocal space around the (12 0 0) and (8 8 0) Bragg peak positions
in Tb2Ti2O7 are shown at T D 0:3 K, well within the spin liquid phase and at
T D 20 K – in the conventional paramagnetic phase in Fig. 8.12. Panels (a) and (c)
of Fig. 8.12 show data at 20 K, while that in panels (b) and (d) show data at T D 0:3

K. The temperature dependence seen in these reciprocal space maps presented in
Fig. 8.12 is somewhat subtle. The most obvious feature is that the peak intensity
at both (12 0 0) and (8 8 0) decreases with decreasing temperature. What is not
obvious is that the integrated scattering around both Bragg positions is temperature
independent, even though the peak intensity varies. This is the case as the scattering
actually becomes broader in Q as the temperature decreases from T D 20 K to
T D 0:3 K. In the case of (12 0 0) the scattering broadens in the longitudinal
direction (along the arrow shown in Fig. 8.12a, b). In the case of (8 8 0) it broadens
in the transverse direction (along the line drawn normal to the arrow in Fig. 8.12c, d)

We can quantify this behaviour. Figure 8.13 shows cuts through the reciprocal
space contour maps of Fig. 8.12, in the longitudinal direction for the (12 0 0) and
in the transverse direction for the (8 8 0). These plots are normalized to each other

Fig. 8.12 High resolution X-ray diffraction maps of the (12 0 0) (a) and (b) and (8 8 0) (c) and
(d) chemically-allowed Bragg peaks in Tb2Ti2O7 [50]. The data sets were taken at T D 20 K
(left side panels, (a) and (c)) and T D 0:3 K (right side panels, (b) and (d)). The arrows show
the longitudinal direction in reciprocal space, while the orthogonal bar, without an arrowhead,
indicate the transverse direction. The decrease in the peak intensities of both Bragg reflections is
clear
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Fig. 8.13 Cuts taken in the longitudinal direction of the (12 0 0) Bragg peaks (top) and the
transverse direction of the (8 8 0) Bragg peaks (bottom) in Tb2Ti2O7 are shown [50]. The peak
intensities of the data sets at T D 20 K and T D 0:3 K have been normalized so as to allow a
comparison of the widths of the scattering. The scattering at both wavevectors clearly broadens on
lowering the temperature into the spin liquid phase

so that their widths can be compared, and this is what Fig. 8.13 shows. It is clear
from this data that the scattering at both (12 0 0) and (8 8 0) is substantially broader
at T D 0:3 K as compared with T D 20 K. In itself this is very unconventional
behaviour. Most materials show little temperature dependence to their Bragg scat-
tering at low temperatures. Lattice parameters are largely temperature independent
below 20 K, and any temperature dependence to the Bragg intensities comes from
Debye-Waller effects, which are weak at low temperature and which act so that the
intensity increases with decreasing temperature.

Cuts of the form shown in Fig. 8.13 were made at all temperatures below 25 K.
This data was fit to a resolution convolution of an Ornstein-Zernike form to the
scattering, for the purpose of extracting correlation lengths appropiate to this Bragg
scattering. A data set at T D 30 K was used as the resolution function, which
assumes that the Bragg scattering for temperatures of 30 K and above is resolution
limited. The results of this analysis is shown in Fig. 8.14. The top panel of Fig. 8.14
shows the peak intensity of the Bragg scattering for each of (12 0 0) and (8 8 0) in
Tb2Ti2O7, and the peak intensity of (12 0 0) in Y2Ti2O7. The temperature depen-
dence of the Bragg scattering in Y2Ti2O7, the magnetic vegetable, is as expected –
there is none at low temperatures. In contrast, the peak intensity at both (12 0 0) and
(8 8 0) decrease by about 20% from 25 K to 0.3 K.

The bottom two panels of Fig. 8.14 show the fascinating temperature dependence
of the inverse correlation lengths, along both longitudinal and transverse directions
for the (12 0 0) (middle panel) and (880) (lower panel). The scattering around both
Bragg peaks takes on finite inverse correlation lengths as the temperature decreases
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Fig. 8.14 The top panel shows the peak intensity of the (12 0 0) and (8 8 0) Bragg peaks in
Tb2Ti2O7 as a function of temperature, and compares it to the temperature dependence of the
(12 0 0) Bragg intensity of non-magnetic Y2Ti2O7 [50]. The bottom two panels show the inverse
correlation lengths extracted from a resolution convolution of Bragg peaks of the form seen in
Fig. 8.13. The broadening of the Bragg peaks is clearly anisotropic, with the two Bragg peaks
displaying different anisotropy

below 25 K. The temperature dependence shows upwards curvature (and that of the
peak intensity shows downwards curvature only) indicating that no phase transition
takes place. Yet it appears that the system is trying to approach a phase transition,
albeit at unattainably low temperatures. Remarkably the broadening of the scattering
is clearly anisotropic in Q, and this anisotropy varies from Bragg position to Bragg
position. The broadening is preferentially along the longitudinal direction for the
(12 0 0) and preferentially along the transverse direction for the (8 8 0) Bragg peak.

This behaviour is very reminisient of the broadening of Bragg peaks above Jahn–
Teller phase transitions in other Tb-based transition metal oxides, such as TbVO4

and TbAsO4, where well characterized Jahn–Teller phase transitions occur at TC D
33:1 and 28 K, respectively [51]. The Jahn–Teller transitions in these materials take
them from tetagonal to orthorhombic structures, so the analogy with Tb2Ti2O7 is
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Fig. 8.15 The temperature dependence of the cubic lattice parameter in Tb2Ti2O7 is shown
and compared to that measured in non-magnetic Y2Ti2O7. Tb2Ti2O7 exhibits anomolous thermal
expansion on cooling into the spin liquid state below � 20 K [50]

incomplete. Nevertheless, Bragg reflections exist for TbVO4 and TbAsO4 which
split in either the longitudinal or transverse directions. We can imagine a similar
scenario for Tb2Ti2O7, although no phase transition occurs. Thus, the anisotropic
broadening of the Bragg scattering can be interpreted as being due to fluctuations
above a Jahn–Teller-like phase transition.

8.6 Magnetic Order and Fluctuations in Tb2Sn2O7

The pyrochlore material Tb2Sn2O7 possesses the same crystal structure as Tb2Ti2O7.
Once again, the ion at the B-site, Sn4C in this case, is nonmagnetic, leaving the
magnetic Tb3C ions decorating the pyrochlore lattice. However, in contrast to the
spin liquid state which Tb2Ti2O7 displays at low temperatures, Tb2Sn2O7 has
been shown to exhibit a form of magnetic order, albeit a complicated one at suf-
ficiently low temperatures. Bulk measurements revealed a single phase transition at
0.87 K [52], which was confirmed by neutron diffraction and heat capacity measure-
ments. These neutron measurements further determined that large ferromagnetic
spin clusters, with moments canted off from the local <111> axes, described the
Bragg diffraction data well, see Fig. 8.16b [53, 54]. This “ordered spin-ice” phase
has similarities to that seen in Ho2Ru2O7 [55, 56]. Mirebeau et al. [53, 57] noted
a difference in the magnitude of the ordered moment deduced from the magnetic
neutron refinement and heat capacity measurements, and that consistent with the
intense diffuse magnetic scattering which they observed. This led them to conclude
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Fig. 8.16 Magnetic diffraction from Tb2Sn2O7 at 100 mK. (a) The full spectrum with a 1.2 K data
set subtracted to account for the nuclear scattering. The solid line is a fit to the data accounting for
the short and long range order. The long and short range contributions to the pattern are plotted
separately in (b) and (c) respectively [53]

that the ordered state in Tb2Sn2O7 is complicated and coexists with slow, collec-
tive fluctuations on the time scale of 10�4 to 10�8 s down to mK temperatures.
Such slow collective spin fluctuations would be responsible for the broad, diffuse
magnetic scattering seen in Fig. 8.16c.

Muon spin relaxation experiments [54, 58] on Tb2Sn2O7 in this ground state
failed to observe the hallmark of static magnetic order, oscillations in the muon
asymmetry in zero longitudinal field conditions, ruling out static magnetic order
on the appropriate muon time scale, microseconds. Instead characteristic relaxation
due to persistent spin dynamics on the time scale of between 8 � 10�11 s and 5 �
10�9 s, depending on detailed assumptions in both measurements, was observed.
Later neutron scattering measurements by Rule et al. [59] showed the presence of
co-existing static and dynamic spins in Tb2Sn2O7 at the lowest temperatures, while
very high energy resolution neutron spin echo measurements [60] at low momen-
tum transfer (0.08 Å�1) confirmed the existence of a dynamical component in this
ground state. In this study, the signal below 660 mK, is static out to 10 ns but data
above this temperature clearly relaxes in the spin echo window. This is the clearest
evidence to-date of the slowing down of spin dynamics and their eventual freezing
in this system. Recently, Giblin et al. [61] measured the the muon spectra with the
muons stopped outside the sample, and performed ultralow field bulk magnetiza-
tion measurements. The field cooled state shows conventional static order, while
the zero field cooled state may be interpreted in terms of conventional magnetic
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Fig. 8.17 (a) Muon spectra at 0.17 and 2.4 K in Tb2Sn2O7 are shown, with the latter ones ver-
tically shifted by 0.05 for clarity. The numbers written next to each spectrum correspond to the
longitudinal magnetic field, expressed in Tesla. (b) The temperature dependence of the spin–lattice
relaxation rate. Evidence of short and long range order is indicated at 1.3 K and 0.87 K [54]

domains. These results rule out a purely dynamical ground state suggested by the
earlier muon experiments.

The question of why the ground state in Tb2Sn2O7 is different from that
observed in Tb2Ti2O7 remains outstanding. In order to shed light on this, new
inelastic neutron scattering measurements were carried out on polycrystalline
Tb2Ti2O7and Tb2Sn2O7 [59, 62, 63]. The results of these studies are consistent
with the much earlier inelastic neutron data data collected on Tb2Ti2O7 the spin
liquid [30, 36, 62, 64, 65]. The low energy inelastic magnetic scattering from both
compounds is dominated by crystalline electric field-like spin excitations. The low-
est of these in energy lies approximately 18 K (1.5 meV) above the ground state
in Tb2Sn2O7 and, like Tb2Ti2O7, it partially softens below 20 K. The next set of
crystal field excitations are above 10 meV.

On closer inspection, important differences between these crystal field excita-
tions in Tb2Sn2O7 and Tb2Ti2O7 become clear. Detailed modelling of these
spin excitations shows that the wavefunctions associated with the ground state dou-
blet and the first excited state doublet are inverted in Tb2Sn2O7 compared with
Tb2Ti2O7. The temperature dependence of these spin excitations show related dif-
ferences. While the size of the gap between these two doublets is similar, as the
temperature is lowered towards the ordered state of Tb2Sn2O7, a low lying collec-
tive spin excitation builds out of the quasielastic scattering, presumably due to the
buildup of static, ferromagnetically coupled spins within Tb2Sn2O7’s ground state
(Figs. 8.17 and 8.18) [59, 62].
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Fig. 8.18 Inelastic neutron
spectra taken at 10 K and
0.04 K in Tb2Sn2O7 is
shown. At both temperatures
the �1.4 meV mode softens
at the first antiferromagnetic
correlation wave vector. In
the high temperature
paramagnetic state, this is a
Q-independent mode. In the
ordered state (bottom panel),
structure can be seen in this
broad mode and a low lying
excitation grows out of the
quasielastic scattering

8.6.1 Phase Transitions and Fluctuations in Gd2Ti2O7

and Gd2Sn2O7

Antiferromagnetically coupled Heisenberg spins on a pyrochlore lattice are known
to give rise to a highly frustrated ground state which is macroscopically degen-
erate. Calculations for classical [66] and quantum spins [67] show that such a
system should remain in a spin liquid state with short-range spin correlations at
any non-zero temperature [68]. The addition of dipolar interactions in the presence
of antiferromagnetic Heisenberg exchange on the pyrochlore lattice was shown by
Palmer and Chalker [69] to stabilize a four-sublattice ordered state with an ordering
vector k D 0. Gd2Ti2O7 and Gd2Sn2O7, with the spin only, S D 7=2 Gd3C ion
decoraring the pyrochlore lattice, should provide excellent natural venues for such
a Heisenberg-coupled spin system on the pyrochlore lattice with significant dipolar
interactions. The large moments at the Gd3C sites guarantees that the dipolar inter-
actions will be relatively strong, while the exchange interactions in these insulating
4f systems are relatively weak.

The bulk magnetic susceptibility for both Gd2Ti2O7 and Gd2Sn2O7 follows a
Curie–Weiss law, with an effective moment close to the theoretical value of 7.94�B

appropriate to the free ion [68, 70] and a Curie–Weiss temperature of �10 K. Both
compounds, however, enter magnetically ordered states at � 1 K.
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Specific heat and ac susceptibility measurements showed that Gd2Ti2O7 entered
an ordered phase at 0.97 K [68]. Later specific heat studies taken to lower temper-
atures showed there are two transitions in zero applied field, at 0.97 and 0.7 K [71]
(see Fig. 8.19). Ramirez et al. also observed additional phase transitions, induced
in applied magnetic fields, which were later confirmed by single crystal specific
heat studies by Petrenko et al. [72]. Figure 8.20 shows the temperature-field phase
diagram obtained from a series of low temperature specific heat measurements on
single crystals of Gd2Ti2O7 for three different directions of an applied magnetic
field. The measurements reveal an unexpected anisotropy for Gd2Ti2O7 in a mag-
netic field, in light the anticipated absence of a significant single-ion anisotropy for
Gd3C:

The nature of these ordered states was difficult to determine using neutron
diffraction due to the high absorption cross section of gadolinium. However, a

Fig. 8.19 The temperature
dependance of the specific
heat divided by temperature
of Gd2Ti2O7 under various
applied magnetic fields. In
zero field, three different
samples revealed two phase
transitions that are magnetic
in origin. The bottom panel
shows how these transitions
behave in moderate applied
magnetic fields [71]
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Fig. 8.21 Left: Diffraction from Gd2Ti2O7 by Champion et al. [73] with the inset from Stewart
et al. [75]. Right: Neutron scattering from Gd2Sn2O7 from Stewart et al. [81]. Inset shows the
broad diffuse scattering centred around Q D 1:05 Å�1 that goes away as the temperature is
lowered through the magnetic ordering temperature [81]

small, isotopically enriched, sample of 160Gd2Ti2O7 has been studied using neutron
techniques. In the initial study at T D 50mK, a partially ordered, noncollinear anti-
ferromagnetic structure, with a single ordering wavevector k = [ 1

2
1
2

1
2

] was thought
to describe the magnetic order [73]. The model used to understand this magnetic
scattering, was consistent with a stacking of ordered kagomé planes along [111]
directions, separated by triangular layers occupied by disordered Gd3C spins and
was consistent with electron spin resonance (ESR) results that saw large global
planar anisotropy [74]. This proposed 1-k structure and more complicated multi-
ple k structures result in the same neutron diffraction pattern from polycrystalline
samples. It was only when the nature of the the diffuse magnetic scattering was
examined in the powder that Stewart et al. [75] were able to conclusively deter-
mine that a 4-k magnetic structure was more appropriate. Later, Sosin et al. [76,77]
repeated the ESR measurements and found only a local anisotropy and no ordered
planes of spins appropriate for the 1-k structure. The neutron scattering from
160Gd2Ti2O7 and 160Gd2Sn2O7 are shown in Fig. 8.21. In 160Gd2Ti2O7, very
broad diffuse magnetic scattering is seen above 1 K (not shown here). Below this
temperature, magnetic Bragg peaks occur at the reciprocal lattice positions indi-
cated by the tic marks in Fig. 8.21. The magnetic Bragg reflection at the lowest
wavevector, the weak ( 1

2
1
2

1
2

), only appears and increases in intensity below the sec-
ond transition as shown in the inset of the left panel of Fig. 8.21. At all temperatures,
diffuse magnetic scattering is observed, although it diminishes as the temperature
is decreased and the Bragg peaks grow. This diffuse magnetic scattering, centred at
jQj � 1.2 Å�1 indicates that the correlation length appropriate to the disordered
spins is � 3.5 Å, the nearest neighbor distance and not 7 Å appropriate for the
model proposed earlier with disordered interplanar triangular sites [73]. The new
structure proposed for Gd2Ti2O7 is intimately related to that previously proposed
by [73]; however the ordered component of the structure is described by a more-
complicated 4-k magnetic structure. The lower phase transition at � 0.75 K in zero
magnetic field is associated with the ordering of the disordered sublattice within
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the 4-k magnetic structure. Neither ordered state is that proposed by Palmer and
Chalker [69]. The presence of two distinct, coexisting subsets of Gd moments on
the pyrochlore lattice is consistent with 155Gd Mössbauer experiments [78] but the
physical origin for such a magnetic sublattice remains elusives.

The isostructural stannate, Gd2Sn2O7, has received comparatively less atten-
tion. As mentioned above the paramagnetic properties of Gd2Sn2O7 are similar
to Gd2Ti2O7 [79]. However, only a single phase transition, at 1.0 K, is observed
on cooling and it involves the entire spin system. Recent neutron diffraction mea-
surements by two groups [80, 81] confirmed that Gd2Sn2O7 possesses only one
phase transition down to the lowest temperatures and that the ground state is indeed
that predicted theoretically by Palmer and Chalker [69], see Fig. 8.21. Wills [80]
has proposed that a specific type of third-neighbour superexchange interaction was
responsible for the differing ground states in the these two Gd-based pyrochlore
materials. These studies highlight the extreme sensitivity of the ground states to
small changes in the microscopic properties of these highly frustrated materials. It
is also worth noting that, the broad diffuse magnetic scattering seen in 160Gd2Ti2O7

at all temperatures below 10 K, consistent with a complicated coexistence of
ordered and disordered Gd3C moments, is absent below the phase transition in
Gd2Sn2O7 [81].

Once again, to further understand the magnetic ground states and perhaps defini-
tively identify the cause underlying the differences between Gd2Ti2O7 and Gd2Sn2

O7 one can profitably investigate the spin excitation spectrum of these compounds.
Specific heat is a bulk probe that often provides reliable insight into the low lying
excitations. The specific heat, Cv, of these two compounds just below the transi-
tion temperature is described by an anomalous power law, Cv / T2, associated
with an unusual energy-dependence of the density of magnetic states [68, 71, 78].
Electron spin resonance [74, 76, 77], Mössbauer [82], muon spin relaxation [83, 84]
and neutron spin echo [85] have been performed to probe this region of frequency
space. In many of these measurements, spin fluctuations were interpreted to exist
significantly below the ordering temperature of both compounds, consistent with
the unusual energy-dependence of the density of states seen in the specific heat
measurements but inconsistent with the recent neutron work by Stewart et al. [81]
on Gd2Sn2O7. Sosin et al.[76, 77] found a small gap � 1 K in the spin excitation
spectrum which coexists with the paramagnetic signal in the Gd2Ti2O7, but not
in the Gd2Sn2O7 sample, again consistent with the recent neutron scattering work
mentioned above. Very recently the specific heat of Gd2Sn2O7 was measured by
Quillium et al. [86] to much lower temperatures than previously attained, and it was
found that the proportionality of the heat capacity to T2 did not hold below 400 mK,
see Fig. 8.22. Rather Cv was observed to decrease exponentially below 350 mK.
This is very strong evidence for a gapped spin-wave spectrum in Gd2Sn2O7. Stew-
art et al. [81] neutron scattering data on Gd2Sn2O7 is consistent with such a model
(see Fig. 8.23). Indeed, this neutron scattering data is well described by linear spin
wave calculations performed on the Palmer-Chalker model of spins [87].

Our current understanding of these Heisenberg-like antiferromagnets on the
pyrochlore lattice are at a tantalizing stage. The Gd2Sn2O7 ground state appears
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Fig. 8.22 Specific heat of
Gd2Sn2O7 as a function of
temperature from Quilliam
et al. [86] (blue circles)
between 115 and 800 mK.
Previously measured data at
higher temperatures (green
diamonds) [78], the T 2 power
law previously proposed
(dotted red line) and a T3

power law (dashed blue line)
are also plotted. The upturn
seen below 150 mK results
from the nuclear electric
quadrupole interaction
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to be well described by the Palmer and Chalker model [69] while that of Gd2Ti2O7

is somehow perturbed away from this model. Understanding the ubiquitous low
temperature spin dynamics in a relatively simple model magnet, such as those rep-
resented by Gd-pyrochlores will be very helpful in understanding the nature of the
low temperature spin dynamics in a variety of other frustrated magnets [87].
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8.7 Conclusions

The low temperature properties of several antiferromagnetic pyrochlores were
reviewed, with a particular emphasis on how scattering techniques have informed
on the enigmatic spin liquid and ordered states, and their sensitivity to relatively
modest external perturbations. While much has been discovered in the recent past,
many new questions have been opened up. The role of the lattice, for example, on
which the frustrated spins reside has arisen as a relatively important one in the field
of highly frustrated magnetism in general, and one can fairly safely predict that it
will continue to play an important role in the near future.

Advances in experimental infrastructure are expected to impact geometrically
frustrated magnetism in a very significant manner in the near term. Advances in
spallation-based neutron sources, particularly at the Spallation Neutron Source at
Oak Ridge, J-PARC in Japan, and the Second Target Station at ISIS in the UK will
usher in a new generation of neutron instrumentation with vastly superior figures-
of-merit for performance. Highly frustrated magnetism, with magnetic scattering
distributed over large fractions of the Brillouin zone are very well positioned to
benefit from this new instrumentation. Technical advances are also coming into
place with regard to our ability to expose samples to extreme magnetic fields while
maintaining compatibility with scattering experiments. These should allow more
sophisticated scattering experiments, both neutron and synchrotoron X-ray, to be
carried out with magnetic fields much larger than those presently available. All of
these suggest that our ability to carry out sophisticated new scattering experiments
which can provide definitive insights into the structure and dynamics of new mate-
rials, and in particular into new magnetic materials with exotic ground states, will
be much increased in the near future. For these reasons, there is every reason to
be optimistic for significant advances in the experimental study of highly frustrated
magnets in the near term.
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Chapter 9
Kagomé Antiferromagnets: Materials Vs. Spin
Liquid Behaviors

Philippe Mendels and Andrew S. Wills

Abstract We review the most studied families of kagomé antiferromagnets, includ-
ing the jarosites, SCGO(x), volborthite and herbertsmithite. Emphasis is given to
their detailed structures and the principal experiments which singled out the origi-
nality of their kagomé-based physics; deviations from ideality and relevance to the
idealized kagomé cases are also discussed.

After the first proposal by Fazekas and Anderson in 1973 of a resonating valence
bond ground state (RVB) in triangular systems [1], and its revival in the context
of High Temperature superconductors [2], kagomé antiferromagnets have played a
central role in the development of new concepts and the discovery of new mate-
rials which display a spin-liquid character. These magnets combine the effects of
low dimensionality with a simple corner-sharing geometry and have served as a
playground for theoretical approaches, especially in the quantum S D 1=2 limit.

The discovery and study of quantum frustrated materials has represented a real
challenge for the experimentalists, and has even led to a “Grail quest” following
the seminal studies by Ramirez et al. in 1990, of SrCr8Ga4O19, a “pyrochlore
slab” compound that bridges the kagomé and pyrochlore geometries [3]. This com-
pound, the first to display persistent fluctuations at low T , has been considered as
the archetype of the Heisenberg model on a corner sharing antiferromagnet for
long and has been the subject of intensive studies. Six years later, the Jarosites
joined the clan when they were shown to display the possibility of unconventional
spin glass properties and interesting fluctuating behavior through �SR experiments
which have played a crucial role in the detection of fluctuating states – see the
Chapter by Keren and Carretta, this book. Only recently did the gap between
theory and experiment start to be filled with S D 1=2 magnets, Volborthite
(Cu3V2O7(OH)2.2H2O) [6, 90], in 2001 and an apparently simple “perfect” com-
pound, Herbertsmithite (ZnCu3(OH)6Cl2) [4, 5], in 2005, which discovery gave a
strong impulse to research on quantum kagomé lattices.

In this chapter, we present a survey of a selection of most studied model
kagomé antiferromagnets. We focus on their detailed structures and their devia-
tions from ideality, reviewing the main experiments which revealed the originality
of the kagomé physics. The materials are categorized from the most magneti-
cally ordered to the most fluctuating cases, but it should be remembered that

207
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fluctuations characteristic of the frustration remain a common feature of many
kagomé antiferromagnets that show long-range magnetic order. We also empha-
size the resulting impact on the low T physics of the deviations away from the
idealized kagomé antiferromagnet. Finally, some less studied systems are shortly
presented, including emergent magnets based on the Langasite structure and organic
frameworks.

9.1 A Short Theoretical Survey: What would be the Ideal
Kagomé Antiferromagnet?

Contrary with the initial proposal by Anderson, corner sharing is a prominent ingre-
dient for stabilizing fluctuating ground states such as, but not limited to, the RVB
state [8, 9]. It should also be noted that some more connected edge-sharing lattices
might also display the dynamical modes associated with liquid-type physics over a
broad T -range [10,11], making the search for new model frustrated magnets all the
more interesting.

From a pure classical approach, the corner sharing geometry of the kagomé anti-
ferromagnet generates a macroscopic ground state degeneracy and branches of zero
energy excitations (Fig. 9.1) that prevent long range order, even at T D 0, and limit
the magnetic correlation length to the very short values typical of a “spin liquid
state”. Exact diagonalization calculations of finite clusters in the S D 1=2 quantum
limit create a picture of a fluctuating ground state with an unusual continuum of

Fig. 9.1 Left: q = 0 and q =
p

3 � p
3 local modes on a classical kagomé lattice with neighbour-

ing spins at 120ı: simultaneous local rotation of spins belonging to two sublattices, around the
direction of the third has no energy cost
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Fig. 9.2 Energy spectrum using exact diagonalizations techniques. The striking difference
between the triangular and kagomé antiferromagnets, labeled TAH and KHAF, is the continuum of
excitations in the singlet channel. The gap between the first singlet and triplet states is estimated at
� < J=20, if non-zero [17]. From [8]

singlet excitations between the ground state and the first excited triplet, at variance
with the triangular HAF (Fig. 9.2) [8, 9]. A remarkable result is that an effective
dimer-model yields a similar energy landscape with the same entropy [12]. These
are also quite strong indications that the system breaks into singlets which resonate
to lower the total energy, possibly pointing at a RVB state. Quite recently, more
proposals have been made for the ground state of the KHAF, which can be divided
into two broad classes: valence bond crystal or resonating valence bond spin liquid.
These are reviewed in the lecture notes by Lhuillier [13], to which the reader should
refer for an introduction to the related theories.

From an experimental point of view, the ideal kagomé antiferromagnet should
obey the following criteria:

� Decoupled kagomé planes, i.e. interplane coupling should be weak or, best,
negligible

� No perturbation such as anisotropy of the interactions, long-range dipolar inter-
actions, second neighbour interactions or dilution

� Quantum spins (S D 1=2) to increase the weight of fluctuations

In terms of anisotropy, the pure Ising kagomé case has been treated theoretically.
Again the absence of order is predicted, but there are at present no experimental
realizations [14, 15], except perhaps in the low-T regime of the recently studied
Nd-Langasite (Nd3Ga5SiO14) [16].
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In this survey, we will mainly focus on the Heisenberg-like compounds. We begin
our review with the jarosites, the richest family in which both the diamagnetic spac-
ers between kagomé planes and magnetic ions can be varied. After reviewing the
jarosites, we then present the main results accumulated on kagomé bilayers, which
demonstrate many hallmarks of geometric frustration and serve as key references
in the field of Highly Frustrated Magnetism. Finally, we give an overview of the
rapidly progressing search for the ideal S D 1=2 kagomé antiferromagnet.

9.2 The Jarosites

The jarosites make up the most studied family of kagomé antiferromagnets. Syn-
thesised from conventional and Redox hydrothermal reactions, they crystallise with
a highly flexible structure that allows a wide range of compositions to be formed.
They have the general formula AB3(SO4)2(OH)6 (A D NaC, KC, RbC, NHC

4 , AgC,
H3OC, 1

2
Pb2C; B D Fe3C, Cr3C, V3C) and provide access to model frustrated mag-

nets in both the classical, S D 5=2, and more quantum, S D 3=2, 1 limits. They
have been found to display a range of both conventional long-ranged magnetic order
and more exotic unconventional orderings that are summarized in Table 9.1 and will
be discussed in this section.

9.2.1 Synthesis and the Jarosite Crystal Structure: Idealized
and Disordered

The jarosites are a subgroup of the alunite mineral family [18]. Their crystal struc-
ture is typically described in the space group R N3m [19] and is shown in Fig. 9.3. The
moment bearing transition metals are coordinated by a distorted octahedron made
up of equatorial hydroxide groups and axial capping by the oxygens of the SO2�

4

units. It is the hydroxide groups that link the transition metals together to form the
kagomé network and mediate exchange interactions between them. Two layers of
the SO2�

4 units are then locked together by the A-cation before the sequence is
repeated to form the hexagonal : : :ABC: : : stacking sequence.

The jarosites are prone to unstoichiometry with synthesis by traditional hydro-
thermal techniques [23] from acidic Fe3C sulfate bearing aqueous solution leading
to hydronium incorporation at the A-site of the non-hydronium jarosites and loss of
Fe3C. This substitution creates a mechanism for disorder as the hydronium ions are
not necessarily well defined rigid C3v units, but can distort depending on the local
environment, perhaps even to lose a proton to some other region of the crystal struc-
ture to leave a H2O molecule on the A-site. Loss of Fe3C and charge-balancing
through the taking up of additional protons occurs readily under normal acidic
synthesis conditions. Unfortunately, the extent and the effects of the resultant site
disorder and the exchange disorder are difficult to estimate and caution should be
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Table 9.1 Summary tables of the different types of orderings found in the jarosites, adapted from
[22], values of the intercept of the inverse susceptibility with the temperature axis � , the critical
temperature TC

Formula � /K TC /K Ordering type Reference

KFe3(SO4)2(OH)6 �800 65 k D 00 3
2
, q D 0 [24]

KFe3(SO4)2(OH)6 �663 64.5, 57.0 k D 00 3
2
, q D 0 [25]

KFe3(SO4)2(OH)6 �828 65 k D 00 3
2
, q D 0 [26]

KFe3(SO4)2(OH)6 �828 65 k D 00 3
2
, q D 0 [27]

NaFe3(SO4)2(OH)6 �667 62, 42 k D 00 3
2
, q D 0 [28]

NaFe3(SO4)2(OH)6 �825 61 k D 00 3
2
, q D 0 [26]

NaFe3(SO4)2(OH)6 �825 62 k D 00 3
2
, q D 0 [27]

(NH4)Fe3(SO4)2(OH)6 �670 61.7, 57.1 k D 00 3
2
, q D 0 [31]

(ND4)Fe3(SO4)2(OD)6 �640 62, 46 k D 00 3
2
, q D 0 [28]

(NH4)Fe3(SO4)2(OH)6 �812 62 k D 00 3
2
, q D 0 [27]

TlFe3(SO4)2(OH)6 – – k D 00 3
2
, q D 0 [32]

TlFe3(SO4)2(OH)6 �813 63 k D 00 3
2
, q D 0 [26]

AgFe3(SO4)2(OD)6 �677 51 k D 00 3
2
, q D 0 [28]

AgFe3(SO4)2(OH)6 �803 60 k D 00 3
2
, q D 0 [26]

RbFe3(SO4)2(OD)6 �688 47 k D 00 3
2
, q D 0 [28]

RbFe3(SO4)2(OH)6 �829 64 k D 00 3
2
, q D 0 [27]

RbFe3(SO4)2(OH)6 �829 64 k D 00 3
2
, q D 0 [26]

Pb0:5Fe3(SO4)2(OH)6 – – unknown [32]
Pb0:5Fe3(SO4)2(OH)6 �700 to �900 28, 42 unknown [20]
Pb0:5Fe3(SO4)2(OH)6 �832 56 unknown [26]

(D3O)Fe3(SO4)2(OD)6 �700 13.8 Unconventional spin glass [33–35]
(D3O)Fe3�x Aly(SO4)2(OD)6 �720 41.1 k D 00 3

2
, q D 0 [28]

KCr3(SO4)2(OH)6 – 4 k D 000, q D 0 [37]
KCr3(SO4)2(OH)6 �70 1.8 k D 000, q D 0 [38]
KCr3(SO4)2(OH)6 �54 1.5 k D 000, q D 0 [38]
(H3O)Cr3(SO4)2(OD)6 �78 1.2 Unknown [22, 36]

(H3O)V3(SO4)2(OD)6 C45 21 k D 00 3
2
, q D 0 [39]

NaV3(SO4)2(OD)6 C45 21 k D 00 3
2
, q D 0 [22]

NaV3(SO4)2(OH)6 C52 33 k D 00 3
2
, q D 0 [40]

KV3(SO4)2(OD)6 C45 21 k D 00 3
2
, q D 0 [22]

KV3(SO4)2(OH)6 C52 50 k D 00 3
2
, q D 0 [41]

The values of the Weiss temperature for the Fe-jarosites are difficult to determine accurately as the
strong magnetic interactions lead to deviation from the Curie–Weiss law.

exercised over the analysis and discussion of specific magnetic properties. Part of
this difficulty arises from the question over whether the rogue protons within the
crystal structure localise on the oxygens of the SO2�

4 bilayer or on the bridging
hydroxide groups [43] that connect the magnetic B3C ions. Evidence is difficult
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Fig. 9.3 (a) The crystal structure of the majority of the jarosites is described in the space group
RN3m [19] exemplified here for KFe3(SO4)2(OH)6 . An exception to this is Pb0:5Fe3(SO4)2(OH)6 ,
where segregation of the Pb2C ions may occur depending on the synthesis conditions leading to a
doubling of the unit cell along the c-direction [20,21]. (b) and (c) The local coordination of the Fe
octahedra and their coupling to make up the kagomé network. From [22]

to interpret and frequently inconclusive, but it is clear that detailed aspects of the
crystal structure such as these will play an important role in the magnetism of these
frustrated magnets.

A synthetic breakthrough was the development of an alternate route based on
the oxidation of bulk iron, rather than aqueous solutions of Fe3C. This allowed
the synthesis of several Fe-jarosite samples with very little reported substitution of
H3OC for KC and high coverages of the Fe-site [26, 44]. The reaction proceeds via
an Fe2C intermediate, Szomolnokite FeSO4 � H2O [45]:

Fe C H2SO4 C 1

2
O2 C H2O ! Fe.SO4/ � H2O C H2O (9.1)
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6Fe.SO4/ � H2O C K2SO4 C 6H2O ! 2KFe3.SO4/2.OH/6 C 3H2 C 3H2SO4

(9.2)
Subsequent oxidation of the Fe2C to Fe3C in the Szomolnokite precipitate causes
hydrolysis of the H2O molecules, drawing the OH units closer to the Fe3C centres,
and to allowing bridging of the Fe3C octahedrons to make up the kagomé plane.

This Redox reaction mechanism is not followed by hydronium jarosite, as the
high hydration number of the H3OC cation lowers its mobility too much for it to
occur. The traditional hydrothermal reaction solution of Fe3C and SO2�

4 is therefore
required:

3Fe2.SO4/3 C 2ŒH3O.H2O/6�C ! 2ŒH3OFe3.SO4/2.OH/6� C 5H2SO4 C 2HC
(9.3)

where [H3O(H2O)6]C corresponds to solvated hydronium ion.

9.2.1.1 Néel States and Short-ranged Order

Interest in the jarosites began with initial studies on jarosite itself, [46] which has
the idealised formula KFe3(SO4)2(OH)6. While frustrated magnetism had not at
that time been developed as a context within which to understand its magnetic
properties, this early work revealed a canted magnetic ordering that can now be
understood in terms of competing exchange interactions and magnetic frustration.
Errors in the original magnetic structure were corrected by Inami and later groups
[24,28] who showed that KFe3(SO4)2(OH)6 orders at low temperature into the 120ı
‘q D 0’ magnetic structure made from the propagation of triangular motifs with the
chirality � D C1. The observation of this in-plane structure, as opposed to thep

3 � p
3 structure predicted to be stabilised by quantum fluctuations and linear

spin wave theory [29, 30], suggests the presence of additional magnetic interac-
tions that are beyond the simple n.n. kagomé model. One additional interaction that
is certainly present is inter-plane coupling, as evidenced by the antiferromagnetic
stacking of these magnetic layers along the c-axis, i.e. the propagation vector is
k D .00 3

2
/ with respect to the hexagonal setting of the R N3m space group. Further

work using powder neutron diffraction showed that there are two successive transi-
tions [47] in the range 50 < T < 65 K in which the moments order firstly as an
umbrella structure that is canted slightly out of the kagomé plane before dropping
into the plane at the lower temperature transition [25,39], a complex behaviour that
points to a subtle interplay between the crystal structure and the magnetic ordering
– similar low temperature structures are observed in the NDC

4 , NaC, AgC, and RbC
jarosites (Fig. 9.4). Spin wave measurements on a single crystal indicate that the
Dzyaloshinski–Moriya (D-M) interactions [51,52] may be the dominant anisotropic
interaction in KFe3(SO4)2(OH)6 [53,54]. The D-M interaction could therefore pro-
vide a mechanism whereby changes to the bonding geometry upon cooling rapidly
affect the effective spin anisotropy of the Fe-jarosites.

As well as canting the atomic spins when Néel order occurs, frustration in the
jarosites commonly leads to a significant amount of diffuse scattering in the neutron
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Fig. 9.4 Susceptibility of the Fe-jarosites AFe3(OH)6(SO4)2 (A D Na, ND4, Rb, and Ag) mea-
sured in an applied field of 10,000 Oe. Neighbouring datasets have been offset by successive
increments of 0.0005 emu.mol�1. From [28]

scattering spectra that is characteristic of short-ranged ordered spins. In these clas-
sical magnets it is tempting to think of this as being demonstrative of a mixture of
both � D C1 and � D �1 correlations, and so of emergent

p
3 � p

3 ordering from
within the dominant � D C1, q D 0 structures, but details are difficult to deduce as
synthetic problems have so far prevented the manufacture of large samples of deuter-
ated materials that are required for diffuse single crystal inelastic neutron scattering.
However, recent improvements to the synthetic methods have allowed single crys-
tal studies of spin waves in the ordered phases of KFe3(SO4)2(OD)6, and will be
discussed in Sect. 9.2.2.

Long and short ranged order is also observed in the Cr analogue, KCr3(SO4)2

(OH)6 by neutron scattering, which revealed that below an antiferromagnetic tran-
sition at TN � 2 K into a Néel state, though the ordering is only partial with the
sublattice magnetisation being far below that expected for Cr3C [38]. The remaining
fraction of spins forms a gapless spin liquid state. It is noted that the propaga-
tion vector observed in KCr3(SO4)2(OD)6 is k D .000/, in contrast with the
Fe-analogue, which corresponds to a ferromagnetic stacking of the kagomé lay-
ers. This change in the propagation of the magnetic structure demonstrates that the
interlayer coupling in these materials is modified by substitution of the B-site metal.

The final magnetic structure to be considered is that of the vanadium jarosites
KV3(SO4)2(OH)6 which features a transition to long range magnetic order at
TN � 50 K [22]. First reports indicated that the structure was a canted ferromag-
net with antiferromagnetic stacking of the kagomé layers, k D .00 3

2
/, and so may

have revealed features characteristic of frustrated ferromagnetism [39]. Later work
indicated that the moments were simply collinear and no effects of frustration are
evidenced [41, 42].
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Fig. 9.5 The spin glass freezing temperature of (H3O)Fe3(SO4)2(OD)6 as a function of the ratio of
bond lengths � D 1�R.Fe�O/equitorial=R.Fe�O/apical. The inset shows that the same linear func-
tion fitted for hydronium jarosite can be extended to the antiferromagnetic Néel ordering tempera-
tures of KFe3(SO4)2(OD)6 (grey circles) and (ND4)Fe3(SO4)2(OD)6 (grey triangles). From [49]

9.2.2 Fe jarosites: S D 5
2

Kagomé Antiferromagnets

A key feature of the Fe-jarosites is the difference in behaviour between hydronium
jarosite, which displays a spin glass-like state at low temperature, and all the other
jarosites that show long range Néel order. While this was initially explained in terms
of the naturally high Fe-coverage of hydronium jarosite, there have been more recent
suggestions that protonation of the hydroxide units that bridge the Fe centres, [48]
or changes to the Fe-coordination are important (Fig. 9.5) [49]. The latter has the
remarkable feature of showing that the distortion around the Fe-site maps well to the
spin glass freezing temperature in (H3O)Fe3(SO4)2(OH)6 and the Néel ordering of
KFe3(SO4)2(OH)6, and explains the ordering in hydronium jarosite that is induced
by substitution of Al3C onto the Fe3C site [28, 50].

Understanding the nature of any magnetic anisotropy is a key challenge for dif-
ferentiating the drives for the types of magnetic orderings. Unfortunately, synthetic
difficulties have made such determinations difficult and unclear, with spin wave
measurements of small single crystals of potassium jarosite being compatible with
both single ion anisotropy and D-M components (Fig. 9.6).

9.2.2.1 Is Hydronium Jarosite a Topological Spin Glass?

The spin glass-like state of hydronium jarosite brings to the fore questions over
whether glassy spin dynamics can exist in a magnet without randomness. Whilst
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Fig. 9.6 Spin wave dispersion along the high symmetry directions for KFe3(SO4)2(OD)6 with the
solid lines showing a fit to a model including a DM component. From [53]

disorder is likely to be always present due to the flexibility of the crystallographic
structure, the thermodyanmics and kinetics of this spin glass state appear quite
different to those in site- or bond-disordered spin glasses.

As all of the Fe-jarosites feature Weiss temperatures falling in the range �900 <

� < �1;200 K, the strong antiferromagnetic exchange cannot explain why hydro-
nium jarosite does not order magnetically. Magnetic susceptibility measurements
indicate a transition to a spin glass-like state in the range 12 � Tg � 17 K [33], as a
bifurcation between zero-field cooled and field cooled magnetization data. Specific
heat shows that the underlying thermodynamics of the glassy state are unconven-
tional with a quadratic T 2 dependence reminiscent of the Goldstone modes in a
2-dimensional antiferromagnet being seen below Tg rather than the linear relation
characteristic of site-disorder spin glasses [55]. This observation is compatible with
Chandra, Coleman and Ritchey’s model of an evolution via a sequence of zero-
energy modes that is retarded by spin or exchange anisotropy [56, 57]. As the
progression is through ground states, the energy of the individual triangular pla-
quettes is uniform and Goldstone modes are expected. Of course it is difficult to
determine which energy, whether D-M interaction, single ion XY anisotropy, or
anisotropic superexchange are responsible for this highly frustrated magnet order-
ing into an unconventional spin glass state as only powder samples of hydronium
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jarosite are known and spin waves cannot be measured in such a system. However,
57Fe Mossbauer spectra do suggest the opening of a gap below the freezing tran-
sition at which the moments lie in the kagomé planes, supporting the hypothesis
of an anisotropy driven freezing transition [58]. Relaxation, tentatively attributed to
spin cluster tunneling was also related to a low temperature anomaly in the specific
heat, at T � 0:7 K [59]. The length scale of the spin-spin correlations as deter-
mined by powder neutron diffraction is � � 19 ˙ 2 Å at 1.9 K, approximately the
distance across a kagomé star [34,60]. �SR gives an upper limit of the static compo-
nent of the moment in the spin glass-like phase to be estimated as 3.4 �B per Fe3C
with a time window of � 10�6 s, which indicates that a significant fraction of the
spin only moment expected for high-spin Fe3C, 5.92 �B, remains fluctuating at low
temperature [61].

Dynamic scaling of the freezing temperature shows the spin glass transition is
critical, contrary to the dynamic transitions seen in 2-dimensional site disordered
spin glasses. Ageing at fixed temperature below Tg obeys the same scaling law
as in spin glasses, but at the same time is remarkably insensitive to temperature
changes [35], an unusual behaviour that is perhaps related to the uniform energy
landscape that disordered chiral states would still be based on [35]. Comparison
of the temperature dependences of hydronium jarosite with a site disordered spin
glass, SrCr8:6Ga3:4O19 and the pyrochlore Y2Mo2O7, further reveal that tempera-
ture selective ageing characteristic of conventional spin glasses is abnormally weak
in the jarosite, again pointing to a different underlying mechanism [62, 63].

9.2.3 Cr Jarosites- S D 3
2

Kagomé Antiferromagnets

Much less is known about the chromium jarosites which provide examples of
S D 3

2
kagomé antiferromagnets. The most studied is, again, the potassium mem-

ber, KCr3(OH)6(SO4)2 which features a magnetic transition in the range 1:5 <

TN < 4 K, depending on synthesis conditions [37, 38, 64]. NMR measurements
indicate a deviation from the Curie–Weiss law due to the short-range spin corre-
lation below about 150 K (with a corresponding TN value of 4.2 K). Below this
temperature k D .000/ Néel order occurs [37, 38]. The long range ordering is
weak with only 1:1(3) �B of the expected spin-only moment of g�BS D 3�B

[38]. The remainder of the spins are observed to be in gapless quantum spin fluctu-
ations, �=kB < 0:25 K, with a bandwidth of 60 K. �SR studies below TN show
that spin fluctuations persist without any clear signature of spin freezing, even at
T D 25 mK [64].

The RbC, NHC
4 , NaC analogues show similar behaviour, though a small hystere-

sis in the magnetisation at 2 K is indicative of a small ferromagnetic component,
proposed to result from a canting of the 120ı spin structure [65].

Little is at present known about the hydronium member, although early reports
indicate an absence of long range order, suggesting that again the hydronium
member is intrinsically different to the other A-site materials [22, 36].
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9.2.4 Conclusion

The jarosites represent a very rich family of classical and semi-classical kagomé
magnets where the spin value can be tuned to make a range of magnetic ground
states for study that are based on ordered and/or fluctuating spins. Efforts to under-
stand their magnetic behaviour led to the first discussion over the effects of the DM
interaction and suggestions that its perturbation was very important and could in
fact drive the ordering to a Néel ground state, a scenario which could be further
tested owing to the recent synthesis of high quality crystals. There remain sev-
eral open questions about these magnets, such as the roles played by disorder and
another perturbing parameter, namely the inter-kagomé layer magnetic coupling, in
the stabilization of the ground state.

9.3 Pyrochlore Slabs

Among all Highly Frustrated Magnets, the chromium-based S D 3=2 pyrochlore
slab compounds SrCr9pGa12�9pO19 (SCGO(p)) [66] and Ba2Sn2ZnCr7pGa10�7p

O22 (BSZCGO(p)) [67] of the magnetoplumbite family appear as good realizations
of a Heisenberg Hamiltonian on a corner sharing lattice and have been found to
retain the essence of a spin liquid ground state despite a spin glass-like freezing.
Indeed, the observation of the unusual properties of SCGO, and models developed
to explain them, played an important role in opening the field of Highly Frustrated
Magnetism.

9.3.1 Synthesis

Only a few attempts to produce single crystals of SCGO have been successful, and
these unfortunately led to a poor magnetic coverage of the kagomé planes [3, 68].
For this reason, most of the work has been performed on better quality powder sam-
ples. Initially limited to a Cr content of up to p ' 0:9, powders could be then
successfully synthesized up to a content p D 0:96 [69, 74]. These were obtained
by mixing SrCO3, Cr2O3, Ga2O3 in stoichiometric quantities and firing at 1350 ıC
for 4–5 days with several intermediate grindings. This process was continued until
laboratory x-ray powder diffraction confirmed that all the Cr2O3 had reacted. Sam-
ples with a good mosaicity could be obtained by this method and their high quality
was assessed through magnetization and NMR local measurements (see below).
Attempts to synthesise a fully Cr-occupied pyrochlore slab have to date been unsuc-
cessful, leading above p D 0:96 to increasing amounts of Cr2O3 impurity scaling
with p � 0:96 [74].
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9.3.2 Magnetic Network

In both SCGO and BSZCGO, octahedrally Cr3C, S D 3=2, ions are located at cor-
ners either of tetrahedra or triangles (Fig. 9.7). The 3d 3 electronic configuration has
a negligible single-ion anisotropy. As is the case in spinels, Cr–Cr exchange is direct
in nature which limits any coupling with second neighbours [72]. This therefore
yields a Heisenberg Hamiltonian with n.n. exchange only, on a corner sharing lattice.
The various Cr–Cr distances within bilayers only differ by 3.7% and the average
coupling, J � 40 K, calculated from a high temperature series expansion fit of the
high T susceptibility, is almost two orders of magnitude larger than the perturbation
terms, like single-ion anisotropy � 0.08 K estimated from ESR measurements [70]
and dipolar interactions � 0.1 K, or next nearest neighbor interactions < 1 K [71].

There are two minor differences between these compounds; in SCGO, in between
two consecutive bilayers there are layers of Cr pairs which were demonstrated
to turn into a singlet state at quite high T , hence do not impact on the low-T
physics of the bilayers [72]. In BSZCGO, which looks like a simpler case from
a magnetic point of view, the natural random 1:1 Ga-Zn substitution present inside
the pyrochlore slab and required for charge balance, leads to local random struc-
tural distortions which might induce some (minor) modulation in the exchange
constants [71, 73]. Overall, the structure of both compounds is essentially 2D.

The main drawback is that both compounds have Ga/Cr substitutional disorder,
and a Cr-coverage of the frustrated bilayer higher than p D 0:96 and p D 0:97

cannot be reached in SCGO(p) and in BSZCGO(p). This results respectively in
4 and 3% spin vacancies (Ga3C is diamagnetic) in the magnetic sublattice. The

Fig. 9.7 Pyrochlore slabs: Only Cr ions have been represented. Left: SCGO, pyrochlore slabs are
separated by Cr–Cr pairs which dimerize below 180 K. Right: BSZCGO which features a simpler
and purer structure of well-separated pyrochlore slabs. From [71]
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related magnetic defects that they produce, turn out to be insufficient to destroy
the fluctuating character of the ground state. One way to get around the dilution
problems and to extrapolate to the pure case is to perform studies versus p which
is quite well controlled in this family and to distinguish between intrinsic properties
and those related to dilution of the frustrated network. Yet, one has to bear in mind
that diamagnetic defects are always present.

9.3.3 Generic Physics

High T

The linear dependence of the inverse susceptibility of SCGO measured using bulk
magnetometry, ��1

macro, was found to extend much further below the Weiss tem-
perature than would be expected from mean-field models of unfrustrated systems
(Fig. 9.8), and led to estimates for the antiferromagnetic Weiss-temperature of 500-
600 K. Only at very low-T can the upturn of the susceptibility be seen that is
associated with the defects (see next section) and a transition to a spin-glass state
with a remarkably high ratio j	j=Tg � 150 � 200.

One of the greatest advantages of local techniques, such as NMR, is that they
enable the intrinsic physics of the frustrated magnet to be distinguished from the
effects of defects that can easily dominate the bulk susceptibility. In SCGO the
intrinsic susceptibility measured at the Ga nucleus lying inside the pyrochlore slab
is marked by a maximum � J=2 (Fig. 9.9) which is largely independent of Cr-
content, indicating that it is an intrinsic response that is robust in character [73–75].
This maximum is the signature of a strengthening of magnetic correlations whereas
the finite T ! 0 extrapolation of the susceptibility simply indicates that the corre-

Fig. 9.8 Left, top: Susceptibility of SrCr8Ga4O19; main panel, evidence for a spinglass transition;
inset, 1=� plotted vs. T ; Left, bottom: T 2 variation of the specific heat at low T (from [76]); Right:
Invariance of the specific heat under an applied field (from [77])
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Θ

Fig. 9.9 T -variation of NMR line shift for various lattice covering in SCGO. Inset: the inverse
shift plotted vs. T yields a Weiss temperature of �450 K. From [74]

lation length remains finite at T D 0 and that no gap opens. The former finding is
further confirmed by neutron scattering results [69].

A Spin Liquid State?

The spin-glass state was studied in detail using both macroscopic and local mea-
surements. Whereas there is a divergence of the non-linear susceptibility with
conventional critical exponents [76], the specific heat displays the T 2 dependence
typical of classical spin waves in a 2D antiferromagnet [3] rather than the linear
T-dependence observed in canonical spin glasses. In addition, the specific heat
was found to be field independent, providing evidence for low energy singlet
excitations [77].

The most striking evidence for a liquid-like ground state in the SG phase
comes from the persistence of dynamics in muon relaxation measurements down to
T D 20 mK [78]. A slowing down of the fluctuations around Tg is clearly observed
together with a very uncommon plateau of the muon relaxation rate (Fig. 9.10)
with a Gaussian early time dependence of the relaxing asymmetry. This repre-
sents a hallmark of particular fluctuations that have now been observed in many
highly frustrated magnets. The dynamical character was deduced from the absence
of decoupling under an applied longitudinal field – see chapter by Carretta and
Keren. Neutron scattering studies show the correlation length to be short and the
static moment to be only 25% of what would be expected for a completely frozen
picture (Fig. 9.10) [79]. Although these studies were performed on a sample with
only 89% of the magnetic sites occupied, they were further confirmed by care-
ful studies on the least diluted samples [69, 81]. Finally, one should note that Ga
NMR cannot be followed at low temperature because of a wipe-out of the signal
related to the slowing down of the dynamics which yields too fast a relaxation to be
observed in the NMR time-window. The fact that the signal is not recovered even
well below Tg is further evidence for the persistence of fluctuations far into the spin
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Fig. 9.10 Left panel: In the frozen state, neutron scattering yields a correlation length of the order
of lattice spacing (from [79]). Right panel: �SR relaxation rate for SCGO and BSZCGO. The
freezing temperatures, respectively 3.9 K and 1.5 K differ by a factor 2. A clear slowing down of
the electronic fluctuations occur at Tg but the plateau observed at low T contrasts with the peak
expected in a conventional spinglass transition (from [80])

glass phase [74, 75]. Such wipe-out effects have been reported in various contexts
and are indeed commonly linked to fast relaxation processes [82, 83].

9.3.4 Non-magnetic Defects

Staggered Static Response

As emphasized in Sect. 9.3.2, non-magnetic defects originate mainly from spin
vacancies in the magnetic lattice. In the well established case of unfrustrated antifer-
romagnetic correlated systems, such as high-TC cuprates or S D 1=2 spin chains, a
staggered susceptibility increases quickly at low T around the vacancy, and appears
to be peaked at the n.n. sites [84]. The spatial response decreases quite steeply on a
length characteristic of short ranged correlations typically expanding beyond a few
lattice spacings (Fig. 9.11). NMR, which probes locally the susceptibility, was used
to establish a map of these susceptibilities by singling out typical spectra for n.n.,
and through a line broadening found symmetric because of the staggered character-
istic of the response of defects. Its width is directly linked to the low-T increase of
the macroscopic susceptibility due to defects. It therefore played a central role in
unveiling the physics induced by non-magnetic defects well explained by theories
modeling these responses. This approach which could be coined “perturb to reveal”
proved to be quite fruitful in this field and might prove to be promising as well in
the context of HFM.

In SCGO, the Ga NMR linewidth scales with the low-T susceptibility and
the proportion of defects, .1 � p/ when their concentrations are low, typically
.1 � p/ < 0:2 [74]. Moreover the symmetric lineshape was the first clear indication
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Fig. 9.11 Exact diagonalization study of the magnetic texture induced by a single impurity in a
15-site cluster. The black lines denote the boundary of the cluster. Top: Bond spin-spin correlations.
Bar width represents the strength of correlation functions on each bond, measured as a deviation
from the pure-system values on a linear scale where the strongest correlation function is hSi �Sj i D
�2:994, approximately twice that in the pure-system. Blue (red) lines denote bonds on which
the deviation is negative (positive). Bottom: Site magnetization profile of the lowest triplet state.
Circle radius represents the magnitude of the local moment on a linear scale, where the largest
circle corresponds to a moment of 0.722 �B 0.5 �B is the moment of a spin 1/2, and the dark
gray circles represent sites with induced moments opposite to the effective field direction. From
[86]

of a staggered response. There is an interesting difference with the unfrustrated case
which came first out of exact diagonalizations for S D 1=2 [85]: on a given triangle
around a spin vacancy, AF bonds will be locally satisfied, leading to a release of frus-
tration and the creation of a spin singlet. The staggered response comes out further
than the 1st n.n where a singlet is localized and is also found for S D 3=2 [86]. This
could explain well the observed drastic low-T broadening. The depressed response
in the immediate vicinity of the defect was not observed through NMR experiments
and should have been visible as a reduced shift. The more complicated structure
of pyrochlore slab, where Ga probes 12 Cr sites, or the dynamical wipe-out of the
NMR signal below 20 K does not allow probing of the ground state. It is worth
noting that in SCGO, the linewidth extrapolates to zero when p ! 1, whereas in
BSZCGO it extrapolates to a finite value. This is the signature that in the latter com-
pound, an additional kind of defect plays a role, which is likely to be associated with
the existence of bond defects induced by the 50% random occupation by Zn2C of
the Ga3C site [73].
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Impact on the Low Temperature Properties

One of the central questions over these materials is the impact of defects on the
low-T physics. Are they at the origin of the spin-glass transition? This is still
not a completely answered question since defect-free samples are not available.
Yet, one can vary the amount of defects in very well controlled syntheses for
p < pmax. High -T NMR also yields a good control of the final content for the
purest samples [71].

Early studies of the variation of Tg with p did not benefit of the least substituted
samples and gave contradictory results [87, 88]. Later, less diluted samples clearly
pointed to a very weak decrease of Tg when the concentration of defect is increased
(Fig. 9.15), as witnessed by the increase of both the low-T upturn of the macro-
scopic susceptibility and the NMR linewidth [74]. This decrease of Tg goes against
the common behavior observed in spin glasses. There, the freezing results from the
interaction between magnetic defects which decreases with distance, hence with the
concentration of defects. Here, obviously the spin freezing occurs in the defect chan-
nel (Curie-like susceptibility) but the effective interaction between defects is either
not set by their mutual distance or does not play any role in the temperature scale of
the spin glass transition.

The T ! 0 relaxation rate has a smooth variation with p through the percola-
tion threshold of the pyrochlore slab [81]. This points at local excitation modes as
expected in the KHAF.

The interpretation of the variation of the muon relaxation rate with T , p and the
applied field still represents a real challenge. It could be reasonably fitted assuming
a phenomenological model where both sporadic dynamics due to unconfined spinon
-like excitations / p and more conventional spin-glass dynamics / .1 � p/ con-
tribute to the relaxation [89]. The observation of a relaxation requires a gapless state
which would therefore give an upper bound of a hypothetical singlet-triplet gap of
less than 30 mK � J=100. Sticking to this simple picture it seems that spinon-like
excitations would be destroyed above a characteristic temperature � Tg. This raises
questions about what property sets the energy scale that causes the system to turn
into such a state, and why the transition temperature is only weakly dependent on the
amount of defects. No theoretical approach has been further developed to interpret
this set of data.

9.3.5 Concluding Remarks

While SCGO gave a very solid foundation to the field of geometrically frus-
trated magnetism, its complicated corner sharing lattice does not allow a refined
comparison with theoretical models and does not tackle the important case of fluc-
tuations generated but the quantum character. A new route to investigate such effects
has been opened by Volborthite and Herbertsmithite which are described in the
following.
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9.4 Towards S D 1/2 Ideal Compounds

Copper (II) materials are natural candidates for realising S D 1=2 quantum antifer-
romagnets, yet most of them form square-based network, built from edge-sharing or
corner sharing CuO4 square plaquettes. The situation is far from hopeless since sev-
eral compounds have been isolated recently which feature nearly apparently good
realizations of a kagomé lattice, Volborthite, Herbertsmithite and the recently dis-
covered Kapellasite. These have opened new experimental avenues with which to
probe our understanding of kagomé physics and inspired new theoretical work.

9.4.1 Volborthite

Structure

Volborthite is a natural copper vanadate mineral Cu3V2O7(OH)2.2H2O [6], that
features a 2D structure with Cu-O(OH) layers separated by 7Å pillars built from
pyrovanadate groups V2O7, which are surrounded by water molecules (Fig. 9.12).
V5C ions are diamagnetic and are good NMR probes of the physics of the Cu
planes through equivalent hyperfine coupling to 6 sites located at the vertices of
one Cu hexagon of the kagomé lattice. A monoclinic distortion leads to two slightly
different Cu-Cu bonds which yield two sets of magnetic interactions the relative

7.2Å

= 2.94Å

= 3.04Å

Fig. 9.12 Left: structure of volborthite, side view and top view with two slightly different Cu–Cu
bonds. From a magnetic point of view the kagomé lattice features isosceles rather than equilateral
triangles. From [90]
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magnitude of which is unknown. The triangles of interactions are therefore isosceles
rather than equilateral and display an average value of the exchange constant �85 K.
The discovery of this compound and the experimental results triggered some theo-
retical interest in this type of distorted kagomé lattice and it has been shown that a
great deal of frustration survives the lowering of symmetry, though the degeneracy
is subextensive within a classical approach [91, 92].

T > 2 K

As with many frustrated networks, the linear behavior of inverse susceptibility
extends well below the Weiss-temperature. A small upturn of � observed in the
purest samples indicates less than 1% of impurities treated as quasi-free S D 1=2

spins with as low as a 0.07% record content [93, 94].
These paramagnetic-like impurities are responsible for the NMR line broaden-

ing observed at low T , typically below 10 K. Both V NMR shift and noticeably,
because of the small impurity content in comparison with SCGO, macroscopic sus-
ceptibility, display a maximum around 20 K � J=4 (Fig. 9.13). Specific heat data on
this compound is not accurate enough to allow a definite statement on the ultimate
T ! 0 variation [90]. Overall these behaviors are quite similar to those observed in
SCGO.

Fig. 9.13 Macroscopic susceptibility of Volborthite. Note the maximum of susceptibility and a
Curie upturn at low-T likely related to 0.5% defects in the sample. From [90]
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Fig. 9.14 Left panel: Low T V NMR spectra (from [96]). Right panel: Relaxation rates measured
through V NMR and �SR have a different T -dependence (from [95]); H � T phase diagram
(from [94])

Frozen State

A transition to a frozen state was first observed between 1 and 1.5 K both through a
separation between the field cooled and zero-field cooled branches of the suscepti-
bility and a drastic broadening of the NMR spectra [96], the temperatures of which
only weakly depend on impurity contents less than 1%, which reveals an intrin-
sic character. A complete H � T phase diagram was sketched through NMR [94]
which displays a transition from a low field frozen phase to a high field more ordered
phase (Fig. 9.14). Low T magnetization steps have been also observed [93], among
which the first corresponds to the 4 Teslas transition and await some theoretical
interpretation.

Through NMR one can track the local structure in the frozen state. Two different
average internal fields at the V sites were evidenced for a 1.8 T field Fig. 9.14. This
was attributed to the spatially anisotropic character of this compound which yields
two non-connected ground state spin configurations, one of which (75%) gives a
cancellation of the internal field at the V site [96]. Much alike the data from SCGO,
a plateau of the muon relaxation rate is found below Tg [97]. Interestingly, one
can vary the rate of non-magnetic defects in the Cu planes by substituting Zn in a
controlled manner on the Cu sites up to a content � 5%. Again the transition temper-
ature is found to decrease when disorder increases but, unlike SCGO, the decrease
is quite sharp, as well as the value of the T D 0 relaxation rate [98] (Fig. 9.15). The
origin for this is unclear. Finally, the relaxation plateau is consistent with a picture
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Fig. 9.15 Low T comparison between SCGO and Volborthite: Evolution of the relaxation rate
and of the transition temperatures with non-magnetic substitution. From [98]

of persistent dynamics while 1=T1�NMR displays a peak at the transition tempera-
ture [94, 96] and has a linear T -dependence when T ! 0 which as well indicates
the persistence of low energy fluctuations in the frozen phase (Fig. 9.15). These con-
trasting findings between �SR and NMR can be qualitatively reconciled by noting
that V probes equivalently 6 sites hence zero energy modes in a

p
3�p

3 are filtered
out and do not contribute to the NMR relaxation, while muons which usually bind
to an oxygen 1Å away, implant at a non symmetric site and could sense such exci-
tations. Finally, some neutron work in zero field has been performed on deuterated
sample which corroborates these findings. Diffuse scattering reveals the presence of
short range order involving approximately 40% of the spins, which fails to develop
into long range order even at millikelvin temperatures. Correlations evolve from q
D 0 type around 5 K to a q D p

3 � p
3 at the freezing temperature observed in

NMR.
Inelastic neutron scattering shows a non-dispersive magnetic excitation centered

around 4.5 meV (or �J=2) which might signal the existence of a Dzyaloshinskii–
Moriya anisotropy much as in the Jarosites [99].

9.4.2 Herbertsmithite: “An end to the Drought of Quantum
Spin Liquids [100]”

Herbertsmithite ZnCu3(OH)6Cl2 is an end member of the paratacamite family
ZnxCu4�x(OH)6Cl2 [4], and is perhaps the most promising candidate to-date for
an idealized quantum kagomé AFM. Despite the unprecedented absence of any
observed order for a kagomé compound down to J=9000, three years after its dis-
covery this status is still not confirmed. While Cu2C ions form a kagomé plane,
additional Dzialoshinsky–Moriya interactions have to be taken into account and the
presence of diamagnetic defects is a very real possibility.

The discovery of this compound triggered a remarkable revival of both theoret-
ical and experimental studies on the kagomé lattice [101–104]. In the following
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paragraph we give an overview of our present understanding and attempt to stress
the open debates which are currently going on.

Structure and Interactions

The x D 1 compound of the Zn-paratacamite family ZnxCu4�x(OH)6Cl2 can be
viewed as a double variant of the parent clinoatacamite compound (x D 0); first,
the symmetry relaxes from monoclinic to rhombohedral (R3m) around x D 0:33,
leading to a kagomé lattice in the a-b plane; then, in the c- elongated x > 0:33

pyrochlore structure, the magnetic bridge along c-axis between a-b kagomé planes
is progressively suppressed by replacing the apical Cu2C by a diamagnetic Zn2C.
Due to a more favorable electrostatic environment, Cu2C is expected to preferen-
tially occupy the distorted octahedral kagomé sites. When x D 1 the S D 1=2 ions
should therefore form well defined kagomé layers that are themselves well separated
by diamagnetic Zn2C (Fig. 9.16).

Phase Diagram of the paratacamite Family

In clinoatacamite (x D 0), two transitions are observed in �SR, at 18 K and
6 K [105]. The lower, leading to long-ranged order with a gap in the excitation spec-
trum of �1:2 meV [106]. At x D 0:33, a partial ordering is observed and finally, the
ordering disappears above x D 0:5 � 0:6. No order has ever been observed in the
x D 1 compound down to 20 mK and the upper bound value of a hypothetical frozen
moment would be less than 10�3�B (Fig. 9.17) [107]. These results are completely
consistent with ac susceptibility measurements which behaves monotonously for
x D 1 down to the lowest measured T and neutron scattering where no magnetic
diffraction Bragg peak was detected [108].

From macroscopic magnetization measurements, a clear ferromagnetic compo-
nent is observed when the system gets in the T < 6 K ordered phase (x < 0:5).
Combined with the moderate decrease of the Weiss temperature when x decreases,
this indicates that the coupling between Cu within the kagomé planes is antiferro-
magnetic and dominant, J � 180 K, whereas that between a Cu on the Zn sites and
a Cu inside the kagomé layer is weakly ferromagnetic (� few tens K). This fam-
ily therefore offers an interesting possibility to explore weakly ferromagnetically
coupled kagomé layers [4] for 0:33 < x < 1.

Susceptibility

Probing the existence of a gap through susceptibility has been a major challenge
since the discovery of the compound. Various results are now reported through
macroscopic susceptibility, and local techniques, Cl [109], 17O NMR [110]. The
�SR shift results are still under debate [111]. 17O NMR is certainly the most
sensitive probe of the susceptibility of kagomé planes since oxygen is responsible
for the exchange coupling bridge between two adjacent Cu. The hyperfine coupling
of Cl to Cu is at least an order of magnitude smaller. In macroscopic susceptibility
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Clinoatacamite
Cu2(OH)3Cl

Herbertsmithite
ZnCu3(OH)6Cl2

Zn-paratacamite
ZnxCu4–x(OH)6Cl2

Zn / Cu

ZnZn / Cu II

Cu l Cu l Cu l Cu l Cu l Cu l

Cu lCu lCu ll

Cu lll

x = 0 x = 0.33 x = 1
P21 / n R–3 m

Fig. 9.16 Top left: Structure of Herbertsmithite from [4]. Top right: Simple sketch of the structure
where Zn and Cu sites only have been represented. Bottom: Evolution of the structure of parata-
camites when Zn content is increased. A structural transition accurs around x D 0:33 which yields
well defined perfect kagomé planes, assumed to be filled with Cu only

Fig. 9.17 Left: Evolution of the low-T �SR asymmetry when Zn content is progressively
increased. The oscillations, as detailed in the inset progressively disappear and vanish for x > 0:5.
Right: Phase diagram of the paratacamite family. From [107]

experiments as well as for 17O NMR, a Curie–Weiss behavior is observed at high T ,
extending well below the Weiss temperature. Below 150 K, the two quantities start
to markedly differ. A clear upturn is observed in �macro whereas the variation of the
oxygen shift 17K goes the opposite direction. This is certainly the best evidence
that the compound is not free from defects. If it were, the only contribution to both
measurements would come from fully occupied Cu2C kagomé planes and would be
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identical provided that no staggered component dominates the O signal. Through O
shift, a maximum in the susceptibility at �J=2 is evident which is certainly related
to the kagomé physics and also observed in other corner-sharing kagomé based
lattices [73, 75, 96], yet with slightly different shapes of the T -variation. A rapid
decrease of the shift follows but the T D 0 shift remains finite (Fig. 9.18).

One can invoke two possible theoretical scenarios:

� A non-singlet ground state, such as appears to be the experimental case, with a
decreasing susceptibility at low T associated with the strengthening of the AF
correlations below T ' J=2 which then level off as T ! 0, and surprisingly, do
not yield a gapped ground state.

� A singlet-triplet gap: The observation that the T D 0 susceptibility is finite in
herbertsmithite which could arise from

– A filling of the hypothetical gap – expected to be at most J=20 – under the
modest applied field 6.5 T of the NMR experiment. It is however not clear
whether the magnetic energy brought to the system � J /30 should be com-
pared to the gap value or to the larger one at which a magnetization plateau
should occur. In addition, the value of the maximum of the oxygen shift 17K

around 50 K is not in line with the expected small value of the gap.

– The existence of an additional DM interaction,
�!
D �.�!S i ��!

S j /, between Cu2C
spins which results from the absence of an inversion center between Cu ions,
as suggested first by [112]. This would modify the T D 0 susceptibility by
mixing singlet and triplet states [118].

Fig. 9.18 Left: 17O NMR shift versus temperature (red) compared to macroscopic susceptibility
(green). Right: Comparison of the relaxation rates for various nuclear probes. The semi-log (ver-
tical axis) plot allows to rescale by the hyperfine constants which are quite different for the three
nuclei. The low T evolution is found remarkably similar although the symmetry of hyperfine cou-
plings are very different, consistent with an expected flat q dependence of the excitation modes.
Inset: 17T �1

1 plotted versus 1=T . The non-linear variation is evidence for non-gapped excitations
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Are there Defects? What is their Nature?

Beyond the previously reported discrepancy between 17O shift and macroscopic
susceptibility, there are several arguments which fit with a scenario of Zn“diluted”
kagomé planes for compounds even with the ideal stoechiometry. In turn, this means
that some Cu2C reside on the Zn2C sites, which were previously expected to be
weakly coupled. Both contributions would yield a Curie-like upturn at low T and
one can expect that the latter one is a classical case of weakly paramagnetic centers:

� A specific line is observed in 17O spectra which fits at high T with an environ-
ment of one non-magnetic Zn and one Cu [110]

� The steep low-T upturn of �macro can easily be interpreted in terms of weakly
interacting paramagnetic centers on the Zn site which fits well with the idea of
Zn-Cu inter-site exchange between the two sites [113]

� A Schottky-like anomaly which characteristic energy scales with the field seems
observed in specific heat, again in agreement with an inter-site exchange sce-
nario [114]

� The magnetization of paramagnetic-like defects is easily saturated in moderate
fields [115]

� Low-T �SR experiments yield a plateau of relaxation below 1 K, a temperature
which is found to be typical of the interaction between the paramagnetic-like
sites [107]

� Explaining the low-T Curie-like tail by invoking Dzyaloshinskii–Moriya (DM)
interactions only as calculated for T > 0:25J through exact diagonalizations
[112], requires values for the DM interaction as high as 0:2J , much too large to
fit the ESR lineshape dominated by DM interaction at high T [116]. Moreover
the magnitude needed would as well induce some order, a scenario first pointed at
for classical spins [51] and later derived for S D 1=2 spins [118]. These interac-
tions are though certainly present and need to be taken in consideration for a full
interpretation of the data. An interesting phase diagram can be sketched through
exact diagonalizations where Herbertsmithite is found to lie in the vicinity of a
quantum critical point (QCP) [118].

Contrary to these observations is the initial Jahn-Teller argument from [4] that pre-
dicts perfectly filled Cu2C kagomé planes driven by the favorable Cu occupation of
the distorted and quasi-planar kagomé sites. Today, it seems quite hard to explain all
the experimental findings within the initial framework of what was initially hailed
as a “perfect” kagomé magnet. Further synthesis of well controlled samples might
yield a way to clarify the responses of this material.

Experimental data suggest that as much as 6–10% of the kagomé sites could be
occupied by Zn2C. For D D 0, such non-magnetic impurities are found to induce
a dimer freezing in the two adjacent triangles it belongs to, as expected from the
relief of frustration [85]. Further from the impurity position a staggered response is
generated, for all antiferromagnets [84]. The major difference with the unfrustrated
case is that the response is not peaked on the sites next to the impurity. This scenario
is strongly supported by 17O NMR spectral analysis [110, 117]. Both the tendency
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to dimer freezing and the staggered response hold for as large values of D=J as 1,
while the critical point at D=J D 0:1 does not seem much affected by the presence
of these spinless defects [119].

Dynamical Behavior

At variance with the susceptibility, relaxation measurements yield similar behavior
of 1=T1 at low-T . Given the filtering form factors which are quite different for all
probes, this indicates that excitations are consistent with a flat mode in q-space.
The analysis of the T -dependence clearly demonstrates the absence of a gap in the
excitations and rather a subinverse linear law which is quite puzzling (Fig. 9.18).
A very different behavior is observed in �SR experiments for T < 1 K but which
might be rather related to Cu on the Zn site.

9.5 Other Compounds

9.5.1 Organic Materials

Organic and organometallic chemistry provide many building blocks which can be
used to construct novel kagomé materials that are capable of being tuned by chem-
ical methods. In these the spin may reside on radical groups or metal centres, if
present.

TTF Salts

In the [Re6Se8(CN)6]4� TetraThioFulvaleme (TTF) salt partly oxidised dimers
form a kagomé lattice [120]. This compound is a 2D metallic conductor at high
temperature (space group R N3), but undergoes a structural transition in which charge
ordering occurs and the 3 fold symmetry is broken. At low-T , susceptibility con-
firms the organisation of these mixed valent dimers into S D 1=2 chains.

Nitronylnitroxide Salt

In one series of compounds with S D 1=2 nitronylnitroxide radicals,m-N-methyl-
pyridinium - nitronyl nitroxide (m-MPYNN).X. 1

3
(acetone), where X D BF4, ClO4

and I3, the unpaired electrons on the MPYNN molecules are at the origin of
magnetism [121]. Structurally, this family has a very unique packing structure of
MPYNN cation radicals in a 2D hexagonal layer. The double contact between the
NO group and the pyridine ring between two molecules yields a ferromagnetic
coupling, 23.3 K, for the BF�

4 salt. Below this temperature, the dimers become
effective S D 1 units arranged in a kagomé lattice with an inter-dimer anti-
ferromagnetic interaction (� 3 K for the BF�

4 salt). The susceptibility clearly



234 P. Mendels and A.S. Wills

shows a non-magnetic ground state, with a gapped behavior [122] but this com-
pound also undergoes a structural transition at high T which destroys the three-fold
symmetry [123] and casts doubt over its relevance to the kagomé physics.

9.5.2 Y0:5Ca0:5BaCo4O7

In Y0:5Ca0:5BaCo4O7, 75% of all Co are believed to occupy a kagomé site with a
Co2C, S D 3=2 state whereas the remaining 25% sites are non magnetic (Co3C) and
located between the kagomé layers [124]. Only a diffuse scattering neutron study
with polarization analysis has been performed on this compound up to now. No
three-dimensional long-range antiferromagnetic is observed at 1.2 K, well below
the apparent Weiss temperature � 2;200 K. The measured scattering intensities
are consistent with the valence assignment for the different sites and the diffuse
magnetic scattering indicate the presence of short range 2D chiral spin correlations
for a spin hexagon, at low T .

9.5.3 Langasites

If restricted to n.n. interactions, the magnetic lattice of Nd-Langasite Nd3Ga5SiO14

is topologically equivalent to a kagomé lattice, the first one to be decorated with
rare earth ions [16, 125]. This has the potential to open a new field of research of
the type seen in the pyrochlores where anisotropy effects tuned by selection of the
rare-earth ion play a leading role. Indeed, neutron scattering, magnetization, and
specific heat measurements performed on very dilute samples indicate that crystal
electric field effects on the Nd3C ion play a definitive role but might also complicate
the interpretation of macroscopic magnetic and specific heat measurements [126]
in terms of frustration. Indeed, with a CEF � 100 K, the few K exchange energy
is not expected to play the leading role. Local �SR, NQR andNMR measurements
indicate the persistence of rather slow fluctuations down to 60 mK [127] and neutron
measurements do not indicate any long-range order down to 46 mK order, hence
there is the possibility of a spin-liquid ground state [128]. Due to the smallness of
the exchange, probing the nature of the true ground state represents a real challenge
and, as a prerequisite, more work needs to be performed in order to have a reliable
estimate of J .

It has been theoretically predicted that for classical Ising spins S > 3=2 a
crossover is to be expected from a cooperative paramagnet state suggested for
long [14, 15] to a semiclassical spin-liquid state [129]. Indeed, transverse quantum
fluctuations to the easy-axis should lift the extensive classical degeneracy. Further,
magnetization, neutron diffraction and specific heat measurements indicate that the
fluctuations are considerably suppressed under an applied field. A crossover to a
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more ordered ground state is observed for fields of � 1 T [128]. Whether this relates
to a nematic-like order as suggested theoretically [130] needs further studies.

Quite recently Pr-Langasite Pr3Ga5SiO14 has been investigated, which shows all
the potential of this new family [131]. Again, no long-range order is evident down
to 35 mK but, as proven from a �SR study, Pr3C ion is in a singlet state, well
explained by its Kramers character and the symmetry [132]. This calls for specific
care about the rare earth character of the magnetic ions in the Langasite family.
Certainly, pyrochlore studies performed for the last 10 years will be a good source of
inspiration. The subtle balance between dipolar interactions, single-ion anisotropy
and exchange might be crucial in the definition of the ground state.

9.6 Conclusion

We have provided a brief overview of most deeply studied kagomé-based magnets
in the past 20 years. Clearly the kagomé geometry favors what are arguably the most
original low-energy excitations in condensed matter and yields singular responses
in all the measured quantities, as well as marginal orders (if any), such as unconven-
tional spin glass states or fluctuating ordered magnets which are still unsatisfactorily
modeled.

While each system has its specific deviations from the ideal case, three of them
are commonly identified:

(1) Moderate (� a few %) non-magnetic dilution of the frustrated network which
does not seem to impact much the nature of the ground state such as in SCGO,
Herbertsmithite and some of the jarosites. These can mask much of the intrin-
sic physics in macroscopic measurements through an effective paramagnetic
response of the perturbed magnetic lattice,

(2) Non-negligible Dzyaloshinskii–Moriya anisotropy such as found in the Jarosites
or Herbertsmithite, which in contrast with site disorder, clearly affects the nature
of the ground state by mixing a hypothetic singlet ground state and excited
triplet states,

(3) Lattice defects such as non-perfect n.n. kagomé magnetic structure like in
volborthite or 3-D coupling of the kagomé layers.

The two former ingredients are starting to be incorporated into models and will
certainly provide new tests of theories. This “perturb to reveal strategy” might
turn out to be the right one to cope with the non-ideality and a rewarding way to
experimentally unveil the hidden nature of the ideal kagomé lattice.

The recent discovery of quite simple kagomé systems such as Herbertsmithite,
where no freezing has been observed up to now down to J /9000, has given a
new impetus to the field on both the theoretical and the experimental sides, which
are presently flourishing. For the first time, the possibility of probing the ulti-
mate ground state of the quantum KHAF without any marginal order exists, but
deviations from the simple model caused by the presence of 5–10% dilution and
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�0:1J DM anisotropy, continues to power a tremendous experimental search for
yet more ideal two dimensional, spin 1/2, kagomé compound, which has no inter-
plane interactions and no impurities on the kagomé plane. In this spirit, it is natural
to welcome the promising recently discovered Kapellasite, a polymorph of Herbert-
smithite [135–137] and of which study is underway. Also, novel exciting tracks are
explored, with mixed organic-mineral compounds which seem to approach the ideal
case [133, 134].

Finally, the synthesis of single crystals of such new S D 1=2 promising materials
such as Herbertsmithite, Volborthite and subsequent compounds as well as charge
doping are routes for future synthesis work which will certainly open major avenues
to unveil the many facets of the kagomé physics.
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Chapter 10
Magnetization Plateaus

Masashi Takigawa and Frédéric Mila

Abstract This chapter is devoted to a review of the phenomenon of magnetization
plateaus in frustrated quantum magnets. We explain why frustration can introduce
‘accidents’ in the magnetization process of quantum antiferromagnets, in the form
of plateaus occurring at rational values of the magnetization. These are driven by
two mechanisms: the stabilization of a commensurate, classical state by quantum
fluctuations or the occurrence of a superfluid-insulator transition in effective hard-
core-boson models. The first mechanism always leads to a ‘classical’ plateau, i.e. a
plateau with a simple classical analog, while the second often drives the system
into a ‘quantum’ plateau which has no classical analog. Experimental examples
of such plateaus are discussed in detail, with special emphasis on the compound
SrCu2(BO3)2, in which a remarkable series of plateaus has been discovered and
is currently under intensive investigation. Related topics including magnetization
jumps, supersolid phases, and lattice distortions are discussed briefly.

10.1 Introduction

The magnetization of a classical Néel antiferromagnet at zero temperature is a very
simple process. To minimize the total energy, the spins lie primarily in the plane
perpendicular to the field, but their field-driven polarization causes a tilt into the field
direction, resulting in a magnetization which increases linearly with the field up to
saturation (Fig. 10.1). In a real antiferromagnet, this simple picture is modified in
several respects. In particular, the magnetization usually depends on the orientation
of the field, as a consequence of anisotropies arising from various sources, and thus
can jump when the spins undergo a spin-flop transition. However, even without
anisotropy, the magnetization of a real antiferromagnet at zero temperature will be
different from the classical paradigm because of the quantum nature of spin.

In unfrustrated geometries, such as the square lattice with nearest-neighbor inter-
actions, quantum fluctuations have a relatively modest impact on the magnetization.
They reduce the magnetization somewhat below its classical value and typically
induce a curvature in M.H/ [1], as indicated in the left panel of Fig. 10.1. This
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Fig. 10.1 Schematic representation of the magnetization curve of typical unfrustrated antiferro-
magnets

is the case provided that the dimensionality is greater than one. In one dimension
(1D), quantum fluctuations can open a gap, as shown by Haldane for spin-1 chains
[2], and this Haldane gap between the singlet ground state and the first triplet exci-
tation forces the magnetization to remain exactly equal to zero up to a critical field
proportional to the gap. This result applies to all gapped antiferromagnets, such as
spin-1/2 ladders [3] (Fig. 10.1) or weakly coupled dimers (below).

In frustrated geometries, quantum fluctuations are enhanced significantly. The
consequences for the magnetization curve can be rather dramatic. In particular,
under appropriate circumstances, quantum fluctuations can induce magnetization
plateaus at rational values of the magnetization, as first predicted in some pioneer-
ing papers [4–7, 9, 10]. With the development of high-field facilities, such plateaus
have been detected in a significant number of compounds. One example is shown
in Fig. 10.2 [11]. As a consequence, understanding the mechanisms leading to these
plateaus, and the nature and magnetic structure of the states realized in the plateau
regions, has emerged as a very active field of research in the context of highly
frustrated magnets.

The goal of this chapter is to present an overview of the field, with an empha-
sis on the basic mechanisms behind plateau formation and on the experimental
consequences beyond the plateaus themselves.

10.2 Mechanisms for Formation of Magnetization Plateaus

Although parts of this discussion could be applied to other cases, we concentrate
in this section on antiferromagnets with pure Heisenberg interactions in a magnetic
field. These are described by the Hamiltonian

H D
X
i;j

Jij S i � S j � g�BH
X
i

S z
i ; (10.1)
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Fig. 10.2 The magnetization plateau at 1/3 of saturation observed in RbFe(MoO4)2. The magnetic
field was applied perpendicular to the c-axis of the crystal (Fig. 10.5). (After Smirnov et al. [11])

where S i is a spin-S operator. We are interested in those situations where a plateau
appears at a certain value m D g�Bs of the magnetization per site.

10.2.1 Spin Gap

The presence of a plateau implies some kind of incompressibility, in the sense
that it is impossible to increase the total spin S z

total D P
i S z

i by increasing the
magnetic field. This in turn implies the presence of a gap to magnetic excitations.
Indeed, if one considers a system of N sites and supposes that there is a magneti-
zation plateau for Hc1 < H < Hc2, inside which the magnetization corresponds
to S z

total D Ns, then at Hc1 (Hc2), there is a level-crossing with a state of lower
(higher) magnetization, for example Ns � n1 (Ns C n2). Because the energy of a
state is a linear function of the field with slope �g�BS z, the state with magnetiza-
tion Ns � n1 (Ns C n2) is separated from the ground state inside the plateau by
an energy g�Bn1.H � Hc1/ (g�Bn2.Hc2 � H/). Thus the first magnetic excitation
(i.e. the first state with S z

total ¤ Ns) is separated from the ground state throughout
the plateau by a gap �.H/ given by

�.H/ D g�BS min .n1.H � Hc1/; n2.Hc2 � H// : (10.2)

This gap can be detected by nuclear magnetic resonance (NMR) or inelastic neutron
scattering experiments, and indeed it has been detected in a number of systems
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(below). Note that the presence of a plateau does not imply a gap to all excitations:
other states with S z

total D Ns can be arbitrarily close to the ground state [12].

10.2.2 Quantized Plateaus

All of the plateaus detected to date in experiments or in numerical simulations cor-
respond to rational values of m in units of the magnetization at saturation. In 1D, it
has been shown that, inside the plateau, the number of sites n in the unit cell must
be such that

n.S � s/ is an integer: (10.3)

Let us call n0 the number of sites per crystallographic unit cell in zero field. If
the condition of (10.3) is satisfied for n D n0, then translational symmetry need
not be broken in the plateau state. However, if n0.S � s/ is not an integer, the
number of sites per unit cell will be larger in the plateau phase than in zero field.
In that case, translational symmetry is broken inside the plateau, and the plateau
state is accordingly a phase in the thermodynamic sense, separated from the high-
temperature paramagnetic phase by a phase transition.

The core of the argument is an extension of the Lieb–Schultz–Mattis theorem
[13]. Following Oshikawa, Yamanaka, and Affleck [7], let us consider the case with
one site per crystallographic unit cell in zero field and suppose that S � s D p=q,
with p and q coprime. Then one can construct q states which satisfy the following
conditions: (1) they are degenerate with the ground state in the thermodynamic limit;
(2) they are eigenvectors of the translation operators with eigenvalues expŒ2�i.S �
s/q�; (3) they are mutually orthogonal. Point (3) is a simple consequence of point
(2), which itself follows easily from the form of these states. Then, if these states are
linear combinations of states with broken translational symmetry, these latter must
have q sites per unit cell. Thus n D q, and hence n.S � s/ D p is indeed an integer.

In 2D, similar arguments have been articulated [8], and if the translational sym-
metry is broken, (10.3) also applies. In 2D, the degeneracy can be of topological
origin however, as in the quantum dimer models discussed in the Chap. 17 by
Moessner and Raman, and it is in principle possible to have a rational plateau with-
out breaking the translational symmetry. Such a possibility has not been realized yet
in frustrated magnets.

According to this formula, the (minimal) number of sites in the unit cell depends
not only on the fraction of the magnetization with respect to saturation, but also
on the spin. As an example, for a 1/8-plateau, meaning a plateau occurring at a
magnetization which is 1/8 of M at saturation, this result implies a unit cell with a
number of sites which is a multiple of 16 for S D 1/2, 8 for S D 1, 16 for S D 3/2,
4 for S D 2, and so on.
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10.2.3 Order by Disorder

We turn next to a discussion of the physical mechanisms which can produce a
plateau. The first one is related conceptually to the notion of order by disorder, dis-
cussed in the Chap. 1 by Chalker in this volume. In a semiclassical (1=S ) approach,
the ground-state energy of a quantum antiferromagnet can be written as

E0 D Eclassical C 1

2

X
q

!q C O.1/; (10.4)

where the first term (which has contributions of order S2 and S ) is the same for
all classical ground states if there are several of these, while the zero-point energy
(the second term) is of order S and usually depends on the classical configuration
around which the expansion is made. Thus if the classical ground state is degener-
ate, this degeneracy can be lifted by the zero-point energy. The general rule is that
coplanar (and even collinear if there are any) ground states are favored because their
fluctuations are softer.

This mechanism appears to control entirely the magnetization process of the
triangular-lattice Heisenberg antiferromagnet in a magnetic field. This model is
described by the Hamiltonian

H D J
X
hi;j i

S i � S j � H
X
i

S z
i ; (10.5)

where the first sum is over nearest-neighbor pairs on the triangular lattice and the
factor g�B has been included for simplicity in the field H . In zero field, the classical
ground state is the planar, 3-sublattice structure in which the spin orientations are
at 120 degrees to each other on each triangle. Up to a global rotation, this ground
state is unique. In a field, the energy can be minimized as usual by the ‘umbrella’
structure, where the spins remain primarily in the plane perpendicular to the field,
but have a component tilted towards the field. However, unlike on the square lattice,
there are many other ground states in the case of the triangular lattice, a result which
may be traced to the fact that the Hamiltonian can be written in terms of the total
spin of elementary triangles (as explained in the Chap. 1 by Chalker). An exhaustive
discussion of the classical ground-state manifold can be found in [14]. In particular,
there are several coplanar ground states for all fields. In agreement with the general
expectation, among all of the classical ground states for a given field, thermal or
quantum fluctuations act to select coplanar ground states; among these they select
the state which has one spin antiparallel to the field for H < Hc and the state with
two parallel spins for Hc < H < Hsat, where Hsat D 18JS is the saturation field
and Hc D Hsat=3 is the critical field at which the classical magnetization is exactly
1/3 of its saturation value (Fig. 10.3).

Because, for a given field, thermal or quantum fluctuations select a unique state,
one might be tempted to believe that this is the complete story, in which case the
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Fig. 10.3 Left: classical ground-state configurations on the triangular lattice. (a) 0 < H < Hc,
(b) H D Hc, (c) Hc < H < Hsat. Right: magnetization curve of the S D 1=2 Heisenberg
antiferromagnet on the triangular lattice. The thin dashed and solid curves are respectively for
N D 27 and 36 sites. The bold curve is an extrapolation to the thermodynamic limit. (After
Honecker et al. [15])

magnetization of the Heisenberg model on the triangular lattice would be a smooth
curve similar to that on the square lattice (Fig. 10.1). However, comparing the ener-
gies of various candidate ground states for a given field is not sufficient: if in a given
configuration the fluctuations are suitably soft, the zero-point energy gain can be
large enough to overcome the classical energy difference and stabilize the state with
soft fluctuations in a parameter range where it is not the classical ground state. On
the triangular lattice, the configuration stabilized at Hc is a collinear one with two
spins oriented along the field direction and one spin opposite to it. According to the
general rule, this state is expected to have very soft fluctuations. The 1=S expansion
performed in [4] confirms this expectation, leading to the conclusion that this config-
uration is indeed stable in a parameter range around Hc limited by the critical fields
Hc1 D Hc.1 � 0:084=S/ and Hc2 D Hc.1 C 0:215=S/. Thus one has a clear case
where quantum fluctuations lead to a magnetization plateau at 1/3. This conclusion
has been confirmed by exact-diagonalization calculations performed for finite clus-
ters with S D 1=2, which provide very strong evidence in favor of such a plateau
(Fig. 10.3). We note here that thermal fluctuations also lead to a stabilization of the
collinear structure, as first discovered in [14]. The 1/3-plateau in triangular-lattice
antiferromagnets has been observed experimentally (Fig. 10.2), as we will discuss in
Sect. 10.3.1. The same mechanism has been investigated also in other models, with
similar conclusions [16].

10.2.4 Superfluid-Insulator Transition

The incompressible nature of the plateau phase suggests that it should be possible
to interpret it as some kind of insulating phase. In principle, this can be achieved by
converting the spin operators into bosons or fermions. In view of the symmetries of
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the problem, the bosonic approach is more natural. In the presence of a magnetic
field, the SU(2) rotational symmetry of the Heisenberg model is reduced to a U(1)
symmetry corresponding to the rotational symmetry around the field direction, and
magnetic ordering is in the same universality class as the Bose–Einstein conden-
sation of bosons into a superfluid phase. For S D 1=2, this description is easily
implemented using the Matsubara–Matsuda transformation into hard-core-bosons,
which allows one to express the spin operators in terms of bosonic operators acting
in a reduced Hilbert space with at most one boson per site,

SC
i D b

�
i ; S�

i D bi ; S z
i D ni � 1=2: (10.6)

This mapping transforms the Heisenberg model with nearest-neighbor spin
exchange J into a hard-core-boson model with nearest-neighbor hopping and
inter-site repulsion on the same lattice,

H D t
X
hi;j i

.b
�
i bj C H:c:/ C V

X
hi;j i

ninj � �
X
i

ni ; (10.7)

where t D J=2, V D J , and � D H �zJ=2, z being the coordination number of the
lattice. Note that zero magnetic field, where the total spin along the field vanishes in
the ground state, corresponds to half-filling of the lattice by bosons. This model has
explicit particle-hole symmetry, densities larger (smaller) than 1/2 corresponding to
positive (negative) field.

In this language, a magnetization plateau is a commensurate charge-density wave
of bosons. For specificity, consider again the triangular lattice of the previous sec-
tion. The state inside the 1/3-plateau, with two spins per unit cell oriented along the
field and one antiparallel to it, corresponds to a charge-density wave at 2/3 filling
with two sites occupied and one empty. This is indeed a natural instability of hard-
core-bosons or of fermions on the triangular lattice. The symmetrical state at 1/3
filling, with one occupied site and two empty sites per unit cell, corresponds to the
1/3-plateau in negative field.

In such a plateau, and more generally in all plateaus that can be described by a
semiclassical approach starting from a classical configuration, the order parameter
is purely local in both descriptions: it is the spin component along the field, S z

i , in
the spin language, and the boson density, ni , in the bosonic language. Following
Hida and Affleck [17], we refer to such plateaus as ‘classical’ plateaus, even if their
stabilization at zero temperature is due to quantum fluctuations.

10.2.5 ‘Quantum’ Plateaus

That all plateaux are not simply connected to a classical state can be seen easily by
considering the frustrated spin-1/2 ladder described by the Hamiltonian



248 M. Takigawa and F. Mila

m
1

0.75

0.5

0.25

0

H32.521.510.50

Hc1 Hc2 Hc3

Hd

Hc4

L = 52
152

Fig. 10.4 Left: representation of the frustrated ladder of (20.2). The couplings entering (20.2)
are denoted by the different line types, thick solid (J

?

), thin solid (J
k

), and dashed (J
�

). Right:
magnetization curve for the spin ladder of (20.2) obtained by density-matrix renormalization-group
(DMRG) calculations. (After Fouet et al. [18])

H D
X
n

J? S 1n � S 2n � H
X
n

.S z
1n C S z

2n/ C
X
n

X
iD1;2

Jk S in � S inC1

C
X
n

J� .S 1n � S 2nC1 C S 2n � S 1nC1/: (10.8)

In the spin operators S in, the index i refers to the ladder leg while the index n

refers to the rung (Fig. 10.4). If the two inter-rung couplings Jk and J� are equal, the
simple product of Sz D C1 triplets and singlets on alternating rungs is an eigenstate
with magnetization 1/2. This state can be proven to be the ground state in a finite
field range, and hence to correspond to a 1/2-plateau. However, this wavefunction
has no classical counterpart, because every second rung is in a singlet state. Again
following [17], we refer to such plateaus as ‘quantum’ plateaus.

The difference between quantum and classical plateaus lies in the symmetry
of the system. A classical plateau in this situation would have 3 spins up and
1 spin down per unit cell, thus breaking both the translational symmetry along
the ladder leg and the mirror symmetry perpendicular to the rungs, leading to a
four-fold degeneracy. By contrast, the 1/2-plateau wave function realized in the frus-
trated ladder breaks only the translational symmetry, and leads only to a two-fold
degeneracy.

Beyond this ladder system, the inadequacy of the semiclassical approach to
describe some magnetization plateaus has been identified in a trimerized chain [17],
as well as in coupled-dimer systems such as the two-dimensional orthogonal dimer
model realized in the compound SrCu2(BO3)2 (below). It is also clearly inadequate
to account for the 2/3-plateau discovered recently in the antiferroquadrupolar phase
of the bilinear–biquadratic spin-1 model on the triangular lattice [19] (discussed
in the Chap. 13 by K. Penc and A. Läuchli in this volume). In this latter case, the
difficulty comes from the fact that, like the singlet state of two S D 1=2 entities,
quadrupolar states have no classical analog.
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To understand the physical mechanism behind the 1/2-plateau in the frustrated
ladder, and more generally in frustrated arrangements of coupled spin-1/2 dimers,
it is very useful to begin from the limit of isolated dimers to derive an effective
hard-core-boson Hamiltonian [9, 10]. The starting point of this expansion is the
Hamiltonian H0 describing dimers in the critical field Hc D J?, where the singlet is
degenerate with the triplet which is polarized along the field direction. The ground
state of this problem is 2N -fold degenerate, where N is the number of dimers, and,
to first-order in Jk, J�, and H � Hc, the effective Hamiltonian takes the form of a
1D hard-core-boson model,

Heff D �t
X
n

.b�nbnC1 C b
�
nC1bn/ C v

X
n

nnnnC1 � �
X
n

nn; (10.9)

with t D .Jk � J�/=2, v D .Jk C J�/=2, and � D H � Hc � .Jk C J�/=4

(as discussed in the Chap. 20 by Mila and Schmidt). This effective model has been
investigated thoroughly over the years. For the purposes of this review, its most
important property is the superfluid-insulator transition which takes place upon
increasing the nearest-neighbor repulsion at v D 2t . Because the hopping ampli-
tude t is proportional to the difference between the mutually frustrating intra-leg
and inter-leg couplings, while the repulsion is proportional to their sum, frustration
decreases the kinetic energy and hence increases the effective relative repulsion,
leading to the appearance of a plateau if 1=3 < Jk=J� < 3. This result has been
confirmed numerically.

To summarize, frustration suppresses the kinetic energy in coupled-dimer sys-
tems, and the appearance of a (‘quantum’) plateau can be thought of as a superfluid-
insulator transition of hard-core-bosons, a boson corresponding to a triplet polarized
along the field, and an empty site to a singlet. This is to be contrasted with ‘classical’
plateaus, in which spins are polarized parallel or antiparallel to the field. Accord-
ingly, all spins are expected to have a significant polarization in classical plateaus,
while in quantum plateaus there should be a strong contrast between the spins com-
posing a singlet and those in a triplet. This difference has indeed been detected by
NMR in SrCu2(BO3)2 (below).

10.2.6 High-Order Plateaus

High-order plateaus, by which is meant plateaus with a large denominator in
the fractional saturation, correspond to charge-density waves of hard-core-bosons
with a large unit cell. This situation is in fact to be expected in the presence of
long-range correlations which keep the particles away from each other at large dis-
tances. For classical plateaus, by contrast, such correlations can only come from
long-range exchange processes, which are a rather unlikely possibility in typical
antiferromagnets where the exchange is dominated by short-range kinetic processes.
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In this respect, dimer systems are significantly more promising as candidates
for exotic plateaus. In fact the hard-core-boson effective Hamiltonian is not simply
the translation of a spin Hamiltonian, but the result of a strong-coupling expan-
sion in which high-order terms lead to long-range interactions. These terms are
expected to decrease exponentially with distance, but because the kinetic energy
can be reduced dramatically by frustration effects, their effective magnitude can be
large enough to induce charge-density waves with long periods. This is believed to
be the mechanism for the 1/8-plateau of SrCu2(BO3)2. Here it should, however, be
noted that, beyond first order, the hard-core-boson effective Hamiltonian contains
not only hopping terms and two-body interactions, but also all possible types of
n-site terms, including correlated hopping (processes for which the hopping ampli-
tude for a particle depends on the occupancy of sites not in the direct process)
and n-body interactions. The simplest investigation of these bosonic models is to
convert them back into a spin model by the Matsubara–Matsuda transformation.
This new spin model is in general completely different from the original one, and
much insight may be gained by a simple classical approximation: because the local
quantum physics was included when deriving the effective model, this ‘classical’
approximation is able to reproduce quantum effects such as quantum plateaus.

When performing high-order expansions, it is necessary also to transform the
operators. As a consequence, spins inside a singlet can acquire some magnetization
components once again, a result in qualitative agreement with NMR observations of
the 1/8-plateau of SrCu2(BO3)2.

10.2.7 Transition into Plateaus

Spatial symmetries are usually broken in fractional plateau phases, while the spin-
rotation symmetry around the field direction is broken outside them. According to
the Landau theory of phase transitions for such a case, the transition between the
two phases is generically either of first order, or it involves an intermediate phase
where both types of order coexist.

In the first case, a magnetization jump is expected to be present at the transi-
tion, as indeed clearly observed at the low-field transition into the 1/8-plateau of
SrCu2(BO3)2. Magnetization jumps have been predicted to occur in other situa-
tions as well, notably a large jump to full magnetic saturation expected in several
geometries due to the rigorously localized nature of magnons in their fully polarized
state. Jumps not connected at all to a plateau are also possible. As one example, such
a jump has been discovered between the 1/2-plateau and saturation for the frustrated
ladder discussed above (Fig. 10.4). At this transition, non-magnetic rungs undergo a
transition from the singlet to the S z D 0 triplet.

If there is no magnetization jump upon entering or leaving the plateau, the
expected intermediate phase should break both a spatial symmetry and the rotational
spin symmetry. In terms of bosons, this is the equivalent of a supersolid phase, where
bosons are condensed but nevertheless break a spatial symmetry. The possibility of
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stabilizing such phases in frustrated quantum magnets has been discussed recently
in the context of both spin-1/2 [21–23] and spin-1 models [20].

10.3 Experimental Observation of Magnetization Plateaus

We turn now to a discussion of the experimental observation of magnetization
plateaus and of associated phenomena in real materials. A representative (but not
exhaustive) list of examples of magnetization plateaus can be found in Table 10.1.
As mentioned in Sect. 10.2.2, there are two types of plateau. In the first, the trans-
lational symmetry of the crystal is not broken, corresponding to the case where the
periodicity of the ground state is equal to that of the crystal structure, i.e. n in (10.3)
is equal to the number of spins in the crystal unit cell n0 (see above). A typical
example is the half-magnetization plateau in S D 1 bond-alternating chains such
as Ni2(Medpt)2(�-N3)(�-ox)�ClO4�0.5H2O [24]. Because the exchange couplings
alternate along the chain, a unit cell contains at least two spins, and it is clear that
n D 2 satisfies (10.3) for the half-magnetization plateau (s D 1=2) for S D 1. The
physical mechanism for the half-magnetization plateau is obvious in the limit of
strong alternation, i.e. the case of isolated S D 1 dimers. The ground state changes
from the singlet at low fields to the S z D 1 triplet at intermediate fields, where
the 1/2-plateau state appears, before saturation to the S z D 2 state takes over. As
no change of symmetry is involved, this type of plateau can be reached from the
high-temperature paramagnetic state without a phase transition.

By contrast, in the second type of plateau the magnetic unit cell of the ground
state is larger than the crystalline unit cell, i.e. n is larger than n0. Such a plateau

Table 10.1 Examples of magnetization plateaus

Material Description Fraction Symmetry Reference
breaking?

Ni2(Medpt)2(�-N3) S D 1 bond-alternating chain 1/2 No [24]
(�-ox)�ClO4 �0.5H2O
F2PNNNO S D 1 coupled dimers 1/2 No [25]
NH4CuCl3 S D 1=2 coupled dimers 1/4, 3/4 No [26]
Cu3(CO3)2(OH)2 S D 1=2 diamond chain 1/3 No [28]
RbFe(MoO4)2 S D 5=2 triangular lattice 1/3 Yes [30, 31]
Cs2CuBr4 S D 1=2 distorted triangular 1/3 Yes [33]

lattice
M Cr2O4 S D 3=2 pyrochlore lattice 1/2 [41, 42]
(M D Cd, Hg)
SrCu2(BO3)2 S D 1=2 Shastry–Sutherland 1/8, 1/4, 1/3 Yes [47, 61]

lattice
RB4 (R D Tb, Tm) large J Many Yes ([86–88], Siemen-

Shastry–Sutherland lattice smeyer et al.,
unpublished)
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is usually associated with a magnetic superstructure, which breaks the translational
symmetry. The plateau is therefore separated from the paramagnetic state by a well
defined phase transition.

There are now numerous examples of magnetization plateau. Most of them, how-
ever, are of the first type, and only a relatively small number of symmetry-breaking
plateaus is known to date. The plateaus at 1/4 and 3/4 of the saturation magneti-
zation in NH4CuCl3 [26], a system composed of coupled spin 1/2-dimers, were
once considered to be an example of the second type because the monoclinic unit
cell of the crystal contains only four Cu2C ions, whereas (10.3) requires n to be a
multiple of eight. However, neutron scattering experiments later revealed the pres-
ence of a structural transition which doubles the periodicity of the crystal along the
b-direction [27]. Indeed no phase transition has been detected as a function of tem-
perature in the field range where the plateaus are formed at low temperature. For the
remainder of this chapter, we will focus mostly on the second type of plateau.

Although we have considered only isotropic Heisenberg interactions in the pre-
vious sections, real materials have various types of anisotropic interaction. Of these,
the most important is the antisymmetric Dzyaloshinskii–Moriya (DM) interaction,
which is expressed as

HDM D Dij � �S i � S j

�
(10.10)

and is allowed if the center of the bond connecting S i and S j does not have inver-
sion symmetry. Because anisotropic interactions generally do not commute with
the total spin, the magnetization inside the plateaus may not be strictly constant in
real materials. Further, the anisotropic interactions lower the spin rotation symme-
try and often change dramatically the nature of quantum phase transitions between
the plateau and its neighboring phases [29]. This behavior has been observed in
SrCu2(BO3)2.

10.3.1 ‘Classical’ Plateaus in Triangular and Pyrochlore Lattices

As mentioned in Sect. 10.2.3, Heisenberg spin systems on a triangular lattice are
expected to show the 120-degree spin structure at zero field and to develop 1/3-
plateaus over a finite range of magnetic field. Such behavior has indeed been
observed in the semi-classical S D 5=2 spin system RbFe(MoO4)2 [30, 31]. This
material has a layered structure (Fig. 10.5), in which the Fe3C ions form an equi-
lateral triangular lattice. As shown in Fig. 10.2, the magnetization curve exhibits
a 1/3-plateau for H ? c. Because there is a weak anisotropy of easy-plane type,
the magnetization for H k c does not show a plateau. Figure 10.5 shows the mag-
netic phase diagram for H ? c determined from a variety of experiments, including
87Rb NMR measurements, which support an up-up-down structure spin structure
(Fig. 10.3) in the plateau phase [32]. The experimental phase diagram shows good
agreement with numerical simulations of the Heisenberg model on a triangular lat-
tice [14]. In particular, the width in field of the plateau phase becomes significantly
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greater at higher temperatures, indicating that thermal fluctuations play an impor-
tant role in stabilizing the plateau, a result consistent with the order-by-disorder
mechanism.

Because both thermal and quantum fluctuations stabilize the 1/3-plateau, it is
expected to be most robust in spin-1/2 systems. In fact, a 1/3-plateau has been
observed in Cs2CuBr4, where the Cu2C ions form a less frustrated isosceles tri-
angular lattice in the bc-plane (left panel, Fig. 10.6) [33]: the coupling J1 in the
b-direction is stronger than the coupling J2 in the other directions. The magnetiza-
tion data in the vicinity of the 1/3-plateau are shown in the right panel of Fig. 10.6.
Because of the lattice distortion, Cs2CuBr4 shows an incommensurate helical spin
order at zero field with wave vector Q D .0; q; 0/, where q D 0:575. By comparing
this value with the theoretical calculation of q as a function of J2=J1, including



254 M. Takigawa and F. Mila

the effects of quantum fluctuations [34], Ono et al. estimated J2=J1 to be 0.74 in
Cs2CuBr4 [35].

Neutron scattering experiments [36] have revealed a continuous change of q with
the applied magnetic field (right panel, Fig. 10.6). However, the ordering vector is
locked to the commensurate value (0, 2/3, 0) inside the plateau, consistent with the
up-up-down spin structure. Both the magnetization and the value of q show a finite
jump at the boundaries of the plateau, indicating first-order transitions. Evidence
for a first-order transition into the commensurate spin structure was also obtained
from 133Cs NMR experiments [37]. The 1/3-plateau in Cs2CuBr4 is consistent with
the result of exact-diagonalization calculations [38], which showed that the plateau
is stable for 0:7 . J2=J1 . 1:3. In addition to the 1/3-plateau, the magnetization
data also show a small feature indicative of another plateau at 2/3 of the saturation
field [36], although this is much narrower than the 1/3-plateau. There appears to
be no satisfactory explanation as yet for this 2/3-plateau. From results obtained for
the isostructural compound Cs2CuCl4 [39], a weak DM interaction is expected on
the J2 bond, with the vector D oriented parallel to the a-direction. This forces the
spins to lie in the bc-plane, and therefore the 1/3-plateau is not observed when
the field is applied in the a-direction [33, 36]. In this case, the ordering remains
incommensurate up to saturation, with a non-coplanar, umbrella-type spin structure.

The 1/3-plateau in the triangular lattice illustrates how the fluctuations select a
unique ground state from a choice of many degenerate, low-energy states. There are
in fact several routes for the selection of a unique ground state in highly frustrated
antiferromagnets. One of these is the spin-lattice coupling [40], which is respon-
sible for the remarkably stable 1/2-plateaus in the Cr spinel oxides CdCr2O4 and
HgCr2O4, shown in Fig. 10.7a [41, 42].
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Fig. 10.7 Left: (a) magnetization curves for various Cr spinel oxides measured at 1.8 K (for Hg
and Cd compounds) and at 4.2 K (for the other materials). (After Ueda et al. [42].) Right: the spin
order and lattice distortion are illustrated in (b) for zero field and in (c) for the 1/2-plateau state,
where the solid (dashed) lines represent shortened (elongated) bonds
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In these materials, the Cr3C ions, which have spin 3/2, form a pyrochlore lat-
tice, a corner-sharing network of tetrahedra known as one of the most frustrated
3D geometries (further details are presented in Chap. 7 on spinel compounds Tak-
agi and Niitaka and Chap. 8 on pyrochlore compounds Gaulin and Gardner). Both
the classical (S D 1) and the quantum (S D 1=2) spin system on the pyrochlore
lattice are believed to remain disordered down to T D 0. In reality, however, many
Cr spinel oxides show antiferromagnetic order at a finite temperature in zero field.
The magnetic order is often driven by the spin-lattice coupling through the “order-
by-distortion” mechanism [43] (discussed in the Chap. 11 by Tchernyshyov and
Chern), which is similar to the Jahn–Teller effect. The exchange coupling depends
linearly on the distance between spins, while the elastic energy has a quadratic
dependence. The system may therefore always gain exchange energy by distort-
ing the lattice to stabilize a collinear Néel order, as illustrated in Fig. 10.7b. Here the
four antiferromagnetic bonds (solid lines) are shortened, while the two ferromag-
netic bonds (dashed lines) become elongated. Simultaneous magnetic and structural
phase transitions are indeed observed quite frequently in spinel oxides.

When the spin configuration changes under a strong magnetic field, so does the
lattice structure. The half-magnetization plateaus correspond to the three-up-one-
down structure on every tetrahedron shown in Fig. 10.7c. This spin structure can be
stabilized by a trigonal distortion of the tetrahedra, resulting in three short bonds
and three long bonds. Such a simultaneous magnetic and structural phase transition
in magnetic field has actually been observed by combined neutron and synchrotron
X-ray scattering experiments in HgCr2O4 [44]. The field-temperature diagram con-
taining the highly robust 1/2-plateau can be reproduced very well by a theoretical
analysis of the coupled spin-lattice model on a pyrochlore lattice [45, 46].

10.3.2 SrCu2(BO3)2 and the Shastry–Sutherland Model

Among various materials showing magnetization plateaus, SrCu2(BO3)2 exhibits
by far the most spectacular phenomena, and thus has attracted enduring experimen-
tal and theoretical attention ([47]; for a review see [48]). The crystal structure of
SrCu2(BO3)2 consists of alternating stacks of magnetic CuBO3 layers and non-
magnetic Sr layers. The magnetic layers depicted in Fig. 10.8a, b contain a network
of orthogonal dimers formed by pairs of Cu2C ions, each carrying a spin 1/2.
The simplest spin model appropriate for this material includes isotropic exchange
interactions for the nearest-neighbor (intra-dimer) bonds J and the next-nearest-
neighbor (inter-dimer) bonds J 0 (Fig. 10.8c),

H0 D J
X
n:n:

S i � S j C J 0 X
n:n:n:

S i � S j : (10.11)

This model had been considered by Shastry and Sutherland [49] long before
SrCu2(BO3)2 was discovered. The ground state of the model is obvious in the two
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Fig. 10.8 Left: magnetic layer of SrCu2(BO3)2 viewed along (a) the c-direction and (b) the [110]
direction. Right: spin model (c) appropriate for SrCu2(BO3)2 . In addition to the Shastry–Sutherland
model, which contains only Heisenberg exchange terms J and J 0, intra- and inter-dimer DM inter-
actions (D and D0) are also included. The directions of the DM vectors are defined from (10.10)
with the bond direction i ! j shown by the arrows

limiting cases. When J 0=J � 1, the system reduces to a collection of dimer sin-
glets, and in fact this product of dimer singlets remains the exact ground state for
J 0=J < 0:68 [50] (as discussed in the Chap. 19 by Miyahara). On the other hand,
when J 0=J � 1, the model is equivalent to an antiferromagnet on a square lattice,
and hence the ground state has Néel order. Between these two limiting phases, there
is theoretical evidence for the presence of an intermediate phase, first predicted to
be an ordered helical phase [51] but later suggested to be more probably another
type of singlet phase based on four-site plaquettes [52, 53].

A wide range of experiments, namely susceptibility [54], specific heat [55],
nuclear quadrupole resonance (NQR) [47], NMR [56], electron spin resonance
(ESR) [57], and inelastic neutron scattering [58] have established that SrCu2(BO3)2
has a dimer-singlet ground state with an excitation gap of 35 K. The values of the
exchange parameters were estimated as J D 85 K and J 0=J D 0:64 by fitting the
susceptibility data to numerical calculations performed for the Shastry–Sutherland
model [59]. Slightly different values of J D 71 K and J 0=J D 0:60 were obtained
from an analysis of the excitation spectra [60].

The most striking property of SrCu2(BO3)2 is the sequence of magnetization
plateaus at 1/8, 1/4, and 1/3 of the saturation magnetization. Magnetization curves
measured in a pulsed magnetic field are shown in Fig. 10.9 (left panel) [61]. Because
the crystal unit cell contains two dimers (four Cu sites) per layer, (10.3) states that
the translational symmetry should be broken in all the plateaus. The physical mech-
anism stabilizing these plateaus is believed to be the strong suppression of the triplet
kinetic energy due to the frustration. As in the case of the frustrated-ladder model
discussed in Sect. 10.2.5, frustration in the Shastry–Sutherland model inhibits inter-
dimer hopping of the triplets. In fact, one-body hopping of triplets is allowed only
from 6th-order processes in the perturbative expansion with respect to J 0=J [50].
This leads to the stability of unusually high-order plateaus (Sect. 10.2.6).
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that the lowest-energy excitation at low fields is not a single triplet but a singlet bound state of two
triplets. This is why the calculated gap remains constant below 8 T. (After Kodama et al. [67])

The almost localized nature of the triplet excitation has actually been verified
by inelastic neutron scattering. In early experiments, one-triplet excitations were
observed at 3 meV with no detectable dispersion within the resolution [55]. Subse-
quent experiments with improved energy resolution [62, 63] have revealed not only
a small dispersion width of order 0.2–0.3 meV but also a three-fold splitting of the
triplets, which cannot be explained with only isotropic exchange couplings. The
same splitting has also been observed by ESR [57]. These features are described
consistently by the presence of a DM interaction (10.10) on the next-nearest-
neighbor (inter-dimer) bond, denoted by D0 in Fig. 10.8c [64]. The inter-dimer DM
interaction is not frustrating because of the sign alternation, and hence enables a
hopping of the triplets. Its magnitude is estimated to be D0

c � 0:2 meV [62, 63].
If the CuBO3 planes were flat, D 0 should be parallel to the c-axis, but the slight
buckling of the planes shown in Fig. 10.8b allows a finite ab-plane component. Sur-
prisingly, the analysis of the neutron data indicates that D0

ab
is not merely a small

fraction of D0
c , but that the two components are comparable in magnitude [62, 63].

Another important interaction in SrCu2(BO3)2 not included in the Shastry–
Sutherland model is the intra-dimer DM interaction denoted by D in Fig. 10.8c.
This interaction is allowed only because of the buckling of the CuBO3 planes. The
crystal symmetry determines the direction of D to be in the ab-plane and perpen-
dicular to the dimer bond. The intra-dimer DM interaction mixes the singlet and
triplet states, breaking the conservation of total magnetization (number of bosons).
Its effects are particularly significant near the critical field Hc where the excita-
tion gap is expected to vanish, because the mixing causes an anticrossing of the two
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levels and eliminates the phase transition at Hc. In fact one would expect Hc � 23 T
for H k c from the gap value at zero field (35 K) and the value of g (gc D 2:28

[57]). However, the magnetization already begins a gradual rise around 16 T and
follows a smooth curve without any sign of a phase transition up to the boundary
to the 1/8-plateau at 26.5 T (left panel, Fig. 10.9). This anticrossing behavior has
been observed directly by ESR [65] and by optical absorption [66] experiments.
Persistence of the excitation gap above Hc was also verified from the activation
energy of the nuclear spin-lattice relaxation rate (1=T1) at the B sites, as shown in
the right panel of Fig. 10.9. It deviates from linear field dependence above 20 T. The
gap nearly vanishes at the boundary to the 1/8-plateau (26.5 T) and increases again
inside the plateau (27.5 T) [67].

In addition, the intra-dimer DM interaction induces a staggered magnetization
on each dimer and acts to tilt the uniform magnetization away from the field
direction [68, 69]. For isolated dimers, the staggered and uniform magnetizations
are given in the low-field limit and for D=J � 1 by the compact expressions
ms D �

g�B=2J 2
�

D � H and mu D �
g�B=4J 3

�
.D � H / � D [69]. The for-

mer can be detected by NMR and the latter contributes to the torque signal. The
field-induced staggered magnetization has been observed in SrCu2(BO3)2 by 11B-
NMR experiments [67]. The magnitude of D determined from various experiments
[66, 67, 70, 71] is consistently in the range 2–4 K. An important consequence of the
intra-dimer DM interaction is the absence of a Bose-condensation transition near
Hc. This is because the U(1) spin-rotation symmetry is already broken at lower
fields. The buckling of the CuBO3 planes also induces anisotropic components of
the g-tensor, with a sign alternation, which has the same effect as the intra-dimer
DM interaction. Given the modest magnitude estimated from structural data, the
effects of the staggered g-tensor are considered to be rather minor compared with
D [66]. Some spectroscopic results [66,71], most notably the detection of the direct
singlet–triplet transition by ESR for fields oriented parallel to the c-axis [57, 65],
seem to require a finite c-component of D. However, there is no indication of a
structural change with temperature that would allow such a component. An alterna-
tive explanation has been proposed based on the idea of dynamical modulation of
D due to spin-phonon coupling [72]. Finally, recent ab initio estimates of the DM
interactions are in remarkably good agreement with experiment regarding both the
relative orientation and the magnitude of the DM vectors [73].

10.3.3 ‘Quantum’ Plateaux and Spin Superstructure
in SrCu2(BO3)2

The existence of a spin superstructure at the 1/8-plateau in SrCu2(BO3)2 has been
confirmed directly by NMR experiments on both the Cu and the B sites [74, 75].
Because the magnetic hyperfine field acting on a nuclear spin is determined by the
local magnetization in the neighborhood of the sites being probed, the NMR spec-
trum represents an effective histogram of the distribution of the magnetic moments
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Fig. 10.10 Cu NMR spectra (solid dots) in SrCu2(BO3)2, measured at T D 35 mK in fields of
26 T (inset) and 27.6 T (main panel) oriented parallel to the c-axis. In the inset, the spectrum is
decomposed into two sets of three quadrupole-split lines from 63Cu and 65Cu, as indicated by the
lines and arrows. In the main panel, the arrows show the resonance positions in the absence of
the magnetic hyperfine field. The thin line connects the data points while the thick line represents
the result of a fit to the spectrum using 11 sites with distinct hyperfine fields. (After Kodama
et al. [74])

(as explained in the Chap. 4 by Carretta and Keren). Figure 10.10 shows the Cu
NMR spectra measured in static magnetic fields of 26 T (inset: below the onset of the
1/8-plateau) and at 27.6 T (main panel: inside the 1/8-plateau) at T D 35 mK. The
spectrum at 26 T can be reproduced as a superposition of six lines, all of which arise
from a single Cu site, because each of the two isotopes 63Cu and 65Cu generates
three lines split by the quadrupolar interaction (indicated by the arrows). Thus the
magnetization is uniform at 26 T. By contrast, the spectrum at 27.6 T shows many
sharp peaks distributed over an extremely wide frequency range, indicating many
distinct Cu sites with different magnetizations. This constitutes direct evidence of a
magnetic superstructure with high-order commensurability.

In spite of this apparent complexity, some important features can be recognized
immediately in this spectrum [74]. The six sharp lines in the frequency range 110–
165 MHz are assigned to a single Cu site with a large, negative hyperfine field of
�16 T, which corresponds to a magnetization hSzi � 0:3. These sites are identi-
fied as the most strongly polarized “triplet dimer” sites. Their intensity is indeed
approximately 1/8 of the whole spectrum. However, other sites also have finite
hyperfine fields, indicating that one triplet is not confined to a single dimer: the
broad lines in the range 165–230 MHz are assigned to another site with magneti-
zation hSzi � 0:2. In addition, some lines show positive hyperfine fields, which
correspond to sites whose moments lie antiparallel to the magnetic field. The Cu-
NMR spectrum in the 1/8-plateau was reproduced by assuming 11 distinct Cu sites
with different magnetization [74]. Such a large number of sites is compatible with
the unit cell shown in the left panel of Fig. 10.11.
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The wide distribution in the magnitude of the ordered moment over different
sites revealed by the NMR experiment is a distinctive signature of quantum plateaus
(Sect. 10.2.5). This behavior has been reproduced by exact-diagonalization calcu-
lations on finite clusters (up to 24 sites) using the Shastry–Sutherland model with
parameter values appropriate for SrCu2(BO3)2 [76]. The calculated spin-density
distribution is shown in Fig. 10.11 for various plateaus. To select a unique ground
state with broken symmetry on a finite cluster, a spin-phonon coupling was included
with periodic boundary conditions appropriate for the predetermined geometry of
the supercell. The rectangular supercells for the 1/4- and the 1/3-plateaus were
obtained by earlier hard-core-boson calculations [77]. The inclusion of spin-phonon
coupling can be justified based on the large anomalies exhibited by the elastic con-
stants at the boundaries of the plateaus [78]. However, there is to date no direct
evidence for a static lattice distortion at the phase transitions. Whether or not the
spin-phonon coupling plays an essential role in stabilizing the superstructure within
the plateau regions remains an open question.

A prominent feature of the calculated spin-density profile is that one “triplet” unit
is spread over three dimers, as shown by the ellipse in the left panel of Fig. 10.11; the
most strongly polarized triplet dimer has neighboring dimers with oscillating spin
density on both sides. The negative polarization is due to the (unfrustrated) antifer-
romagnetic exchange field from the central dimer. While the other dimers also have
finite magnetizations, their magnitudes are relatively small. The hard-core-boson
calculations [77] show “stripe” order of the triplets in the 1/4- and 1/3-plateaus. Note
that the rhombic ordering pattern in the 1/8-plateau is obtained by removing every
other triplet from the stripes of the 1/4-plateau. The distribution of hyperfine fields
obtained from the calculated results for the red 1/8-plateau is in good agreement
with the NMR experiment [74, 76]. We stress that, while the local magnetization in
the plateaus is always collinear with the external field for the Shastry–Sutherland
model, it should have a finite transverse component in SrCu2(BO3)2 due to the
intra-dimer DM interaction. The distribution of the transverse magnetization is not
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yet known. Similar spin superstructures have been detected by very recent NMR
experiments for the 1/4- (Takigawa et al., unpublished) and the 1/3-plateaus [79].

10.3.4 Phase Diagram of SrCu2(BO3)2

The phase transition into the 1/8-plateau has been investigated by NMR at the B
sites [74, 75]. Similar to the Cu NMR results, the B NMR spectrum consists of one
set of quadrupole-split lines below 26.5 T but shows a large number of peaks origi-
nating from the spin superstructure above 27 T. The two distinct types of spectrum
coexist in a narrow field range 26.5–27 T at the transition. A similar coexistence has
also been observed for the transition as a function of temperature: at 27.5 T, it occurs
over the temperature range 0.36–0.52 K. Such behavior indicates that the transitions
in both field and temperature are of first order, and are affected by some form of
disorder. It should be noted that observation of the 1/8-plateau at 1.4 K (left panel,
Fig. 10.9) is apparently incompatible with the disappearance of the spin superstruc-
ture in the NMR experiments above 0.52 K. A natural explanation is the adiabatic
cooling caused by the application of a pulsed magnetic field [80]. For spin systems
with a singlet ground state, the spin gap to the triplet excitations is reduced by a
magnetic field. If the magnetic field is applied rapidly enough, the process is adi-
abatic, i.e. the population distribution among different levels remains unchanged.
This causes significant cooling.

More detailed information on the phase diagram has been obtained from recent
magnetization and torque measurements in steady magnetic fields up to 31 T [80]
(Fig. 10.12a). A tiny cantilever was used to detect the force acting on the sample,
which has contributions from both the magnetic force �M � rH , and the torque
� / M �H ; in homogeneous fields, rH D 0. When the field is tilted slightly from
the c-axis, the force is dominated by the torque effect due to the transverse magne-
tization, M? / �=H , which is generated both by the intra-dimer DM interaction
and by the anisotropy of the g-tensor. Alternatively, the longitudinal magnetization
hSzi can be detected if the sample is moved off the center of the magnet to make
the field sufficiently inhomogeneous. As shown in Fig. 10.12a, M? and hSzi exhibit
quite different field-dependences even at low fields. In fact, the field-dependence of
M? is similar to the staggered magnetization measured by NMR.

The magnetization curve exhibits a large and nearly discontinuous step on
entering the 1/8 phase. However, this is actually a very steep increase of the mag-
netization over a narrow field range, pointing to a coexistence of the two phases
which is consistent with the NMR results. No hysteresis was observed between up
and down field-sweeps. In addition, the torque and the magnetization data exhibit
two clear steps above the 1/8-plateau, indicating successive phase transitions (the
arrows in the inset of Fig. 10.12a). The first transition at 28.4 T marks the upper
boundary of the 1/8-plateau, which is followed by another transition near 29.6 T. The
temperature-field phase diagram may then be constructed by plotting the extrema of
the second derivative of M?, and is shown in Fig. 10.12b.
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the disappearance of the large internal field in the B NMR spectrum [81]. (c) Change of the B NMR
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The upper boundary of the 1/8-plateau is also marked by a sudden change of the
B NMR spectrum [81]. A part of the B NMR spectra corresponding to the largest
negative hyperfine fields is shown for various fields in Fig. 10.12c. The lowest field
(27.8 T) is in the 1/8-plateau. From earlier experiments, the peaks shown in the
figure are assigned to the B sites next to the strongly polarized triplet dimer (site
1 in the left panel of Fig. 10.11) [75]. These peaks exhibit a sudden splitting near
28.3 T, coinciding with the upper boundary of the plateau. An important observation
is that, in spite of the splitting, the value of the largest hyperfine field is virtually
unchanged across the phase boundary. This means that there are still highly polar-
ized triplet dimers above the plateau, providing direct evidence for the persistence
of a spin superstructure up to at least 31 T. This is in strong contrast to the behavior
at the lower boundary of the plateau. The transition to the paramagnetic phase with
increasing temperature was determined by the disappearance of the large hyperfine
field, as shown in Fig. 10.12b. The transition temperature extrapolates smoothly to
the plateau region and also to the specific-heat anomaly observed at higher fields
(up to 33 T) (Tsujii et al., unpublished).

At the time of writing, the microscopic nature of the phases intermediate between
the 1/8- and the 1/4-plateaus, where a continuous change of the magnetization
coexists with the symmetry-breaking spin superstructure, has not been fully under-
stood. If the anisotropic interactions were absent, the increase of magnetization
would translate directly into an increase of the boson density. The persistence of
the spin superstructure then implies a coexistence of doped mobile bosons on top
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of the charge-density-wave order of the plateaus. The doped bosons would undergo
Bose condensation at a sufficiently low temperature, resulting in a supersolid phase.
A supersolid phase has indeed been proposed for the Shastry–Sutherland model
above the 1/3-plateau [82]. Although one-body hopping of triplets is inhibited in
the Shastry–Sutherland model, a correlated hopping is allowed whereby a triplet
can hop from one site to another if a second triplet is located next to both sites. The
gain of kinetic energy due to correlated hopping is presumably important in the pro-
posed supersolid phases. The role of correlated hopping in stabilizing the supersolid
phase has been demonstrated theoretically in a simpler frustrated dimer model [23].
As already mentioned, the situation changes dramatically in the presence of DM
interactions. The broken spin-rotation symmetry in the ab-plane eliminates the pos-
sibility of Bose condensation, and therefore a true supersolid phase cannot occur.
A complete understanding of the intriguing phase diagram of SrCu2(BO3)2 may
reveal new physics resulting from the interplay between the spin frustration and
anisotropic interactions.

To conclude this section, we mention that phases at even higher fields have been
explored recently. Sebastian et al. have extended the magnetization measurements
in pulsed magnetic fields up to 85 T [83] and have found several new anomalies sug-
gesting additional plateaus. These authors also found that the 1/3-plateau ends near
70 T, above which the magnetization increases continuously and appears to reach
the 1/2-plateau above 80 T. Recent NMR experiments up to 34 T (Takigawa et al.,
unpublished) confirmed several distinct phases between the 1/8- and 1/4-plateaus.
The possibility of still further plateaus with high commensurability, such as 1/6
[84, 85] and 2/15 [84] has been proposed theoretically on the basis of accurate
effective models derived by high-order perturbation theory [84] and by the CORE
(Contractor Renormalization) technique [85]. Despite the difficulty of performing
experiments in very high magnetic fields, remarkable progress in magnet technology
has enabled the community to make steady progress in understanding the fascinating
properties of the quantum phases of SrCu2(BO3)2.

10.3.5 RB4: A New Family of Shastry–Sutherland System

Very recently, the new family of compounds RB4, where R represents the rare-earth
elements, has attracted considerable attention because the trivalent rare-earth ions in
these materials form layers with the geometry of the Shastry–Sutherland lattice. In
particular, TmB4 ([86, 87], Siemensmeyer et al., unpublished) and TbB4 [88, 89]
exhibit series of magnetization plateaus, suggesting the formation of symmetry-
breaking superstructures. Both Tm3C and Tb3C have large total angular momenta
of J D 6, and thus these may be regarded as classical spin systems. However,
they also have complications, such as a strong anisotropy due to the crystalline
electric-field effect and quadrupolar interactions, in addition to the conventional
spin-exchange interactions. TmB4 has Ising anisotropy with an easy c-axis. In fields
oriented along the c-axis, it shows narrow magnetization plateaus at 1/9, 1/8, 1/7,
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and possibly at other fractions in addition to the stable 1/2-plateau, before saturation
takes place above 4 T ([87], Siemensmeyer et al., unpublished). By contrast, TbB4
has easy-plane anisotropy with a hard c-axis, and for fields in this direction it shows
a spectacular series of plateaus at 1/9, 1/3, 4/9, 1/2, and other fractions over the field
range 15–30 T [88]. It is certainly an important future problem to understand the
mechanism leading to the formation of these plateaus, and to clarify whether they
have features in common with those observed in SrCu2(BO3)2.

10.4 Conclusion

We have provided a brief overview of the mechanisms and experimental observa-
tions of magnetization plateaus, and more generally of their relation to the physics
of frustrated spin systems. We have discussed two mechanisms for the formation
of plateaus. The order-by-disorder scenario gives a good description for plateaus
with classical spin configurations, of which the spin-1/2 Heisenberg model on a
triangular lattice provides a typical example. The bosonic description is more suit-
able for ‘quantum’ plateaus, whose formation is associated with the localization
of bosons into a symmetry-breaking charge-density-wave order. On the theoret-
ical side, such quantum plateaus have been established in various types of spin
model, particularly in coupled-dimer models, and in some cases supersolid phases
are predicted in the neigborhood of the plateaus. On the experimental side, how-
ever, SrCu2(BO3)2 is to date the only material where symmetry-breaking quantum
plateaus have been investigated in depth. Studies of this material are complicated
by its anisotropic interactions, which are presumed to have siginificant effects on
the high-field properties and the phase diagram. An important future direction is to
understand the role of anisotropic interactions more precisely in simple spin models,
as well as in the Shastry–Sutherland model. An important experimental direction is
the effort to find symmetry-breaking quantum plateaus in other materials with the
ideal Shastry–Sutherland lattice, and also in other lattices with simpler geometry.

We would like to acknowledge all of the colleagues with whom we have had the
pleasure to discuss and often to collaborate on the issue of magnetization plateaus,
in particular F. Becca, C. Berthier, J. Dorier, M. Horvatic, K. Kodama, A. Läuchli,
N. Laflorencie, S. Miyahara, K. Penc, and K.-P. Schmidt. We thank A. Honecker
and M. Oshikawa for their critical reading of the manuscript.
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Chapter 11
Spin-Lattice Coupling in Frustrated
Antiferromagnets

Oleg Tchernyshyov and Gia-Wei Chern

Abstract We review the mechanism of spin-lattice coupling in relieving the geo-
metrical frustration of pyrochlore antiferromagnets, in particular spinel oxides. The
tetrahedral unit, which is the building block of the pyrochlore lattice, undergoes a
spin-driven Jahn–Teller instability when lattice degrees of freedom are coupled to
the antiferromagnetism. By restricting our considerations to distortions which pre-
serve the translational symmetries of the lattice, we present a general theory of the
collective spin–Jahn–Teller effect in the pyrochlore lattice. One of the predicted lat-
tice distortions breaks the inversion symmetry and gives rise to a chiral pyrochlore
lattice, in which frustrated bonds form helices with a definite handedness. The chi-
rality is transferred to the spin system through spin-orbit coupling, resulting in a
long-period spiral state, as observed in spinel CdCr2O4. We discuss explicit models
of spin-lattice coupling using local phonon modes, and their applications in other
frustrated magnets.

11.1 Introduction

As explained in Chap. 1 by Chalker, sufficiently strong frustration in a magnet
results in a large degeneracy of its ground-state manifold. Prime examples of this
behavior are Heisenberg antiferromagnets on the kagomé [1,2] and pyrochlore [3,4]
lattices with interactions restricted to nearest-neighbor sites. In the classical limit of
a large spin S , the ground states of these magnets exhibit very high, continuous
degeneracies and possess numerous zero modes, which correspond to moving the
system through its manifold of ground states [5]. The pyrochlore antiferromagnet
represents a particularly striking example of high ground-state degeneracy: at least
half of its spin-wave modes have zero frequencies in any collinear ground state [4].

A large degeneracy means enhanced sensitivity to perturbations, even when these
are nominally weak. In this chapter we will consider a coupling between spins and
the underlying lattice, which has its origin in the dependence of the exchange inte-
grals on the atomic positions, J.r1; r2/ S1 � S2, and is known as magnetoelastic
exchange [6]. In the pyrochlore antiferromagnet, this coupling lifts the degeneracy
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of the classical ground states and induces a symmetry-lowering distortion of the
lattice, in analogy with the spin-Peierls effect in antiferromagnetic spin chains [7].
A spin-Peierls-like phase transition has been observed in several antiferromagnetic
spinels where the magnetic ions form the pyrochlore lattice [8–10].

The problem of coupled spins and lattice degrees of freedom in a pyrochlore
antiferromagnet is reminiscent of the collective Jahn–Teller effect [11] in crystalline
solids. We therefore begin the discussion by studying the Jahn–Teller distortion in a
tetrahedral “molecule” with four spins, which is the structural unit of the pyrochlore
lattice. A symmetry-based analysis will be supplemented by models with specific
spin-phonon coupling mechanisms. We will then extend the analysis to an infinite
lattice, to examine some of the possible ground states of the classical spin system.
In concluding this chapter, we will test the theory of spin–phonon coupling on the
example of CdCr2O4, a frustrated Heisenberg antiferromagnet with S D 3=2 spins
residing on the pyrochlore lattice.

11.2 Spin-Driven Jahn–Teller Effect in a Tetrahedron

Consider the basic structural unit of the pyrochlore lattice, a cluster in the shape
of a regular tetrahedron with four spins of length S at the corners (Fig. 11.1).
The Heisenberg exchange energy depends on the total spin of the cluster, Stot DP4
iD1 Si , according to

H0 D J
X
i<j

Si � Sj D JS2tot

2
� const: (11.1)

For antiferromagnetic exchange (J > 0), this energy is minimized when the total
spin of the cluster is 0. The degeneracy of the ground state is thus equal to the
number of distinct spin-singlet states in a system of four spins.

For spins of length S , the number of linearly independent singlet ground states is
2SC1. Indeed, the pair of spins 1 and 2 can have a total combined spin S12 ranging
from 0 to 2S . The same is true of the spin pair 3 and 4. A state with a total spin
Stot D 0 can be obtained by combining states with S12 D S34 D 0, S12 D S34 D 1,

Fig. 11.1 Representation of
four spins in the corners of a
regular tetrahedron

z

y

x

S2

S1

S4

S3
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and so on, up to S12 D S34 D 2S . Thus one observes that, for any spin length S ,
the ground state of the four spins is degenerate. The high symmetry of the cluster
means that, in accordance with the Jahn–Teller theorem,1 the ground-state energy
can be lowered through a distortion.

Assume for simplicity (a more general case will be considered below) that the
exchange coupling J between spins i and j has a dependence on their separation,
rij D jri � rj j, given by

J.rij / D J.Nrij /C J 0.Nrij /ırij C J 00.Nrij /ır2ij=2C : : : ; (11.2)

where Nrij is a reference distance. At zeroth order in the displacements ıri , we
recover the unperturbed Heisenberg Hamiltonian (11.1) with 2S C 1 degenerate
singlet ground states.

The first-order term,
H1 D J 0X

i<j

.Si � Sj /ırij ; (11.3)

lifts the degeneracy of the ground-state manifold. As long as the displacements
involved remain small enough to satisfy J 0ırij � J , excited states with Stot > 0

at energies J and higher may be neglected. Thus it is necessary to determine the
energy levels of H1 in the Hilbert space of the singlet ground states.

11.2.1 Generalized Coordinates and Forces

The perturbation Hamiltonian (11.3) depends on the atomic displacements ıri ,
which comprise 4 � 3 D 12 degrees of freedom. However, not all of these will
influence the exchange energy of the spins. As one example, it does not change
under rigid translations of the tetrahedron (3 modes) or under global rotations (a
further 3 modes). The remaining 6 modes represent various deformations of the
four-site cluster. To facilitate a further analysis, we classify these modes in terms of
the irreducible representations (irreps) of the tetrahedral point group Td [13].

The 6 modes belong to three irreps of Td . The breathing mode (irrep A) leaves
the symmetry of the tetrahedron fully intact. A doublet of tetragonal and orthorhom-
bic distortions, QE D .QE

1 ;Q
E
2 /, transforms under irrep E . Finally, a triplet

QT2 D .Q
T2

1 ;Q
T2

2 ;Q
T2

3 /, transforming as irrep T2, elongates and compresses
opposing bonds; equal-amplitude superpositions of the triplet components yield
trigonal distortions. The coordinates of these modes can be expressed in terms of
Cartesian displacements of the spins with the coefficients listed in Table 11.1.

By expressing the changes in bond lengths, ırij , in terms of the generalized
coordinates, we reduce the perturbation Hamiltonian (11.3) to the form

1 It is important to note that the degeneracy is not caused by the symmetry of time reversal, so the
conditions of the theorem are fulfilled [12].
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Table 11.1 Coefficients relating the 6 distortions of a tetrahedron to the displacements ıri of its
vertices. The reference frame is shown in Fig. 11.1

ıx1 ıy1 ız1 ıx2 ıy2 ız2 ıx3 ıy3 ız3 ıx4 ıy4 ız4
A QA C 1

p

12
� 1

p

12
� 1

p

12
� 1

p

12
C 1

p

12
� 1

p

12
� 1

p

12
� 1

p

12
C 1

p

12
C 1

p

12
C 1

p

12
C 1

p

12

E QE
1 � 1

p

24
C 1

p

24
� 1

p

6
C 1

p

24
� 1

p

24
� 1

p

6
C 1

p

24
C 1

p

24
C 1

p

6
� 1

p

24
� 1

p

24
C 1

p

6

QE
2 C 1

p

8
C 1

p

8
0 � 1

p

8
� 1

p

8
0 � 1

p

8
C 1

p

8
0 C 1

p

8
� 1

p

8
0

T2 Q
T2
1 0 C 1

p

8
C 1

p

8
0 C 1

p

8
� 1

p

8
0 � 1

p

8
C 1

p

8
0 � 1

p

8
� 1

p

8

Q
T2
2 C 1

p

8
0 � 1

p

8
C 1

p

8
0 C 1

p

8
� 1

p

8
0 C 1

p

8
� 1

p

8
0 � 1

p

8

Q
T2
3 C 1

p

8
� 1

p

8
0 � 1

p

8
C 1

p

8
0 C 1

p

8
C 1

p

8
0 � 1

p

8
� 1

p

8
0

Table 11.2 Coefficients relating the bond elongations ırij to the distortion coordinatesQA, QE D
.QE

1 ;Q
E
2 /, and QT2 D .Q

T2
1 ;Q

T2
2 ;Q

T2
3 /

QA QE
1 QE

2 Q
T2
1 Q

T2
2 Q

T2
3

ır14 C
q

2
3

C 1
p

12
� 1
2

�1 0 0

ır23 C
q

2
3

C 1
p

12
� 1
2

C1 0 0

ır24 C
q

2
3

C 1
p

12
C 1

2
0 �1 0

ır13 C
q

2
3

C 1
p

12
C 1

2
0 C1 0

ır34 C
q

2
3

� 1
p

3
0 0 0 �1

ır12 C
q

2
3

� 1
p

3
0 0 0 C1

H1 D
X
˛

J ˛
0X
n

Q˛
nf

˛
n ; (11.4)

where the index ˛ enumerates the irreps and n its components. The variable f ˛n
is the generalized force which is conjugate to the coordinate Q˛

n and has the
same symmetry properties. J ˛ 0 is a coupling constant appropriate for the irrep ˛.
(Table 11.2)

For illustration, the breathing mode QA couples to the spin operator

f A D 1p
6

X
i<j

Si � Sj ; (11.5)

which is invariant under all symmetry operations of Td . Furthermore, up to a trivial
factor, this is the unperturbed Hamiltonian (11.1) and so has the same value in any
of the degenerate ground states. Consequently, the term �JA0

QAf A in the pertur-
bation Hamiltonian (11.3) produces a trivial energy shift of the degenerate ground
states, but does not split them.

The triplet mode and the associated triplet force also do not induce a splitting. To
demonstrate this, we note that QT2

1 couples to the operator

f
T2

1 D .S2 � S3 � S1 � S4/=
p
2; (11.6)
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which vanishes in any singlet state.2 In the presence of an applied magnetic field,
the triplet forces cannot be neglected because of the nonzero total spin Stot. The
triplet forces and the corresponding trigonal distortions play an important role in the
stabilization of the half-magnetization plateaus observed in some spinel chromites
(Sect. 11.3.1).

The only two modes involved in the splitting of the ground state are the compo-
nents of the doublet .QE

1 ;Q
E
2 / of tetragonal and orthorhombic distortions. These

couple, respectively, to the spin operators

f E1 D S1 � S4 C S2 � S3 C S2 � S4 C S1 � S3 � 2S1 � S2 � 2S3 � S4p
12

;

f E2 D S2 � S4 C S1 � S3 � S1 � S4 � S2 � S3
2

: (11.7)

In what follows, we omit the irrep superscript because only the doublet E partici-
pates in lifting the degeneracy of the ground-state manifold.

In addition to the magnetoelastic exchange (11.3), which is linear in the distortion
amplitude, it is necessary to consider also the elastic energy of the deformation. We
thus obtain the spin-distortion Hamiltonian

H D J 0.Q � f/C kjQj2=2 � J 0.Q1f1 CQ2f2/C k.Q2
1 CQ2

2/=2; (11.8)

where k is the elastic constant of the doublet distortion. Having established this, the
next task is to minimize the energy (11.8) with respect to both the coordinates and
the spins.

11.2.2 Four S D 1=2 Spins on a Tetrahedron

The problem of four S D 1=2 spins on a deformable tetrahedron was first ana-
lyzed by Yamashita and Ueda [14]. The ground state of the unperturbed exchange
Hamiltonian (11.1) is two-fold degenerate. As a basis in this Hilbert space one may
use singlet states with a well-defined total spin on bonds 12 and 34, S12 D S34 D � ,
where � D 0 or 1 [15]. In this basis, the force operatorsf1 and f2 are proportional to
the Pauli matrices �1 and �3, respectively, so that the Hamiltonian (11.8) reduces to

H D J 0.Q1�1 CQ2�3/
p
3=2C k.Q2

1 CQ2
2/=2: (11.9)

For a given distortion Q, the ground-state manifold is split into the two energy
levels

2 Indeed, from S1 C S2 C S3 C S4 D 0 it follows that .S1 C S4/2 D .S2 C S3/2 and thus
S1 � S4 D S2 � S3.



274 O. Tchernyshyov and G.-W. Chern

E1;2 D ˙jJ 0jQp
3=2C kQ2=2; (11.10)

and the energy of the system is minimized when Q D jJ 0jp3=.2k/. Note that this

quantity depends on the magnitude of the distortion, Q D
q
Q2
1 CQ2

2, but not
on its “direction:” it can be tetragonal, purely orthorhombic, or any combination of
these. This degeneracy is associated with a continuous symmetry of the Hamiltonian
(11.9) that involves simultaneous “rotations” of both the distortion coordinates and
the Pauli matrices,

�
Q1
Q2

�
7!
�

cos � sin �
� sin � cos �

��
Q1

Q2

�
;

�
�1
�3

�
7!
�

cos � sin �
� sin � cos �

��
�1
�3

�
:

(11.11)
The invariance of the energy under this transformation does not reflect an underlying
symmetry, and applies at the level of approximation used here. Terms of higher
order in Q break this symmetry to leave only a three-fold degeneracy, as may be
expected on symmetry grounds [14]. The lowest-order anharmonic term allowed by
the symmetry is proportional to

QxQyQz �
 

�1
2
Q1 C

p
3

2
Q2

! 
�1
2
Q1 �

p
3

2
Q2

!
Q1 D 1

4
Q3 cos 3˛;

(11.12)
whereQx,Qy , andQz measure tetragonal distortions along the respective axes and
˛ is the polar angle in the .Q1;Q2/ plane. Depending on the sign of the cubic term,
it favors three distinct ground states at ˛ D 0;˙2�=3 or at ˛ D �;˙�=3. The
former “vacua” have spin singlets on two opposing bonds (e.g. S12 D S34 D 0

for ˛ D 0) while the latter have spin triplets on two opposing bonds (S12 D
S34 D 1 for ˛ D �). These ground states exhibit valence-bond order, which vio-
lates the point-group symmetry of the cluster but not the SO(3) symmetry of the
exchange interaction. The two-component order parameter (11.7), introduced by
Harris, Berlinsky and Bruder [16], measures the differences in spin correlations on
the different bonds.

The ground states of the cluster exhibit a tetragonal lattice distortion along one
of the three major axes with Q D �J 0hfip3=.2k/. If J 0 < 0, as would be expected
for direct antiferromagnetic exchange, the tetrahedron is flattened (elongated) in a
ground state with triplets (singlets) on opposing bonds.

For spins of length S > 1=2, the analysis proceeds by a similar route [15]. The
lowest-order perturbation (11.3) yields three degenerate singlet ground states with
the largest possible spins on two opposing bonds, such as S12 D S34 D 2S , and a
tetragonal distortion (a flattening of the tetrahedron for J 0 < 0). This result is most
easily understood in the classical limit S ! 1, to which we turn next.
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11.2.3 Four Classical Spins on a Tetrahedron

For classical spins, the total energy E.f;Q/ (11.8) can be minimized in two steps.
We minimize it first with respect to the distortion Q at a fixed f.3 A minimum is
achieved when Q D �J 0f=k, yielding the energy

E.f/ D �J 02f 2=.2k/; (11.13)

whence the total energy is minimized by states with the largest magnitude of the
force doublet f. Thus it is necessary to quantify the magnetoelastic forces in those
states of the ground-state manifold with Stot D 0.

The domain of attainable f values forms a regular triangle in the .f1; f2/ plane
(Fig. 11.2). Its three corners correspond to the three distinct collinear states with
four satisfied bonds (Si � Sj D �S2) and two frustrated ones (Si � Sj D CS2).
States elsewhere on the perimeter of the triangle have coplanar spins.

α

f

f2

f1

Fig. 11.2 The domain of attainable values of the force doublet f D .f1; f2/ (11.7) for classical
spins. Dashed lines indicate frustrated bonds (Si � Sj � 0). Reprinted with permission from [15]

3 This method cannot be applied to quantum spins because the operators f1 and f2 do not commute
[15], and so their values cannot be measured simultaneously.
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Not unexpectedly, the doublet force is maximized (and the total energy mini-
mized) in the collinear states. Indeed, in such states antiparallel spins attract and
parallel spins repel each other with forces F D �J 0 Si � Sj of the largest pos-
sible magnitude, jJ 0jS2. The large forces result in large distortions, yielding a
large decrease in the total energy. Thus in the classical limit one expects collinear
ground states in which the tetrahedron is flattened along one of the principal axes
for J 0 < 0.4

11.2.4 Color Notation and Other Useful Analogies

We find it convenient here to introduce an analogy with the color triangle, where
the vertices correspond to the primary colors red, green, and blue, the midpoints
of the edges to the secondary colors cyan, magenta, and yellow, and the center to
the absence of color. If we color bonds perpendicular to the major axes a, b, and c
respectively red, green, and blue, then the color of the state in Fig. 11.2 reflects the
color of the frustrated bonds.

The collinear ground states obtained for classical spins provide a simple rational-
ization for the valence-bond states found for quantum spins of length S > 1=2 [15].
Quantum states maximizing the spins of opposing pairs (for example S12 D S34 D
2S ) are the analogs of the collinear classical configurations (S1 D S2 D �S3 D
�S4).

Lastly, we recall that the spin-distortion Hamiltonian (11.8) was derived for
a simplified model of exchange in which the Heisenberg interaction strength J
depends only on the separation of the two spins. This approximation is good
for direct spin exchange [17], which is the dominant exchange interaction in the
chromium spinels ZnCr2O4 [18] and CdCr2O4 [19], as well as in some other
chromium antiferromagnets [20]. However, in other situations J may exhibit a more
complex dependence on atomic displacements, such as the very sensitive bond-
angle-dependence of superexchange. Fortunately, the form of the spin-distortion
coupling derived above (11.8) is robust, as can be seen from symmetry consider-
ations: group theory guarantees that there are no other invariant terms of the same
order in f and Q. In the general case, J 0 represents a linear combination of exchange
derivatives.

11.2.5 Spin–Jahn–Teller Effect on a Triangle

Another well-known lattice producing strong frustration in an antiferromagnet is
the kagomé geometry [1,2], a network of corner-sharing triangles in a plane, and its
three-dimensional variant, the hyperkagomé lattice [21]. It is natural to ask whether

4 If J 0 > 0, the spins are still collinear but the tetrahedron is elongated along the same axis.
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spin-lattice coupling is also an effective mechanism for relieving frustration in this
case. We answer this question by considering the building block of the kagomé
lattice, a triangle with three spins.

Classical Heisenberg spins interacting through antiferromagnetic Heisenberg
exchange minimize their energy by making angles of 120ı with one another. An
analysis along the lines of Sect. 11.2 shows that the correction to the exchange
energy from the magnetoelastic term is quadratic in the spin displacements: the lin-
ear term cancels. Without this linear term, a spontaneous distortion does not occur.
The absence of the linear term can be understood simply from the magnetoelastic
forces between the spins: the three forces, being proportional to the scalar products
of the spins, are equal in a state where the spins make equal angles with each other.
These symmetrical forces only shrink the triangle without distorting it.

The argument against the Jahn–Teller distortion fails if the quadratic term in the
magnetoelastic correction is negative and large enough to overcome the purely elas-
tic cost of the distortion, a scenario proposed recently by Wang and Vishwanath [22].
In our view, however, empirical evidence indicates that a Jahn–Teller instability of
this sort would be a rare exception. The strength of the quadratic magnetoelastic
term can be estimated from the splitting of degenerate phonons in antiferromag-
nets with a spin-induced Jahn–Teller distortion [18]. Such splittings, observed in
ZnCr2O4 [18], CdCr2O4 [19], and MnO [23], do not exceed 12% of the phonon
frequencies, which indicates the dominance of the purely elastic contribution.

While the spin-Jahn–Teller distortion of a triangle appears unlikely in the classi-
cal limit, the opposite extreme – quantum spins of length S D 1=2 – are a comple-
tely different situation. The ground state of three such spins interacting through
antiferromagnetic Heisenberg exchange is any state with a total spin S4 D 1=2.
Such a state is fourfold degenerate: part of this degeneracy is of the Kramers type,
as the projection of the total spin on an arbitrary axis can be S z

4 D ˙1=2, and there
is an additional twofold degeneracy related to the symmetry of the triangle. This
degeneracy can be understood in terms of valence-bond states, in which two of the
spins on the triangle form a singlet bond (a quantum dimer) while the third remains
free. Figure 11.3 shows three such states, although they are not mutually orthogonal;
in fact only two of these states are linearly independent.

The presence of a non-Kramers degeneracy leads to the spin–Jahn–Teller effect
on a triangle with spins S D 1=2. The analysis is similar to that for four S D 1=2

spins on a tetrahedron (Sect. 11.2.2), with three distinct ground states. Depending
on the sign of the cubic term, the distorted triangle will have either two long bonds
and one short bond with a singlet on it, or two short bonds and one long bond with
a triplet.

Fig. 11.3 Valence-bond ground states of three spins S D 1=2 with antiferromagnetic Heisenberg
exchange interactions. The ellipses designate singlet bonds
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11.3 Models with Local Phonon Modes

The symmetry-based analysis of the previous section is basically exact regardless
of the underlying microscopic model for the phonons. In this section, we review
some specific models of spin-lattice coupling based on local phonon modes and
also discuss their applications.

Probably the simplest situation is the “bond-phonon model,” in which the
exchange integral (11.3) and also the elastic energy depend only on the bond
length rij . The elastic energy is approximated by the sum of individual terms
kır2ij =2. After integrating out the bond variables ırij , the model generates a
biquadratic spin Hamiltonian

� .J 02=2k/
X
hij i
.Si � Sj /2; (11.14)

which clearly favors collinear spin configurations. Because of its simplicity, this
model has been applied in numerous studies of frustrated magnets. As one example,
Becca et al. found using the bond-phonon model that magnetoelastic coupling leads
to a spin-Peierls transition in the frustrated J1-J2 antiferromagnet on the square
lattice [24, 25]. This study may be relevant to the nature of the transition to a phase
of collinear order observed in the quasi-2D antiferromagnet Li2VOSiO4.

On the pyrochlore lattice, the bond-phonon model gives a ground state with 3N -
fold degeneracy, where N is the total number of tetrahedra: each tetrahedron can
be flattened along one of the 3 major axes, independently of the other tetrahedra.
A more realistic phonon model can be formulated in terms of the independent
displacements of each atom, with the bond lengths determined from these atomic
displacements by ırij D .ui�uj /� Orij . This is known as the site-phonon (or Einstein
phonon) model of spin-lattice coupling [26,27], in the simplest version of which the
elastic energy is approximated by a sum of individual terms kjui j2=2, an assump-
tion which leads to a constant dispersion similar to the long-wavelength limit of
optical phonons. In addition to (11.14), after integrating out the displacements the
model introduces couplings between bond variables,

� .J 02=2k/
X
i; j¤k

.Orij � Orik/ .Si � Sj / .Si � Sk/: (11.15)

Because of these coupling terms, coherent long-range distortions are possible in this
model. By using the site-phonon model, Wang and Vishwanath [22] showed that a
zigzag collinear order of the triangular antiferromagnet CuFeO2 is a ground state
of the spin-lattice Hamiltonian. However, because the Fe3C ion in this compound
has spin S D 5=2 and L D 0, resulting in a rather small magnetic anisotropy, a
relatively large spin-lattice coupling is required to induce the zigzag collinear order
from the non-collinear 120ı ground state of Heisenberg spins on this lattice.
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In the context of the pyrochlore lattice, the interaction term of (11.15) corre-
sponds to an antiferromagnetic coupling between the force doublets of nearest-
neighbor tetrahedra,K

P
h˛ˇi f˛ �fˇ , where the coupling constantK > 0. As a result,

neighboring tetrahedra tend to be flattened along different directions (e.g. h100i and
h010i). While this reduces the total number of ground states, it still leaves a very
high accidental degeneracy which grows exponentially with N .

11.3.1 Half-Magnetization Plateau in ACr2O4 Spinels

Local phonon models provide an explicit description with which one may study the
spin-lattice stabilization of the half-magnetization plateau observed in some spinel
chromites. The low-temperature magnetization curves of the spinels CdCr2O4 and
HgCr2O4 exhibit a sharp transition into a wide plateau region where the magnetiza-
tion is equal to half its saturation value [28,29]. Each tetrahedron in the half-plateau
state is in one of the four 3-up-1-down collinear spin configurations. While ther-
mal and quantum fluctuations act in general to favor collinear spins, and indeed in
some cases help to stabilize the magnetization plateaus in frustrated magnets, the
observed half-magnetization plateau in spinels arises most likely due to a coupling
between the spins and the lattice, a scenario also supported by the observation of a
spontaneous structural distortion accompanying the half-plateau transition.

Because the total spin Stot is nonzero in the presence of a magnetic field, coupling
of the moments to the singlet (A) and triplet (T2) phonon modes can no longer be
neglected. Still, when the applied magnetic field is weak, the distortion is such that
the crystal retains a tetragonal symmetry. The spins develop a canted antiferromag-
netic order with two frustrated bonds and four antiferromagnetic bonds. As the field
strength increases, the doublet force jfE j D .4=

p
3/ .S2 � S2tot=16/ decreases as a

result of the increasing total spin. At a critical field, the trigonal distortion, accom-
panying a 3-up-1-down collinear spin configuration maximizing the triplet forces,
f
T2

i D p
2S2, becomes more favorable energetically. The tetragonal distortion thus

gives way to the trigonal one through a discontinuous transition.
Using the bond-phonon model, Penc and co-workers [30] obtained a classical

phase diagram for the spin–Jahn–Teller effect in a single tetrahedron. The tran-
sition to the collinear 3:1 states takes place at a field strength H � 3J and
J 02=k & 0:05J . A general symmetry analysis also showed that the collinear 3:1
states are always stabilized over a finite range of magnetic field, provided that
JE

0

< 2J T
0

2 [30].
Similar to the ground-state manifold at zero field, the model with indepen-

dent bonds retains an extensively degenerate manifold of half-magnetization states,
because the trigonal distortion of individual tetrahedra can be along any of the four
h111i axes. This accidental degeneracy is lifted by the additional coupling term
(11.15) introduced by the site-phonon model, which favors an antidistortive cou-
pling between neighboring tetrahedra. Using this rule, Bergman et al. [27] showed
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that a unique spin configuration (up to discrete lattice symmetries) with a quadru-
pled, cubic unit cell is the ground state of the system in the half-magnetization
plateau. The resulting space group, P4332, is consistent with the X-ray diffraction
pattern of the spinel HgCr2O4 [31].

11.4 Collective Spin–Jahn–Teller Effect
on the Pyrochlore Lattice

Attempts to extend the analysis of the spin–Jahn–Teller effect on a single tetra-
hedron to an infinite pyrochlore lattice encounter a conceptual problem: there are
infinitely many phonon modes coupled to the spins (one may expect two for every
tetrahedron). There are also technical difficulties: detailed knowledge of the crys-
tal’s elastic properties is required. As a result of these difficulties, the problem lacks
a general solution.

Some progress may, however, be made through the use of local phonon models,
as described in the previous section. Still, a massive accidental degeneracy remains
in the ground states of these simplified models. Further, the lattice modes in real
crystals are plane waves, and thus a lattice distortion involves only a small number
of phonons with specific lattice momenta. For example, the distortion in ZnCr2O4
shows superlattice peaks in a diffraction experiment with wavenumbers Œ1

2
1
2
1
2
� [10].

This does make it possible to take an alternative, phenomenological approach in
which only a small number of lattice modes is considered. Such an approach was
taken by Tchernyshyov et al. [15], who considered the simplest case where spin
displacements preserve the translational symmetries of the lattice and break only
point-group symmetries.

The pyrochlore lattice is made up of tetrahedra of two different orientations.
Because all tetrahedra of the same orientation are related by lattice translation
(which is assumed to remain a good symmetry), it is necessary to consider only
two tetrahedra of opposite orientations A and B (Fig. 11.5). The symmetry group
must be expanded from Td by including the inversion I exchanging the two sublat-
tices of tetrahedra, Td ˝ I D Oh [13]. The irreps remain largely unaltered, with the
exception of a newly added parity index, which enters because these are either even
(g) or odd (u) under the inversion.

At linear order in the displacements, the only modes which couple to the spins are
the doublets Eg and Eu. The former represents an overall tetragonal or orthorhom-
bic distortion of the lattice, while the latter is an optical phonon with wavenumber
q D 0 that distorts tetrahedra of opposite orientations in exactly opposite ways
(e.g. by flattening tetrahedra A and elongating tetrahedra B by the same amount
and in the same direction). These modes can be expressed in terms of linear
combinations of distortions on tetrahedra of types A and B ,

Qg D QA C QB

p
2

; Qu D QA � QB

p
2

: (11.16)



11 Spin-Lattice Coupling in Frustrated Antiferromagnets 281

The spin-lattice energy (11.8) generalizes to

E.fA; fB ;QA;QB/ D J 0.QA � fA C QB � fB/C kg jQg j2=2C kujQuj2=2; (11.17)

where kg and ku are the elastic constants of the even and oddE doublets. Minimiza-
tion with respect to the lattice modes Qg and Qu yields the energy as a function of
the spin variables in the form

E.fA; fB/ D �Kg jfA C fBj2
4

� KujfA � fB j2
4

D �
�
Kg CKu

� �jfAj2 C jfB j2�
4

(11.18)

�
�
Kg �Ku

� �
fA � fB

�
2

;

where we have introduced the effective magnetoelastic exchange couplingsKg;u D
J 02=kg;u.

The second line in (11.18) is the result familiar from (11.13): the magnitude of the
doublet force f is maximized on tetrahedra of both sublattices. Thus one expects to
find states with collinear spins and (for J 0 < 0) tetrahedra flattened along one of the
three h100i directions. The third line in (11.18) represents a coupling between the
f variables of the two sublattices, whose consequences depend on which of the two
lattice modes is softer.

If Kg > Ku (Eg mode softer), the energy is minimized when fA and fB are in
the same corner of the force triangle (Fig. 11.2). Tetrahedra of both sublattices are
flattened along the same h100i direction, so that only anEg distortion is present. The
spin configuration is shown in Fig. 11.4. The magnetic unit cell coincides with the
structural one. Because we are considering an O(3)-symmetric Heisenberg model,
the global orientation of the spins can be arbitrary.

If, on the other hand, Kg < Ku (softer Eu mode), the two f vectors are located
in different corners of the triangle, so that tetrahedra of types A and B are flattened
along two different h100i directions, giving six possible ground states. The distor-
tion is a superposition of the Eu and Eg modes. The presence of the even mode is
understood in a straightforward manner: if tetrahedra of type A are flattened along
h100i and tetrahedra of typeB along h010i, the lattice is on average elongated along
h001i. The presence of the Eu component of the distortion means that the inversion
symmetry is broken spontaneously. This has important consequences for the mag-
netic order, shown in Fig. 11.5, as we discuss in detail below. Here we note only that
frustrated bonds form left-handed spirals in this particular state.
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Fig. 11.4 Magnetic order in
a state with a softer Eg mode.
Frustrated bonds are shown as
dashed lines. The lattice is
flattened uniformly (for
J 0 < 0). Reprinted with
permission from [15]

blue

Fig. 11.5 Magnetic order in
a state with a softer Eu mode.
Frustrated bonds are shown as
dashed lines. Tetrahedra of
the two different orientations
(labeled A and B) are
flattened along axes a and b,
so that the net distortion of
the lattice is (for J 0 < 0) an
elongation along axis c.
Reprinted with permission
from [32]
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11.5 Collective Jahn–Teller Effect in CdCr2O4

The normal spinels ACr2O4 (where A is a nonmagnetic Zn, Mg, Cd, or Hg ion)
are strongly frustrated antiferromagnets exhibiting the spin-induced Jahn–Teller
distortion. The magnetic Cr3C ions forming the pyrochlore lattice have electronic
configuration 3d3. The oxygen octahedron surrounding the chromium ion splits the
3d levels into a high-energy eg doublet and a low-energy t2g triplet; the former
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are unoccupied while the latter are singly occupied, with the 3 electrons hav-
ing parallel spins. Thus the orbital degree of freedom is quenched and the spins
form a nearly isotropic magnetic moment with total spin S D 3=2 and a gyro-
magnetic ratio of g D 2 [8]. Interactions between the spins are mediated mostly
by direct antiferromagnetic exchange between neighboring Cr sites [18] (with the
exception of HgCr2O4, where this contribution is comparable to the ferromagnetic
superexchange term mediated by the oxygen ions).

All of these compounds have a strongly correlated paramagnetic state well below
their Curie–Weiss temperatures,�, and order magnetically at a temperature TN �
�. The phase transition is discontinuous and is accompanied by a lattice distortion
[8–10]. The lack of orbital degrees of freedom points to a magnetoelastic origin for
the lattice distortion.

CdCr2O4 is the best-understood system to date. In the distorted state below TN
it shows no superlattice peaks [9], indicating that the translational symmetry of the
high-temperature cubic phase (space group Fd N3m) remains unchanged. The point-
group symmetry is lowered: the lattice exhibits a tetragonal distortion with lattice
constants a D b < c (an overall elongation). The low-temperature structure was
identified by Chung et al. as the pyrochlore lattice with a uniform tetragonal elon-
gation (space group I41=amd ) [9], i.e. a pureEg distortion. However, as explained
below, there are good reasons to believe that this distortion also involves a staggered
component Eu, which breaks the inversion symmetry and lowers the space group
down to I4122.

1. The dominance of direct antiferromagnetic exchange between adjacent chromium
spins means that the exchange constant decreases with increasing ionic separa-
tion, i.e. J 0 < 0. If the distortion were of pure Eg type, the crystal would flatten
along one axis, yielding a D b > c in contradiction to the experimental data [9].
As explained in the previous section, an Eu-driven distortion would lead to an
overall elongation of the lattice, a D b < c, in agreement with the experiment.

2. An Eu distortion breaks the inversion symmetry of the crystal, making the crys-
talline lattice chiral. Indeed, the elongated (frustrated) bonds in Fig. 11.5 form
spirals of one helicity. Spin-orbit coupling in the form of the Dzyaloshinskii–
Moriya interaction would then spread the chirality indexchirality from the lattice
to the spins, generating a spiral magnetic order. The observed magnetic order in
CdCr2O4 is in fact a weakly incommensurate spiral [9].

11.5.1 Spiral Magnetic Order in CdCr2O4

Chung et al. reported an incommensurate magnetic order with magnetic Bragg peaks
at q D 2�.0; ı; 1/ in a crystal with an elongated c axis (a D b D 0:995c) and
ı D 0:09. The magnetization lies in the ac-plane. Because the incommensurability
ı is small, the magnetic order can be understood as a commensurate state with q D
2�.0; 0; 1/ twisting slowly along the b-direction.
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The same authors found two such structures which would be consistent with the
data they obtained from elastic neutron scattering. One of the proposed ordering
patterns is derived from the commensurate state shown in Fig. 11.5, and is precisely
what one expects when the magnetoelastic effect is driven by the Eu phonon. The
other candidate is derived from an “orthogonal” state where the spins on every tetra-
hedron are oriented, for example, in directions COx, �Ox, COy, and �Oy. Such a state
is very hard to obtain through the spin-driven Jahn–Teller effect [15], and no other
justification for this state is currently known.

The small value of ı makes it possible to treat this incommensurability as the
result of a weak perturbation on top of the Heisenberg exchange and magnetoelastic
coupling. Chern et al. [32] derived possible magnetic spiral states that arise when
the Dzyaloshinskii–Moriya interaction is added to these two energy terms. These
authors found two candidate solutions, one of which is entirely consistent with the
data of Chung et al. This analysis and its results are described in the next section.

11.5.2 Theory of Spiral Magnetic Order

The Dzyaloshinskii–Moriya (DM) interaction gives a contribution

HDM D
X
hij i

Dij � ŒSi � Sj �; (11.19)

to the Hamiltonian, where the sum extends over pairs of nearest neighbors. This term
is allowed on the ideal pyrochlore lattice, where the bonds are not centrosymmet-
ric, a necessary condition for a non-vanishing coupling constant Dij . At the same
time, the high symmetry of the lattice constrains the direction of this vector [33]:
for a bond oriented along the Œ110� lattice direction, the vector must point along
Œ1N10� (Dij D .˙D;�D; 0/=p2). The value of Dij on any other bond is then found
through the symmetry transformations of the system. In a collinear magnetic state,
the expectation value ofHDM is zero, but its contribution can be lowered by twisting
the spins into a spiral.

The pitch of the spiral is determined by the competition between the DM cou-
pling strength D and a spin stiffness. In most antiferromagnets, the spin stiffness
is set by the exchange interaction, but the pyrochlore antiferromagnet with nearest-
neighbor exchange is an exception: the large degeneracy of its ground state leads to
a vanishing stiffness. As a result, the ground state in the presence of the DM interac-
tion is not a long-range spiral but is rather a commensurate state with noncollinear
spins [33].

The presence of magnetoelastic interactions changes the situation. Recall that the
spin-induced Jahn–Teller effect selects a state with collinear spins. This tendency
towards collinear states results in a finite spin stiffness. As a result, the pitch of the
spiral is a quantity of orderD=K , whereK D J 02=k is the effective magnetoelastic
interaction.
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A problem where the nearest-neighbor exchange J , the magnetoelastic energy
scale K , and the DM coupling D are each arbitrary is hard to solve analytically.
However, it simplifies if these energy scales are well separated, the conventional
hierarchy being

JS2 	 KS4 	 DS2: (11.20)

A quantitative analysis indicates that in CdCr2O4 these scales are of similar mag-
nitude (as discussed at the end of this section), but still have the expected order,
JS2 > KS4 > DS2. Thus while a theory based on the assumption (11.20) may
not provide a quantitative account of magnetic order in CdCr2O4, it presents, at a
minimum, a good point of departure for understanding it.

Minimization of the dominant term, the exchange energy (11.1), yields a con-
straint that the total spin be zero on every tetrahedron. The remaining degrees of
freedom of a single tetrahedron can be parametrized using the staggered magnetiza-
tions

L1DS1 � S2 � S3 C S4
4S

;L2D�S1 C S2 � S3 C S4
4S

;L3 D �S1 � S2 C S3 C S4
4S

:

Because each spin belongs to two tetrahedra, the staggered magnetizations on one
sublattice of tetrahedra determine completely those of the other sublattice. We use
the staggered magnetizations of sublattice A, fLAi g, to express the magnetizations
of sublattice B , and, except in cases of possible confusion, suppress the sublattice
index to simplify the notation.

Even for a single tetrahedron, the three staggered magnetizations are not com-
pletely independent. Vanishing of the total spin in the ground state makes them
mutually orthogonal and imposes on their lengths the constraint [34]

Li D LiOli ; Oli � Olj D ıij ;

3X
iD1

L2i D 1: (11.21)

The lengthsLi parametrize the angles between the spins and are related to the bond
doublet f by

f1 D 2S2 .L21 C L22 � 2L23/=
p
3; f2 D 2S2 .L21 � L22/: (11.22)

Thus five parameters are required to describe the magnetic state of a tetrahedron
in the ground state of (11.1): three Euler angles for the triad fOlig and two further
parameters for the bond doublet, e.g. f D .f1; f2/.

The magnetic order of CdCr2O4 in the commensurate limit ı ! 0 (Fig. 11.5)
has staggered site magnetizations: L2 D L3 D 0 and L1 D eiq�r On1, where
q D 2�.0; 0; 1/ and On1 is an arbitrary unit vector. In terms of the three staggered
magnetizations, the DM term for a single tetrahedron is

EDM D �DS2 .Oa � L2 � L3 C Ob � L3 � L1 C Oc � L1 � L2/: (11.23)
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It is easy to see that the DM energy is exactly zero for the collinear state. For
either sign of D, this term can be made negative by allowing a small component
of L2 or L3, which describes a twisting spin configuration. The lowering of the DM
energy (11.23) is accompanied by an increase of the magnetoelastic energy. How-
ever, further analysis shows that the former is linear in L2 and L3 while the latter is
quadratic, so that such a twisting distortion always occurs.

To pass to a continuum description, we express the rapidly oscillating unit vectors
Oli D Oni eiq�r in terms of a slowly varying orthonormal triad f Oni g, and use the length
constraint (11.21) to eliminate L1 by

L1 D
�
1 � L22 C L23

2

�
On1 eiq�r; L2 D L2 On2 eiq�r; L3 D L3 On3 eiq�r: (11.24)

At this point, the magnetic structure is described in terms of five slowly varying
fields, L2, L3, and the triad f Oni g.

The number of independent fields can be further reduced by examining tetrahedra
of sublatticeB: the vector of total magnetization on eachB tetrahedron must vanish,
giving three more constraints. The total spin of a B tetrahedron centered at rB D
rA C .1=4; 1=4; 1=4/ is given by

MB.rB/ D S1.rA C a1/C S2.rA C a2/C S3.rA C a3/C S4.rA/;

where a1 D .0; 1=2; 1=2/, a2 D .1=2; 0; 1=2/, and a3 D .1=2; 1=2; 0/ are primitive
lattice vectors (the centers of the tetrahedra form a diamond lattice; the Bravais
lattice is fcc). By expressing the spins fSi g in terms of the staggered magnetizations
fLi g and by using the gradient expansion, one obtains, to the lowest orders in L2,
L3, and the gradients, the constraint

MB D L3 On3 � 1

4

@ On1
@y

D 0: (11.25)

Thus it is clear that L3 and On3 are determined by the gradient r On1.
In a similar way, expressing the staggered magnetizations on sublattice B to

lowest order in r On1 leads to

LB1 D L2 On2 � 1

4

@ On1
@z
; LB2 D On1; LB3 D �1

4

@ On1
@x

: (11.26)

Substituting these expressions into (11.23) and adding contributions from tetrahedra
of both types yields

EDM D �1
4
DS2 On1 �

�
Oa � @ On1

@x
C Ob � @ On1

@y
� Oc � @ On1

@z

�
: (11.27)
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The DM energy contains terms linear in gradients of On1, indicating that the spins
are unstable against the formation of spiral configurations. As an example, the first
term On1 � Oa � @ On1=@x favors a magnetic order with the unit vector On1 perpendicular
to the a-axis and spiraling about it.

As discussed previously, the spin stiffness has its origin in the magnetoelastic
energy. For simplicity, here we consider only distortions due to Eu phonons and
neglect the effect of Eg distortions (a procedure definitely appropriate in the limit
Kg � Ku). The linear decrease of the DM energy due to gradients of On1 must
be balanced by the increase in magnetoelastic energy, which on symmetry grounds
must be quadratic in r On1. From (11.18), the increase of magnetoelastic energy is
Eme D �Ku u0 � ıu=2, where Ku D J 02=ku and u D fA � fB . The unperturbed
odd doublet is u0 D 4S2 .0; 1/. Because we are describing the spiral magnetic
order in terms of the staggered magnetizations, it is convenient to use (11.22) for
the calculation of ıfA and ıfB . Retaining terms to second order in r On1 leads to

Eme D KuS
4

4

"�
@ On1
@x

�2
C
�
@ On1
@y

�2
C2

�
@ On1
@z

�2
�L2 On2 � @ On1

@z
C 4L22

#
: (11.28)

Because the DM energy (11.27) does not depend on L2, minimization of the total
energy with respect to L2 affects only the magnetoelastic term (11.28) and yields

L2 D 1

8
On2 � @ On1

@z
I (11.29)

thus L2 is also eliminated. The minimized magnetoelastic energy is

Eme D KuS
4

4

"�
@ On1
@x

�2
C
�
@ On1
@y

�2
C 2

�
@ On1
@z

�2
�
�

On2 � @ On1
@z

�2#
: (11.30)

The total energy of the spiral state, now expressed as a functional of the vec-
tor fields On1.r/ and On2.r/, is the sum of (11.27) and (11.30). Its minimization
yields a second-order partial differential equation. While we are unable to find the
most general solution to this equation, we can find three highly symmetrical spi-
ral solutions in which the spins remain perpendicular to, while twisting about, one
of the h100i axes. As one example, a spiral state along the b axis is described by
On1 D .cos �.y/; 0; sin �.y// and has total energy

E D �.DS2� 0 CKuS
4� 02/=4; (11.31)

where � 0 D d�=dy. Minimization of this quantity gives the pitch of the spiral,

� 0 D 2�ı D D

2KuS2
: (11.32)
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Equation (11.29) implies that LA2 D 0; the A tetrahedra therefore have coplanar
spins spanned by two orthogonal Néel vectors, LA1 and LA3 . The angles between
spin pairs are given by �14 D �23 D 2L3. From (11.25), this angle is related to the
pitch by 2L3 D �ı. The spiral magnetic state has the structure

LA1 D cos .�ı=2/ .cos .2�ıy/; 0; sin .2�ıy// e2�iz;

LA2 D 0; (11.33)

LA3 D sin .�ı=2/ .� sin .2�ıy/; 0; cos .2�ıy// e2�iz;

producing Bragg scattering at wavevector q D 2�.0;˙ı; 1/, while the ordered mag-
netic moments lie in the ac-plane (Fig. 11.6b). All of this is consistent with the
experimental data of [9].

It is worth noting that the distorted crystal structure preserves certain symmetries
on interchanging the A and B sublattices, such as inversion at a Cr site followed by
a �=2 rotation in the ab-plane. However, the magnetic order described here breaks
these symmetries. From (11.26) one has LB1 D LB3 D 0, which means that every
tetrahedron on sublattice B has collinear spins, whereas the spins of the A tetrahe-
dra are twisted into a (weakly) non-collinear state. This disparity between the two
sublattices should result in different distortions of the two types of tetrahedra, thus
further lowering the symmetry of the crystal. However, the magnitude of the addi-
tional distortion is expected to be small because the degree of non-collinearity is
small, ı � 1.

Spiral states in which the spins rotate about the a-axis (Fig. 11.6a) can be
obtained similarly, by using the ansatz On1 D .0; cos �.x/; sin �.x//. The result-
ing solution can also be obtained from (11.33) through symmetry operations which
exchange the two sublattices of tetrahedra, such as inversion on a Cr site. This spiral
produces a magnetic Bragg peak at q D .�ı; 0; 1/.

a

a b c

c

bc

b a

Fig. 11.6 Three symmetrical spiral magnetic structures minimizing the energy. The spins are
perpendicular to and twist about the a-axis (a), b-axis (b), or c-axis (c). Dashed lines indi-
cate frustrated bonds. The crystal is viewed along a h100i direction. Reprinted with permission
from [32]
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Finally, there is a third spiral solution, shown in Fig. 11.6c, where the spins twist
about the c-axis. In this state, which is not related to the other two solutions by any
symmetry, the magnetic Bragg peak occurs at q D 2�.0; 0; 1 C ı/ and both sub-
lattices have tetrahedra with coplanar, rather than collinear, spins. That this spiral
state has the same energy as the previous two is a coincidence: its total energy is
also given by (11.31) with � 0 D d�=dz. This degeneracy is lifted when other per-
turbations, such as further-neighbor interactions, are taken into account. CdCr2O4
has a significant third-neighbor antiferromagnetic exchange interaction, which acts
to favor strongly the states with spirals twisting along the a- or b-axis [32].

In closing this section, we comment on the assumption (11.20) of well-separated
energy scales in the problem. Ab initio calculations [32] yield a nearest-neighbor
exchange energy JS2 D 1:1meV and a magnetoelastic energy KuS

4 D 0:76meV.
The strength of the DM interaction can be estimated from the measured pitch of
the spiral, ı D 0:09, using (11.32), which gives DS2 D 0:21meV. While the
three energy scales are not vastly different, they do appear in the correct order of
decreasing magnitude, JS2 > KuS

4 > DS2.

11.6 Summary and Open Questions

The spinel compound CdCr2O4 provides an opportunity to test our understanding
of the ground state of the Heisenberg antiferromagnet on the pyrochlore lattice.
When the lattice degrees of freedom are included, both the selected magnetic order
and the lattice distortion are in agreement with a theoretical model [15] based on
two vibrational doublets of the crystal, the q D 0 optical phonon Eu and the uni-
form lattice distortion Eg . The model ties the incommensurate nature of the spiral
magnetic order to a spontaneous breaking of the inversion symmetry in the crystal,
which has not yet been observed directly in CdCr2O4.

The magnetoelastic phase transition between the high-T correlated paramagnet
[35] and the low-T ordered phase remains poorly understood. It is strongly discon-
tinuous in both ZnCr2O4 [8] and CdCr2O4 [9], with both the lattice distortion and
the ordered moment reaching their T D 0 values immediately below the order-
ing temperature. A Landau free-energy approach based on the spin-Peierls order
parameter (11.7) appears to be the only candidate approach available for modeling
the underlying physics [15]. However, it is not evident that this phenomenology can
provide a full description. In CdCr2O4, the order parameter has the Eu symmetry
and does not allow for a cubic invariant in the free energy, thus excluding the most
obvious cause for a discontinuous phase transition. The phase transition may yet
turn out to be first-order if the even (Eg-symmetric) order parameter is nearly soft
[15], but this question has not yet been clarified. In fact it remains unclear whether
the valence-bond variables (11.7) represent a good choice of the order parameter
for these systems: the low-T phase in both ZnCr2O4 and CdCr2O4 is magneti-
cally ordered, suggesting that a type of staggered magnetization may be a more
appropriate choice.
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Finally, a realistic model of this phase transition must take into account the
entropy of the correlated paramagnetic state [4]. The very high entropy of the disor-
dered phase may be responsible for the discontinuous nature of the phase transition,
as has been demonstrated for the case of lattice models with large numbers of
flavors [36].

This material is based upon work supported by the US National Science Founda-
tion under Grant No. DMR-0348679.

References

1. A.P. Ramirez, J. Appl. Phys. 70, 5952 (1991)
2. D.A. Huse, A.D. Rutenberg, Phys. Rev. B 45, 7536 (1992)
3. M.J. Harris, M.P. Zinkin, Z. Tun, B.M. Wanklyn, I.P. Swainson, Phys. Rev. Lett. 73, 189 (1994)
4. R. Moessner, J.T. Chalker, Phys. Rev. B 58, 12049 (1998)
5. J.T. Chalker, P.C.W. Holdsworth, E.F. Shender, Phys. Rev. Lett. 68, 855 (1992)
6. C. Kittel, Phys. Rev. 120, 335 (1960)
7. I.S. Jacobs, J.W. Bray, H.R. Hart, L.V. Interrante, J.S. Kasper, G.D. Watkins, D.E. Prober, J.C.

Bonner, Phys. Rev. B 14, 3036 (1976)
8. S.H. Lee, C. Broholm, T.H. Kim, W. Ratcliff, S.W. Cheong, Phys. Rev. Lett. 84, 3718 (2000)
9. J.H. Chung, M. Matsuda, S.H. Lee, K. Kakurai, H. Ueda, T.J. Sato, H. Takagi, K.P. Hong,

S. Park, Phys. Rev. Lett. 95, 247204 (2005)
10. H. Ueda, H. Mitamura, T. Goto, Y. Ueda, Phys. Rev. B 73, 094415 (2006)
11. I. Bersuker, The Jahn-Teller effect (Cambridge University Press, Cambridge, 2006)
12. H.A. Jahn, E. Teller, Proc. Roy. Soc. London Ser. A 161, 220 (1937)
13. L.D. Landau, E.M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory (Butterworth-

Heinemann, 1981)
14. Y. Yamashita, K. Ueda, Phys. Rev. Lett. 85, 4960 (2000)
15. O. Tchernyshyov, R. Moessner, S.L. Sondhi, Phys. Rev. B 66, 064403 (2002)
16. A.B. Harris, A.J. Berlinsky, C. Bruder, J. Appl. Phys. 69, 5200 (1991)
17. K. Motida, S. Miyahara, J. Phys. Soc. Jpn. 28, 1188 (1970)
18. A.B. Sushkov, O. Tchernyshyov, W. Ratcliff II, S.W. Cheong, H.D. Drew, Phys. Rev. Lett. 94,

137202 (2005)
19. R.V. Aguilar, A.B. Sushkov, Y.J. Choi, S.W. Cheong, H.D. Drew, Phys. Rev. B 77, 092412

(2008)
20. A. Olariu, P. Mendels, F. Bert, B.G. Ueland, P. Schiffer, R.F. Berger, R.J. Cava, Phys. Rev. Lett.

97(16), 167203 (2006)
21. Y. Okamoto, M. Nohara, H. Aruga-Katori, H. Takagi, Phys. Rev. Lett. 99(13), 137207 (2007)
22. F. Wang, A. Vishwanath, Phys. Rev. Lett. 100, 077201 (2008)
23. T. Rudolf, C. Kant, F. Mayr, A. Loidl, Phys. Rev. B 77, 024421 (2008)
24. F. Becca, F. Mila, Phys. Rev. Lett. 89, 037204 (2002)
25. C. Weber, F. Becca, F. Mila, Phys. Rev. B 72, 024449 (2005)
26. C. Jia, J.H. Nam, J.S. Kim, J.H. Han, Phys. Rev. B 71, 212406 (2005)
27. D.L. Bergman, R. Shindou, G.A. Fiete, L. Balents, Phys. Rev. B 74, 134409 (2006)
28. H. Ueda, H. Katori, H. Mitamura, T. Goto, H. Takagi, Phys. Rev. Lett. 94, 047202 (2005)
29. H. Ueda, H. Mitamura, T. Goto, Y. Ueda, Phys. Rev. B 73, 094415 (2006)
30. K. Penc, N. Shannon, H. Shiba, Phys. Rev. Lett. 93, 197203 (2004)
31. M. Matsuda, H. Ueda, A. Kikkawa, Y. Tanaka, K. Katsumata, Y. Narumi, T. Inami, Y. Ueda,

S.H. Lee, Nature Physics 3, 397 (2007)
32. G.W. Chern, C.J. Fennie, O. Tchernyshyov, Phys. Rev. B 74, 060405 (2006)
33. M. Elhajal, B. Canals, R. Sunyer, C. Lacroix, Phys. Rev. B 71, 094420 (2005)



11 Spin-Lattice Coupling in Frustrated Antiferromagnets 291

34. C.L. Henley, J. Appl. Phys. 61, 3962 (1987)
35. S.H. Lee, C. Broholm, W. Ratcliff, G. Gasparovic, Q. Huang, T.H. Kim, S.W. Cheong, Nature

418, 856 (2002)
36. S.B. Shlosman, R. Kotecký, Comm. Math. Phys. 83, 493 (1981)



.



Chapter 12
Spin Ice

Michel J.P. Gingras

Abstract Geometrical frustration usually arises in systems composed of mag-
netic moments (spins) which reside on the sites of a lattice whose antiferromag-
netic exchange interactions form triangular or tetrahedral units. A less well-known
form of geometrical frustration appears in systems with ferromagnetically cou-
pled spins in the presence of strong, non-collinear, single-ion, easy-axis (Ising-like)
anisotropies. This is the situation in a number of pyrochlore oxide materials,
where Ising-like magnetic rare-earth moments (Ho3C, Dy3C) occupy a lattice of
corner-shared tetrahedra and are coupled by effectively ferromagnetic (dipolar)
interactions. These systems possess a macroscopic number of quasi-degenerate clas-
sical ground states and display an extensive low-temperature entropy closely related
to the extensive proton-disorder entropy in common water ice. For this reason,
these magnetic systems are known as spin ice. This chapter reviews the essential
ingredients of spin-ice phenomenology in magnetic pyrochlore oxides.

12.1 Introduction

In some geometrically frustrated magnetic systems, there exists an exponentially
large number,˝0, of degenerate classical ground states. This results in an extensive
residual, or zero-point, ground-state entropy, S0 D kB ln.˝0/. The most celebrated
example of such a system is the triangular lattice of Ising spins which have nearest-
neighbor antiferromagnetic exchange interactions: as shown by Wannier in 1950,
this system remains disordered at all temperatures. Any state that has two spins up
and one spin down (or vice versa) per triangle is a ground state and the zero-point
entropy per site is S0 � 0:323 kB [1]. However, the triangular Ising antiferromag-
net was not the first condensed matter system to be identified as having a residual
entropy. In fact, the first such system was not even a magnetic one. Some fifteen
years before Wannier’s work, William Giauque (Nobel Prize for Chemistry, 1949)
and co-workers had performed thermodynamic measurements and determined that
the solid phase of common water ice possesses a residual entropy with no conven-
tional origin [2,3]. This result was soon explained by Linus Pauling (Nobel Prize for

293
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Chemistry, 1954) in terms of a macroscopic number of proton (HC) configurations
in water ice arising from the mismatch between the crystalline symmetry of ice and
the local hydrogen-bonding requirement of the water molecule [4].

Over the past decade, a class of insulating magnetic materials where the config-
urational disorder in the orientations of the magnetic moments is precisely the same
as that of water ice has been the subject of extensive experimental and theoretical
studies. Because of the analogy with water ice, the term “spin ice” [5–9] has been
coined for these systems. Most of the chapters in this volume focus on geometri-
cally frustrated antiferromagnets, the interest in which lies primarily in the pursuit
of novel quantum ground states whose exotic properties, most notably the absence of
conventional, semi-classical, long-range Néel order, arise from the increased quan-
tum zero-point motion caused by the frustration. This chapter differs in that the spin
ices are frustrated Ising ferromagnets, and are systems where quantum fluctuations
do not play a significant role. However, the experimental and theoretical studies dis-
cussed here reveal a rich variety of equilibrium and non-equilibrium thermodynamic
behavior in spin-ice systems [9].

This chapter reviews some of the key elements of the spin-ice phenomenology.
It draws particular attention to the problem of water ice and the semi-formal ori-
gin of the Ising nature of the magnetic moments in spin-ice materials, two topics
not usually considered in detail in standard solid-state textbooks. Also reviewed in
some depth is the mean-field theory of spin ices, as this simple approach played an
essential role in uncovering the microscopic origin behind the emergence of the “ice
rules” in real dipolar spin-ice materials. A brief discussion of research topics in the
field of spin-ice systems that are of current interest concludes the chapter.

12.2 Water Ice, Pauling Entropy, and Anderson Model

12.2.1 Water Ice and Pauling Model

Water ice is a fascinating, strongly correlated condensed matter system, not least
because it exhibits an apparent violation of the third law of thermodynamics. In the
early 1930s, a series of remarkable specific-heat experiments by William Giauque
and co-workers found that the limiting low-temperature state of the common (hexag-
onal) structure of water ice, referred to as Ih, is characterized by a residual entropy,
S0 D 0:82 ˙ 0:05 Cal/deg�mol, that differed from zero by a value far in excess
of experimental errors [2, 3]. In a famous 1935 paper, Linus Pauling showed that,
because of its configurational proton disorder, Ih possesses a finite entropy at zero
temperature, which he estimated as 0.806 Cal/deg�mol [4], i.e. very close to the
experimental value.

The ice problem is a classic example of how the separation of energy scales in
an interacting system can leave some effective low-energy degrees of freedom inop-
erative, and hence ultimately frustrated in the overall scheme by which the system
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uses local dynamical processes (taking a finite, as opposed to infinite, amount of
time) to minimize its energy at low temperature. In ice, the chemical binding energy
of the water molecule is so strong, 221 kCal/mol, that its chemical structure is left
essentially unaltered in the solid phase. Consequently, the ground state of water ice
does not, or more precisely cannot dynamically, involve the full minimization of
the electrostatic energy of a globally neutral ensemble of O2� and HC ions. Rather,
in the hexagonal (“wurtzite”) and cubic (“sphalerite”) phases of ice [11], the O2�
ions form an open tetrahedral structure, whose 109-degree angles accommodate
almost perfectly the preferred H � O � H bonding configuration of an isolated H2O
molecule.

In the wurtzite phase, the bond length between two distinct O2� ions is 2:76 Å,
while the covalent O � H bond of a H2O molecule is a much smaller 0:96 Å.
Because the integrity of the H2O molecular structure is maintained in the solid
phase, the minimum-energy position of a proton is not at the midpoint between
two O2� ions, and instead there are two equivalent positions along the O � O bond
for each proton (with the four-fold oxygen coordination in the hexagonal wurtzite
structure, there is in effect one proton per O � O bond on average). The constraint
imposed by the energetically robust H2O structure therefore results in the two “ice
rules”, due to Bernal and Fowler, which govern what are acceptable low-energy
proton configurations in the hexagonal wurtzite structure [10]. The first ice rule
states that there should on average be only one proton per O � O bond. The sec-
ond rule states that, in order for ice to consist of a hydrogen-bonded solid of water
molecules, for each O2� ion, two protons must be in a “near position” and two
in a “far position” (Fig. 12.1). Although on a purely electrostatic basis the protons
should maximize their separation, the ice rules, which are based on the dominance

Fig. 12.1 Left: local proton arrangement in water ice, showing O2� ions (large white circles) and
protons (hydrogen ions, HC, small black circles). Each O2� ion is coordinated tetrahedrally by
four other O2� ions, but nearby, covalently bonded protons are present on only two of these links
while on the other two the protons (covalently bonded to different O2� ions) have only a hydrogen
bond with the central O2� ion. In the hexagonal phase of ice, Ih, the low-energy configurations
are those obeying these “Bernal–Fowler ice rules” [10], whereby the protons around each O2� ion
have a “two-near/two-far” configuration. Right: as left, but with the position of a proton represented
by a displacement vector (arrow) located at the mid-point of the O2�–O2� (oxide–oxide) bond.
The “two-near/two-far” Bernal–Fowler ice rule corresponds to a “two-in/two-out” configuration of
the displacement vectors. The displacement vectors become the Ising magnetic moments in spin
ice (Fig. 12.2)
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of the unaltered integrity of the H2O molecule, render the proton-proton interaction
an effectively low-energy part of the problem, and frustrates it.

The ice rules were proposed by Bernal and Fowler in 1933 [10]. At that time,
X-ray diffraction could determine only the lattice structure of the oxygen ions. From
the first ice rule, Bernal and Fowler argued that the protons must lie along the direct
O � O line of contact (bond). They proposed a regular, crystalline proton structure,
expecting that this would be the case. However, at this time Giauque and co-workers
had already obtained compelling evidence for a residual zero-point entropy in water
ice [2], and this led Pauling to his proposal, published in 1935, that the open tetrahe-
dral structure of ice leads to many equivalent ways of satisfying the Bernal-Fowler
ice rules, and hence to an extensive entropy [4].

Pauling put forward an elegant argument to estimate the configurational proton
entropy, which proceeds as follows. First consider one mole of ice containing N0

O2� ions and, therefore, 2N0 O � O bonds for the hexagonal structure of ice in
which no two protons lie on any given O � O bond. That is, all bonds are taken
to obey the first Bernal–Fowler ice rule. Each O � O bond can be taken as having
two possible positions for a proton, giving 2.2N0/ possible proton configurations
for the whole system. However, out of the 16 possible configurations associated
with each O2� ion, ten are energetically unfavorable: the OH2C

4 configuration, the
four OHC

3 configurations, the four OH� configurations, and the O2� configuration.
This leaves six configurations that satisfy the second Bernal–Fowler rule as the
allowed local proton configurations around each O2� ion. An upper bound on the
number of ground-state configurations, ˝0, can therefore be estimated by reduc-
ing the 22N0 configurations by a simple 6=16 “deflation” weight factor for each
oxygen ion, which gives ˝0 � 22N0.6=16/N0 D .3=2/N0 . The corresponding con-
figurational entropy, S0 D kB ln.˝0/ D N0kB ln.3=2/ D 0:806 Cal/deg�mol, is
in excellent agreement with the residual entropy of 0:82˙ 0:05 Cal/deg�mol deter-
mined by Giauque and Stout [3]. Pauling’s calculation neglects the global constraint
on the number of protons, as well as the local constraints due to closed loops on the
wurtzite lattice, but has nevertheless been shown to be accurate to within 1�2% [12].

12.2.2 Cation Ordering in Inverse Spinels and Antiferromagnetic
Pyrochlore Ising Model

In a 1956 paper [13], Philip Anderson (Nobel Prize for Physics, 1977) investi-
gated the problems of cation ordering in the class of materials known as inverse
spinels and of antiferromagnetic ordering in normal spinels. To a first approxima-
tion, both of these problems map onto that of an Ising model with antiferromagnetic
nearest-neighbor exchange interactions on the B-site of the spinel lattice. This lat-
tice is structurally identical to the pyrochlore lattice shown in Fig. 12.2. A discussion
of magnetic ordering in spinels may be found in the Chap. 7 by H. Takagi and
S. Niitaka in this volume.
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Fig. 12.2 Pyrochlore lattice of corner-sharing tetrahedra, as occupied by Ho3C and Dy3C ions
in the spin-ice materials Ho2Ti2O7 and Dy2Ti2O7. The rare-earth magnetic moments, which have
Ising symmetry, occupy the corners of the tetrahedra, as shown on the lower left “downward” tetra-
hedron of the lattice (arrows). The spins shown here are the equivalents of the proton displacement
vectors in Fig. 12.1. Each spin axis is oriented along the local h111i quantization axis, which is a
line joining the site to the middle of the opposing triangular face (a point represented by the disks)
and meets with the three other h111i axes in the center of the tetrahedron. In the spin-ice mate-
rials, the “two-in/two-out” condition arises from the combined effect of magnetic (exchange and
dipole–dipole) interactions and the strong Ising anisotropy. For clarity, other spins on the lattice
are denoted by black and white circles, where white represents a spin pointing into a downward
tetrahedron while black is the opposite. The entire lattice can be seen to be in an “ice-rules” state
(two black and two white sites for every tetrahedron). The hexagon (thick gray line) pertains to
the loop excitations used in the “loop Monte Carlo” simulations discussed in Sect. 12.4.3. The
hexagon illustrated is the smallest possible loop involving multiple spins, and a “loop move” cor-
responds to reversing all spins on the loop to produce a new ice-rules state. The reversal of all
spins on closed loops represents the lowest-energy excitations which allow the system to explore
the quasi-degenerate ice-rule manifold of states relevant for dipolar spin ice at low temperatures.
(Figure reprinted with permission from Melko et al. [46]. Copyright 2001 by the American Physical
Society.)

Consider first the problem of cation ordering in the inverse spinel. The associated
minimum-energy problem consists in placing C and � signs on the pyrochlore lat-
tice (Fig. 12.2) in a ratio 1:1 such that the number of C=� pairs is maximized. This
condition is satisfied with two C and two � signs for each tetrahedron. The centers
of the tetrahedra in the spinel lattice are arranged with respect to each other on the
same diamond lattice as the O2� ions in the cubic phase of water ice (Ic). As shown
in Fig. 12.2, the spinel lattice and, equivalently, the pyrochlore lattice, consist of
alternating “upward” and “downward”-oriented tetrahedra. Consequently, the prob-
lem of C and � charge organization is mapped directly onto an ice-rule problem
where a C sign corresponds to a “proton-near” configuration on an upward tetrahe-
dron and a “proton far” one on a downward tetrahedron, and vice-versa for a � sign.
Neglecting the same constraints as Pauling for the water-ice problem, the problem
of cation ordering in inverse spinels therefore maps onto an ice-like problem, and is
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therefore characterized by a Pauling zero-point entropy [13]. The problem of cation
ordering is also manifestly the same as that of an antiferromagnetic Ising model
on the pyrochlore lattice, where C represents an up spin and � a down spin. It is
interesting to note that, in the context of an antiferromagnetic Ising model on the
pyrochlore lattice, the model considered by Anderson was the second example of
what would now be referred to as a frustrated antiferromagnet, the first being the
problem of the Ising antiferromagnet on the triangular lattice studied by Wannier in
1950 [1].

Anderson’s model is an important paradigm for frustrated magnetic systems of
interacting spins residing on the sites of a lattice of corner-shared triangles or tetra-
hedra, as occurs in kagomé, garnet, and pyrochlore lattices. However, there are no
known realizations of Anderson’s Ising antiferromagnet on the pyrochlore lattice,
because this has cubic symmetry and there is no energetic reason permitted by this
symmetry which would favor a unique, global Ising direction Oz to the detriment
of any other global direction. However, a system of antiferromagnetically coupled,
isotropic Heisenberg spins on the pyrochlore lattice is realistic. This problem was
the topic of an important 1979 paper [14] in which Villain anticipated the failure
of the classical Heisenberg pyrochlore antiferromagnet to develop long-range order
down to zero temperature [15, 16] and introduced the term “collective paramagnet”
for such a system � a terminology one may wish to employ for the classical variant
of the more modern term “spin liquid” used in quantum spin systems.

Because they lack the intrinsic propensity to develop classical, long-ranged mag-
netic order, antiferromagnetic materials with Heisenberg spins on a pyrochlore
lattice are expected to be excellent candidates for exotic quantum mechanical
ground states. It was in anticipation of observing unconventional magnetic and ther-
modynamic behavior in the broad family of magnetic pyrochlore oxide materials,
of generic formula A2B2O7, that rapid growth occurred some two decades ago in
experimental and theoretical efforts devoted to the study of these systems [17, 18].
It was this general scientific endeavor that led to the discovery of “spin ice” [5–7],
a novel class of frustrated ferromagnetic Ising systems which are close magnetic
analogs of both water ice and the cation ordering in spinels. This discovery also
led to the rebirth of a disguised variant of Anderson’s antiferromagnetic Ising
model [13] on the pyrochlore lattice.

12.3 Discovery of Spin Ice

12.3.1 Rare-Earth Pyrochlore Oxides: Generalities

Before reviewing the discovery of spin-ice materials and the spin-ice problem,
a brief discussion is in order of some general aspects of the pyrochlore oxides,
the broader class of materials to which spin ices belong. It is also worthwhile to
review at an elementary level the background to the origin of the magnetism in the
rare-earth ions present in the spin ices, how they acquire their strong Ising nature,
and what are the predominant interactions between the magnetic ions.
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The magnetic A2B2O7 pyrochlore oxides form a broad family of materials that
exhibit a wide range of thermodynamic and magnetic phenomena, a number of
which remain at best partially understood [17, 18]. In this crystal structure, which
gave its name to the geometry, both the trivalent A3C ion (A is a rare-earth ele-
ment such as Gd, Tb, Dy, Ho, or Y) and the tetravalent B4C ion (B D Ti, Sn, Mo,
Mn) reside on two independent and interpenetrating pyrochlore sublattices. Fig-
ure 12.2 shows only one of those two sublattices, for example the A sublattice. In
A2B2O7, one may have either the A or the B sublattice occupied by a magnetic ion,
as in Tb2Ti2O7 [19] and Y2Mo2O7 [20], respectively, or both types of site may be
occupied by magnetic ions, as is the case in Tb2Mo2O7 [21].

As discussed in the seminal work of Villain [14], the pyrochlore lattice is highly
frustrated when the spin of the magnetic ions is of the isotropic, Heisenberg type,
and the interaction with nearest-neighbor sites is an antiferromagnetic exchange
coupling. The pyrochlore oxides can be metallic (such as Nd2Mo2O7, which dis-
plays an anomalous Hall effect [22]) or they can be insulating, as is the case for
the A2Ti2O7 and A2Sn2O7 series [17, 18]. In this chapter, we restrict our consid-
erations to the insulating A2Ti2O7 and A2Sn2O7 series with Dy and Ho as the
magnetic ion A. Because Ti4C and Sn4C are non-magnetic, we deal here with
only one magnetic pyrochlore sublattice, the A sublattice in A2B2O7, to which
we refer henceforth simply as “the pyrochlore lattice.” If spin–spin interactions are
neglected [23], the Tb3C ion in Tb2Ti2O7 and Tb2Sn2O7 would also be described
as an Ising spin at sufficiently low temperatures [24, 25], but it is found that
spin interactions render a purely Ising-model description of these two materials
invalid [23].

The pyrochlore lattice can be described conveniently as a face-centered cubic
(FCC) lattice with a primitive (“upward” or “downward”) tetrahedral basis cell of
four sites (Fig. 12.2). The pyrochlore lattice possesses a trigonal (threefold rota-
tional) symmetry with respect to any of the four equivalent h111i cubic lattice
directions (the diagonals of the cubic cell in Fig. 12.2). For each of the four sites
in the tetrahedral unit cell, it will prove convenient to use as local axes (Ozi ) of spin
quantization the specific h111i cube diagonal which passes through a given site i
and the middle of the opposite triangular face (Fig. 12.2).

It is worth noting that common water ice at atmospheric pressure, ice Ih, has
a hexagonal structure while the magnetic pyrochlore lattice has cubic symme-
try. Strictly, the Ising pyrochlore problem is equivalent to cubic ice, Ic, and not
the hexagonal Ih phase. However, this does not modify the “ice-rule” analogy (or
mapping), or the close connection between the orientational configurations of the
magnetic moments in spin ice and the local proton coordination in water ice.

12.3.2 Microscopic Hamiltonian: Towards an Effective Ising
Model

In rare-earth ions, the total angular momentum, J D L C S, can be taken as a good
quantum number. For a given ion, the Hund rules can be applied to determine the
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isolated (vacuum) electronic ground state. As an example, Tb has electronic config-
uration [Xe]4f96s2 and Tb3C has ground-state configuration [Xe]4f8. Following the
Hund rules, one finds that L D 3 and S D 3, hence J D 6 for Tb3C and the spectro-
scopic notation for the ground multiplet is 7f6. Similarly, J D 8 for Ho2Ti2O7 and
J D 15=2 for Dy2Ti2O7.

Electrostatic and covalent bonding effects, which originate from the crystalline
environment, lead to a lifting of the .2J C 1/-fold electronic degeneracy of the oth-
erwise free-ion ground state. This is known as a crystal-field effect. The theoretical
description of crystal-field effects going beyond the simple, Coulombic point-charge
description of the ionic charges surrounding a rare-earth ion, which includes cova-
lency effects and mixing between electronic multiplets, is a rather involved technical
matter into which we do not enter here. In the discussion to follow, we will assume
simply that the single-ion, crystal-field energy levels (of the non-interacting ions)
have been determined appropriately, for example by experimental spectroscopic
techniques (such as optical spectroscopy or inelastic neutron scattering). Such a
spectroscopic approach allows the determination of transition frequencies between
crystal-field levels, and the associated intensities, which can then be described by
an effective crystal-field Hamiltonian, Hcf, as described for example in [24–26]. We
return to this point below.

Ideally, one would wish to ensure that the energy levels determined in this way
are not strongly “dressed” (by which is meant altered, or renormalized) by inter-ion
interactions, which are described by a further Hamiltonian term Hint. One way of
effecting this is to consider a highly magnetically diluted variant of the system of
interest [25]. This leads one to introduce the minimal Hamiltonian, H, required to
describe the essential physics,

H D Hcf C HZ C Hint: (12.1)

Here, Hcf is the crystal-field Hamiltonian responsible for lifting the degeneracy of
the otherwise free, single-ion electronic ground state. Its energy eigenstates are the
crystal-field energy levels of the previous paragraph. As a first approximation, one
may express Hcf in terms of polynomial functions of the Ji;z and Ji;˙ D Ji;x ˙ {Ji;y

components of the angular-momentum operator J. For the local symmetry of the
rare-earth ions at the A sites of the A2B2O7 structure, Hcf is written as [24–26]

Hcf D
X

i

X
l;m

Bm
l O

m
l .Ji/; (12.2)

where Bm
l

are the crystal-field coefficients and Om
l
.Ji / the equivalent crystal-field

operators. Spectroscopic measurements allow the coefficients Bm
l

to be determined
by a process of fitting to the energy levels augmented by further constraints from
the observed transition intensities [24,26]. From the Wigner–Eckart theorem, l � 6

for L D 3 4f elements. As an illustration, O0
2 D 3J2

z � J.J C 1/, O0
4 D 35J4

z �
.30J.J C 1/� 25/J2

z C 3J2.J C 1/� 6J.J C 1//, and O˙3
4 D c˙ŒJz; J3C ˙ J3��C with

ŒA;B�C D .AB C BA/=2, cC D 1=2 and c� D �{=2 [27–29].
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In (12.1), HZ D �gL�B
P

i Ji � B is the Zeeman energy describing the inter-
actions of the rare-earth magnetic ions with the magnetic field B; gL is the Landé
factor and �B is the Bohr magneton.

The final term„ Hint, describes the interactions between the ions. We consider
Hint to have the form

Hint D �1
2

X
.i;j /

Jij Ji � Jj C
��0

4�

� .gL�B/
2

2rnn
3

X
.i;j /

.Ji � Jj � 3Ji � Orij Orij � Jj /

.rij=rnn/3
;

(12.3)
where rij Orij D rj � r i , with r i the position of ion i . Jij denotes the microscopic
quantum mechanical exchange constant between ions i and j , and is defined with
the convention that Jij < 0 is antiferromagnetic and Jij > 0 is ferromagnetic.
Note that in (12.3), the two sums are performed over all ions i and j , resulting in a
double-counting of bonds canceled by the prefactor 1=2 of each sum.

While the “origin” of the first term lies in the interactions between the “real”
electronic spins, S i and S j , here we consider for simplicity only an effective
isotropic “exchange” between the total angular momenta Ji and Jj , with interac-
tion coefficients Jij . This type of description has proven adequate to describe the
physics of spin-ice materials [30–33]. The four distinct types of symmetry-allowed
anisotropic nearest-neighbor exchange interactions on the pyrochlore lattice are
described in [34, 35]. The second term is the long-ranged magnetostatic dipole-
dipole interaction, with rnn the distance between nearest neighbors. The pyrochlore
oxides have a conventional, cubic unit cell of size a � 10Å with 16 ions (i.e. 4 prim-
itive upward or downward tetrahedral basis cells of the type shown in Fig. 12.2) per
cell and rnn D .a

p
2/=4.

We discuss next the relative energy scales set by Hcf, HZ, and Hint. For the
(Ho,Dy)2(Ti,Sn)2O7 materials, which we will show below to be spin ices, Hcf is
by far the largest energy scale in the problem. In these four materials, the spectrum
of Hcf consists of a ground-state doublet separated by an energy gap, of typical size
� � 300 K, to the first excited state. The Landé factors gL for Ho3C and Dy3C
are respectively 5/4 and 4/3, while �B D 9:27 � 10�24 J/T � 0:671 K/T in HZ.
Thus even in a field of 20 T, which is the approximate size of the largest fields
accessible from commercial laboratory magnets, the Zeeman energy scale is of the
order of 10 K, and hence is much smaller than �. Consequently, when calculating
the properties of (Ho,Dy)2(Ti,Sn)2O7 at temperatures below approximately 10 K
and in magnetic fields below 20 T, it is safe to consider only the magnetic crystal-
field ground-state doublet of Ho3C and Dy3C, and to neglect both the susceptibility
contributions from the excited states and the van Vleck susceptibility.

The interaction part of the Hamiltonian, Hint, nevertheless deserves particular
attention. In insulating magnetic rare-earth materials, the unfilled 4f orbitals of
the rare-earth ion, which carry the electronic spin, are shielded by the 5s and 5p
orbitals, as a result of which 4f-orbital overlap, both between the rare-earth ions
and between the rare-earth and O2� ions, is small. The effective exchange cou-
pling between rare-earth ions is thus much smaller for insulating, rare-earth oxides
than for transition-metal oxides: a typical value of Jij for nearest-neighbor spins
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is J � 66 mK in Dy2Ti2O7 [30, 33]. One may also estimate the dipolar energy
scale, D � �0.gL�B/

2=.4�rnn
3/, using values rnn � 3:5Å and gL D 4=3 to obtain

D � 25 mK [30, 33]. Comparing J and D with � � 300 K shows again that the
interaction part of the full Hamiltonian H is very small compared to the crystal-
field part.1 In practice, this means that the independent (non-interacting) single-ion,
crystal-field eigenstates of Hcf form a very convenient basis to describe the Hilbert
space of interacting Dy3C and Ho3C ions in (Ho,Dy)2(Ti,Sn)2O7. In particular,
because the scale of Hint is so small compared to �, for any practical purposes
one may neglect all the excited states of Hcf and work with a reduced Hilbert space
spanned solely by the two degenerate states of the ground doublet for each magnetic
site.

In such a problem, where the high-energy sector of the theory is so well separated
from the low-energy sector, it is convenient to introduce an effective Hamilto-
nian, Heff, that operates only within the low-energy sector. Chapter 20 of Mila and
Schmidt in this volume describes the general methodology for deriving an appropri-
ate Heff for any given interacting system where there are well separated “reference”
energy sectors. For the spin ices, it is amply sufficient to use the lowest order of the
perturbation theory which defines Heff,

Heff � PHintP; (12.4)

where P , the projector in the low-energy sector, is defined as

P D
X
fkg

j˚0;fkgih˚0;fkgj (12.5)

with

j˚0;fkgi D
NY

iD1

j�.ki /
i;0 i (12.6)

and j�.ki /
i;0 i the kth

i state of the single-ion, crystal-field ground doublet of rare-earth
ion i . Because Hint is a pairwise Hamiltonian, Heff is, to lowest order as given
by (12.4), also a pairwise effective Hamiltonian. Heff can then be determined by
considering two ions, each in one of the two states, j�.ki DC/

i;0 i or j�.ki D�/
i;0 i, of

their respective crystal-field ground doublets. The effective Hamiltonian, Heff, is
therefore a 4 � 4 matrix. At this point, further progress requires a return to the
crystal-field problem to discuss the nature of the non-interacting states j�.ki D˙/

i;0 i
which make up each of the single-ion ground doublets.

1 To obtain realistic figures for the comparison between the spin-spin interactions and Hcf, the
coupling constants Jij and D should be multiplied by the relevant products of matrix elements.
Taking as a crude estimate for such products the magnitude squared of J, jJj2 � 60 for both
Dy3C, with J D 15=2, and Ho3C, with J D 8, the results Jij jJj2 � � and DjJj2 � � remain.
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From inelastic neutron scattering measurements, it is found that for Ho2Ti2O7,
j�.ki D˙/

i;0 i � jJ D 8;mJ D ˙8i, with negligible contributions from other com-
ponents jJ D 8;mJi. The crystal-field parameters for Dy2Ti2O7 can be obtained
by rescaling those determined for Ho2Ti2O7 [24]. One finds for the former mate-
rial j�.ki D˙/

i;0 i � jJ D 15=2;mJ D ˙15=2i, again with negligible weight from
other components jJ D 15=2;mJi [24]. It is important to recall the previous discus-
sion concerning the choice of the Ozi quantization direction: the eigenstate of Jz with
magnetic quantum number mJ refers here to the component of Ji along the local
Ozi direction oriented along one of the four cubic h111i directions. Calculating the
matrix elements of PHintP for both Ho2Ti2O7 and Dy2Ti2O7 shows that the only
significant matrix elements are h�.ki D˙/

i;0 jJzj�.ki D˙/
i;0 i � ˙J. The physical meaning

of this result is simple: in both Ho2Ti2O7 and Dy2Ti2O7, the magnetic moment can,
for all practical purposes, only be aligned parallel or antiparallel to the local h111i
direction. Thus one has truly a local h111i Ising model.

It is instructive to write out this set of local quantization axes (Ozi k h111i). We
take Oz1 D 1p

3
. Ox C Oy C Oz/, Oz2 D 1p

3
.� Ox � Oy C Oz/, Oz3 D 1p

3
.� Ox C Oy � Oz/, and

Oz4 D 1p
3
. Ox� Oy� Oz/, which have the property Oz� � Oz� D �1=3 for � ¤ �. To proceed

formally, one could reexpress the 4 � 4 matrix representing Heff in terms of tensor

products of Pauli matrices, �˛i

i ˝ �
ˇj

j , where ˛i D xi ; yi ; zi in a local orthogonal

frame fxi ; yi ; zig [23]. Had we retained the full jJ; mJi decomposition of j�.ki D˙/
i;0 i

in the treatment above, we would have found that the coefficient of the � zi

i �
zj

j term
has by far the largest coefficient in Heff, and hence would have obtained again a
classical model with Ising spins oriented parallel or antiparallel to their local h111i
direction.

Alternatively, one could have proceeded much more straightforwardly by simply
making the replacement

Ji ! jhJzij� z
i Ozi (12.7)

at the outset and using jhJzij � 8 for Ho2Ti2O7 and jhJzij � 15=2 for Dy2Ti2O7.
Indeed, this is the approximation made implicitly in most previous numerical studies
of dipolar spin ice [7, 30–32, 36].2 Because there are no other components �˛i

i with
˛i ¤ zi remaining in Heff which do not commute among themselves, we obtain in
this way a strictly classical Ising model for Heff. One may therefore consider only
the basis of eigenstates of � zi

i , and henceforth we will indeed treat � zi

i D ˙1merely
as a classical variable.

While the discussion leading to Heff as a classical Ising model for the Dy-based
and Ho-based oxide pyrochlores, as presented here, is rather academic, this is not (as
mentioned in Sect. 12.3.1) the case for Tb2Ti2O7 [19] and Tb2Sn2O7 [37]. Indeed,
for these two materials, the energy gap separating the ground doublet from the
excited doublet is not very large when compared to the exchange and dipole-dipole
interactions. In this case, higher-order terms in the perturbation expansion leading

2 However, estimating D using the crystal-field ground-state doublet wave functions gives a
moment � D gL�BhJzi slightly less than 10�B [33].
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to Heff must be retained (as described in Chap. 20 by Mila and Schmidt) in order
to derive an appropriate quantum theory of these two materials; this exercise was
performed for a simple model of Tb2Ti2O7 in [23].

Returning to Hint above, and making the replacement Ji ! jhJzij� z
i Ozi , one

obtains the effective, classical, h111i pyrochlore Ising model

HDSM D �1
2

X
.i;j /

Jij .Ozi � Ozj / �
zi

i �
zj

j C D

2

X
.i;j /

.Ozi � Ozj � 3Ozi � Orij Orij � Ozj /

.rij=rnn/3
�

zi

i �
zj

j ;

(12.8)
to which we refer henceforth as the “dipolar spin-ice model” (DSM). In this expres-
sion, Jij D Jij hJzi2 and D D �0.gL�BhJzi/2=.4�rnn

3/. It should be emphasized
that the variables � z

i D ˙1 have become simple labels indicating whether the
zi -component of Ji is oriented “in” or “out” of a primitive tetrahedral unit cell char-
acterized by the set fOz1; Oz2; Oz3; Oz4g (Fig. 12.2). Having established that the magnetic
Dy3C and Ho3C ions in Dy2Ti2O7 and Ho2Ti2O7 should be described at temper-
atures much lower than the lowest crystal-field gap � by effective classical Ising
spins, we may now proceed to a discussion of the experimental behavior of these
two materials, and of how the spin-ice phenomenology arises.

12.3.3 Discovery of Spin Ice in Ho2Ti2O7

In a 1997 paper, Harris, Bramwell, and collaborators reported the results of a neutron
scattering study of Ho2Ti2O7 [5]. They found that, in zero applied magnetic field,
no evidence of a transition to long-range order could be detected down to 0.35 K,
while muon spin relaxation results could exclude a transition down to 0.05 K [6].
The most surprising part of these results was that the Curie–Weiss temperature, 	CW,
was found to be positive, 	CW � C1:9 K, indicating overall ferromagnetic interac-
tions. Naively, one would have expected such a three-dimensional cubic system with
ferromagnetic interactions to develop long-range order at a critical temperature of
the same order as 	CW. It was also found that the magnetic field-dependence of
the neutron scattering intensity depends on the protocol followed to magnetize the
sample [38]: the system displayed a history-dependence reminiscent of random spin
glasses [39], although no significant random disorder is present in Ho2Ti2O7.

The authors of [5, 6] proposed that the strong local h111i Ising anisotropy of
Ho3C in Ho2Ti2O7 frustrates the development of ferromagnetic order. They con-
sidered a simple model of ferromagnetically coupled h111i Ising spins on the
pyrochlore lattice [40], establishing the connection between their model and that of
Pauling for the problem of proton disorder in water ice, and hence coining the term
“spin-ice model” for this system (Fig. 12.1). For the sake of clarity, and because we
discuss below the important role of long-range dipole-dipole interactions in spin-
ice materials, here we relabel the model of Harris et al. as the “nearest-neighbor
spin-ice model” to distinguish it from the “dipolar spin-ice model” of (12.8). In the
next section, we review this nearest-neighbor spin-ice model and show that it has
the same residual entropy as water ice.
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12.3.4 Nearest-Neighbor Ferromagnetic h111i Ising Model
and Pauling’s Entropy

12.3.4.1 Nearest-Neighbor Spin-Ice Model

Consider a simplified version of the Ising Hamiltonian in (12.8) where the dipolar
interaction coefficient is set first toD D 0 and where the exchange interactions, Jij ,
are restricted solely to nearest neighbors, whence

Hnn D �J
X
hi;j i

.Ozi � Ozj / �
zi

i �
zj

j : (12.9)

Taking Ozi � Ozj D �1=3 for nearest neighbors on the pyrochlore lattice,

Hnn D �J
X
hi;j i

.Ozi � Ozj / �
zi

i �
zj

j

D J

3

X
hi;j i

�
zi

i �
zj

j : (12.10)

This can be rewritten as [16]

Hnn D J

6

X
�

.L�/
2 � 2N�J

3
; (12.11)

where the sum
P

� is performed over each upward and downward tetrahedral unit
(labeled by�), with a total ofN� tetrahedra of each type, and whereL� is the total
spin on unit �, defined as

L� � �
z1

� C �
z2

� C �
z3

� C �
z4

� : (12.12)

From (12.10), one can appreciate the “first magic” of spin ice. (we will discuss
the “second magic” in Sect. 12.4.1): starting with a ferromagnetic nearest-neighbor
exchange, J > 0 in (12.9), one finishes with Ising variables � zi

i which have an effec-
tive antiferromagnetic coupling constant J=3 in (12.10). This is the same model
as the frustrated antiferromagnetic pyrochlore Ising model used by Anderson to
describe the problem of cation ordering in inverse spinels [13]. The ferromagnetic
h111i pyrochlore Ising model is therefore frustrated and, just as in Anderson’s
antiferromagnet Ising model, it must possess a residual Pauling entropy.

In terms of Hnn (12.11), the ground-state configuration of a single tetrahedron
for antiferromagnetic interactions consists of all � zi

i D C1 or all � zi

i D �1. In
terms of the “real” spins Ji in (12.3), this corresponds to all Ji oriented “in” or all
“out” of a reference tetrahedral unit cell. Globally, there are only two such states
and, upon cooling the system, a second-order transition occurs to a four-sublattice,
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antiferromagnetic, Néel ordered state in the three-dimensional Ising universality
class. The four-sublattice Néel ordered phase described in terms of the variables Ji

maps onto a ferromagnetic ground state in terms of the variables � zi

i . The pyrochlore
lattice with antiferromagnetically coupled h111i spins is, therefore, not frustrated.
Conversely, for ferromagnetic J , the Ising variables � zi

i are effectively coupled anti-
ferromagnetically and the ground state on a single tetrahedron is six-fold degenerate,
a result arising from the condition � z1

� C �
z2

� C �
z3

� C �
z4

� D 0 on each tetrahedron
� (12.12) i.e. two positive and two negative values of the relevant � zi

i .
This is the incipient spin configuration leading to the extensive Pauling entropy

of the nearest-neighbor spin-ice model in the thermodynamic limit [7], the subject
we discuss next. The reader is invited to refer also to Fig. 12.1, where a more direct
physical, or geometrical, connection between the � zi

i configurations in the spin-ice
problem and that of the “real” proton positions in water ice is illustrated.

12.3.4.2 Pauling Entropy of the Nearest-Neighbor Spin Ice Model

The macroscopically degenerate ground states which are often characteristic of frus-
trated systems can be understood in terms of an underconstraint argument [16]: the
extensive degeneracy arises from the difference between the number of constraints
necessary to determine a ground state and the number of degrees of freedom that the
system possesses. By following the heuristic argument of Pauling for water ice, one
may calculate the residual entropy of spin ice. Consider Anderson’s Ising pyrochlore
antiferromagnet, to which the local h111i Ising pyrochlore model can be mapped,
as discussed in Sect. 12.2.2. The ground-state condition is said to be “undercon-
strained”, demanding only that the total magnetization, L�, of the four Ising spins
on each tetrahedron should satisfy the condition L� D 0. This is achieved by six
of the 24 D 16 possible spin configurations. Counting 24 configurations for each
tetrahedron gives, for a system of N spins and N=2 upward and downward tetrahe-
dra, .24/N=2 D 4N microstates. This number overestimates very seriously the exact
total of 2N microstates for N Ising spins, the reason being that each spin is shared
between two tetrahedra, and hence the 16 configurations on each tetrahedron are not
independent.

Adopting the reasoning of Pauling, one may allocate instead 22 states per tetra-
hedron and, assuming that 6=16 of them satisfy the constraint, obtain a ground-state
degeneracy ˝0 D f.22/N=2.6=16/gN=2 D .3=2/N=2. The corresponding entropy,
S0 D kB ln.˝0/ D .NkB/=2 ln.3=2/, is of course simply Pauling’s original result
retrieved for the pyrochlore spin-ice problem. Another way to obtain the residual
entropy is as follows: for a pyrochlore lattice withN spins, there areN=4 tetrahedral
unit cells (for example all the upward tetrahedra in Fig. 12.2). If all of these tetrahe-
dra are in a spin-ice state, there can be 6N=4 independent spin-ice configurations in
the system. However, not all of these states are valid ground states, because theN=4
downward tetrahedra, which are formed by the corners of the upward tetrahedra
must also satisfy the ice rules. The probability that a random tetrahedron satisfies
the ice rule is 6/16, and so the number 6N=4 should be deflated by this factor for
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each downward tetrahedron; the result is a total of 6N=4 � .6=16/N=4 D .3=2/N=2

states of the whole system obeying the ice rules, as obtained above.
Finally, one could also have simply borrowed Pauling’s result directly: in the

mapping from water ice to Anderson’s antiferromagnet, or alternatively to spin ice,
NO2� ions correspond to 2N spins. We will demonstrate next that the estimate of
Pauling, S0 D .NkB=2/ ln.3=2/, is in good agreement with experimental results for
spin-ice materials.

12.3.5 Residual Entropy of Dy2Ti2O7 and Ho2Ti2O7

The first compelling thermodynamic evidence for the existence of a spin-ice state in
Ising pyrochlore systems was obtained from measurements of the magnetic specific
heat, C.T /, in Dy2Ti2O7 [7]. Like Ho2Ti2O7, this material, which has magnetic
Dy3C ions, is characterized by a strongly Ising-like ground-state doublet that is
separated from the excited doublet by a large energy of approximately 300 K. The
temperature-dependence of C.T / is shown in the upper panel of Fig. 12.3. To deter-
mine the residual magnetic entropy, Ramirez and co-workers followed an approach
similar to the one used by Giauque and colleagues to determine the entropy of water
ice [2, 3].

In general, it is possible only to measure the change of entropy between two
temperatures. Giauque and collaborators calculated the entropy change of water
between 10 K and the gas phase by integrating the specific heat divided by tem-
perature, C.T /=T , and adding to it the latent heat at the melting and vaporization
transitions. They then compared this value with the absolute value expected for
the calculated entropy of an ideal (non-interacting) gas phase, using as input the
results of spectroscopic measurements which allowed them to determine the rota-
tional and vibrational energy spectrum, and hence the roto-vibrational entropy, and
adding to this the translational entropy of an ideal gas given by the Sackur–Tetrode
equation. The difference between the measured value and the value expected theo-
retically gave the residual entropy of water ice, whose origin was then explained by
Pauling [4].

Ramirez et al. [7] measured the magnetic specific heat of a powder sample of
Dy2Ti2O7 between T1 D 300 mK, “deep” inside the frozen (spin-)ice regime, and
T2 D 10K, in the paramagnetic regime, where the expected entropy per mole should
be R ln.2/ for a two-state system (R D N0kB is the molar gas constant and N0 is
the Avogadro number). The entropy change between T1 and T2, �S1;2, was found
by integrating C.T /=T between these two temperatures,

�S1;2 D S.T2/ � S.T1/ D
Z T2

T1

C.T /

T
dT: (12.13)

The lower panel of Fig. 12.3 shows that the magnetic entropy recovered is
approximately 3.9 Jmol�1 K�1, a value considerably smaller than Rln.2/� 5:76

Jmol�1 K�1. The difference, 1.86 Jmol�1 K�1, is quite close to the Pauling estimate
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Fig. 12.3 (a) Specific heat and (b) entropy data for Dy2Ti2O7 from [7], compared with the
results of Monte Carlo simulations [30] for the dipolar spin-ice model, with J=3 D �1:24K and
5D=3 D 2:35K. Two regimes of temperature can be identified. (i) At a temperature T much higher
than the peak temperature, Tpeak � 1:24K, the system is in the paramagnetic regime, is weakly
correlated, and individual tetrahedra do not obey the “two-in/two-out” ice rules. As the tempera-
ture approaches Tpeak, the system evolves progressively to satisfy the ice rules. The Schottky-like
peak in C arises when the temperature drops below the energy gap between the ice-rule-obeying
states and the excited “three-in/one-out” and “all-in/all-out” states. (ii) As T drops below Tpeak,
the spin-flip rate drops exponentially rapidly [45] as the system settles into an ice-rule-obeying
state with two spins “in” and two “out” on each tetrahedron. There is no phase transition between
the high-temperature paramagnetic state (T > Tpeak/ and the spin-ice regime at T < Tpeak. The
spin-ice regime can therefore be described as a collective paramagnet [14]. (Figure reprinted with
permission from B. C. den Hertog and M. J. P. Gingras [30]. Copyright 2000 by the American
Physical Society.)

for the entropy associated with the extensive degeneracy of ice, .R=2/ ln.3=2/ D
1:68 Jmol�1 K�1, consistent with the existence of a spin-ice state in Dy2Ti2O7.
More recent measurements [41] on Dy2Ti2O7 have found a specific heat below
1.5 K that has quite significant quantitative differences from that of [7], which
lead ultimately to a considerably better agreement between the experimentally
determined residual entropy of the material and the estimate of Pauling.

As discussed above, Ho2Ti2O7 was the first material to be proposed as a spin-
ice system. It transpires that it is rather less convenient to perform low-temperature
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specific heat measurements in Ho2Ti2O7 than in Dy2Ti2O7. The origin of this dif-
ficulty lies in the unusually large hyperfine interaction between the nuclear and
electronic spins of Ho3C. This interaction leads to a Schottky anomaly in the spe-
cific heat at a temperatureT � 0:3K which largely obscures the broad and otherwise
purely electronic specific-heat feature arising from the formation of the ice-rule-
obeying low-energy manifold. Once the nuclear contribution to the specific heat has
been subtracted, the electronic contribution and the residual Pauling entropy of the
spin-ice state in Ho2Ti2O7 can be revealed [31, 42].

In summary, Ho2Ti2O7 and Dy2Ti2O7 possess a residual low-temperature
entropy compatible with that estimated on the basis of a Pauling argument applied
to the ferromagnetic nearest-neighbor h111i Ising model on the pyrochlore lattice.
The related materials Ho2Sn2O7 [43] and Dy2Sn2O7 [44], which are not discussed
here, are also spin-ice systems.

12.4 Dipolar Spin-Ice Model

12.4.1 Competing Interactions in the Dipolar Spin-Ice Model

In Sect. 12.3.4, we invoked a straightforward, nearest-neighbor ferromagnetic h111i
Ising model to rationalize the presence of spin-ice phenomenology in real materi-
als. However, in Sect. 12.3.2 it was argued that magnetic dipole–dipole interactions
are often sizeable in rare-earth magnetic systems. In the cases of Dy2Ti2O7 and
Ho2Ti2O7, the value of D D �0.gL�BhJzi/2=.4�rnn

3/ is estimated as D� 1:4 K
[30, 36](see footnote 2), which is comparable to the Curie–Weiss temperature 	CW

measured experimentally in these materials. Thus if one were to assume that the
nearest-neighbor exchange interaction J � 	CW � 1 K, one would deduce a regime
where the dipolar interactions are comparable in magnitude [7, 30, 36].

This observation raises a paradox: the existence of a ground state with extensive
degeneracy should in principle result from the underconstrained physics, i.e. the lack
of constraints imposed by the Hamiltonian on the spin configurations that minimize
the classical ground-state energy [16]. Considering the dipolar interactions of (12.8)
in this context, first they are of a rather complicated nature because they couple the
spin and spatial directions through the .Ozi � Orij /.Orij � Ozj / term, and secondly they
are very long-ranged, decaying as 1=rij 3 with the separation rij of ions i and j .
This poses the question of how to understand the emergence of an extensively
degenerate spin-ice state at a temperature T of order D in the presence of spin
interactions as “complicated” (by which is meant anisotropic and long-ranged) as
a dipolar coupling. How this occurs is what we refer to as the “second magic” of
dipolar spin ice.

An initial approach to this question is to go beyond the nearest-neighbor fer-
romagnetic h111i Ising model and perform Monte Carlo simulations where the
dipolar interactions of (12.8) are included [7, 30–33, 36, 45, 46]. The first studies
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of this problem considered dipolar interactions truncated beyond a certain cut-off
distance [7, 36]. These were followed by another analysis [30] which incorporated
the true long-range part of the dipolar interactions using the Ewald summation
method [45] which is commonly used to treat long-range Coulomb and dipolar
interactions [47].

Consider HDSM in (12.8), with long-range dipole–dipole interactions (D ¤ 0)
and only nearest-neighbor exchange Jij D J , as a starting model to describe
Dy2Ti2O7. One may take the dipolar interaction couplingD to be a priori a quantity
known to reasonably high accuracy from the (good) approximation that the crystal-
field ground-state doublet is composed essentially only of the jJ D 15=2;mJ D
˙15=2i components. This gives D � 1:4 K [30] and the exchange coupling, J ,
as the only unknown parameter in the model. It was found in Monte Carlo simula-
tions [30] that fitting either the height of the specific-heat peak or the temperature
at which this peak occurs allows for a unique and consistent determination of J .
By these methods, the values J=3 � �1:24 K [30]3 and J=3 � �0:55 K [31]
were estimated respectively for Dy2Ti2O7 [30] and Ho2Ti2O7 [31]. It is note-
worthy that J is antiferromagnetic in both cases, which if taken alone should,
from the discussion of Sect. 12.3.4, give rise to a four-sublattice long-range Néel-
ordered phase [30]. This observation indicates already that it must be the dipolar
interactions which are responsible for the spin-ice phenomenology. Figure 12.3
shows that a Monte Carlo simulation of the DSM (12.8), with J=3 � �1:24 K
and 5D=3 � 2:35 K, gives an excellent description of the magnetic specific-heat
data C.T / of Dy2Ti2O7. As a consequence, integration of C.T /=T reproduces the
Pauling-like experimental residual entropy (lower panel, Fig. 12.3). Similar agree-
ment between experiment and Monte Carlo data for the specific heat was found for
Ho2Ti2O7 using J=3 � �0:55 K and 5D=3 � 2:35 K [31]. Further, it was pos-
sible in Ho2Ti2O7 to perform neutron scattering studies on a single crystal [31],
where, with J fixed from the C.T / data, it was found that the dependence of the
measured intensity on the scattering wave vector q is well reproduced by the results
from Monte Carlo simulations [31], as illustrated in Fig. 12.4.

Hence, despite their complex structure, not only are dipolar interactions compat-
ible with the existence of a degenerate state, but in fact they appear to be responsible
for it, given that the nearest-neighbor exchange interaction J , which in Ho2Ti2O7

and Dy2Ti2O7 is antiferromagnetic, would by itself lead to long-range order. One
must therefore ask where the spin-ice phenomenology comes from in the DSM
(12.8) with long-range dipole–dipole interactions. One way to address this question
is to take the dipolar interactions and truncate them beyond the nearest-neighbor
separation: on the pyrochlore lattice, Ozi � Ozj D �1=3 and .Ozi � Orij /.Orij � zj / D �2=3
for nearest-neighbor ions i and j , whence

3 In [30,31], the quantities Jnn � J=3 andDnn D 5D=3were employed to describe the interactions
between the Ising variables � zi

i . The reason for introducing these two rescaled couplings becomes
clear when considering (12.14)
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Fig. 12.4 Ho2Ti2O7: neutron
scattering in the .hhl/ plane
showing experimental data
(upper panel; the sharp spots
are nuclear Bragg scattering
with no magnetic component)
compared with Monte Carlo
simulations of the
nearest-neighbor spin-ice
model (middle panel) and of
the dipolar model (lower
panel) [31]. Blue (light)
indicates the weakest and
red-brown (dark) the
strongest intensity. (Figure
reprinted with permission
from S.T. Bramwell et al.
[31]. Copyright 2001 by the
American Physical Society.)
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H D
X
hi;j i

�
J

3
C 5D

3

�
�

zi

i �
zj

j CH
dip
>rnn ; (12.14)

in which all dipolar interactions beyond the nearest-neighbor distance rnn have been
incorporated into H dip

>rnn .
The first term in (12.14) is that of an effective nearest-neighbor pyrochlore Ising

antiferromagnet [13], which for .J C5D/=3 > 0 is frustrated and possess a Pauling
entropy, while a four-sublattice “all-in/all-out” long-range Néel order occurs for
.J C 5D/=3 < 0. Monte Carlo simulations [45,46] and mean-field theory [48] find
that H dip

>rnn modifies only slightly the location of the Néel/spin-ice boundary from
.J C 5D/=3 D 0 to .J C 4:53D/=3 � 0. Alternatively stated, the long-range
dipole–dipole interactions act weakly to stabilize the Néel order to the detriment
of the spin-ice state [30, 45, 46]. Using the values of J=3 and 5D=3 given above
for Dy2Ti2O7 and Ho2Ti2O7, one finds that both materials fulfil the criterion .J C
4:53D/=3 > 0, as well as the less accurate .J C 5D/=3 > 0 criterion, and as such
can be characterized as dipolar spin-ice systems.

Having established a zeroth-order criterion, .J C 5D/=3 > 0, to determine
whether a dipolar pyrochlore Ising system exhibits spin-ice behavior, one now has
a definitive question to address, namely how the long-range 1=rij 3 tail of H dip

>rnn

appears not to lift the extensive degeneracy created by the nearest-neighbor part
of (12.14). We use a mean-field theory to begin addressing this question.

12.4.2 Mean-Field Theory

The general idea of a Ginzburg-Landau theory is to determine when the param-
agnetic phase, where all the components ma;u

i of the local (on-site) magnetiza-
tion vanish, becomes spontaneously unstable (critical) against the development of
nonzeroma;u

i . We follow the approach of [48–50]. Consider a general, bilinear spin
Hamiltonian,

H D 1

2

X
.i;j /

S
a;u
i Kab

uv .i; j /S
b;v
j ; (12.15)

where Sa;u
i is the u D x; y; z component of spin S a

i on the ath sublattice of the i th

primitive basis vector and Kab
uv .i; j / is a generalized spin-spin interaction. Making

the mean-field ansatz

.S
a;u
i �m

a;u
i /.S

b;v
i �mb;v

j / D 0; (12.16)

where ma;u
i is the thermal average hSa;u

i i, allows H to be decoupled and writ-
ten as an effective one-particle problem from which the free-energy, F.fma;u

i g/ �
�ˇ�1 ln.Z/, where Z D TrŒexp.�ˇH/� is the partition function, can be expanded
as a Taylor series of the order parameters ma;u

i . Here ˇ D 1=T , where T is the
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temperature, and the choice of units is such that the Boltzmann constant kB D 1.
The leading term in F is quadratic in ma;u

i ,

F � 1

2

X
i;j

X
a;b

X
u;v

m
a;u
i

n
nT ıi;j ı

a;bıu;v � Kab
uv .i; j /

o
m

b;v
j C F0.T /; (12.17)

where F0.T / is an ma;u
i -independent, temperature-dependent function and n is the

number of spin components of S a
i . We introduce the Fourier-transform representa-

tion of ma;u
i ,

m
a;u
i D

X
q

ma;u
q e�{q�Ra

i ; (12.18)

Kab
uv .i; j / D 1

Ncell

X
q

Kab
uv .q/e

{q�Rab
ij ; (12.19)

whereNcell is the number of FCC Bravais-lattice points and Ra
i denotes the position

of a magnetic ion on sublattice a of basis cell i . Equations (12.18) and (12.19)
applied to F give

.F � F0/

Ncell
D 1

2

X
q

X
a;b

X
u;v

ma;u
q

�
nT ıa;bıu;v � Kab

uv .q/
�
mb;v�q : (12.20)

To diagonalize Kab
uv .q/ requires a transformation to normal modes

ma;u
q D

4X
˛D1

3X
�D1

U a;˛
u;� .q/�

˛;�
q ; (12.21)

where the indices .˛; �/ label the normal modes, �˛;�
q . U.q/ is the unitary matrix

which diagonalizes Kab
uv .q/ in the spin and sublattice spaces with eigenvector 
.q/,

U �.q/K.q/U.q/ D 
.q/; (12.22)

where, in component form, U a;˛
u;� .q/ represents the .a; u/ component of the .˛; �/

eigenvector at q with eigenvalue 
˛
�.q/. The mean-field free energy, to quadratic

order in the normal-mode variables, is then

F.T / � 1

2

X
q

X
˛;�

�˛;�
q

�
nT � 
˛

�.q/
�
�˛;��q : (12.23)

For the Ising case of interest here, n D 1 and the indices representing the spin
components .u; v/, in addition to the label �, can be dropped from (12.23). Our pri-
mary goal is to diagonalize Kab , which, by taking a tetrahedral primitive basis with
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local h111i Ising spins, becomes simply a 4 � 4 matrix, and to determine the spec-
trum 
˛.q/. We define as 
max.q/ the largest of the four eigenvalues 
˛.q/ at each
q. Let us assume that the three-dimensional surface [as a function of .qx ; qy ; qz/]

˛.q/ reaches an absolute maximum value within the full Brillouin zone for some
wave vector qord, with qord called the ordering wave vector, which we shall label

max.qord/. 


max.qord/ is the critical temperature, Tc , because, when the temperature
T is reduced below this value, .T � 
max.qord// in (12.23) changes sign, causing the
mode �max

qord
to go soft (critical) and to develop a nonzero thermal expectation value,

at least at the level of mean-field theory. A key property of highly frustrated systems,
such as the classical Heisenberg antiferromagnet on pyrochlore, kagomé, and FCC
lattices, is that an infinitely large number of modes become critical simultaneously
at Tc [49].

For the nearest-neighbor h111i Ising pyrochlore ferromagnet [first term on the
right-hand side of (12.14)], or Anderson’s pyrochlore Ising antiferromagnet, one
finds that there are two exactly degenerate branches of soft modes that have an iden-
tical eigenvalue 
max.q/ for every wave vector q in the Brillouin zone (Fig. 12.5).
This result is obtained after constructing the 4 � 4 matrix Kab.q/ obtained from
(12.19) and finding its four eigenvalues. The mean-field theory of the nearest-
neighbor model therefore predicts, in the reciprocal-space description, that there
is no unique ordering wavevector qord which develops at Tc. In fact, there are
2Ncell modes (i.e. an extensive number of modes) that go soft simultaneously at
Tc D 2.J=3 C 5D=3/, where Ncell D N=4 is the number of primitive basis cells
and N is the number of magnetic moments. This result agrees with the discussion
presented above that the nearest-neighbor spin-ice model should have a degenerate
ground state.
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Fig. 12.5 Left: spectrum of 
max.q/=D for an effective nearest-neighbor spin-ice model where
the dipole–dipole interactions are truncated beyond the nearest-neighbor separation and Jij D 0

in (12.8). The spectrum is flat and there is no selected ordering wave vector qord. Because there
is on average one uncompensated spin out of the three neighboring a reference spin on a given
tetrahedron, the net “mean field” acting at a site is twice the effective nearest-neighbor interaction
for the Ising variable, which is 5D=3. Hence, the mean-field transition temperature, Tc , is 10D=3 �
3:33 in units of D, corresponding here to a q-independent 
max.q/. Right: 
max.q/=D for the full
dipolar spin-ice model with Jij D 0 in (12.8). Note the slightly dispersive nature of 
max.q/=D

which displays a maximum at qord D Œ001�
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Turning to the role of the long-range dipole–dipole interactions beyond nearest
neighbors, contained in the term H

dip
>nn in (12.14), because we are still considering

only an Ising model, the 4 � 4 matrix Kab.q/ is constructed simply by adding the
Fourier transform of H dip

>nn. The long-range (1=rij 3) nature of the dipolar interac-
tions renders somewhat technical the calculation of the Fourier transform in (12.19)
[50, 51]. The simplest, although not particularly well controlled, way to proceed is
to truncate H dip

>nn at some cut-off distance Rc and to determine 
max.qord/ for that
Rc [48]. One may then monitor the evolution of the 
max.q/ “surface” and the cor-
responding qord with progressive increases of Rc . For “small” Rc , for example less
than ten times the nearest-neighbor distance, one finds that 
max.q/ acquires size-
able dispersion and a specific value of qord is selected. However, this value depends
on the chosen Rc, a physically unacceptable result given that ultimately one must
proceed to Rc D 1 [48]. As the value of Rc is increased, 
max.q/ becomes pro-
gressively less dispersive and the associated qord moves towards Œ001�. This result
is confirmed by calculations of Kab.q/ performed directly in q space using the
Ewald-summation method. Figure 12.5 shows the q-dependence of 
max.q/ in the
.hhl/ reciprocal plane.

One interpretation of the mean-field-theory calculation is that there exists a type
of self-screening, such that the selection of an ordering wave vector qord “promoted”
by the shells of spins of smaller radii is canceled by the contributions obtained as the
cut-off radiusRc is increased progressively. However, this is an incomplete descrip-
tion of the true microscopic reasons why dipolar interactions cause the ice rules to
be satisfied. We return in Sect. 12.4.4 to a full discussion of why dipolar spin ice
obeys the ice rules [51]. Here, we discuss only the results of the mean-field calcula-
tions, which show that the final selection of an ordering wave vector qord is “fragile”
in the DSM (12.8). By this we refer to the flatness of the spectrum of 
max.q/, which
shows that dipolar spin ice has very little propensity for the selection of an ordered
state. Indeed, a slight modification of the exchange interactions beyond nearest-
neighbors in (12.8) can alter quite dramatically the spin correlations in the spin-ice
regime [33]. However, as noted above, careful consideration of 
max.q/ reveals that
it does have an absolute maximum, which occurs at qord D Œ001�. Thus dipolar spin
ice is characterized by an ordered phase with a unique, commensurate propagation
wave vector and, as the system is cooled from the paramagnetic phase, it should
undergo a phase transition to a long-range-ordered ground state with no extensive
degeneracy. Because this is a classical system, quantum fluctuations cannot inhibit
the development of long-range order, as occurs in a number of the systems described
in other chapters of this volume. Even at the level of mean-field theory, the third law
of thermodynamics is obeyed in the DSM without having to invoke the effects of
quantum mechanics at low temperature.

The fate of this predicted, long-range ordered phase both in Monte Carlo simu-
lations of the DSM and in real materials, is easier to address by turning first to the
simulations.
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12.4.3 Loop Monte Carlo Simulations and Phase
Diagram of Dipolar Spin Ice

In Monte Carlo simulations that employ conventional, Metropolis, single-spin-
flip dynamics [30, 31], the rate of accepted spin-flips falls exponentially fast with
decreasing temperature once the system has entered the spin-ice regime where the
“two-in/two-out” ice rules are obeyed rigorously [45]. As an example, in simulations
of Dy2Ti2O7 one finds that it becomes for all practical purposes impossible to equi-
librate the system below a “freezing temperature” Tf which is around 0.4 K [45]. It
is worth noting that this temperature corresponds rather closely to the freezing tem-
perature found in AC susceptibility measurements on Dy2Ti2O7 [52]. The results
from the mean-field theory may then be reinterpreted in the light of the Monte Carlo
simulations. The flatness of 
max.q/ illustrates the competition among all the quasi-
degenerate, ice-rule-obeying, quasi-critical modes that exist in the DSM. In real
space, once the system is cooled into the ice regime, i.e. below the temperature
at which the specific heat peaks (top panel, Fig. 12.3) and at a value much lower
than the energy barrier of approximately 2.J=3 C 5D=3/, it becomes extremely
difficult to flip spins in a way that would violate the ice rules. Thus although the
low-temperature spin dynamics within the spin-ice state is extremely slow, the sys-
tem has not yet reached the critical temperature for the transition to long-range
order. The spin-ice regime must, therefore, be seen as smoothly connected to the
high-temperature paramagnetic phase: alternatively stated, the spin-ice state is a
paramagnetic state, or to be more precise, in the terminology of Villain [14] it is a
collective paramagnetic state. Hence, spin ice is a classical spin liquid, albeit one
with extraordinarily slow spin dynamics. One is therefore led to ask the questions
of how the out-of-equilibrium freezing of spin ice can be overcome, at least within
a computational approach to the DSM, what is the long-range ordered phase, what
is the nature of the phase transition, and at what temperature it ultimately occurs.

In order to explore the low-temperature ordering properties of dipolar spin ice,
a Monte Carlo algorithm is required which allows non-local updates that by-pass
effectively the energy barriers which separate nearly degenerate states and allows the
simulation to explore the restricted, ice-rules phase space which prevents ordering
in the model [45,46]. To construct such update processes, one must first identify the
true, zero-energy modes which can take the nearest-neighbor spin-ice model from
one ice state to another, exactly energetically degenerate, ice state. An example of
these zero modes, or loops, is shown in Fig. 12.2. With interactions beyond nearest-
neighbor terms, these “loop moves”, where spins are flipped on closed loops without
violating the ice rules, become only quasi-zero modes, but still act to take the DSM
from one ice-rules state to another without introducing ice-rule defects into the tetra-
hedra. This type of loop move allows all of the quasi-degenerate spin-ice states to be
sampled ergodically, and facilitates the development of a long-range-ordered state
at low temperatures. The algorithm used to identify loops of “potentially flipable
spins” is described in [45, 46, 53, 54]. Once a loop has been identified, one calcu-
lates the energy difference between the original spin configuration for that loop and
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Fig. 12.6 Results from loop Monte Carlo simulations. Left: low-temperature magnetic specific
heat for systems of L� L� L cubic unit cells with L D 4, using the values J=3 D �1:24K and
5D=3 D 2:35K suitable for Dy2Ti2O7. Filled circles are data obtained from loop Monte Carlo
simulations [45, 46]. Open triangles are data obtained using a standard, single-spin-flip Metropo-
lis algorithm [30]. Right: phase diagram of the DSM with Jnn � J=3 and Dnn D 5D=3. The
antiferromagnetic, four-sublattice Néel ground state is the “all-in/all-out” configuration on each
tetrahedron. The spin-ice configuration, which includes the q D .0; 0; 2�=a/ ground state, is a
“two-in/two-out” configuration on each tetrahedron [45, 46]. The region contained between the
quasi-vertical, dotted lines displays hysteresis in the selected long-range-ordered state [q D 0

competes with q D .0; 0; 2�=a/] as Jnn=Dnn is varied at fixed temperature T

the configuration with flipped spins, which arises due to the long-range part of the
dipolar interactions. Whether or not to flip the spins on the loop is then decided
according to a standard Metropolis test. One finds from loop Monte Carlo simu-
lations [45, 46] with J=3 D �1:24 K and 5D=3 D 2:35 K a sharp, first-order
transition at Tc � 180 mK, or Tc=D � 0:128 (Fig. 12.6). A detailed analysis
reveals a number of essential properties of the system at the transition [45, 46]:

1. The transition is an extremely strong, first-order process.
2. The entropy removed on the high- and low-temperature “wings” of the transi-

tion plus the latent heat associated with the transition equals Pauling’s residual
entropy within a numerical uncertainty of 1%–2%.

3. The state below Tc is a long-range-ordered ice-rules-obeying state and is identi-
cal to the one predicted by mean-field theory [48].

4. Tc is independent of D=J , with Tc=D � 0:128.

One may now return to the question posed above, of what happens to the
numerically predicted phase transition to long-range order in real systems. The
numerical evidence for a first-order transition to long-range order in the DSM is
compelling [45, 46]. However, there is to date no reported experimental evidence
for a phase transition in either Dy2Ti2O7 [52] or Ho2Ti2O7 [6,9] down to tempera-
tures of approximately 60 mK. A possible, if not likely, reason for this failure of real
spin-ice materials to develop long-range order at low temperature is that the spins
in real materials are frozen and cannot equilibrate thermally because real systems
are unable to benefit from the non-local type of spin dynamics employed in loop
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Monte Carlo simulations. Another possibility [33] is that exchange interactions Jij

beyond the nearest-neighbor range in (12.8) act as perturbations which frustrate the
development of the long-range order discussed above, pushing Tc below the lowest
temperature considered so far in experiment [52].

Before concluding this chapter with a brief discussion of some avenues of
research currently pursued in experimental studies of spin ices and related mate-
rials, we conclude this section by revisiting the question of the microscopic origin
of the ice rules in the dipolar spin ice model, HDSM, in (12.8).

12.4.4 Origin of Ice Rules in Dipolar Spin Ice

The Monte Carlo simulation results of Sect. 12.4.1 show that the spin-ice phe-
nomenology is the consequence of long-range dipolar interactions. The mean-
field-theory calculations of Sect. 12.4.2 provide an indication of the self screening
mechanism enforcing the relevance of the ice rules. However, neither method really
explains why dipolar spin ice obeys the ice rules. An approach which was successful
in answering this question was reported in [51], and is summarized here.

The first important ingredient [55] is to note that the ice-rules condition on the
pyrochlore lattice which favors “two-in/two-out” states can be formulated as

X
�

�
z1

� C �
z2

� C �
z3

� C �
z4

� D 0; (12.24)

where the sum is performed over upward and downward tetrahedra, which is equiv-
alent to a divergence-free “spin field” ˝ obeying r � ˝ D 0. These “lattice fluxes”
are link variables on the diamond lattice (dual to the pyrochlore lattice) and r�
is the lattice divergence. Such a phase with local constraint that can be mapped
to a divergence-free flux is called a “Coulomb phase” [56]. We return to this in
Sect. 12.5.8. By introducing a weight �ŒB.r/� of the form

�Œ˝.r/� / exp

�
�K
2

Z
Œ˝.r/�2d3x

�
(12.25)

for nonzero flux, which corresponds to local violation of the ice rules, one may solve
for the correlations

h˝u.0/˝v.x/i � 3xuxv � r2ıuv

r5
; (12.26)

where u and v are Cartesian components. Equation (12.26) reveals that the local
constraint, namely the ice rules, leads to spin correlations that are dipolar in nature
at large distances.
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The second important observation [51] is that a simplified model of the spin-ice
type may be constructed whose eigenmodes �˛

q can be used to form a projector onto
the ice-rule-obeying ground states. Because of the asymptotic dipolar correlations
possessed by such states (c.f. 12.26), the real-space matrix elements of this projec-
tor turn out to be the same as the dipolar part (the second term) of the interactions
in HDSM in (12.8), plus a small and rapidly converging (1=rij 5) correction term,
(V.rij /). The dipolar interactions between the real magnetic moments are therefore,
up to small and rapidly decaying short-range corrections, a projector onto the man-
ifold of all possible ice-rule ground states. Thus, when a dipolar h111i Ising system
is cooled below a temperature on the order of D, the spin configurations are forced
energetically into ice-rules states. When V.rij / < T < D, this forcing is almost
indiscriminate with regard to the precise state, and it is only when the temperature
reaches the scale of V.rij / that the transition to a long-range-ordered spin-ice state
(that discussed in Sect. 12.4.3) occurs, provided that ergodicity can be maintained
using non-local spin-flip dynamics [45, 46].

A somewhat simpler explanation for the origin of the ice rules in dipolar spin ice
has been proposed recently [57]. “Exploding” each point dipole into its constitu-
tive magnetic (monopole) charges and imposing that each tetrahedron be neutral (in
magnetic charge) leads automatically to the conclusion that all ice-rule-obeying are,
again, up to a small and rapidly decaying short-range correction, ground states of
the microscopic magnetostatic dipolar interactions of (12.8) [57]. These magnetic
charges have interactions which decay as 1=r for large inter-charge separations r .
Magnetic-field-driven [57] and thermally driven [58] nucleation of these objects has
been invoked to explain both the thermodynamic [57] and dynamical [58] properties
of spin-ice materials, and their possible experimental manifestations are discussed
in Sect. 12.5.8.

12.5 Current Research Topics in Spin Ices
and Related Materials

Since the discovery of spin-ice behavior in Ho2Ti2O7 [5] and Dy2Ti2O7 [7], there
has been a sustained research drive aimed at exploring the interesting thermody-
namic and magnetic phenomena offered by spin ices and by a number of closely
related systems. This section serves as an update regarding some of the topics that
are of current interest in the study of spin ice.

12.5.1 Magnetic-Field Effects

Because of the large magnetic moment of Dy3C and Ho3C in spin-ice materials,
even rather small magnetic fields can induce dramatic effects. Of particular interest
is the “pinning” of the spins by a sufficiently strong field acting, as a function of
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field orientation, on one [57, 59–61], two [32], three [32, 62], or all four [63] sites
of a primitive tetrahedral cell. This gives rise to collective behavior including phase
transitions to long-range order [32,62], topological Kasteleyn transitions [59,61,63],
magnetization plateau states [57, 59], and a sort of magnetic-monopole gas-solid
transition [57]. Some of the salient features characterizing the behavior of the system
according to the direction of the magnetic field, B, are discussed in brief.

12.5.1.1 Field Parallel to Œ˛; ˇ; . N̨ C Ň/�, Œ11N2�

The case of very strong B in the direction ˛ Ox C ˇ Oy � .˛ C ˇ/Oz (e.g. parallel to
Œ11N2�), with ˛ C ˇ ¤ 0 (i.e. unlike Œ1N10�), is perhaps the simplest one from the
point of view of field-induced collective behavior in dipolar spin-ice systems [32].
For B in this direction, the magnetic moments on sublattice #1, with easy-axis Ising
direction Oz1 D 1p

3
. Ox C Oy C Oz/ (Sect. 12.3.2), are perpendicular to B and therefore

not coupled to it. The moments on the three other sublattices are frozen (pinned) in
a “one-in/two-out” configuration by sufficiently strong field. In the limit jBj ! 1,
the field-decoupled moments on sublattice #1, which form a regular FCC lattice,
interact only among themselves through dipolar and exchange interactions at and
beyond third-nearest-neighbor distances. Numerical simulations [32,33] and exper-
iments [62] find that, because of these interactions, the field-decoupled moments
undergo a phase transition to a ferromagnetic state in Dy2Ti2O7 at approximately
0.3 K.

12.5.1.2 Field Parallel to Œ1N10�

The situation with B parallel to Œ1N10� is a special case of Œ˛; ˇ; . N̨ C Ň/� discussed
just above where moments on sublattices #1 and #2, with Oz1 D 1p

3
. Ox C Oy C Oz/ and

Oz2 D 1p
3
.� Ox� OyCOz/, are decoupled from B. At the same time, the moments on sub-

lattices #3 and #4, where Oz3 D 1p
3
.� OxC Oy�Oz/ and Oz4 D 1p

3
. Ox� Oy�Oz/, are pinned by

a strong Œ1N10� field. The pyrochlore lattice can be viewed as two sets of perpendic-
ular chains, each set composed respectively of the (#1,#2) sublattices, which form
ˇ chains, and the (#3,#4) sublattices, which form ˛ chains [64]. In this situation,
one expects theoretically that the field-decoupled spins on the ˇ chains undergo a
collective phase transition, again driven by dipolar and exchange interactions at and
beyond the third-neighbor separation [32, 65]. Results from specific-heat [64] and
neutron scattering measurements [5, 38, 66] provide evidence that strong correla-
tions develop among the spins on the ˇ chains even at moderate fields jBj � 0:5

T. However, in contrast to theoretical predictions, no experiment has yet found true
long-range order on the ˇ chains. Numerical [45] and experimental [66] evidence
suggests that failure to observe such order may be the result of small field misalign-
ments away from the perfect Œ1N10� orientation. Such an offset in the field direction
may be sufficient to frustrate the three-dimensional correlations among ˇ chains,
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causing the system to remain in a quasi-one-dimensional, short-range-correlated
state and failing to develop long-range order.

12.5.1.3 Field Parallel to Œ111�

The pyrochlore lattice can also be viewed as an assembly of stacked kagomé-lattice
planes (planes of corner-shared triangles) separated by alternate triangular planes
aligned such that each kagomé triangle is decorated with an additional spin alter-
nating between positions above and below the kagomé plane to give the upward
and downward tetrahedra. At sufficiently low temperatures, for B k Œ111�, the api-
cal moments on each tetrahedron are aligned with the field direction: if B is “up”,
then the spins are oriented “out” on the upward tetrahedra and “in” on the downward
tetrahedra. For jBj below a critical field value,Bc , of order of 1 T for Dy2Ti2O7 [67]
and 1.7 T for Ho2Ti2O7 [42, 61], the moments on the kagomé plane can still main-
tain ice-rules configurations, respectively “in-in-out” or “in-out-out” on the upward
and downward tetrahedra. This leaves an intra-tetrahedron degree of freedom asso-
ciated with the kagomé planes (the apical moments are polarized by the field), which
is analogous to that in Pauling’s model and therefore possesses a residual, zero-point
entropy. When B < Bc , this state, referred to as “kagomé ice,” is characterized by
a field-independent Œ111� magnetization plateau [42, 59, 67]. The magnetic entropy
has been predicted [59], and also found in experiment [68], to be non-monotonic as
a function of jBj and to exhibit a peak at Bc . A very recent analysis interprets the
transition from the plateau regime to the high-field saturated-magnetization regime
above Bc as a condensation of magnetic monopole-like defects [57]. For B < Bc ,
the available degrees of freedom on the kagomé planes can be mapped to hard-core
dimers on a honeycomb lattice. Using this description, the kagomé ice state is found
to be critical. Theory predicts that a tilting of the magnetic field away from per-
fect Œ111� alignment allows one to control the entropy of this critical state, which is
ultimately terminated above a critical tilting angle by a topological phase transition
known as a “Kasteleyn transition” [59]. Intensity data from neutron scattering on
Ho2Ti2O7 in a magnetic field tilted away from Œ111� yield to a rather compelling
interpretation in terms of such a Kasteleyn transition from a critical kagomé-ice
state [61].

12.5.1.4 Field Parallel to Œ100�

A field B k Œ100� has an equal projection along each of the Ising axes Ozi . A field
jBj larger than 0.04 T overwhelms the correlations caused by the long-range mag-
netostatic dipolar interactions and gives rise to a Œ100�-polarized state that satisfies
the ice rules [45]. On the basis of Monte Carlo simulations, it was thought ini-
tially that for fields below a critical value, the system would undergo a first-order
liquid-gas transition between a state of low Œ100� magnetization and a state with
higher Œ100� magnetization upon cooling [69]. However, a recent study suggests
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that this problem is more subtle [63]: at low temperatures, the approach to the state
of saturated magnetization is another example of a Kasteleyn transition, which is
topological in nature because the magnetization can be changed only by correlated
spin excitations that span the whole system. Comparison of simulation data with
the magnetic field-dependence of the Œ100� magnetization for Dy2Ti2O7 provides
good evidence that the physics of the Kasteleyn transition is indeed relevant in this
problem [63].

12.5.2 Dynamical Properties and Role of Disorder

Experiments have been conducted to investigate the nature of the persistent spin
dynamics observed down to the lowest temperatures [70–72]. Substitution of the
magnetic Ho3C and Dy3C ions by non-magnetic ions affects the spin dynamics and
leads to a partial and non-monotonic lifting of the ground-state degeneracy [41].
However, the problem of the final transition from spin ice to dipolar spin glass as
the magnetic rare-earth ion is substituted by Y3C has not yet been explored. A full
understanding of the origin of the spin dynamics in spin ices is still awaited [72]. A
recent study of Ho2Ti2O7 proposes that the excitation of nuclear states can perturb
the electronic Ising spin states to give rise to persistent spin dynamics [73]. One
challenging aspect of the spin dynamics in spin-ice materials such as Dy2Ti2O7

is the fact that the relaxation rate �.T / remains quite independent of temperature
between 4 K and 13 K [74, 75]. This T -independent regime had been interpreted
previously in terms of a quantum mechanical tunneling of the spins between their
“in” and “out” directions. However, recent analysis suggests that the magnetic relax-
ation can be interpreted entirely in terms of the diffusion of thermally-nucleated
topological defects, again akin to magnetic monopoles, on trajectories constrained
to lie on a network of “Dirac strings” [58].

12.5.3 Beyond the Dipolar Spin-Ice Model

The large number of high-quality experiments on spin ices now permits a refine-
ment of the spin Hamiltonian and the extraction of exchange interactions beyond
nearest neighbors, allowing an excellent, quantitative description of many bulk
measurements and neutron scattering experiments [33, 60]. In particular, exchange
interactions beyond nearest neighbors are argued to induce weak spin-spin correla-
tions that are responsible for the fact that the neutron scattering intensity spans the
Brillouin zone boundaries [33, 76].

12.5.4 Metallic Spin Ice

The metallic pyrochlore material Pr2Ir2O7 exhibits Kondo-type effects in the resis-
tivity and magnetic susceptibility, with logarithmic increases of both quantities at
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low temperatures [77,78]. However, one expects the magnetic moments on the Pr3C
ions in Pr2Ir2O7 to be well described as Ising spins, for which Kondo physics is
not readily explicable. Further, the predominant Pr3C�Pr3C interactions in metallic
Pr2Ir2O7 would normally be expected to be of RKKY type. In contrast to exper-
imental findings, Monte Carlo simulations on RKKY-coupled h111i spins find a
transition to long-range order at temperatures close to the Curie–Weiss tempera-
ture [79]. Thus it is not currently clear what, if any, is the role of magnetic frustration
in determining the exotic thermodynamic and transport properties of Pr2Ir2O7. Very
recent work reports an anomalous Hall effect (AHE) in this material [80].

12.5.5 Artificial Spin Ice

Lithographically fabricated, single-domain ferromagnetic islands can be arranged
such that the magnetic dipolar interactions create a two-dimensional analog of spin
ice. The magnetic moments can be imaged directly, allowing the study of topics
including the local accommodation of frustration and the emergence of the ice
rules [81, 82]. It has also been proposed that a colloidal version of artificial ice can
be realized using optical lattices in traps [83]. The availability of more such artificial
systems will be of prime interest in the field. The out-of-equilibrium properties of
lithographically prepared systems in magnetic fields promise to be one of the first
areas in which these systems can offer new insight.

12.5.6 Stuffed Spin Ice

It is possible to alter Ho2Ti2O7 spin ice chemically by “stuffing” additional Ho3C
magnetic moments into the normally non-magnetic Ti sites [84, 85]. The resulting
series of samples, Ho2(Ti2�xHox)O7�x=2, displays an increased connectivity com-
pared to the standard pyrochlore and raises the question of how the Pauling entropy
of “normal” spin ice evolves with stuffing [84,86]. At the time of writing, the ques-
tion of homogeneity of stuffed spin-ice materials remains to be ascertained, and
further studies of these systems are required.

12.5.7 Quantum Mechanics, Dynamics, and Order in Spin Ices

The compounds Tb2Ti2O7 [25, 26] and Tb2Sn2O7 [26] should both possess an
Ising ground-state doublet, similar to their Ho and Dy counterparts [24]. However,
Tb2Ti2O7 remains in a collective paramagnetic (spin-liquid) state down to 50
mK despite an antiferromagnetic Curie–Weiss temperature of �14 K [19, 25] and
is seemingly not a spin-ice state [23]. By contrast, neutron scattering measure-
ments [37] find a long-range-ordered spin-ice configuration in Tb2Sn2O7, although
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muon spin relaxation studies find significant spin dynamics in this compound [87–
89]. Determining the role of the deviation from a strictly Ising-like description of
the magnetic moments in these two materials, and the effects of the resulting quan-
tum fluctuations, is a task which remains to be completed [23]. In this context, it is
worth noting that the pyrochlore material Pr2Sn2O7 has been proposed to display
a “dynamical spin-ice state” [90]. Little is known about the microscopic physics
operating in this system.

12.5.8 Coulomb Phase, Monopoles and Dirac Strings
in Spin Ices

The exploration of the “Coulomb phase” nature of the spin-ice state and of its
monopole-like excitations is a very recent and exciting development in the theo-
retical [56–58] and experimental [91–93] study of spin-ice physics.

The “Coulomb phase” is an emergent state of lattice models of highly frustrated
magnetic systems which have local constraints that can be mapped to a divergence-
free “flux”. The perfectly ice-rule obeying state of spin ices is thus a Coulomb phase
where the local “two-in/two-out” constraints are represented by a divergence-free
˝.r/ field, with the coarse-grained version of ˝.r/ behaving as an electric field.
In particular, defects in the otherwise perfect “two-in/two-out” spin configuration,
behave as effective charges with Coulomb interactions between them. It has rapidly
become common practice in the field to refer to these defects in the spin-ice states
as “monopoles” – however, these are not Dirac’s elementary monopoles [94, 95]. A
thermal fluctuation which flips a spin amounts to the creation of a pair of positive
and negative monopoles on adjoining tetrahedra. Once created, these two monopoles
can diffuse away from each other, leaving in their wake a chain of flipped spins
with respect to the configuration that existed prior to the fluctuation, with this chain
popularly referred to as “Dirac string” [58,91,92]. While the spin-ice state is really a
paramagnetic phase, albeit a collective paramagnetic one [14], the underlying spin-
spin correlations do not decay exponentially with distance, r . Rather, this Coulomb
phase is characterized by spin-spin correlations that are dipolar at large distance,
both in terms of their 1=r3 decay and their spatially anisotropic structure. This real
space power-law decay of the correlations is reflected in “pinch-points” singularities
in reciprocal space which are observable in neutron scattering experiments [90]. At
low-temperature, the density of monopoles is low and their RMS separation, ice,
provides a cut-off to the 1=r3 spin-spin correlations and hence a finite-width to the
reciprocal space pinch-points.

Following the original work of Castelnovo et al. [57], Jaubert and Holdsworth
used Monte Carlo simulations to show that the temperature-independent relax-
ation rate extracted from an analysis of the a.c. magnetic susceptibility of the
Dy2Ti2O7 spin-ice material [74, 75] can be understood in terms of the freezing-
out of monopoles [58]. Recent experiments provide an even more direct evidence



12 Spin Ice 325

for the underlying Coulomb phase nature of the spin-ice state and of its monopole-
like excitations. Fennell et al. performed a polarized neutron-scattering experiment
on a single crystal of the Ho2Ti2O7 spin-ice compound where the scattering signal
is decomposed in two (spin flip and non-spin-flip) components [91]. The pinch-
points predicted by theory are revealed in the component where the neutron spin
is flipped. The pinch points are obscured in the more intense non-spin-flip signal
and this provides an explanation as to why their observation in previous unpolarized
neutron scattering experiments was inconclusive [31, 76]. In the work of Morris
et al. [92], an applied magnetic field B along the [100] direction of a single crys-
tal of the Dy2Ti2O7 spin-ice material induces a magnetically polarized state that
simultaneously satisfies the ice-rules and minimize the Zeeman energy [63,69]. The
strength of B can be tuned near the Kastelyn transition for this field direction [63]
where thermally excited monopole-antimonopole pairs start to appear. The flipped
spins forming the “Dirac string” are then oriented antiparallel to B, with the strings
producing cone-like features in the neutron scattering intensity pattern. These conic
features progressively transform in inclined sheets of scattering when B is tilted
away from perfect [100] alignment, in close concordance with the calculations
[92]. Moreover, the magnetic specific heat in zero magnetic field can also be well
described in terms of a Debye-Hückel theory for a dilute gas of thermally excited
monopoles [92].

In a weak electrolyte, the so-called second Wien effect describes the nonlin-
ear increase in the dissociation constant (or equivalently the conductance) in an
applied electric field. In a seminar paper, Onsager derived a general equation for
the Wien effect that provides an excellent description of experimental conductiv-
ity measurements. Bramwell et al. [93] borrowed Onsager’s theory to calculate the
thermally-induced monopole-antimonopole pair dissociation rate in spin ice and to
estimate the increase in the magnetic moment fluctuation rate, �.B/, induced by a
small magnetic field, B , of the order of 1 mT. Bramwell and co-workers argued that
the field-dependence of the transverse relaxation rate, 
, of the muon spin polariza-
tion in a muon spin relaxation (muSR) is proportional to �.B/. By measuring the
field and temperature dependence of 
, the authors of [93] reported an estimate of
the chargeQ � 5 �B/Å for the monopoles, in close agreement with the theoretical
estimate [57]. At the time where this book is going into print, it is noted that discus-
sions pertaining to the definitive interpretation of the experimental results reported
in [93] have very recently arisen in the research community.

One may expect more exciting experiments probing the Coulomb phase nature
and the monopole-like excitations of the low-temperature regime of spin-ice mate-
rials to be performed in the near future. These are sure to deepen our understanding
of the fascinating properties of these systems.

12.6 Conclusion

Since the discovery of spin-ice materials a little over ten years ago, their experimen-
tal and theoretical investigation has raised a range of profound questions concerning
several aspects of the physics of frustrated magnetic systems. While these studies
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have led to an enhanced global understanding of many fundamental issues pertain-
ing to frustration in condensed matter systems, some unanswered questions remain,
particularly in the context of low-temperature spin dynamics, random disorder, and
the properties of metallic Ising pyrochlore systems. These questions can be expected
to form the focus of spin-ice research for several years to come.
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Chapter 13
Spin Nematic Phases in Quantum Spin Systems

Karlo Penc and Andreas M. Läuchli

Abstract In this chapter, we explore the possibility for spin systems to develop
a type of order that breaks the O(3) spin symmetry but does not have a mag-
netic moment. Such ordering is usually referred to as multipolar or nematic, with
quadrupolar being the simplest example. These phases have been found in S D 1

Heisenberg models extended with biquadratic exchange, in certain S D 1=2Heisen-
berg models with both ferromagnetic and antiferromagnetic exchange couplings,
and in models with cyclic ring-exchange terms. We present theoretical and numer-
ical methods which can be used to understand and characterize quadrupolar and
nematic phases. While quadrupolar/nematic ordering is well documented in model
systems, it has not yet been identified unambiguously in real materials, although
there exist some promising candidates which we also review.

13.1 Introduction and Materials

Magnetism and spins are usually thought to be inseparable. It is the quantum
mechanical spin of individual electrons which, through Hund’s rules, forms the
moment of a magnetic ion. When these magnetic ions interact, the spins usually
order in the ground state, and the individual spins are oriented in a given direction
in spin space. Such a state breaks spontaneously both spin-rotation and time-reversal
symmetries. An essential property of quantum mechanical systems is the possibility
of discovering phases which do not carry a magnetic moment and do not break time-
reversal symmetry. One paradigm is that spin-1/2 entities may pair into singlets,
realizing valence-bond phases of different kinds [1] – in such a quantum paramag-
netic phase, neither the spin-rotation nor the time-reversal symmetry is broken, as
discussed in Chap. 2 by Lhuillier and Misguich. One might ask whether yet more
exotic possibilities exist, for example a phase without magnetic order, but which
nevertheless breaks spin-rotation symmetry. This chapter explores such a situation.

In the following, we call a spin nematic any state that has no magnetic order, i.e.
hSii D 0, but still breaks the spin rotational symmetry, by virtue of a more compli-
cated order parameter. The simplest such example is onsite quadrupolar order, where
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the spin fluctuations along different axes are anisotropic: e.g. h.Sx/2i ¤ h.Sy/2i D
h.S z/2i. More complicated possibilities involving pseudovectors (Si � Sj ) and
higher rank tensors (octupoles, hexadecapoles) are possible and will be discussed
in this chapter.

Historically the possibility of quadrupolar ordering in S D 1 Heisenberg models
with additional biquadratic [.Si � Sj /

2] spin-exchange interactions was raised by
Blume and Hsieh in 1969 [2]. In 1984, Andreev and Grishchuk noted that the notion
of quadrupoles can also be extended to S D 1=2 spins, albeit not with on-site, but
rather with bond-based order parameters [3].

The possible observation of quadrupolar and nematic phases is challenging: in
thermodynamic measurements they behave in the same way as antiferromagnets [3].
Careful analysis by a technique such as neutron scattering study would be able to
discern a difference [4]. While to date there is no well-established case for a spin-
nematic ordered phase in a real material on which many of the relevant ideas could
be tested, there are several prospective cases that we introduce below.

Interest in spin-quadrupolar ordering has been raised recently by experimental
findings in the layered compound NiGa2S4, where the Ni2C ions are in the S D 1

state, and form a (two-dimensional) triangular lattice [5]. Specific-heat measure-
ments in this system show a T 2 behavior at low temperatures – an indication for
a k-linear Goldstone mode. However, neutron scattering shows only short-ranged
magnetic order. This led Tsunetsugu and Arikawa to suggest that a hidden order is
present, which is actually antiferroquadrupolar [6, 7]. Later, an alternative scenario
for the system based on ferroquadrupolar order was suggested [8, 9].

Another candidate for nonmagnetic nematic order is a recently synthesized
family of vanadates which realize a frustrated square-lattice J1-J2 model with fer-
romagnetic J1 interactions [10,11]. In these compounds, which are also structurally
layered and have chemical formula AA’VO(PO4)2 (where (A,A’) = Pb, Zn, Sr,
or Ba), the effective interactions between the magnetically active S D 1=2 V 4C
ions depend on the A and A’ elements. In some materials the exchange constants
are actually rather close to the theoretical phase boundary to the n-type nematic
phase, raising the possibility that with a suitable (A,A’) combination this boundary
may actually be reached.

A further square lattice J1–J2 compound of interest in this regard is (CuCl)
LaNb2O7 [12], in which the Cu2C ions carry the S D 1=2 spins. The ground state
of this material has a spin gap, a situation which may result from the fact that a
type of quadrumerization is observed. Theoretically, a perturbation expansion [13]
indicates that under favorable conditions the gap from the singlet to the quintuplet
state of the quadrumer units can be closed in an applied magnetic field, leading to a
field-induced quadrupolar phase.

More general multipolar ordering is present in rare-earth and actinide com-
pounds, and has been studied for some time. We briefly introduce these systems
for completeness, without discussing them further in the remainder of the chapter.
In these systems, the crystal field and the strong spin-orbit coupling act to mix the
orbital and spin quantum numbers of the f electrons into multiplets which can be
classified according to the irreducible representations of the relevant point group.
The possible multipolar degrees of freedom are then determined by the nature of the
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ground-state multiplet. While thermodynamic measurements can be used to map
out the boundaries of different ordered phases of f-electron systems, the identifi-
cation of the order parameter is often very difficult. Unlike magnetic-dipole and
electric-quadrupole ordering, both of which are relatively easy to observe, evidence
for multipolar ordering is mostly indirect, and is often based on induced secondary
order parameters.

A well-known example of this situation is the hidden order in NpO2 which
occurs within a phase discovered by specific-heat measurements: despite the fact
that the lowest multiplet of the Np4C ion is a Kramers doublet, no magnetic order
has been observed. Recent resonant X-ray experiments [14, 15], supplemented by
theoretical arguments, suggested a triple-q octupolar ordering with wave vectors
Qx D .2�=a/.1; 0; 0/, Qy D .2�=a/.0; 1; 0/, Qz D .2�=a/.0; 0; 1/. In addi-
tion to this primary order parameter, a triple-q quadrupolar ordering with the same
wave vector is induced. This scenario has been confirmed in 17O NMR studies [16],
supplemented by appropriate theoretical interpretation [17].

Another example worth highlighting is CeB6, where the Ce ions have a sim-
ple cubic structure. The suggested primary order parameter of this system is an
antiferroquadrupolar order with .2�=a/.1=2; 1=2; 1=2/. The uniform magnetic field
induces antiferro-aligned octupoles with .2�=a/.1=2; 1=2; 1=2/ [18]. Finally, rare-
earth skutterudites have also provided very rich and complex physics, the materials
PrRu4P12 and PrFe4P12 even supporting a hexadecapole order [19, 20].

To conclude the experimentally motivated part of this introduction, ultracold
atomic gases, in which the trapped atom species often have high internal (pseudo)
spin states, offer another area with great promise of producing quadrupolar and
nematic ordering phenomena [21–23].

Returning to its theoretical foundations, nematic (directional) ordering has also
been found in the compass model, which is motivated by systems with orbital
order [24]. In this model, the coupling between orbitals along a given bond direc-
tion is Ising-like, but with different Ising axes in the different bond directions. In
the classical compass model, the competition between bonds in different directions
leads to frustration and to a macroscopic degeneracy of states, from which thermal
fluctuations may stabilize a “directional ordering of fluctuations,” actually a nematic
order [25]. In the quantum case, it is the zero-point fluctuations which stabilize the
nematic order [26–28].

In this chapter, we will focus on the first class of systems introduced above,
illustrating the emergence and properties of nematic phases by considering systems
of small, quantum spins (S D 1 and S D 1=2).

13.2 Multipolar States of a Single Spin

We begin by addressing the question of whether there exist single-spin states which
have no magnetic moment. To answer this, we investigate in more detail the spins as
quantum mechanical objects, starting with the case of spin 1/2. The wave function
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of an S D 1=2 object has the general form .a" Cib"/ j"iC.a#Cib#/ j#i, with four
real parameters. By fixing the overall phase and normalizing the wave function, the
number of parameters is reduced to two, so that an arbitrary spin-1/2 wave function
can be written conveniently as

j Ő i D cos
�

2
e�i'=2 j"i C sin

�

2
ei'=2 j#i:

This wave function has particular properties: it satisfies the equation . O� � S/j Ő i D
S j Ő i and describes a spin oriented in the direction of the unit vector

O� D
0
@ sin# cos'

sin# sin'
cos#

1
A:

This is called a spin coherent state. Any S D 1=2 state can be obtained by rotating
the state j"i, and will always break time-reversal invariance.1

For an S D 1 spin, the number of free parameters is 6�2 D 4: while the number
of constraints remains two, the complex amplitudes of each of the S z D �1; 0 and
1 states (which we denote by jN1i, j0i and j1i, respectively) give six parameters. The
four free parameters allow a greater flexibility than in the case of S D 1=2 spins: in
this case, the spin coherent states

j Ő i D 1C cos#

2
e�i' j1i C sin#p

2
j0i C 1 � cos#

2
ei' jN1i (13.1)

do not exhaust all the possibilities. For example, the state j0i cannot be obtained
by a rotation of the state j1i. In fact, in the state j0i the spin has no orientation at
all: h0jS˛j0i D 0. Nevertheless, the O.3/ rotational symmetry of the spin space is
broken, because h0j.S z/2j0i D 0 and h0j.Sx/2j0i D h0j.Sy/2j0i D 1, which can
be understood as describing a spin that “fluctuates” in the plane perpendicular to the
z-axis. Furthermore, the spin coherent state is (up to a phase factor) invariant under
the time-reversal operation.2 As a consequence, the nonmagnetic state j0i is known
as a quadrupolar state with a director3 parallel to the z-axis.

By using the completeness relation O1 D 3
R

d O�j Ő ih Ő j, where d O� D d cos#d'=
4�), an arbitrary spin-1 state j� i can be expressed as a superposition of spin coher-
ent states with amplitude h Ő j� i, because j� i D O1j� i D 3

R
d O�j Ő ih Ő j� i. As

examples,

1 The action of the antiunitary time-reversal operator is T j"i D j#i, T j#i D �j"i. In addition,
T changes the value of the wave function amplitude to its complex conjugate.
2 T changes the sign of j0i and interchanges j1i and jN1i: T j1i D jN1i, T j0i D �j0i, and
T jN1i D j1i, with complex conjugation of the associated amplitudes.
3 The director is also used in the description of a nematic liquid crystal.
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Fig. 13.1 Representation of
spin-component distributions
for the states (from left to
right) jh O�jyij2 (quadrupole),
jh O�j.cos �

12
jyi�i sin �

12
jxi/j2

(half-polarized state,
m D 1=2), and jh O�j1ij2
(fully polarized spin) x

y

z

x x

y y

z z

j0i D 3

Z
d O�sin#p

2
j Ő i and j1i D 3

Z
d O�ei' 1C cos#

2
j Ő i : (13.2)

expressions which are very useful to visualize the nature of the spin state [8, 29].
Illustrations are shown in Fig. 13.1.

To description of quadrupolar states for S D 1 spins is facilitated by choosing
the time-reversal-invariant basis

jxi D i
j1i � jN1ip

2
; jyi D j1i C jN1ip

2
; jzi D �ij0i; (13.3)

in which the director of jxi is parallel to the x-axis, jyi to y, and jzi to z. A linear
combination jdi D P

˛ d˛j˛i of these basis states with real coefficients d˛ is also
a quadrupolar state, with a director parallel to .dx; dy ; dz/ in the three-dimensional
space. Such states also satisfy .d � S/2 jdi D 0, which is the mathematical version
of the statement that there are no spin fluctuations in the direction d. In fact an
arbitrary spin state may be expressed in this basis by allowing for complex vectors
d D u C iv, with u2 C v2 D 1 (normalization, where u D juj and v D jvj) and
u � v D 0 (overall phase-fixing) [3, 30]. The spin operator in the basis (13.3) is

S˛ D �i
X
ˇ;�

"˛ˇ� jˇih� j; (13.4)

and the expectation value is hdjSjdi D 2u � v, which has squared amplitude
jhdjSjdij2 D 4u2v2. The complex amplitudes encode the possibility of time-
reversal-breaking (magnetic) states, for example j1i D .jyi � ijxi/=p2.

One must then ask what type of operator can be used to detect such a state.
Because a quadrupole does not break time-reversal symmetry, it must be a product
of an even number of spin operators. In fact, the 3 � 3 D 9-component quadratic
form S˛Sˇ can, for any S � 1,4 be decomposed into a scalar (the term TrS˛Sˇ D
SŒS C 1�), a three-component vector operator (the antisymmetric part S˛Sˇ

4 For S D 1=2 spins, Q˛ˇ D 0.
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�SˇS˛ / i"˛ˇ�S
� , which is simply the spin itself), and a symmetric and traceless

rank-2 tensor operator

Q˛ˇ D S˛Sˇ C SˇS˛ � 2

3
S.S C 1/ı˛ˇ : (13.5)

Q˛ˇ has five linearly independent components,5 which can be combined conve-
niently and arranged as a column vector of the form

OQ D

0
BBBBB@

OQx2�y2

OQ3z2�r2

OQxy

OQyz

OQxz

1
CCCCCA

D

0
BBBBB@

.Sx/2 � .Sy/2

1p
3

�
3.S z/2 � S.S C 1/

�
SxSy C SySx

SyS z C S zSy

SxS z C S zSx

1
CCCCCA
: (13.6)

The quantity
P

˛;ˇ Q
˛ˇQ˛ˇ D 2 OQ � OQ is a scalar. In the case of S D 1 spins,

Q˛ˇ D 2

3
ı˛ˇ � jˇih˛j � j˛ihˇj (13.7)

in the basis of (13.3). The expectation values hdjQ˛ˇ jdi are given by 2
3
ı˛ˇ �

2u˛uˇ � 2v˛vˇ and the sum of the amplitudes of the spin and of the quadrupole
is jhdjSjdij2 C jhdjQjdij2 D 4=3.

For higher spins, S > 1, the space of possible on-site order parameters becomes
still larger. Local order parameters of this type include multipolar states of degrees
k up to 2S (k D 0 is a scalar, 1 a dipole (vector), 2 a quadrupole, 3 an octupole,
and so on), i.e. these order parameters are rank-k tensor operators. Even-k cases are
time-reversal invariant, while odd-k cases break time-reversal symmetry.

13.3 Competition Between Dipoles and Quadrupoles

13.3.1 The Bilinear–Biquadratic Model

The minimal model to describe the competition between magnetic and quadrupolar
degrees of freedom is the bilinear–biquadratic Hamiltonian

5 The 2k C 1 components of rank-k tensor operator T.k/ satisfy
h
J z; T .k/q

i
D qT .k/q and

h
J˙; T .k/q

i
D p

k.k C 1/� q.q ˙ 1/T
.k/

q˙1
:

For quadrupoles, T .2/q D Qq , whence QCC D SCSC, QC D �.SCS z C S zSC/, Q0 Dp
2=3

�
3.S z/2 � S.S C 1/

�
and similarly.
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H D
X
hi;j i

h
J1 Si � Sj C J2

�
Si � Sj

�2i
: (13.8)

Occasionally we adopt the single parameter notation J1 D J cos# and J2 D
J sin# , which is common in the literature. Because the simplest isotropic inter-
action between quadrupoles takes the form

OQi � OQj D 2
� OSi � OSj

�2 C OSi � OSj � 2

3
S2.S C 1/2; (13.9)

an expression valid for arbitrary S , the Hamiltonian of (13.8) is in fact

H D
X
hi;j i

�	
J1 � J2

2



Si � Sj C J2

2
Qi � Qj C J2

3
S2.S C 1/2

�
: (13.10)

The conventional antiferromagnetic Heisenberg model is recovered at # D 0, while
for # D � one obtains its ferromagnetic analog. In both of these limits the spins
order: in two dimensions, antiferromagnetic long-range order of the two- (square
lattice) or three-sublattice (triangular lattice) type is realized for simple lattices when
# D 0, and ferromagnetic order occurs for # D � . Between these magnetic phases
one may expect on the basis of the previous section to find quadrupolar ordering
once the Qi � Qj interactions become dominant, and this is indeed the case.

For S D 1 spins, the case we discuss in detail here, one has a remarkable
(although not unexpected) identity

OQi � OQj C OSi � OSj D 2Pi;j � 2

3
; (13.11)

where Pi;j is a permutation operator interchanging the spin configurations at sites
i and j . Because Pi;j does not distinguish between the states of a spin-1 entity, the
symmetry of the term OQi � OQj C OSi � OSj is increased from SU(2) to SU(3), and the
three S D 1 states form the three-dimensional fundamental irreducible representa-
tion of the SU(3) algebra. For the Hamiltonian (13.8), this corresponds to # D �=4

or �3�=4. The SU(3) points, as we will show, are of particular significance in the
phase diagram. The SU(3) symmetry can also be exploited in order to extend spin-
wave theory to describe the quadrupolar degrees of freedom. To demonstrate the
SU(3) symmetry most clearly, the Hamiltonian can be written as

H D
X
hi;j i

�
.J1 � J2/Si � Sj C J2

�
1 C Pi;j

��
; (13.12)

which is a type of “anisotropic” SU(3) Heisenberg model.
Here, we remark also that on bipartite lattices there are additional SU(3)-symmet-

ric points at # D ˙�=2. These correspond to choosing the fundamental representa-
tion 3 (the quark) on one of the sublattices and the antifundamental representation
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N3 (antiquark) on the other sublattice [31,32]. In the language of Young tableaus, the
fundamental representation 3 is a single box6 and is denoted as (1,0). The antifunda-
mental representation N3 corresponds to a column of 2 boxes and is denoted by (0,1).
On two sites, the product .1; 0/˝ .0; 1/ D .0; 0/˚ .1; 1/ contains the .0; 0/ singlet,
which is the statement that one may have a singlet valence bond composed of two
spins. By contrast, to make an SU(3) singlet one must add up three spins belonging
to the fundamental representation.

13.3.2 Energy Spectra of Small Clusters

Here, we discuss the spectra of a two-site bond and a three-site triangle, in order
to gain some insight into the model and to understand certain features, such as the
crossing of the energy levels. For these purposes it is convenient to use the Hamil-
tonian (13.12). A straightforward numerical diagonalization produces the spectra
shown in Fig. 13.2.

Both the bond and the triangle are called complete graphs, where all sites are
connected to all others. For such graphs there is an algebraic identity

(0,0), ST = 0
(1,1), ST = 1
(1,1), ST = 2
(3,0), ST = 1
(3,0), ST = 3

(0,1), ST = 1

(2,0), ST = 0
(2,0), ST = 2

−π / 2
θ

−6

−4

−2

0

2

4

6

−4

−2

0

2

4

E
−

E
S

 =
 0

E
−

E
S

 =
 0

−π / 4 π3π / 4π / 2π / 40−π −3π / 4

Fig. 13.2 Energy spectra of a bond (upper panel) and a triangle (lower panel). Energy levels are
labeled by the Young tableaus .n1; n2/ and by the total SU(2) spin ST . Solid circles denote the
degeneracies arising at the SU(3)-symmetric points

6 A Young tableau – an array of boxes arranged in left-justified rows – is used to label the irre-
ducible representations (or multiplets) of SU(n) algebras. The notation .n1; n2/ refers to the number
of boxes in each row which extend beyond the row below. Alternatively stated, if a Young tableau
has fm1;m2;m3g boxes in the first, second, and third rows, .n1; n2/ D .m1 �m2;m2 �m3/.
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X
hi;j i

Si � Sj D 1

2

�X
i

Si

�2 � L

2
S.S C 1/ D 1

2
ST .ST C 1/� L; (13.13)

where L is the number of sites and ST is the total spin. Similarly, for the SU(3) part
of the Hamiltonian,

X
hi;j i

�i � �j D 1

2

�X
i

�i

�2 � 1

2

X
i

�2
i D 2C.n1;n2/ � 2LC.1;0/: (13.14)

The components of � are the 8 generators of the SU(3) algebra (the 3 � 3 Gell–
Mann matrices), so that �i � �j D 2Pi;j � 2

3
. C.n1;n2/, which plays a role similar

to ST .ST C 1/, is the eigenvalue of the quadratic Casimir operator of the SU(3)
algebra for an .n1; n2/ Young tableau,

C.n1;n2/ D n1 C n2 C 1

3

�
n2

1 C n2n1 C n2
2

�
: (13.15)

Because for complete graphs the SU(2) and SU(3) parts of the Hamiltonian com-
mute with each other, both .n1; n2/ and ST are good quantum numbers and can be
used to label the states. The energy of such an j.n1; n2/; ST i state is the sum of the
SU(2) and SU(3) terms, and is given by

E D
�
C.n1;n2/ � 4

3
L

�
J2 C

�
ST .ST C1/

2
� L

�
.J1 � J2/C 4

3

L.L�1/
2

J2

(13.16)
for a complete L-site graph (this includes the bond, the triangle, the tetrahedron,
and higher clusters). We refer to Table 13.1 for more details of the spectrum.

The SU(3)-multiplet content of a bond can be obtained by applying the branching
rules of the SU(3) algebra: .1; 0/˝ .1; 0/ D .0; 1/˚ .2; 0/. These multiplets are in
fact also closely related to the geometrical symmetry of the clusters. Specifically, the
point group of the bond isD2, which is homomorphic with the symmetric group S2,
and has a symmetric (A1) and an antisymmetric (A2) irreducible representation. Out
of 3 � 3 D 9 spin states, three transform according to A2, j10i � j01i, jN10i � j0N1i,
and j1N1i � jN11i, and these are denoted by the .0; 1/ Young tableaus. These states
also have ST D 1, so are denoted as j.n1; n2/; ST i D j.0; 1/; 1i. The remaining six
states, j11i, j00i, jN1N1i, j10i C j01i, jN10i C j0N1i, and j1N1i C jN11i, form a symmet-
ric combination of the A1 irreducible representation and are denoted by the .2; 0/
Young tableau (two boxes making a row). This SU(3) multiplet contains the SU(2)
singlet j1N1i C jN11i � j00i, so in the notation introduced above is the state j.2; 0/; 0i.
The remaining five states make up an SU(2) quintuplet, j.2; 0/; 2i. The energetic
contribution from the SU(3)-symmetric part of the Hamiltonian depends only on the
Young tableau, while the SU(2) “anisotropy” lifts the degeneracy within the SU(3)
multiplet. This can be seen in Fig. 13.2 close to the points # D �=4 and �3�=4.
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Table 13.1 Energy spectra of the two-site bond using the 3 ˝ 3 (top table) and the 3 ˝ N3
decompositions (middle table), and of the triangle (bottom table)

Site irreps Young tableau .n1; n2/ C.n1;n2/ G ST E Degeneracy

Two sites, 3 ˝ 3 decomposition, point group G D D2

˝
.0; 1/ 4/3 A2 1 �J1 C J2 3

.2; 0/ 10/3 A1
0 �2J1 C 4J2 1
2 J1 C J2 5

Two sites, 3 ˝ N3 decomposition

˝
.0; 0/ 0 � 0 �2J1 C 4J2 1

.1; 1/ 3 � 1 �J1 C J2 3
2 J1 C J2 5

Three sites, 3 ˝ 3 ˝ 3 decomposition, point group G D D3

˝ ˝

.0; 0/ 0 A2 0 �3J1 C 3J2 1

.1; 1/ 3 E
1 �2J1 C 5J2 6
2 3J2 10

.3; 0/ 6 A1
1 �2J1 C 8J2 3
3 3J1 C 3J2 7

Similar considerations can be applied to the triangle: .1; 0/˝ .1; 0/˝ .1; 0/ D
.0; 0/ ˚ .1; 1/ ˚ .1; 1/ ˚ .3; 0/ (Table 1.1). The D3 point group of the triangle
is homomorphic with S3, and one may also deduce the SU(2)-multiplet content of
a given Young tableau. Here, we note only that the state .0; 0/ (three boxes in a
column) is the SU(3) singlet mentioned above.

13.4 Quadrupolar Ordering in S D 1 Systems

In this section, we review the known results for the square and triangular lattices.
A detailed study of the square lattice was undertaken by Papanicolaou [33]. The
triangular lattice has been discussed more recently, in [6] and [8]. Because these
are two-dimensional systems, continuous symmetry-breaking occurs only at zero
temperature. Here, we use these systems also as test cases on which to discuss the
different analytical and numerical methods which can be applied.

13.4.1 Variational Phase Diagram

To obtain some initial insight into the phase diagram, we assume an n�-sublattice,
long-range-ordered state (n� D 2 for the square and n� D 3 for the triangular
lattice), which we describe using a simple, site-factorized variational wave function
of the form
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j� i D
n�Y

j D1

Y
i2�j

jdj ii ; (13.17)

where i is a site index, j is a sublattice index, and �j is the set of sites belong-
ing to the j th sublattice. In (13.17) we assume that the on-site wave function is
identical for all spins on the same sublattice. The problem reduces to a minimiza-
tion of h� jHj� i with respect to 4n� real parameters (4 for each sublattice). The
expectation values used in the evaluation of h� jHj� i are

hdi jSjdi i � hdj jSjdj i D ˇ̌hdi jdj iˇ̌2 � ˇ̌hdi j Ndj iˇ̌2 ; (13.18)

hdi jQjdii � hdj jQjdj i D ˇ̌hdi jdj iˇ̌2 C ˇ̌hdi j Ndj iˇ̌2 � 2

3
: (13.19)

The variational phase diagrams obtained for the square and triangular lattices are
shown in Fig. 13.3, and below we discuss in detail the different phases. First, how-
ever, let us contrast the Heisenberg and the quadrupolar exchange interactions. The
term Si � Sj is maximal when the two spins are parallel and minimal when they
are antiparallel. The situation is different for quadrupoles: the expectation value of
OQi � OQj in the site-factorized wave-function subspace of the pure (both di and dj

real) quadrupolar states is (i ¤ j )

h OQi � OQj i D 2.di � dj /
2 � 2

3
; (13.20)

which is thus maximal for collinear directors (dikdj ) and minimal for perpendicular
ones (di ? dj ).

FM

−π / 4

ϑ = 0

3π / 4

FQ

?

FM

AFM

−π / 2
SU(3)

SU(3)
π / 4

SU(3)
π / 4

−3π / 4
SU(3)

−3π / 4
SU(3)

π
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−π / 2

π / 2

π ϑ = 0

−π / 4

3π / 4

FQ

AFM

AFQ

SU(3)
π / 2

a b

Fig. 13.3 Phase diagram of the S D 1 bilinear–biquadratic model on (a) the square and (b) the
triangular lattice. The inner circle shows the variational, the outer the numerical results. FM and
AFM: ferro- and antiferromagnetic; FQ and AFQ: ferro- and antiferroquadrupolar; SO stands for
“semi-ordered” and “?” denotes the region for which no numerical results are available. Further
details are presented in the text
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13.4.1.1 Ferromagnetic and Ferroquadrupolar Phases

We begin by considering the case when the wave functions on each of the sublattices
are equal, dj D d D uCiv, i.e. the ordering wave vector is q D 0. Then hQi �Qj i D
4=3� 4u2v2 and hSi � Sj i D 4u2v2, and the energy per site is

E D zJ2 C 2z.J1 � J2/u
2v2: (13.21)

The minimum depends on the sign of J1 � J2: for J1 � J2 < 0 (more precisely,
�=2 < # < 5�=4), one obtains u D v D 1=

p
2, which is simply the ferromagnetic

state with time-reversal-breaking order parameter S D 2u � v. When J1 � J2 > 0,
the minimum is achieved with u D 1 and v D 0, i.e. d is real. This describes
a nonmagnetic, ferroquadrupolar phase, whose director is oriented in the arbitrary
direction u (an alternative solution is u D 0 and v D 1, with director v). The actual
extent of this phase is �3�=4 < # < ��=2 for the square lattice and �3�=4 <
# < � for the triangular lattice, where� D arctan.�2/ � �0:352� .

It is interesting to note the nature of the quantum phase transition between ferro-
magnetic and ferroquadrupolar order at the SU(3)-symmetric point (# D �3�=4).
At this single point, the high symmetry enlarges the degeneracy of the ground state,
so that both the ferromagnetic and the ferroquadrupolar state are among the ground
states [34]. Moving # away from this point selects one of these ordered states, with
a jump in order parameter, giving the appearance of a first-order phase transition,
albeit with no hysteresis (which accompanies a true first-order phase transition).
Because of the increased symmetry group at the SU(3) point, this phase transition
lies beyond the framework of the Landau theory of phase transitions. The same
situation arises also at the other SU(3) point, # D �=4.

Let us now consider the effect of the magnetic field on the quadrupolar state. We
assume that the magnetic field is parallel to the z-axis, and add the Zeeman term,
�hPi S

z
i , to the Hamiltonian. The pure quadrupolar state has vanishing matrix

elements with the spin operators, and thus does not couple to a magnetic field. How-
ever, once the field is applied, the state jdi may deform and may develop a magnetic
moment. The energy (13.21) in the presence of the Zeeman term is modified to

E D zJ2 C 2z.J1 � J2/u
2v2 � 2h.uxvy � uyvx/; (13.22)

whence the energy gain is maximal if both u and v lie in the xy-plane (i.e. they
are perpendicular to the magnetic field h). In terms of the local magnetization
m D 2uv, the energy is E D zJ2 C .z=2/.J1 � J2/m

2 � hm, which is minimal
for m D h=.z.J1 � J2//. The resulting state (see also Fig. 13.1) can be expressed
conveniently as

jdi D cos
	

2
.cos
jxi C sin 
jyi/C i sin

	

2
.� sin 
jxi C cos
jyi/ ; (13.23)
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with u D cos.	=2/ and v D sin.	=2/, so that m D sin	, while ux D u cos

and uy D u sin
. Thus, the director turns perpendicular to the applied magnetic
field [30], and the quadrupolar state develops a magnetic moment both linearly pro-
portional to and parallel to the field by shifting the center point of its fluctuations.
Time-reversal symmetry is broken by a linear combination of quadrupolar states
with complex amplitudes. The broken continuous O(2) symmetry associated with
the angle 
 gives rise to a Goldstone mode (Sect. 13.4.3). With increasing mag-
netic field, the magnetic moment of the ferroquadrupolar phase saturates and then
goes over continuously (second-order phase transition) to the ferromagnetic phase
(	 D �=2) at hvar

c2 D z.J1 � J2/.

13.4.1.2 Antiferroquadrupolar Phase on the Square Lattice

The variational solution for the square lattice was discussed by Papanicolaou in [33].
For ��=2 � # � �=4, a two-sublattice Néel antiferromagnet is realized, with fully
developed spins. More complex is the region�=4 � # � �=2, where the small coor-
dination number of the lattice leads to a highly degenerate “semi-ordered” phase.
Assuming first that the ground state contains only pure quadrupoles, the require-
ment that the directors be perpendicular is not sufficient to select an ordered state,
but leaves a highly degenerate ground-state manifold. Further, the term OQi � OQj is
not minimized only when the directors are perpendicular, but also by having a pure
quadrupole on one of the sites and a partly or fully magnetized spin on the other, so
that the director and the magnetization are parallel: one example is jdi i D jzi and
jdj i D cos.	=2/jxi C i sin.	=2/jyi, a combination with a finite magnetic moment
along z (13.23). At the SU(3) point �=4 D # , these states can again be rotated into
the Néel state within the manifold hdi jdj i D ıi;j . Clearly, this large degeneracy
at the variational level is lifted by quantum effects, the most likely scenario being
that zero-point fluctuations select some specific types of ordered state out of this
manifold.

We also stress here that the variational wave function does allow us to capture
some of the quantum mechanical nature of the ordered phases. The quadrupolar
states as presented above do not exist for classical spins, where instead the competi-
tion of the bilinear and biquadratic interactions leads to an angle ˛ different from �

between the spins on neighboring sites for J2 > J1=2; ˛ is obtained by minimizing
the bond energy J1 cos˛ C J2 cos2 ˛. With ˛ ¤ � , the state of classical spins is
degenerate, and, unless a spiral order with wave vector q / .1; 1/ sets in, again one
is faced with some type of disordered state

13.4.1.3 Three-Sublattice Phases on the Triangular Lattice

In a triangular geometry, when� < # < �=4, a parameter range which includes the
pure Heisenberg model, the result of the minimization procedure is a wave function
describing a system of partially developed magnetic moments on three different
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sublattices, whose orientations all differ by the angle 2�=3,

jd1i D cos
�

2
jzi � i sin

�

2
jyi;

jd2i D cos
�

2
jzi � i sin

�

2

 p
3

2
jxi � 1

2
jyi
!
; (13.24)

jd3i D cos
�

2
jzi � i sin

�

2

 
�

p
3

2
jxi � 1

2
jyi
!
:

Here, we have taken the moments to lie in the xy-plane, while the parameter �
depends on the ratio J2=J1, cos � D �3J2=.8J1 C J2/. In this state, the nearest-
neighbor spin-spin correlation functions are equal on all bonds, as also are the
quadrupole-quadrupole correlations,

hSi � Sj i D �1
2

sin2 � and hQi � Qj i D � 1

24
C 3

4
cos �C 5

8
cos2 �I (13.25)

the amplitude of the ordered spin moment is jhSij D sin � (here i and j belong
to different sublattices). For the pure Heisenberg model, � D �=2 and jhSij D 1.
On moving away from J2 D 0 point in either direction in the parameter range, the
moment decreases.

Approaching the boundary to the ferroquadrupolar phase,#D�, � / p
2J1 � J2

as J2 ! �2J1, while the spin moment decreases accordingly, jhSij / p
2J1 � J2.

The wave function evolves smoothly into the ferroquadrupolar wave function,
jdi i D j0i, whose director is perpendicular to the plane spanned by the spins. Thus,
the phase boundary between the ferroquadrupolar and the antiferromagnetic phase
is of second order, with the spin order parameter vanishing at the phase boundary,
while the quadrupolar order parameter persists across the boundary (but becomes
coupled to the spin order parameter in the antiferromagnetic phase).

At # D �=4, we expect to find the three-sublattice SU(3) antiferromagnetic
phase. The variational wave function (13.24) reproduces such a state: at the SU(3)-
symmetric point, cos � D �1=3 and hdi jdj i D ıi;j . This state can be rotated
continuously within the SU(3) antiferromagnetic manifold into a state where all
three vectors d are real and mutually perpendicular. This three-sublattice, antifer-
roquadrupolar phase gives the minimum energy for �=4 � # � �=2, as may be
deduced from (13.20). An example of such a state is jd1i D jxi, jd2i D jyi,
and jd3i D jzi. Quadrupole moments are perfectly adapted to the geometry of the
triangular lattice: while antiferromagnetic Heisenberg exchange frustrates spins on
a triangle, quadrupoles can minimize OQi � OQj on each bond. Further, there is no
degeneracy of the type encountered for the square lattice.

The ordering of the spins and the quadrupole moments is summarized in Fig. 13.4,
where we show the quantities S.k/ D hSk � S�ki and Q.k/ D hQk � Q�ki,
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Fig. 13.4 Spin (S.k/) and quadrupole (Q.k/) structure factors on the triangular lattice as a
function of # , obtained from the variational calculation. The shaded regions represent magnetic
ordering, either ferromagnetic (FM) or antiferromagnetic (AFM), while in the unshaded regions
only quadrupolar order is realized (cf. Fig. 13.3b). � is the center of the Brillouin zone [k D .0; 0/]
and the K points are situated at the corners of the hexagonal Brillouin zone associated with the

three-sublattice ordering [k D .4�=3; 0/ and k D
�
2�=3; 2�=

p
3
�

]. While the spin order param-

eters vanish in the quadrupolar phases, the quadrupolar ones may be finite in the magnetic phases

respectively the spin and quadrupole structure factors.7 It is evident that, in the ferro-
magnetic phase, both the ferromagnetic and the ferroquadrupolar order parameters
are finite, because the ferromagnetically aligned spins select an axis that breaks
the O(3) symmetry. In the antiferromagnetic phase, both the ferro- and antiferro-
quadrupolar order parameters take finite values [using the variational wave function
of (13.24),Q.k/=L D .1C 3 cos�/2=12 at the � point and .1� cos�/2=8 at theK
point, while S.k/ D sin2.�/=2 at the K-point]. The ferroquadrupolar order is asso-
ciated with the plane spanned by the spins in the antiferromagnetic phase, while the
antiferroquadrupolar order is associated with the breaking ofO.3/ symmetry on the
sublattices.

The phase diagram of the triangular-lattice model in a finite magnetic field is
rather complicated [8], and will not be discussed here.

7 Here, we have defined the Fourier transform as Ak D L�1=2
PL

jD1 Aj eik�rj , where rj is the
coordinate of the j th lattice site and L is the number of sites.
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13.4.2 One- and Two-Magnon Instability of the Fully Polarized
State

At high magnetic fields, the spins are fully polarized, and the ground state is simply
j1111 : : : i (the field is taken parallel to z). The excitation spectrum is gapped, the
gap of the single-magnon excitations being 1 D h C min!.k/: the S�

k
operator

creates a delocalized j0i state with an energy cost h and dispersion relation !.k/ D
zJ1Œ�.k/� 1� due to Heisenberg exchange, where

�.k/ D 1

z

X
ı

eik�ı (13.26)

is a geometrical factor,8 in which the sum is over the vectors ı connecting a given
site with its z nearest neighbors. As the field is lowered, the gap is closed, below
which there is a finite density of magnons and a long-range order of the spin com-
ponent perpendicular to the magnetic field develops – theO.2/ symmetry remaining
after the introduction of the magnetic field is broken. For J1 > 0, in the square lat-
tice the dispersion is minimal at k D .�; �/, and the critical field is hc1 D 8J1. In
the triangular lattice, the critical field is hc1 D 9J1, with an instability towards the
three-sublattice state. These results are exact in the case that the phase transition is
continuous.

When the biquadratic term is present, bound states of magnons are formed if
J2 < 0. The simplest two-magnon state is jN1i, and if one neglects the dissociation
of the state jN1i into two dispersive j0i states, the energy gap is

2.k/ D 2h� 2zJ1 C zJ2Œ�.k/C 1�: (13.27)

The gap closes at the � point at the field hvar
c2 D z.J1 �J2/, which is the same phase

boundary as that found in the variational calculation in Sect. 13.4.1. The presence of
magnon bound states implies either a second-order boundary to the ferroquadrupolar
phase [35] or a first-order transition into a spin-canted state – a situation which can
be clarified by examining whether the bound magnon pairs attract or repel each
other.

However, the situation is more subtle than this: the state jN1i can dissociate into
j00i with amplitude J1 � J2, so that even when the biquadratic term is dominant,
the states jN1i are strongly coupled to and inseparable from the nearest-neighbor j00i
states. Strictly speaking, the simple reasoning leading to (13.27) is valid only when

8 For the square lattice, �.k/ D �
cos kx C cos ky

�
=2, and for the triangular lattice,

�.k/ D 1

3

 
cos kx C cos

kx C ky
p
3

2
C cos

kx � ky
p
3

2

!
:

In the limit k ! 0, 1� �.k/ D 1
2z

P
ı.k � ı/2 D k2=4 for both lattices.
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J1 D J2. Away from this point, the j00i states are mixed with jN1i. Clearly, the two-
body scattering problem is exactly solvable by analytical means, but its solution is
tedious and is omitted here. We note only that for the triangular lattice, a bound state
appears below the two-magnon continuum for �5 < J1=J2 < 1 (as long as J2 < 0),
and the ferroquadrupolar phase is slightly extended in comparison with the results
of the variational calculation. A particularly simple result is obtained for J1 D 0,
where the magnons cannot propagate and the exact ground state is the k D 0 singlet
superposition j1N1i C jN11i � j00i on one bond in a background of the j1i spins. The
energy of this state is 2hC .2z C 1/J2, and the critical field is hc2 D �.z C 1=2/J2.
Compared to the variational result, .hc2 � hvar

c2 /=hc2 D 1=.2z C 1/, the discrepancy
is of order 1=z. Thus one may demonstrate explicitly the validity of the variational
result in the limit of large connectivity.

This concept, of Bose-condensing bound states of magnons or triplons by the
application of a magnetic field as a means of stabilizing spin nematic phases, is
also very valuable in a number of other systems. Chubukov discussed two-magnon
bound-state formation in higher-spin chains [35], as well as in the frustrated, fer-
romagnetic S D 1=2 Heisenberg chain [36]. It was found more recently that even
larger bound states involving up to four magnons are thermodynamically stable,
and thus give rise to field-induced quadrupolar, octupolar, and even hexadecupo-
lar critical correlations [37–42]. Two-magnon bound states with a d -wave form
factor have been found for the square lattice with diagonal frustration (possibly
also including ring-exchange terms) [43]. These bound states form the basis for
a field-induced bond quadrupolar phase. Similarly, on the triangular lattice with
nearest-neighbor interactions and ring-exchange terms, three-magnon bound states
have been observed which condense into an octupolar phase at high magnetic fields.

A related bound-state scenario occurring at low fields has been put forward for
the dimer phase of the Heisenberg model on the Shastry–Sutherland lattice [44,45].
In this phase, the elementary triplon excitations are quite immobile. Bound states
of two triplons, however, are much more mobile due to effective correlated hopping
terms. This leads to the formation of S D 2 bound states which will condense before
the triplons when the magnetic field is applied, making possible a field-induced
quadrupolar phase. Such a scenario has been confirmed both at the mean-field
level and numerically in a simplified effective model involving correlated hopping
terms [46, 47].

13.4.3 Spin-Wave Theory for the Ferroquadrupolar Phase

The excitation spectrum of a quadrupolar phase may be treated by an appropri-
ate extension of spin-wave theory. In the standard theory, the spins in the ordered
magnetic state are assumed to be spin coherent states of amplitude S . To describe
fluctuations about the ordered state, one introduces the Holstein–Primakoff bosons,
which with z-axis quantization can be used to express the spin operators as S z D
S � a�a, SC D

p
2S � a�aa, and S� D a�

p
2S � a�a. This representation
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preserves the commutation relations of the spin operators. Expanding the square
root in 1=S provides a controlled means of including fluctuations.

In order to extend the theory to include quadrupoles, we introduce the repre-
sentation of the spin operators using Schwinger bosons, S z D .b

�

"b" � b
�

#b#/=2,

SC D b
�

"b#, and S� D b
�

#b". The algebra of the spin operators is again sat-
isfied, and the number of Schwinger bosons determines the value of the spin,
b

�

"b" C b
�

#b# D 2S . Schwinger bosons are very convenient for the representa-
tion of spin coherent states, because the classical spins can be obtained by replacing
the bosons with complex numbers (i.e. by “condensing” the boson). The replace-
ment of b�

" and b" by
p
2S � a�a, and identifying the spin-# Schwinger bosons

with the Holstein–Primakoff bosons, b�

# D a� and b# D a, leads to the large-S
spin-wave theory mentioned above. Unfortunately, this expansion is not useful to
describe quadrupoles, because these are entangled states of the spin-" and spin-#
Schwinger bosons. This problem can be remedied by the introduction of one addi-
tional boson [33,48]. A convenient choice is to select the three bosons a� according
to the basis of (13.3), with � D x; y; z and a fixed on-site occupation number
M D P

� a
�
�.j /a�.j /. Although S D 1 spins have M D 1, here we treat M

as a parameter.9 Following (13.4) and (13.7) then leads to the expression of the spin
and quadrupole operators as

S˛
j D �i"˛ˇ�a

�

ˇ
.j /a� .j /; Q

˛ˇ
j D 2M

3
ı˛ˇ � a�

˛.j /aˇ
.j / � a�

ˇ
.j /a˛.j /:

(13.28)
An ordered state of SU(3) spin coherent states corresponds to condensing the
appropriate boson, while the remaining, uncondensed ones play the role of the
Holstein–Primakoff bosons. The information about which boson to condense is
obtained from the variational wave function considered in Sect. 13.4.1, which actu-
ally represents the mean-field result in the limit M ! 1, where each boson is
replaced by its average value.10 As an example, if the � D y bosons condense on
site j , the appropriate replacement in (13.28) is

a�
y.j /; ay .j / !

q
M � a�

x.j /ax.j / � a�
z .j /az .j /; (13.29)

where ax and az have the role of Holstein–Primakoff bosons. Care should be taken
with the fact that, while ay commutes with az and ax , the expression (13.29) does
not, and the replacement should be made without changing the order of operators
written in (13.28). After this replacement, the spin operators satisfy the usual spin

9 On each site, the fundamental representation of the SU(3) symmetry is enlarged to a single-row
Young tableau .M; 0/ of length M boxes.
10 In contrast, the SU(3) Schwinger-boson mean-field theory [49] corresponds to averaging over
quadratic forms of the bosons.
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commutation relations. Expanding in powers of 1=M gives a ‘spin-wave’ theory in
which the excitations consist both of spin and quadrupolar degrees of freedom.

The details of such a spin-wave analysis are presented below for the case of fer-
roquadrupolar order. The formalism can also be used to calculate excitation spectra
in the more complicated antiferroquadrupolar state. Tsunetsugu and Arikawa [6]
have used a similar technique in calculations for the triangular lattice. This type of
calculation has been extended to octupoles by Chubukov [50].

13.4.3.1 Technical Details

The Hamiltonian connecting sites i and j is given by

H.i; j / D J2 C .J1 � J2/Si � Sj C J2Ai � Aj ; (13.30)

where
Ai � Aj D

X
�;�

a�
�.i/a�.i/a

�
�.j /a�.j / (13.31)

is the SU(3)-symmetric part of the Hamiltonian, which reduces to the permutation
operator in the case of theM D 1 fundamental representation. Substituting (13.29)
into the terms of the Hamiltonian, summing over all nearest-neighbor pairs of sites
hi; j i, and performing a Fourier transformation leads in the harmonic approximation
to

X
hi;j i

Ai � Aj D z

2
LM 2 � zM

X
�Dx;z

X
k2BZ

Œ1 � �.k/� a�
�.k/a�.k/; (13.32)

X
hi;j i

Si � Sj D z

2
M

X
�Dx;z

X
k2BZ

�.k/
h
a�

�.k/a�.k/C a�
�.�k/a�.�k/

�a�.k/a�.�k/ � a�
�.k/a

�
�.�k/

i
: (13.33)

L is the number of lattice sites, z is the coordination number (z D 4 for the square
and 6 for the triangular lattice), and �.k/ is the geometrical factor introduced in
(13.26). Combining these terms and neglecting a constant energy shift yields the
Hamiltonian in the form

H D zM

2

X
�Dx;z

X
k2BZ

2A�.k/a�
�.k/a�.k/

CB�.k/
h
a�.k/a�.�k/C a�

�.k/a
�
�.�k/

i
; (13.34)

with A�.k/ D J1�.k/ � J2 and B�.k/ D .J2 � J1/�.k/. The conventional
Bogoliubov transformation

a�
�.k/ D cosh ��.k/˛�

�.k/C sinh ��.k/˛�.�k/ (13.35)

a�.k/ D cosh ��.k/˛�.k/C sinh ��.k/˛�
�.�k/ (13.36)
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with tanh 2#�.k/ D �B�.k/=A�.k/ ensures bosonic commutation relations for the
operators ˛� and diagonalizes the Hamiltonian (13.34), giving

H D
X

�Dx;z

X
k

�
!�.k/˛�

� .k/˛�.k/ � zM

4

h
A�.k/�

p
A�.k/2 � B�.k/2

i
;

(13.37)
where the dispersion of the generalized spin waves is

!�.k/ D zM

2

p
A�.k/2 � B�.k/2: (13.38)

This dispersion is shown in Fig. 13.5b for a doubly degenerate mode in the Brillouin
zone, the degeneracy corresponding to the two a� Holstein–Primakoff bosons.

In order to access the signatures of the excitations in inelastic neutron scattering
experiments we determine the dynamical spin correlation functions. The calculation
of the imaginary part proceeds through the steps

Sxx.k; !/ D
X

f

jhf jSx.k/jGSij2ı.! � Ef CEGS/

D M
X

f

jhf ja�
z .k/ � az .�k/jGSij2ı.! �Ef C EGS/

D M

s
Az.k/C Bz.k/
Az.k/ � Bz.k/

ı.! � !z.k//; (13.39)

where jGSi denotes the ground state. We draw attention to the fact that the � D z
branch contributes to Sxx.k; !/ – the spin fluctuations are perpendicular to both
the direction of the director (y) and the direction of the quadrupolar excitation (z).
Correspondingly, the ˛�

x bosons contribute to S zz.k; !/. Because of the remain-
ing O.2/ symmetry, Sxx.k; !/ D S zz.k; !/, whereas Syy.k; !/ is higher-order in
1=M . Thus the spin fluctuates in the xz-plane perpendicular to the director (which
we have chosen to be parallel to y), similar in a sense to the fluctuations in a spin
system with easy-plane anisotropy. The structure factors S ��.k/ D R

d!S��.k; !/
are shown in Fig. 13.5a.

We now apply a magnetic field along the z-axis. The director of the ferro-
quadrupolar state is perpendicular to the magnetic field, oriented for example along
the y-axis again. The single-site wave function is then given by (13.23), and is cre-
ated by applying the a�

k boson to the vacuum, a�

k j0i D cos �
2

jyi � i sin �
2

jxi. The
different bosons are related by an SU(3) rotation in the boson space,

0
B@
a

�
x

a
�
y

a�
z

1
CA D

0
@ cos �

2
i sin �

2
0

i sin �
2

cos �
2
0

0 0 1

1
A
0
B@
a

�
?
a

�

k
a�

z

1
CA : (13.40)
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Fig. 13.5 (a) Spin structure factor S.k/ and (b) dispersion relation !.k/ of spin-wave excitations
in the ferroquadrupolar phase for # values between �3�=4 and ��=2, in steps of �=32. One
observes clearly the linear k-dependence of both the dispersion and the spin structure factor for
k ! 0, except at the boundary with the ferromagnetic phase (# D �3�=4). Softening of the
dispersion and divergence of the structure factor are observed at k D .�; �/ as # approaches the
boundary to the antiferromagnetic phase, # D ��=2

The ordering effect of the field is described by condensing the a�

k bosons: .a�

k/
M j0i

has a finite expectation value, m D M sin	, with the operator S z, and gives 0 with
Sx and Sy . While an SU(3) rotation leaves Ai � Aj invariant, the form of Si � Sj

is changed. In the Hamiltonian, a new term of order M 3=2 appears, which contains
single bosons, and which originates from the terms Si � Sj and �hŒS z

i C S z
j �=z.

The M 3=2 contributions of these two terms cancel, if 	 is fixed by the constraint
h D z.J1 �J2/m obtained from the mean-field result. The net result of these consid-
erations is an analog of (13.34) with Az D J1�.k/�J2, Bz D .J2 � J1/ cos	�.k/,
and

A? D �
J1 cos2 	C J2 sin2 	

�
�.k/� J2;

B? D .J2 � J1/ cos2 	�.k/: (13.41)

The spectrum is obtained from (13.38) by substituting the appropriate A and B
components. Similarly, the spin-spin correlation functions are

Sxx.k; !/ D M cos2 	

2

s
Az.k/C Bz.k/
Az.k/ � Bz.k/

ı.! � !z.k//; (13.42)
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Syy.k; !/ D M sin2 	

2

s
Az.k/� Bz.k/
Az.k/C Bz.k/

ı.! � !z.k//; (13.43)

QS zz.k; !/ D M cos2 	

s
A?.k/C B?.k/
A?.k/� B?.k/

ı.! � !?.k//: (13.44)

In the function S zz, the finite average value is subtracted to give QS z.j / D S z.j / �
M sin	.

13.4.3.2 Long-Wavelength Limit

Some insight into the physical properties of the finite-field state is obtained by con-
sidering the situation close to the � point, i.e. in the long-wavelength limit k ! 0.
Here, the dispersion of the spin wave is linear in k, !�.k/ � v0k, with velocity

v0 D zM

2
p
2

p
J2.J2 � J1/: (13.45)

This linear dispersion, which is otherwise typical for an antiferromagnet, was
first calculated by Matveev [51]. The spin structure factor Sxx.k/ D S zz.k/ also
vanishes linearly with k,

Sxx.k/ D S zz.k/ D M

2

s
�J2

2.J1 � J2/
k D �v0k; (13.46)

where � D 1=Œz.J1 � J2/� is the mean-field susceptibility. At the quadrupolar
ordering wave vector the spin structure factor vanishes – this is yet another pos-
sible definition of the spin-liquid state (see Chap. 2 by Lhuillier and Misguich). On
approaching the SU(3)-symmetric point, # D �3�=4, which separates the ferro-
quadrupolar and ferromagnetic phases, the k-linear part of the spectrum decreases.
At the SU(3) point the effective spin-wave velocity vanishes, and only the quadratic
dispersion, !�.k/ � zMJ1k

2=4, which is typical of a ferromagnet, remains.
In a magnetic field, the degeneracy of the two modes is lifted. The O.3/ sym-

metry is reduced to O.2/ (the direction of the director may be chosen freely in the
plane perpendicular to the magnetic field), leaving a single Goldstone mode, !?,
which has dispersion !?.k/ D v0 cos	 k. A gap proportional to the magnetic field,
!z.k D 0/ D h=2, opens in the other mode, which as a consequence is raised into
the multimagnon continuum arising from the mode !?, and therefore is no longer
well defined.
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13.4.3.3 Instability to an Antiferromagnetic State at # D ��=2

For the square lattice, the dispersion becomes soft at the point k D .�; �/ in the
Brillouin zone as J1 ! 0�, a process accompanied by a diverging spin structure
factor. The forms

!�.k/ � 4M
p
J1J2

p
1C �2jk � .�; �/j2; (13.47)

S.k/ � 2M

s
J2

J1

1p
1C �2jk � .�; �/j2 ; (13.48)

announce the instability of the ferroquadrupolar state towards the conventional, two-
sublattice, antiferromagnetic Néel order. Within the ferroquadrupolar phase, the
spins show Néel-type short-range order with a strong easy-plane anisotropy, where
the easy plane is perpendicular to the ordered directors of the quadrupoles. The typi-

cal length scale associated with this short-range order is � D
q

J2

8J1
, which diverges

as J1 ! 0�. In a finite magnetic field, !z.k/ becomes gapless for h D 8
p�J1J2

and Sxx.k; !/ diverges: as expected from above, the spin fluctuations are per-
pendicular to both the director (set in the y-direction) and to the direction of the
applied magnetic field. The point J1 D 0 is also unstable for the bipartite cubic and
body-centered-cubic lattices.

In case of frustrated (non-bipartite) lattices, this instability occurs later, in the
sense that a more extended ferroquadrupolar phase is allowed. On the triangular
lattice, the critical value is J1 D �J2=2, where the instability is towards a three-
sublattice antiferromagnetic order. In a magnetic field, the instability occurs along
the line h D 6

p�3.J1 C 2J2/J2 in parameter space, a result which is confirmed
by the variational calculation only for large fields; at low fields the phase transition
occurs earlier, and as a first-order transition to a 2:1-type state [8]. Finally, in the
fcc lattice, the dispersion softens along a whole line in the Brillouin zone when
J1 D �J2.

13.4.4 Numerical Approach

The bilinear–biquadratic S D 1 model (13.8) can be simulated in detail, on bipar-
tite lattices and for # 2 Œ��; 0�, i.e. J2 � 0, by advanced Quantum Monte Carlo
methods [52] (Harada, unpublished). These algorithms have been used to map the
phase diagram of the model on the square and cubic lattice for negative J2, where
the infamous sign problem is absent. The results of these calculations show unam-
biguously the presence of a ferroquadrupolar phase between the SU(3)-symmetric
points 33 and 3N3, meaning when �3�=4 < # < ��=2 [53], at T D 0 for the
square lattice (as shown in Fig. 13.3a, lower, outer semicircle) and below a criti-
cal temperature Tc.#/ for the cubic lattice. In this context we mention also QMC
calculations performed as a function of N at # D ��=2 for the SU(N) model with



354 K. Penc and A.M. Läuchli

Table 13.2 The lowest states in the Anderson towers of the antiferromagnetic (AFM), anti-
ferroquadrupolar (AFQ), and ferroquadrupolar (FQ) ordered states (for even site numbers Ns).
�1 � .0; 0/; s�wave; �2 � .0; 0/; f �wave; �3 � .4�=3; 0/; s�wave

AFM AFQ FQ
S �1 �2 �3 �1 �2 �3 �1

0 1 1 1
1 1 1
2 1 2 1 1
3 1 2 2 1
4 2 1 3 1 1 1
5 1 2 4 1
6 3 2 4 1 1 1 1
7 2 3 5 1 1
8 3 2 6 1 2 1
9 3 4 6 1 1 1

the fundamental-antifundamental representation, where two-sublattice ordering was
confirmed for N � 4 [54].

On the triangular lattice, QMC algorithms face a sign problem, and exact diag-
onalization of small clusters is the method of choice. The different phases can be
identified by computing correlation functions of different operators (although due to
the small cluster sizes this approach is of somewhat limited utility), and by examin-
ing the low-energy spectrum to search for the features known as Anderson towers11.
These towers are the energies of a particular set of eigenstates, with spin and spatial
symmetries defined by the long-range order they describe, which become degenerate
in the thermodynamic limit [55] and are the fingerprints of an SU(2)-symmetry-
breaking state on a finite-size cluster. These sets of states were used in a pioneering
study by Bernu et al. [56, 57] to confirm the presence of three-sublattice antiferro-
magnetic order in the S D 1=2 triangular-lattice Heisenberg model. In the case of
nematics, one may also search for the corresponding states, and Table 13.2 shows the
expected low-energy spectrum of the different ordered states. One possible means
of obtaining the quantum numbers and the multiplicities of the states in the tower is
from the variational wave function of (13.17), by a simple decomposition of the S
content of such a state when it describes a certain type of order.

Numerical exact diagonalization results for a 12-site cluster are shown in
Fig. 13.6 for three selected values of # . In the ferroquadrupolar phase (# D ��=2),
we observe a tower of states consisting of a single multiplet per even spin sector,
and these levels are completely symmetric under the action of the space group. Note
that, at the transition point # D �3�=4 between the ferroquadrupolar and the ferro-
magnetic phase, the model is an SU(3) ferromagnet, whose ground state on a finite
system belongs to the .Ns; 0/ multiplet of SU(3) [58]. The decomposition of this

11 Please refer to Chap. 18 on “Numerical Simulations of Frustrated Systems” for a more detailed
discussion of Anderson towers.
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Fig. 13.6 Energy spectra as a function of total spin for a 12-site triangular-lattice cluster with
periodic boundary conditions. The values of # are chosen to yield representative FQ (# D ��=2),
AFM (# D 0), and AFQ (# D 3�=8) phases

large SU(3) representation into SU(2) representations yields a completely flat tower
of states with one level for each of S D Ns , Ns � 2,Ns � 4, : : :. The tower of states
in the semiclassical 120ı Néel state at # D 0 is expected to have the same structure
as that derived for the S D 1=2 problem in [56,57]. Indeed, we recover the required
structure up to S D 4 (m=msat D 1=3) on the 12-site cluster. The tower of states
in the antiferroquadrupolar phase .# D 3�=8/ has a rich structure, but one which
currently lacks a straightforward analytical explanation. However, the S content of
the site-factorized wave functions matches perfectly the tower of states observed in
exact diagonalization calculations performed for Ns D 12 and 21 spins, as shown
in Fig. 13.6.

13.5 From Chains to the Square Lattice

The bilinear–biquadratic S D 1 model on the chain is a prototypical interacting
spin model in one dimension. In addition to the celebrated Haldane-gap phase, it
has many points (# D �3�=4, ��=2, ��=4, arctanŒ1=3�, C�=4) which are exactly
solvable either by Bethe ansatz or as matrix-product states. The model has also
served as a test-bed for many numerical approaches. It is not our goal here to review
the literature of the chain model, but merely to address the relevance of spin-nematic
correlations in the phase diagram. In 1991, Chubukov [59] drew attention to this
issue by remarking that the ferromagnet becomes unstable towards the formation
of bound states of two ferromagnetic spin waves as # ! �3�=4�. He argued that
beyond the ferromagnet there would be a disordered spin-nematic phase with a finite
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gap, but with no dimerization. Subsequent numerical studies [58] could not, how-
ever, substantiate this claim and it was therefore assumed that the dimerized phase
would extend up to the ferromagnetic phase boundary. Despite these results, a num-
ber of more recent studies have raised again the issue of strong ferroquadrupolar
correlations in the regime # ! �3�=4C [30, 60–62] (Läuchli et al., unpublished).

The current understanding of this region, based on the most recent contribu-
tions [63–66], is that the dimerized phase indeed spans the whole interval �3�=4 <
# < ��=4. Important in the establishing of this result was a field-theoretical analy-
sis which demonstrated that a hypothetical ferroquadrupolar phase in one dimension
(1D) is generically unstable towards the formation of a dimerized phase [66]. On
the other hand, the transition point # D �3�=4 has very special properties, which
among other things obscure quite dramatically the features of a numerical analysis.
The Hamiltonian at this point is an SU.3/ ferromagnet, and the ferroquadrupolar
order parameter commutes with the Hamiltonian, leading to the unique possibil-
ity of having long-range ferroquadrupolar correlations in a 1D system [34]. When
moving away from the SU(3) point by increasing # , the large SU(3) representation
is split into separate even-spin sectors, and the singlet becomes the nondegenerate
ground state on a finite-size system. Because this singlet wavefunction is connected
adiabatically to the exact ferroquadrupolar ground state at # D �3�=4, the corre-
lations in this state in the region # & �3�=4 appear essentially ferroquadrupolar
in small systems. Only on very large length scales does the exponential decrease of
the ferroquadrupolar correlations concomitant with the appearance of a very small
dimerization become observable.

While much activity has focused on the transition from the dimerized to the
ferromagnetic region (above), the gapless regime # 2 ŒC�=4; �=2/ has received
considerably less attention. Despite the early consensus on the presence of an
extended gapless phase [67], the nature of the dominant correlations in this phase
has not been established definitively. The initial conjecture concerning this gap-
less phase favored an almost “trimerized” ground state [68, 69], featuring dominant
singlet correlations involving three consecutive spins. Although models can be con-
structed which have exactly trimerized ground states [70, 71], it was shown in [72]
that these are not the dominant fluctuations in the standard bilinear–biquadratic
model. It was realized only recently, by combining numerical simulations with
earlier field-theoretical results [73], that the extended critical phase actually has
dominant antiferroquadrupolar correlations [64]. It is quite significant that the model
on a simple, bipartite system, such as the chain, develops dominant antiferro-
quadrupolar correlations with a period of three lattice units. For two chains with
zig-zag coupling, a geometry which can be considered as a finite strip of the trian-
gular lattice, the critical phase persists [74], and one could therefore argue that the
critical phase of the single chain constitutes the fluctuating remnants of the fully
developed antiferroquadrupolar order on the triangular lattice.

The dimensional crossover from the one-dimensional chain to the square lattice
in a spatially anisotropic version of the bilinear–biquadratic S D 1 model was the
subject of a recent Quantum Monte Carlo study, and, strikingly, a direct quantum
phase transition from the dimerized to the quadrupolar phase was observed [75].
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Such a direct, continuous transition is a challenge to the conventional Landau–
Ginzburg theory, which would predict in general either a first-order transition or two
distinct second-order transitions. A subsequent analytical study has confirmed the
theoretical possibility of a direct, continuous transition between the two phases [66].

13.6 Nematic Ordering in S D 1=2 Systems

Andreev and Grishchuk noted in 1984 that the physics of quadrupoles can also be
relevant in S D 1=2, albeit not as on-site entities, but rather by considering bond
order parameters [3]. In Sect. 13.2, we considered the product of operatorsS˛Sˇ on
the same site, and the same quantity, S˛

1 S
ˇ
2 , can be formed from spin operators on

different sites (labeled 1 and 2). Its decomposition into irreducible tensor operators
proceeds by noting that the trace of S˛

1 S
ˇ
2 is a scalar, S1 � S2, the antisymmetric part

of S˛
1 S

ˇ
2 is a vector, P12 D S1 � S2, and the traceless, symmetric part is the tensor

Q
˛ˇ
12 D S˛

1 S
ˇ
2 C S

ˇ
1 S

˛
2 � 2

3
.S1 � S2/ı˛ˇ : (13.49)

Because both P12 and Q12 are bilinear in the spin operators, they describe a type of
order where time-reversal symmetry is not broken. When hPi takes a finite value, it
is called p-nematic, and a state with hQi ¤ 0 is an n-nematic, which is the analog
of the quadrupoles discussed in the previous sections.

In the time-reversal-invariant basis for two S D 1=2 spins,

jsi D 1p
2
.j "#i � j #"i/ ; jxi D ip

2
.j ""i � j ##i/ ;

jyi D 1p
2
.j ""i C j ##i/ ; jzi D � ip

2
.j "#i C j #"i/ ; (13.50)

the time-reversal-breaking (magnetic) order parameters are

S˛
1 CS˛

2 D �i
X

ˇ;�2fx;y;zg
"˛ˇ� jˇih� j and S˛

1 �S˛
2 D ij˛ihsj� ijsih˛j; (13.51)

and the nonmagnetic order parameters are

S1 � S2 D 1

4

X
˛2fx;y;zg

j˛ih˛j � 3

4
jsihsj;

Q
˛ˇ
12 D �1

2
.j˛ihˇj C jˇih˛j/C 1

3
ı˛ˇ j�ih� j;

P ˛
12 D 1

2
.j˛ihsj C jsih˛j/ : (13.52)
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Fig. 13.7 Schematic phase
diagram of the
cyclic-ring-exchange model
on the square lattice, based
on [43, 77]. The angle �
parameterizes the ratio of the
Heisenberg coupling
J D cos � to the
ring-exchange coupling
K D sin �

ferromagnetic

n-nematic
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A dimer wave function can be constructed as cjsi C P
˛ d˛j˛i (˛ D x; y; z). A

state with c and d˛ real does not break time-reversal symmetry; c D 1 and d D 0

is a singlet bond, while c D 0 and jdj > 0 is an n-type nematic composed of triplet
bonds with a director set by d. When both c > 0 and jdj > 0, the state is a p-type
nematic with hP ˛

12i D cd˛ . A detailed discussion of these order parameters for the
case of the spin ladder can be found in [76].

However, because the order is defined on a bond, a mean-field (or variational)
theory of the kind we have presented in the previous section for S D 1 quadrupolar
states is not feasible. For S D 1, the order parameter is a site variable, and can
be optimized by the construction of a site wave function, a process which neglects
the entanglement between the sites. For S D 1=2 nematics, this entanglement is
an essential feature. With the exception of trivial cases, such as weakly coupled
dimers, it is not at present known how to construct a variational wave function to
describe a spin-1/2 nematic phase. By contrast, significant progress has been made
on the numerical side in recent years, and some nontrivial microscopic models are
now known which show strong evidence for the presence of spin-nematic phases, of
both p- and n-type.

Numerical evidence for a p-type nematic is found in an exact-diagonalization
study [77] of a square-lattice model where, in addition to the Heisenberg exchange,
a four-site ring exchange is present. The phase diagram of this model is quite rich,
featuring several dimerized and magnetic phases (Fig. 13.7). In addition, it offers a
clean realization of a two-step SU(2) symmetry-restoration scenario put forward by
Chandra and Coleman in [78, 79] (see also [80, 81]). The starting point is a semi-
classical Néel order with four coplanar sublattices, such that the spin orientations
on nearest-neighbor bonds differ by 90ı in the Néel phase, and thus secondary
order parameters of the type hS.x;y/ � S.xC1;y/i are also finite. Upon frustrat-
ing this Néel state with antiferromagnetic nearest-neighbor Heisenberg exchange,
the magnetic order is lost, hS.x;y/i D 0, while the vector chirality remains finite
hS.x;y/ � S.xC1;y/i ¤ 0 in a small region of parameter space. The symmetry group
of this p�type spin nematic (two-sublattice, “collinear”) is larger than that of the
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original Néel order (four-sublattice, coplanar), and therefore this process can be
considered as a partial restoration of SU(2) symmetry. The full restoration is accom-
plished on continuing into the paramagnetic, staggered-dimer phase adjacent to the
spin-nematic phase.

A complementary n-type spin-nematic phase has also been found in the frus-
trated J1–J2 square-lattice model with ferromagnetic nearest-neighbor .J1/ and
antiferromagnetic next-nearest-neighbor (J2) interactions, as well as close to the
ferromagnetic phase in the ring-exchange model mentioned above [43]. The appear-
ance of this phase in proximity to a ferromagnetic state is currently best understood
by considering the formation of a d -wave bound state of two flipped spins within
the completely polarized state. The spin-nematic phase can then be described as
a field-induced Bose-Einstein condensation of bound states, a sense in which it is
closely related to the paired state of hard-core bosons stabilized by correlated hop-
ping processes [46, 47]; these two states differ only in the spatial symmetry of the
bound-state wave function. We remark also that nematic order is not unique to quan-
tum spins, but appears also for classical spins in the form of coplanar or collinear
spin states with no long-range magnetic order [82–84].

Finally, we mention also that S D 1=2 spin systems on the triangular lattice may
support even more complicated forms of multipole-related ordering: recent numer-
ical calculations including ring-exchange terms have provided evidence for triatic
(octupolar) ordering in a magnetic field [85]. The classical analog of this octupolar
order was studied for the kagomé lattice in [86].

Another recent development in this direction concerns the phase diagram of the
frustrated ferromagnetic Heisenberg chain in a magnetic field. This problem has
been addressed in a number of recent studies [37–42], and a rich phase diagram
containing at least three different, 1D analogs of spin-nematic phases (quadrupolar,
octupolar, hexadecupolar) has emerged. Because many experimental systems are
available which can in a reasonable approximation be modeled by such a frustrated
ferromagnetic chain (such as LiCuVO4 to name one example [87]), these might
be among the best candidate systems for the definitive observation of field-induced
spin-nematic behavior in experiments.

13.7 Conclusions

The possibility of having SO(3) symmetry-breaking in the absence of a magnetic
moment is a fascinating example of the richness of quantum mechanical order-
ing phenomena. On the theoretical side, there is now a sound understanding of
the phases themselves, and of a number of microscopic interactions and models
which can stabilize spin-nematic phases are known. While unambiguous experi-
mental evidence for spin-nematic phases in real materials is still lacking, a number
of promising systems are currently under very active investigation, which hopefully
will lead to such evidence emerging in the near future.
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Chapter 14
Schwinger Bosons Approaches to Quantum
Antiferromagnetism

Assa Auerbach and Daniel P. Arovas

Abstract This chapter reviews the Schwinger Boson Mean Field Theory (SBMFT)
for the quantum Heisenberg model. For bipartite lattices, the SBMFT is set up as
the large N limit of the Heisenberg model, where the SU(N) spin operators are
represented by N flavors of Schwinger bosons. For frustrated lattices, an Sp(N)
representation is used. For the bipartite lattices, the mean field equations are solved,
and the ground state wave function, order parameter and excitations dispersions are
calculated. The SBMFT is used to calculate the temperature dependent staggered
magnetization of the weakly coupled layered antiferromagnet.

14.1 SU.N/ Heisenberg Models

The use of large N approximations to treat strongly interacting quantum systems
been very extensive in the last decade. The approach originated in elementary parti-
cles theory, but has found many applications in condensed matter physics. Initially,
the large N expansion was developed for the Kondo and Anderson models of
magnetic impurities in metals. Soon thereafter it was extended to the Kondo and
Anderson lattice models for mixed valence and heavy fermions phenomena in rare
earth compounds [1, 2].

In these notes, we shall formulate and apply the largeN approach to the quantum
Heisenberg model [3–6]. This method provides an additional avenue to the static and
dynamical correlations of quantum magnets. The mean field theories derived below
can describe both ordered and disordered phases, at zero and at finite temperatures,
and they complement the semiclassical approaches.

Generally speaking, the parameterN labels an internal SU (N) symmetry at each
lattice site (i.e., the number of “flavors” a Schwinger boson or a constrained fermion
can have). In most cases, the large N approximation has been applied to treat spin
Hamiltonians, where the symmetry is SU(2), and N is therefore not a truly large
parameter. Nevertheless, the 1=N expansion provides an easy method for obtaining
simple mean field theories. These have been found to be surprisingly successful as
well.
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The large N approach handles strong local interactions in terms of constraints.
It is not a perturbative expansion in the size of the interactions but rather a saddle
point expansion which usually preserves the spin symmetry of the Hamiltonian. The
Hamiltonians are written as a sum of terms O�

ijOij , which are biquadratic in the
Schwinger boson creation and annihilation operators, on each bond on the lattice.
This sets up a natural mean field decoupling scheme using one complex Hubbard
Stratonovich field per bond.

At the mean field level, the constraints are enforced only on average. Their effects
are systematically reintroduced by the higher-order corrections in 1=N .

It turns out that different largeN generalizations are suitable for different Heisen-
berg models, depending on the sign of couplings, spin size, and lattice. Below, we
describe two large N generalizations of the Heisenberg antiferromagnet.

14.2 Schwinger Representation of SU.N/ Antiferromagnets

The SU(2) algebra is defined by the familiar relations ŒS˛ ; Sˇ � D i�˛ˇ�S
� . The

spin operators commute on different sites, and admit a bosonic representation. Since
the spectrum of a bosonic oscillator includes an infinite tower of states, a constraint
is required in order to limit the local Hilbert space dimension to 2S C 1. In the
Holstein–Primakoff representation, one utilizes a single boson h, writing SC D
h�

p
2S � h�h, S� D .SC/�, and S z D h�h � S , together with the non-holonomic

constraint 0 � h�h � 2S . The square roots prove inconvenient, and practically
one must expand them as a power series in h�h=2S . This generates the so-called
spin-wave expansion.

Another representation, due to Schwinger, makes use of two bosons, a and b. We
write

SC D a�b; S� D b�a; S z D 1
2
.a�a � b�b/; (14.1)

along with the holonomic constraint,

a�a C b�b D 2S; (14.2)

where the boson occupation, 2S , is an integer which determines the representation
of SU(2). This scheme is depicted graphically in Fig. 14.1.

There are three significant virtues of the Schwinger representation. The first is
that there are no square roots to expand. The second is that the holonomic constraint
(14.2) can be elegantly treated using a Lagrange multiplier. The third is that it admits
a straightforward and simple generalization to SU.N /. That generalization involves
adding additional boson oscillators – N in all for SU.N / – which we write as b�

with � D 1; : : : ; N . The generators of SU.N / are then

S�� D b�
�b� : (14.3)
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Fig. 14.1 Schwinger
representation of SU(2)
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These satisfy the SU.N / commutation relations

�
S�� ; S�0�0

� D S
��0 ı�0� � S�0� ı��0 : (14.4)

The constraint is then
NX

�D1

b�
�b� D n

b
; (14.5)

which specifies the representation of SU.N /. The corresponding Young tableau is
one with n

b
boxes in a single row.

14.2.1 Bipartite Antiferromagnet

We consider the case of nearest neighbor SU(2) antiferromagnet, with interaction
strength J > 0, on a bipartite lattice with sublatticesA andB . A bond hij i is defined
such that i 2 A and j 2 B . The antiferromagnetic bond operator is defined as

Aij D aibj � biaj : (14.6)

This is antisymmetric under interchange of the site indices i and j , and transforms
as a singlet under a global SU(2) rotation.

Consider now a rotation by � about the y axis on sublattice B only, which sends

aj ! �bj ; bj ! aj : (14.7)

This is a canonical transformation which preserves the constraint (14.5). The anti-
ferromagnetic bond operator takes the form

Aij �! aiaj C bibj : (14.8)
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The SU(2) Heisenberg model is written in the form

H D J
X
hij i

Si � Sj

D �J
2

X
hij i

�
A�

ijAij � 2S2
�
: (14.9)

The extension to SU.N / forN > 2 is straightforward. WithN species of bosons,
(14.8) generalizes to

Aij D
NX

�D1

bi�bj�: (14.10)

The nearest-neighbor SU.N / antiferromagnetic Heisenberg model is then

H D � J

N

X
hij i

�
A�

ijAij �NS2
�

D J

N

X
hij i

 X
�;�

S
��
i
eS ��

j �NS2

!
; (14.11)

where eS��

j D � b�
j�bj� (14.12)

are the generators of the conjugate representation on sublattice B . One should note
that H of (14.11) is not invariant under uniform SU.N / transformationsU but only
under staggered conjugate rotationsU and U � on sublattices A and B , respectively.

14.2.2 Non-bipartite (Frustrated) Antiferromagnets

For the group SU(2), one can always form a singlet from two sites in an identi-
cal spin-S representation. That is, the tensor product of two spin-S states always
contains a singlet:

S ˝ S D 0˚ 1˚ � � � ˚ 2S: (14.13)

For SU.N / this is no longer the case. For example, for two SU(3) sites in the funda-
mental representation, one has 3 ˝ 3 D 3 ˚ 6. One needs three constituents to make
an SU(3) singlet, as with color singlets in QCD, and N constituents in the case of
SU.N /. This is why, in the case of the antiferromagnet, one chooses the conjugate
representation on the B sublattice – the product of a representation and its conjugate
always contains a singlet.

But what does one do if the lattice is not bipartite? This situation was addressed
by Read and Sachdev [7], who extended the Schwinger boson theory to the group
Sp.N /. This amounts to generalizing the link operator Aij in (14.6) to include a
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flavor indexm:

Aij D
NX

mD1

�
aimbjm � bimajm

�

�
2NX

˛;˛0D1

�˛˛0 bi˛ bj˛0 : (14.14)

Here, the indices ˛ and ˛0 run from 1 to 2N . They may be written in composite
form as ˛ ! .m;�/, where m runs from 1 to N and � from 1 to 2 (or " and #). In
this case, on each site one has b

m" D am and b
m# D bm. The matrix �

˛˛0 is then

�m�;n� D ımn ��� , where ��� D i�
y
�� is the rank two antisymmetric tensor.

If we make a global transformation on the Schwinger bosons, with bi˛ !
U˛˛0 bi˛0 , then we find

Aij ! .U t�U/˛˛0 bi˛ bj˛0 : (14.15)

Thus, the link operators remain invariant under the class of complex transformations
which satisfy U t�U D �. This is the definition of the group Sp.2N;C). If we
further demand that U 2 U.2N /, which is necessary if the group operations are to
commute with the total occupancy constraint, we arrive at the group

Sp.N / D Sp.2N;C/\ U.2N /: (14.16)

The particular representation is again specified by the local boson occupation, n
b

DP
˛ b

�
i˛bi˛. The Hamiltonian is

H D � 1

2N

X
i<j

Jij A�
ijAij : (14.17)

Here, we have allowed for further neighbor couplings, which can be used to
introduce frustration in the square lattice antiferromagnet, e.g. the J1 � J2 � J3

model [7]. For each distinct coupling Jij (assumed translationally invariant), a new
Hubbard–Stratonovich decomposition is required.

14.3 Mean Field Hamiltonian

Within a functional integral approach, one introduces a single real field �i .	/ on
each site to enforce the occupancy constraint, and a complex Hubbard-Stratonovich
field Qij .	/ on each link to decouple the interaction. At the mean field level it is
assumed that these fields are static. This results in the mean field Hamiltonian
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HMF D pN

J

X
i<j

jQij j2 C
X
i<j

�
Qij A�

ij CQ�
ij Aij

�
(14.18)

C
X

i

�i

�
b

�
i˛bi˛ � n

b

�C .VN/�1=2
X
i˛

�

�

i˛bi˛ C 
i˛b
�
i˛

�
;

where V , the volume, is the number of Bravais lattice sites, and where a runs from
1 to N for the SU.N / or O(N;C) models (for which p D 1), and from 1 to 2N for
the Sp.N / models (for which p D 2). The field 
i˛ , which couples linearly to the

Schwinger bosons, is conjugate to the condensate parameter hb�
i˛i, which means

@F

@
�
i˛

D hbi˛ipVN : (14.19)

Let us further assume that the mean field solution has the symmetry of the under-
lying lattice, and that the interactions are only between nearest neighbor sites on a
Bravais lattice. Then, after Fourier transforming, we have

HMF D VN
�
pz

2J
jQj2 � n

b

N
�

	

C z

2

X
k;˛;˛0

h
Q�k K˛˛0 b

�
k;˛b

�
�k;˛0 CQ� ��

k K˛˛0 bk;˛b�k;˛0

i

C�
X
k;˛

b
�
k;˛bk;˛ C .VN/�1=2

X
k;˛

�

�

k;˛ bk;˛ C 
k;˛ b
�
k;˛

�
; (14.20)

where z is the lattice coordination number, and where K˛˛0 D ı˛˛0 for SU.N / and

K˛˛0 D �˛˛0 for Sp.N /. We define

�k � 2

z

X
ı

0
�

ı
eik�ı ; (14.21)

where the sum is over all distinct nearest neighbor vectors in a unit cell. That is, �ı
is not included in the sum. The quantity �

ı
D ˙1 is a sign about which we shall have

more to say presently. On the square lattice, for example, �k D �x eikx C �y eiky .

For symmetric K
ab

, owing to the sum on k, we can replace �k with its real part,

while for antisymmetricK
ab

we must replace it with i times its imaginary part. We,
therefore, define

k D 2

z

X
ı

0
�

ı
cos.k � ı/ if K D K t (14.22)

D 2i

z

X
ı

0
�

ı
sin.k � ı/ if K D �K t (14.23)
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The sign �
ı

is irrelevant on bipartite lattices, since it can be set to unity for all ı
simply by choosing an appropriate center for the Brillouin zone. But on frustrated
lattices, the signs matter.

It is now quite simple to integrate out the Schwinger bosons. After we do so, we
make a Legendre transformation to replace the field 
i˛ with the order parameter

ˇi˛ D hbi˛i=pVN , by writing

G D F �
X
i˛

�

i˛ ˇ

�
i˛ C 
�

i˛ ˇi˛

�
: (14.24)

The final form of the free energy per site, per flavor, is

g � G

VN D pz

2J
jQj2 ���C p

2

�
�Cp

Z

BZ

ddk

.2�/d



1
2
!k CT ln

�
1�e�!k=T

��
CEcon;

(14.25)
where � D n

b
=N , and Econ is the condensation energy,

Econ D �
X
k;˛

jˇk;˛ j2 C 1
2

z
X

k;˛;˛0

K˛˛0

�
Qk ˇ

�
k;˛ˇ

�
�k;˛0 CQ� �

k ˇk;˛ˇ�k;˛0

�
:

(14.26)
The dispersion is given by

!k D
q
�2 � ˇ̌

zQk

ˇ̌2
: (14.27)

The fact that g is formally of orderN 0 (assuming � is as well) allows one to generate
a systematic expansion of the free energy in powers of 1=N .

14.3.1 Mean Field Equations

The mean field equations are obtained by extremizing the free energyG with respect
to the parameters �, Q, and ˇk;a. Thus,

� C p
2

D p

Z

BZ

ddk

.2�/d
�

!k

�
nk.T /C 1

2

�C
X
k;˛

jˇk;˛j2 (14.28)

pz

J
jQj2 D p

Z

BZ

ddk

.2�/d

ˇ̌
zQkj2
!k

�
nk.T /C 1

2

�C �
X
k;˛

jˇk;˛j2 (14.29)

0 D �ˇk;˛ C zQk

X
˛0

K˛˛0 ˇ
�
�k;˛0 : (14.30)
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Here, nk.T / D �
e!k=T � 1

��1
is the thermal Bose occupancy function. In deriv-

ing the second of the above mean field equations, we have also invoked the third.
Assuming that the condensate occurs at a single wavevector k, the last equation
requires that !k D 0 at the ordering wavevector, ensuring gaplessness of the

excitation spectrum. When there is no condensate, ˇk;˛ D 0 for all k and ˛.

It is instructive to compute hS˛˛0

R i D ˝
b

�
R;˛ bR;˛0 � � ı˛˛0

˛
, which serves as the

local order parameter. After invoking the mean field equations, one finds

˝
S˛˛0

R

˛ D N
X
k;k0

ei.k0�k/�R ˇ�
k˛ ˇk0˛0 �

X
k;˛00

ˇ̌
ˇk˛00

ˇ̌2
ı˛˛0 : (14.31)

Note that the trace of the above expression vanishes on average (i.e. upon summing
over R), and vanishes locally provided that the condensate satisfies the orthogonality
condition X

˛

ˇ�
k˛ ˇk0˛ D ıkk0

X
˛

ˇ̌
ˇk˛

ˇ̌2
: (14.32)

In the case of an SU.N / antiferromagnet on a (bipartite) hypercubic lattice, the
condensate occurs only at the zone center k D 0 and the zone corner k D � . One
then has ˝

S˛˛0

R

˛ D N
�
ˇ�

0˛ ˇ�˛0 C ˇ�
�˛ ˇ0˛0

�
ei� �R: (14.33)

Thus, Bose condensation of the Schwinger bosons is equivalent to long-ranged
magnetic order [11–14].

At T D 0, there is a critical value of � above which condensation occurs. To find
this value, we invoke all three equations, but set the condensate fraction to zero. For
the SU.N /models, the minimum of the dispersion occurs at the zone center, k D 0.
Setting !kD0 D 0, we obtain the relation � D zjQj. The first equation then yields

�c D 1
2

Z

BZ

ddk

.2�/d

�
1 � jkj2��1=2 � 1

2
: (14.34)

For d D 1, there is no solution, and there is never a condensate. For d D 2, one
finds �c D 0:19 on the square lattice [3]. Since � D S for the SU(2) case, this
suggests that even the minimal S D 1

2
model is Néel ordered on the square lattice,

a result which is in agreement with quantum Monte Carlo studies.
Consider next the Sp.N / model on the triangular lattice. We first must adopt a

set of signs �
ı
. There are three bonds ı1;2;3 per unit cell, along the directions a1, a2,

and a1 � a2, where the primitive direct lattice vectors are a1 D a Ox and a2 D 1
2
a Ox Cp

3
2
a Oy. Lattice symmetry suggests �1 D C 1; �2 D � 1, and �3 D C 1 (as opposed

to all �
ı

D 1), resulting in [8]

k D 1
3

sin �1 � 1
3

sin �2 C 1
3

sin.�2 � �1/; (14.35)
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where the wavevector is written as

k D �1

2�
G1 C �2

2�
G2; (14.36)

with G1;2 being the two primitive reciprocal lattice vectors for the triangular lattice.

The maximum of jkj2, corresponding to the minimum of the dispersion !k, occurs

when k lies at one of the two inequivalent zone corners. In terms of the �i , these

points lie at .�1; �2/ D .4�
3
; 2�

3
/, where k D �

p
3

2
, and at .�1; �2/ D . 2�

3
; 4�

3
/,

where k D
p

3
2

. Sachdev [8] has found �c D 0:34 for the triangular structure.

As one would guess, frustration increases the value of �c relative to that on the
square lattice. On the kagomé lattice, which is even more highly frustrated, he finds
�c D 0:53.

14.4 The Mean Field Antiferromagnetic Ground State

For a finite system (no long range order or Bose condensation) one can explicitly
write down the ground state of the SU.N / Schwinger Boson Mean Field Theory
�MF. It is simply the vacuum of all the Bogoliubov operators

ˇk;˛‰
MF D 0 8 k; ˛: (14.37)

where,
ˇk˛ D cosh �k bk˛ � sinh �k b

�
�k˛; (14.38)

and

tanh 2�k D � zQk

�
: (14.39)

The ground state wavefunction ‰MF can be explicitly written in terms of the
original Schwinger bosons as

‰MF D C exp

2
41
2

X
ij

uij

X
m

b
�
iab

�
ja

3
5 j0i;

uij D 1

V
X

k

eikR
ij tanh �k: (14.40)

For N D 2, using the unrotated operators a� and b�, the mean field Schwinger
boson ground state ‰MF is
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‰MF
N D2 D exp

2
64X

i2A
j 2B

uij

�
a

�
i b

�
j � b

�
i a

�
j

�
3
75 j0i: (14.41)

‰MF contains many configurations with occupations different from 2S and is there-
fore not a pure spin state. As shown in [9], under Gutzwiller projection it reduces to
a valence bond state. Since tanh �kC� D � tanh �k, where � D .�; �; : : :/, the bond
parameters uij only connect sublattice A to B . Furthermore, one can verify that for

the nearest neighbor model above, uij � 0, and therefore the valence bond states
obey Marshall’s sign.

Although‰MF is manifestly rotationally invariant, it may or may not exhibit long-
ranged antiferromagnetic (Néel) order. This depends on the long-distance decay of
uij . As was shown [9, 10] the SBMFT ground state for the nearest neighbor model
is disordered in one dimension, and can exhibit long-range order in two dimensions
for physically relevant values of S .

For further calculations, it is convenient to introduce the parametrizations:

!k � c

r
.2�/�2 C z

2
.1 � 2

k /

c � p
2z jQj

��1 � 2

c

q
�2 � �

zjQj�2

t D T

zjQj : (14.42)

Here, c; �, and t describe the spin wave velocity, correlation length, and the
dimensionless temperature, respectively. In Fig. 14.2 the dispersion for the one-
dimensional antiferromagnet is drawn.

At the zone center and zone corner the mean field dispersion is that of free
massive relativistic bosons,

!k � c

q
.2�/�2 C jk � k� j2; k� D 0;�: (14.43)

Fig. 14.2 Mean field
dispersion !k , in the domain
�� < k < � , for the
one-dimensional
antiferromagnet –3
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When the gap (or “mass” c=2�) vanishes, !k are Goldstone modes which reduce to
dispersions of antiferromagnetic spin waves.

14.5 Staggered Magnetization in the Layered Antiferromagnet

Consider now a layered antiferromagnet on a cubic lattice where the in-plane near-
est neighbor coupling is J and the interlayer coupling is ˛J , with ˛ � 1. We
expect long range magnetic order at a finite Néel temperature TN. The order param-
eter, which is the staggered magnetization M D h.�1/l ei� �R SR; l

i becomes finite
when the in-plane correlation length �, which diverges exponentially at low T , pro-
duces an effective coupling between neighboring layers ˛ �2.TN/ which is of order
unity. Here, R locates the site within a plane, and l is the layer index. This means in
effect that the coarse grained spins start to interact as if in an isotropic three dimen-
sional cubic lattice which orders at TN. The interlayer mean field theory, introduced
by Scalapino, Imry and Pincus (SIP) [15] in the 1970s, can be applied within the
SBMFT. Here we follow Keimer et al. [16], and Ofer et al. [17], to compute the
temperature dependent staggered magnetization, in the range T 2 Œ0; TN�.

The Hamiltonian is given by

H D
X
R;l

�
SR; l

� SRCOx; l
C SR; l

� SRCOy; l
C ˛ SR; l

� SR; lC1

�
(14.44)

The interplane coupling is decomposed using Hartree-Fock staggered magnetization
field:

˛ S z
R; l
S z

R; lC1
�! .�1/l ei� �R �S z

R; l
� S z

R; lC1

�
hR;l

� h2
R;l

˛
; (14.45)

where it is assumed that M D M Oz. Here, hR;l
is the local Néel field due to any

ordering in the neighboring layers. Assuming a uniform solution, hR;l
D h, self-

consistency is achieved when

h

˛
D 2M.T; h/ D h a�

R aR i � h b�
R bR i; (14.46)

where M.T; h/ is the staggered magnetization response to an ordering staggered
field h on a single layer.

Extracting TN is relatively easy, since as T ! TN, h ! 0, and the expressions

for h a�
R aR i and h b�

R bR i. In this limit, one finds that the second mean field equation
in (14.29) is not affected by the staggered field, which simplifies the calculation. At
TN one finds

2˛ �s
2D.TN/ D 1: (14.47)
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Since we know that �s
2D / �2

2D.TN/, we recover the ordering temperature of the
SIP theory. The more precise calculation yields (restoring the Heisenberg exchange
energy scale J ),

TN D J

log˛

 
2�M0

j log
�

1
4
�2 log.4˛=�/M 2

0

� j

!
(14.48)

The numerically determined M.T / D h.T /=2˛ is shown in Fig. 14.3 for various
anisotropy parameters.

One can also analyze the layered antiferromagnet using the SBMFT’s native
decoupling scheme, without proceeding via the interlayer mean field theory of
(14.45). Starting from an anisotropic Heisenberg model with in-plane exchange Jk
and interlayer exchange J?, one assumes a mean field solution where Qij D Qk
when hij i is an in-plane bond, and Qij D Q? when hij i is an out-of-plane bond.
The second mean field equation, (14.29), then becomes two equations. The Néel
temperature can be written TN D Jk f .J?=Jk/, where f .˛/ is a dimensionless
function. To find f .˛/, we demand that the spectrum be gapless, but the condensate
vanishes. This results in two coupled equations,

� C 1

2
D

1Z

�1

dk �k.k/
1Z

�1

d? �?.?/
1C �

�.k; ?/

�
n.k; ?/C 1

2

�
(14.49)

J?
2Jk

D

1R
�1

dk �k.k/
1R

�1

d? �?.?/ .2
k =�/ .nC 1

2
/

1R
�1

dk �k.k/
1R

�1

d? �?.?/ .2?=�/ .nC 1
2
/

; (14.50)

Fig. 14.3 Numerical
solution, from Ofer et al.
[17], of the staggered
magnetization M.T / of the
layered antiferomagnet for
various values of anisotropy
parameter ˛eff.
M0 D S � 0:19660 is the
zero temperature staggered
magnetization, and TN is the
Néel temperature
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where � D ˇ̌
Q?=2Qk

ˇ̌
and �.k; ?/ D

q
.1C �/2 � .k C � ?/2 , and where

n D �
e�=tc � 1

��1
, with tc D TN=4 jQkj. Once the above two equations are solved

for � and tc, we determineQk from

Qk D Jk

1Z

�1

dk �k.k/
1Z

�1

d? �?.?/
2

k
�

�
nC 1

2

�
: (14.51)

The functions �k and �? are given by

�k.k/ D 2

�2
K
�
1 � 2

k
�
; �?.?/ D 1

�
q
1 � 2?

: (14.52)
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Chapter 15
Variational Wave Functions for Frustrated
Magnetic Models

Federico Becca, Luca Capriotti, Alberto Parola, and Sandro Sorella

Abstract Variational wave functions containing electronic pairing and suppressed
charge fluctuations (i.e., projected BCS states) have been proposed as the paradigm
for disordered magnetic systems (including spin liquids). Here, we discuss the gen-
eral properties of these states in one and two dimensions, and show that different
quantum phases may be described with high accuracy by the same class of vari-
ational wave functions, including dimerized and magnetically ordered states. In
particular, phases with magnetic order may be obtained from a straightforward
generalization containing both antiferromagnetic and superconducting order param-
eters, as well as suitable spin Jastrow correlations. In summary, projected wave
functions represent an extremely flexible tool for understanding the physics of
low-dimensional magnetic systems.

15.1 Introduction

The variational approach is a widely used tool to investigate the low-energy proper-
ties of quantum systems with several active degrees of freedom, including electrons
and ions. The basic idea is to construct fully quantum many-body states by a phys-
ically motivated ansatz. The resulting wave function should be simple enough to
allow efficient calculations even for large sizes. Most of the variational calcula-
tions are traditionally based upon mean-field approximations, where the many-body
wave function is constructed by using independent single-particle states. In this
respect, even the BCS theory of superconductivity belongs in this category [1].
Although these mean-field approaches have been instrumental in understanding
and describing weakly correlated systems, they have proved inadequate whenever
the electron–electron interaction dominates the kinetic energy. The generalization
of variational states in this regime is not straightforward, and represents an open
problem in the modern theory of Condensed Matter. Probably the most celebrated
case is the wave function proposed by Laughlin to describe the fractional quan-
tum Hall effect as an incompressible quantum fluid with fractional excitations [2].
One important example in which electron correlations prevent the use of simple,

379
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mean-field approaches is provided by the so-called resonating valence-bond (RVB)
state. This intriguing phase, which was conjectured many years ago by Fazekas
and Anderson [3, 4], has no magnetic order, no broken lattice symmetries, and
remains disordered even at zero temperature. It is now commonly accepted that these
spin-liquid states may be stabilized in quantum antiferromagnets with competing
(frustrating) interactions [5, 6].

Here, we present one possible approach to the definition of accurate variational
wave functions which take into account quite readily both strong electron correla-
tions and the frustrated nature of the lattice. The price to pay when considering these
effects is that calculations cannot be performed analytically, and more sophisticated
numerical methods, such as the quantum Monte Carlo technique, are required.

Let us begin by considering a simple, frustrated spin model, in which the com-
bined effects of a small spin value, reduced dimensionality, and the presence of
competing interactions could lead to non-magnetic phases. We consider what is
known as the J1�J2 frustrated Heisenberg model on a chain or a square lattice,

H D J1
X
n:n:

SR � SR0 C J2
X
n:n:n:

SR � SR0 ; (15.1)

where J1 and J2 are the (positive) nearest-neighbor (n:n:) and next-nearest-neighbor
(n:n:n:) couplings, and SR D .SxR; S

y
R; S

z
R/ are S D 1=2 operators; periodic bound-

ary conditions are assumed. Besides the purely theoretical interest, this model is
also known to describe the relevant antiferromagnetic interactions in a variety of
quasi-one-dimensional [7] and quasi-two-dimensional systems [8, 9].

In one dimension, the phase diagram of the J1�J2 model has been well estab-
lished by analytical studies and by Density Matrix Renormalization Group (DMRG)
calculations [10]. For small values of the ratio J2=J1, the system is in a Luttinger
spin-fluid phase with a gapless spectrum, no broken symmetry, and power-law spin
correlations. By increasing the value of the second-neighbor coupling, a gapped
phase is stabilized [7, 10]. The value of the critical point has been determined with
high accuracy as .J2=J1/c D 0:241167 ˙ 0:000005 [11]. The gapped ground
state is twofold degenerate and spontaneously dimerized, and at J2=J1 D 0:5 is
expressed by the exact Majumdar–Ghosh wave function [12, 13]. Interestingly, for
J2=J1 > 0:5, incommensurate but short-range spin correlations have been found,
whereas the dimer–dimer correlations are always commensurate [10].

By contrast, the phase diagram of the two dimensional J1�J2 model is the
subject of much debate. For J2=J1 � 0:5, an antiferromagnetic Néel order with
magnetic wave vector Q D .�; �/ is expected. In the opposite limit, J2=J1 �
0:5, the ground state is a collinear antiferromagnetic phase where the spins are
aligned ferromagnetically in one direction and antiferromagnetically in the other
[Q D .�; 0/ or Q D .0; �/]. The nature of the ground state in the regime of strong
frustration, i.e., for J2=J1 � 0:5, remains an open problem, and there is no general
consensus on its characterization. Since the work of Chandra and Doucot [14], it has
been suggested that a non-magnetic phase should be present around J2=J1 D 0:5.
Unfortunately, exact diagonalization calculations are limited to small clusters which
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cannot provide definitive answers to this very delicate problem [15–17]. By using
series-expansion methods [18–21] and field-theoretical approaches [22], it has been
argued that a valence-bond solid, with columnar dimer order and spontaneous
symmetry-breaking, could be stabilized. More recently, it has been shown that a
clear enhancement of plaquette–plaquette correlations is found by introducing a
further, third-nearest-neighbor superexchange term J3, thus suggesting a possible
plaquette valence-bond crystal [23].

The primary obstacle to the characterization of the phase diagram in two dimen-
sions is that the lack of exact results is accompanied, in the frustrated case, by
difficulties in applying standard stochastic numerical techniques. Quantum Monte
Carlo methods can be applied straightforwardly only to spin-1/2 Hamiltonians of
the form (15.1), with strong restrictions on the couplings (e.g., J1 � 0 and J2 � 0

or J1 � 0 and J2 � 0) in order to avoid a numerical instability known as the
sign problem. This is because, in general, quantum Monte Carlo methods do not
suffer from numerical instabilities only when it is possible to work with a basis in
the Hilbert space where the off-diagonal matrix elements of the Hamiltonian are all
non-positive. As an example, in a quantum antiferromagnet with J1 � 0 and J2 D 0

on a bipartite lattice, after the unitary transformation

U� D exp
h

� i�
X
R2B

S z
R

i
(15.2)

(B being one of the two sublattices), the transformed Hamiltonian has non-positive
off-diagonal matrix elements in the basis jxi whose states are specified by the value
of S z

R on each site, and
P
R S

z
R D S [24]. This implies that the ground state of

UHU�, j Q�0i D P
x

Q�0.x/jxi, has all-positive amplitudes, Q�0.x/ > 0, meaning
that there exists a purely bosonic representation of the ground state. This property
leads to the well-known Marshall–Peierls sign rule [24, 25] for the phases of the
ground state of H, signf�0.x/g D .�1/N"

.x/, where N".x/ is the number of up
spins on one of the two sublattices. The Marshall–Peierls sign rule holds for the
unfrustrated Heisenberg model and even for the J1�J2 chain at the Majumdar–
Ghosh point. However, in the regime of strong frustration, the Marshall–Peierls sign
rule is violated dramatically [26], and, because no analogous sign rule appears to
exist, the ground-state wave function has non-trivial phases. This property turns out
to be a crucial ingredient of frustration.

In this respect, a very useful way to investigate the highly frustrated regime
is to consider variational wave functions, whose accuracy can be assessed by
employing stable (but approximate) Monte Carlo techniques such as the fixed-node
approach [27]. Variational wave functions can be very flexible, allowing the descrip-
tion of magnetically ordered, dimerized, and spin-liquid states. In particular, it is
possible to construct variational states with non-trivial signs for the investigation of
the strongly frustrated regime.

In the following, we will describe in detail the case in which the variational wave
function is constructed by projecting fermionic mean-field states [28]. Variational
calculations can be treated easily by using standard Monte Carlo techniques. This
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is in contrast to variational states based on a bosonic representation, which are very
difficult to handle whenever the ground state has non-trivial phases [29]. Indeed,
variational Monte Carlo calculations based on bosonic wave functions suffer from
the sign problem in the presence of frustration [30], and stable numerical simula-
tions can be performed only in special cases, for example in bipartite lattices when
the valence bonds only connect opposite sublattices [29]. Another advantage of the
fermionic representation is that the mean-field Hamiltonian allows one to have a
simple and straightforward representation also for the low-lying excited states (see
the discussion in Sect. 15.6.1, and also [31] for a frustrated model on a three-leg
ladder).

15.2 Symmetries of the Wave Function: General Properties

We define the class of projected-BCS (pBCS) wave functions on an N -site lat-
tice, starting from the ground state of a suitable translationally invariant BCS
Hamiltonian

HBCS D
X
R;R0�

.tR�R0 � �ıR�R0/ c
�
R;�cR0;� �

X
R;R0

�R�R0 c
�

R;"c
�

R0;# CH:c:

D
X
k�

.�k � �/ c�
k;�
ck;� �

X
k

�kc
�

k;"c
�

�k;# CH:c:; (15.3)

where c�R;� (cR;� ) creates (destroys) an electron at site R with spin � , the bare elec-
tron band �k is a real and even function of k, and �k is also taken to be even to
describe singlet electron pairing. In order to obtain a class of non-magnetic, transla-
tionally invariant, and singlet wave functions for spin-1/2 models, the ground state
jBCSi of Hamiltonian (15.3) is projected onto the physical Hilbert space of singly-
occupied sites by the Gutzwiller operator PG D Q

R.nR;" �nR;#/2, nR;� being the
local density. Thus

jpBCSi D PG jBCSi D PG

Y
k

.uk C vkc
�

k;"c
�

�k;#/j0i; (15.4)

where the product is over all the N wave vectors in the Brillouin zone. The
diagonalization of Hamiltonian (15.3) gives explicitly

uk D
s
Ek C �k

2Ek
vk D �k

j�kj

s
Ek � �k
2Ek

Ek D
q
�2
k

C j�kj2;

while the BCS pairing function fk is given by

fk D vk
uk

D �k

�k C Ek
: (15.5)
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The first feature we wish to discuss is the redundancy implied by the elec-
tronic representation of a spin state, by which is meant the extra symmetries which
appear when we write a spin state as the Gutzwiller projection of a fermionic state.
This property is reflected in turn in the presence of a local gauge symmetry of the
fermionic problem [32–34]. Indeed, the original spin Hamiltonian (15.1) is invariant
under the local SU(2) gauge transformations

˙ z
� W
 
c
�

"
c#

!
! ei��z

 
c
�

"
c#

!
D
�

ei� 0

0 e�i�

� 
c
�

"
c#

!
; (15.6)

˙x
� W

 
c
�

"
c#

!
! ei��x

 
c
�

"
c#

!
D
�

cos � i sin �
i sin � cos �

� 
c
�

"
c#

!
: (15.7)

A third transformation can be expressed in terms of the previous ones,

˙
y
 W

 
c
�

"
c#

!
! ei �y

 
c
�

"
c#

!
D e�i��z=4ei �x ei��z=4

 
c
�

"
c#

!
; (15.8)

where �x , �y , and �z are the Pauli matrices. As a consequence, all the different
fermionic states connected by a local SU(2) transformation generated by (15.6)
and (15.7) with site-dependent parameters give rise to the same spin state after
Gutzwiller projection,

PG

Y
R

˙ z
�R
˙x
�R

jBCSi D ei˚PG jBCSi; (15.9)

where ˚ is an overall phase. Clearly, the local gauge transformations defined previ-
ously change the BCS Hamiltonian, breaking in general the translational invariance.
In the following, we will restrict our considerations to the class of transformations
which preserve the translational symmetry of the lattice in the BCS Hamiltonian,
i.e., the subgroup of global symmetries corresponding to site-independent angles
.	; �/. By applying the transformations (15.6) and (15.7), the BCS Hamiltonian
retains its form with modified couplings

tR�R0 ! tR�R0 (15.10)

�R�R0 ! �R�R0e2i� (15.11)

for ˙ z
� , while the transformation˙x

�
gives

tR�R0 ! cos 2� tR�R0 C i sin � cos � .�R�R0 ���
R�R0/

D cos 2� tR�R0 � sin 2� Im�R�R0 (15.12)

�R�R0 ! .cos2 � �R�R0 C sin2 � ��
R�R0/C i sin 2� tR�R0

D Re�R�R0 C i .cos 2� Im�R�R0 C sin 2� tR�R0/: (15.13)



384 F. Becca et al.

These relations are linear in tR�R0 and �R�R0 , and therefore hold equally for the
Fourier components �k and �k . We note that, because �r is an even function, the
real (imaginary) part of its Fourier transform�k is equal to the Fourier transform of
the real (imaginary) part of�r . It is easy to see that these two transformations gener-
ate the full rotation group on the vector whose components are .�k ; Re�k ; Im�k/.
As a consequence, the length Ek of this vector is conserved by the full group.

In summary, there is an infinite number of different translationally invariant BCS
Hamiltonians that, after projection, give the same spin state. Choosing a specific
representation does not affect the physics of the state, but changes the pairing func-
tion fk of (15.5) before projection. Within this class of states, the only scalar under
rotations is the BCS energy spectrumEk . Clearly, the projection operator will mod-
ify the excitation spectrum associated with the BCS wave function. Nevertheless, its
invariance with respect to SU(2) transformations suggests that Ek may reflect the
nature of the physical excitation spectrum.

Remarkably, in one dimension it is easy to prove that such a class of wave func-
tions is able to represent faithfully both the physics of Luttinger liquids, appropriate
for the nearest-neighbor Heisenberg model, and the gapped spin-Peierls state, which
is stabilized for sufficiently strong frustration. In fact, it is known [35] that the sim-
ple choice of nearest-neighbor hopping (�k D �2t cos k, � D 0) and vanishing
gap function�k reproduces the exact solution of the Haldane–Shastry model (with
a gapless Ek), while choosing a next-nearest neighbor hopping (�k D �2t cos 2k,
� D 0) and a sizable nearest-neighbor pairing (�k D 4

p
2t cos k) recovers the

Majumdar–Ghosh state (with a gapped Ek) [12, 13].

15.3 Symmetries in the Two-dimensional Case

We now specialize to the two-dimensional square lattice and investigate whether
it is possible to exploit further the redundancy in the fermionic representation of a
spin state in order to define a pairing function which breaks some spatial symmetry
of the lattice but which, after projection, still gives a wave function with all of the
correct quantum numbers. We will show that, if suitable conditions are satisfied,
a fully symmetric projected BCS state is obtained from a BCS Hamiltonian with
fewer symmetries than the original spin problem. For this purpose, it is convenient
to introduce a set of unitary operators related to the symmetries of the model.

� Spatial symmetries: for example, Rx.x; y/ D .x;�y/ and Rxy.x; y/ D .y; x/.

We define the transformation law of creation operators as Rc�X;�R�1 D c
�

R.X/;� ,
and the action of the symmmetry operator on the vacuum is Rx j0i D Rxy j0i D
j0i. Note that these operators map each sublattice onto itself.

� Particle–hole symmetry: Phc
�
X;�P

�1
h

D i .�1/XcX;�� , where the action of the

Ph operator on the vacuum is Phj0i D Q
X c

�

X;"c
�

X;#j0i.

� Gauge transformation:G c�X;�G
�1 D i c

�
X;� with G j0i D j0i.
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Clearly, Rx and Rxy are symmetries of the physical problem (e.g., the Heisen-
berg model). G is a symmetry because the physical Hamiltonian has a definite
number of electrons, while Ph leaves invariant every configuration where each site
is singly occupied if the total magnetization vanishes (N# D N" D n). With the
definition adopted, Ph acts only to multiply every spin state by the phase factor
.�1/N# . Thus all of the operators defined above commute both with the Heisen-
berg Hamiltonian and, because reflections do not interchange the two sublattices,
with each other. The ground state of the Heisenberg model on a finite lattice, if it is
unique, must be a simultaneous eigenstate of all the symmetry operators. We will
establish the sufficient conditions which guarantee that the projected BCS state is
indeed an eigenstate of all of these symmetries.

Let us consider a hopping term which only connects sites in opposite sublattices,
whence �kCQ D ��k , and a gap function with contributions from different symme-

tries (s, dx2�y2 , and dxy), � D �s C�x
2�y2 C�xy . Further, we consider a case

in which �s and �x
2�y2

couple opposite sublattices, while �xy is restricted to the
same sublattice. In this case, the BCS Hamiltonian HBCS D H.t; �s; �x2�y2

; �xy/

transforms under the different unitary operators according to

RxH.t; �s; �x2�y2

; �xy/R�1
x D H.t; �s ; �x2�y2

;��xy/;
RxyH.t; �s; �x2�y2

; �xy/R�1
xy D H.t; �s ;��x2�y2

; �xy/;

PhH.t; �s; �x2�y2

; �xy/P�1
h D H.t; �s�

; �x
2�y2 �

;��xy�
/;

GH.t; �s; �x2�y2

; �xy/G�1 D H.t;��s ;��x2�y2

;��xy/:

From these transformations it is straightforward to define suitable composite sym-
metry operators which leave the BCS Hamiltonian invariant. For illustration, in the
case where � is real, one may select RxPh and Rxy if �x

2�y2 D 0 or RxPh and

RxyPhG if �s D 0. It is not possible to set both �x
2�y2

and �s simultaneously
different from zero and still obtain a state with all the symmetries of the original
problem. The eigenstates jBCSi of (15.3) will in general be simultaneous eigen-
states of these two composite symmetry operators with given quantum numbers, for
example ˛x and ˛xy . The effect of projection over these states is

˛x PGjBCSi D PGRxPhjBCSi D RxPhPGjBCSi
D .�1/nRxPGjBCSi; (15.14)

where we have used that both Rx and Ph commute with the projector. Analogously,
when a term �x2�y2 is present,

˛xy PGjBCSi D PGRxyPhGjBCSi D RxyPhGPGjBCSi
D RxyPGjBCSi: (15.15)
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These equations show that the projected BCS state with both s and dxy , or dx2�y2

and dxy , contributions to the gap has definite symmetry under reflections, in addition
to being translationally invariant. The corresponding eigenvalues, for n D N=2

even, coincide with the eigenvalues of the modified symmetry operators RxPh and
RxyPhG on the pure BCS state.

In the previous discussion of quantum numbers, it was assumed that uk and vk
are well defined for every wave vector k. However, this condition is in general vio-
lated: singular k-points are present whenever both the band structure �k and the
gap function �k vanish, as for example with � D 0, nearest-neighbor hopping and
dx2�y2 pairing at k D .˙�

2
;˙�

2
/. However, on finite lattices, this occurrence can

be avoided by the choice of suitable boundary conditions. In fact, we are free to
impose either periodic or antiperiodic boundary conditions on the fermionic BCS
Hamiltonian (15.3), while maintaining all the symmetries of the original lattice.
In our studies, we have selected lattices and boundary conditions which do not
result in singular k-points. We note that the quantum numbers of the projected state
do depend in general on the choice of boundary conditions in the fermionic BCS
Hamiltonian.

15.3.1 The Marshall–Peierls Sign Rule

Another interesting property of the class of pBCS wave functions is related to
the possibility of satisfying the Marshall–Peierls sign rule by means of a suit-
able choice of the gap function. In particular, we will restrict our considerations
to the class of projected wave functions specified in (15.4) when both tR�R0 and
�R�R0 are real and couple sites in opposing sublattices. We begin with the BCS
Hamiltonian (15.3) and perform a particle–hole transformation on the down spins
alone, d �

R;" D c
�

R;" and d
�

R;# D eiQ�RcR;#, with Q D .�; �/, followed by

the canonical transformation (spin rotation) aC.k/ D .dk;" C idk;#/=
p
2 and

a�.k/ D �i.dk;" � idk;#/=
p
2. The BCS Hamiltonian then acquires the form

HBCS D
X
k

ŒhC.k/C h�.k/
 ; (15.16)

where h˙.k/ D �ka
�
˙.k/a˙.k/˙i�ka�˙.k/a˙.kCQ/, and we have used the sym-

metry �k D ��kCQ. Due to the anticommutation rules of the operators a˙.k/,
the ground state of HBCS can be written as a tensor product of free states of ˙
fermions. Moreover, if

P
R �.R1 � � �Rn/a�C.R1/ � � �a�C.Rn/j0i is the ground state

of
P
k hC.k/, then

P
R �

�.R1 � � �Rn/a��.R1/ � � �a��.Rn/j0i is the ground state ofP
k h�.k/. Here, we have chosen an arbitrary ordering of the lattice sites. The

ground state of HBCS is therefore
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X
R;R0

�.R1 � � �Rn/��.R0
1 � � �R0

n/a
�
C.R1/ � � �a�C.Rn/a��.R0

1/ � � �a��.R0
n/j0i:

(15.17)
If this state is expressed in terms of the original electron operators we obtain, up to
a factor of proportionality,

X
R;R0

�.R1 � � �Rn/��.R0
1 � � �R0

n/
h
c
�

R1;" � ieiQ�R1cR1;#
i

� � �
h
c
�

R0

1;" C ieiQ�R0

1cR0

1;#
i

� � � c�
1;# � � � c�

N;#j0i: (15.18)

In projecting over the state of fixed particle number equal to the number of sites, we
must take the same number of creation and annihilation operators in theN factors of
the product. The suppression of doubly occupied sites mandated by the Gutzwiller
projector is effected by creating an up spin on sites where a down spin has already
been annihilated. The only terms which survive are then those with fRg D fR0g,
namely

X
R

j�.R1 � � �Rn/j2ei
P

j Q�Rj c
�

R1;"cR1;# � � � c�
Rn;"cRn;# � � � c�

1;# � � � c�
N;#j0i:

(15.19)
Finally, by moving the down-spin creation operators to the left, one may order the
operators according to the specified ordering of the sites in the lattice, independently
of the spin, without introducing any further phase factors. On this basis, the resulting
wave function has exactly the Marshall–Peierls sign.

15.3.2 Spin Correlations

Finally, we would like to calculate the form of the long-range decay of the spin cor-
relations in a BCS state. Here, we will show only that the pure BCS state before
projection is characterized by correlations which maintain the symmetries of the
lattice even when the BCS Hamiltonian breaks the reflection symmetries due to
the presence of both �x

2�y2
and �xy couplings. Because the BCS state (15.4)

is a translationally invariant singlet, it is sufficient to calculate the longitudinal
correlations hS z

rS
z
0i. A straightforward application of Wick’s theorem leads (for

r ¤ 0) to

hS z
rS

z
0i / � �g2.r/C h2.r/

�
; (15.20)

g.r/ D
Z

d2k
�k

Ek
eik�r; (15.21)

h.r/ D
Z

d2k
�k

Ek
eik�r: (15.22)
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Note that when the gap function �k has both dx2�y2 and dxy contributions, the
correlation function apparently breaks rotational invariance. Equation (15.20) can
be written equivalently in Fourier space as

S.q/ D hS z
qS

z�qi /
Z

d2k
�k�kCq C�k�kCqrh

�2
k

C�2
k

i h
�2
kCq C�2

kCq
i : (15.23)

Now the effect of an x-reflection Rx on the wave vector q can be deduced by setting

�k D �
x2�y2

k
C�

xy

k
and changing the dummy integration variable k ! Rx .k C

Q/, whence�kCQ D ��x2�y2

k
C�

xy

k
and�Rxk D �

x2�y2

k
��xy

k
. The net result

of these transformations is simply S.Rxq/ D S.q/, demonstrating that the spin
correlations of a BCS state are isotropic, even if the gap function breaks rotational
invariance before Gutzwiller projection.

The explicit evaluation of the long-range decay of g.r/ for a dx2�y2 gap shows
that spin correlations in a BCS state (i.e., before projection) display a power-law
decay due to the presence of gapless modes: hS z

rS
z
0i � 1=r4 for sites on opposite

sublattices, while hS z
rS

z
0i vanishes for sites on the same sublattice. A similar result

is also expected in the presence of a finite �xy
k

, because gapless modes are present
also in this case.

15.4 Connection with the Bosonic Representation

We turn now to a detailed discussion of the relation between the fermionic [28]
and bosonic [29] representations of the RVB wave function. Recently, bosonic RVB
wave functions have been reconsidered by Beach and Sandvik [36–39]. In partic-
ular, it has been possible to improve the earlier results of [29], either by assuming
some asymptotic form of the bond distribution [39] or by unconstrained numerical
methods [36]. This wave function has been demonstrated to be extremely accurate
for the unfrustrated model with J2 D 0 [29, 36].

In the fermionic representation, we have

jpBCSi D PG exp

" X
R<R0

fR;R0.c
�

R;"c
�

R0;# C c
�

R0;"c
�

R;#/
#

j0i; (15.24)

where PG projects onto the physical subspace with one electron per site and fR;R0 is
the pairing function, given by the Fourier transform of (15.5). The constraintR < R0
implies the definition of an (arbitrary) ordering of the lattice sites: here and in the
following, we will refer to the lexicographical order. For simplicity, let us denote the
singlet operator as�R;R0 D .c

�

R;"c
�

R0;# Cc
�

R0;"c
�

R;#/. Once the Gutzwiller projector
is taken into account, we have that
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jpBCSi D
X

R1<���<Rn

X
P.R0/

fR1;R
0

1
: : : fRn;R

0

n
�R1;R

0

1
: : : �Rn;R

0

n
j0i; (15.25)

where n D N=2 andP.R0/ represents the permutations of the n sitesR0
k

not belong-
ing to the set fRg, satisfyingRk < R0

k
for every k. The sum defines all the .N �1/ŠŠ

partitions of the N sites into pairs.
On the other hand, the bosonic RVB wave function may be expressed in terms of

the spin-lowering operator, S�
R , as

jRVBi D
X

R1<���<Rn

X
P.R0/

f bos
R1;R

0

1
: : : f bos

Rn;R
0

n
.S�
R0

1
� S�

R1
/ : : : .S�

R0

n
� S�

Rn
/jF i;

(15.26)
where the sum has the same restrictions as before and jF i is the (fully polar-
ized) ferromagnetic state. In the bosonic representation, a valence-bond singlet is
antisymmetric on interchanging the two sites and, therefore, a direction must be
specified. The condition Rk < R0

k
fixes the phase (i.e., the sign) of the RVB wave

function. In order to make contact between the two representations, we express
jF i and S�

R in terms of fermionic operators, namely jF i D c
�

1;" : : : c
�

N;"j0i and

S�
R D c

�

R;#cR;". Then

jRVBi D
X

R1<���<Rn

X
P.R0/

�fR;R0gf bos
R1;R

0

1
: : : f bos

Rn;R
0

n
�R1;R

0

1
: : : �Rn;R

0

n
j0i;

(15.27)
where �fR;R0g D ˙1 is a configuration-dependent sign arising from the reorder-
ing of the fermionic operators .1; : : : ; N / ! .R1; R

0
1; : : : ; Rn; R

0
n/. The two

representations are therefore equivalent only if

�fR;R0g fR1;R
0

1
: : : fRn;R

0

n
D f bos

R1;R
0

1
: : : f bos

Rn;R
0

n
(15.28)

for all the valence-bond configurations. In general, for a given f bos
R;R0

, this condition
cannot be satisfied by any choice of fR;R0 . Remarkably, this is however possible for
the short-range RVB state [40, 41], where only nearest-neighbor sites are coupled
by f bos

Rk ;R
0

k

D 1. Indeed, by using the Kasteleyn theorems [42], it is possible to

prove that (15.28) can be fulfilled on all planar graphs (for example in short-range
RVB states on lattices with open boundary conditions). In fact, the left-hand side of
(15.28) is a generic term in the Pfaffian of the matrix

M.R;R0/ D
(
fR;R0 for R < R0,

�fR0;R forR > R0:
(15.29)

As a consequence, following the arguments of Kasteleyn, it is always possible to
orient all the bonds in such a way that in all cycles of the transition graph the number
of bonds oriented in either directions is odd [42]. Notice that the latter way to orient
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the bonds will in general be different from the one used in (15.26). Thus, we define
fR;R0 D 1 (with R < R0) if the bond is oriented from R to R0, and fR;R0 D �1
otherwise. In summary, in order to define the fermionic pairing function fR;R0 once
we know the oriented planar graph, it is necessary to:

� Label the sites according to their lexicographical order,
� Orient the bonds in order to meet the Kasteleyn prescription, and
� Take fR;R0 D 1 for the bond oriented from R to R0, and fR;R0 D �1 otherwise.

This construction is strictly valid only for planar graphs, namely for graphs with-
out intersecting singlets, implying that open boundary conditions must be taken.
In this case, it is known that a unique short-range RVB state can be constructed.
Periodic boundary conditions imply the existence of four degenerate states, which
are obtained by inserting a cut (changing the sign of the pairing function on all
bonds intersected) that wraps once around the system, in the x, y or both direc-
tions [41]. These different states have the same bulk properties and, despite the fact
that it would be possible to obtain a precise correspondence between bosonic and
fermionic states, their physical properties can be obtained by considering a single
(bosonic or fermionic) wave function.

15.5 Antiferromagnetic Order

In the preceding sections, we have considered the mean-field Hamiltonian (15.3)
containing only hopping and pairing terms. In this case, even by considering the
local SU(2) symmetries described above, it is not possible to generate a magnetic
order parameter. The most natural way to introduce an antiferromagnetic order is by
adding to the BCS Hamiltonian of (15.3) a magnetic field

HBCSCAF D HBCS C HAF: (15.30)

Usually, the antiferromagnetic mean-field order parameter is chosen is chosen to lie
along the z-direction [43],

HAF D �AF

X
R

eiQ�R.c�
R;"cR;" � c

�

R;#cR;#/; (15.31)

where Q is the antiferromagnetic wave vector (e.g., Q D .�; �/ for the Néel
state). However, in this case, the Gutzwiller-projected wave function obtained from
the ground state of (15.30) overestimates the correct magnetic order parameter
(see Sect. 15.6.2), because important quantum fluctuations are neglected. A more
appropriate description which serves to mitigate this problem is obtained by the
introduction of a spin Jastrow factor J which generates fluctuations in the direction
orthogonal to that of the mean-field order parameter [44, 45]. Therefore, we take a
staggered magnetic field �AF along the x axis,
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HAF D �AF

X
R

eiQ�R.c�
R;"cR;# C c

�

R;#cR;"/; (15.32)

and consider a long-range spin Jastrow factor J

J D exp

0
@1
2

X
R;R0

vR�R0S z
RS

z
R0

1
A; (15.33)

vR�R0 being variational parameters to be optimized by minimizing the energy. The
Jastrow term is very simple to compute by employing a random walk in the configu-
ration space jxi D c

�
R1;�1

: : : c
�
RN ;�N

j0i defined by the electron positions and their
spin components along the z quantization axis, because it represents only a classical
weight acting on the configuration. Finally, the variational ansatz is given by

jpBCS C AFi D JPSzD0PGjBCS C AFi; (15.34)

where PSzD0 is the projector onto the Sz D 0 sector and jBCS C AFi is the
ground state of the Hamiltonian (15.30). It should be emphasized that this wave
function breaks the spin symmetry, and thus, like a magnetically ordered state, it
is not a singlet. Nevertheless, after projection onto the subspace with S z

tot D 0,
the wave function has hSxRi D hSyRi D hS z

Ri D 0. Furthermore, the correlation
functions hSxRSxR0i and hSyRSyR0i have the same behavior, and hence the staggered
magnetization lies in the x�y plane [44].

The mean-field Hamiltonian (15.30) is quadratic in the fermionic operators and
can be diagonalized readily in real space. Its ground state has the general form

jBCS C AFi D exp

0
@1
2

X
R;R0;�;� 0

f
�;� 0

R;R0
c
�
R;�c

�
R0;� 0

1
A j0i; (15.35)

where the pairing function f �;�
0

R;R0 is an antisymmetric 2N 	 2N matrix. We note
that in the case of the standard BCS Hamiltonian, with �AF D 0 or even with �AF

along z, f ";"
R;R0 D f

#;#
R;R0 D 0, whereas in the presence of a magnetic field in the x�y

plane the pairing function acquires non-zero contributions also in this triplet chan-
nel. The technical difficulty when dealing with such a state is that, given a generic
configuration with a definite z-component of the spin, jxi D c

�
R1;�1

: : : c
�
RN ;�N

j0i,
one has

hxjBCS C AFi D Pf ŒF
; (15.36)

where Pf ŒF
 is the Pfaffian of the pairing function

F D
0
@
h
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A ; (15.37)
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in which the matrix F has been written in terms of N 	 N blocks and R˛ and R0̨
are respectively the positions of the up and down spins in the configuration jxi [46].

15.6 Numerical Results

In this section, we report numerical results obtained by the variational Monte Carlo
method for the one- and two-dimensional lattices. The variational parameters con-
tained in the BCS and BCS+AF mean-field Hamiltonians of (15.3) and (15.30), as
well as the ones contained in the spin Jastrow factor, (15.33), can be obtained by the
optimization technique described in [47].

15.6.1 One-dimensional Lattice

We begin by considering the one-dimensional case, where the high level of accu-
racy of the pBCS wave function can be verified by comparison with Lanczos and
DMRG results. We consider the Hamiltonian (15.1) on a chain with N sites and
periodic boundary conditions, and first discuss in some detail the parametrization of
the wave function. For J2 D 0, a very good variational state is obtained simply by
projecting the free-electron Slater determinant, where �k D �2t cosk [48]. Then, in
one dimension, the nearest-neighbor BCS pairing �1 is irrelevant, and, in order to
improve the variational energy, a third-neighbor BCS pairing�3 must be considered
in addition; a second-neighbor pairing term�2, like the chemical potential, violates
the Marshall–Peierls sign rule, which must hold at J2 D 0, and thus is not consid-
ered. To give some indication of the accuracy of the wave function, we note that for
N D 30, the energy per site of the projected Fermi sea is E=J1 D �0:443060.5/,
while by optimizing�1 and�3 one obtainsE=J1 D �0:443934.5/, the exact result
being E0=J1 D �0:444065.

When both the chemical potential and �2 vanish, the particle–hole transfor-
mation Ph (Sect. 15.3) is a symmetry of the BCS Hamiltonian. In finite chains,
the BCS ground state is unique only if the appropriate boundary conditions are
adopted in HBCS: if, for example, N D 4l C 2 with integer l , periodic boundary
conditions (PBC) should be used, while the imposition of antiperiodic boundary
conditions (APBC) causes four zero-energy modes to appear in the single-particle
spectrum. By filling these energy levels, we can form six orthogonal BCS ground
states in the Sz D 0 subspace, which, in the thermodynamic limit, are degenerate
with the ground state of the BCS Hamiltonian with PBC. However, two of these
states have the wrong particle–hole quantum number and are therefore annihilated
by the Gutzwiller projector. If the remaining four BCS states (three singlets and one
triplet) are still orthogonal after projection, one may infer either the presence of a
gapless excitation spectrum or of a ground-state degeneracy. We have built these
five projected states (one with PBC and four with APBC) for a N D 30 chain and
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variational parameters appropriate for J2 D 0. Two of them belong to the symmetry
subspace of the ground state and represent the same physical wave function (their
overlap is jh�1j�2ij D 0:999), two of them are singlets with momentum � relative
to ground state and again show an extremely large overlap (jh�3j�4ij D 0:921),
and the remaining state is a triplet with momentum � relative to the ground state.
Therefore, only three independent states can be obtained by this procedure. It is
remarkable that by optimizing the parameters for the ground state, and without any
additional adjustable parameters, these three variational states have overlap higher
than 98:7% with the exact eigenstates of the Heisenberg Hamiltonian in the lowest
levels of the conformal tower of states [49], thereby reproducing with high accuracy
the ground state and the lowest singlet and triplet modes.

By increasing the frustrating interaction, the parameters �1 and �3 (both real)
grow until a divergence at J2=J1 � 0:15. For larger values of J2=J1, the band
structure changes: here �k D �2t 0 cos 2k � � and a non-vanishing BCS pairing

is found, leading to a finite gap in the BCS spectrum, Ek D
q
�2
k

C�2
k

. In this
regime, although the variational wave function is translationally invariant, it shows
a long-range order in the dimer–dimer correlations (see below). Similar behavior
has been also discussed in [50] for a complex wave function on ladders with an odd
number of legs. The variational parameters appropriate for this regime correspond
to a gapped BCS single-particle spectrum for both PBC and APBC, and then only
two states can be constructed. However, the symmetry subspace of the variational
wave function depends on the choice of boundary conditions, implying a ground-
state degeneracy. In a chain of N D 30 sites and for J2=J1 D 0:4, we found
that the two singlets which collapse in the thermodynamic limit (due to the broken
translational symmetry) have overlaps higher than 99% with the two pBCS wave
functions corresponding to the same variational parameters and different boundary
conditions. This shows that the pBCS class of wave functions is able to describe
valence-bond crystals and broken-symmetry states. By increasing further the ratio
J2=J1, beyond 0:5we found that, while the bare dispersion is again �k D �2t cos k,
�2 acquires a finite value (together with�1 and�3), showing both dimerization and
short-range incommensurate spin correlations.

The primary drawback of the variational scenario is that the critical point for
the transition from the gapless fluid to the dimerized state is predicted around
J2=J1 � 0:15 (where the best singlet variational state is the fully projected Fermi
sea), considerably smaller than the known critical point J2=J1 � 0:241. This
estimate does not change appreciably on considering further parameters in the
BCS Hamiltonian (15.3), probably because the variational wave function does not
describe adequately the backscattering term which is responsible for the transi-
tion [51]. In order to improve this aspect, it is necessary to include the spin Jastrow
factor of (15.33) (without the mean-field magnetic parameter �AF). In this way,
although the variational state is no longer a singlet, the value of the square of the
total spin hS2i remains very small (less than 0:002 and 0:02 for 30 and 122 sites,
respectively) and no long-range magnetic order is generated. The Jastrow factor is
particularly important in the gapless regime: despite the fact that the gain in energy
with respect to the singlet state is less than 10�4J1 (specifically, for J2 D 0 we
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obtain E=J1 D �0:444010.5/), this correction is able to shift the transition, always
marked by the divergence of the BCS pairings, to J2=J1 � 0:21, a value much
closer to the exact result. A finite value of the chemical potential is generated for
0:22 < J2=J1 < 0:5.

Let us now investigate the physical properties of the variational wave function by
evaluating some relevant correlation functions. The spin structure factor is defined as

S.q/ D 1

N

X
R;R0

eiq.R�R0/hS z
RS

z
R0i: (15.38)

While true long-range magnetic order cannot be established in one-dimensional sys-
tems, for J2=J1 � 1 the ground state is quasi-ordered, by which is meant that
it sustains zero-energy excitations and S.q/ displays a logarithmic divergence at
q D � . In Fig. 15.1, we show the comparison of the spin structure factor for an
exact calculation on N D 30 and for the variational wave function. Remarkably,
the variational results deliver a very good description of S.q/ in all the different
regimes: for small J2=J1, where the spin fluctuations are commensurate and there
is a quasi-long-range order, for 0:21 < J2=J1 < 0:5, where the spin fluctuations are
still commensurate but short-range, and for J2=J1 > 0:5, where they are incommen-
surate and the maximum of S.q/ moves from q D � at J2=J1 D 0:5 to q D �=2

for J2=J1 ! 1. Indeed, it is known that the quantum case is rather different from
its classical counterpart [10]: while the latter shows a spiral state for J2=J1 > 0:25,
with a pitch angle � given by cos � D �J1=4J2, the former maintains commen-
surate fluctuations at least up to the Majumdar-Ghosh point. The behavior of S.q/
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Fig. 15.1 Left panels: comparison between exact (empty circles) and variational (full dots) results
for the spin structure factor S.q/ on a chain with 30 sites. Right panel: variational results for the
spin structure factor S.q/ for 122 sites and J2=J1 � 0:5. Inset: position of the maximum of S.q/,
indicated by � , as a function of the ratio J2=J1 (full dots). For comparison, the DMRG results of
[10] are also shown (empty triangles)
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for a large lattice with 122 sites and J2=J1 > 0:5 is shown in Fig. 15.1, where
we find good agreement with previous numerical results based upon the DMRG
technique [10].

In the one-dimensional J1�J2 model, there is clear evidence for a Berezinskii-
Kosterlitz–Thouless transition on increasing the ratio J2=J1 from a gapless Luttinger
liquid to a dimerized state that breaks the translational symmetry. In order to inves-
tigate the possible occurrence of a dimerized phase, we analyze the dimer–dimer
correlation functions of the ground state,

�.R � R0/ D hS z
RS

z
RCxS

z
R0S

z
R0Cxi � hS z

RS
z
RCxihS z

R0S
z
R0Cxi: (15.39)

While this definition considers only the z component of the spin operators, in
the presence of a broken spatial symmetry the transverse components must also
remain finite at large distances, displaying also a characteristic alternation. By con-
trast, in the gapless regime, the dimer correlations decay to zero at large distances.
The differing behavior of these correlations is easy to recognize, with oscillatory
power-law decay in the Luttinger regime and constant-amplitude oscillations in the
dimerized phase. Figure 15.2 illustrates the comparison of the dimer–dimer correla-
tions (15.39) between the exact and the variational results on a chain with 30 sites.
Also for this quantity we obtain very good agreement for all values of the frustrating
superexchange J2, both in the gapless and in the dimerized regions. Following [10],
it is possible by finite-size scaling to obtain an estimate of the dimer order parameter
from the long-distance behavior of the dimer–dimer correlations,

d2 D 9 lim
jRj!1

j.�.R � x/ � 2�.R/C�.RC x/j; (15.40)
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where the factor 9 is required to take into account the fact that in (15.39) we consid-
ered only the z component of the spin operators. In Fig. 15.2, we present the values
of the dimer order parameter as a function of J2=J1 for three different sizes of the
chain, and also the extrapolation in the thermodynamic limit, where the agreement
with the DMRG results of [10] is remarkable.

15.6.2 Two-dimensional Lattice

We move now to consider the two-dimensional case, starting with the unfrustrated
model (J2 D 0), for which exact results can be obtained by Monte Carlo meth-
ods [52–54]. In the thermodynamic limit, the ground state is antiferromagnetically
ordered with a staggered magnetization reduced to approximately 60% of its classi-
cal value, namelyM ' 0:307 [53,54]. This quantity can be obtained both from the
spin–spin correlations at the largest distances and from the spin structure factor S.q/
at q D .�; �/. In the following, we will consider the former definition and will cal-
culate the isotropic correlations hSR � SR0i, because this quantity is known to have
smaller finite-size effects [52, 53]. For the unfrustrated case, the best wave func-
tion has �k D �2t.cos kx C cosky/ and a pairing function with dx2�y2 symmetry,

�
x2�y2

k
D �1.cos kx � cosky/ (possibly also with higher harmonics connecting

opposite sublattices). The quantity �AF in (15.32) has a finite value and the spin
Jastrow factor (15.33) has an important role.

Figure 15.3 shows the comparison of the variational calculations with the exact
results, which are available for rather large system sizes. In the unfrustrated case, the
bosonic representation is considerably better than the fermionic one: the accuracy in
the energy is around 0:06% and the sublattice magnetization is also very close to the
exact value [36,55]. However, the fermionic state defined by (15.30) and (15.32), in
combination with the spin Jastrow factor, also provides a very good approximation
to the exact results (energy per site and staggered magnetization), whereas the wave
function defined by (15.30) and (15.31) is rather inaccurate. It should be emphasized
that when the Jastrow factor is included, the slopes of the finite-size scaling func-
tions are also remarkably similar to the exact ones, both for the energy per site e0
and for the magnetizationM . This implies that the pBCS wave function provides an
accurate estimate of the spin velocity c, of the transverse susceptibility �?, and as a
consequence of the spin stiffness, s D c2�?. By contrast, the wave function with-
out the Jastrow factor leads to a vanishing spin velocity. We note that in this case the
staggered magnetization M ' 0:365 is also overestimated in the thermodynamic
limit.

The functional form of the Jastrow factor at long ranges, which can be obtained
by minimizing the energy, is necessary to reproduce correctly the small-q behav-
ior of the spin-structure factor S.q/, mimicking the Goldstone modes typical of
a broken continuous symmetry [44]. Indeed, it is clear from Fig. 15.3 that only
with a long-range spin Jastrow factor it is possible to obtain S.q/ � jqj for small
momenta, consistent with a gapless spin spectrum. By contrast, with a short-range
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Fig. 15.3 Upper left panel: energy per site as a function of cluster size N , showing exact results
(full squares), variational results obtained by considering (15.30) and (15.32) with the spin Jastrow
factor (15.33) (full circles), and variational results obtained with (15.30) and (15.31) (full trian-
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described in Sect. 15.4, are also shown (empty circles) [55]. Lower left panel: staggered magne-
tization with the same notation as in the upper panel. Right panel: static structure factor S.q/ for
a cluster with N D 242 (tilted by 45ı): variational results for the state of (15.30) and (15.32)
with a long-range Jastrow factor (full dots) and for the wave function of (15.30) and (15.31) with
a nearest-neighbor Jastrow factor (empty triangles). Lower inset: detail at small momenta. Upper
inset: square of total spin hS2i as a function of N for the two states, using the same symbols

spin Jastrow factor (for example with a nearest-neighbor term), S.q/ � const for
small q, which is clearly not correct [44]. Finally, it should be emphasized that the
combined effects of the magnetic order parameter �AF and the spin Jastrow factor
give rise to an almost singlet wave function, strongly reducing the value of hS2i
compared to the case without a long-range Jastrow term (see Fig. 15.3).

On increasing the value of the frustrating superexchange J2, the Monte Carlo
method is no longer numerically exact because of the sign problem, whereas the
variational approach remains easy to apply. In Fig. 15.4, we present the results for
the spin–spin correlations at the maximum accessible distances for J2=J1 � 0:52.
It is interesting to note that when J2=J1 > 0:4, a sizable energy gain may be
obtained by adding a finite pairing connecting pairs on the same sublattice with

dxy symmetry, namely�k D �
x2�y2

k
C�

xy

k
[56]. The mean-field order parameter

�AF remains finite up to J2=J1 � 0:5, whereas for J2=J1 > 0:5 it goes to zero
in the thermodynamic limit. Because the Jastrow factor is not expected to destroy
the long-range magnetic order, the variational technique predicts that antiferromag-
netism survives up to higher frustration ratios than expected [14], similar to the
outcome of a Schwinger boson calculation [57]. The magnetization also remains
finite, albeit very small, up to J2=J1 D 0:5 (see Fig. 15.4). We remark here that
by using the bosonic RVB state, Beach argued that the Marshall–Peierls sign rule
may hold over a rather large range of frustration, namely up to J2=J1 D 0:418, also
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implying a finite staggered magnetic moment [39]. In this approach, if one assumes
a continuous transition from the ordered to the disordered phase, the critical value
is found to be J2=J1 D 0:447, larger than the value of [14] and much closer to
our variational prediction. We note in this context that recent results obtained by
coupled cluster methods are also similar, i.e., J2=J1 � 0:45 for a continuous phase
transition between a Néel ordered state and a quantum paramagnet [58].

In the regime of large J2=J1 (i.e., J2=J1 > 0:65), collinear order with pitch
vectors Q D .0; �/ and Q D .�; 0/ is expected. The pBCS wave function is also
able to describe this phase through a different choice for the bare electron dispersion,
namely �k D �2t 0Œcos.kxCky/Ccos.kx�ky/
 and�k D �1 cos kxC�2Œcos.kxC
ky/ � cos.kx � ky/
, with �1 ! 0 for J1=J2 ! 0. Further, the antiferromagnetic
wave vector Q in (15.32) is Q D .�; 0/. The variational wave function breaks the
reflection symmetry of the lattice and, in finite systems, its energy can be lowered
by projecting the state onto a subspace of definite symmetry. The results for the
spin–spin correlations are shown in Fig. 15.4. By decreasing the value of J2=J1,
we find clear evidence of a first-order phase transition, in agreement with previous
calculations using different approaches [19, 21].

For 0:5 < J2=J1 < 0:65, the best variational wave function has no mag-
netic order (�AF D 0 and no Jastrow factor) and the BCS Hamiltonian has

�k D �2t.cos kx C cosky/ and �k D �
x2�y2

k
C �

xy

k
, where �x

2�y2

k
connects

pairs on opposite sublattices while �xy
k

is for same sublattice. With this specific
electron pairing, the signs of the wave function are different from those predicted
by the Marshall–Peierls rule and are much more similar to the exact ones. We define

hsi D
X
x

jhxjpBCSij2sign fhxjpBCSihxj�0ig ; (15.41)



15 Variational Wave Functions for Frustrated Magnetic Models 399

where jpBCSi and j�0i are the variational and the exact states, respectively. This
quantity is shown in Fig. 15.5, together with the Marshall–Peierls sign, for a 6 	 6
lattice. The variational energy, the very large overlap with the exact ground state, and
the dimer–dimer correlations shown in Figs. 15.5 and 15.6, all reflect the extremely
high accuracy of this state in the strongly frustrated regime. On small clusters, the
overlap between the variational wave function and the ground state deteriorates for
J2=J1 > 0:55. This may be a consequence of the proximity to the first order tran-
sition, which marks the onset of collinear magnetic order, and implies a mixing of
the two finite-size ground states corresponding to the coexisting phases.

In Table 15.1, we report the comparison between the energies of the non-
magnetic pBCS wave function and two bosonic RVB states. The first is obtained
by a full diagonalization of the J1�J2 model in the nearest-neighbor valence-bond
basis, namely by optimizing all the amplitudes of the independent valence-bond
configurations without assuming the particular factorized form of (15.26) [59].
Although this wave function contains a very large number of free parameters, its
energy is always higher than that obtained from the pBCS state, showing the impor-
tance of having long-range valence bonds. A further drawback of this approach
is that it is not possible to perform calculations on large system sizes, the upper
limit being N � 40. The second RVB state is obtained by considering long-range
valence bonds, with their amplitudes given by (15.26) and optimized by using the
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Table 15.1 Energies per site for a 6� 6 lattice. EpBCS obtained from the pBCS wave function
(with �AF D 0 and no Jastrow factor), ELR�RVB from the long-range bosonic RVB state, opti-
mizing just one parameter using the master-equation method [60], and ESR�RVB obtained by
diagonalizing the J1�J2 model in the nearest-neighbor valence-bond basis [59]. The exact results
E0 are also reported

J2=J1 ESR�RVB ELR�RVB EpBCS E0

0.30 �0:54982 �0:5629.5/ �0:55569.2/ �0:56246
0.35 �0:53615 �0:5454.5/ �0:54134.1/ �0:54548
0.40 �0:52261 �0:5289.5/ �0:52717.1/ �0:52974
0.45 �0:50927 �0:51365.1/ �0:51566
0.50 �0:49622 �0:50107.1/ �0:50381
0.55 �0:48364 �0:48991.1/ �0:49518
0.60 �0:47191 �0:47983.2/ �0:49324

master-equation scheme [60]. While this wave function is almost exact in the weakly
frustrated regime, its accuracy deteriorates on raising the frustrating interaction,
and for J2=J1 > 0:425 the minus-sign problem precludes the possibility of reli-
able results. On the other hand, the pBCS state (without antiferromagnetic order or
the Jastrow term) becomes more and more accurate on approaching the disordered
region. Remarkably, for J2=J1 D 0:4, the energy per site in the thermodynamic
limit obtained with the long-range bosonic wave function is E=J1 D �0:5208.2/,
which is very close to and only slightly higher than that obtained from the fermionic
representation,E=J1 D �0:5219.1/.

In the disordered phase, the pBCS wave function does not break any lattice
symmetries (Sect. 15.3) and does not show any tendency towards a dimerization.
Indeed, the dimer order parameter d (calculated from the correlations at the longest
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distances) vanishes in the thermodynamic limit, as shown in Fig. 15.6, implying a
true spin-liquid phase in this regime of frustration. This fact is in agreement with
DMRG calculations on ladders with odd numbers of legs, suggesting a vanishing
spin gap for all values of J2=J1 [61], in sharp contrast to the dimerized phase,
which has a finite triplet gap.

Taking together all of the above results, it is possible to draw the (zero-
temperature) phase diagram generated by the variational approach, and this is shown
in Fig. 15.7.

We conclude by considering the important issue of the low-energy spectrum.
In two dimensions, it has been argued that the ground state of a spin-1/2 sys-
tem is either degenerate or it sustains gapless excitations [62], in analogy to the
one-dimensional case [63]. In [64], it has been shown that the wave function with
both dx2�y2 and dxy parameters could have topological order. In fact, by changing
the boundary conditions of the BCS Hamiltonian, it should be possible to obtain
four different projected states which in the thermodynamic limit are degenerate and
orthogonal but, however, not connected by any local spin operator. In this respect,
it has been argued more recently that a topological degeneracy may be related to
the signs of the wave function and cannot be obtained for states satisfying the
Marshall–Peierls rule [65].

In the spin-liquid regime, the simultaneous presence of �x
2�y2

k
and �xy

k
could

shift the gapless modes of the unprojected BCS spectrum Ek from .˙�=2;˙�=2/
to incommensurate k-points along the Fermi surface determined by �k D 0.
However, we have demonstrated recently that a particular �xy

k
pairing, �xy

k
/

sin.2kx/ sin.2ky/, may be imposed, in order to fix the nodes at the commensu-
rate points .˙�=2;˙�=2/, without paying an additional energy penalty. Once Ek
is connected to the true spin excitations, a gapless spectrum is also expected. At
present, within a pure variational technique, it is not possible to assess the pos-
sibility of incommensurate, gapless spin excitations being present. An even more
challenging problem is to understand if the topological states could survive at all in
the presence of a gapless spectrum.

Fig. 15.7 Upper panel:
phase diagram of the J1�J2
model on the square lattice, as
deduced from the variational
approach. Lower panel: phase
diagram of the anisotropic
triangular lattice from [66].
The approximate locations of
some relevant materials are
indicated by the arrows
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15.7 Other Frustrated Lattices

In this last section, we provide a brief overview of related variational studies per-
formed for other lattice structures. In particular, we discuss in some detail the
symmetries of the variational wave function on the anisotropic triangular lattice,
considered in [66]. In this case, one-dimensional chains with antiferromagnetic
interaction J are coupled together by a superexchange J 0, such that by varying
the ratio J 0=J , the system interpolates between decoupled chains (J 0 D 0) and the
isotropic triangular lattice (J 0 D J ); the square lattice can also be described in the
limit of J D 0. The case with J 0 < J may be relevant for describing the low-
temperature behavior of Cs2CuCl4 [67], whereas J 0 � J may be pertinent to the
insulating regime of some organic materials, such as � � .ET/2Cu2.CN/3 [68].

In [66], it has been shown that very accurate variational wave functions can
be constructed, providing evidence in favor of two different spin-liquid phases,
a gapped one close to the isotropic point and a gapless one close to the one-
dimensional regime, see Fig. 15.7. We focus our attention on the isotropic point.
In this case, a natural variational ansatz is the bosonic short-range RVB state
of (15.26) [30]. Exact numerical calculations for the 6 	 6 isotropic model have
shown that the overlap between the short-range RVB wave function and the ground
state is very large, jhRVBj�0ij2 D 0:891, and also that the average sign hsi DP
x jhxj�0ij2sign fhxj�0ihxjRVBig D 0:971 [66] is very close to its maximal

value, hsi D 1. We note that both the values of the overlap and of the average
sign are much better than those obtained by a wave function that describes a mag-
netically ordered state, despite the smaller number of variational parameters [69].
Although the short-range RVB state is a very good variational ansatz, the bosonic
representation of this state is rather difficult to handle in large clusters. Its system-
atic improvement by the inclusion of long-range valence bonds leads to a very
severe sign problem, even at the variational level [30]. In this respect, following
the rules discussed in Sect. 15.4, it is possible to obtain a fermionic representation
of the short-range RVB state. The signs of the pairing function fR;R0 are given in
Fig. 15.8 for open boundary conditions. Remarkably, this particular pattern leads to
a 2 	 1 unit cell, which cannot be eliminated by using local SU(2) transformations
of the type discussed in Sect. 15.2. The variational RVB wave function is obtained
by projecting the ground state of the BCS Hamiltonian, with a particular choice of
the couplings: the only nonzero parameters are the chemical potential � and the
nearest-neighbor singlet gap �R;R0 , in the limit �� � j�R;R0j (so that the pair-
ing function is proportional to the superconducting gap). The amplitude of the gap
j�R;R0j D � is uniform, while the appropriate phases are shown in Fig. 15.8. The
BCS Hamiltonian is defined on a 2	 1 unit cell and, therefore, is not translationally
invariant. Despite the fact that it is invariant under an elementary translation T2 in
the �2 D .1=2;

p
3=2/ direction, it is not invariant under an elementary translation

T1 in the �1 D .1; 0/ direction. Nevertheless, this symmetry is recovered after the
projection PG, making jpBCSi translationally invariant. Indeed, one can combine
the translation operation T1 with the SU(2) gauge transformation

c
�
R;� ! �c�R;� (15.42)
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Fig. 15.8 Nearest-neighbor pairing function consistent with the sign convention of the short-range
RVB state in the triangular lattice: solid (dashed) lines represent positive (negative) values. Note
that the unit cell contains two sites, indicated by empty and full circles

Table 15.2 Variational energy estimated in the thermodynamic limit for the antiferromagnetic
Heisenberg model on the isotropic triangular lattice (J 0 D J )

Wave function E=J

Short-range RVB �0:5123.1/
RVB with � D 0 �0:5291.1/
Best RVB [66] �0:5357.1/
BCSCNéel [70] �0:532.1/

forR D m1�1Cm2�2 withm2 odd. Under the composite application of the transfor-
mations T1 and (15.42), the projected BCS wave function does not change. Because
the gauge transformation acts as an identity in the physical Hilbert space with singly
occupied sites, jpBCSi is translationally invariant.

Through this more convenient representation of the short-range RVB state by
the pBCS wave function, it is possible to calculate various physical quantities
using the standard variational Monte Carlo method. One example is the very
accurate estimate of the variational energy per site in the thermodynamic limit,
E=J D �0:5123.1/ [66]. Another important advantage of the fermionic repre-
sentation is that it is easy to improve the variational ansatz in a systematic way.
The variational energy can be improved significantly by simply changing the chem-
ical potential � from a large negative value to zero, see Table 15.2. We note that
in this case jpBCSi is equivalent to a Gutzwiller-projected free fermion state with
nearest-neighbor hoppings defined in a 2 	 1 unit cell, because, through the SU(2)
transformation of (15.8), the off-diagonal pairing terms are transformed into kinetic
terms. Further, the BCS Hamiltonian may be extended readily to include long-
range valence bonds by the simple addition of nonzero �R;R0 or tR;R0 terms. It
is interesting to note that, within this approach, it is possible to obtain a variational
energyE=J D �0:5357.1/ lower than that obtained by starting from a magnetically
ordered state and considered in [70], see Table 15.2.

Finally, projected states have been also used to describe the ground state of the
Heisenberg Hamiltonian on the kagomé lattice [71,72]. In this case, different possi-
bilities for the mean-field Hamiltonian have been considered, with no BCS pairing
but with non-trivial fluxes through the triangles and the hexagons of which the
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Fig. 15.9 Left panel: signs of the real hopping terms �R;R0 of the U(1) Dirac spin liquid on the
kagomé lattice (15.43) [71]. Solid (dashed) lines represent positive (negative) values. The unit cell
contains six sites (three empty and three full circles inside the boxes). Right panel: nearest-neighbor
pairing function consistent with the sign convention of the short-range RVB state in the kagomé
lattice: solid (dashed) lines represent positive (negative) values. The unit cell also contains six sites
in this case

kagomé structure is composed. In particular, the best variational state in this class
can be found by taking

HMF D �
X

hR;R0i;�
�R;R0c

�
R;�cR0;� CH:c:; (15.43)

with all the hoppings �R;R0 having the same magnitude and producing a zero flux
through the triangles and � flux through the hexagons. One may fix a particular
gauge in which all �R;R0 are real, see Fig. 15.9. In this gauge, the mean-field spec-
trum has Dirac nodes at k D .0;˙�=p3/, and the variational state describes a U(1)
Dirac spin liquid. Remarkably, this state should be stable against dimerization (i.e.,
it has a lower energy than simple valence-bond solids), in contrast to mean-field
results [73]. Another competing mean-field state [73], which is obtained by giving
the fermions chiral masses and is characterized by a broken time-reversal symmetry
(with � flux through triangles and��� flux through hexagons), is also found to have
a higher energy than the pure spin-liquid state. In this context, it would be valuable to
compare the wave function proposed in [71] with the systematic improvement of the
short-range RVB state which has a simple fermionic representation (see Fig. 15.9).

15.8 Conclusions

In summary, we have shown that projected wave functions containing both elec-
tronic pairing and magnetism provide an extremely powerful tool to study highly
frustrated magnetic materials. In particular, these pBCS states may describe all
known phases in one-dimensional systems, giving very accurate descriptions when
compared to state-of-the-art DMRG calculations. Most importantly, variational
wave functions may be easily generalized to treat higher dimensional systems: here,
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we have presented in detail the case of the two-dimensionalJ1�J2 model, as well as
some examples of other frustrated lattices which have been considered in the recent
past.

The great advantage of this variational approach in comparison with other meth-
ods, such as DMRG, is that it can offer a transparent description of the ground-state
wave function. Furthermore, the possibility of giving a physical interpretation of
the unprojected BCS spectrum Ek , which is expected to be directly related to the
true spin excitations, is very appealing. We demonstrated that this correspondence
works very well in one dimension, both for gapless and for dimerized phases. In
two dimensions, the situation is more complicated and we close by expressing the
hope that future investigations may shed further light one the fascinating world of
the low-energy properties of disordered magnetic systems.
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Chapter 16
Quantum Spin Liquids and Fractionalization

Grégoire Misguich

Abstract This chapter discusses quantum antiferromagnets which do not break any
symmetries at zero temperature – also called “spin liquids” – and focuses on lattice
spin models with Heisenberg-like (i.e. SU(2)-symmetric) interactions in dimensions
larger than one. We begin by discussing the Lieb–Schultz–Mattis theorem and its
recent extension to D > 1 by Hastings (2004), which establishes an important dis-
tinction between spin liquids with an integer and with a half-integer spin per unit
cell. Spin liquids of the first kind, “band insulators”, can often be understood by ele-
mentary means, whereas the latter, “Mott insulators”, are more complex (featuring
“topological order”) and support spin-1/2 excitations (spinons ). The fermionic for-
malism (Affleck and Marston, 1988) is described and the effect of fluctuations about
mean-field solutions, such as the possible creation of instabilities, is discussed in a
qualitative way. In particular, we explain the emergence of gauge modes and their
relation to fractionalization. The concept of the projective symmetry group (X.-G.
Wen, 2002) is introduced, with the aid of some examples. Finally, we present the
phenomenology of (gapped) short-ranged resonating-valence-bond spin liquids, and
make contact with the fermionic approach by discussing their description in terms
of a fluctuating Z2 gauge field. Some recent references are given to other types of
spin liquid, including gapless ones.

16.1 Introduction

The concept of “spin liquid” is due to P. W. Anderson, who observed in 1973 [1]
that magnetically long-range-ordered (Néel) states were in principle not the only
possible ground states for two-dimensional (2D) quantum (and frustrated) antifer-
romagnets. He explained that such systems could avoid all spontaneous symmetry-
breaking, and thus remain “disordered” down to T D 0. The picture he provided for
such states is the celebrated (short-range) “resonating valence-bond” (RVB) wave
function, which is the linear and coherent superposition of a large number of short-
range singlet coverings of the lattice. Since then, although our understanding of
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frustrated quantum spin systems has improved greatly, in general it remains quite
incomplete.

First, it is necessary to define precisely what is meant by the term “quantum
spin liquid”. Depending on the context (experiment, theory, simulation, : : : ), these
words are often applied with rather different meanings. In Sect. 16.2, we will dis-
cuss three possible definitions used frequently (and often implicitly) in the literature,
and will comment on their implications. The third definition is the most restrictive,
having probably no “overlap” with the more “common” states of matter in D > 1

magnetic systems. This is the definition we adopt in the remainder of this chapter.
It requires the existence of fractional excitations, i.e. quasiparticles with quantum
numbers (usually the total spin) which are fractions of the elementary local degrees
of freedom. In spin models, this is essentially equivalent to the existence of spin- 1

2

excitations (known as spinons). However, such excitations are not easy to realize,
because in a system where the local degrees of freedom are spin-flipping proceses
which change S z

tot by ˙1, any excitation created in a finite region of the system can
only have an integer spin. In a one-dimensional system (such as a spin chain), it
is well known that domain-wall excitations (or kinks) can carry a half-odd-integer
spin. This situation is, however, rather different in D > 1, where only some partic-
ular states of matter may sustain fractional excitations. We explain, at a qualitative
level, in Sect. 16.2.3.2 how these fractional excitations interact with each other
through emerging gauge fields, and that such spin liquids sustain a kind of hid-
den order, called “topological order”, a concept due to X.-G. Wen [2–5] which is
connected at a profound level to that of fractionalization.

Why is it that spin liquids should be “fractional”? To answer, we will review
in Sect. 16.2.4 the Lieb–Schultz–Mattis theorem [6] and its extension by Hastings
[7, 8] to D > 1. Under certain physically reasonable assumptions, we will argue
that this theorem implies essentially (if not mathematically) that a spin- 1

2
system

with an odd number of sites per unit cell (a genuine Mott insulator) and conserved
total magnetization S z

tot must either (1) be ordered in a conventional way, meaning
with a spontaneously broken symmetry, or (2) have some type of topological order.1

Because topological order is connected intimately to the existence of fractional exci-
tations, we conclude that a Mott insulator with conserved S z

tot and no spontaneous
symmetry-breaking supports topological order and fractional excitations.

In Sect. 16.3, we discuss fractionalized spin liquids in a more rigorous frame-
work, by introducing the basics of the slave-particle formalism and by explaining
(Sect. 16.3.4) how gauge fields arise when investigating the fluctuations around
mean-field states. Section 16.4 describes phenomenologically the properties of
the simplest gapped spin liquids, called Z2 liquids in modern terminology, which
correspond essentially to short-range RVB states. Their excitations, spinons and
visons, are discussed, and a number of realizations in frustrated 2D spin models
are reviewed. Section 16.5 is devoted to gapless liquids in D > 1, also known

1 A third possibility for D > 1 is that the system has been fine-tuned to a critical point, but this
does not correspond to a stable phase.
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as algebraic spin liquids. These states are more complex than the simple Z2 liq-
uids, and we present an overview of their study using the mean-field approximations
discussed in Sect. 16.3. These liquids are closely related to the long-range RVB the-
ories of high-temperature superconductors [9–12]). Section 16.6 mentions briefly
some of the spin liquids which are not discussed elsewhere in this chapter.

16.2 What is a Spin Liquid?

We focus on the zero-temperature properties of lattice quantum spin models with
global U.1/ (conservation of S z

tot) or SU.2/ symmetry (total spin S 2
tot D S.S C 1/

conservation).

16.2.1 Absence of Magnetic Long-Range Order (Definition 1)

Definition 1: a quantum spin liquid is a state in which the spin–spin correlations,
hS˛

i S
ˇ
j i, decay to zero at large distances jri � rj j ! 1.

This definition is very simple, but it suffers from several limitations. First, any
system with continuous spin-rotation symmetry in D � 2 at finite temperature
would satisfy this definition (Mermin–Wagner theorem), even if it is classical and/or
ordered at T D 0. Second, a spin nematic [13] would satisfy this definition, despite
the fact that it breaks spin rotation symmetry and has some long-range order in
the four-spin correlations (see [14–16] for recent numerical studies of quantum
spin nematics). The definition could be made more strict by requiring the global
spin-rotation symmetry to be unbroken. In this case, the spin nematics would be
excluded. However, a valence-bond crystal2 (VBC, see [17]) would satisfy this
definition, although it possesses certain features of conventional crystalline order.

16.2.2 Absence of Spontaneously Broken Symmetry (Definition 2)

Definition 2: a quantum spin liquid is a state without any spontaneously broken
symmetry.
Such a definition excludes the VBC state discussed above, but still has some unsat-
isfactory features. Consider a spin- 1

2
model where the lattice is composed of clusters

with an even number of spins (for example 2 or 4). Inside each cluster, the exchange

2 In a VBC, the spins group themselves spontaneously into small clusters (with an even number
of sites) which are arranged spatially in a regular pattern. In the crudest approximation, the wave
function would be simply a tensor product of singlet states (one for each cluster). Because a VBC
wave function is a spin singlet (rotationally invariant) and has short-ranged spin–spin correlations,
it is a spin liquid according to definition 1. However, it also possesses some order in the four-spin
correlation functions and breaks some of the lattice symmetries.
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interactions J are strong and antiferromagnetic. By contrast, the inter-cluster inter-
actions J 0 are weak.3 A two-chain spin ladder, in which the rungs form 2-site
clusters, realizes this type of geometry. Such models can be understood qualita-
tively by a perturbation theory around the decoupled limit J 0=J ! 0. The (unique)
ground state is a total-spin singlet (reasonably well approximated by a tensor prod-
uct of singlets on each cluster) with gapped excitations and no broken symmetry.
This state obeys definition 2. However, these systems do not realize new states of
matter. These systems undergo a smooth evolution from the T D 0 limit (singlet
ground state) to the T D 1 limit (free spins), with a characteristic crossover tem-
perature determined by the spin gap. From this point of view, this state would more
appropriately be called a “T D 0 paramagnet” or a “band insulator” rather than a
spin liquid. To our knowledge, almost all gapped Heisenberg spin systems inD > 1

which have been observed experimentally belong in this category. These systems
are quite similar to valence-bond solids, with the spin-1 Haldane chain or AKLT
models [18] as standard examples.

16.2.3 Fractional Excitations (Definition 3)

Definition 3: a quantum spin liquid is a state with fractional excitations.
In the present context, these fractional excitations are usually “spinons ”, carrying a
half-odd-integer spin (normally 1

2
).

16.2.3.1 What is a Fractional Excitation?

Operations involving any finite number of SC
i and S�

j operators may only change
the total magnetization S z

tot by an integer (in units where „ D 1). Thus the cre-
ation of a spin- 1

2
excitation (one “half” of a spin-flip) requires acting in a non-local

way on the system. Strictly speaking, such a process is possible only in an infi-
nite system. As a simple example, let us consider the spin- 1

2
Heisenberg chain with

first- and second-neighbor couplings, respectively J1 and J2. For J1 D 2J2 > 0

(the Majumdar–Ghosh point [19]), the (two-fold degenerate) ground states are given
exactly as

jai D � � � ˝ jŒ01�i ˝ jŒ23�i ˝ jŒ45�i ˝ � � � ; (16.1)

jbi D � � � ˝ jŒ12�i ˝ jŒ34�i ˝ jŒ56�i ˝ � � � ; (16.2)

where jŒij �i D j "i #j i � j #i"j i is a spin singlet state for sites i and j . This is
an example of a VBC with spontaneous translational symmetry-breaking. Now we

3 Here, “weak” does not imply necessarily that the coupling is numerically small, but that the
system can be understood qualitatively from a weak-coupling limit.
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insert in jai an “up” spin on site 2 by a non-local operation consisting of a shift of
the rest of the configuration by one lattice constant to the right,

� � � ˝ jŒ01�i ˝ j "2i ˝ jŒ34�i ˝ jŒ56�i ˝ � � � (16.3)

This state has S z
tot D 1

2
and contains a domain wall between two regions (of types

“a” and “b”). It is not an exact eigenstate of the Hamiltonian, and is clearly a finite-
energy excitation. From a variational point of view, it proves the existence of finite-
energy spin- 1

2
excitations in the thermodynamic limit. In a chain of finite length,

one may act locally with SC
2 on jai. The resulting state,

� � � ˝ jŒ01�i ˝ j "2i ˝ j "3i ˝ jŒ45�i ˝ � � � ; (16.4)

can be viewed as two spinons, with parallel spins, on sites 2 and 3. The spin flip
has created a pair of spinons which may then propagate to large distances as two
independent and elementary excitations.

Another very simple example of fractionalization in a 1D spin chain is the XY
chain, which can be mapped exactly onto free, gapless, fermionic spinons by the
Jordan-Wigner transformation [20]. Fractionalized (but interacting) spinons are also
present in the spin- 1

2
Heisenberg chain, and spin-charge separation is a general

phenomenon in Tomonaga-Luttinger liquids. These examples illustrate that frac-
tionalization is a rather common phenomenon in one dimension. However, ordered
states do not in general support fractional excitations in D > 1. As an example,
any attempt to “separate” two spinons in a D > 1 VBC will not lead to a two-
spinon state when the entities are far apart. At sufficiently large distances, this results
instead in two excitations with integer spins (see Fig. 2 in C. Lhuillier’s chapter).
We will show that the mechanisms leading to fractionalization in D > 1 are very
different from the “domain wall”, “soliton”, or “kink” picture valid in 1D.

In 2D, the most famous example of fractionalized systems is provided by frac-
tional quantum Hall fluids. Here the elementary excitations carry an electric charge
which is a fraction (for example 1

3
) of that of the electron. As above, local excita-

tions may only have an integer charge. However, if an electron is added to a � D 1
3

quantum Hall fluid, it will decay into three elementary quasiparticles of charge C e
3

.
The property that the system is fractional means that these quasiparticles can be
placed far apart from each other with a finite energy cost. In the same way, a spin
flip (changing S z

tot from 0 to 1, as induced by a neutron scattering process) in the
Majumdar-Ghosh chain would decay into two spinons, each carrying half a quan-
tum of magnetization. There may (or may not) be some short-distance bound states
between spinons, but the fact that the system is fractionalized means that one can
separate two spin- 1

2
excitations to infinite distances with only a finite energy cost.

The spinons are then said to be deconfined. Spinons have the same spin as elec-
trons, but do not carry an electric charge. In this sense, a spinon is a “fraction” of
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an electron.4 Removing an electron from a Mott insulator is equivalent to creating
a charged hole and removing a spinon (spin). Magnets with deconfined spinons are
thus closely related to the problem of spin-charge separation in doped Mott insula-
tors. This said, it is not obvious how to describe effective long-range spinon–spinon
interactions in a model where the microscopic interactions are purely local. We will
explain – at a rather qualitative level – that gauge theories provide a framework to
deal with the question of deconfinement.

16.2.3.2 What is the Connection Between Gauge Theories
and Fractional Spin Liquids?

To describe a quantum system with deconfined spinons, it is logical to seek a
formalism including single-spinon creation and annihilation operators. On general
grounds, such a formalism necessarily involves some gauge fields. A spinon creation
operator changes the magnetization by ˙ 1

2
, and thus cannot be written locally in

terms of the spin operators S i . The usual choice is to decompose the spin operators
into two spinon operators,

SC
i D c

�

i"ci# ; 2S z
i D c

�

i"ci" � c�

i#ci#; (16.5)

and to impose the constraint of one particle per site for all states in the physical
Hilbert space,

c
�

i"ci" C c
�

i#ci# D 1 8 i: (16.6)

In this review, we focus on the fermionic5 representation, fc�
i� ; cj� 0g D ıij ı�� 0 .

Acting with a single c�

i" operator transforms a physical state into a non-physical
one which violates the constraint above. To deal with this, physically it is clear
that when inserting a spinon one must “shift” the spin state along some path on the
lattice, ending at a point where another spinon is created or destroyed.6 Thus, c�

i"
must “dressed” with a “string” containing the path information. This will be the role
of the gauge field.

Spin operators, and all physical states satisfying (16.6), are invariant under

c
�
i� �! e�i�i c

�
i� ; ; � D";#; ; �i 2 Œ0; 2�Œ: (16.7)

4 There is, however, no charge fractionalization, as in the quantum Hall effect.
5 To this point, the “bare” spinon operators can be chosen to be fermionic or bosonic. The actual
statistics of the physical excitations should not depend on this arbitrary choice, which suggests that
the fractionalized excitations are not always simply related to the bare creation operators introduced
in (16.5).
6 In a spin chain, there are only two ways to do this, to the right or to the left, but in D > 1, many
paths are possible.



16 Quantum Spin Liquids and Fractionalization 413

In fact, invariance under this gauge transformation and (16.6) are equivalent.7 That
c

�

i" transforms a physical state into a non-physical one arises because it is not a

gauge-invariant operator. The standard solution for this is to introduce8 a gauge-
field operatorAij on each bond of the lattice, which transforms according to Aij !
Aij C�i ��j , so that

c
�

0" exp
�
iA01 C iA12 C iA13 C � � � C iA.n�1/

�
cn" (16.8)

is gauge-invariant. To understand the physical the meaning of this gauge field,
from the discussion of spinons in valence-bond states one may anticipate that
exp

�
iA01 C � � � C iA.n�1/n

�
performs the “shift” operation required to insert or

destroy a spinon at each end of the path connecting site 0 to site n.
At this stage, the gauge-field operators Aij do not appear explicitly in the spin

Hamiltonian [the Heisenberg model can be written using (16.5)]. Thus the trans-
formations above do not yet deliver a gauge theory with a dynamical gauge field.9

However, for many purposes it is important only to derive an effective low-energy
theory for the spinons, which is obtained by integrating over some high-energy
degrees of freedom (such as gapped fluctuation modes). Such a procedure gener-
ally produces all of the local terms which are allowed by symmetry. The simplest
terms involving the gauge field, and which are invariant under (16.7), are those of
Maxwell type (i.e. analogs of the terms for magnetic and electric energy). The pre-
cise nature of the gauge field and its interaction terms depends on details of the spin
model, and is (unfortunately) very difficult to predict from microscopic calculations.
In some systems, the relevant gauge field will take angular values (2 Œ0; 2�Œ, known
as a U.1/ gauge field) and in some other cases it is restricted to 0 or � (known as
Z2). We refer the reader to Sect. 16.3 for more details, and to the review of Lee,
Nagaosa and Wen [21] for a complete discussion.

From the example of electrodynamics, we know that gauge fields can mediate
long-range interactions between electric charges (although the Hamiltonian is local).
In the present context, the elementary “charges” are the spinons. Generally speak-
ing, a gauge theory can have two kinds of phase: confined phases where excitations
with non-zero charge cannot be spatially isolated from each other, and deconfined
phases where isolated non-zero charges are finite-energy excitations. Confinement

7 The transformation of (16.7) can be implemented by the operator OU.�/ D exp.i
P

i;�D";#

�ic
�
i� ci� /. When applied on a state j i satisfying (16.6), this operation gives only a global

phase, OU .�/j i D exp.i
P

i �i /j i. It is then convenient to redefine OU by OU.�/ D
exp.i

P
i �i .c

�

i"
ci" C c

�

i#
ci# � 1//. Thus, any state j i obeying OU.�/j i D j i (gauge invari-

ance, for any �), must satisfy .c�
i"ci" C c

�

i#ci# � 1/j i D 0 for any site i , which is precisely
(16.6).
8 A more formal construction is presented in Sect. 16.3.2.
9 By comparison with the Maxwell term in electromagnetism, 1

e2
F ��F�� , the Heisenberg model

corresponds formally to infinite coupling, e D 1, which is a non-trivial limit because the gauge-
field fluctuations cost no energy and are therefore large.
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occurs when the flux B (defined as the circulation of Aij ) piercing the plaquettes
of the lattice fluctuates strongly. In this case, the description of the spin system in
terms of spinons interacting with a gauge field is formally correct but not of practi-
cal utility, because the gauge field generates an effective, long-range attraction (with
a linear potential) between spinons, they are confined in gauge-neutral pairs (with
an integer spin, like a magnon), and cannot be elementary excitations of the system.

The situation is qualitatively different if the gauge field is in a deconfined phase,
which is realized when the flux fluctuations are small. In this case, the spinons
(possibly “dressed” by interactions) are finite-energy states of the model, whose
ground state is a fractionalized spin liquid.10 Thus the existence of fractionalized
spin liquids may be formulated as a problem of confinement or deconfinement in
certain types of lattice gauge theory coupled to spinons (we refer the reader again to
Sect. 16.5 for details).

16.2.3.3 Topological Order

For a conventional type of order associated with a discrete, spontaneous symmetry-
breaking (as is the case for a VBC), several ground states j1i, j2i, : : :, jd i are
degenerate in the thermodynamic limit. One may look for two (normalized) lin-
ear combinations jai D Pd

iD1 ai jii and bi D P
i bi jii of the degenerate ground

states, and for a local observable OO (acting on a finite number of sites) which acts to
distinguish them, haj OOjai ¤ hbj OOjbi. If such states jai, bi and such an operator OO
do exist (in the thermodynamic limit), OO is (by definition [22]) an order parameter
for the broken symmetry.

If the topology of the lattice is non-trivial, as for a cylinder or torus, a gapped,
fractionalized spin liquid will also exhibit a ground-state degeneracy, even in the
absence of any broken symmetry. The crucial difference with conventional forms of
order is that no local observable, OO, can distinguish the ground states in the thermo-
dynamic limit (in D > 1). The ground-state degeneracy is suggestive of some form
of order, but without an associated local order parameter. This type of non-local
order has been named “topological order” in the pioneering works of X.-G. Wen
[2–4]. This type of degeneracy is a consequence of fractionalization. The sequence
of arguments is not mathematically rigorous, but rather simple and (hopefully)
intuitive. We refer to [23] for a more precise discussion.

Consider a spin model with deconfined spinons as elementary excitations and
periodic boundary conditions in one direction (taken to be x). Starting in a ground
state j1i, we (1) create locally a pair of spinons, (2) move one of them around the
cylinder, (3) annihilate this spinon with its partner, and (4) denote by j2i the resulting

10 Confinement should not be confused with the existence of bound states. As an example, protons
and electrons have bound states, those of the hydrogen atom, but they are not confined by the
electromagnetic gauge field: because they can be separated to infinite distance by only a finite input
energy, they exist as isolated particles. The situation is different for quarks, which are confined by
the QCD gauge field and cannot be observed as isolated particles at any energy.
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final state. Let us further define OT as the unitary operator describing this process,
j2i D OT j1i. If the spectrum remains gapped during the (adiabatically slow) mov-
ing process, OT brings the system back to a ground state, which may however not
be the same as the inital ground state. At each intermediate time step, the system
contains two spinons. Such an intermediate state may be viewed as being obtained
from a spinon-free state by applying some combination of “string” operators which
connect the two spinons, as in (16.8). In other words, even when they are far apart,
the spinons remain “connected” by a gauge-field string. When the two spinons meet
again and annihilate, there remains a non-contractible gauge-field “loop” winding
around the cylinder. Intuitively, this is why the new ground state, j2i, is generally
different from j1i. To make this schematic argument somewhat more precise, one
introduces a second adiabatic process, in which a “twist” 	 2 Œ0; 2�� is applied grad-
ually to the system [23, 24]. This twist amounts to a modification of the boundary
conditions for SC

i (and S�
i ): SC

xCLx ;y � SC
x;yei� . Up to a unitary transformationU ,

the spectrum at 	 D 0 is identical to that at 	 D 2�: H�D2� D U �H�D0U .
Again we assume that the operation of switching 	 from 0 to 2� may be per-
formed adiabatically without closing the excitation gap, in which case it defines a
unitary operator OF which transforms ground states (of H�D0) into ground states (of
H�D2� ). Accordingly,U OF acts in the ground-state manifold of H�D0. Finally, one
can show that the two adiabatic processes satisfy .U OF / OT D � OT .U OF / [23], because
one spinon winding around the cylinder in the presence of a twist 	 D 2� experi-
ences an Aharonov–Bohm phase equal to ei�=2 D �1 (measured by the gauge-field
loop mentioned above). Clearly, this relation cannot be satisfied in the ground-state
manifold unless the degeneracy is at least 2.

16.2.4 Half-odd-integer Spins and the
Lieb-Schultz-Mattis-Hastings Theorem

We consider a lattice spin system with periodic boundary conditions, short-range
interactions, conserved S z

tot (global U(1) symmetry) and a half-odd-integer spin
(e.g. 1/2) in the unit cell. The lattice dimensionsL1; L2; : : : ; LD are taken to be such
that each “section” perpendicular to direction 1 has an odd number (L2 � � � � �LD)
of unit cells, and thus has a half-odd-integer spin. The theorem states that, in the
thermodynamic limit, the spectrum cannot simultaneously satisfy the two condi-
tions: (1) unique ground state; (2) finite gap to all excitations. Although the proof is
quite simple in 1D [6] its generalization to higher dimensions [25], due to Hastings,
is quite involved [7, 8]. The argument proposed by Oshikawa [24] is less general,11

but its simplicity offers deep insight into the LSM theorem for D > 1.

11 It assumes that the gap does not close when twisting the boundary conditions.
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What is the relation with the above discussion of the QSL? A conventional reason
for a degeneracy of the ground state is spontaneous symmetry-breaking (SBB).12

However, ordered states do not generally support fractional excitations (consider
a VBC), and are thus not QSLs according to the third definition.13 Thus, in the
absence of any SSB, one might conclude that the ground state is unique and should,
therefore, sustain gapless excitations in order to satisfy the LSM theorem. This is
indeed a possibility (the algebraic QSL of Sect. 16.5), but the LSM theorem allows
another alternative: gapped excitations above a degenerate ground state without SSB.
In such a case, the states in the degenerate ground-state manifold are locally iden-
tical (indistinguishable by any local order parameter) but globally different due to
the topological order [4] discussed in the previous paragraph. The LSM theorem is
useful because it provides a natural classification for the ground states. A half-odd-
integer-spin system is either (1) conventionally ordered (SSB), (2) a gapless QSL, or
(3) a topologically ordered, gapped QSL. Only integer-spin systems have the addi-
tional possibility of being (4) “quantum paramagnets” (non-degenerate ground state
and gapped excitations, as discussed in Sect. 16.2.2).

16.3 Mean Fields and Gauge Fields

We review here a formalism for describing deconfined liquids in Heisenberg models,
and discuss the possible emergence of gauge fields. The orgin of this approach lies
in the slave-particle approaches to the Hubbard and t-J models [21].

16.3.1 Fermionic Representation of Heisenberg Models

The group SU.2/ can act on the spinon operators of (16.5-16.6) in two differ-
ent ways, globally, in describing spin rotations, and locally, related to the (gauge)
redundancy of the description of spin operators.

Spin rotations – A global spin rotation is effected by multiplying the doublet
d1 � �

ci" ci#
�

to the right by an SU.2/ matrix V , d1 D �
ci" ci#

� ! d1V .
By taking the Hermitian transpose of d1 and using V � D V �1, one may show

that d2 D
h
c

�

i" � c
�

i#
i

is also transformed by a right-multiplication: d2 ! d2V .

Thus, d1 and d2 may be grouped into a 2�2 matrix which transforms under SU.2/

12 A magnetically ordered system satisfies the theorem because the spectrum is gapless due
to the presence of a spontaneously broken continuous symmetry (Goldstone modes). A VBC
has a gapped spectrum, but the ground state is degenerate in the thermodynamic limit, due to
translational symmetry-breaking.
13 In principle, there can be coexistence of some conventional order and fractional excitations; this
possibility is ignored here.
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rotations by right-multiplication,

 i D
"
ci" ci#
c

�

i# �c�

i"

#
!  iV: (16.9)

From (16.9), i 
�
j is manifestly invariant. This allows one to introduce two rotation-

invariant operators, 
ij and �ij , for each pair of sites in the system,

 i 
�
j �

"
ci"c�

j " C ci#c�

j # ci"cj # � ci#cj "
c

�

i#c
�

j " � c
�

i"c
�

j # c
�

i#cj # C c
�

i"cj "

#
D
"

�
�
ij ���

ij

��ij 
ij

#
: (16.10)

The quantity  i also gives a convenient expression of the spin operators and of the
constraint,

Sa
i D 1

2
Tr
h
 

�
i  i .�

a/T
i
; a D x; y; z; (16.11)

Tr
h
 

�
i �

z i

i
D c

�

i"ci" � ci#c�

i# D c
�

i"ci" C c
�

i#ci# � 1 D 0: (16.12)

It is useful here to add two other constraints which are consequences of the first,
ci#ci" D 0 D �

�
i i (no double site occupancy) and c�

i#c
�

i" D 0 D �i i (no empty
sites). Together, the three constraints can be written in the compact form

Tr
h
 

�
i �

a i

i
D 0 ; a D x; y; z: (16.13)

Gauge transformations – Because of (16.6), ci" and c�

i# have the same physical
effect, namely of decreasing S z

i by one unit. They can be placed in a doublet, p1,
upon which SU.2/ matrices act without changing the physical spin operators. Let
Wi be a (site-dependent) SU.2/ matrix encoding this gauge transformation, p1 D"
ci"
c

�

i#

#
! Wi p1. It is easy to verify that p2 D

"
ci#

�c�

i"

#
transforms by the same

left-multiplication. Taken together, these two-column vectors p1 and p2 form once
again the matrix  i . From (16.11), it is evident that the spin operators are gauge-
invariant,

 i ! Wi i ; Sa
i ! Sa

i : (16.14)

In summary, global spin rotations are described by right-multiplication of  and
local gauge transformations by left-multiplication. As a specific example of a gauge
transformation, we consider the U.1/ subgroup of SU.2/, which is parameterized
by the phase �.i/ as Wi D exp.i�.i/� z/; and which corresponds to (16.7). A
spinon (“anti-spinon”) carries a charge C1.�1/ of this U.1/ gauge field. The spin-
flip operator SC

i D ci"c�

j #, is gauge-neutral.
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16.3.2 Local SU.2/ Gauge Invariance

In a path-integral formulation based on the fermionic representation, the imaginary-
time Lagrangian takes the form [11]

L D
X

i

Tr
h
 

�
i

�
@� C A0

i � �
�
 i

i
�H; (16.15)

where H is the Hamiltonian and A0
i D .A0

ix ; A
0
iy ; A

0
iz/ a real, three-component

vector which plays the role of a Lagrange multiplier for the three constraints of
(16.13). Consider a time-dependent gauge transformation

 i .�/ ! Wi .�/ i .�/: (16.16)

To ensure the invariance of the action (16.15), A0
i must transform as the time

component of an SU.2/ gauge field,

A0
i � � ! Wi .�/

�
@� C A0

i � �
�
:W

�
i .�/: (16.17)

From (16.11), the Heisenberg interaction can be written as

S i � S j D �1
8

Tr
h
 i 

�
j j 

�
i

i
; (16.18)

a quartic term in fermionic operators which can be decoupled (Hubbard–
Stratonovich procedure) by introducing a 2 � 2 complex matrix Uij on each bond
hi; j i. The corresponding contribution to the Lagrangian is

�H D � 8

J

X
hi;j i

Tr
h
U

�
ijUij

i
�
X
hi;j i

Tr
h
 

�
i Uij j C H:c

i
; (16.19)

whence a Gaussian integration over Uij returns the spin–spin interaction of (16.18).
From (16.9), it is clear that U is invariant under spin rotations, and from (16.14) one
observes that U transforms as the spatial component of an SU.2/ gauge field under
gauge transformation,

 i .�/ ! Wi .�/ i .�/; Uij .�/ ! Wi .�/Uij .�/W
�

j .�/: (16.20)

16.3.3 Mean-field (Spin-liquid) States

Mean-field Hamiltonian – Various mean-field approximations may be applied
when the Heisenberg model is expressed in the form of (16.15) and (16.19). As
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we will show, these can describe a large variety of spin-liquid states, and in par-
ticular the “RVB spin liquids.” The procedure is to replace the fluctuating fields
Uij .�/ and A0

i .�/ by time-independent, complex matrices U 0
ij and complex vectors

a0
i , because the mean-field Hamiltonian is then quadratic, and hence soluble, in the

fermion operators,14

HMF D 8

J

X
hi;j i

Tr
h
U

0�
ij U

0
ij

i
C
X
hi;j i

Tr
h
 

�
i U

0
ij j C H:c

i

C
X

i

Tr
h
 

�
i .ai � � / i

i
: (16.21)

The first term is a constant, the second describes spinon hopping and pairing, and
the third term arises from the constraints. Minimizing the energy with respect to the
parameters U 0

ij and ai gives the self-consistency conditions

8

J
U 0

ij D
D
 i 

�
j

E
D
"

�
0�
ij ��0�

ij

��0
ij 
0

ij

#
;

D
Tr
h
 

�
i .ai � � / i

iE
D 0; (16.22)

where we have used the notation 
0
ij � h
ij i D hc�

i"cj " C c
�

i#cj #i and �0
ij �

h�ij i D hc�

i"c
�

j # � c
�

i#c
�

j "i. From (16.20), the parameters U 0
ij and ai are not

gauge-invariant,15 so different mean-field parameters may lead to the same physical
quantities. This will have important consequences in Sect. 16.3.4.1.

Ground state and excitations of HMF – Equation (16.21) describes a system of
free spinons. The ground state is obtained by calculating the spinon band structure
and filling the negative-energy single-particle states. The resulting state satisfies the
constraints (16.13) only on average, and is therefore not a valid spin- 1

2
wave func-

tion. One way to obtain a spin state is to apply a Gutzwiller projection in order to
remove configurations with empty or doubly occupied sites [35]. This can be per-
formed numerically by using Monte Carlo methods [35–37]. Another approach is
to analyze the qualitative effects of fluctuations, based on symmetry arguments.

Because Uij and A0 are invariant under spin rotations, HMF does not have
any preferred direction in spin space. The mean-field ground state is thus a total-
spin singlet, without magnetic long-range order. It is already a spin-liquid state in
the sense of definition 1 (Sect. 16.2.1). This type of mean-field approach is not

14 This approximation is equivalent to particular large-N limits of the model, obtained when the
spin-rotation symmetry group SU.2/ is generalized to SU.N / [26–28]. With bosonic operators
instead of fermions, this type of mean-field approximation is closely related to “Schwinger-boson”
approaches [29–34].
15
D
 i 

�
j

E
¤ 0 is in apparent contradiction with Elitzur’s theorem, which states that non-gauge-

invariant quantities should average to zero. Some slight abuse of notation has been committed here,
as true expectation values in the mean-field theory should be averaged over all gauge-rotated copies
of a given representative state.
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appropriate to describe Néel-ordered phases; bosonic representations of the spin are
more appropriate, because bosons may condense.

In addition, HMF contains spin- 1
2

excitations, obtained by adding or removing
one spinon to or from the ground state. A crucial question is whether the existence
of “deconfined” (in fact, free at this crude level of approximation) spinons is merely
an artefact of the mean-field approximation. In such a case, the inclusion of fluc-
tuations (in particular of gauge-field fluctuations) would confine the spinons. The
other possibility is that the spinons remain deconfined in the presence of fluctuations
(or Gutzwiller projection), in which case the mean-field approximation is indeed a
useful starting point for an accurate description.16

Example: the “�-flux” state – Consider the mean-field state on the square lat-
tice introduced by Affleck and Marston [27, 28], which is equivalent to the “mixed
s C id” RVB state [38] and labeled “SU2Bn0” in Wen’s classification [39]. This
state has ai D 0, �ij D 0, and a modulus j
ij j D 
0 identical on all bonds. The
phases ij D arg .
ij / are such that 12 C 23 C 34 C 41 D � (mod 2�) on every
square plaquette. As in the case of hopping amplitudes for a charged particle in the
presence of a uniform magnetic field, there is no gauge in which ij is translation-
invariant. The unit cell defined by ij contains at least two sites. A possible choice

is U 0
ij D i
0

�
1 0

0 1

�
for bonds i ! j oriented as in Fig. 16.1. The corresponding

mean-field Hamiltonian is

HMF D 2
0

X
hi!j i;�D";#

�
ic

�
i�cj� C H:c:

	
C constant; (16.23)

and gives two bands of quasiparticles with dispersion relations [27, 28]

E˙.k/ D ˙4
0

q
cos.kx/2 C cos.ky/2 (16.24)

(in the Brillouin zone defined by jkxj C jky j � �). The Fermi energy is at E D
0,17 where the two bands meet at kA D .�=2; �=2/ and kB D .�=2;��=2/. To
describe the long-distance properties of the system, it is useful to focus on low-
energy excitations and to linearize the spectrum in the vicinity of kA and kB . The
corresponding Hamiltonian is that for four fermion flavors (two for the spin and two
for the A- or B-“valley” index) of two-component18 Dirac fermions.

16 A similar question arises concerning the presence of a gap in the excitation spectrum. HMF can
be gapless, as in the �-flux example below. It is then important to understand whether fluctuations
beyond the mean-field approximation can act to open a gap. In some cases, the spectrum is expected
to remain gapless, although fluctuations will in general change the correlation exponents. This is
the case if the terms which could potentially open a gap (terms relevant in the renormalization-
group sense) are actually forbidden by gauge invariance or by symmetry (Sect. 16.3.4.1). Then the
mean-field approximation is again a good starting point to describe a gapless spin liquid.
17 In agreement with (16.22), the system is half-filled.
18 There are two zero-energy single-particle states when EC D E�.
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π π π

πππ

Kx/ π

K
y
/π

Fig. 16.1 Left: bond orientations used to define the mean-field �-flux state on the square lattice
(
i!j D �
j i D i
0 2 R) [27, 28]. Right: minimum energy for a pair of spinons with total
momentum k D .kx; ky/
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Fig. 16.2 Examples of mean-field states on the kagomé lattice. A: dimerized state with 
0ij D J=2

on the thick bonds and 
0ij D 0 on all other bonds. Such states are the (degenerate) lowest-energy
states at the mean-field level [41]. B: state including fluctuations ı
ij of the bond field 
ij at order
.ı
ij /

3 lifts this degeneracy in favor of configurations maximizing the number of hexagons with
three “dimers” [42]. C: Œ0; ��-flux phase on the kagomé lattice [43, 44]. Thin (thick) bonds have

ij D C
0.
ij D �
0/ 2 R, such that the flux is 0 on triangles and � on hexagons

Because spinons are necessarily created in pairs, we show in Fig. 16.1 the energy
of the two-spinon continuum, EC.k � q/ C EC.q/, as a function of k. These
excitations are gapless and linearly dispersive around the four minima (located
at k D .0; 0/, .�; 0/, .0; �/, and .�; �/). As we will discuss in Sect. 16.3.4,
the presence of gapless fluctuation modes around this mean-field state means that
the stability of the mean-field approximation is a priori not at all clear. A some-
what involved analysis suggests, however, that it could indeed represent a stable
spin-liquid phase with gapless magnetic excitations (remnants of the excitations
discussed above) and algebraic correlations [40].

Dimerized mean-field states – Among all the different self-consistent mean-
field states, the “dimerized” states have the lowest energy at the mean-field level for
a large class of lattices [41]. Such a mean-field solution can be viewed as a hard-
core dimer covering of the lattice (Fig. 16.2): 
0

ij D Jmax=2 on the bonds occupied
by a “dimer” and 
0

ij D 0 otherwise, while �0
ij D 0 everywhere. The configura-

tion of “dimers” is such that each site is touched by exactly one dimer, and only
occupies the bonds .ij / with the strongest antiferromagnetic exchange, Jij D Jmax.
Because the number of such dimer coverings is (usually) an exponential function of
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the number of sites, these mean-field solutions are massively degenerate. However,
we expect that the fluctuations of the field U will lift this degeneracy. Indeed, if
these fluctuations are treated perturbatively (1=N expansions), one obtains an effec-
tive model [42, 45] in the subspace of dimerized states, known as a quantum dimer
model [46]. Fluctuations may also lower the energy of some other (undimerized)
mean-field solutions, and certain types of solution may also be stabilized by other
interactions (notably by ring-exchange terms). For these reasons, it is very impor-
tant to study mean-field states which are locally stable even if they are not global
energy minima at the mean-field level; on this point we comment that it is much
more significant to compare energies after Gutzwiller projection.

16.3.4 Gauge Fluctuations

For a given mean-field solution, its stability must be verified by investigating the
low-energy fluctuation modes. In a large N formalism, the mean-field solution is
exact atN D 1 and the question to be adressed is: does the phase found atN D 1
survive at large but finite N , that is when the fluctuations modes of the fields A0

i .�/

and Uij .�/ are introduced. In other words, do we have a (quantum) phase transition
between the (mean-field) state at N D 1 and 1 � N < 1. If any mode or modes
drive(s) the system to an instability, the mean-field approximation is not an appro-
priate starting point and the physical properties of the system (presence/absence of a
gap, broken symmetries, excitations) cannot be those of the mean-field Hamiltonian.
On the other hand, if no modes lead to a divergence of physical quantities, the sign
of an instability, the mean-field solution may describe, to some extent, a real phase
of the spin model (at least for large enough N ). Of course, it is difficult to exam-
ine all possible fluctuations, as this would be equivalent to solving the original spin
model. As a first approximation, gapped degrees of freedom may be integrated over
(or simply ignored), as they are expected to play no qualitative role at low energies.
By contrast, gapless modes are potential sources of instability, and thus are likely to
influence the low-energy, long-distance physics of the system.

Fermion density fluctuations may be gapped or gapless, depending on the spec-
trum of HMF. When these modes are gapped, the fermions form an incompressible
state at the mean-field level, and the density fluctuations are expected to have no
effect on the long-distance properties of the system. There are three simple cases
[4] where such a thing happens: (1) the bond parameters U 0

ij break the translational
invariance in such a way that the ground state of HMF is a band insulator (Fermi
level between a completely filled and a completely empty band), as in the dimerized
solutions of [41]; (2)HMF contains a pairing term (� ¤ 0) so that its ground state is a
BCS-like gapped “superconductor” [4]; (3)HMF contains a non-trivial flux (i.e. dif-
ferent from 0 or �) piercing some of the plaquettes, and its ground state is analogous
to a set of completely filled Landau levels, as in the integer Hall effect [47].

Gauge excitations with a continuous gauge group are also natural candidates for
gapless excitations. The reason for this is that the gauge invariance forbids “naive”
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mass terms, such as .A�/2, for the gauge field in the same way that it preserves the
masslessness of ordinary photons; however, more elaborate mechanisms, such as
Anderson-Higgs, may still open a gap. Gauge excitations are also important because
they can mediate long-range interactions between the spinons. The importance of
gauge modes in slave-boson mean-field theory was first put forward by Baskaran
and Anderson [48].

The spin models of interest here have a local SU.2/ gauge invariance
(Sect. 16.3.2). Thus, one may ask why the fluctuations are not always described
by an SU.2/ gauge field, or alternatively, why the nature of the gauge field does
actually depend on the particular mean-field state. The answer is that the mean-field
parameters U 0

ij break partially the local SU.2/ gauge invariance (unless all the U 0
ij

are diagonal matrices on all bonds), leaving only a lower invariance symmetry. This
is in a sense analogous to global symmetries, where the number of Goldstone modes
depends on the number of broken continuous symmetries. Following Wen [4, 39],
we will discuss how to construct the gauge fields describing fluctuations about a
given mean-field state.

16.3.4.1 Projective Symmetry Group and Invariant Gauge Group

Because the mean-field parameters U 0
ij are not gauge-invariant, two apparently dif-

ferent solutions may be physically identical. A set of parameters U 0
ij which are not

translationally invariant may describe a (mean-field) QSL with no broken symmetry.
As an example, consider the �-flux state defined by (16.23). Under any transla-

tion by one lattice constant in the x direction, U 0
ij is changed into QU 0

ij D �U 0
ij on

all the vertical bonds, and remains unchanged on horizontal bonds. However, the
gauge transformation associated with Wi D .�1/iy I maps QU 0 back to U 0, and thus
both U 0 and its translation, QU 0, label the same mean-field state.19 This result illus-
trates that the physical symmetries are encoded in a non-trivial way in the mean-field
parametersU 0

ij . In fact, this is a fundamental property, inherent to any description of
the system in terms of fractional excitations (in this case spinons): the Hamiltonian
describing the hopping of the spinons requires a gauge choice and is apparently less
symmetric than the original spin model. This led X.-G. Wen [39] to introduce the
concept of Projective Symmetry Group (PSG).

Definition of the PSG – Let T W i 7! T .i/ be a lattice symmetry of the original
spin model andW be a (time-independent) gauge transformation (16.20). The PSG
associated with the mean-field parameters fU 0

ij ; aig is defined as the set of all the
pairs .T;W / satisfying

U 0
ij D WiU

0
T .i/T .j /W

�
j ; ai � � D Wi .aT .i/ � �/W �

i 8i; j: (16.25)

19 The two mean-field states give the same expectation values for any observable which conserves
the total number of fermions on each site (therefore including physical spin observables). They
also give the same spin- 1

2
wave function after Gutzwiller projection.
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An element of the PSG is thus a lattice symmetry followed by a gauge transforma-
tion, such that the mean-field parameters U 0

ij and ai are unchanged. In the “�-flux”
example above, the PSG contains (among other elements) the horizontal transla-
tion by one unit cell associated with Wi D .�1/iy I, and the vertical translations
associated to the trivial gauge transformationWi D I.

The invariant gauge group (IGG) [39] is a special subgroup of the PSG, contain-
ing all the elements .T;W / where T is the identity. As we will show, the IGG
determines the gauge group, and therefore the nature of the gauge fluctuations
around the mean-field solution.

We consider a mean-field state and denote by I its IGG. We first assume for
simplicity that I is isomorphic to U.1/. In such a case, the gauge transformations
W 	 2 I can be parameterized as

W 	 W i 7! W 	
i D exp .i ni � �/ ; (16.26)

where W 	
i is an SU.2/ rotation of angle  2 Œ0; 2�Œ about the axis defined by the

(spatially varying) unit vector ni . At each site, we rotate ni to the z axis,

ViW
	

i V
�

i D exp .i � z/ : (16.27)

These elements Vi 2 SU.2/ define a new gauge, in which U 0 becomes QU 0,
defined by

QU 0
ij D ViU

0
ijV

�
j ; (16.28)

and certain types of fluctuation of QU about QU 0 may be parameterized by a real
field A,

QUij D QU 0
ij eiAij � z

: (16.29)

We will now show that A is the spatial component of a U.1/ gauge field, and
is thus potentially important in describing the low-energy excitations of the sys-
tem. We consider a particular family of gauge transformations, i 7! exp Œi.i/ � z�,
where the angle  parameterizing the elements of the IGG (16.27) has been pro-
moted to a local variable .i/. The bond field QUij transforms according to QUij !
ei	.i/� z QUij e�i	.j /� z

, whence only a few short algebraic manipulations are required20

to cast QUij in the form of (16.29), with the replacement Aij ! Aij C .i/� .j /.

20 One uses (16.27),(16.28), and (16.29) to transform the right-hand side,

ei.i/� z QUij D ei.i/� z QU 0
ij eiAij � z

(16.30)

D ei.i/� z
ViU

0
ij V

�
j eiAij �z

(16.31)

D ViW
.i/
i U 0

ij V
�
j eiAij � z

; (16.32)
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Thus these phase fluctuations of the bond variables are those of a U.1/ gauge field.
In some cases [39], several subgroups of the IGG are isomorphic to U.1/. Each
one can be parameterized as in (16.26), but with different directions n1

i , n2
i , : : : .

Repeating this construction for each subgroup leads to the same number of U.1/
gauge fields. We note finally that the IGG always contains the group Z2, because
the gauge transformation W W i 7! �I leaves all U 0

ij unchanged. The construction
of the associated Z2 gauge field, Aij 2 f0; �g, is identical to the U.1/ case, except
for the restriction .i/ 2 f0; �g.

16.3.4.2 Two Simple Examples of IGG

As a first exercise, one may determine the IGG of the �-flux state on the square
lattice, where U 0

ij D ˙i
0 is proportional to the identity. By definition, an element

of the IGG is a set of matricesWi 2 SU.2/ satisfyingWiU
0
ijW

�
j D U 0

ij on all bonds.

From the particular form of U 0, this equality becomesWiW
�

j D I, showing thatWi

must be the same (arbitrary) SU.2/ matrix on every site. We have thus shown that
the IGG of this spin-liquid state is isomorphic to SU.2/.

As a second example, one may consider the spin liquid proposed by Hastings
[43] and Ran et al. [44] for the kagomé-lattice Heisenberg model. At the mean-field

level, the bond field takes the values U 0
ij D ˙
0

��1 0
0 1

�
D ˙
0�

z, with the signs

chosen to produce a flux 0 for each triangle and � for each hexagon (Fig. 16.1).
From this particular form of U 0, the condition on W 2 I may be expressed as
Wj D � zWi�

z. Thus, if Wi is specified at any point i , all the other matrices are
fixed. By propagating this condition around any triangle of the lattice, one finds
W0 D .� z/3W0.�

z/3 D � zW0�
z, i.e. W0 must commute with � z, and therefore has

the form of (16.26) with n D Œ0; 0; 1�. Thus I D U.1/.

16.3.4.3 PSG Beyond the mean-field Approximation

Thus far, we have defined the PSG as the symmetry of the mean-field Hamiltonian
(through U 0

ij ; the time component a is omitted hereafter for simplicity). The utility
of the PSG is, however, that it is robust to fluctuations, at least at the perturbative

and then employs the fact that, for any angle  , W  belongs to the IGG of the mean field U 0.
Setting  D .i/ yields W .i/

i U 0
ij D U 0

ijW
.i/
j , and finally

QUij ! ViU
0
ijW

.i/
j V

�
j eiAij �z

e�i.j /�z
(16.33)

D ViU
0
ij V

�
j ei.i/� z

eiAij �z
e�i.j /� z

(16.34)

D QU0
ij ei.i/�z

eiAij �z
e�i.j /�z

: (16.35)
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level [39]. We denote by L. ; U / the exact Lagrangian of the spin model, in
terms of the fermions  i .�/ and bond fields Uij .�/ introduced in Sect. 16.3.2. L
is invariant under any gauge transformationW and lattice symmetry T : L. ; U / D
L.P P�1; PUP�1/, whereP D .W; T / need not be in the PSG ofU0. However, if
P 2 PSG, then U0 D PU0P

�1, and the Lagrangian L0 describing the fluctuations,
defined by L0. ; ıU / D L. ; U0 C ıU /, is invariant: L0. ; ıU / D L. ; U0 C
ıU / D L.P P�1; P.U0 C ıU /P�1/ D L.P P�1; U0 C P.ıU /P�1/ D
L0.P P�1; P ıUP�1/. In addition, the mean-field ground state and the mean-
field Hamiltonian are also symmetric under the PSG, because the expectation values
h i 

�
j i D U0 are by definition PSG-invariant. Thus, the theory for the fluctuations

about a given mean-field U0 has the symmetry group of its PSG.
We appeal now to the general property that, unless a phase transition occurs,

broken or unbroken symmetries do not change their nature under the inclusion of
perturbations. The ground state will receive some corrections once fluctuations are
included but, on the assumption that the mean-field state exists within a stable phase,
the symmetries will not change. The PSG is not only a property of the mean field,
but is a property of the whole phase. Different spin liquids may be distinguished
and hence classified by the symmetry group of the Hamiltonian driving their spinon
dynamics, which can be read from the PSG of the appropriate mean-field starting
point,HMF.

This symmetry principle has important consequences. To obtain an effective
description of L0. ; ıU /, some high-energy modes can be integrated out formally.
One may, for example, eliminate the fermionic modes which are far from the Fermi
level. In the example of the �-flux state (16.23), such a procedure leads to Dirac
fermions with a linear dispersion relation. One may also integrate out the amplitude
fluctuations of the bond variables Uij , retaining only the phase fluctuations (which
in the example of (16.23) is equivalent to neglecting the fluctuations of j
0j). Under
the assumption that no change of symmetry occurs when including these fluctua-
tions, any term (even if it is invariant under all lattice symmetries) which is not
PSG-invariant cannot appear in the effective action L0.

Consider the example of a mean-field Hamiltonian where the spinons are gapless
at Nf points in the Brillouin zone, and are described by 2Nf flavors of two-
component Dirac fermions after linearization (the factor of 2 given by the spin ";#).

The corresponding fermion operators, �
˛D1���2Nf

i , are linear combinations of the
microscopic spinon operators, ci;� , and each element of the PSG is equivalent to
a particular transformation of the � operators (a detailed example is presented in
[49]). The effective action for the Dirac fermions (and their associated gauge field)
is obtained by a formal integration over higher-energy degrees of freedom. During
this process, terms which are quadratic in � may a priori be generated and open a
gap (which would spoil the algebraic nature of the spin correlations). However, from
the discussion above, such terms are constrained to be invariant under the PSG. In
certain cases [40, 44, 49], one may show that none of the possible terms arising
this way is PSG-invariant. Such terms cannot be generated by integrating out the
fluctuations (particularly of Uij ) perturbatively, and the system may remain gapless.
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In such cases, the PSG “protects” the gapless spectrum. This can lead to stable
critical states, even when the Hamiltonian has not been tuned to a critical point. For
a recent example on the kagomé lattice, see [44,49]. We note in concluding this sec-
tion that the PSG analysis does not provide any information about non-perturbative
effects caused by fluctuations. This is the case, in particular, for the prolifera-
tion of magnetic monopoles in a U.1/ gauge field [31], which can lead to spinon
confinement (but, however, is not expected to occur if Nf is sufficiently large [40]).

16.4 Z2 Spin Liquids

The simplest spin-liquid states (according to definition 3) for a two-dimensional
spin- 1

2
system are the Z2 liquid states, which have gapped spinons. The name is

taken from the fact that the gauge group (IGG) relevant for describing its elementary
excitations is Z2. All the excitations are gapped, and the spin correlations are short-
ranged. The magnetic (spin- 1

2
) excitations are deconfined spinons, which may be

fermions or bosons. In addition, the system has singlet (total spin S D 0, i.e. non-
magnetic) excitations which are fluxes (or vortices) of the Z2 gauge field. These
vortices were discussed in the early days of RVB theories [4, 50, 51] and have more
recently been christened “visons” [52]. Although such spin liquids can be discussed
within the slave-fermion formalism [39], below we describe the approach based on
the short-range RVB framework.

16.4.1 Short-range RVB Description

An RVB wave function can be written as j	i D P
c 	.c/jci, where c labels a

valence-bond covering of the lattice. This state is manifestly a spin singlet, but the
nature of the spin correlations depends on the weights 	.c/. In particular, if this state
has a sufficient weight 	.c/ for configurations c with long singlet bonds, h	jS i �
S j j	i can even be long-range-ordered (Néel order) [53]. Here we focus instead on
states where the weight 	.c/ can be neglected if the valence-bond exceeds a finite
length � � O.1/. In this case, spin correlations are expected to decay exponentially.

However, this condition is not sufficient to guarantee a liquid, as a VBC wave
function can also be written using short-range valence-bonds. In a VBC, one may
define “parent” configurations ci (i D 1; : : : ; d , where d is the degeneracy) which
have the spatial periodicity of the crystal. In a columnar VBC on the square lattice,
the parent states would be the 4-columnar configurations. If j	i is a crystalline state,
each covering c can be compared to its “closest” parent, from which it will differ
only by collection of small loops.21 These loops represent fluctuations around the
maximally ordered configurations [17].

21 We employ the standard notion of the transition graph to compare different valence-bond con-
figurations. By overlaying two configurations c and c0, one obtains closed loops by following
alternately a valence bond of c and a valence bond of c0.
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If j	i describes an RVB liquid, there is no parent configuration to which to
compare c, but one may still consider the transition graphs between two typical con-
figurations c and c0. Such loops can be visualized as resulting from a process where
two neighboring spinons are created out of c, propagate along a closed loop, and are
annihilated to form again a short-range valence-bond in c0. On the assumption that
these virtual processes ocurring within the ground state contain some information
about elementary excitations, the characteristic size of the resonance loops in the
ground state represents the typical distance between excited spinons. If this length-
scale is finite, it would indicate spinon confinement. Because the short-range RVB
liquids are by contrast deconfined, the associated resonance loops should be large,
with their size described by a scale-invariant (critical) distribution. We find here an
interesting situation where the spectrum is gapped, and local observables are short-
ranged, but some critical phenomena are “hidden” in the loop distribution of the
ground-state wave function. These loops are related to Wilson loop operators in a
gauge-theory description.

With periodic boundary conditions, one may choose a closed loop �1 on the
dual lattice, which winds around the torus in the direction 1. Short-range valence-
bond configurations may then be sorted according to the parity P1 D ˙1 of their
number of valence-bonds crossing �1. P1 is a topological invariant, in that it can-
not be changed by any local operator (for precise statements see [54]). However,
moving a spinon around the system in direction 2 does change P1, which is the
analog of the operator U OF discussed in Sect. 16.2.3.3. P1 defines two topological
sectors, while P1 and P2 together define four. These sectors are locally equivalent:
if a valence-bond configuration is known only over a finite region of the lattice, it is
not possible to decide to which sector it belongs [55]. Because conventional liquids
are insensitive to their boundary conditions (compared to solids), a short-range RVB
liquid, where all local observables have short-range correlations, can reach the low-
est ground-state energy equally well in all sectors.22 Thus, a Z2 liquid has as many
ground states as it has topological sectors.

16.4.2 Z2 Gauge Theory, Spinon Deconfinement, and Visons

In a VBC, the confining potential experienced by the spinons arises from the ordered
background. It is thus plausible that valence-bond liquids do not generate such a
confinement force. To show that spinons truly are deconfined requires a deeper

22 It is instructive to compare with the case of a VBC: for a general VBC covering, invariant under
two translations T1 and T2, choose a lattice size and geometry such that the periodicity vectors
are an even multiple of T1 and an even multiple of T2. The directions of T1 and T2 are also taken
to define the cuts �1;2 required to define parity sectors. It is easy to verify that these choices
guarantee that all ordered parent configurations, and thus the degenerate ground states in the VBC
phase, belong to the same “even�even” topological sector. The lowest states in the other sectors
will lie higher by an energy proportional to the linear system size.
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analysis. One possibility is to derive an effective Z2 gauge theory [56], which is
known to have a deconfined phase, by analyzing the structure of the gauge fluc-
tuations about an appropriate mean-field state [4].23 This approach has also been
described in the context of an Sp.N / generalization [60] of a frustrated Heisenberg
model on the square lattice (large-N limit) [33], and is similar to the mean-field
theory of Sect. 16.3 except in that it has bosonic spinons. In particular, it has been
shown that the phase fluctuations of the bond variables are described by a U.1/
or a Z2 gauge theory, depending on whether the short-range spin correlations are
collinear or non-collinear, respectively (these two cases have different IGGs). Short-
range RVB spin liquids correspond to the Z2 case, where the presence of competing
interactions is essential to produce the non-collinear spin structures responsible for
the emergence of Z2 gauge degrees of freedom and spinon deconfinement. The
large-N description of gapped Z2 liquids has been extended to several 2D frustrated
models [61–63].

We consider a mean-field state fU 0
ij ; aig with a gapped spinon spectrum [obtained

from (16.21)] and IGGD Z2. From the discussion of Sect. 16.3.4, the relevant gauge
modes can be parameterized with a Z2 gauge field Aij 2 f0; �g by Uij D U 0

ij eiAij .
Because the spinons are gapped at the mean-field level, they can be integrated out,
which generates short-range interactions for Aij . Given that � z

ij � eiAij D ˙1,
these interactions must be invariant under the Z2 gauge transformations � z

ij !
�i�

z
ij�j , where �i D ˙1 may take an arbitrary value at each lattice site. A prod-

uct Bp D � z
12�

z
23 � � �� z

n1 around any plaquette p of the lattice is such an invariant:
this is the Z2 “magnetic” (or gauge) flux. On each bond we denote by �x

ij the oper-
ator which changes � z

ij D 1 to � z
ij D �1 (and vice versa); this is the “electric”

field. The Z2 gauge invariance requires that the Hamiltonian commutes with any
Gi0 D Qp

˛D1 �
x
i0i˛

, where i1; : : : ; ip are the neighbors of site i0, because Gi0 gen-
erates the elementary gauge transformation defined by �i0 D �1 and �j ¤i0 D 1.24

Thus the “electric” field is also gauge-invariant, and hence is an allowed term in the
effective Hamiltonian for the gauge fluctuations.

To discuss the typical phenomenology of such a Z2 gauge theory, we consider
the simplest Hamiltonian

HZ2
D ��

X
.ijkl/D�

� z
ij �

z
jk
� z

kl
� z

li
� J

X
hi;j i

�x
ij ; (16.36)

23 An alternative is to describe short-range RVB liquids by effective quantum dimer models [46],
such as those considered in [57, 58], which in turn can be mapped (sometimes exactly [58]) onto
Z2 gauge theories [59].
24 States must also be gauge-invariant. Fermions transform according to  i ! �i i , which cor-

responds to the gauge generator Fi D ei�.c
�

i"
ci"Cc

�

i#
ci#/. Physical states should therefore satisfy

GiFi j	i D j	i. However, Fi D 1 because of the constraint (16.6), and thus Gi j	i D �j	i,
which is the origin of the term odd Z2 gauge theory [59].
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where � controls the “magnetic” energy term and J the “electric” one, and the sums
run over all plaquettes and bonds respectively. Creating a pair of (infinitely heavy)
“test” spinons at sites i0 and in can be effected by the gauge-invariant operator
c

�

i0"�
z
i0i1

� � �� z
in�1in

cin" [as in (16.8)], which changes (anticommutes with) �x on all
the bonds along the path i0 � � � in. For� =J � 1we may ignore the “magnetic” term,
and the ground state has �x D 1 everywhere. Because any bond with �x

ij D �1
introduces a high energy penalty, the spinons experience a potential which grows
linearly with their separation, i.e. they are confined. By contrast, the spinons are
essentially free in the limit � =J 	 1, where the model can be studied perturbatively
from the J D 0 limit.

At J D 0, the ground state has � z
ij D 1, and the elementary excitation is a gapped

and localized Z2 flux, for example on plaquette p0, corresponding to Bp0
D �1,

whereas Bp D 1 elsewhere (we specialize the discussion to dimension D D 2).
Such vortices (“visons” [52]) can be created in pairs by applying to the ground state
a product

Q
l �

x
l

of electric-field operators involving all the bonds l cutting some
path on the dual lattice (by considering the operatorG, one observes that the result-
ing state is unaffected by local deformations of the path). The cores of the two visons
are located in the plaquettes at the two ends of the path, and the energy is indepen-
dent of their separation. Away from J D 0, visons acquire a finite bandwidth and
non-trivial short-range interactions. However, if short-distance effects close to the
vortex core are neglected, the vison creation operator is essentially the product of
Z2 “electric-field” operators as defined above.

To see what this means in the RVB description, we note that eiAij can be viewed
as an operator which shifts the valence bonds by one lattice constant (Sect. 16.2.3.2).
Because the electric field �x

ij anticommutes with � z
ij D eiAij , it can be interpreted

as an operator measuring the presence or absence of a valence-bond between sites i
and j . Thus, the vison creation operator counts the parity of the number of valence
bonds crossing a path ending at the vortex core (the other end may be at the bound-
ary of the system or at another vortex core). In addition to local modifications close
to the core, a vison excitation is obtained from the ground state by changing the
sign of the valence-bond amplitude 	.c/ if the number of valence-bonds crossing
the path is odd.

As suggested by the names “electric” and “magnetic”, a spinon winding around
a vison experiences a long-range Aharonov–Bohm effect, corresponding to a phase
factor �1. In the approach discussed here, spinons are fermionic, and thus if a bound
state of a spinon and a vison happens to be energetically favorable, the resulting
composite spin- 1

2
excitation would be a boson.

16.4.3 Examples

In this section, we review a (not exhaustive) selection of lattice models with a
gapped, fractionalized Z2 phase. The Ising-like model introduced by Kitaev [64]
is quite possibly the simplest example. It contains four-site interactions between
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Ising spins, and can be solved exactly, but has no continuous symmetry and is not
microscopically related to the RVB states expected in frustrated, Heisenberg-like
magnets. Still, it provides a very simple realization of spin systems with “spinon ”-
and “vison”-type excitations. A related model was introduced in [65]. The bosonic
models discussed by Motrunich and Senthil [66] also have a Z2 phase and are some-
what closer to the types of magnets discussed here, in that they possess a globalU.1/
symmetry. The model of Balents, Fisher, and Girvin [67] (see also [68]) is a spin- 1

2

model on the kagomé lattice, with easy-axis, Heisenberg interactions between 1st,
2nd, and 3rd neighbors. It is one of the simplest known Heisenberg-like models with
a well-characterized Z2 liquid phase.

Several numerical studies have also found indications of possible gapped QSL
phases in SU.2/-symmetric spin- 1

2
models. These systems are, however, hard to

simulate, and the theoretical understanding of the candidate QSL states which
emerge remains rather incomplete. Here we mention also models with four-spin
“ring” exchange on the triangular lattice [69], with J1 � J2 � J3 interactions on the
honeycomb lattice [70], and with J1 � J2 [71] or J1 � J3 [72] interactions on the
square lattice.

Although a dimer may be viewed as a pair of nearest-neighbor spins coupled
in a singlet state, quantum dimer models are not related exactly to simple SU.2/
magnets. However, they do provide simple realizations of Z2 liquids [57, 58], and
can also be used to construct “by hand” SU.2/ spin models with QSL ground states
[73, 74].

16.4.4 How to Detect a Gapped Z2 Liquid

In this section, we consider some observables which can be used to investigate
whether a system is a gapped QSL. First, the system should not develop any SSB
upon cooling. If the system fulfils the conditions of the LSM theorem (energy gap
and half-odd-integer spin per unit cell, Sect. 16.2.4), the absence of SSB at T D 0

is in fact sufficient to guarantee the existence of fractionalized excitations. In this
case, the detection of an energy continuum in the dynamical spin structure factor
(accessible through inelastic neutron scattering), as opposed to the single peak char-
acteristic of a long-lived spin-1 excitations, is a signature of spinon deconfinement.
In the case of a Z2 liquid, short-range vison correlations are a further necessary con-
dition (for example [68]), and a possible experimental technique for the detection
of visons in a doped Z2 liquid was proposed in [52]. Theoretically, another test is
to search for a ground-state degeneracy and to verify that the ground state cannot be
distinguished by any local observable in the thermodynamic limit [22,55]. We men-
tion finally that the topological order can also be detected from the wave function
itself, by analyzing its bipartite entanglement entropy [75, 76].
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16.5 Gapless (Algebraic) Liquids

The mean-field theory described in Sect. 16.3 can lead to states with a gapless spinon
and/or a gapless gauge-excitation spectrum. In some cases, these gapless QSLs have
been argued to be stable with respect to fluctuations. The gapless excitations mean
that these new states of matter are a priori quite “fragile”. If the spinons are gapless
at the mean-field level, there are possible “mass” terms which could be generated
when including fluctuations (even if these are weak), and which could open a spin
gap (i.e. cause an instability towards a gapped QSL or some type of VBC). However,
as noted in Sect. 16.3.4, these terms are sometimes forbidden by the PSG. One must
then consider the effect of gapless gauge modes, for example if the IGG is U.1/.
With gapped matter fields, which here are the spinons, such compact lattice gauge
theories are generically in a confined phase in 2D due to the proliferation of “mag-
netic monopoles” (particular space-time configurations of the gauge field [77]), and
the mean-field theory is unstable to gauge fluctuations [31,32]. However, this result
does not always apply in the presence of gapless spinons with a linear dispersion
relation (one or more “Dirac cones”, as in the �-flux state), in which case the gap-
lessness of the mean-field state may survive fluctuations [40, 78, 79]. The resulting
QSLs are known as “U.1/”, “algebraic”, or “long-range RVB” spin liquids. The
rich physics of these critical states is closely related to that of “deconfined critical
points” [80], because in both cases the monopoles are irrelevant for the low-energy
properties. The “�-flux” state [27, 28, 40] on the square lattice and an analog on
the kagomé lattice [43, 44] are two examples of mean-field states with Dirac-type
spinon spectra which have been argued to survive fluctuations and to give rise to
algebraic spin liquids. It should also be stressed that spinons are not free quasipar-
ticles after fluctuations are taken into account, even at very low energy. Because of
the strong interactions with the gauge modes, many correlation functions (includ-
ing spin correlations) show an algebraic decay with non-trivial exponents (different
from the mean-field ones) [40, 78, 79]. To our knowledge, there is as yet no lattice
spin model for which clear evidence of such an algebraic QSL has been found.

16.6 Other Spin Liquids

We have included several families of QSL in the present review, but have also omit-
ted several important ones. Here, we provide a brief list of some of these. Chiral spin
liquids [47, 81], which have spontaneous breaking of time-reversal symmetry (and
therefore do not obey definition 2), have deconfined spinons. The mechanism by
which these systems can escape confinement is the existence of a Chern-Simons
term, allowed because of the time-reversal symmetry-breaking, in the effective
action, which gaps the gauge modes. We also mention possible QSL states with
rich topological structures, including fractional excitations with non-Abelian statis-
tics [82–85]. A further class of quantum spin liquid is the set of “algebraic vortex
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liquids” [86], proposed in certain frustrated models with easy-plane interactions;
their description is based on a mapping of the vortices to fermionic degrees of
freedom.

16.7 Conclusion

We have introduced some theoretical ideas for describing disordered ground states
in Mott insulators (by which is meant that the total spin is a half odd integer per unit
cell). Using the fermionic representation of the spin operators, we have discussed
how gauge fields emerge as fluctuation modes around given mean-field solutions of
the Heisenberg model. The stability and hence validity of such a mean-field approxi-
mation depends on whether the gauge field mediates a confining interaction between
the spinons (instability) or whether the spinons remain deconfined (stability). In
the specific case of short-range resonating-valence-bond liquids, the fluctuating Z2

gauge field is simply the valence-bond background in which the spinons propagate.
This type of approach is very useful in shedding light on the low-energy prop-

erties of spin liquids. It also allows a classification of the different possible phases
and the extraction of certain universal properties. Deciding whether or not a given
frustrated spin model has a spin-liquid ground state remains a difficult task, because
the approaches discussed here are not easy to apply as quantitatively accurate calcu-
lations for microscopic Hamiltonians. However, the concepts we have reviewed,
including gauge fluctuations, fractionalization, and topological order, are crucial
elements guiding the search for and characterization of these new states of matter.
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Chapter 17
Quantum Dimer Models

Roderich Moessner and Kumar S. Raman

Abstract These lecture notes aim to provide a self-contained, pedagogical intro-
duction to the physics of local constraints, fractionalisation and topological liquids
organised around the Rokhsar–Kivelson quantum dimer model. Topics and phenom-
ena covered include emergent photons, SU(2) invariant spin liquids, valence-bond
solids and Cantor deconfinement, along with an elementary introduction to the
underlying theoretical models and methods.

17.1 Introduction

The study of simple model Hamiltonians to describe magnetic systems has a
long tradition in condensed matter and statistical physics. Starting with the initial
analyses of the Ising and Heisenberg models, our understanding of the collec-
tive behaviour of matter, and of countless magnetic materials, has been advanced
greatly. In particular, magnetic ordering phenomena have provided a stable basis for
our understanding of order and spontaneous symmetry breaking. The ordered state
of the ferromagnet, and the Néel state of an antiferromagnet, are two particularly
simple, and familiar, examples of orderings which occur at low temperature.

Beyond such simple examples, qualitatively different types of behaviour have
been uncovered both in experiment and in theoretical studies. This chapter is
devoted to an expose of the Rokhsar–Kivelson quantum dimer model [1], a model
Hamiltonian which captures the physics of some of these new phenomena in a par-
ticularly simple and transparent way. In pictorial form, the RK-QDM Hamiltonian
on the square lattice reads:

|+h.c.)+v(| )|+|HQDM = Σ–t(| 〉〈 〉〈 〉〈 (17.1)

Its historical origin lies in the study of high-temperature superconductors, where
it was proposed by the two scientists whose names it now bears as a description of
the short-range flavour of Anderson’s resonating valence bond physics [2–4] – for
a few words on history, see the review [5]. In this formulation, a dimer represents
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an SU(2) singlet bond between two spins located at its endpoints, and the model
describes the quantum dynamics of a singlet-dominated phase: the first, kinetic, term
in the above Hamiltonian describes a ‘resonance’ between two different dimerisa-
tions of a plaquette. The analogy to the resonance between the two dimerisations of
the benzene ring is the origin of the apellation RVB.

However, the RK-QDM has since graduated from this field and has increasingly
been used to describe new and unusual forms of collective behaviour in a broader
variety of settings. A survey of these forms the backbone of this chapter. We will
encounter new types of order (topological and quantum order), unusual (resonons
and visons) and fractionalised (spinons and holons) excitations, and exotic critical
points.

17.2 How Quantum Dimer Models Arise

17.2.1 Link Variables and Hard Constraints

What is the difference between a quantum dimer and a quantum spin model? While
we tend to think of spins living on sites of a lattice, a dimer degree of freedom is
more naturally associated with a link: a dimer living on a link can be thought of as
connecting the two nearest neighbor sites which are located at its endpoints.

There is a certain arbitrariness in calling a variable a site or a link variable.
However, the Hilbert space of a dimer model is defined by enforcing a hard
constraint on the sites of the lattice, i.e. where the links meet. This constraint
consists of demanding that each site forms a dimer with one, and only one, of
its nearest neighbors. Therefore, the configurations included in the dimer Hilbert
space are the set of nearest-neighbor dimer coverings of the lattice and super-
positions thereof. This constraint thus prohibits monomers, i.e. sites not attached
to any dimer (Fig. 17.1a); higher-order polymers (Fig. 17.1b), in which three or
more sites are connected together; or long-range dimers between sites that are
not nearest-neighbors (Fig. 17.1c). The connection of this idea with gauge theo-
ries will be discussed below. In this chapter, we will use the term “dimer” to mean
“nearest-neighbor dimer”.

Much of the new physics captured by QDMs relies on this constraint. Such con-
straints are a common theme in modern many-body physics. They typically arise
when the Hamiltonian contains an overwhelmingly large energy scale which needs
to be taken into account at the very outset. Such a constraint may be present in the
form of a large onsite Coulomb repulsion (i.e. a “Hubbard-U ”), which prohibits
more than one electron to be present on a lattice site; in a frustrated magnet, it
may be due to a large ground-state manifold obeying a certain local ground-state
constraint, as described in the following section.

Much of the discussion in this chapter applies more generally to systems in which
the (effective) Hilbert space incorporates (1) a non-trivial local constraint and (2) a
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a

b

c

Fig. 17.1 Constraints. Left: The hardcore constraint of the quantum dimer model. Also shown are
defects which violate this constraint including: (a) monomers, (b) higher-order polymers, and (c)
long-range dimers. Right: The local structure of ice involves protons (red, small dots) bonded to
oxygens (blue, large dots)

local quantum dynamics. Let us point out at this stage that (2) tends to be much
harder to achieve than (1), and we discuss point (1) first.

This definition includes, for instance, quantum vertex, ice, and coloring models,
fermionic derivatives of RK-QDMs, and much more. In fact, the reader may now,
with some justification, be alarmed at the broad scope of this definition, and is there-
fore invited to draw the somewhat arbitrary line of what to include in this class of
‘locally constrained models’ more restrictively. As a guide, we present a number of
examples in the following.

17.2.2 The Origin of Constraints

The original motivation for the quantum dimer model was high-temperature super-
conductivity, in particular the quest for a non-magnetic parent state of the supercon-
ducting phase. To minimise their antiferromagnetic exchange energy, neighbouring
pairs of spins would form singlet bonds, denoted by a dimer. The dimer constraint
reflects the fact that each spin can form a singlet bond with at most one of its neigh-
bours. More generally, dimer models can be thought of as a simple starting point for
describing phases of magnets dominated by local singlet formation. Such unusual
magnetic phases are covered in this volume in the chapter by Misguich.

An even older, probably the first, example of a similar constraint is found in
ice. There, oxygen atoms are connected by a network of hydrogen bonds into a
fourfold coordinated lattice. The protons binding the oxygens together sit asym-
metrically on each bond, but not randomly so: each oxygen has two protons sitting
close to it, and two far away, so that H2O molecules effectively retain their identity.
This constraint is one of the Bernal–Fowler ice rules [6]. Defining an Ising variable
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S z D ˙1 according to whether a proton is far away or close to a particular set
of oxygen atoms, one finds the ice rules encoded by the ground-states of the
Hamiltonian

H D J
X
hij i

S z
i S

z
j D J

X
˛

0
@ 4X

i˛D1

S z
i˛

1
A

2

; (17.2)

where the sum on hiji runs over neighbouring pairs of hydrogen bonds, ˛ runs over
oxygen sites, and i˛ over the four bonds of each oxygen.

It was in Anderson [7], back in 1956, who realised that this Hamiltonian describes
a range of systems: in particular, antiferromagnetically coupled Ising spins on the
pyrochlore lattice would at low temperature also map onto the ice model, with the
sum on i now running over the four sites of a tetrahedron, the basic building block
of the ice lattice. For details, see Gingras’ article on spin ice in this volume.

This avenue of investigation has more recently reappeared in the study of charged
particles partially covering a lattice, where electrostatics at short distances imposes
the constraint that the system be as neutral as possible [8]. For charge ordering, the
Ising spins will thus encode the ionisation state of an ion.

Similarly, for particles subject to short-range repulsion, Si stands for whether a
given site is empty or occupied. This Hamiltonian has thus played an important role
for supersolid phases of bosons on optical lattices [9–12].

17.2.3 Tunable Constraints

A generalisation of the above Hamiltonian (17.2) is obtained by adding a field h (in
reduced units) pointing in the z-direction:

H D J
X
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i˛D1
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hS z
i D J

X
˛

0
@ 4X

i˛D1

S z
i˛
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2

; (17.3)

where we have dropped a constant involving h2. h assumes different meanings
(electric field, particle density, and so on) in the different contexts mentioned above.

Crucially, h allows the selection of a sector of the theory [13] by imposing that
the lowest energy states obey a local constraint of minimising:

L˛ D
ˇ̌
ˇ̌
ˇ̌

4X
i˛D1

S z � h=2

ˇ̌
ˇ̌
ˇ̌ : (17.4)

For very large h, this is minimised by S z � 1, which implies a trivial ground
state manifold consisting only of the maximally polarised state. As h is reduced, it
becomes favourable at first to flip a spin on exactly one of the links emanating from
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each site ˛. Denoting the link with a flipped spin by a dimer yields a hardcore dimer
model. As h is lowered further, it becomes advantageous to flip a second spin, which
in turn gives a loop model: at each site ˛, two links are special, which can be iden-
tified with a loop passing through the site.1 On the square lattice, this gives the ice
model. Continuing this process requires increasingly coordinated sites to yield new
sectors – for the sixfold coordinated triangular lattice, the three-dimer manifold at
h D 0 generates the basis states for the easy-axis kagomé ring exchange model [14].
Back in the language of magnetism, these sectors manifest their presence via mag-
netisation plateaux, as they are stable for finite ranges of field and correspond to
different average local, and hence global, magnetisations.

As an aside, we remark that at the special values of the field where two sectors
with different magnetisations are degenerate, the space of allowed states contains the
allowed states from both sectors but also additional states2; such an energy cross-
ing occurs, for example, on the kagomé lattice at zero field, h D 0. This crossing
is an interesting feature in itself, as it can give rise to unusual signatures in the
magnetothermodynamics; some examples are given in [15–17].

In model systems in statistical mechanics, these constraints can, of course, be
imposed at will, and the dimer, vertex, ice, colouring, etc., models have a long
history in statistical mechanics, in particular in d D 2 where many of them are
soluble [18].

The archetypal setting in which local constraints play a central role are gauge
theories [19] – the local configuration space is defined by restricting a much larger
space to a ‘physical’ subspace by demanding that a gauge constraint be satisfied.
For instance in magnetostatics, of all possible vector fields B, only those satisfying
the no-monopole condition r � B D 0 are considered acceptable.

17.2.4 Adding Quantum Dynamics

The most popular route of adding quantum dynamics is by fiat. First, the set of
allowed classical configurations are elevated to basis vectors of a Hilbert space.
Next, one identifies the simplest local rearrangement permissible. This does not
typically involve a single link variable (e.g. removing one dimer) as this would lead
to a violation of the local constraint. Rather, one finds a dynamics involving loops
or plaquette flips – a number of examples are given in Fig. 17.2.

One then endows such a flip with a coherent quantum dynamics captured by a
matrix element of strength t : for the square quantum dimer model, this is just the
kinetic term in (17.1).

1 We can identify the two special links as part of a “string” passing through the site. As the reader
may verify, the constraint that every site has two such links requires the strings to form closed
loops.
2 For example, when the dimer and loop models become degenerate, the space of allowed sites will
include states where some sites have one dimer emanating while others have two.
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a

b

c d

e f

g

h

Fig. 17.2 The analog of (17.1) can be written for any constrained model by identifying the sim-
plest local rearrangement consistent with the constraint. For the honeycomb lattice dimer model
(a), the simplest move involves three dimers while for the triangular lattice (b), there are three
different (but symmetry-equivalent) types of two-dimer moves. For the cubic lattice (c), it is again
a two-dimer move which can now occur in any plane and likewise in higher dimensions. In a loop
model (d), each site has two dimers. The simplest move involves two dimers and results in loops
fusing or separating. A Z2 gauge theory may be viewed as a generalized dimer (or loop) model
with a less restrictive constraint: instead of fixing the number of dimers per site, we fix the parity.
This means that each site contains either an odd (e) or even (f) number of dimers and the simplest
move is to exchange the empty and occupied links on an elementary plaquette as shown. Note that
under this dynamics, every plaquette is flippable. In the six-vertex model (g), each site has two
inward and two outward arrows. In this case, the simplest rearrangement is to reverse the direction
of the arrows on a plaquette with circulation. In a coloring model (h), each site has a red, green,
and blue link. The most basic move exchanging involves six links
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In the corresponding spin model, this plaquette dynamics can be due to any term
like a transverse field of strength � , a transverse exchange Jxy , or a ‘ring-exchange’
K around a plaquette �:

Hq D ��
X

i

Sx
i � Jxy

X
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Sx
i S

y
j �K

X
�

Y
i2�

Sx
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When projected onto the physical space, these terms may, in fact, lead to the same
effective Hamiltonian [20].

In the original paper by RK, an estimate of the strength of the kinetic term t was
provided in terms of the original magnetic exchange constant J of the Heisenberg
model but in general, the instances in which this is underpinned by an actual micro-
scopic calculation are few.3 The classical potential term, v in the Hamiltonian (17.1),
is often added for convenience, as it allows an RK construction – this is described
in detail below.

17.3 The Quantum Dimer Model Hilbert Space

17.3.1 Topological Invariants

Before discussing the QDM Hilbert space, we first mention an important property
of the classical dimer model. Because of the hardcore constraint, the number of
allowed configurations is much smaller than in a spin model defined on the same
lattice. For example, for a square lattice with N sites, the number is 2N while the
number of ways to cover the square lattice with dimers grows asymptotically as
.1:3385:::/N [24, 25]. The price of this reduction is that it is no longer generally
possible to view the system as being composed of independent degrees of freedom
on sites or links.

Put another way, for spin systems this latter property implies that any spin con-
figuration can be obtained from another spin configuration by a series of local
manipulations, i.e. by sequentially flipping the spins on appropriate sites. However,
because of the hard constraint, it is not possible to manipulate a dimer without also
moving other dimers. On a square lattice, the simplest move is the plaquette flip
mentioned above. A more general move involves interchanging the occupied and
empty links along a flippable loop as illustrated in Fig. 17.3.

From this perspective, it is easy to see that there are quantities which remain
invariant under local manipulations of the type just described. For example, on
non-bipartite lattices such as the triangular lattice, the parity of the number of
dimers crossing a non-contractible reference line spanning the lattice (Fig. 17.4a)
is unaffected by local dimer rearrangements. One way to see this is to note that any
flippable loop will intersect this reference line an even number of times so flipping

3 Parameters in effective Hamiltonians have been estimated for frustrated magnets in [21–23].
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Fig. 17.3 An example of a flippable loop. The links between the dashed lines in the figure on the
left define a closed path where every other link is occupied by a dimer. The figure on the right is
obtained from the one on the left by switching the occupied and empty links

a
b c

Fig. 17.4 The dashed line is a reference line that fully spans the lattice, i.e. the line may end on a
boundary but not in the interior of the lattice. (a) For non-bipartite lattices, the parity of the number
of dimers crossing the reference line (i.e. whether the number is odd or even) is unaffected if the
dimer pattern is changed locally. (b) For the square lattice (similar constructions apply for other
bipartite lattices), one may label the vertical lines of the lattice alternately as A and B lines. Then,
if NA.B/ is the number of dimers crossing the reference line on A.B/ lines, the quantity NA �NB
is invariant under local dimer rearrangements. If the system is defined on a torus or cylinder, the
reference line is actually a reference loop which winds around one of the toroidal directions. (c)
shows a non-contractible loop around a cylinder; identifying the two open circles at the ends of the
cylinder yields a torus

the dimers on this loop will not change the parity. Any local transformation involves
flipping a sequence of such loops. An analogous invariant exists for bipartite lattices
such as the square lattice (Fig. 17.4b).

However, if the system is defined on a torus, or on a surface of higher genus, it is
possible to make a flippable loop that intersects the reference line an odd number of
times by having the loop wind around one of the toroidal directions. Such a nonlocal
transformation will change the value of the “invariants” just described which, in this
context, are called winding numbers.

The winding numbers provide a natural way of partitioning the set of dimer cov-
erings into sectors. On a torus, the procedure works by first choosing two reference
loops that wind around the two toriodal directions. With respect to these two loops,



17 Quantum Dimer Models 445

we define two winding numbers which we call Wx and Wy . We define the sector
.Wx;Wy/ as the set of all dimer coverings with winding numbers .Wx ;Wy/. Clearly,
all dimer coverings in this set can be related to one another by a sequence of local
dimer moves. To move from one sector to another requires a change in the winding
number which involves at least one nonlocal move. For more general surfaces, the
sectors are defined by specifying 2g winding numbers where g is the genus of the
surface – the genuses of a sphere and a torus are 0 and 1, respectively.

While the sector labels .Wx;Wy/ depend on our choice of reference loops, the
reader may verify that the sectors themselves depend only on the topology of these
loops, i.e. that they wind around the two toriodal directions. For this reason, the
sectors are commonly called topological sectors.

17.3.2 Topological Order

To construct the QDM Hilbert space, the first step is to treat the set of dimer cover-
ings as a collection of vectors. A vector space is constructed by also allowing states
that are linear superpositions of dimer coverings. To obtain a Hilbert space, we need
to define an inner product. The usual choice is to declare the set of dimer coverings
to be an orthonormal basis for the space.4 In this chapter, we will still refer to these
quantum basis vectors as “dimer coverings”.

Operators acting on this dimer Hilbert space are characterized by examining the
way they act on the individual dimer coverings. The RK-QDM and other Hamil-
tonians considered in this chapter have the common feature of being the sum of
operators which act locally on dimers in the sense discussed above. For such sys-
tems, the winding numbers discussed above are good quantum numbers and it is
natural to subdivide the Hilbert space into dynamically independent topological
sectors corresponding to different values of the winding number.

A topological sector is the subspace spanned by the set of all dimer coverings
with a given winding number. The number of topological sectors depends on the
lattice geometry and topology as in the classical case. However, depending on the
lattice and also the terms included in the Hamiltonian, it may be possible to sub-
divide the topological sectors into even finer dynamical sectors. This is because
quantum fluctuations only generate dimer rearrangements by repeated application
of the kinetic terms included in the Hamiltonian. For the basic RK Hamiltonian
(17.1) on the square lattice, the kinetic term is believed to be ergodic within each
topological sector so a further subdivision of a topological sector is not possible.
This is not the case for the RK Hamiltonian on a triangular lattice [27].

This Hilbert space structure makes QDMs a natural setting in which to con-
struct and explore microscopic models of topological order [28]. Topological order

4 A recent preprint by Paul Fendley argues that a more complex inner product may be a better
choice in some settings [26].
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describes the situation in which the ground states in the different topological sec-
tors are exactly degenerate. To be more precise, consider the triangular lattice QDM
where each of the 2g winding numbers can take two values corresponding to even
and odd parity (Fig. 17.4a). In this case, for a system of finite linear size L, there
is a ground-state multiplet containing 22g D 4g states – one from each topological
sector – separated by a gap from the other states, and split among each other by an
energy which vanishes exponentially as expŒ�cL�, where c is some constant.5

Topological order is like conventional ‘local’ order in that it leads to a low-lying
multiplet of asymptotically degenerate states. However, it is fundamentally different
in the following crucial respects. First, the degeneracy depends on the topology of
the lattice on which the system lives. Second, there is no local order parameter which
can be used to distinguish the ground states in the different topological sectors.
Rather, one needs to follow a reference line all the way around the system to count
the number of dimers it crosses. Whether the outcome is even or odd is uncertain
until the line closes.

This is in stark contrast with an Ising ferromagnet, say, where the preference
of the spins to point up or down can be detected locally. Likewise, the absence of
conventional order in QDMs amounts to demanding that all local dimer correlators
decay exponentially with distance.

17.3.3 Fractionalisation

The concept of topological order was first discussed in the context of the fractional
quantum Hall effect [28] where its most striking consequence is fractionalisation
[30]: the phenomenon that a gas of electrons can organize so that its elementary
excitations carry a fraction of the electron charge e and obey fractional statistics,
i.e. as if the electron has “split” into more basic constituents.

In the current context, this phenomenon can be explained in simple pictures by
enlarging our Hilbert space to include monomer defects. Imagine taking one dimer
out of the system – this will leave behind two monomers on the sites it occupied.
These monomers can then be separated by shifting a neighbouring dimer so that
it occupies the site of one of the monomers. If the monomers can be separated to
large distances at finite cost in energy, they are said to be deconfined. They can,
therefore, act as independent quasiparticles [31] – removing one dimer has given
rise to two quasiparticles! The word confinement is used here in analogy to the
situation in quantum chromodynamics, where it is impossible to separate a pair of
isolated quarks at a finite cost in energy – they are confined.

To make contact with some commonly used vocabulary, it is useful to view the
dimers as SU(2) singlets. The elementary magnetic excitation involves replacing
one of the singlets by some triplet state (Fig. 17.5a – we are ignoring orthogonality

5 More complex forms of topological order occur in different settings [29].
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a b
c

Fig. 17.5 Monomers (spinon s or holons). (a) A dimer can break into two monomers. (b) In a
resonating background, the monomers can separate and propagate as independent excitations. (c)
Separating monomers in a crystalline phase causes a string of unfavorable bonds which requires
an energy proportional to the length of separation

issues here). Fractionalisation of the triplet then means that two spin-1/2 excitations,
‘spinons’, can propagate independently.

Similarly, one can think of removing a single electron. As this electron was part
of a singlet bond, it leaves behind an unpaired electron. Again, if these two defects
can move apart at a finite cost in energy, the electron will have fractionalised into
the spinon carrying S D 1=2, and another quasiparticle which is charged and spin-
less – known as a holon. This flavour of fractionalisation is known as spin-charge
separation [2].

Note that these particles – monomers, i.e. spinons or holons – act as defects
that violate the hard constraint mentioned above. This is similar to what happens in
gauge theories, where Gauss’s law can allow for the presence of charges: r � E D �.
monomers can similarly be treated as charges in a gauge-theoretic description of
the fractionalised phases. We note that RK-QDMs provided the first theoretical
examples of microscopic Hamiltonians with deconfined fractionalized phases [27].

17.4 QDM Phase Diagrams

17.4.1 General Structure of Phase Diagrams

The presence of two terms in (17.1) immediately provides a one-parameter (v=t)
family of models. The detailed structure of the QDM phase diagram, including
which phases are present, depends strongly on the lattice geometry and dimension-
ality. Also, new phases may appear if we perturb (17.1) with additional interac-
tions or consider less trivial ways of implementing the constraint (see Fig. 17.2).
Nonetheless, there are a number of features common to most models that are worth
noting.
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17.4.1.1 The Rokhsar–Kivelson Point

One reason for the great popularity of RK-QDMs in recent years is rooted in a
particularly attractive feature they display by construction. This feature is that when
v D t , the ground state wave function of (17.1) is given by:

j˚GSi D
0X

jci (17.6)

where jci is a dimer covering and the prime denotes that the sum is over a sector,
that is to say a set of dimer coverings that is closed under repeated action of the
flip term in (17.1). In fact, we can construct such an equal amplitude superposition
in every sector and these special wave functions are all degenerate ground states of
(17.1) at v D t .

In the next section, we will derive (17.6) and discuss a number of special proper-
ties of these wave functions. At the moment, we note that often the dimer coverings
contained in a sector will lead to an equal amplitude wave function without any local
order. However, a nonlocal measurement will be able to detect the winding number
of the topological sector in which the wave function lies. Also, if the model is gen-
eralized to include monomers, we will find that these excitations are deconfined, as
shown heuristically in Fig. 17.5a, b.

Due to these unique properties, the point v D t has been given a special name: the
Rokhsar–Kivelson point or RK point. The relation of the RK point to the rest of the
QDM phase diagram depends on the lattice. For a number of nonbipartite lattices in
two and higher dimensions, including the 2d triangular and 3d fcc, the RK point is
part of aZ2 RVB liquid phase, which has topological order. For a number of bipartite
lattices in three and higher dimensions, including the cubic lattice, the RK point is
part of a Coulomb phase, which is also a liquid phase but with a different type
of quantum order. For a number of 2d bipartite lattices, including the square and
honeycomb, the RK point is a special critical point separating different crystalline
phases. The presenting understanding is that these behaviors should be generic.

17.4.1.2 Columnar Phase

For v=t ! �1, the system will seek to maximize the number of flippable plaque-
ttes. The state which accomplishes this for the square lattice is the columnar dimer
arrangement shown in Fig. 17.6a. This state is fourfold degenerate and breaks rota-
tional symmetry and the symmetry of translation by one lattice spacing along the
direction of dimer orientation (i.e. the horizontal direction in the figure).

The term columnar state is commonly used to denote the maximally flippable
state of a lattice, though the label is especially descriptive for the square lattice.
On the triangular lattice, the number of such states is exponentially large in the
linear size of the system. The columnar state is literally an eigenstate only in the
v=t ! �1 limit but a state with columnar correlations will generally persist up to a
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a b c

Fig. 17.6 Examples of valence bond solids: (a) columnar state, (b) staggered state, and (c)
Plaquette state

value of v=t D .v=t/c < 1 which depends on the lattice [32–34]. Therefore, we call
�1 < .v=t/ < .v=t/c, the columnar phase. In contrast to the RK point, monomers
are linearly confined in the columnar phase (Fig. 17.5c). Linear confinement is a
generic feature of a crystalline phase.

17.4.1.3 Staggered Phase

For v=t ! 1. the system will seek to minimize the number of flippable plaquettes.
If the lattice permits dimer arrangements with no flippable plaquettes, then these
states will obviously be preferred. In terms of the above discussion, such states will
be the only occupants of their sectors in the dimer Hilbert space. However, what is
less trivial is that these states, if they are permitted, will be the ground states for
v=t > 1. We will see this explicitly in the next section. For the moment, we point
out that on the square lattice, there are, in fact, exponentially (in the linear size of the
system) many such states, one of which is given in Fig. 17.6b. This arrangement is
called the staggered state and the term is commonly used to denote a non-flippable
state of a general lattice. In the triangular lattice QDM, by contrast, the number
non-flippable states does not grow with the size of the lattice.

The nature of the phase diagram between the columnar phase and RK point
depends strongly on the details of the lattice. We now survey a number of phases
and features which have been seen in two and higher dimensions.

17.4.2 Z2 RVB Liquid Phase

The Z2 RVB liquid phase is an example of a phase with Z2 topological order [27].
This means that for a two-dimensional lattice with periodic boundary conditions,
there are four degenerate gapped ground states. The ground states are “liquids” in
that all dimer correlations decay exponentially. This phase was first discovered on
the 2d triangular lattice [27] where current numerical evidence [35] shows the phase
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lying in the interval 0:8 < v=t < 1. The present understanding is that this phase is a
generic feature of non-bipartite QDMs in two and higher dimensions.6

The Z2 RVB liquid phase is notable for its nontrivial excitations. The first point
is that monomer excitations are deconfined throughout the phase, not just at the RK
point. In addition, there is a second class of excitations, Ising vortices or visons
[37], which live on the dual lattice. Figure 17.7a depicts a snapshot of a state with
one vison, whose position is indicated by a dot on the dual lattice; the dashed line
extends to the boundary, if there is one, or, for a torus, winds around the system and
ends on one of the plaquettes neighboring the dot. At the RK point, a variational
wave function describing this state is given by jvisi D P

c.�1/nc jci where nc is the
number of dimers crossing the dashed line and the sum is over a sector. Note that
jvisi is orthogonal to the liquid ground state (17.6) where the phase factor .�1/nc

is absent. There is numerical work which suggests the lowest lying excitation above
the triangular lattice ground state is, in fact, vison-like [38].

The nontrivial feature of a vison is in its effect on the motion of monomers as
depicted in Fig. 17.7b. The process of moving a monomer around a vison can be
achieved by breaking a dimer into two monomers; holding one monomer fixed and
moving the other around the vison until the monomers meet again; and then fusing
the monomers back into a dimer. The process is equivalent to flipping the dimers
along a flippable loop surrounding the vison. As the figure indicates, the number
of dimers crossing the dashed line will be changed by ˙1 so the wavefunction will
change sign.

We now return to an issue glossed over in our preliminary discussion of frac-
tionalisation, namely the issue of statistics. What is the relative statistics of the
monomers? The answer is: “It depends”, as usual in d D 2, where statistics is a
question of energetics. Indeed, from the above discussion, it is clear that the relative
statistics of monomers changes if they bind to a vison. This ‘flux attachment’ can
be achieved by altering terms in the Hamiltonian rather than any native statistics

a b

Fig. 17.7 Visons. (a) visons live on the dual lattice. (b) Taking a monomer around a vison causes
the number of dimers intersecting the dashed line, and hence the wave function, to change sign

6 On the kagomé lattice, a dimer model with a Z2 liquid phase can be constructed using multiple
flip terms [36]. This latter construction is noteworthy because the model is exactly solvable and
the resulting liquid has no correlations beyond one lattice spacing. This latter property makes the
model particularly convenient for calculations.
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of the monomer excitations, as has been shown explicitly in [39]. For the simple
quantum dimer models, statistical transmutation between Fermionic and Bosonic
monomers is thus straightforwardly possible. More complex anyonic, or even non-
Abelian, statistics for defects in these kind of models are currently actively being
pursued, see e.g. [26].

As mentioned earlier, the Z2 RVB liquid has a higher dimensional analog.
For example, on the (non-bipartite) 3d three-dimensional fcc lattice with periodic
boundary conditions, the ground state is eightfold degenerate. The visons are now
defined in terms of loops instead of lines. The interaction of a spinon with a vison
involves the wave function acquiring a factor of .�1/n where n is the number of
times the spinon trajectory links with the vison loop. As in the two-dimensional
case, the relative statistics of monomers depends on whether or not it is energetically
favorable to bind a vison.

17.4.3 U(1) RVB Liquid Phase

The U(1) RVB liquid phase is another kind of fractionalized liquid phase. So far,
it has only been observed on bipartite lattices in three and higher dimensions,
including the 3d cubic and diamond lattices [40–42].

As with the Z2 RVB liquid, the U(1) RVB liquid has a distinctly quantum type
of order that is not captured by a local order parameter. However, its quantum order
is different from the (also quantum) topological order of the Z2 RVB liquid in a
number of respects. The Z2 RVB liquid is a gapped phase with exponential dimer
correlations and a ground state degeneracy that depends on the system topology.
This degeneracy is an essential feature of the entire phase.7 In contrast, the U(1)
RVB liquid is gapless with algebraic dimer correlations. While the ground state
does have a topologically related degeneracy at the RK point (see Fig. 17.4b), this
degeneracy will be lifted as we enter the phase.

The U(1) RVB liquid also has deconfined monomers. However, in the Z2 RVB
liquid, the monomers interact via a force whose range is a few lattice spacings while
in the U(1) RVB phase, the monomers interact via a long-ranged inverse square
force.8

The U(1) RVB also has a gapped excitation analogous to the vison of theZ2 RVB
called a monopole for reasons that will become clear later. These monopoles interact
with each other via an inverse square force. The interaction between monomers and
monopoles is directly analogous to the interaction between monomers and visons

7 That the degeneracy, in fact, does persist away from the RK point, where the wave function is no
longer known, was shown numerically in [35].
8 This is not actually true at the RK point, which is a boundary point of the U(1) RVB phase. As
we will see later, the inverse square force is like a Coulomb interaction transmitted by a photon
whose speed (near the RK point) is c D 1� .v=t/. At the RK point, the “speed of light” vanishes,
and so does the force.
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in the Z2 RVB liquid. In particular, bare monomers and a monomer-monopole
bound states have different statistics. Therefore, as in the Z2 RVB case, the relative
statistics of monomers is determined by the energetics.

The U(1) RVB liquid phase is also called a Coulomb phase because it has a
continuum description that resembles the usual Maxwell action of the free electro-
magnetic field. In fact, we will later see that the gapless excitation of the U(1) RVB
phase resembles a photon.

17.4.4 Deconfined Critical Points

On 2d bipartite lattices, it turns out that the RK point is not part of a liquid phase
but rather a critical point between a plaquette phase, which is discussed in the next
section, and a staggered phase. More precisely, the dimer correlations decay alge-
braically and the order parameter of the plaquette phases vanishes continuously.
However, the staggered order appears at full strength so the ground state energy
would have a derivative discontinuity. Therefore, the transition itself would be clas-
sified as first order. However, we will see below that the transition can be made
continuous by weakly perturbing the model.

The plaquette and staggered phases break different symmetries so, according to
the Landau theory of phase transitions, a transition between them will generically
be first order. It was noted in [43] that the scale invariance (i.e. diverging correlation
length) at the RK point was related to the existence of an emergent height field,
which will be discussed below, that supports deconfined excitations. Critical points
with this structure, now called deconfined critical points, have since been proposed
as a generic mechanism by which such non-Landau transitions can occur in quantum
systems [44–46].

17.4.5 Valence Bond Crystals

The most common class of phases found in QDMs are phases where the valence
bonds arrange in an ordered pattern. We have already seen the columnar (Fig. 17.6a)
and staggered (Fig. 17.6b) states. We now discuss some other crystalline phases
which have been found.

17.4.5.1 Plaquette Phase

The plaquette state is drawn schematically in Fig. 17.6c for a square lattice. This
picture should be interpreted in a mean-field sense, i.e. the thick lines indicate bonds
of the lattice where the probability of having a dimer is comparatively large and
the thin lines are where this probability is comparatively small. Imagine a pair of
dimers on an elementary plaquette resonating between the horizontal and vertical
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configurations. To zeroth order, a variational wavefunction for this state may be
visualized as a product of such terms.

As the figure indicates, the square lattice plaquette state is symmetric under rota-
tion and translation by two lattice spacings in either direction. The state is fourfold
degenerate as there are four possible ways to choose this doubled superlattice. Note
that the plaquette state breaks different symmetries than the columnar and staggered
states.9

The plaquette state can be generalized to other lattices and higher dimensions
but so far a plaquette phase has been observed only on 2d bipartite lattices, particu-
larly the square [32,33,47] and honeycomb [34] lattices, where numerical evidence
suggests that the onset of the plaquette phase begins immediately to the left of the
RK point and persists for some range of parameters. On the honeycomb lattice, the
current picture is that the plaquette phase gives way to the columnar phase via a
first order transition around v=t D �0:2 [34]. A similar scenario has been pro-
posed for the square lattice [47] but there has been a very recent suggestion that,
on the square lattice, a new “mixed” phase might occur between the plaquette and
columnar phases [48].

17.4.5.2 More Complex Crystals

A familiar difficulty in the numerical analysis of quantum many body Hamiltoni-
ans is that with available techniques only fairly small system sizes may be studied.
Therefore, questions regarding thermodynamic limits are difficult to answer defini-
tively. In the case of QDMs, the problem is compounded by the observation that
crystalline phases with rather large unit cells have been discovered even for QDMs
on fairly simple lattices. Indeed, for the kagomé quantum dimer model, fantastically
large unit cells have been proposed [49, 50].

As a concrete example, the triangular lattice QDM exhibits a phase called the
“
p
12� p

12 phase”, named for its 12 site unit cell. The phase was first conjectured
due to an exact mapping between the QDM at v D 0 and the fully frustrated trans-
verse field Ising model on the honeycomb lattice [51]. The most current numerical
evidence suggests that on the triangular lattice, the

p
12 � p

12 phase is the only
phase between the columnar phase and the Z2 RVB liquid phase discussed above
[35].

17.4.5.3 Even more Complex Crystals: Cantor Deconfinement

Cantor deconfinement is a phenomenon predicted to occur for QDM’s on 2d bipar-
tite lattices when these models are perturbed near their RK points. In the unperturbed

9 For example, on the square lattice, the staggered and columnar phases break rotational symmetry
but both have higher translational symmetry than the plaquette phase.
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QDM, the RK point is a critical point between a plaquette crystal, which has zero
winding number, and a staggered crystal, which has the maximal winding number.
It was noted in [52, 53] that for a wide class of perturbations, this picture gets mod-
ified as new crystalline phases with intermediate winding numbers appear between
the plaquette and staggered states. In particular, in the limit of an infinite system,
the winding number per unit length, which is called the tilt for reasons that will be
made clear later in this chapter, will increase continuously from zero to its maximal
value of one as we move from the plaquette phase to the staggered phase along a
generic path in the phase diagram.10

We remind the reader of two qualitatively different ways by which a function
can continuously increase from zero to one as a parameter x is tuned from xi to
xf . There is the naive “analytic” way: place a pencil at .xi ; 0/ and trace out a non-
decreasing curve that ends at .xf ; 1/ without removing the pencil from the paper.
However, we can also construct a continuous function that begins at .xi ; 0/, ends
at .xf ; 1/, and has zero derivative everywhere except on a generalized Cantor set,
where the derivative does not exist. The resulting function looks like a staircase but
between any two steps there are an infinite number of other steps, hence its name,
devil’s staircase. This construction is a standard exercise in analysis but, remarkably
enough, is relevant in the present context as we shall now see.

Returning to physics, we note that details of these new intermediate phases will
depend on specifics of the perturbation. For example, additional potential energy
terms will favor states where the tilt is commensurate with the lattice. A commen-
surate crystal has a unit cell which is finite-sized and a tilt that is a rational number.
However, quantum fluctuations, due to present and additional kinetic energy terms,
can stabilize states where the tilt is incommensurate with the lattice, i.e. where the
tilt is an irrational number.11 Therefore, if the potential terms dominate, the system
will prefer to “lock” into commensurate values of the tilt. The variation of the tilt
along a line in the phase diagram connecting the plaquette and staggered states will
resemble the devil’s staircase discussed above. However, if quantum fluctuations
are dominant, then the tilt will vary along this line in the conventional “analytic”
fashion. Such a regime of parameter space, if it exists, would effectively be an
incommensurate phase because rational tilts would occur only for a set of measure
zero.

The central conclusion of [52, 53] was that such a fluctuation-dominant regime
will exist parametrically close to the RK point for a wide class of perturbations. This
would be bordered by a regime where the fluctuations compete with the locking

10 To simplify the discussion, the reader may wish to consider a class of states where Wx D 0

but Wy can vary. In this case, Fig. 17.6a–c are states of minimal and maximal winding jWy j,
respectively. We invite the reader to construct examples of states with intermediate winding or
look at some of the pictures in [54]. Also, when we perturb the model, the phase diagram becomes
multi-dimensional. The reader should understand that when we speak of new phases appearing
between the plaquette and staggered states, we are referring to a quasi-1D slice of the actual phase
diagram.
11 Of course, this would make sense only in the limit of an infinite system.
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potentials, which would eventually dominate away from the RK point.12 Moreover,
it was observed that the commensurate states were gapped with linearly confined
monomers while the incommensurate states were gapless with monomers that were
confined only logarithmically, due to the effective two-dimensional Coulomb inter-
action. In this sense, we can think of the incommensurate states as having monomers
that are “almost” deconfined.

When the locking is strong, these “almost” deconfined points, i.e. the incom-
mensurate states, occupy a small fraction of the phase diagram and in the limit of
infinitely strong locking will exist only on the Cantor-like set defining the bound-
aries of the steps of the devil’s staircase. However, when the locking is weak, these
“almost” deconfined points occupy a finite fraction of the phase diagram and this
fraction approaches unity as we approach the RK point. Hence, very close to the
RK point we almost have an “almost” deconfined phase! This last result is what is
meant by “Cantor deconfinement”.

One reason why this result is noteworthy is because a famous result of Polyakov
[55] states that one cannot have an actual deconfined phase in a compactU.1/ gauge
theory in 2C1, of which the 2d bipartite QDM is an example. In fact, this is another
explanation for why the RK point is an isolated point in these models instead of
being part of a deconfined liquid phase. The Cantor deconfinement scenario pro-
vides a way around this, the fundamental property absent in the dimer models being
Lorentz invariance.

The arguments summarized in this section are based on renormalization group
analyses of a continuum field theory, which will be discussed more below, that is
believed to describe 2d bipartite RK points. We encourage the reader to consult the
original papers [52, 53] for details and additional caveats.13 We would like to point
that a microscopic demonstration, i.e. at the level of explicit Hamiltonian that can
be viewed as a perturbed RK point, of the weak locking regime is currently lacking.
However, we refer the interested reader to [54] for an explicit “proof of principle”
of the strong locking regime.

17.4.6 Summary of Phase Diagrams

The results of this section suggest the generic RK phase diagrams shown in Fig. 17.8.
However, richer phase diagrams may be obtained by considering exotic lattices or,
as we have seen, by perturbing away from the prototypical RK Hamiltonian.

12 The transition from an analytic variation of the tilt to the staircase-like variation was called
a “breaking of analyticity” in analogy to a similar mechanism in classical soliton models first
discussed by Aubry.
13 For example, for the square lattice QDM it turns out that a generic perturbation will drive the
transition first order, so that fine-tuning the Hamiltonian is required in order to realize the Cantor
deconfinement in that case.
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columnar ??? plaquette staggered
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v / t

a
columnar Z2 RVB liquid staggered

RK v / t

???

b

columnar ??? U1 RVB liquid staggered

RK v / t

c
columnar Z2 RVB liquid staggered???

RK v / t
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Fig. 17.8 Generic phase diagrams. (a) 2d bipartite. For the honeycomb lattice, “???” is a first
order transition between the columnar and plaquette phases. (b) 2d non-bipartite. For the triangular
lattice, “???” includes the

p
12 � p

12 phase and possibly others. (c) higher d bipartite. For the
cubic lattice, “???” is not known. (d) higher d non-bipartite. For the fcc lattice, the v=t ! �1
phase, normally the columnar phase, is not characterised completely

17.5 The Rokhsar–Kivelson Point

In this section, we discuss a number of features of the RK point and elaborate on
some of the issues discussed previously.

17.5.1 Ground-state Wavefunction

To derive (17.6), it is easiest to consider the explicit example of the original square
lattice QDM given by (17.1). The sum is over all elementary plaquettes in the lattice.
The v operator acting on a dimer covering gives a potential energy if the plaquette
in question has two parallel dimers, i.e. if the plaquette is flippable, and annihilates
the state otherwise. The t operator is a kinetic energy and flips the dimers if the
plaquette is flippable and annihilates the state otherwise. At the point v D t , the
Hamiltonian is a simple sum of projectors:

 )(〈    |– 〈   |)–|HQDM = Σ (| 〉 〉 (17.7)

i.e. a sum of terms each of which has eigenvalues 0 or 1. Therefore, any wave func-
tion annihilated by this Hamiltonian will be a zero energy ground state. We may
write a general wave function as j˚i D P

c Ac jci, where jci is a dimer covering
of the lattice and the sum is over all coverings. The state j˚i will be annihilated
if, and only if, the amplitude Ac of any dimer covering jci is the same as the
amplitudes fAc0g of all dimer coverings fjc0ig that differ from jci by one flipped
plaquette. Therefore, a prototypical ground state of (17.7) will have the form of an
equal amplitude superposition, i.e. (17.6).

For the square lattice, the kinetic term is believed to be ergodic in each topolog-
ical sector. In this case, there is a unique ground state for each topological sector
given by the equal amplitude superposition of all dimer coverings in that sector. Of
course, because these are all degenerate, any linear combination of them will also be
a ground state including the equal amplitude superposition of all dimer coverings.
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The staggered state (Fig. 17.6b) will always be annihilated by (17.1) so hence
will also be a ground state at the RK point. Of course, the staggered state wave
function trivially has the form of (17.6), being the only occupant of its dynamical
sector, so this is consistent with the previous discussion. When v > t , the RK Hamil-
tonian is positive semidefinite so the staggered states, which will still be zero energy
eigenstates, will still be ground states.

17.5.2 Fractionalisation and Deconfinement

Fractionalisation and deconfinement are evident at the RK point. Imagine declar-
ing two fixed sites as hosting monomers rather than having dimers emanating from
them. Now, consider the Hamiltonian (17.7) with the two monomers held fixed. The
ground state will still have zero energy and the wave function will still have the form
in (17.6) where the dimers now resonate everywhere except on the sites having the
monomers. As the ground state energy is independent of the separation between the
monomers, the monomers are deconfined. Hence, fractionalistion generically occurs
at the RK point, indepentdently of the lattice. Whenever the RK point is a critical
point between two solid phases, the RK point is thence a deconfined critical point.

17.5.3 Spatial Correlations

The dimer–dimer correlation function h On� .r/ On� .0/i, where On� .r/ is a projection
operator for having a dimer of orientation � at site r , is an important quantity. The
form of the equal amplitude wave function, (17.6), has an important consequence for
the correlations of operators, OD, which are diagonal in the dimer basis, hcj ODjc0i D
ıc;c0hcj ODjci � Dc :

h ODi D h˚GSj ODj˚GSi
h˚GSj˚GSi D

P0hcj ODjciP0hcjci D
P
0

Dc

Nc

: (17.8)

This expression is simply an ensemble average over the set ofNc dimer coverings
connected by the flip term (which are averaged over in the

P0
) – this is exactly the

corresponding correlation function of the relevant classical dimer model at infinite
temperature.14

The spatial correlations of the dimer density may be obtained by choosing OD D
nc

� .r/n
c
� .0/, where nc

� .r/ D 1.0/ if a dimer of orientation � is (is not) present at
site r in dimer covering jci. For calculating spatial correlations of the analogous

14 However, as we shall see shortly, this does not imply that the RK point is literally “connected”
to the infinite temperature state in the sense of being part of the same phase in the phase diagram.
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classical problem, efficient numerical and, in two dimensions, analytical [24, 25]
techniques are available.

This ‘dimensional reduction’ from a d C 1-dimensional (quantum) to a d -
dimensional (classical) problem is one of the reasons RK-type models have been so
popular. They enable the transpositions of relatively easily obtained classical results
into a more interesting quantum setting.

17.5.4 Excited States

Another property of the RK point is that information about the excited states can
be obtained by studying temporal correlations of the infinite temperature classi-
cal system [57]. To see this, consider a classical ensemble of dimer coverings that
are connected to one another by application of the basic flip term in (17.1). At
equilibrium, each dimer covering occurs with the same probability. In a classical
Monte Carlo simulation, the dynamics of this equilibration is governed by the master
equation:

dp˛

dt
D �

X
˛

W˛ˇpˇ (17.9)

where p˛ is the probability of the system being in dimer configuration ˛, and W˛ˇ

is the rate of transition from state ˇ to state ˛. We are interested in the case where
the basic Monte Carlo move involves randomly a selecting a plaquette and flipping
it if possible. In this case, the matrix element W˛ˇ between two different dimer
coverings ˛ and ˇ equals �1 if ˛ and ˇ are connected by a single plaquette flip
and zero otherwise. The normalization condition

P
˛ p˛ D 1 implies that W˛˛ D

�Pˇ¤˛ W˛ˇ D nf l;˛ where nf l;˛ is the number of flippable plaquettes in dimer
covering ˛. The key observation of [57] was that:

W˛ˇ D .HQDM /˛ˇ (17.10)

i.e. the rate matrix of the classical Monte Carlo simulation is the same as the Hamil-
tonian matrix (17.1) of the quantum problem. Therefore, the two matrices share the
same eigenvalues and eigenvectors. In other words, the relaxation modes of the mas-
ter equation correspond exactly to the excited states of the QDM at the RK point.
As we will see later in this review, this fact provides a route for constructing a
continuum field theory of the RK point when the lattice is bipartite.

Moreover, any temporal correlation function of the classical problem will have
the form: X

�

c�e
��t (17.11)

where f�g are the eigenvalues of matrix W (and hence of HQDM ) and are non-
negative for reasons discussed above. As noted in [57], the long time behavior of
such correlation functions will be dominated by the smallest nonzero eigenvalue so
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numerical simulations of appropriate classical time correlation functions can give
nontrivial information about the energy gap and low lying spectrum at the RK point.
Applications of this idea will be seen further below.

The mapping from a quantum problem in d C 1 to a classical d dimensional
one is very general and can be run in reverse: given any local set of weights for a
problem in classical statistical mechanics, it becomes possible to construct a quan-
tum Hamiltonian with a special point analogous to the RK point. At this point, the
ground-state wave function can be expressed as a superposition of the classical con-
figurations where the probability amplitudes are exactly the Boltzmann weights of
the classical model. This process is known as Rokhsar–Kivelsonisation [58–60].

17.5.5 A Special Liquid Point or part of a Liquid Phase?

We have seen that the ground state manifold at the RK point includes wave functions
with no local order and fractionalized deconfined excitations. A natural question is
whether the RK point is a special point or part of a fractionalized liquid phase. We
have seen that the answer depends on the geometry and dimensionality of the lattice.
The present understanding is that for lattices in three and higher dimensions, as well
as for 2d nonbipartite lattices, the RK point is generically part of a liquid phase.
For 2d bipartite lattices, the RK point is (generically) either a special critical point
or the non-critical endpoint of an ordered phase.

This classification of lattices has not been established rigorously but extrapo-
lated from numerous specific examples. While the existence of some of these liquid
phases has been independently verified through numerics, it is difficult to numeri-
cally distinguish a liquid from a crystal with a very large unit cell, as discussed in
the previous section. In fact, the strongest evidence for the existence of these liquid
phases is based on a careful analysis of the RK point, which is what prompted their
discovery in the first place. We now review this line of reasoning.

The existence of the Z2 RVB liquid phase on the triangular lattice follows from
the observation that the classical dimer model at infinite temperature has exactly
the same correlations as the zero temperature quantum problem at the RK point. Of
course, we know the dimer–dimer correlations will match for any lattice by con-
struction. We also know that for a general lattice at the RK point, monomers are
deconfined with exactly zero correlation beyond one lattice spacing. The key point
about the triangular lattice is that the classical (i.e. infinite temperature) monomer–
monomer correlation function decays exponentially with a characteristic length of
around one lattice spacing [61,62]. In other words, both the RK point and the infinite
temperature state are liquids with deconfined monomers that interact ultra-locally.
The simplest picture consistent with this is that the RK point is part of a zero tem-
perature liquid phase that connects smoothly to the infinite temperature phase as the
temperature is raised. Similar arguments apply for other non-bipartite lattices in two
and higher dimensions.
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For bipartite lattices, this argument no longer works. Its failure stems from the
fact that for these lattices, the classical monomer-monomer correlation decays as a
power law. This means that in the infinite temperature phase, monomers are loga-
rithmically confined in 2d while in 3d , they are still deconfined but now have a long
range interaction. Therefore, the infinite temperature liquid is qualitatively different
than the liquid occuring at the RK point so there is no obvious reason to suspect a
smooth connection between the two.

Nonetheless, there are other approaches which give insight into the structure of
these bipartite RK points. In the next sections, we will discuss some of these, the
single mode approximation (SMA), which works for general lattices, and the height
representation, which works for bipartite lattices. In those contexts, we will return
to the question of why bipartite RK points in 2d are critical points while in 3d , they
are part of a U(1) RVB liquid phase.

17.6 Resonons, Photons, and Pions: Excitations
in the Single mode Approximation

In the original RK paper, the authors also had a look at the excitations of the dimer
model. One approach they took was via the single-mode approximation (SMA), in
which one constructs a trial state with a momentum which differs from that of the
ground state by q; the momentum being a good quantum number in a translationally
invariant system, the variational principle employed on the states at that momentum
yields the basic result that the energy of the trial state provides an upper bound on
the excitation energy at that momentum.

Therefore, as a matter of principle, one can use the SMA to prove gaplessness.
In order to demonstrate the presence of a gap, a different method is needed [63].

Let us denote the ground state of the dimer model by j0i, and let �x
O� .r/ be the

Pauli spin operator, its eigenvalues ˙1 corresponding to the presence or absence of
a dimer on the link at location r. O� encodes the direction the dimer points in, i.e. its
“polarisation”.

Fourier transforming the dimer density operator,

Q�x
O� .q/ �

X
r

�x
O� .r/ exp.iq � r/: (17.12)

enables us to define our trial state, which is orthogonal to j0i for q ¤ 0:

jq; O�i � Q�x
O� .q/ j0i (17.13)

One next needs to check that one has, in fact, constructed a state rather than just
annihilated the ground state, i.e. that

hq; O� jq; O�i ¤ 0: (17.14)
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One then obtains a variational energy of

E.q; O�/ � h0j Œ Q�x
O� .�q/; ŒHQDM ; Q�x

O� .q/�� j0i
h0j Q�x

O� .�q/ Q�x
O� .q/ j0i � f .q/

s.q/
; (17.15)

where f .q/ is known as the oscillator strength, and s.q/ as the structure factor.
Crucially, these can be evaluated as expectation values in the ground state, whose
correlations therefore encode information on the excitation spectrum.

The utility of the SMA derives in large part from the fact that there are situa-
tions in which gaplessness is present generically. For instance, if the density Q�x

O� .q0/

is a conserved quantity, then ŒHQDM ; Q�x
O� .q0/� D 0, whence E.q0; O�/ D 0. The

behaviour of f .q/ near q0 can then be used to determine a bound on the disper-
sion of the soft excitations. Finally, a finite f .q/ accompanied by a divergence of
s.q/ can be used to infer gapless excitations. Indeed, such a “soft mode” is a classic
signature of incipient order.

On the square lattice, RK identified the density of dimers pointing in a given
direction ( O� D Ox, say) at wavevector q0 D .qx ; �/ as a conserved quantity. For the
cubic lattice, the analogous density is simply that at q0 D .qx; �; �/. The way to see
this is to observe that dimers are always created and destroyed in pairs on opposite
sides of a plaquette. This implies that the oscillator strength, f .q0/, vanishes at q0;
at wavevector q0 C k, the oscillator strength is given by [41]

f .k/ / .k � O�/2; (17.16)

This is true not just at the RK point, but for all values of �1 < v=t � 1.
Contrary to appearances, this does not imply a line of zero energy excitations

because along with the oscillator strength, the structure factor also vanishes for all
q0 with qx ¤ � , i.e. (17.14) is not satisfied unless qx D � . Indeed, at the RK
point itself, for momentum q D .�; �Œ; ��/ C k, the structure factor is given by a
transverse projector:

s Ox.k/ / k2
y ŒCk2

z �

k2
� k2?
k2
: (17.17)

Consequently, only transverse excitations are generated [64] by Q�x
O� , a fact that

traces back to the defining constraint of the dimer model, which takes a form like
r � B D 0 for bipartite lattices.

The soft excitations near q0 D .�; �Œ; ��/ were called resonons by RK, while
in three dimensions, they are typically called photons [41, 42], as they arise from a
Maxwell theory in the standard way as discussed below. It is important to note that
the RK point is in fact untypical: the photons are anomalously soft, with a disperson
! / k2. This is remedied upon entering the Coulomb phase to the left of the RK
point, where the photons become linearly dispersing.

These photons turn out to be the only gapless excitations for the cubic lattice. In
contrast, on the square lattice one also finds gapless excitations of the ‘soft-mode’
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type near .�; 0/ and .0; �/, where there is a divergence of, respectively, s Ox and s Oy .
These soft excitations were called pi0ns [41] due to their location in the square
lattice reciprocal space. This divergence is a signature of an incipient crystalline
phase having order at .�; 0/ and confirms the earlier assertion that the square lattice
RK point is an isolated critical point. In contrast, the absence of pi0ns at the cubic
lattice RK point is consistent with the RK point being part of an extended liquid
phase.

It turns out that the trial wavefunctions used in the SMA do a much better job at
constructing resonons and photons than pions [65, 66]. Indeed, if the critical expo-
nent of the correlations is such that the structure factor remains infrared convergent,
the SMA does not even show the presence of a soft mode.

Finally, for the RK points of the simple non-bipartite lattices (triangular and face-
centered cubic), the calculations presented above do not yield gapless excitations,
in keeping with the expectation that the relevant Z2 RVB liquids are gapped [41].

17.7 Dualities and Gauge Theories

Link variables, together with a constraint defined on sites, are defining features of
lattice gauge theories. There, the gauge fields live on links of a lattice, while Gauss’
laws define the physical sector of the theory, such as the familiar

r � E D 0 (17.18)

from electrostatics. In the following paragraphs, we address the relationship between
QDMs and gauge theories.

This is most crisply done using the transverse-field Ising model (TFIM) as an
example. It will turn out that the quantum dimer model is the strong-coupling dual
partner of this simple spin model in d D 2 C 1. The Ising spins S z D ˙1 live on
the sites of a lattice 	:

HTFIM D �
X
hij i

JijS
z
i S

z
j � �

X
i

Sx
i : (17.19)

Here, Jij denotes the exchange constant of a given pair of spins and � is the strength
of the transverse field.

The mapping (see Fig. 17.9) now proceeds by identifying the link variable �x
ij on

the dual lattice with the bond energy of the spin model:

� jJij j�x
ij D JijS

z
i S

z
j ; (17.20)

so that �x
ij D �1 for a frustrated bond.

The action of the transverse field is to flip a spin, i.e. to toggle between S z
i D ˙1;

this corresponds to exchanging the sign of the energy of the bonds emanating from
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Fig. 17.9 The dark lines
denote the direct lattice; the
dashed lines the dual lattice;
and the dots are where the �
variables are located. i and j
are sites on the direct lattice

i j

σij
x

site i . These bonds form an elementary plaquette of the dual lattice, �, at the centre
of which direct lattice site i is located. The dual lattice Hamiltonian thus reads:

Hgauge D �
X

�
jJij j�x

ij � �
X
�

Y
ij 2�

� z
ij ; (17.21)

where the first sum runs over bonds and the second over plaquettes.
It would at first sight seem that (17.21) does not know whether the original spin

model was frustrated or not, as the signs of the exchange constants have disappeared.
Indeed, the information on exchange constants is stored in a gauge invariant fashion
in a Gauss’ law constraint on the physical sector of the theory, i.e. for every site of
the dual lattice, we have:

OGjphysi �
Y
C
�x

ij jphysi D ˙1jphysi: (17.22)

Here, the product is over links emanating from a site of the dual lattice, which
corresponds to the links forming a plaquette of the direct lattice. If the plaquette
is frustrated, i.e. the product of Jij around its bonds is negative, the minus sign in
(17.22) is chosen, otherwise the plus sign applies.

17.7.1 Emergence of the QDM

In the limit � =J ! 0, we have to minimise the number of frustrated bonds subject
to the constraint (17.22). For an unfrustrated model, this is done by choosing �x � 1

throughout – the system is free of dimers.
However, for a frustrated model, we have to have at least one frustrated bond

emanating from each site. Equating a frustrated bond with a dimer present on it thus
leads us to a hardcore dimer model: each site of the dual lattice has one, and only
one, dimer emanating from it in the limit � =J ! 0. Degenerate perturbation theory
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in the � term leads to the quantum dynamics of the QDM. The RK-potential term
in turn corresponds to an additional multi-spin interaction.

At T D 0, the unfrustrated Ising magnet has an ordering transition at .� =J /c.
For a frustrated magnet, the critical .� =J /c may be suppressed; in the most extreme
case, there may be no ordered phase at all, so that only the paramagnetic phase
exists.

In dual language, this corresponds to a quantum liquid. In the particular case
of the triangular QDM, which can be obtained from a fully frustrated TFIM on
the honeycomb lattice by the above route, the appropriate quantum liquid is the
fractionalised RVB liquid.

What does the topological order of the RVB liquid mean in the spin model? In
fact, working backwards, one finds that the topological degeneracy indicates that
the ground-state energy is independent of the choice of [(anti-)periodic] boundary
conditions for the spin model: the topological sectors correspond to having an even
or odd number of frustrated bonds as one goes around the system once. This makes
sense as absence of long-range order in the paramagnet implies insensitivity of the
energy to the boundary conditions. Indeed, in a perturbative expansion of the ground
state energy around J D 0, one will need to keep track of contributions involving a
product of �L terms, corresponding to a loop winding around the system, in order
to discover the nature of the boundary conditions – this is a simple explanation for
the origin of the exp.�cL/ splitting of the topological sectors in the topologically
ordered phase.

17.7.2 Continuum Limit of the Gauge Theory

On the lattice, the constraint states that the (integer) number of dimers emanating
from each site is always the same (namely, 1, for a hardcore dimer model, but this
number can be chosen freely as we have seen above). A constraint on a number
leads naturally to a U(1) gauge theory. It is a constraint on a parity, such as in the
preceeding example (17.22), that yields a Z2 gauge theory. Do all hardcore dimer
models thus yield U(1) gauge theories in the continuum?

In fact, some do (e.g. the cubic lattice) but others do not (i.e. the triangular lat-
tice). If we want to write down a U(1) Gauss’ law such as r�B D 0 in the continuum,
we need to interpret the dimers as fluxes. To do this, they need to be oriented. This
can straightforwardly be done on a bipartite lattice – one chooses to orient them to
point from one sublattice to the other. This is clearly not possible on a non-bipartite
lattice, as can most easliy be seen by thinking of the triangular lattice as a square lat-
tice with a diagonal linking the bottom left to the top right of each plaquette. Dimers
on this diagonal cannot thus be oriented.

The presence of these diagonal bonds spoils theU.1/ gauge symmetry in the con-
tinuum limit, and breaks it down to Z2, as described e.g. in [67]. In more elaborate
schemes, other continuum gauge theories (e.g. Z3 [68]) become possible, all from
models which look very similar on the level of the constraint on a single lattice site.
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Indeed, a good deal of effort has been concentrated on building lattice models
realising other types of constraints, and thereby further types of continuum theories.
For instance, Xu has written down a theory in which spin-2 excitations (‘gravitons’)
occur in three dimensions, and other authors have looked at a range of effective
plaquette models [69–72].

17.8 Height Representation

For two-dimensional, bipartite lattices, the height representation provides one route
for constructing a continuum theory of the QDM. Consider, for example, a square
lattice which we divide into A and B sublattices.15 The idea is to construct a height
field on the plaquettes of the lattice. Choose an arbitrary plaquette to be assigned
height zero. We then assign integer values to the other plaquettes through the fol-
lowing rule: moving clockwise around a site of theA sublattice, the height increases
by one if a dimer is not crossed and the height decreases by three if a dimer is
crossed. The constraint of one dimer per site ensures that the mapping is consistent
and unique up to the choice of the arbitrary height zero plaquette.16

Figure 17.10 shows some sample dimer coverings along with their respective
height representations. These pictures may be interpreted by considering each pla-
quette as the base of a block which extends out of the page by an amount given by
the integer in the center of the plaquette. From this perspective, a dimer covering
may be viewed as a two-dimensional representation of the surface of a three-
dimensional crystal. A typical height profile will be fluctuating on microscopic
scales (Fig. 17.10a). However, if we coarse-grain this height field by averaging
over small but macroscopic regions, there will be regions of the lattice such as in
Fig. 17.10b where the (averaged) surface is essentially flat and also regions such

0 –1 0 –1 0 –1

1 2 1 2 1 –2

4 3 0 –1 0 –1

5 2 1 –2 –3 –2

4 3 0 –1 0 –1

5 2 1 –2 1 –2

a

0 –1 0 –1 0

–3 –2 –3 –2 –3

0 –1 0 –1 0

–3 –2 –3 –2 –3

b

0 0 0–1 –1

1 1 12 2

4 4 43 3

5 5 56 6

c

Fig. 17.10 Examples of height mappings. In each case, the upper left plaquette is chosen to have
height zero

15 As usual, each A site is surrounded by four B sites and vice versa.
16 Of course, we are also free to uniformly shift all the plaquettes by the same fixed amount.
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as in Fig. 17.10c where the (averaged) surface is tilted. As these figures suggest, a
dimer configuration can have an overall tilt. The columnar state is an example of a
flat configuration while the staggered state is the state with maximal tilt.

The effect of flipping the dimers on a flippable plaquette is simply to increase or
decrease the height of that plaquette by 4. Therefore, the overall tilt of a configura-
tion will not be affected by any local rearrangement of the dimers. One can verify
that the overall tilt of a configuration is simply its winding number per unit length.

So far, the height field is just a different way to represent a dimer covering. The
usefulness of this mapping is that it provides a route for constructing continuum
field theories for RK points of (bipartite) QDMs. A purely deductive argument,
where the field theory is obtained by systematically coarse-graining the microscopic
Hamiltonian, is currently not available. The present intuitive construction, due to
Henley [57], is based on the relation between RK point of the QDM and the relax-
ation modes of the master equation for the classical problem discussed earlier in
Sect. 17.5.4.

The starting point is the nontrivial observation that the long distance properties
of the classical dimer problem can be captured by a continuum theory of the sine-
Gordon type [76]:

SŒh� D K

2

Z
d2r jrh.r/j2 � �

Z
d2r cosŒ2�h.r/� (17.23)

Here, h.r/ is a coarse-grained version of the height field so the theory implicitly
assumes a bipartite lattice. The origin of the second term can be traced back to the
fact that the microscopic height field can only take integer values. The route is a
bit involved but it is carefully described in [73] in the setting of triangular Ising
magnets, where the appropriate operator identifications are also derived.K is deter-
mined by requiring that correlation functions computed with this action have the
same long distance behavior as the corresponding correlations of the microscopic
system.

A 2d sine-Gordon theory, such as (17.23), shows a Kosterlitz–Thouless phase
transition between a rough phase, where � renormalizes to zero, and a smooth
phase, where � is RG relevant [76].17 It turns out that for the square and honey-
comb lattices, the value of K which reproduces the microscopic dimer correlations
corresponds to the rough phase so we will drop the cosine term from now on. How-
ever, for some lattices, such as the diamond-octagon lattice [75], the heights are flat,
corresponding to a crystalline dimer solid.

Equation (17.23) describes an equilibrium where states with small overall tilt are
favored and flat states are the most probable. This captures the microscopic fact
that the low winding number sectors contain more dimer coverings than the high
winding number sectors so, in the absence of interactions, will be favored due to
entropy. The strategy for constructing the quantum field theory of the RK point is to

17 In the language of the 2D Coulomb gas, the rough phase is where opposite charges exist as
bound pairs while the smooth phase corresponds to a plasma.
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first construct the continuum analog of (17.9). This will give a continuum version
of a rate matrix, which we then identify, by analogy to (17.10), as the continuum
version of the QDM Hamiltonian at the RK point.

Recall that (17.9) determines how the probability p˛ of a classical dimer system
being in configuration ˛ changes with time during a Monte Carlo simulation where
the only allowed dynamics is the plaquette flip and where the equilibrium distribu-
tion is the one where each dimer covering occurs with equal probability. How does
this appear from a continuum standpoint? The variation of the microscopic config-
uration with time will appear as a time dependence in the height field h.r; t/. The
quantity corresponding to p˛ is then P Œh.r; t/�, which is the probability distribu-
tion function of the field h.r; t/. The presence of the Monte Carlo dynamics will
appear as random, sudden, and ultra-local fluctuations of h.r; t/. At equilibrium,
P Œh� D P0Œh� will be proportional to e�SŒh�, SŒh� being given by (17.23).

Of course, this picture is qualitative. In order to proceed with the derivation,
we need to determine the correct way to generalize the field h.r/, which we were
discussing above, to incorporate dynamics. As a guiding principle, we note that for
conventional critical points described by a Landau-Ginzburg type theory of a local
order parameter the way to do this is to model the dynamics via a Langevin type
equation [76]:

dh.r/
dt

D �ıSŒh�
ıh.r/

C 
.r; t/ (17.24)

where the first term is a generalized damping force that drivesP Œh� to its equilibrium
distribution and 
.r; t/ is a random noise source, with zero mean and uncorrelated
in space and time. A more detailed discussion of the phenomenology behind (17.24)
may be found in an introductory text such as [76].

We remind the reader that the RK point is a very unconventional critical point
and h.r/ is not a local order parameter so this procedure is somewhat non-rigorous.
Forging ahead, we note that if a field h obeys a Langevin equation, then its probabil-
ity distribution function P Œh� will obey a Fokker–Planck equation.18 For technical
reasons discussed in [57], it is convenient to write the equation in momentum space
and in terms of the variable �Œh� D P Œh�=.P0Œh�/

1=2:

d�Œh�

dt
D �Wh�Œh� D �

"X
q

 
� d

d Ohq

C 1

2
Kjqj2 Oh

�q

! 
d

d Oh
�q

C 1

2
Kjqj2 Ohq

!#
�Œh�

(17.25)

IdentifyingWh with HRK (see (17.10)) and changing to spatial coordinates, we
obtain:

HRK D
Z
d 2r

�
1

2
˘2 C K2

2
.r2h/2

�
(17.26)

18 Again, we recommend [76] if this material is not familiar.
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where we have rescaled the field h ! hp
2

; dropped an (infinite) additive constant

term; and identified ˘ D i d
dh.r/

as the momentum conjugate to h.r/. In order to
write this as an action, we note that ˘ D @th so that:

SRKŒh� D
Z
d 2r

h1
2
.@th/

2 C K2

2
.r2h/2

i
(17.27)

Equation 17.27 is the continuum theory of the RK point. As the theory is Gaus-
sian, the correlations are critical and K can be chosen so the theory reproduces
the microscopic correlations, which will depend on the (bipartite) lattice in ques-
tion. For example, on the square lattice, K D �

18
while on the honeycomb lattice

K D �
32

. Another feature of (17.27) is that there is no penalty if the state has an
overall tilt, i.e. if rh D C0 C C1.r; t/ where

R
d 2rC1.r; t/ D 0. This corresponds

to the extensive winding number degeneracy of bipartite RK points.
A third feature of RK points captured by this action is monomer deconfinement.

A monomer is a site without a dimer and in terms of the height mapping, is a
site about which the height field increases (or decreases) by a multiple of 4 (for a
square lattice) upon a clockwise traverse. In the continuum theory, monomers may
be viewed as vortices of the height field. More formally, if �.r/ is the density of
vortices, then for any closed curve C enclosing an area A, we have the relation:

I
C

rh � dr D 4

Z
A

d2r�.r/ (17.28)

which in differential form, translates to r2h D 4�.r/. This is a 2d Poisson equa-
tion which may be solved to give: h.r/ D 4

R
d 2r 0�.r0/ ln jr � r0j. If the action

were a conventional Gaussian model, such as (17.23), then this fact would imply
that SŒh� � R

.rh/2 � R R
d2rd2r 0�.r/�.r0/ ln jr � r0j, i.e. the usual logarithmic

interaction between vortices. In contrast, the RK action of (17.27) implies:

SŒh� �
Z
.r2h/2 �

Z Z
d2rd2r 0�.r/�.r0/ı.r � r0/ (17.29)

which means that at the RK point, vortices, i.e. monomers, are deconfined as
required.

The RK point is a critical point separating valence bond crystals living in differ-
ent topological sectors. This fact motivates the following modification of (17.27) to
describe the system near the RK point:

SRKŒh� D
Z
d2rdt

h1
2
.@th/

2 C �2

2
.rh/2 C �4

2
.r2h/2 C � cos.2�h/C � � �

i
(17.30)

where �4 D K2 and we have explicitly written the cosine term which enforces
the discreteness of heights. Here, �2 D 1 � .v=t/ controls the phase transition. If
v=t D 1, we recover the RK action (17.27) If v=t ¤ 1, the �4 term is higher order
so, at the crudest level, may be ignored. If v=t > 1, this action favors a state of
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maximal tilt, namely the staggered state. If v=t < 1, the action prefers a state of
minimal tilt as required but there is an additional subtlety which we will return to in
a moment.

A nice feature of this construction is that it can be generalized to higher dimen-
sions. To see this, we first view the microscopic problem from yet another perspec-
tive. Divide the bipartite lattice into A and B sublattices in the usual way, i.e. each
link has one A site and one B site. A dimer covering of the lattice can be interpreted
as a lattice magnetic field in the following way. The links containing dimers are vec-
tors with magnitude z � 1 that point from the A to the B sublattice, where z is the
coordination of the lattice. The links without dimers are vectors with unit magnitude
that point from the B to the A sublattice.

In this way, the hard core dimer constraint is exactly the condition r � B D 0

as discussed in the previous section. This constraint can be solved by writing B as
the (lattice) curl of a potential. In 2d , B D r � h19 where h is a scalar field: it is
precisely the height field we have been working with so far! In higher dimensions,
B D r � A where A is a vector potential defined on the links of the dual lattice.

We learned that the 2d winding numbers corresponded to the overall tilts of
the height field. In this magnetic analogy, the winding numbers correspond to the
magnetic flux through a line or surface.20

Equation (17.23) describes a situation where small tilts are favored. By analogy
[41,42,74], we may conjecture that the classical dimer problem in three dimensions
should be described by a continuum action that favors small magnetic flux:

SC D K

2

Z
d 3r.r � A/2 (17.31)

Using the same procedure as we did to derive (17.30), we can obtain the following
action:

S D
Z
d 3xdt

h
.@t A/2 C �2.r � A/2 � �4.r � r � A/2

i
(17.32)

D
Z
d 3xdt

h
.E/2 C �2.B/2 � �4.r � B/2

i
(17.33)

where we have used the gauge r � A D 0 and �2 D 1� v=t . Here, E D @t A � rA0

and B D r � A. In going from (17.32) to (17.33), it is not literally an equality as
the field A0 has been included to obtain the most general expression.

19 To make sense of the curl of a scalar, you can think of it as a vector pointing in the Oz direction,
yielding a B in the 2d XY plane. As B has two components and there is one constraint, r �B D 0,
a one-component (scalar) field is sufficient to encode all the information. In 3d, one needs two
degrees of freedom, which are encoded by the vector potential A (3 components) minus a local
gauge transformation.
20 Draw a line, or surface, passing through the links of the direct lattice. The magnetic flux is
defined as the net magnetic field through the surface, i.e. the sum of the fields on the pierced links.
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The reader is invited to verify that (17.33) captures the salient features of a
bipartite RK point including the extensive degeneracy and deconfinement. Equa-
tion (17.33) is precisely the action of quantum electrodynamics except that B is
restricted in the range of values it can take. For this reason, (17.33) is referred to as
a theory of compact QED in 3C 1 dimensions and similarly (17.30) may be viewed
as a compact QED in 2C 1.

We now return to the issues raised in our preliminary discussion of bipartite RK
points. Once again, if v=t ¤ 1, we may ignore �4 in (17.33). When v=t < 1,
(17.33) becomes exactly the Maxwell action with a photon described by the disper-
sion ! D .1 � v=t/k. This is the origin of the 1=r interaction between monomers
in the U(1) RVB phase. The force is carried by a “photon” whose speed vanishes
at the RK point. Thus, at the RK point, the force itself vanishes and the dispersion
becomes quadratic. In contrast, in two dimensions, when v=t < 1, the � term in
(17.30) becomes relevant. Therefore, when v=t < 1, the system is not described by
a Gaussian theory but is driven into a crystalline phase. Therefore, unlike in 2d, the
RK is the endpoint of a phase in three dimensions.

Finally, just as a monomer can be understood as a local violation of the r � B D 0

constraint, in the 3d case, we can also consider violations of r � E D 0. These
excitations are called electric monopoles and are analogous to visons in the Z2

RVB case. Just like visons, these excitations involve only dimers.

17.9 Numerical Methods

In common with other models of quantum matter, quantum dimer models are in
principle amenable to study by perhaps the most general method, namely exact
diagonalisation of finite-size systems, a method described in the contribution by
Laeuchli in this volume.

An asset in the present context is the somewhat slower – yet still exponential –
growth of the Hilbert space with system size. One can think of this roughly as fol-
lows: whereas a system of spins S D 1=2 has a Hilbert space of dimension 2N , the
imposition of a local constraint effectively reduces that dimensionality. Therefore,
whereas the current upper limit on the size of spin systems hovers around 40 sites,
for constrained models such as the quantum six-vertex model [77, 78], significantly
larger systems can be studied.

A further very significant help is the existence of the RK point, at which the
properties of the ground state wavefunction can be studied by resorting to classical
methods, in particular standard Monte Carlo simulations where analytical treatments
are not available. These enable the study of systems very large compared to those
accessible to quantum Monte Carlo studies. In particular, this allows the study of
higher-dimensional models: for instance, the RK point of the cubic lattice QDM has
been studied for a system with over 32000 sites [40, 41].

Given the RK-QDMs are in general constructed not to exhibit a sign problem,
they are also in principle amenable to efficient numerical study using quantum
Monte Carlo (rather than exact diagonalisation) methods away from the RK point.
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In some cases, obtaining information on ground-state properties can be surprisingly
straightforward: for instance, for the hexagonal QDM, a duality mapping onto the
triangular Ising model permits a very simple quantum Monte Carlo study.

More generally, however, the constrained nature of the degrees of freedom can
be hard to deal with in the numerics. The problem arises as follows. When sampling
the partition function stochastically,

Z D Tr exp.�ˇH/ (17.34)

the presence of the Trace requires the imposition of periodic boundary conditions in
imaginary time on the degrees of freedom in a Monte Carlo simulations.

If the quantum dynamics involves flipping single spins, such as in a transverse
field Ising model, this translates into the simple and maximally local constraint that
each spin be flipped an even number of times. This constraint is naturally observed,
e.g., by an algorithm flipping clusters of spins in the imaginary time direction.

However, for plaquette moves as typically arise in QDMs, this is not usually
possible – demanding that each plaquette flip an even number of times is more
restrictive than just imposing periodic boundary conditions on the microscopic
degrees of freedom.

One recent piece of progress has been the realisation that diffusion Monte Carlo
(also known as Green function Monte Carlo) can be used to resolve this issue [79].
A description of this is beyond the scope of the current article, and we refer the
reader to the relevant articles in the literature [80].

17.10 Dimer Phases in SU(2) Invariant Models

In this section, we show how QDMs can arise from local, SU(2)-invariant spin
Hamiltonians where the physics is dominated by nearest-neighbor valence bonds.
The resulting dimer phases may then be interpreted as valence bond crystals and
liquids. The derivation involves two steps. The first is to provide a mechanism that
justifies the truncation of the full Hilbert space to the much smaller nearest-neighbor
valence bond manifold. The second step is to show how the Hamiltonian in (17.1)
can arise as the effective description of a spin Hamiltonian in this truncated Hilbert
space. We consider the second step first.

The transcription of QDM results into spin language is not an entirely trivial
matter because of two essential differences between dimers and the singlets they
represent. The first point is that while a dimer connecting sites 1 and 2 has no
orientation, specifying a singlet bond between the spins requires a choice of sign:
˙ 1p

2
.1"2# � 1#2"/. The second point is that while dimer coverings of the lattice

were taken as orthonormal basis vectors by construction, any two nearest-neighbor
valence bond coverings will always have nonzero overlap. In fact, whether the col-
lection of nearest-neighbor valence bond states is linearly independent depends on
the lattice geometry. The current understanding is that nearest-neighbor valence
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a b c

Fig. 17.11 The transition graph (c) of valence bond coverings (a) and (b). In this example, the
magnitude of the overlap between the two states is jSab j D 23x38 D 1

216

bond coverings of the square, honeycomb, triangular, and kagomé lattices are
linearly independent for sufficiently large lattices.21 However, linear independence
will break down for highly interconnected lattices.22

The non-orthogonality of two valence bond coverings is most conveniently dis-
cussed in terms of their transition graph. As shown in Fig. 17.11, this construction
involves overlaying two valence bond coverings jai and jbi and eliminating the
shared bonds. The resulting figure contains closed loops of varying even lengths.
It can be shown that the magnitude of the overlap matrix element Sab D hajbi is
given by jSabj D 2NlxLl where Nl is the number of loops, Ll is the sum of the
lengths of the loops, and x D 1p

2
.23 For a large lattice, a typical transition graph

will involve many long loops so the overlap between arbitrary states, though never
zero, will usually be very small.

17.10.1 Overlap Expansion

The overlap expansion is motivated by this latter observation that the states are
“almost orthogonal”. The idea is to treat the overlap factor x, which is actually 1p

2
,

as if it were a small expansion parameter. For the square lattice, we may choose a
sign convention for singlets so that the overlap between any two states differing by
only a single (minimal) loop of length 4 is always �2x4. In terms of the overlap
expansion, the overlap matrix for a square lattice may then be written as:

Sab D ıab � 2x4�ab CO.x6/ (17.35)

21 However, rigorous proofs currently exist only for finite-sized square and honeycomb lattices
with open boundary conditions.
22 For example, consider four spins on the corners of a square plaquette with two additional links
connecting opposite corners. This lattice has two linearly independent nearest-neighbor valence
bond states but three dimer coverings.
23 The sign of Sab depends on the sign convention for labeling singlets discussed earlier.
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where �ab is unity if the states jai and jbi differ by a single (minimal) loop of
length 4 and zero otherwise.

Now consider the following spin Hamiltonian:

ıH D J
X
hij i

si � sj C v
X
�

�
.s1 � s2/.s3 � s4/C .s1 � s3/.s2 � s4/

�
(17.36)

where the first sum is over nearest neighbors and the second sum over all square
plaquettes. We would like to write this as an effective operator that acts on the
nearest-neighbor valence bond manifold. The first step is to form an orthogo-
nal basis: j˛i D P

i S
�1=2
˛i jii. In terms of the overlap expansion, .S�1=2/ab D

ıab C x4�ab C O.x6/ so the state j˛i can be labelled in terms of its order unity
component. In terms of the basis fj˛ig, (17.36) is:

H˛ˇ D .S�1=2ıHS�1=2/˛ˇ D
X

ij

.S�1=2/˛i hi jıH jj i.S�1=2/jˇ

D �t�˛ˇ C vnf l;˛ı˛ˇ CO.vx4 C tx2/

(17.37)

where t D Jx4 and nfl;˛ is the number of flippable plaquettes contained in (the
order unity component of) state j˛i. Equation (17.37) is just the RK-QDM!

Of course, these are formal manipulations and in reality, x D 1p
2

so the error
terms are not small compared to the leading terms. As discussed in [81], the expo-
nent of the error term vx4 comes from the length of the minimal loop, which for
the square lattice has length 4, while the exponent of the error term tx2 comes
from the difference in lengths of the minimal and next minimal loops, which for the
square lattice gives 6 � 4 D 2. Therefore, one may expect the overlap expansion
to work comparatively well for lattice architectures that give larger values for these
exponents.

17.10.2 Decoration

The most straightforward way to fix this problem is to modify the problem by con-
sidering a decorated square lattice where an even number N of sites have been
added to each link (Fig. 17.12) [81]. Equation 17.36 is also slightly modified:

ıH D J
X
hij i

si � sj C v
X
�

�
.s1 � sb1

/.s2 � sb2
/C .s1 � sa1

/.s3 � sa3
/
�

(17.38)

where the labels refer to Fig. 17.12. The dimer coverings of the decorated lattice
correspond exactly to those of the undecorated lattice where an occupied (empty)
link in the latter case corresponds to a chain of dimers where the endpoints are (are
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Fig. 17.12 Decorated square
lattice for the case N D 4
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not) included. Therefore, the overlap expansion will give the same effective dimer
model at leading order.24 However, by decorating the lattice the length of a minimal
loop has increased from 4 to 4.N C 1/ so the error term is reduced from O.x2/ to
O.x2N C1/.

Therefore, by decorating sufficiently, the QDMs can be realized to arbitrary accu-
racy and the procedure can be adapted to any lattice and also higher dimensions.
While fine-tuned features, such as critical points, will only be captured in the limit
of infinite decoration, a finite decoration should be sufficient to realize the gapped
phases, including the RVB liquid of the triangular lattice.25

17.10.3 Large-N

An alternative way of suppressing the overlap between dimer states is to endow
each dimer with an additional internal flavour variable, which can take on integer
values between 1 and N . This can be achieved by following a line of investigation
which was initiated by Arovas and Auerbach with their study of Schwinger Boson
mean-field theory [83], which was then formalised in a series of papers by Read and
Sachdev, where the small parameter justifying a mean-field treatment was provided
by the inverse of the number of flavours, 1=N , see e.g. [84].

This route provides a simple quantum dimer model with only a kinetic term at
leading order in 1=N . An analysis of this model for the pyrochlore lattice has found
only a partially ordered dimer crystal [85], the final ordering pattern of which at
higher order is at present not known, although a large-unit cell solid is a plausible
outcome [86].

24 In decorated case, t is now related to J in (17.38) by t D Jx4.NC1/.
25 We direct the interested reader to [82], where a different but complementary approach was used
to construct SU(2) invariant analogs of the square and honeycomb lattice RK points. We point out
that the procedure of [82] should work for any lattice where a Klein model is known to exist, which
includes the decorated lattices just discussed.
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17.10.4 Klein Models: SU(2) Invariant Spin Liquids

Having discussed how (17.1) can arise as an effective model in the nearest-neighbor
valence bond subspace, we return to the more fundamental question of how such an
effective subspace can arise in an SU(2)-invariant, local, spin model. The follow-
ing construction, originally due to Klein, is one such route [81, 82, 87–90]. For an
arbitrary lattice 	, consider the following Hamiltonian:

H0 D
X
i2�

˛i
Ohi (17.39)

where ˛i is a positive constant that may, in principle, vary with i . Ohi is an operator
that projects the cluster formed by spin i and its nearest-neighbors onto its highest
spin sector. For example, on the square lattice, Ohi projects the five spin cluster of
site i and its four neighbors onto the S D 5=2 state. On the decorated square lattice
(Fig. 17.12), (17.39) includes S D 3=2 projectors for each link site and S D 5=2

projectors for each corner site. The SU(2)-invariance of the Oh operators may be seen
by writing them out explicitly. For example, referring to the figure, Oh1 D ŒS2 �
. 1

2
/.3

2
/�ŒS2 � .3

2
/.5

2
/� where S D S 1 C S a1 C S b1 C S c1 C S d1 and so on.

Being a sum of projection operators, (17.39) only has non-negative eigenval-
ues. If spin i is in a singlet with one of its neighbors, then the cluster of spin i
and its neighbors has zero projection in its highest spin sector. Hence Ohi will anni-
hilate such a state any nearest-neighbor valence bond covering of the lattice will
be a zero energy ground state of (17.39). Depending on the lattice, (17.39) may
also have ground states outside of the nearest-neighbor valence bond manifold.26

Another issue is whether there is a spin gap separating the nearest-neighbor valence
bond manifold from magnetic states. These issues are not trivial to answer [92] but
for a sufficiently decorated lattice, we may appeal to the well known [93] result that
a Majumdar–Ghosh chain has a twofold degenerate, spin-gapped ground state. The
size of the spin gap in the case is determined by the smallest of the ˛i .

The Hamiltonians made up of perturbed Klein models can thus be used to
obtain – in a controlled way – SU(2) invariant gapped spin liquids, the existence
of which had been in doubt for many years.

17.11 Outlook

The field of quantum dimer models is now so rich that it has become impossible to
give a comprehensive and comprehensible summary even in an extended set of notes
such as this one. In closing, we would like to provide a few pointers to interesting
developments not covered so far.

26 For a finite size honeycomb lattice with open boundary conditions, there is a rigorous proof that
the nearest-neighbor valence bond manifold spans the ground state space [88]. Also, we direct the
reader to [91], where this question is explored for a class of generalized Klein models.
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17.11.1 Hopping Fermions : : :

As mentioned above, the natural quantum dynamics chosen involves the smallest
clusters compatible with the local constraints. However, if one thinks of a dimer as
representing a Fermionic particle, there is a simple selection rule: plaquette moves
involving an even number of Fermions (with identical internal quantum numbers)
have zero matrix elements because they can be achieved by the Fermions hopping
clockwise or counterclockwise. These two differ by an overall sign as one results in
a final state which is an odd permutation of the other [94].

The natural quantum dynamics thus involves three Fermions (one being excluded
by the local constraint). Interestingly, the matrix elements can sometimes still be
chosen to avoid a sign problem, [95] so that the generic features of the resulting
models are rather like those of the bosonic ones.

Additional structure appears, however, when the Fermions exhibit in addition a
non-trivial internal degree of freedom, such as spin: for Fermions of opposite spin,
the abovementioned cancellation does not take place, and one thus obtains a spin-
dependent quantum dynamics (not entirely unlike Anderson superexchange) [96].
Detailed phase diagrams of this class of models are still being worked out at present.

17.11.2 : : : and much more

Dimer models with dynamical defects (such as holons and spinons) have e.g. been
studied in [97, 98]. Supersymmetric examples of quantum dimer models have been
proposed in [99]. Dimer-type models with non-Abelian properties are also attracting
a great of interest at the moment, such as in loop models [26] or in the ‘Golden
Chain’ [100], which amusingly enough is related [101] to a simple two-leg dimer
ladder [20]. An intriguing dimer model with a huge ground-state degeneracy has
been uncovered in [102] Finally, there is a burgeoning literature on ‘non-Landau’
phase transition, or to be more precise phase transitions out of the new liquid phases
discussed above [103–106]: there is still much to look forward to in this field.
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Chapter 18
Numerical Simulations of Frustrated
Systems

Andreas M. Läuchli

Abstract In many fields of science, computational approaches have become one of
the central cornerstones alongside experimental and theoretical approaches. This is
also the case in the field of frustrated magnetic systems, where theory, simulations,
and experiments drive each other mutually, thus advancing our overall understand-
ing. This chapter aims to provide an overview of the most common numerical
techniques available for strongly correlated lattice models, with an emphasis on frus-
trated spin systems. While it is not possible to treat all methods in sufficient depth to
provide a comprehensive introduction, here the key ideas are presented and special
issues regarding their application to frustrated systems are discussed. The power of
these techniques is illustrated by examples taken from the literature,1 and specific
references to appropriate detailed presentations are included where possible.

18.1 Overview of Methods

In this chapter, I present on a general level both classical and quantum Monte Carlo
methods, series-expansion techniques, and the density-matrix renormalization-
group approach, and illustrate their utility by selected applications. I then treat in
rather more detail the exact-diagonalization technique, as this is not documented so
extensively in the literature. I close by touching briefly on a small number of meth-
ods which are not so widespread and by providing some links to available source
codes.

18.2 Classical Monte Carlo

The Monte Carlo technique is a probabilistic approach applicable to a large class
of statistical physics problems. The method performs a stochastic evaluation of the
expectation values of observables O, based for example on the canonical ensemble

1 The choice of examples here is subjective, and unfortunately cannot be exhaustive.
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for a classical system,
hOiˇ D

X
i

pi .ˇ/Oi ; (18.1)

with probability distribution

pi .ˇ/ D exp.�ˇEi /=Z.ˇ/ (18.2)

and
Z.ˇ/ D

X
i

exp.�ˇEi /; (18.3)

where ˇ D 1=T (kB � 1) and the sum
P
i represents the summation or integration

over all configurations (with energy Ei ) of the system. A direct summation is in
general impossible due to the exponentially large number of terms as a function of
system size.2 However, the exponential suppression of the probabilities pi .ˇ/ with
increasing energy suggests that not all configurations among the enormous num-
ber of possible states are really important. The basis of the Monte Carlo approach
is to perform a stochastic sampling of system configurations based on a “random
walk” in the configuration space. More precisely, one generates a Markov process
of configurations with limiting distribution pi .ˇ/.

The Metropolis [1] algorithm provides a simple but very powerful prescription
for performing a Markov process with the desired properties:3

1. Start with a configuration cn D i with energyEi .
2. Based on some prescription Mi!j (to be discussed below), propose a new

configuration j .
3. Accept the configuration j as cnC1 with probability

Paccept D min

�
1;
Mj!i

Mi!j

pj .ˇ/

pi .ˇ/

�
; (18.4)

otherwise keep i as cnC1.
4. Increase n by one.
5. If the system is thermalized, measure observable OnC1 in the new configuration
cnC1.

6. If more statistics are needed then go back to step (2), otherwise stop.
7. The average value of the observable is hOiˇ � 1

Nmeas

P
nOn.

One of the key factors responsible for the success of the Metropolis algorithm is the
fact that the a priori unknown partition function Z.ˇ/ is eliminated from the prob-
lem by considering the probability ratio pj .ˇ/=pi .ˇ/. In this form the algorithm

2 Even for a simple 10 � 10 Ising model one would have to sum 1 267 650 600 228 229 401 496
703 205 376 terms.
3 Here presented in the Metropolis–Hastings form.
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(known as “Metropolis–Hastings”) is rather general, although some of its complex-
ity is concealed in the prescription for the process Mi!j . In many cases one uses
a symmetric trial prescription, Mi!j D Mj!i , which simplifies the acceptance
step in that one always accepts trial configurations which lower the energy, while
configurations with higher energy are accepted with probability expŒ�ˇ.Ej �Ei /�.
Other choices sometimes used are the heat-bath algorithm (for discrete states) and
overrelaxation (for continuous variables) [2]. There is substantial freedom in the
choice of Mi!j in the algorithm, but the full transition probabilityWi!j must sat-
isfy elementary requirements such as detailed balance (pi �Wi!j D pj �Wj!i )
and ergodicity (each configuration j is reachable from i in a finite number of steps)
in order to be physically valid.

Probably the most famous prescription is the single-spin-flip algorithm for the
classical Ising model. In this context, a configuration i consists of the state of the
spins on each lattice site,

i D f�1; : : : ; �Nsitesg:
From this one selects a site s (randomly or sequentially) and flips its spin to give the
new trial configuration

j D f�1; : : : ; O�s D ��s; : : : ; �Nsitesg:

This is accepted as a new configuration of the Markov chain according to the
simplified probability minf1; exp.�ˇ.Ej�Ei /�g (above). By using this simple spin-
flip algorithm, one may already explore a broad range of classical spin systems,
including those with competing interactions [3–6].

Close to second-order phase transitions, the phenomenon known as “critical
slowing-down” – where large blocks of the system become correlated – sets in, and
this increases severely the numerical effort required to obtain high-quality Monte
Carlo data using single-spin-flip algorithms. This problem was solved for a certain
class of models with the invention of powerful cluster algorithms in the formula-
tions of Swendsen and Wang [7] and of Wolff [8]. These algorithms act to eliminate
the slowing-down by flipping clusters of spins which are generated dynamically
and whose sizes track the divergence of the correlation length at the transition.
Cluster algorithms have enabled high-precision MC studies of critical phenomena
in ferromagnetic Ising, Heisenberg, and related models which deliver impressive
accuracies.

No general cluster algorithms are currently known for frustrated systems. The
cluster algorithms mentioned above are in fact formally applicable also in this
case [9], but are often unable to track the true, physical correlation length – which
can, for example, be hidden in emergent degrees of freedom – and thus perform
poorly when applied to frustrated systems. However, for specific frustrated models
some very powerful methods exploiting nonlocal updates have been found. As one
example, in the physics of classical interacting dimer models at finite temperature
one finds both interesting phases and unexpected phase transitions [10–13].
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A second challenge for local-update algorithms is posed by first-order transitions
where the tunneling times between the two phases at the transition become pro-
hibitively large (due to the extensive tunneling barrier) as the system size increases,
or when the low-temperature energy landscape is very complicated, as is typi-
cal in frustrated systems. In recent years this problem has almost been solved by
extended-ensemble simulation techniques, where one goes beyond the simulation
of a single system at a given temperature; ways to effect this include simulating
directly in energy space (for example the Wang-Landau algorithm [14]) or sim-
ulating many systems at different temperatures in parallel and allowing swaps of
configurations between the temperatures. This latter is known as the “parallel tem-
pering” or “exchange Monte Carlo” method, and was pioneered in the context of
spin glasses [15]. The key idea is that for a finite system the energy distribution
at a given temperature T has a finite width, and if two temperatures are suffi-
ciently close that the distributions overlap, it can be energetically beneficial to
exchange two configurations at adjacent temperatures. Generalizing to more tem-
peratures, the configurations can diffuse in temperature space, and measurements
performed at a given temperature are then both much better equilibrated and have
lower autocorrelation times. In initial studies by this approach, the temperatures
set in the simulations were chosen heuristically, but a feedback-optimized variant
of parallel tempering has been put forward more recently [16] which determines
automatically a given number of temperatures in order to minimize the round-trip
time for a configuration from high to low temperature and back. Over the last
five years, the parallel-tempering technique has become increasingly popular for
frustrated spin systems because of its improved equilibration properties at low tem-
perature. Applications studied include vector spins on the FCC and J1�J2 diamond
lattices [17, 18].

Finally, it is important to stress that each and every Monte Carlo simulation
requires a complete error analysis. First, a reasonably long thermalization phase
is required, during which the Markov process should lose any memory of the initial
state. Then, the autocorrelation times of all observables must be tracked carefully,
because these enter the estimator of the error bars. One method to analyze the errors
and autocorrelation times of a time series is the binning technique, while for more
complicated quantities, such as the ratio of two random variables (as used, for exam-
ple, in the Binder cumulant in studies of critical phenomena), a jackknife analysis
is useful. I refer here to the ALPS library, where the binning and jackknife tools are
already implemented and can be included easily in the reader’s own codes.
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1. D.P. Landau and K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics,
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18.3 Quantum Monte Carlo

For classical systems, the Boltzmann weight provides a direct probabilistic inter-
pretation and a Monte Carlo approach is conceptually simple. In quantum statistical
mechanics, the partition function is

Z.ˇ/ D Tr expŒ�ˇH� (18.5)

and, because the eigenstates of H are not known in general, it is not at first sight
obvious how to treat quantum mechanical systems at finite temperature by Monte
Carlo methods. It is, therefore, necessary to map the quantum mechanical problem
to a representation with a probabilistic interpretation. Several such mappings are
known (including the Suzuki–Trotter decomposition and path-integral formulation)
and here I will discuss the Stochastic-Series-Expansion (SSE) approach, which has
become very popular in recent years.

18.3.1 Stochastic Series Expansion (SSE)

In the SSE method, pioneered by Sandvik, this mapping is achieved by expanding
the partition function (18.5) in powers of ˇ and in operator strings Sn labeling the
action of different bond parts of the Hamiltonian,

Z.ˇ/ D
X
˛

1X
nD0

X
Sn

.�ˇ/n
nŠ

*
˛

ˇ̌
ˇ̌
ˇ̌
Y
i2Sn

h
bi

.si ;ti /

ˇ̌
ˇ̌
ˇ̌˛
+
; (18.6)

where ˛ is the index for the trace over a specified basis set, n is the current expansion
order, Sn specifies an operator string Œb1; .s1; t1/�; : : : ; Œbn; .sn; tn/�, and hbi

.si ;ti /
is a

bond term in the Hamiltonian which operates in a non-branching way on the sites
.si ; ti / in the chosen basis. The action is either diagonal or off-diagonal, as specified
by bi . A graphical illustration of a single term (for fixed ˛, n, and Sn) in this infinite

sum is displayed in Fig. 18.1. If the total weight ˇ
n

nŠ

D
˛
ˇ̌
ˇQi2Sn

�hbi

.si ;ti /

ˇ̌
ˇ˛
E

is non-

negative for all ˛, n, and Sn, one has found a configuration space with a probabilistic
interpretation, therefore enabling Monte Carlo simulations.
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Fig. 18.1 Schematic
representation of a
configuration in the SSE
technique (18.6). Here the
starting state is
˛ Dj#"#""i, the expansion
order is n D 4, and the
operator string is
S4 D Œd; .3; 4/�; Œo; .2; 3/�,
Œo; .2; 3/�; Œd; .1; 2/�

1 2 3 4

1

2

3

4

5

hd(1,2)

ho(2,3)

hd(3,4)

ho(2,3)

Here I do not enter into a discussion of the Monte Carlo updates themselves, and
mention only that “diagonal” update terms either insert or remove diagonal bonds
in the operator string Sn, thereby changing the current expansion order n. More
involved are “off-diagonal updates,” which can modify the state j˛i and exchange
diagonal into off-diagonal bond terms while conserving n. Different off-diagonal
update schemes have been proposed, under the names of operator loop, directed
loop, or worm updates [19–21].

To be more specific on the requirements as to when a model is amenable to QMC
simulations, because at order n one obtains a factor .�ˇ/n, the matrix elements
must be negative if the total weight is to be positive for all n. It is clear that posi-
tive diagonal matrix elements of the Hamiltonian can in principle always be made
negative by subtracting a suitable constant. The situation becomes more difficult if
there are positive off-diagonal matrix elements: in the example of a S D 1=2 XXZ
model with antiferromagnetic in-plane (XY components) exchange interactions on a
bipartite lattice, then it is possible to gauge the positive sign to a negative one, again
making simulations possible. However, antiferromagnetic in-plane interactions on a
non-bipartite lattice cannot be gauged away, and this leads to a version of the “sign
problem.” Fermions are another source of negative weights due to their anticom-
mutation relations. The sign problem can be circumvented formally by assigning
the sign of a configuration to the observables calculated, and the true expectation
value of the observable recovered by dividing by the average sign. The fundamental
limitation of this procedure is that the average sign becomes exponentially small in
ˇ times the simulated volume V , leading to exponentially large errors in the observ-
ables and therefore rendering the approach practically useless for low temperatures
or large system sizes.

While on the one hand it has been shown that the sign problem is an extremely
hard (and perhaps even impossible) problem to solve in general [22], on the other
hand some progress towards an alleviation or even the complete elimination of the
sign problem has been achieved in special cases [23, 24]. This demonstrates that
it remains worthwhile to continue the search for solutions to the sign problem in
particular applications.

Thus, although QMC methods cannot be applied to all quantum mechanical prob-
lems in frustrated systems, an interesting type of problem amenable to this class of



18 Numerical Simulations of Frustrated Systems 487

simulations has been explored in recent years with much success [25–30]. These
are XXZ-type spin models in which the Ising interactions (z-component) are frus-
trated while the transverse (XY) part of the interaction is chosen to be ferromagnetic
(unfrustrated). As mentioned above, the diagonal frustration does not give rise to a
sign problem. As in classical frustrated systems, the absence of the sign problem is
not per se equivalent to “easy” problems. Good equilibration techniques and effi-
cient update schemes are still required in order to obtain high-quality MC data (see
for example [31]).
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18.3.2 Green-function Monte Carlo

The Green-function technique has received renewed interest in recent years, because
it is at present the only technique which is able to simulate quantum dimer models
(QDMs) on rather large lattices at T D 0. See the chapter by R. Moessner and
K. Raman for a detailed discussion of the physics of QDMs. Formally one could
also apply the SSE approach (preceding paragraph) directly to QDMs, but this is
challenging in that, due to the constrained nature of the dimer configurations, no
powerful and ergodic update scheme is currently known.

The foundation of this technique is to start with a trial wave function j T i and
to project onto the ground state by applying the operator expŒ��H� in the approxi-
mate form expŒ��H� � 1� �H repeatedly on j T i. The Green-function technique
implements the nodeless wave function as a probability distribution and considers
the stochastic dynamics of a population of walkers which are attached to certain
configurations in the Hilbert space [32–35].

A number of problems in the context of QDMs have been treated using the
Green-function Monte Carlo technique, including the topological degeneracy of the
RVB phase on the triangular lattice, the nature of the symmetry-broken phases in
the square lattice QDM, and the characterization of doped QDMs [36–38]. At the
Rokhsar–Kivelson point of a QDM, Green-function Monte Carlo becomes a simple,
classical Monte Carlo process. Henley has shown [39] that in this case the classical,
continuous-time Monte Carlo process corresponds to the imaginary-time evolution
of the corresponding QDM. By exploiting this correspondence, dimer and vison
gaps on the triangular lattice have been obtained [40, 41]. The full dynamical dimer
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excitation spectrum at the Rokhsar–Kivelson point has also been obtained on several
lattices by performing a stochastic analytical continuation [42].

The Green-function method has also been used in the past to improve varia-
tional wave functions, such as projected BCS wave functions, in the context of
the fixed-node approximation. While this approach is not exact, it can still lead
to valuable insight for problems which have a severe sign problem, such as the
triangular-lattice Heisenberg antiferromagnet or the J1�J2 model on the square lat-
tice [43, 44]. The chapter by Becca et al. contains a detailed discussion of projected
BCS wavefunctions for frustrated quantum spin systems.

18.4 Series Expansions

Series-expansion techniques come in different types, many of which are important
in the field of fustrated systems. This utility has rendered series expansions quite
popular. Here, I discuss two different approaches, high-temperature expansions for
thermodynamic quantities and T D 0 perturbation series around simple ground
states.

18.4.1 High-temperature Series

High-temperature series for physical quantities such as the susceptibility or the spe-
cific heat are very useful for comparison with experimental results. Such series can
be obtained in symbolic form sometimes up to 20th order in ˇ D 1=T , enabling
a rapid fit of model parameters to experimental data. A disadvantage encountered
in frustrated systems is that high-temperature series often do not extend to temper-
atures much lower than the exchange coupling J . By applying series-extrapolation
techniques (such as Padé approximants) or by imposing physical constraints on the
series, it is sometimes possible to go somewhat lower in temperature [45,130,131].

Technically, the series are obtained as a linked-cluster expansion. The series
are calculated directly in the thermodynamic limit, and because the desired quanti-
ties (susceptibility, specific heat) are intensive quantities, only connected (“linked”)
clusters contribute to a given order in ˇ. The computer is required here for the sym-
bolic calculation of the quantum mechanical traces over a cluster and to enumerate
the graphs and their embeddings on the lattice.

Recently, Rigol and Singh [46] have proposed a somewhat different approach,
termed “numerical linked-cluster expansion,” where they still perform a linked-
cluster expansion, but for each cluster the complete temperature-dependence is
obtained by full numerical diagonalization, thereby summing effectively the con-
tributions of all powers of ˇ confined to a given cluster. This method allows
one to reach slightly lower temperatures than conventional high-temperature series
expansions, but at the price of losing the flexibility of the symbolic series.
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18.4.2 T D 0 Perturbative Expansions for Ground-
and Excited-state Properties

In the quest to understand the ground-state phase diagrams of frustrated spin models,
perturbative series expansions are very useful. Often, one has a clear understanding
of the physics in certain simple limits, and would like to know how far these
phases extend in parameter space. By using high-order series expansions for the
ground-state energy, one may estimate the convergence radius of the series, thereby
obtaining an estimate for the extent of the phase under consideration. In the same
way, one may track the excitation gaps, and their closing can indicate a continuous
transition to another phase. A recent application of this technique to the S D 1=2

kagomé-lattice antiferromagnet supports the existence of a valence-bond crystal
with a rather large unit cell [47]. Technically, these series expansions are performed
via linked-cluster expansions [48]. A somewhat different approach is the continuous
unitary transformation (CUT), which also yields a series expansion in the perturba-
tive formulation. For a discussion of the CUT method, the reader may refer to the
chapter of Mila and Schmidt.

Recent advances in series-expansion techniques [49] have enabled the calcula-
tion of excited-state properties, leading for example to the discovery of the highly
renormalized spin-wave dispersion in the triangular-lattice antiferromagnet [50]. It
has also become possible to calculate spectral properties such as dynamical spin
structure factors, for example in the Shastry–Sutherland model [51].
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Lattice Models, (Cambridge University Press, Cambridge, 2006).

18.5 Density-Matrix Renormalization Group (DMRG)

The density-matrix renormalization group is a relatively new and highly success-
ful numerical technique applicable to one-dimensional quantum lattice models. It
is based on finding an appropriate truncation of the Hilbert space which enables
calculations to be performed on systems much larger than those which are accessi-
ble without truncation in Exact Diagonalization (see next section). The method was
invented by White in 1992 [52, 53] while investigating the limitations of previous
real-space renormalization schemes inspired by Wilson’s numerical renormaliza-
tion group (which is, however, very successful for the Kondo problem). This latter
type of scheme truncates the Hilbert space of a block B based on the low-energy
eigenstates of the Hamiltonian when restricted to B . As can be seen by study-
ing a simple, one-dimensional, tight-binding problem [54], the ground state of a
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composite block BB 0 is not given simply as a linear combination of the product
of low-energy states of the individual blocks B and B 0, rendering purely energy-
based truncation schemes inaccurate. The key concept behind the DMRG algorithm
is to use information from the reduced density matrix �B of the block B as a crite-
rion for truncating the Hilbert space of the block. The reduced density matrix �B is
obtained by forming a superblockBB 0, restricting the Hamiltonian to the superblock
(HBB0 ), solving for the ground state j BB0i of the superblock Hamiltonian, and tak-
ing the trace over the degrees of freedom in B 0 to obtain the reduced density matrix
�B D TrB0 j BB0ih BB0 j. Finally, one retains those states which correspond to the
m largest eigenvalues of the reduced density matrix. A detailed description of the
algorithm is beyond the scope of this chapter and the reader is referred to the orig-
inal literature [52, 53] and to the review articles listed at the end of this section for
an in-depth discussion of the method.

The potential of the DMRG method was shown shortly after its invention by the
determination of the Haldane gap in the S D 1 Heisenberg chain to unprecedented
accuracy. The ground-state properties of frustrated quantum spin systems were also
studied at an early stage, starting with the frustrated J1 � J2 chain [55–57], the
CaV4O9 lattice [58], and the kagomé strip [59], to name but a few examples. More
recently, the method has also been applied to cases including frustrated ladders in
a magnetic field [60–62] and two-dimensional clusters of considerable size, such as
triangular and kagomé systems [63, 64].

18.5.1 Finite T

Ideas from the DMRG technique have also been used in finding new algorithms
to calculate the thermodynamic properties of one-dimensional quantum systems.
One class of approaches is to apply density-matrix notions to the calculation of
the transfer matrix (TMRG), based on which many thermodynamic quantities can
be computed from high T to moderately low temperatures. A different approach
is based on recently developed algorithms for real- or imaginary-time evolution in
order to evolve the trivial infinite-temperature density matrix in ˇ to the desired
temperatures (T-DMRG). Many frustrated systems have been studied using these
techniques [65–67].

18.5.2 Dynamical Response Functions

For comparison with experiments one is often interested in dynamical correlation
functions, and these are also accessible by DMRG. One class of methods works
directly in frequency space and these are called “continued fraction,” “correction
vector,” or “dynamical” DMRG [68–70]. A second class is based on the measure-
ment of real-space, time-displaced correlation functions, and became possible with
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the advent of very efficient time-evolution algorithms for DMRG [71]. The fre-
quency method calculates the response for a given wave vector and energy at a time
and is very accurate but rather time-consuming. The real-time approach, by contrast,
gives an overview of the full momentum and frequency range in a single calcula-
tion [72], but the quality depends on the accessible time window and the temporal
Fourier transform requires some care.

18.5.3 DMRG in two and more Dimensions

For reasons which have become completely clear through a stimulating interaction
with the field of quantum information theory, DMRG works very well for one-
dimensional systems, but cannot perform equally well for large two-dimensional
systems. This is dictated by the fact that DMRG is effectively determining the best
variational state in the class of matrix-product states (MPS) with a given matrix size.
These states are well suited to model the entanglement scaling in one-dimensional
gapped and critical systems, but are not ideal to model the entanglement proper-
ties in two or more dimensions (due to the area law). New classes of states such
as tensor-product states (e.g. projected entangled pair states (PEPS) [73]) have
been proposed, and a preliminary application to the Shastry-Sutherland lattice [74]
provides a valuable proof of concept. Currently these new methods show an unfa-
vorable computational scaling with the tensor index dimension, so that they do not
yet achieve an accuracy comparable to DMRG in one dimension, but in the event
that these novel methods can be made more efficient, the simulation of strongly
correlated systems has an even brighter future.
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18.6 Exact Diagonalization (ED)

The aim of this section is to provide an introduction to the exact-diagonalization
technique, which is a versatile and powerful numerical technique applicable to
almost any quantum lattice model. The name “Exact Diagonalization” (ED) stems
from the fact that one solves the time-independent Schrödinger equation,

H j i D Ej i; (18.7)
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of a finite quantum many body system, which is an eigenvalue problem, by numer-
ical diagonalization of H with no approximations. In practice one often works at
zero temperature and is, therefore, interested mostly in the low-energy physics of
the model. In this case, only information about a small number of extremal eigen-
values and eigenvectors of the eigenproblem is required. For this specific task, many
numerical algorithms with fast convergence properties exist, such as the Lanczos
[75] or the Davidson Algorithm [76]. The Lanczos algorithm will be discussed later
in this section. However, it should be stressed that the complexity of a modern ED
code goes far beyond the numerical eigensolver part.

The primary advantage of the ED method is its flexibility: it can be used to
treat large classes of spin systems, frustrated or unfrustrated, fermionic systems (t-
J model, Hubbard model, Quantum Hall problems, and many others) and bosonic
models in low dimensions. Furthermore, one may calculate the expectation values of
almost any observable, including dynamical correlation functions, which are often
hard to obtain by other numerical methods. The major drawback of the ED method
is the exponential scaling of the Hilbert space as a function of the system size: for
a quantum mechanical spin-S system with Ns sites, one has a priori a Hilbert space
HS with dimHS D .2S C 1/Ns . In the following subsection I will describe some
general strategies for implementing an Exact Diagonalization program in such a
way that this “exponential hard wall” can be pushed as far as possible. The present-
day limits for S D 1=2 spin systems are 40–42 sites (for S z D 0), 32 sites for
a t-J model with 4 holes, and 20 sites for a square-lattice Hubbard model at half
filling. The corresponding dimensions of the Hilbert spaces range between some
hundreds of millions and a few billion (109). To the best of my knowledge, the
largest eigenvalue problem which has been solved in strongly correlated systems
has a dimension of approximately 160 billion states [77]. This solution was possible
because it is actually easier to parallelize and to solve a large eigenvalue problem
when spatial symmetries are discarded. However, the largest physical systems can
only be reached by including symmetries. It is also more challenging to reach large
Hilbert-space sizes for spin problems than it is for t-J or Hubbard models due to the
(approximate) factorization of the Hilbert space in the latter two models, simplifying
the look-up procedure.

An ED program generally consists of four parts:

1. A numerical representation of the basis states in the (symmetrized) Hilbert
space H,

2. A numerical (or virtual) representation of the Hamiltonian matrixH ,
3. An algorithm which calculates the desired eigenvalues and eigenvectors,
4. A set of observables whose expectation values are calculated.

In the following subsections, we discuss each of these four building blocks in turn.

18.6.1 Basis Construction

The Hamiltonian of the system often possesses certain symmetries, and therefore
some conserved quantities. Common symmetries or conservation laws encountered
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in quantum lattice-model systems are

1. Charge conservation:Ne constant,
2. Magnetization conservation: S z

tot constant,
3. Translational symmetry: momentum conserved,
4. Point-group symmetry: parity and angular momentum conserved, and
5. Full SU(2) spin symmetry: S2tot conserved.

Among these symmetries, the first four are implemented routinely in an ED pro-
gram. The full SU(2) symmetry is in general rather hard to implement in combi-
nation with spatial symmetries. However, for the special case S z

tot D 0, a global
spin inversion which maps S z

i ! �S z
i can be exploited. This symmetry splits

the representations with even and odd total spin. The advantages of implement-
ing and using symmetries are twofold: first, they lead to a dramatic reduction in the
dimension of the Hilbert-space sector to be diagonalized and second, one may as a
result resolve the computed properties as functions of the corresponding quantum
numbers, for example to calculate dispersion curves for the elementary excitations
(i.e. energy as a function of momentum) or to uncover symmetry-breaking patterns
by investigating the tower of states in the spectrum.

The process of Hilbert-space reduction can be illustrated with the example of a
S D 1=2 Heisenberg model on a 40-site square lattice.4 The unrestricted Hilbert
space has dimension 240 (� 1012). Restricting oneself to the S z

tot
D 0 sector

reduces the number of states to 40Š
20Š�20Š (� 138 � 109). The space group of the tilted

square lattice combines 40 translations with a four-fold symmetry axis (yielding
160 symmetry elements), and implementing these space-group symmetries (in the
one-dimensional, fully symmetric representation) yields a reduction by a factor 160
to approximately 861 million. Finally, exploiting spin-inversion symmetry leads to
a final result of 430909650 basis states. For Heisenberg-type models, this is among
the largest problems solvable today.

18.6.2 Coding of Basis States

For simplicity I discuss the case of a S D 1=2 model on a Ns-site lattice. An
intuitive way of representing the Hilbert space is given by mapping the basis states
of the S z product basis to Ns-bit integers according to

jci � j�0; �1; �2; �3; : : : ; �Ns�1i; �i 2 f";#g

Int.jci/ �
Ns�1X
iD0

ci2
i ; ci 2 f0.#/; 1."/gI (18.8)

as an example,

4 This cluster is generated by the spanning vectors T1 D .6; 2/ and T2 D .�2; 6/.



494 A.M. Läuchli

j"0;"1;#2;"3;#4; : : : ;"Ns�1i ” 11010 : : : 12 (18.9)

D 20 C 21 C 23 C : : :C 2Ns�1:

With this choice of basis it is particularly easy to implement the conservation of S z
tot,

which corresponds to a set with a fixed number of bits. For models with a different
local state structure (such as the t-J model, with three states, or the Hubbard model,
which has four states per site), analogous mappings are easy to find. For the t-J
model, there is an alternative representation where one stores the positions of the
holes in one integer and the spin states of the occupied sites in a different integer.
For the Hubbard model, a convenient representation is to separate the positions of
the up-spin electrons in one integer and of the down-spin electrons in a second
integer. The idea behind all of these representations is to allow a rapid evaluation of
the terms in the Hamiltonian at a later stage of the calculation.

The enumeration of states with fixed S z is quite straightforward. One approach is
to first enumerate and label all configurations of a half system with their S z quantum
number. Then one sorts this list, so that configurations with the same S z are adja-
cent. Finally, one loops over all the configurations of the second half of the system
and combines them with the complementary S z states of the first half in order to
satisfy the total-S z constraint. This approach is most effective when working at total
S z D 0. For large systems with S z close to saturation, a recursive enumeration of
states with fixed S z is more appropriate, and is easy to implement for S D 1=2 by
simple bit-shuffling.

18.6.3 Symmetrized Basis States

Consider a system with a spatial symmetry groupG which is the direct product of a
set of translations TG and a set of point-group elements PG,

G D TG ˝ PG:

The translational subgroup TG is an abelian group and therefore has only one-
dimensional irreducible representations, which can be labeled by a wavevector K.5

The character of this representation is

�K.t/ D exp.iK � T.t//; 8t 2 TG;

where T.t/ denotes the translation vector associated with the element t . For a given
wave vector K, not all point-group elements are allowed: these are restricted to the

5 The allowed set of discrete wave vectors for a finite sample is generated by the reciprocal lattice
vectors of the superlattice.
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“little group” of K, PGK D fp 2 PG j p.K/ D Kg, i.e. to the stabiliser of K. The
actual symmetry group is then G0

K WD TG ˝ PGK. The point group PG and also
the little group PGK are in general nonabelian groups and their irreducible repre-
sentations are not always easy to determine, but can be found tabulated in works
on group theory. I assume in the following that the selected representation � of the
little group is one dimensional6 and the character ��.p/ is known 8p 2 PGK. The
configurations jci in the Hilbert space are symmetrized by taking

symmK;�.jci/ D 1

Nc;K;�
X

t2T; p2PGK

�K.t/��.p/j.p ı t/.c/i: (18.10)

These states are invariant under the symmetry operations and can be considered as
generalized Bloch waves. The normalization factor 1=Nc;K;� must be determined
explicitly for each state symmK;�.jci/. It is not given simply by 1=

pjG 0
Kj because

for certain configurations the application of some operators g 2 G0
K is equivalent to

the identity operation. Due to cancellations it is also possible for a state to vanish
completely, and such states should not be kept in the Hilbert space.

This point can be illustrated on a four-site SD1=2 spin chain with variable
total magnetization. The symmetry group is assumed to be C4 (the cyclic shift
corresponding to one-step translation).

� S z D 2

The configuration j""""i is a one-state orbit with momentum K D 0. Its norm
is 1. States with other momenta do not exist.

� S z D 1

The four states j#"""i, j"#""i, j""#"i, and j"""#i span a single orbit and
can be combined to give the four symmetric states with momenta K D 0, �=2,
� , and 3�=2. The normalization factors are 1=2.

� S z D 0

The six states j##""i, j#"#"i, j#""#i, j"##"i, j"#"#i, and j""##i separate
into two orbits,

– j##""i, j"##"i, j""##i, and j#""#i, which span states with momenta K D
0, �=2, � , and 3�=2 and have a norm of 1=2;

– j#"#"i and j"#"#i, which yield two states with momenta 0 and � and have
norm 1=

p
2.

� S z D �1 and S z D �2
are analogous to S z D 1 and S z D 2.

6 In some cases, a higher-dimensional representation of PG can be expressed as a one-dimensional
representation of a group PG0 with fewer elements. For example, the two-dimensional E represen-
tation of C4v can be decomposed into the one-dimensional .C1;�1/ and .�1;C1/ representations
of C2 ˝ C2 � C4v
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As will be demonstrated in the next section, it is sufficient to store only one repre-
sentative state per orbit, together with the normalization factor of each orbit. Usually
the configuration jci with minimal Int.jci/ is taken as the representative.

For construction of the basis, one loops over all configurations jci with the
correct S z

tot. Inside this loop, one generates orbit.jci/ D fg.jci/ j 8g 2 G0
Kg. If

Int.jci/ D minfInt.orbit.jci//g, jci is registered together with the calculated nor-
malization factor (given a nonzero norm). The dimension of the targeted subspace
is equivalent to the number of registered states. If memory is available, one can also
store for all jci the index of the representative in the common orbit, together with
the symmetry operation which maps jci onto the representative configuration, as
this can significantly accelerate the calculation of the matrix elements.

18.6.4 Hamiltonian

Now that the symmetry-reduced basis of the Hilbert space has been constructed, I
explain how to apply the Hamiltonian matrix H . Assume for simplicity that the
action of the Hamiltonian on a given representative jri is to generate one new
configuration jni with some amplitude h,7

H jri D hjni: (18.11)

Note that jni is not in general a representative. Let jr 0i be the representative of jni
and gn one of the symmetry operations which map jni onto jr 0i. The matrix element
is then given as

hr 0jH jri D
s

Nr 0;K;�
Nr;K;� �K;�.gn/ h; (18.12)

a relation which can be proven by inserting the definitions (18.10) of hr 0j and jri on
the left-hand side while exploiting ŒH; g� D 0 8 g 2 G0

K together with the property
(18.11).

In the computer implementation, the challenge is to find strategies suitable for
obtaining jr 0i and its index in the list of representatives in the most efficient manner
possible. For certain problems, a simple two-stage look-up table can be imple-
mented. The first step is to map Int.jni/ to its index in the (virtual) list of all
configurations with the selected S z

tot. This can be done using what are known as
Lin tables [78]. This index is then used in addressing a large table containing the
index of jr 0i and the phase factor of the operation relating jni to jr 0i. This approach
is probably one of the fastest look-up procedures, but is restricted to approximately
36 sites for spin-1=2 problems on present-day computers. For larger systems, an
approach by two-sublattice decomposition [79] followed by a binary search or a
hash-table look-up proves to be quite useful. This technique is, however, difficult to

7 This is not a restriction because the Hamiltonian can be decomposed into a sum of terms with
this property.
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implement in a generic code as the symmetry group must be factorized by hand. For
Hubbard models, the two-sublattice look-up idea can be extended to the spin-up and
spin-down electrons. For the t-J model, a decomposition into a hole configuration
and a spin configuration is also useful at low hole doping. For fermionic models
in general, care should be taken regarding the Fermi sign. Each time a symmetry
operation or a term in the Hamiltonian is applied, the resulting Fermi sign must be
calculated and taken into account.

18.6.5 Eigensolvers

18.6.5.1 Lanczos Algorithm

After the computer implementation of the basis states and the Hamiltonian operator,
the next requirement concerns the algorithms to solve the eigenproblem (18.7). In
practice, the Lanczos algorithm is used for this task [75]. The Lanczos algorithm
builds a special basis in the Krylov space

Kn D fj�1i;H j�1i;H 2j�1i; : : : ;Hnj�1ig

in which the operator H takes a tridiagonal form. The recursive sequence is
defined by

choose a random normalized starting vector j�1i; (18.13)

ˇ1j�2i D H j�1i � ˛1j�1i; (18.14)

ˇnj�n C 1i D H j�ni � ˛nj�ni � ˇnj�n�1i; (18.15)

where ˛n D h�njH j�ni and ˇn Dk h�nC1jAj�ni k : (18.16)

After n steps, the Hamiltonian in the Krylov space takes the matrix form

Tn D

0
BBBBBB@

˛1 ˇ1
ˇ1 ˛2 ˇ2

: : :
: : :

: : :

: : :
: : : ˇn�1
ˇn�1 ˛n

1
CCCCCCA
; (18.17)

which is known as the T -matrix. The defining strength of the Lanczos tridiago-
nalisation procedure lies in the fact that the extreme eigenvalues of the T -matrix,
Tn, converge rapidly towards the extreme eigenvalue of H . In practice n � 100
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Fig. 18.2 Convergence of T -matrix eigenvalues as a function of the number of iterations. The
system is a 36-site kagomé lattice with a starting vector orthogonal to the ground state. Still, the
Lanczos algorithm converges finally to the true ground state and accumulates fake degeneracies
approximately every 500 iterations. The points aligned on horizontal lines correspond to physical
eigenvalues

is usually enough to reach a tolerance of 10�14 for the ground-state energy.8 The
evolution of the lower end of the T -matrix spectrum as a function of n for a realistic
application is shown in Fig. 18.2.

Once convergence for the targeted energy has been reached, the corresponding
eigenvector of the T -matrix can be calculated. The Lanczos recursion is restarted
with exactly the same initial vector j�1i. The eigenvector of H can then be con-
structed based on the coefficient of j�i i in the T -matrix eigenvector. Restarting
the Lanczos process is necessary because for large problems the recursion vectors
cannot be kept in memory or on disk.

The rapid convergence is one of the primary advantages of this algorithm. In a
large class of quantum many-body models, the Hamiltonian matrix is sparse, i.e. the
number of non-zero matrix elements is proportional to the dimension of the Hilbert
space, dimH.9 For sparse matrices the Lanczos algorithm has a time complexity
O.dimH/, compared to eigensolvers for dense matrices which scale asO.dim3H/.
Memory complexity also plays an important role in a large-scale application: in a
matrix-free implementation it is possible to limit the space requirements to two or
three Lanczos vectors to be kept simultaneously in memory. On the other hand, one
may trade more memory to store the Hamiltonian as well, gaining a faster H j i
iteration.

8 Still, one should terminate the recursion based on a convergence criterion, and not on a fixed
number of iterations.
9 For real-space problems with short-range interactions, the number of matrix elements per row or
column is proportional to Nsites. Even the k-space version with N3

k matrix elements yields a sparse
matrix due to the exponential growth of dimH with Nk .
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I would like to point out one peculiar problem of the Lanczos algorithm, related
to finite-precision arithmetic in real-world computers: the appearance of spurious
eigenvalues (a.k.a. “ghosts”) in the spectrum of Tn. In practice, these ghosts appear
for example if one attempts to achieve convergence for excited states (cf. Fig. 18.2).
The problem is caused by a loss of orthogonality among the recursion vectors once
the ground state has converged. It is also worth noting that the Lanczos algorithm in
its simplest form, as presented here, is not able to resolve the true degeneracy of an
eigenvalue, irrespective of the loss of orthogonality. Readers interested in heuristic
methods for dealing with the detection of ghosts or techniques to resolve the degen-
eracy of multiple eigenvalues may wish to consult the excellent books by Cullum
and Willoughby [80] and by Bai et al. [81].

18.6.6 Implementation Details and Performance Aspects

A modern ED code is written in modular form, meaning among other things that
the core of the program is independent of the lattice and its symmetries. One may
then easily add a new lattice structure by enumerating the elementary bonds of the
Hamiltonian and the symmetry elements with their phase factors in a given repre-
sentation. The back end of the code generates automatically the symmetrized basis
states and reduces the dimension of the Hilbert space accordingly.

Regarding the efficiency of matrix-vector multiplication – which is the most
time-consuming part of the calculation – modern approaches in general adopt a
matrix-free strategy. This means that all matrix elements of the Hamiltonian are
recalculated in each iteration without hard-disk or main-memory storage. This
approach parallelizes well on current shared-memory machines, and depending on
the structure of the problem even on distributed-memory machines. The matrix-free
technique is definitely the method of choice when dealing with the largest system
sizes on a given machine. It might, however, be faster to store the Hamiltonian when
the memory is available. The parallelization of a Lanczos code is straighforward, as
each thread is responsible for calculating a certain part of the new Lanczos vector
j�nC1i, while having full read access to the complete vector j�ni.10 An outstanding
challenge in the near future will be the development of ED codes able to run effi-
ciently on petaflop machines, which have extremely large numbers of computing
cores.

10 Concurrent read access is no problem and is treated by the hardware, whereas concurrent
write access would require explicit synchronization and locking in the code, thereby reducing the
performance very significantly.
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18.6.7 Observables

An important ingredient of an ED code is the set of observables which can be calcu-
lated. In ED, the implementation of observables follows closely the above discussion
of the Hamiltonian, meaning that one has to symmetrize the observables when using
a symmetry-reduced basis, and for complicated correlators parallelization is the key
to rapid evaluation. Depending on the physical system, typical correlation func-
tions to consider include spin, dimer, plaquette, scalar chirality, vector chirality,
quadrupolar, and octupolar correlations. Plaquette correlations provide an example
equivalent to eight-spin correlators, which are very difficult to determine in other
numerical approaches.

In the following, I discuss briefly two particularly useful tools to investigate frus-
trated quantum spin systems: first the tower-of-states analysis is illustrated by an
application to the frustrated nuclear magnetism of bcc 3He, and then recent pro-
posals for the systematic detection of ordering tendencies and dominant correlation
functions in ED simulations are outlined.

18.6.7.1 Tower-of-States Analysis – the Nuclear Magnetism of bcc 3He

The tower of states is the finite-size manifestation of the breaking of a continuous
symmetry, which arises frequently in U(1)- or SU(2)-symmetric spin models. The
method was pioneered in an application to the Heisenberg antiferromagnet on the
triangular lattice [82,83], and was later used to show the absence of magnetic order
on the S D 1=2 kagomé lattice [84]. The key idea is that symmetry-breaking is
manifest already in finite systems by a specific arrangement of the low-lying eigen-
states as a function of total spin (or total S z), as shown in the left part of Fig. 18.3.
These levels have specific quantum numbers (such as momentum, parity, angular
momentum, etc.) and degeneracies dictated by the structure of the order parame-
ter. The method is not restricted to magnetic order, and can also be applied to spin
nematics, i.e. to states which do not have a magnetic moment, but a instead possess
an order parameter of higher rank. The reader is referred to the review by Mis-
guich and Sindzingre listed at the end of this section for a detailed discussion of the
method, and to the chapter by Penc and Läuchli for examples of towers of states in
magnetically ordered and spin-nematic states on the S D 1 triangular lattice.

As an illustration that the method can also be applied to three dimensional sys-
tems, I present some new ED results on an old problem, the nuclear magnetism of
solid 3He in the body-centered-cubic (bcc) phase. This system is reviewed in [85]
and [86]. The magnetism is provided by the nuclear spins rather than by the electrons
of a conventional magnetic system. These spins are now believed to interact through
cyclic exchange processes of various loop lengths. The experimental phase diagram
shows a low-field phase whose structure is compatible with an up-up-down-down
(UUDD) magnetic structure (based on NMR experiments). In a small magnetic
field, the nuclear spins undergo a metamagnetic transition to a canted normal anti-
ferromagnetic (NAF) phase at high fields, which is stable between m=msat � 0:6
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Fig. 18.3 Left: schematic representation of the tower-of-states structure in a finite-size spectrum.
The levels denoted by the circles correspond to states forming the ground-state manifold in the
thermodynamic limit and its quantum numbers are severely constrained by the type of symmetry-
breaking. Right: spin-resolved spectrum of the minimal 3He model on a 32-site bcc sample. The
occurrence of towers of states for the UUDD state at low magnetization and the NAF state at high
magnetization is confirmed clearly. Inset: zoom of the low-energy, low-spin region of the same
spectrum

UUDD

NAF

Fig. 18.4 Left: schematic representation of the UUDD (up-up-down-down) and the NAF (normal
antiferromagnet) magnetic structures of bcc 3He. Right: Brillouin zone of the 32-site bcc sam-
ple. Red spheres denote all allowed k-points, blue boxes the six wave vectors relevant for the
UUDD phase. The wave vector for the NAF corresponds to the yellow spheres at the corners of the
Brillouin zone

and the full saturation magnetization. The two magnetic structures are illustrated in
the left part of Fig. 18.4.

A minimal ab initio model is based on the cyclic exchange frequencies calcu-
lated by Ceperley and Jacucci [87–89], where only the nearest-neighbor two-body
exchanges, the three-body exchanges, and the planar four-body exchanges are
retained. The coupling constants are J D 0:46 mK; Jt D �0:19 mK, and
Kp D 0:27 mK [87–89]. The ED simulations are performed on a 32-site sample.
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I now apply the tower-of-states analysis to the two magnetic structures expected to
occur in solid bcc 3He (Fig. 18.4). On deriving the quantum numbers of the UUDD
state, one obtains six levels per total spin with distinct quantum numbers for even
and odd total spin.11 For even spin, one finds one singly and one doubly degener-
ate level at zero momentum and a threefold-degenerate level at the corner of the
Brillouin zone, while for odd total spin one finds a level at the sixfold-degenerate
characteristic UUDD momentum shown in the right panel of Fig. 18.4. It is striking
that the low-energy structure revealed in the finite-size spectrum shown in the right
part of Fig. 18.3 is in excellent agreement with the predictions, and thus strongly
supports the presence of an UUDD phase in the minimal model for bcc 3He. A sim-
ilar analysis for the high-field NAF phase yields a single level per spin, a level at zero
momentum for even spin, and one at the corner of the Brillouin zone for odd spin.
(This is the bcc analog of the well-known .�; �/ Néel state in a magnetic field on the
square lattice, cf. [90]). Again these levels are found in the exact spectra. The scaling
with .S z/2 is not visible here, because for this one would need to include the mag-
netic field in the graphical presentation. In conclusion, a tower-of-states analysis of
ED simulations for a minimal model of the nuclear magnetism in three-dimensional
bcc 3He confirms the presence of an UUDD phase at low magnetization and a NAF
phase at high magnetization, in agreement with experiments.

18.6.7.2 Detection of Exotic Order

In numerical simulations of quantum lattice models, detecting and characterizing the
important correlations in different phases is a fundamental problem. This question
has usually been addressed either by intuition or by successive testing of candidate
correlation functions. While this approach clearly works for most (and for all famil-
iar) models [91–95], the hallmark of truly complex and strongly correlated systems
is that different and non-intuitive types of correlation can become important and will
compete in the physical state.

A first approach to the systematic detection of local order parameters was put
forward in [96]. The method compares the reduced density matrices on a small area
obtained from two states which become degenerate in the thermodynamic limit, and
yields a local operator which can serve as an order parameter. In [96], this approach
was shown to work well in the case of discrete symmetry-breaking, and the method
can also be extended to continuous symmetry-breaking.

A second promising approach, devised recently by Cheong and Henley [97, 98],
is based on the correlation density matrix and its decomposition into the correlation
content. Starting with a wave function of interest, one selects two distinct subsys-
tems A and B , in whose mutual correlations one is interested. One then defines the
correlation density matrix, based on standard reduced density matrices, as

11 The fact that the number of levels is independent of the total spin is a consequence of the collinear
spin structure
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�cAB D �AB � �A ˝ �B I (18.18)

this central object contains all information on any connected correlation function
between A and B ,

hOAQBi � hOAihQBi D Tr
�OAQB�cAB� : (18.19)

The key step in the analysis of this quantity is to perform a singular-value decom-
position of the matrix �cAB . The resulting singular values give the strengths of the
various normalized correlations, while the singular vectors give the corresponding
operators acting in the Hilbert spaces of either block A or block B . Thus, this
decomposition yields direct information on which correlations between the two
subsystems A and B are important. This type of unbiased analysis of correlation
functions may shed additional light on enigmatic frustrated models such as the
kagomé antiferromagnet or the J1 � J2 square-lattice Heisenberg model.

18.6.8 Dynamical Response Functions

Another important class of observables contains the dynamical response functions,
such as the dynamical spin structure factor or the single-particle spectral functions.
Their generic form is

I.!/ D lim
�!0C

� 1
�

ImŒh	0jO� 1

! C E0 C i
�H Oj	0i�; (18.20)

where O is the operator under consideration. Examples important for correlated
systems include O D S z.q/ for the dynamical spin structure factor and O D c

�

k;�

for the single-particle spectral function. j	0i denotes the ground state and E0 the
ground-state energy. Equation (18.20) can be reexpressed as

I.!/ D
X
n

jh	njOj	0ij2ı
�
! � .En � E0/

�
; (18.21)

a form in which the spectral decomposition is more obvious. j	ni and En denote
the eigenvectors and energies of the Hamiltonian H . The spectral representation
(18.21) can be calculated by a Lanczos recursion starting with the specific vector

j�1i D Oj	0ipkOj	0ik2
(18.22)

rather than with an arbitrary starting vector [one is constructing a Krylov space
around Oj	0i for an optimal approximation of .! C E0 C i
 � H/�1]. Iterating
n times gives a new T -matrix with new elements ˛ and ˇ. One may prove that the
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continued-fraction expansion

I.!/ D � 1
�

Im

2
6664

kOj	0ik2
z � ˛1 � ˇ2

1

z�˛2� ˇ2
2

z�˛3����

3
7775 (18.23)

is a representation of the response function, with z WD ! C E0 C i
 and ˛i and
ˇi determined in the Lanczos recursion. This identity follows from Cramer’s rule
when applied to the first matrix element of the inverse of a tridiagonal matrix. An
equivalent representation is given through (18.21) with the identity

jh	njOj	0ij2 D jcn0 j2 kOj	0ik2; (18.24)

where cn0 denotes the overlap of the n�1 eigenvector of the T -matrix with the start-
ing vector. A comment regarding the practical application is in order here: the
representation (18.24) faces problems similar to the ghosts mentioned earlier. The
fake multiplicities of the T -matrix can lead to a very small12 splitting of the poles
and a redistribution of the spectral weight among these poles. However, the spu-
rious eigenvalues do not in my experience seem to carry any spectral weight. A
recent application of this formalism predicts the absence of a quasiparticle peak in
the photoemission spectral functions of a doped kagomé antiferromagnet [99].

In recent years, a somewhat different method, the “Kernel Polynomial Method”
(KPM) has been advocated for the calculation of spectral functions [100], and
appears to be free of the numerical instability discussed above. For many purposes
the two approaches are of equal quality. One advantage of the continued-fraction
method is that the individual pole weights are readily accessible, with a rapid con-
vergence from the extremal poles towards the inner part of the spectrum, whereas
in the KPM approach this information is not simple to obtain. One advantage of
the KPM method is that it is possible to calculate off-diagonal dynamical correla-
tion functions, I.!/ D � 1

�
ImŒh	0jA 1

!CE0Ci��H Bj	0i�, where A and B are not
adjoint operators, whereas this is rather cumbersome within the continued-fraction
framework.

18.6.9 Time Evolution

An obvious way to perform real-time evolution in ED is to diagonalize fully the
Hamiltonian H so that the propagator U.t/ WD expŒ�itH � is known for all initial
states and times t . One major drawback is that the full diagonalization limits the
applicability to rather small systems (dimH � 104 � 105). If, however, one is only

12 of order the machine precision.
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interested in computing the time evolution of a specific initial state j .0/i, then very
powerful Krylov methods are available [101]. The idea of these is to find a very good
approximation for j .�t/i D U.�t/j .0/i (but not for other initial states) by con-
structing the Krylov space Kn Dspanfj .0/i;H j .0/iH 2j .0/i; : : : ;Hnj .0/ig
using a Lanczos recursion. In this basis the Hamiltonian is tridiagonal and can
easily be exponentiated. For a given (and not necessarily small) time interval �t ,
the method converges exponentially in the Krylov space dimension n, analogous to
the conventional Lanczos algorithm for eigenvalues. This type of method will cer-
tainly be very useful for the study of non-equilibrium dynamics and decoherence in
frustrated quantum systems in the future.

18.6.10 Finite Temperatures

In this section, I have focused on ED tools at T D 0, but the ED method is also
suitable for the calculation of finite-temperature properties. At intermediate to high
temperatures the results are essentially exact, even on the small systems which can
be handled, because the correlation lengths are very short at these temperatures.
The first way to proceed is simply by diagonalizing the Hamiltonian completely
using a numerical linear-algebra routine (e.g. from the LAPACK or SCALAPACK
libraries). From the full spectrum it is straightforward to calculate thermodynamic
quantities such as the specific heat or the uniform susceptibility (if S z is conserved).
If one obtains also all of the eigenfunctions, then any other observable including
dynamical correlation functions becomes accessible. Presently, the largest spin sys-
tems to be diagonalized completely are up to 24 S D 1=2 spins using all spatial
symmetries and S z conservation (corresponding to a Hilbert space of approximate
dimension 100,000) [102]. Codes employing a second approach to this type of cal-
culation, known as “finite-temperature-Lanczos” techniques [103–106], combine a
stochastic sampling of the Hilbert space with Lanczos recursions on the randomly
chosen states in order to approximate the full density of states. The key advantage
is that only operations of the type j�i D H j i are needed, and the sparseness of
the Hamiltonian enables studies of somewhat larger systems than are possible with
full-diagonalization techniques.
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18.7 Miscellaneous Further Methods

As stated in the introduction, the field of numerical simulations is too vast for a
chapter of this type to give a detailed overview of all the existing methods. Selected
methods which presently have something of a “niche” status in the field of frustrated
systems, but which have the potential to become more widely used in the future, are
thus collected here for a brief mention.

18.7.1 Classical Spin Dynamics (Molecular Dynamics)

The Monte Carlo approach to classical spin systems is discussed in Sect. 18.2. For
classical spin systems which are endowed with a non-trival Hamiltonian dynamics
(such as O.3/ vector spins with Heisenberg interactions) it is also possible to inte-
grate the classical equations of motion in time to obtain thermodynamic and even
dynamical properties [107], in a spirit similar to the molecular-dynamics methods
applied for classical particles in the continuum. For a classical Heisenberg system
the equations of motion are

dS i

dt
D S i � H i .t/; (18.25)

where H i is the exchange field acting on site i . Conventional Runge-Kutta schemes
can be used to integrate the equations of motion, although they suffer from a drift
in energy at long times (symplectic algorithms have been proposed to eliminate this
problem). The method has been applied to a number of classical frustrated systems,
some examples being the kagomé Heisenberg antiferromagnet [108–110], a study
of the low-temperature properties of the classical pyrochlore antiferromagnet [111],
and more recently also highly frustrated magnetic molecules [112].

18.7.2 Coupled-Cluster Method

The coupled-cluster method is a technique used widely in quantum chemistry and
nuclear physics, which expands the ground state being sought by starting from
a reference wave function as a vacuum. The expansion is performed in terms of
the contributions of certain clusters of operators. Reviews of the method may be
found in [113, 114]. In the field of frustrated systems, the method has been used to
determine the region of stability of magnetically ordered phases, for example in the
J1 � J2 square-lattice model and the Shastry–Sutherland lattice [114]. The method
is in principle also applicable to non-magnetic ordered states, but has not to date
received much exploration in this context.
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18.7.3 Dynamical Mean-Field Theory (DMFT)

The dynamical mean-field theory has become a very popular technique in the field
of strongly correlated metals, providing a significant improvement in our under-
standing of the interaction- and doping-driven Mott transitions in real materials.
Extensions of the method to larger interacting clusters coupled to a self-consistent
bath (a review may be found in [115]) has also enabled its first applications to model
systems for itinerant charge carriers on frustrated geometries such as the kagomé
lattice [116]. These studies showed that the Mott transition in frustrated systems is
very rich and that many questions remain to be addressed, especially in the light of
possible spin-liquid phases close to the Mott transition in triangular-lattice organic
conductors [117].

18.7.4 Contractor Renormalization (CORE)

The contractor renormalization technique [118,119] is a real-space block-decimation
technique providing an effective Hamiltonian for describing the chosen degrees of
freedom of a building block of a system. The reader is referred to the chapter by Mila
and Schmidt for a short description of the method. Depending on the problem at
hand, the procedure can sometimes be repeated until a fixed point is reached [120].
Another approach is to perform a certain number of CORE steps and then to apply a
mean-field-type analysis on the renormalized Hamiltonian to obtain a solution of the
problem [121, 122]. Yet another approach is to simulate the effective Hamiltonians
numerically [123], which then corresponds to solving the Hamiltonian on lattices
larger than would have been possible for the initial Hamiltonian. For example, by
this approach it is possible to simulate a 48-site S D 1=2 kagomé cluster, a size
which remains beyond the reach of present-day ED codes.

18.7.5 SR-RVB Calculations

An approximate numerical approach which has turned out to be rather useful for
some systems is the projection of a frustrated S D 1=2 Heisenberg Hamiltonian
onto the subspace of short-range singlet coverings of the lattice under consideration.
Because these coverings are composed of SU(2) singlets, they are non-orthogonal.
The numerical problem to be solved is therefore a generalized eigenvalue problem
consisting of the Hamiltonian and the overlap matrix. Lattices up to 60 sites can be
diagonalized using a SCALAPACK parallelized version of the code. Applications of
this approach first appeared and became popular for the kagomé lattice [124–127],
but other frustrated models on square lattices have also been studied, highlighting
the presence of valence-bond crystal phases [128, 129].
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18.8 Source Code Availability

� ALPS project
The “Algorithms and Libraries for Physics Simulations” project provides a set
of libraries to facilitate simulations of quantum lattice models, such as a lattice
and model library, a library for the evaluation of Monte Carlo data, and a parallel
scheduler. These libraries can easily be included in the reader’s own codes. Fur-
thermore, the ALPS project provides a number of applications which build on
these libraries. Currently, an exact diagonalization code (sparsediag, fulldiag),
a density-matrix renormalization-group code, different Quantum Monte Carlo
codes (SSE, Loop, Worm, and Quantum Wang-Landau) and a Monte Carlo code
for classical spin problems are included and available as CCC source code.
For more information, tutorials, and the license condition (“cite-me” licence),
consult the following website:

http://alps.comp-phys.org

� TITPACK
Hidetoshi Nishimori distributes his exact diagonalization package TITPACK
under a cite-me license. Registration for download at:

http://www.stat.phys.titech.ac.jp/nishimori/titpack2/
index-e.html

� Spinpack
Jörg Schulenburg developed a C/CCC implementation of an exact diagonaliza-
tion code for spin models which is freely available. It is optimized for speed and
also determines the spatial symmetry automatically.

http://www-e.uni-magdeburg.de/jschulen/spin/

� Stochastic Series Expansion
Anders Sandvik has a sample code of a SSE program for the square lattice
Heisenberg antiferromagnet available for download at the following location:

http://physics.bu.edu/~sandvik/programs/index.html

� Coupled Cluster Method
Jörg Schulenburg also hosts a page with a coupled-cluster code package available
for download at:

http://www-e.uni-magdeburg.de/jschulen/ccm/index.html
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Chapter 19
Exact Results in Frustrated Quantum
Magnetism

Shin Miyahara

Abstract Most of the exact results in frustrated spin systems have for a long time
been regarded as of purely academic interest, being realized only due to the spe-
cial geometry of the lattices concerned. However, recent developments in material
design offer the genuine possibility of producing such exact states in real materi-
als. In fact, the exact dimer singlet state of the two-dimensional Shastry–Sutherland
model has already been found as the ground state of the quasi-two-dimensional
material SrCu2.BO3/2. The cooperation between experimentalists and theorists in
investigating this material has caused rapid development in the understanding of
low-dimensional frustrated spin systems in general, due to the extreme utility of
cases where the ground state is known exactly. This fact provides information essen-
tial to recognizing novel magnetic behavior in external magnetic fields, at finite
temperatures, and in other regimes. In this chapter, we introduce spin-1=2 mod-
els which have an exact ground state, considering first exactly solvable spin-1=2
Heisenberg models, exemplified by the sawtooth–chain model, the Majumdar–
Ghosh model, the two-dimensional Shastry–Sutherland model, and a frustrated
ladder model. Such exact states can be realized due to special symmetries on geo-
metrically frustrated lattices. As a second class of examples, we introduce also some
exact ground states in spin-1/2 models with multiple-spin interactions.

19.1 Introduction

In some branches of theoretical physics, finding an exact solution for a Hamiltonian
can be the highlight of a research career. Such interests were for a long time lim-
ited only to theorists in more abstract pursuits, because most models with exact
results have a complex structure. However, recent developments in material design
have changed the situation dramatically, to the point where finding an exact solu-
tion in some materials, rather than merely in models, can be one of the highlights
for an experimentalist. Indeed, the number of spin-1/2 models previously consid-
ered as objects of purely mathematical curiosity because of their unique structures,
but now realized as materials, is not small. Examples include SrCu2O3 [1] for a

513



514 S. Miyahara

spin ladder system, CaV4O9 [2] for a 1/5-depleted Heisenberg square-lattice sys-
tem, and Cu3V2O7.OH/2 � 2H2O [3] and ZnCu3.OH/6Cl2 [4,5] for kagomé lattices.
Although an exact ground state is not obtained in any of these examples, the very
fact that such models can be synthesized suggests the possibility of realizing exact
ground states in real materials.

Indeed, the exact ground state of the two-dimensional Shastry–Sutherland model
[6] is found in the orthogonal-dimer material SrCu2.BO3/2 [7, 8]. This is a spectac-
ularly successful example of collaboration between experimentalists and theorists
leading to a full understanding of the properties of a quantum spin system. In this
material, experiments including magnetization in external fields, inelastic neutron
scattering, electron spin resonance, (ESR), Raman scattering, nuclear magnetic res-
onance (NMR), and others, have been performed in a short period, and because of
the exactly known ground state, most of the experimental results can be understood
rather well [9]. At the same time, experimental results act to promote theoretical
development, for example in the understanding of magnetization plateaus in two-
dimensional lattices (as discussed in chap. 10). In fact, many properties of such
strongly correlated materials, including excited states and the response to external
magnetic fields, can be interpreted much more easily than in regular cases. The
obvious advances in the field of quantum magnetism made possible by the realiza-
tion of a material with an exact ground state makes their synthesis a goal of primary
importance. Thus it is the aim of this chapter to present for experimentalists, as well,
needless to say, as for theorists, an overview of the exactly solvable models already
known, as a basis for the further development of this type of research.

19.1.1 Dimer Model

We begin with the simplest example which has an exact ground state, a single-dimer
model [10, 11]. Knowledge of the ground state of this system is of key importance
because, as will emerge shortly, most exactly known states consist of the products
of dimer singlets.

The Hamiltonian for the Heisenberg model on a dimer cluster is written as

hd D JS 1 � S 2; (19.1)

where S i is an S D 1=2 spin operator and we represent its spin states by using the
eigenstates for the S z operator, "i for S z

i D 1=2 and #i for S z
i D �1=2. In terms of

the raising and lowering operators SC
i D Sx

i C iS
y
i and S�

i D Sx
i � iSy

i , the dimer
Hamiltonian may be reexpressed as

hd D J

2

�
SC

1 S
�
2 C S�

1 S
C
2

�C JS z
1S

z
2: (19.2)

Using the basis
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j "1"2i; j "1#2i; j #1"2i; j #1#2i; (19.3)

the matrix for hd is represented by

0
BB@

J
4
0 0 0

0 �J
4

J
2
0

0 J
2

� J
4
0

0 0 0 J
4

1
CCA: (19.4)

This matrix is easy to solve, yielding a singlet state, jsi, with eigenenergy ed
s D

�3J=4 and threefold-degenerate triplet states, jt�i (� D 1; 0;�1), with eigenener-
gies ed

t D J=4, whose wave functions are

jsi D 1p
2
.j "1#2i � j #1"2i/ ; (19.5)

jt1i D j "1"2i; (19.6)

jt0i D 1p
2
.j "1#2i C j #1"2i/ ; (19.7)

jt�1i D j #1#2i: (19.8)

The degeneracy of each spin manifold is 2SC1, whence, again, the S D 0 state is a
singlet and the S D 1 state a triplet. Here, S is simply the quantum number for total
spin, S tot D S 1 C S 2, the eigenvalues of .S tot/2 being S.S C 1/. These results can
be seen in a straightforward manner on rewriting the Hamiltonian as

hd D J

2

˚
.S tot/2 � .S 1/

2 � .S 2/
2
�
; (19.9)

D J

2

�
S tot

�2 � 3J

4
; (19.10)

whence an S D 0 state gives an energy of �3J=4 and S D 1 an energy J=4.
From the point of view of symmetry, the singlet is antisymmetric with respect to the
exchange of spins, while the triplet states are symmetric.

For J > 0, the singlet is the ground state and the triplet states are excited. The
energy difference J between the singlet and the triplets can be considered as a spin
gap. On application of an external magnetic field, the excited states split into three
by the Zeeman effect. By extension from the one-dimer singlet state, a ground state
represented by the product of singlet states also has a spin gap.

19.2 Exact Results in Spin-1/2 Heisenberg Models

In frustrated spin systems, a particular special geometry of the lattice may occa-
sionally produce an exact ground state. In this chapter, several spin-1/2 Heisenberg
models with exact ground states for certain sets of parameters are introduced. In
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most of them, the HamiltonianH can be written as a sum of cluster Hamiltonians,

H D
X

˛

h˛: (19.11)

The cluster Hamiltonian h˛ is such that its ground state is easy to obtain. If the whole
space can be tiled by using the ground-state spin configurations of the cluster, the
resulting state is an exact ground state of the full HamiltonianH [12]. If the ground
state of the cluster is non-degenerate, as in the dimer model, it is rather difficult
to tile the whole space using only the cluster ground state. However, the ground
state of many frustrated clusters is degenerate, which enhances the possibility of
tiling the whole space by using some combination of these cluster ground states.
In fact, the exact ground state can be constructed by filling the whole space with
one of the degenerate ground states of the frustrated cluster: this is the procedure
which generates the exact Affleck–Kennedy–Lieb–Tasaki ground state of the spin-1
chain model[13] (although in this chapter we discuss only spin-1/2 systems). From
a complementary point of view, the ground state of the cluster is an eigenstate for
some symmetry operators in most cases, and thus a state tiled by it can be considered
as a symmetrical ordered state of a set of cluster states.

19.2.1 Exact Ground States in Coupled Triangular
Cluster Models

In this section, we treat models which consist of triangular spin-1/2 antiferromag-
netic Heisenberg clusters,

H tri D
X

˛

htri
˛ : (19.12)

Here, htri
˛ is a spin-1/2 Heisenberg model on a triangular cluster, and is written as

htri D J .S 1 � S 2 C S 2 � S 3 C S 3 � S 1/ (19.13)

D J

2
.S 1 C S 2 C S 3/

2 � 9

8
J; (19.14)

where S is a spin-1/2 operator and the spin labels are shown in Fig. 19.1a. Clearly,
from (19.14), the ground state of the triangular cluster is a state of total spin
S tot D 1=2, with an eigenenergy per cluster of etri D �3J=4. As in the dimer
case, the matrix can be constructed from eight basis states of the form j "1"2"3i
and j "1"2#3i, and solving it yields two eigenenergies, �3J=4 and 3J=4. Here,
both energy states have a degeneracy of four, and the four-fold-degenerate ground
state can, for example, be written as

j�1i D Œ1; 2� � j "3i; (19.15)
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ba 1

23

Fig. 19.1 (a) Labeling of triangular cluster for spin-1/2 Heisenberg model. (b) Sketch of one of
the ground states on the triangular cluster. The ellipse represents the dimer singlet state; the spin
state on site 3 is arbitrary

j�2i D 1p
3
.Œ2; 3� � j "1i � Œ3; 1� � j "2i/

D 1p
6

f2j "1"2i � j #3i � .j "1#2i C j #1"2i/ � j "3ig; (19.16)

j�3i D Œ1; 2� � j #3i; (19.17)

j�4i D 1p
3
.Œ2; 3� � j #1i � Œ3; 1� � j #2i/

D 1p
6

f�2j #1#2i � j "3i C .j "1#2i C j #1"2i/� j #3ig; (19.18)

where

Œi; j � � 1p
2

�j "i #j i � j #i"j i� (19.19)

represents a dimer singlet state on the dimer bond ij. This basis is selected to diag-
onalize the parity operation with respect to the bond 12. The states in (19.15) and
(19.17) have odd parity, while the others have even parity. This is obvious from the
fact that in the former the spin state on the bond 12 is a singlet and in the latter a
triplet. For the states in both (19.15) and (19.17), the fact that a dimer singlet lies
on the bond 12 means that the spin state for an arbitrary spin at site 3 is already
a ground state. A sketch of the ground state of (19.15) is shown in Fig. 19.1 b. In
this way, any state having a dimer singlet on one of the bonds is a ground state of
htri, consistent with the fact that the ground state is a state of S tot D 1=2. The state
shown in Fig. 19.1b is a useful starting point for seeking an exact ground state of the
full Hamiltonian (19.12). If it is possible to fulfill the condition of having a singlet
dimer on every triangle for the full HamiltonianH tri, such a state is an exact ground
state.

As examples of the realization of exactly solvable one-dimensional models with
triangular motifs, we discuss a sawtooth chain and the Majumdar–Ghosh model.
The Shastry–Sutherland model is a case with two-dimensional geometry, and is
discussed in the end of this section.
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19.2.1.1 Sawtooth–Chain Model

Let us start with the simplest example, the sawtooth–chain model shown in
Fig. 19.2a, whose Hamiltonian is composed of triangular clusters as shown in
Fig. 19.2b. From above, if dimer singlet states can be placed on every triangular
unit within the lattice, such a state has the minimum energy obtainable for the
Hamiltonian. In the case with periodic boundary conditions, such states can be con-
structed as shown in Fig. 19.2c, d, i.e., the ground state is described as the product
of singlet dimers [14]. The two-fold degenerate ground states are

j� saw
1 i D

N=2Y
iD1

Œ2i � 1; 2i �; (19.20)

j� saw
2 i D

N=2Y
iD1

Œ2i; 2i C 1�; (19.21)

Fig. 19.2 (a) The
one-dimensional
sawtooth-chain Heisenberg
model. (b) The Hamiltonian
is described as a sum of
triangular clusters. (c) One of
the exact ground states.
Ellipses represent the dimer
singlet state. (d) The other
exact ground state; the ground
state is two-fold degenerate.
(e) An excited state: the free
spin with a dimer singlet pair
in its triangle is called a
“kink” and that which does
not is an “antikink”

2i−1

b

c

2i

2i+12i−1

a

2i−1 2i+1

2i

2i

2i+1

d

e
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and sketches representing (19.20) and (19.21) are shown in Fig. 19.2c, d, respec-
tively. For the ground state in (19.20) and (19.21), the odd-parity state is realized
between spins 2i � 1 and 2i (2i and 2i C 1).

For the system with open boundary conditions, it can be shown that the ground
state is 2.N C 1/-fold degenerate, with N singlet dimers and one free spin. The
degeneracy arises from the freedom in position and orientation of the free spin.

The existence of an excitation energy gap above the ground state was shown
rigorously in [14]. The low-energy excited state can be described as a domain wall of
“kink”-“antikink” type, based on the excitations shown in Fig. 19.2e [15,16]. A kink
has no excitation energy and is localized, while an antikink has a finite excitation
energy and propagates. The spin gap in this system can be explained very well by
the excitation energy of a kink-antikink pair: a finite energy gap plus a dispersive
kinetic energy contribution due to the free motion of the antikink.

19.2.1.2 Majumdar–Ghosh Model

We turn now to perhaps the best known example of exactly solvable frustrated
models, the Majumdar–Ghosh chain [17]. This model is a special point in the param-
eter space of the one-dimensional spin-1/2 J1–J2 Heisenberg model, or zig–zag
chain model, shown in Fig. 19.3a. The J1–J2 Heisenberg model has been studied
intensively due to the existence over much of its phase diagram of a non-magnetic
ground state with a spin excitation gap. Specifically, the ground state of the model
is either a gapless state or this non-magnetic, spin-gapped state, and the quan-
tum phase-transition point separating the two is estimated to be .J2=J1/c D 0:24

[18]. The non-magnetic ground state is stable for J2=J1 > 0:24 and the gapless,
quasi-long-range-ordered state for J2=J1 < 0:24.

At the parameter value J2=J1 D 0:5 in the spin-gap phase, which is the
Majumdar–Ghosh point, the ground-state wave function is exact. The Hamiltonian
of the J1-J2 model at this point can be written again as a sum of triangular clusters,
as shown in Fig. 19.3b. Here, the J1 bonds are shared by two triangles, which is the
origin of the fact that the special point occurs when the magnitude of the interac-
tion for J1 bonds is twice that of the J2 bonds. The energies of each triangle can
be minimized by placing a dimer singlet on every one. There are only two possi-
bilities which minimize the energies of all triangles simultaneously, and the ground
states are

j�MG
1 i D

N=2Y
iD1

Œ2i � 1; 2i �; (19.22)

j�MG
2 i D

N=2Y
iD1

Œ2i; 2i C 1�; (19.23)

where we have assumed periodic boundary conditions and N C 1 � 1. Once again,
Œi; j � indicates the dimer singlet state defined in (19.19). Sketches of these ground
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Fig. 19.3 (a) The
one-dimensional J1–J2
Heisenberg model, or zig–zag
chain model. (b) At the
Majumdar–Ghosh point,
J1 D 2J2, the Hamiltonian is
considered as coupled
triangular clusters. (c) One of
the exact ground states for the
Majumdar–Ghosh model.
Ellipses represent the dimer
singlet state. (d) The other
exact ground state; the ground
state is two-fold degenerate
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d

2i

2i−1 2i+1
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states are shown in Fig. 19.3c, d. A proof that the energy EMG D �3J1N=8 is the
ground-state energy is provided by van den Broek and by Shastry and Sutherland
[19, 20]. Affleck, Kennedy, Lieb, and Tasaki proved further that only the two states
(19.22) and (19.23) can form the ground-state manifold, and that there is a spin
excitation gap between these ground states and the first excited state [21].

19.2.1.3 Two-Dimensional Shastry–Sutherland Model

The spin-1/2 Heisenberg Hamiltonian

H ssm D J 0 X
n:n:

S i � S j C J
X

n:n:n:

S i � S j (19.24)

on the Shastry–Sutherland lattice has been put forward as an example of a two-
dimensional model with an exact ground state [6]. There are two types of interac-
tions, a nearest-neighbor bond J 0 and a next-nearest-neighbor bond J (Fig. 19.4a).
For J 0=J D 0:5, the model is a sum of isotropic triangular clusters as shown in
Fig. 19.4b. As in the Majumdar–Ghosh model, the ground state is described as the
product of dimer singlet states on all of the J bonds, which makes it possible to
place dimer singlet states on every triangle simultaneously. The remarkable prop-
erty of Shastry–Sutherland model is that the dimer-product state is an eigenstate for
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Fig. 19.4 (a) The two-dimensional spin-1/2 Shastry–Sutherland Heisenberg model, where an
exact dimer-product ground state is realized. Ellipses represent the dimer singlet bonds. (b) For
J 0=J D 0:5, the Hamiltonian is described as a sum of triangular clusters

all values of J 0=J . Thus this state is the ground state in some region of parameter
space. Further differences between this case and the Majumdar–Ghosh model are
that translational symmetry is broken in the latter case but preserved here, and that
the ground state of the Shastry–Sutherland model is non-degenerate.

The proof for the exact eigenstate is simple. Let us consider two coupled dimers,

hod D J 0S 2 � S 3 C J 0S 1 � S 3 C JS 1 � S 2 C JS 3 � S 4; (19.25)

D J 0.S 1 C S 2/ � S 3 C JS 1 � S 2 C JS 3 � S 4; (19.26)

where the indices are shown in Fig. 19.4a. It is obvious from (19.26) that the J 0 term
vanishes if one considers a state in which the total spin for sites 1 and 2 is zero, S 1C
S 2 D 0, i.e., one with a singlet state on the J bond. Thus, also for the Hamiltonian
H ssm of the full system, the state which is a product of dimer singlets on the J bonds
is an eigenstate (and, in addition, is actually the ground state at least for J 0=J � 1).
From the symmetry point of view, this can be understood by considering the dimer
bonds: all bonds in the ground state are odd under the parity operation with respect to
the J bond. For orthogonal configurations, the Hamiltonian conserves the parity. On
the other hand, when a spin operator is applied to a singlet, a finite matrix element
is possible only for some triplet components. These requirements are contradictory,
and therefore all matrix elements should vanish. This restriction due to the parity
leads to an almost complete localization of the triplet excitations [8].

We prove next that the dimer-product state is the ground state in some parameter
range, by following the variational method discussed by Shastry and Sutherland [6].
The Hamiltonian (19.24) can be considered as a sum of isosceles triangles also for
J 0=J ¤ 0:5, whence
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H ssm D
X

hist (19.27)

D
X�

J 0 .S 2 � S 3 C S 3 � S 1/C J

2
S 1 � S 2

�
: (19.28)

The ground-state energy per cluster is eist D �3J=8 for J 0=J � 0:5 and eist D
J=8 � J 0 for J 0=J � 0:5. The estimate of the ground-state energy forH ssm is then
eistNt , where Nt is the number of the triangles. Because this estimate is given by
a variational calculation, the actual ground state energy, Eg, of H ssm satisfies the
condition Eg � eistNt . For J 0=J � 0:5, eistNt is equal to the eigenvalue of the
exact eigenstate, the product of dimer singlets. Thus the product state is the exact
ground state in this parameter range.

On the other hand, the model has not been solved exactly for J 0=J > 0:5, a
fact which indicates that the real phase-transition point should lie above 0:5. In
fact, several calculations indicate that the phase transition occurs at .J 0=J /c 	
0:7 [9]. In the limit J 0 
 J , the model is equivalent to the square lattice, and
therefore the antiferromagnetically ordered ground state is expected for small values
of J=J 0. It has been proposed that a further, intermediate phase lies between the
dimer-product state and the antiferromagnetically ordered state. While its existence
is regarded as probable, there remain open questions regarding its nature, with both
helical ordered states [22,23] and plaquette resonating-valence-bond states [24–26]
as viable candidates.

19.2.2 Exact Ground States in Coupled Tetrahedral
Cluster Models

We consider now a tetrahedral cluster,

htet D J .S 1 � S 2 C S 1 � S 3 C S 1 � S 4

CS 2 � S 3 C S 2 � S 4 C S 3 � S 4/ (19.29)

D J

2
.S 1 C S 2 C S 3 C S 4/

2 � 3

2
J; (19.30)

where the spin indices are shown in Fig. 19.5a, and which is topologically equivalent
to the square cluster with diagonal bonds (Fig. 19.5b). The ground state of the cluster
has total spin S tot D 0, with two-fold degeneracy, and its energy is etet D �3J=2.
One way of writing the two ground states is

j�tet
1 i D Œ1; 2� � Œ3; 4�; (19.31)

j�tet
2 i D 1p

3
.Œ1; 3� � Œ2; 4�C Œ1; 4� � Œ2; 3�/ ; (19.32)
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Fig. 19.5 (a) Tetrahedral cluster. (b) Square cluster with diagonal interactions, which is topo-
logically equivalent to the tetrahedral cluster. (c) Schematic representation of one of the ground
states of the Heisenberg model on the tetrahedral cluster. The ellipses represent dimer singlets on
individual bonds

Fig. 19.6 (a) The spin-1/2
frustrated-ladder Heisenberg
model. There are three types
of antiferromagnetic
interaction, J?, Jk, and Jx .
(b) At J? D 2Jk D 2Jx , the
Hamiltonian can be
considered in terms of
coupled tetrahedral clusters.
(c) The exact dimer-product
ground state. Ellipses
represent the singlet state on a
dimer bond J?

JxJ||J⊥

c

b

a

where Œi; j � is again the dimer singlet state on the bond ij (19.19). The state in
(19.31) satisfies the conditions s1 C s2 D 0 and s3 C s4 D 0, whereas in (19.32)
the spin states on bonds 12 and 34 are triplet. These two states belong to the dou-
bly degenerate E representation of the Td group. For the purpose of filling every
tetrahedron in a Hamiltonian of the form

H tet D
X

htet (19.33)

by ground states of htet, the state with singlet dimers (19.19) on two of the six
bonds can be expected to play an important role. However, because it is necessary to
place two singlets on a single cluster simultaneously, but each site is shared between
clusters, examples in which one may construct an exact state are limited.

19.2.2.1 Frustrated Ladder Model

The most straightforward model in this category has only Heisenberg spin inter-
actions and is shown in Fig. 19.6a [27]. There are three types of antiferromagnetic
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interaction in the Hamiltonian

H fru D J?
X

S 1;i � S 2;i

CJk
X

.S 1;i � S 1;iC1 C S 2;i � S 2;iC1/

CJx

X
.S 1;i � S 2;iC1 C S 2;i � S 1;iC1/ ; (19.34)

where indices 1 and 2 refer to the two ladder legs and i indicates the rungs. When
the condition J? D 2Jk D 2Jx is satisfied, the model may be considered as a
set of coupled tetrahedral clusters (Fig. 19.6b), and by placing singlets on every
tetrahedron, as shown in Fig. 19.5c, it is possible to minimize the energy of the
Hamiltonian (19.34). This ground state has the form

j� frui D
Y

i

1p
2
.j "1;i #2;i i � j #1;i "2;i i/ ; (19.35)

with the singlet states on each of the J? bonds naturally of odd parity (Fig. 19.6c).
The state (19.35) is an eigenstate of the Hamiltonian (19.34) under the condition
Jk D Jx , because at this point the total spin of a rung, T i D S 1;i C S 2;i , is a good
quantum number. The Hamiltonian (19.34) can be rewritten in terms of the operator
T i as

H fru D J?
X

i

1

2

�
T 2

i � 3

2

�
C Jk

X
i

.T i � T iC1/ : (19.36)

It is clear that the state of (19.35) is the ground state for small values of Jk=J?.
The phase transition is estimated to occur at .Jk=J?/c D 0:71 [28, 29], and the
ground state is the dimer-product state of (19.35) for all Jk=J? < .Jk=J?/c . In the
opposite limit, Jk=J? 
 1, the model is equivalent to a spin-1 chain model whose
ground state is a Haldane state. This Haldane-type gapped phase is realized for all
Jk=J? > .Jk=J?/c .

Not only the ground state but also some of the excited states can be constructed
exactly in the dimer singlet phase. The total spin on each rung, T i , can be 0 or 1. If
it is 0, there is no coupling with the neighboring rungs, so any state with separated
triplets on the rungs is an eigenstate of the Hamiltonian. This kind of excited state
has an important role in the understanding of magnetization plateaus observed in
the model [30] (as discussed in chap. 10).

19.2.3 Realization of Exact Ground States

It seems difficult to find a material in which the exact ground states proposed in
Sects. 19.2.1 and 19.2.2 are realized. In fact, materials with exact ground states are
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quite rare, but once they are realized, their magnetic properties can be explained
rather elegantly. One real example is the quasi-two-dimensional material SrCu2

(BO3)2, which is a realization of two-dimensional Shastry–Sutherland lattice dis-
cussed above [7,8]. A sketch of a CuBO3 layer is shown in Fig. 19.7a. The magnetic
properties of this compound are due solely to the Cu2C ions, which are well rep-
resented by localized spins of S D 1=2. The two-dimensional linkage of the
Cu2C ions is illustrated in Fig. 19.7b, and is topologically equivalent to the two-
dimensional Shastry–Sutherland lattice (Fig. 19.7c). The estimated parameter value
J 0=J D 0:635 indicates that the exact product state of dimer singlets is realized
in SrCu2(BO3)2 [31]. This material shows a number of unique features as a con-
sequence of strong frustration effects: (a) spin-gapped behavior, (b) the almost
localized nature of magnetic excitations, and (c) magnetization plateaus. All of
these features are explained well by an analysis in terms of the two-dimensional
Shastry–Sutherland model [9].

Indeed, the exact dimer-product ground state is realized even in the full three-
dimensional model for SrCu2.BO3/2 [32]. The three-dimensional Cu2C structure is
shown in Fig. 19.8a: in this model, the product of dimer singlet states on the J bonds
is still an eigenstate, a result which becomes clear on applying the operators for
inter-layer coupling, J 00, to the dimer singlet states. One finds

J 00.s1 C s2/ � .s3 C s4/jsiajsib D 0; (19.37)

where the site indices are shown in Fig. 19.8b. It is further obvious that the dimer-
product state is the ground state for small J 0=J and J 00=J . A phase diagram for
the three-dimensional model, obtained by series expansion methods, is presented
in [33].

The interlayer interactions in SrCu2.BO3/2 are thought to be considerably smaller
than J and J 0, so that the two-dimensional orthogonal dimer model is a very
good starting point for a theoretical description. However, the exactness of the

J’

J cba

Fig. 19.7 (a) Schematic view of the crystal structure of a CuBO3 layer in SrCu2.BO3/2. Closed
circles represent Cu sites, large, open circles are O sites, and small, open circles are B sites.
The dotted line shows the unit cell. (b) Two-dimensional orthogonal dimer model, which is
topologically equivalent to (c) the Shastry–Sutherland model
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Fig. 19.8 (a) Three-dimensional orthogonal dimer model given by Cu2C ion network in
SrCu2.BO3/2. (b) Configuration of orthogonal dimers for inter-layer coupling J 00

dimer-product ground state for the three-dimensional model is one of the reasons
why the magnetic properties of SrCu2.BO3/2 are so well described by the two-
dimensional model. The coupling constants estimated for SrCu2.BO3/2 from the
model of Fig. 19.8 are J 0=J D 0:635 (above) and J 00=J D 0:09 [31], which
indicates that the treatment is fully consistent with a dimer-product phase.

19.3 Exact Results in Frustrated Spin-1/2 Models
with Four-Spin Interactions

19.3.1 General Ladder Model with Four-Spin Interactions

Exactly solvable models have also been found and investigated in systems with four-
spin interactions [34–38]. As in pure Heisenberg systems, when all clusters can
be minimized simultaneously in the Hamiltonian which is represented as a sum of
clusters, the ground state is given exactly.

Following [34], let us consider a general ladder Hamiltonian which includes four-
spin interactions (Fig. 19.9a),

H fou D
X

hfou
i;iC1; (19.38)

where

hfou
i;iC1; D �E0 C J

2
.S 1;i � S 2;i C S 1;iC1 � S 2;iC1/

CJk .S 1;i � S 1;iC1 C S 2;i � S 2;iC1/
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Fig. 19.9 (a) The spin-1/2
general ladder model with
four-spin interactions. (b) The
exact dimer-product ground
states in the one-dimensional
Shastry–Sutherland model.
Ellipses represent the dimer
singlet state

(1 − δ)
2

Js (1 + δ)

JxJ||

i + 1(odd)

JJ ’

b

a

i (even)

Js(1 − δ)
Js

+K’’+K +K’

S2,i+1

S1,i+1

x

S1,i

S2,i

i + 2

CJxS 1;i � S 2;iC1 C J 0
xS 2;i � S 1;iC1

CK .S 1;i � S 1;iC1/ .S 2;i � S 2;iC1/

CK 0 .S 1;i � S 2;iC1/ .S 2;i � S 1;iC1/

CK 00 .S 1;i � S 2;i / .S 1;iC1 � S 2;iC1/ : (19.39)

As in the preceding section, the indices 1 and 2 distinguish the ladder legs while
i labels the rungs. For the model with periodic boundary conditions, exact ground
states can be written as a trace of matrix-product wave functions,

j�0i D tr

 Y
i

gi

!
; (19.40)

where gi is defined as

gi D
�
bjsii C ajt0ii �p

2ajt1iip
2ajt�1ii bjsii � ajt0ii

�
: (19.41)

Here, the singlet jsi and triplets jt�i are states of a single rung. The exact ground
state of (19.40), with energy density E0 per rung, is obtained when the parameters
in (19.39) and the free parameter u D b=a in gi [(19.41)] satisfy the conditions (a)
j�0i is annihilated by the Hamiltonian, i.e.

hfou
i;iC1gigiC1 D 0; (19.42)

and (b) all other states of H have energy � > 0.
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It is convenient to rewrite the local Hamiltonian hfou in terms of projection oper-
ators to the multiplets of one plaquette, which are in turn one quintuplet (J D 2),
defined as j�2;M i, three triplets (J D 1), j� .k/

1;M i (k D 1; 2; 3), and two singlets

(J D 0), j� .k/
0;0 i (k D 1; 2),

Ohfou D �2

X
M

j�2;M ih�2;M j C
X

k;lD1;2;3

�
.k;l/
1

X
M

j� .k/
1;M ih� .l/

1;M j

C
X

k;lD1;2

�
.k;l/
0 j� .k/

0;0 ih� .l/
0;0j: (19.43)

There are ten coefficients �.k;l/
J which are related to the parameters of the original

Hamiltonian (19.39). In this basis, gigiC1 is represented in terms of only one singlet,
j� .1/

0 i, and one triplet, j� .1/
1 i, by

j� .1/
0 i � 1p

3C u4

	
u2jssi � p

3jt tiJ D0



; (19.44)

j� .1/
1 i � 1p

1C u2

�
up
2
.jtsi C jsti/� jt tiJ D1

�
; (19.45)

where the multiplets specify states with singlets jsi or triplets jti on dimers i , i C1.
To satisfy the conditions (a), the parameters �.k;l/

J must obey the equalities

�
.1;1/
0 D �

.1;2/
0 D �

.1;1/
1 D �

.1;2/
1 D �

.1;3/
1 D 0: (19.46)

For the eigenvalues on the remaining multiplets, i.e., one single �.2/
0 , two triplets

�
.˛/
1 .˛ D 2; 3/, and one quintuplet �2, condition (b) results in the inequalities

�
.2/
0 > 0; �

.˛/
1 > 0 .˛ D 2; 3/; �2 > 0: (19.47)

Further, we assume the restricted parameter sets K �K 0 D K 00 D 0, in which case
there are six coefficients, E0, J , Jk, Jx , J 0

x , and K . (A more detailed treatment is
discussed in [36].) From the condition (a), one obtains four linear equations whose
general solution contains two arbitrary constants when the parameter u D b=a is
fixed. Absorbing one of the two constants into the energy scale,

1 � �4
3
E0 C 1

3
J � 5

6
K; (19.48)

and denoting the remaining one by x yields

x � �4
3
E0 � J C 1

2
K; (19.49)
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whence by defining u2 D F one obtains the family of Hamiltonians with an exact
ground state, which is specified by

E0 D �3Œ9C 2x � 3.1C x/F C 3xF 2�=32; (19.50)

J D 3Œ2 � x � .1C x/F C xF 2�=4; (19.51)

2Jk C Jx C J 0
x D Œ15 � 9.1C x/F C 7xF 2�=4; (19.52)

2Jk � Jx � J 0
x D �xF; (19.53)

2Jx � 2J 0
x D p

F Œ3.1C x/=2 � xF �; (19.54)

K D 3.F � 1/.xF � 1/=4; (19.55)

and has eigenvalues

�
.2/
0 D xŒ3C F 2.x/�=4 > 0; (19.56)

�
.2/
1 D Œ3.1C x/C 2xF.x/�=8 > 0; (19.57)

�
.3/
1 D Œ1C F.x/�Œ3.1C x/ � 2xF.x/�=8 > 0; (19.58)

�2 D Œ18C 8xF 2.x/ � 9.1C x/F.x/�=8 > 0: (19.59)

In this way, one may determine the Hamiltonians which have a matrix-product wave
function (19.40) as an exact ground state. Several known models with exact ground
states can be obtained as particular cases from the general solution of this family
[36]. In the following, we show that the one-dimensional Shastry–Sutherland model
and the generalized AKLT model are particular members of this general family of
Hamiltonians.

19.3.1.1 One-Dimensional Shastry–Sutherland Model

The one-dimensional Shastry–Sutherland model (Fig. 19.9b) is a generalization of
the Majumdar–Ghosh model [20]. The Hamiltonian,

H D Js

X
i

�
.1C .�1/iı/S i � S iC1 C 1

2
.1� ı/S i � S iC2

�
; (19.60)

includes the Majumdar–Ghosh model (ı D 0) and isolated dimers (ı D 1) as special
cases.

The one-dimensional Shastry–Sutherland model is obtained when the condition

F D 1; x D 3ı

2C ı
.0 < ı < 1/ (19.61)

is satisfied. For these parameters, the interactions can be written as
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E0 D �9.1C ı/

8.2C ı/
; (19.62)

J D 3.1 � ı/
2.2C ı/

� Js.1 � ı/; (19.63)

Jk D 3.1 � ı/
4.2C ı/

� Js

2
.1 � ı/; (19.64)

Jx D 3.1C ı/

2.2C ı/
� Js.1C ı/; (19.65)

J 0
x D 0; (19.66)

K D K 0 D K 00 D 0: (19.67)

The wave function (19.40) with F D 1, i.e. a D b, corresponds to singlets on
one type of diagonal bond (here Jx) (Fig. 19.9b). The case a D 0 is included by a
translation of one of the ladder legs. The eigenvalue �.2/

0 vanishes for x D 0, which
is to be expected because the ground state is two-fold degenerate in the Majumdar–
Ghosh limit.

19.3.1.2 Generalized AKLT Model

Setting

F D 0; x finite; (19.68)

i.e. fixing b D 0, ensures that only triplets may occur on the rung bonds. By choos-
ing a convenient scale factor to render Jeff D .Jk C Jx/=2CK=4 D 1, one obtains
the Hamiltonian with parameters

E0 D �3
4

� x

3
; (19.69)

J D 4

3
� 2x

3
; (19.70)

Jk D Jx D J 0
x D 5=6; (19.71)

K D K 0 D 2

3
; (19.72)

K 00 D 0: (19.73)

This is essentially equivalent to the AKLT Hamiltonian, but without the explicit
requirement that the two S D 1=2 spins be coupled into a triplet. The AKLT model,

H D
X

i

S i � S iC1 � 1

3
.S i � S iC1/

2 ; (19.74)

is obtained in the limits x ! 1 and xF.x/ ! 0; note that the operator S in (19.74)
is an S D 1 operator.
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Finally, we note that the ground state of the Majumdar–Ghosh model belongs to
the same phase as that of the AKLT model for S D 1. Let us consider the family of
models with

F.x/ D 1

.1C x/2
: (19.75)

Because both the Majumdar–Ghosh model and the AKLT limit are included in this
family, (19.75) demonstrates the possibility of transforming the Hamiltonian of the
Majumdar–Ghosh model to the AKLT limit, by changing x from 0 to C1, without
encountering any singularities in the ground state.

19.3.2 Two-Dimensional Model with Four-Spin Interactions

The antiferromagnetic, spin-1/2 J1-J2 model on the square lattice is a well-known
example of a frustrated spin system. Unfortunately, an exact ground state is not
known for this model, because it is not possible to minimize the energy on all pla-
quettes simultaneously by using the states in (19.31) and (19.32), even at the highly
frustrated point J1 D J2=2. However, the inclusion of a four-spin interaction can
produce exactly solvable models even in two-dimensional lattices [39, 40]. In [39],
the Hamiltonian is written as a sum of projection operators which project the spin
state of the plaquette onto the subspace with total spin S D 2. In [40], the spin
projectors onto the quartet state are used. In the former, the ground state is highly
(macroscopically) degenerate, while in the latter it is much lower, with a ground
state of four-fold degeneracy.

19.3.2.1 Generalized Two-Dimensional J1–J2 Model

Let us consider the spin-1/2 Hamiltonian with four-spin interactions on a square
lattice,

H 2df D J1

X
n:n:

S i � S j C J2

X
n:n:n:

S i � S j

CK
X

i;j;k;l

˚�
S i � S j

�
.S k � S l /C �

S j � S k

�
.S i � S l /

C .S i � S k/
�
S j � S l

��
: (19.76)

At the fully frustrated point, J2 D J1=2 andK D J1=8,

H 2df D 3J

2

X
i

Pi ; (19.77)
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where Pi is a projection operator onto the state of total spin S D 2. It is clear that
any state having at least one dimer singlet per plaquette is a ground state of the
Hamiltonian (19.77), because this implies that the total spin on each plaquette may
be only 0 or 1.

There are two types of ground state. One is a state which is a product of local
singlet dimers, as shown in Fig. 19.10a. It is important that any state obtained by
rotating all dimers about one of their sites successively along a diagonal direction
(Fig. 19.10a) is also a ground state. As a consequence of this freedom, the degen-
eracy of this type of state is 2Nd C1, where Nd / p

N is the number of diagonal
chains and N is the total number of sites.

The second type of ground state is one with interfaces between vertical and hor-
izontal configurations along the two diagonal directions in an infinite system, two
examples of which are shown in Fig. 19.10b, c. There is a defect at the intersection
between the two diagonal interfaces, and it is possible to have a free but localized
spin-1/2 object as a defect (Fig. 19.10c).

We conclude this section with a brief mention of the excited states. If one of the
singlet dimers is excited to a triplet state, denoted by two parallel spins, the two spins
can propagate along the diagonal directions to arbitrary separations with no energy
cost (Fig. 19.10d). Thus, the effective dimensionality of the low-energy spectrum is
reduced dynamically from two to one.

19.3.2.2 Two-Dimensional J1–J2 Model with Products
of Three-Spin Projectors

Models containing products of three-spin projectors can also be constructed in terms
of two- and four-spin interactions. Such a model can be expressed using 6-site rect-
angular plaquettes, as shown in Fig. 19.11a, where the two sublattices A and B are
distinguished. The Hamiltonian takes the form

H pro D
X

Œi;j;k;l;m;n�

1

4
PA

i;j;kP
B
l;m;n; (19.78)

where the spin projectors on the quartet state are defined as

PA
i;j;k D jS i C S j C S kj2 � 3

4
; (19.79)

PB
l;m;n D jS l C S m C S nj2 � 3

4
: (19.80)

The indices i; j; k; l;m; n are defined in Fig. 19.11a, and the sum in (19.78) runs
over all horizontal and vertical 6-site plaquettes.

In the model (19.78), the ground state is given by a product of dimer singlets,
as illustrated in Fig. 19.11b. This is reminiscent of the two-dimensional Shastry–
Sutherland ground state (Fig. 19.4) [6], and is thus known as a Shastry–Sutherland
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c d

ba

Fig. 19.10 Two-dimensional J1–J2 model with four-spin interactions. (a) One of the ground-state
spin structures: ellipses represent dimer singlet states. A state with rotated dimer singlets along a
given diagonal direction is also a ground state. (b) Another type of ground-state spin structure, with
interfaces between vertical and horizontal configurations. (c) A further ground-state spin structure
with interfaces, which has a spin-1/2 defect. (d) Two-spinon configuration: a low-lying excited
state

valence-bond solid. A key difference from the Shastry–Sutherland model is that
the ground state of (19.78) presents a spontaneous symmetry-breaking, and is four-
fold degenerate. The proof that the Shastry–Sutherland valence-bond solid is an
exact ground state is simple: the values of the projectors (19.79) and (19.80) are
zero when the three spins are in a doublet state, and has positive values when they
constitute a quartet. The doublet state emerges whenever any two of the three spins
form a singlet. Note that these two spins could be either second or third neighbors.
Because H pro is a product of the two projectors, the presence of only one dimer
on the 6-site plaquette is already sufficient to minimize the plaquette energy. Thus,
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a b

i km

njl

Fig. 19.11 J1–J2 model with products of three-spin projectors. (a) Bold line indicates a 3� 2-site
horizontal rectangular plaquette. Dashed and dot-dashed lines represent nearest-neighbor bonds
on the A and B sublattices. (b) One of the four exact ground states of the model (19.78). Ellipses
represent the dimer singlet state. The three other ground states are reproduced by translation of the
dimer pattern by the shortest lattice vectors

when all plaquettes are filled simultaneously by a dimer singlet, the state is an exact
ground state of the Hamiltonian (19.78).

19.4 Conclusion

Many exactly solvable models in frustrated quantum magnetism have been proposed
since the recognition by Majumdar and Ghosh [17] of the very special properties of
the eponymous model on a spin-1/2 chain. While it is unfortunately beyond our
scope to cover all such models, the aim of this article has been to highlight the
profound advances in physical understanding made possible by the existence of an
exact solution. In these concluding comments, we attempt also to mention some
further noteworthy models which could not be discussed in depth here.

In spin-1/2 Heisenberg systems composed of frustrated clusters, when the ground
state of the cluster is degenerate due to the frustration, there is a freedom to select
one state from among the ground states on each cluster. If all such clusters can
be filled at the same time by their cluster ground states, an exact ground state
is obtained, i.e., such a state has the minimum energy because of the variational
principle. Most of the well known examples of such ground states are products of
dimer singlet states, and in this article we have reviewed the sawtooth–chain model,
the Majumdar–Ghosh model, the two-dimensional Shastry–Sutherland model, and
the frustrated ladder model. In addition to these, many other exact ground states
represented as products of dimer singlet states have been proposed, including in
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the one-dimensional Shastry–Sutherland model [20], the distorted diamond chain
model [41], the one-dimensional orthogonal dimer model [42], and the general-
ized Shastry–Sutherland models in three dimensions [43]. The general procedure
for constructing a model which has an exact dimer-product ground state is pro-
posed in [44]. Of particular interest in this context is also the distorted diamond
chain model which is equivalent to a trimer chain system [41,45,46]. This model is
realized in Cu3Cl6.H2O/2 � 2H8C4SO2 [47] and Cu3.CO3/2.OH/2 [48], although it
seems unlikely that the exact ground state is stabilized in these materials.

Exact ground states are realized also in some spin-1/2 Heisenberg models with
four- (or higher-)spin interactions. In this chapter, we have reviewed only a small
number of examples, specifically a general ladder model and generalized two-
dimensional J1–J2 models both with four-spin interactions and with products of
three-spin projectors. In these examples, the procedure for constructing the model
is similar to that for pure Heisenberg models, namely minimization of the cluster
energy. For models including multiple-spin interaction terms, Klein has proposed
a general scheme for constructing the exact ground state [49, 50], the basic idea of
the Klein model being the following. The Klein Hamiltonian is given by a sum of
projectors onto the highest total-spin state of the clusters constituting the lattice,
which have non-negative eigenvalues in cases such as generalized two-dimensional
J1–J2 models. Any state in which two of the spins in a given cluster form a singlet
bond prevents this cluster from having maximal total spin, and thus the valence-
bond state can be a ground state with zero energy. Several types of model have been
constructed based on the Klein approach, all (to date) spin-1/2 Heisenberg models
with multiple-spin interactions on various lattices, including honeycomb, square,
checkerboard, and pyrochlore geometries [51–53]. Some of these cases have very
close links to quantum dimer models [54], which are discussed in chap. 17.

We conclude by expressing the hope that the research motivated by this review
may give birth to new models and new materials which have exact ground states.
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Chapter 20
Strong-Coupling Expansion and Effective
Hamiltonians

Frédéric Mila and Kai Phillip Schmidt

Abstract When looking for analytical approaches to treat frustrated quantum mag-
nets, it is often very useful to start from a limit where the ground state is highly
degenerate. This chapter discusses several ways of deriving effective Hamiltonians
around such limits, starting from standard degenerate perturbation theory and pro-
ceeding to modern approaches more appropriate for the derivation of high-order
effective Hamiltonians, such as the perturbative continuous unitary transformations
(CUTs) or contractor renormalization (CORE). In the course of this exposition, a
number of examples taken from the recent literature are discussed, including frus-
trated ladders and other dimer-based Heisenberg models in a field, as well as the
mapping between frustrated Ising models in a transverse field and quantum dimer
models (QDMs).

20.1 Introduction

As emphasized several times throughout this book, frustrated magnets often have a
highly degenerate ground state in the classical limit. This is sometimes even taken as
a definition of highly frustrated magnets. This degeneracy makes the semi-classical
expansion in 1=S effectively uncontrolled (if it does not already fail simply because
of divergent quantum fluctuations), because usually one cannot perform and thus
compare the expansions around all classical ground states. An infinite degeneracy is
also often present in other limiting cases such as decoupled local units (such as tri-
angles in the S D 1=2 trimerized kagomé lattice) or the Ising limit (for systems such
as the antiferromagnetic Heisenberg model on the triangular or the kagomé lattice).
In such limits, which preserve the quantum nature of the problem, this degeneracy
is not the end of the story, but rather the starting point of a systematic expansion,
namely degenerate perturbation theory, which leads to an effective Hamiltonian.
In the context of strongly correlated systems, this type of method usually goes by
the name ‘strong-coupling expansion,’ because the starting point of the perturbative
expansion is a Hamiltonian where only the interaction terms are kept, the kinetic
terms being treated as the perturbation.

537
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There are several ways to perform this expansion, or more generally to derive an
effective Hamiltonian. There are in fact two types of effective Hamiltonian: those
which act only in the degenerate subspace of a non-perturbed Hamiltonian, and
those which act in the full Hilbert space but, through a canonical transformation, are
rewritten as a series in terms of the ratio of two parameters. While the first type can
always be written down explicitly, the second type can be derived in a simple way
only provided that one can find a suitable generator. In the following, we will discuss
both types of effective Hamiltonian, starting with the expansion in the degenerate
subspace because this is more standard.

The derivation of an effective Hamiltonian is extremely useful in isolating the
relevant degrees of freedom. However, the problem is usually not solved once the
effective Hamiltonian has been derived. Indeed, the new Hamiltonian often poses
a problem as difficult as the original one. The primary advantage of the effective
Hamiltonian is that, because the relevant degrees of freedom have been selected,
simple approximations to the problem defined by the effective Hamiltonian often
give deep insight into the physics of the problem. We will illustrate this point with
several examples.

This chapter is organized as follows. In Sect. 2, we review briefly the degen-
erate perturbation theory approach to effective Hamiltonians, with a concise but
self-contained discussion of the second-order result, and a description of the form
the expansion takes at higher orders. In Sect. 3, we discuss three examples taken
from the field of frustrated magnetism where this approach has proven very use-
ful: coupled dimers in a magnetic field, the Ising model in a transverse field,
and the trimerized, spin-1/2 kagomé antiferomagnet. In Sect. 4, we review more
sophisticated approaches based on the same foundation: canonical transformations,
continuous unitary transformations (CUTs), and the contractor renormalization
group approach (CORE). Note that linked cluster expansions are discussed in
Chap. 18 of this book (that by Läuchli). We conclude in Sect. 5 with a discussion
that includes a comparison of the various approaches.

20.2 Strong-Coupling Expansion

Let us consider a system described by a Hamiltonian

H D H0 C V

acting in a Hilbert space H such that the ground state of H0 is degenerate. We
denote by H0 the Hilbert space of the ground-state manifold. The goal is to find an
effective HamiltonianHeff acting in H0 such that

Heffj�i D Ej�i ) H j i D Ej i; j�i 2 H0; j i 2 H:
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20.2.1 Second-Order Perturbation Theory

Up to second order, the relation to be derived below is a standard result of quantum
mechanics (See for example [1]). Denoting by E0 the ground-state energy of H0

and by Em the other eigenenergies, H0jmi D Emjmi for Em ¤ E0. Thus for two
vectors j�i; j�0i 2 H0, and up to second order in V,

h�jHeffj� 0i D h�jH0j�0i C h�jV j�0i C
X

jmi…H0

h�jV jmihmjV j�0i
E0 �Em

:

This result can be reformulated as an operator identity (See for example [2]). If one
denotes by P the projector on H0, and defines Q D 1 � P , then to second order
in V

PHeffP D PH0P C PVP C PVQ
1

E0 �QH0Q
QVP:

Proof. SupposeH j i D Ej i. Because P CQ D 1, this can be written as

.P CQ/H.P CQ/j i D Ej i:

Projecting onto H0 and H � H0 gives

PHPj i C PHQj i D EP j i; .1/

QHPj i C QHQj i D EQj i; .2/

whence
.2/ ) Qj i D .E � QHQ/�1QHPj i;

.1/ ) PHPj i C PHQ
1

E � QHQ
QHPj i D EPj i:

Expansion of .E � QHQ/�1 using .A � B/�1 D A�1
P1

nD0

�
BA�1

�n
, with A D

E0 � QH0Q and B D QVQ � E CE0, leads to

PHeffP D PH0P C PVP C PVQ.E0 � QH0Q/
�1

�
1X

nD0

�
.QVQ �E C E0/.E0 � QH0Q/

�1
�n

QVP: (20.1)

The expansion is then truncated at n D 0. ut

20.2.2 High-Order Perturbation Theory

This form of the expansion is not well suited to the derivation of higher-order expan-
sions, because beyond second order it contains explicitly the exact eigenenergy E .
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An expansion only in terms of the unperturbed eigenenergies can nevertheless be
derived. The first systematic method for this dates to the work of Kato [3]. Here we
follow the formulation of Takahashi [4], in which the expansion takes the form

PHeffP D � �H�;

� D NPP .P NPP /�1=2;

. NPPP/�1=2 D P C
1X

nD1

.2n � 1/ŠŠ
.2n/ŠŠ

ŒP.P � NP /P �n;

NP D P �
1X

nD1

X
k1C:::CknC1Dn;ki �0

Sk1VSk2V : : : VSknC1 ;

S0 D �P; Sk D
�

Q

E0 � QH0Q

�k

:

The true eigenstates  are related to the eigenstates � ofHeff by

j i D � j�i;

and likewise the observables transform according to

O ! � �O�:

Thus the nth order term of Heff has the form

H
.n/
eff D

X
k1C���Ckn�1Dn�1;ki �0

f .k1; k2; : : : ; kn�1/VS
k1VSk2V : : : Skn�1V;

where the coefficients f .k1; : : : ; kn�1/ are deduced by appropriate bookkeeping
from the previous expansions. The number of terms in such a strong-coupling
expansion grows exponentially with n. In practice, beyond the fourth order it can
generally be carried out only with the help of a computer. An alternative formula-
tion based on CUTs, which is simpler when applicable, will be discussed in the next
section. In the remainder of this section, we discuss a number of selected examples
where low-order degenerate perturbation theory provides considerable additional
insight into the problem.

20.2.3 Examples

In the field of quantum magnetism, the best known example is the derivation of the
Heisenberg model starting from the half-filled Hubbard model. The Hubbard model
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is defined by

H D V CH0 D �t
X

hi;j i;�
.c

�
i�cj� C h:c:/C U

X
i

ni"ni#:

At half-filling, the ground state of the interaction term H0 is 2N -fold degenerate,
where N is the number of sites. Treating the kinetic term V as a perturbation leads
at second order (up to a constant) to the effective Hamiltonian

Heff D J
X
hi;j i

S i � S j ;

with J D 4t2=U [5]. As noted in the introduction, this is a case where the effective
Hamiltonian is itself very difficult to solve, which is indeed true for the Heisenberg
model on most lattices. As we shall see in the following, it is often useful to go
one step further, and to derive a further effective Hamiltonian starting from one
physically relevant limit.

Example 1: Frustrated Spin-1/2 Ladder in a Magnetic Field

We consider the Heisenberg model for a frustrated spin-1/2 ladder in a magnetic
field defined by the Hamiltonian

H D
X

n

J? S 1n � S 2n �B
X

n

.S z
1n CS z

2n/C
X

n

X
i;j D1;2

Jij S in � S jnC1: (20.2)

In the spin operators S in, the index i refers to the leg and the index n to the
rung (Fig. 20.1). The goal is to derive an effective Hamiltonian that describes the
magnetization process in the limit J? � Jij [6, 7].

m

H

Fig. 20.1 Left: schematic representation of the spin ladder of 20.2. The couplings entering 20.2 are
denoted by the different line types: thick solid (J

?

), thin solid (J11), dashed (J22), dot-dashed (J12)
and dotted (J21). Right: magnetization curve of a frustrated spin ladder with a 1/2-magnetization
plateau
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The starting point of the perturbative expansion is the Hamiltonian of isolated
dimers at the critical field Bc D J? where, for one dimer, the triplet polarized in the
field direction crosses the singlet,

H0 D
X

n

J?S 1n � S 2n � Bc

X
n

.S z
1n C S z

2n/: (20.3)

The ground state of this Hamiltonian is 2N -fold degenerate, where N is the num-
ber of ladder rungs, and the full Hamiltonian can be treated within degenerate
perturbation theory, the perturbation being given by

V D
X
hnmi

X
i;j D1;2

Jij S in � S jm � .B � Bc/
X

n

.S z
1n C S z

2n/: (20.4)

The sum over hnmi refers to the nearest-neighbor rungs. A perturbative expansion
can be performed under the condition that the matrix elements of V are small com-
pared to the excited states of H0, i.e. as long as Jij; .B � Bc/ � J?. The condition
on B �Bc might suggest that such a calculation cannot give access to the full mag-
netization curve, but in fact the magnetization is rigorously equal to zero or to the
full saturation value outside a window whose width is of order Jij. Thus, this type
of perturbation theory can indeed give the full magnetization curve.

To write down the effective Hamiltonian, one needs a description of the Hilbert
space. Because there are two states per rung, one simple choice is to introduce the
Pauli matrices � n at each rung such that the singlet corresponds to j� z

n D �1=2i
and the triplet polarized along the field to j� z

n D 1=2i. In this basis, and up to first
order in V , the effective Hamiltonian is given by

Heff D J xy
X

n

.�x
n �

x
nC1 C �y

n �
y
nC1/CJ z

X
n

� z
n�

z
nC1 �Beff

X
n

.� z
n/CC; (20.5)

with

J xy D 1

2
.J11 C J22 � J12 � J21/; (20.6)

J z D 1

4
.J11 C J22 C J12 C J21/; (20.7)

Beff D B � Bc � 1

4
.J11 C J22 C J12 C J21/; (20.8)

C D 1

8
.J11 C J22 C J12 C J21/ � .B � Bc/: (20.9)

The effective Hamiltonian is identical to that of an XXZ chain in a field, which
is a major step forward with respect to the original problem: this model has been
investigated at length using the Bethe ansatz [8] and by field-theory methods [9,10],
and much is known about its low-energy properties. In particular, there is a quantum
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phase transition in zero field at J z D J xy between a gapless phase at small J z and a
gapped phase at large J z.

To understand the physics of this phase transition for the original problem, it is
expedient to perform a Jordan–Wigner transformation (See for example [11]) of the
effective model. In this language, the Hilbert space is that of spinless fermions on a
chain, and the elementary operators are fermion creation (c�

i ), annihilation (ci ) and

density (ni D c
�
i ci ) operators at site i . An empty site corresponds to a rung singlet,

an occupied one to a rung triplet, and the effective Hamiltonian becomes

Heff D �t
X

i

.c
�
i ciC1 C c

�
iC1ci /C v

X
i

niniC1 � �
X

n

ni ; (20.10)

with t D J xy=2, v D J z, and � D Beff C J z. In this model, the gapped phase of
the ladder is a half-filled insulating phase of the fermionic chain, while the gapless
one is a metallic phase (a Luttinger liquid in this one-dimensional (1D) system).
Thus the density as a function of the chemical potential has a plateau, the width of
which is equal to the gap of the insulating phase. In the original model, this implies
that the magnetization can have a plateau for certain parameters, a result which
has been confirmed by density-matrix renormalization-group (DMRG) calculations
[12]. The physics of the plateau state is discussed elsewhere in this volume (the
Chap. 10 by Takigawa and Mila). For the purposes of the present chapter, we note
only how powerful the effective-Hamiltonian method can be: a very simple, first-
order calculation can basically solve the problem by mapping it onto another non-
trivial but well-understood one.

Example 2: Expansion Around the Ising Limit

In the previous example, as in the case of the Hubbard model, the unperturbed
Hamiltonian is a sum of local terms, and the macroscopic ground-state degeneracy
is given simply from the ground-state degeneracy of each term. This is not the only
case where the effective-Hamiltonian approach is useful. Another important exam-
ple is the ground state of the antiferromagnetic Ising model, which is degenerate
on non-bipartite lattices such as the triangular and kagomé geometries. Again this
can be the starting point of a degenerate perturbation theory towards the Heisenberg
model on the same lattice if the transverse exchange is treated as a perturbation. In
the same spirit, degenerate perturbation theory can be used to treat the effect of a
transverse magnetic field applied to a frustrated Ising model. In this section we con-
centrate on the Ising case, which is of direct relevance to Quantum Dimer Models
(QDMs, discussed in the Chap. 17 by Moessner and Raman).

Consider the fully frustrated Ising model in a transverse field on the honeycomb
lattice, defined by the Hamiltonian

H D H0 C V D �J
X
hi;j i

Mij�
z
i �

z
j � �

X
i

�x
i : (20.11)
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Fig. 20.2 Left: representation of the model of 20.11. The thick vertical lines on the honeycomb
lattice correspond toMij D �1, all others toMij D 1. The thick horizontal lines on the triangular
lattice correspond to dimers in the ferromagnetic ground state. Right: dimer covering obtained from
the ferromagnetic ground state after flipping the two spins shown as black dots

In this expression, the parameters Mij D ˙1 are chosen in such a way that their
product around each hexagonal plaquette is equal to �1. All models in this class
are then equivalent up to a gauge transformation, � z

i ! �i�
z
i , Mij ! �i�jMij, with

�i D ˙1. One possible choice is shown in Fig. 20.2. For this particular choice, the
two ferromagnetic states, with all spins either up or down, are ground states of H0.
Indeed, they satisfy five bonds out of every six, and it is clearly impossible to do bet-
ter for a case with one antiferromagnetic coupling out of six. From a ferromagnetic
ground state, one may then construct more ground states, and it is easy to verify that
flipping the spins at the ends of a satisfied bond that connects two unsatisfied bonds
leads to another ground state (right panel, Fig. 20.2).

The structure of the Hilbert space is best understood by considering the dual lat-
tice, which is the triangular lattice of sites at the centers of the hexagonal plaquettes,
and to draw a line between two neighboring sites of the dual lattice if the bond (of
the original lattice) which it crosses is unsatisfied. If one imposes the constraint that
each site be connected to exactly one of its neighbors, this set of lines defines a
dimer covering of the triangular lattice, and there is a one-to-one correspondence
between these dimer coverings and the ground states ofH0 which have a given spin
orientation for each given site. Because there are two possible spin orientations, the
degenerate manifold ofH0 is twice as large as the Hilbert space of dimer coverings,
the two configurations leading to the same dimer covering being related by a global
flip of all spins.

For simplicity, we focus on the problem defined by the Ising Hamiltonian act-
ing in the Hilbert space where two configurations related by a global spin-flip are
identified. Then the degenerate subspace can be described by the set of dimer cov-
erings, and the effective Hamiltonian obtained by degenerate perturbation theory
takes the form of a QDM. To deduce the form of this QDM, we first note that the
effective Hamiltonian vanishes to first order in the transverse field. Indeed, flipping
a single spin changes the nature of the three bonds connected to it, which increases
the number of unsatisfied bonds by one or by three, depending on whether or not
one of the bonds connected to this site was unsatisfied. To second order, the situa-
tion is still more complex unless the two sites are nearest neighbors, in which case
the process does not result in a state outside the ground-state manifold provided the
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two sites are on a satisfied bond connected to two unsatisfied ones. The resulting
process leads to a dimer flip around a square plaquette of the dual lattice, and the
effective Hamiltonian is a special case of the Rokhsar–Kivelson model, defined by
the Hamiltonian

H D �t
X

r

�ˇ̌
ˇ
� �

� �

��

E D
� �

� �̌̌ˇC H:c:
�

C v
X

r

�ˇ̌
ˇ
� �

� �

��

E D
� �

� �

��

ˇ̌
ˇC

ˇ̌
ˇ
� �

� �

E D
� �

� �̌̌ˇ
�

(20.12)

with t D � 2=J and v D 0.
In this example, it is the effective model which is of direct interest in the con-

text of frustrated magnets (as discussed in the Chap. 17 by Moessner and Raman).
The connection with the Ising model turns out to be helpful in identifying a possible
phase transition, as first noted in [13], and led more recently to an analytical descrip-
tion of the fractional excitations which exist in the Resonating-Valence-Bond phase
of the QDM on the square lattice [14].

As mentioned at the beginning of this section, an expansion around the Ising limit
can also be performed for the XXZ version of the Heisenberg model, using the ratio
J xy=J z as a small parameter. This approach has been used for the 1/3-plateau of
the spin-1/2 kagomé antiferromagnet [15], for the half-magnetization plateau phase
of the spin-1/2 pyrochlore Heisenberg antiferromagnet [16], and for the 1/3-plateau
phase of molecular analogs of the spin 1/2 kagomé antiferromagnet [17].

Example 3: Weakly Coupled Triangles

Frustration naturally appears in antiferromagnets in which the exchange paths create
loops of odd length, the simplest of these loops being the triangle. There are several
types of lattice geometry which can be considered as coupled triangles, and for
which a perturbation theory starting from non-interacting triangles has proven to
be useful. The effective model takes a special form due to the pecularity of the
ground-state manifold of a triangle, which is four-fold degenerate. This is easily
seen by rewriting the Hamiltonian in terms of the total spin of the triangle, S tot D
S 1 C S 2 C S 3, to obtain

H D J.S 1 � S 2 C S 2 � S 3 C S 3 � S 1/ D J

2

�
.S tot/

2 � 9

4

	
; (20.13)

a result emerging because it is possible to construct two doublets, i.e. four states,
using three spin-1/2 entities. A convenient basis is provided by the simultaneous
eigenstates of the scalar chirality, S1:.S2 �S3/, and of the projection S z

tot of the total
spin,

jR; �i D .j � ���i C !j� � ��i C !2j�� � �i/=p3;
jL; �i D .j � ���i C !2j� � ��i C !j�� � �i/=p3;
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where ! D exp.2i�=3/, � D ˙1=2 refers to S z
tot, and L and R represent left- and

right-handed chirality.
In a system of weakly coupled triangles, treating the inter-triangle coupling as

a perturbation leads to an effective Hamiltonian which acts in a Hilbert space of
dimension 4Nt , where Nt is the number of triangles. For a given triangle i , it
is convenient to introduce a spin-1/2 operator � i , acting on the total spin, and a
Pauli-matrix vector �i acting in chirality space. To first order in the inter-triangle
couplings, provided these couplings are SU(2)-invariant, the effective Hamiltonian
then takes the general form

Heff D Jeff

X
i;j

0
�i � �jH

�
ij ; (20.14)

where the sum is over the lattice of sites representing the arrangement of the trian-
gles, Jeff is linear in the inter-triangle couplings, and the operator H �

ij depends on
which sites of the triangles i and j are coupled by the inter-triangle interaction.

In the case of a three-leg ‘spin tube,’ the effective model takes the explicit
form [18]

Heff D J 0

3

X
hiji

0
�i � �j Œ1C 2.	x

i 	
x
iC1 C 	x

i 	
x
iC1/�; (20.15)

where J 0 is the rung coupling of the real model. For the effective model, field-
theory arguments based on bosonization show that the spectrum must be gapped in
all sectors, a non-trivial prediction to be contrasted with the gapless spectrum of the
three-leg ladder [18].

Another example where this type of effective Hamiltonian has provided addi-
tional valuable insight is on the kagomé lattice. Considering the trimerized version
of this model, where the exchange constant within up-pointing triangles is taken
to be J and in down-pointing triangles J 0, the effective Hamiltonian in the limit
J 0 � J can be expressed as [19, 20]

Heff D J 0

9

X
hiji

0
�i � �j .1 � 4eij � �i /.1 � 4eij � �j /; (20.16)

where the vectors e ij are taken from among e1 D .1; 0/, e2 D .�1=2;�p
3=2/,

and e3 D .�1=2;p3=2/, the choice depending on the labelling of the spins inside
each triangle (For a detailed discussion of this point, see [21]). For this effec-
tive Hamiltonian, a mean-field decoupling of spin and chirality leads to a highly
degenerate ground state. Each ground state can be associated with a dimer cov-
ering of the triangular lattice of up- (or down-)pointing triangles, and the number
of states accordingly grows as 1:5351Nt in terms of the number of triangles, or as
1:1536N in terms of the number of spins [20]. This compares well with the num-
ber of low-lying singlets observed in numerical simulations of the spin-1/2 kagomé
antiferromagnet [22].
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This effective Hamiltonian is also a very useful starting point to discuss the
physics in a magnetic field. Antiferromagnets composed of weakly coupled trian-
gles exhibit a plateau at magnetization 1/3, in which all triangles have a total spin
equal to 1/2 (in a S D 1=2 system) and oriented in the field direction. Inside the
plateau, � i �� j D 1=4 is a constant, and the effective Hamiltonian is a pure chirality
model. This plateau has been investigated for the kagomé lattice in [23].

Finally, similar ideas based on weakly coupled tetrahedra have provided equally
helpful insight into the properties of the spin-1/2 Heisenberg model on the pyroc-
hlore lattice and in related systems [24–26].

20.3 Alternative Approaches Yielding Effective Hamiltonians

There are several ways of deriving effective Hamiltonians based on techniques other
than direct strong-coupling expansions. The aim of this section is to provide a review
of the physics underlying these approaches, with appropriate references for further
reading concerning their more detailed implementations.

20.3.1 Canonical Transformation

The canonical transformation of a Hamiltonian is defined by H ! QH D e�He�� ,
where 
 is antihermitian, so that e� is unitary. If j i is an eigenstate of H , then
j Q i D e�j i is an eigenstate of QH with the same eigenvalue. If the operators are
transformed simultaneously according to A ! QA D e�Ae�� , then h Q j QAj Q i D
h jAj i.

The foundation for using a canonical transformation to derive an effective Hamil-
tonian is the identity

e�He�� D H C Œ
;H�C 1

2Š
Œ
; Œ
;H�� C � � �

D H C
1X

nD1

1

nŠ
Œ
; Œ
; : : : Œ
;H� : : : ��;

which is simply the Taylor expansion ofH.�/ D e��He��� for � D 1.
Considering the case where H D H0 C �V , if one can find an operator 
 such

that Œ
;H0� D �V , then using �
 as a generator leads to

QH D H0 C
1X

nD1

n�nC1

.nC 1/Š
Œ
; Œ
; : : : Œ
; V � : : : ��:
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This operator is a series in powers of �, and hence of the perturbation V . While its
structure is reminiscent of the results of high-order perturbation theory, there is an
important difference: QH acts in the full Hilbert space ofH , whereasHeff acts in the
ground-state manifold ofH0. Depending on the problem, this may or may not be an
advantage. If one is interested in high-energy states which may be detected in a par-
ticular experiment, the canonical-transformation approach has distinct advantages,
because it gives all of the eigenstates up to a certain order, and not only those which
have evolved from the ground-state manifold ofH0 under the perturbation. By con-
trast, if the goal is to reduce the Hilbert space to study the low-energy sector using,
for example, exact-diagonalization calculations on finite clusters, then a degenerate
perturbation theory is sufficient.

20.3.2 Continuous Unitary Transformation

The canonical transformation introduced in the previous section is by no means the
only possibility for obtaining an effective model by a unitary transformation. In fact
there are many ways to do this, even in low orders of a perturbative approach, and it
is therefore an obvious question to ask whether an optimal choice of transformation
exists.

This question led both Wegner [27] and Głazek and Wilson [28, 29] to intro-
duce independently of each other the concept of continuous unitary transformations
(CUTs) [30]. In contrast to the one-step transformation discussed in the last section,
here the unitary transformation is constructed as an infinite product of infinitesi-
mal transformations. Although measurable (on-shell) quantities, such as energies,
have to be the same independent of which kind of transformation has been chosen,
off-shell quantities such as effective interactions can differ strongly. This has been
demonstrated in a quite impressive manner for the case of the Fröhlich Hamiltonian,
which describes conventional superconductivity mediated by the electron–phonon
interaction [31]. Here, the effective electron–electron interaction at second order in
the electron–phonon coupling shows divergences for the case of a one-step trans-
formation (previous section), whereas in the continuous treatment the attractive
interaction is smooth.

Another respect in which the approaches differ is that the one-step canonical
transformation can be applied practically only at low orders in the perturbation.
However, there are physical situations where one is interested in the quantitative
determination of an effective Hamiltonian for a given parameter set in the original
model. One example is the case of strongly frustrated networks of coupled dimers,
as in the Shastry–Sutherland model, where processes relevant to the magnetization
of the system appear only at high orders.

In the method of CUTs, a continuous parameter l is introduced such that l D 0

refers to the initial system H and l D 1 corresponds to the final effective system,
which should correspond to a simplified physical picture. The transformation can be
constructed such that processes at higher energies are treated before those at lower
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energies. This renormalizing property is similar to Wilson’s renormalization-group
approach [32].

Let U be the unitary transformation which diagonalizes the Hamiltonian H and
let H.l/ D U �.l/HU.l/. This unitary transformation is then equivalent to perform-
ing an infinite sequence of unitary transformations, e��.l/dl , with the antihermitian
generators


.l/ D �U �.l/@lU.l/: (20.17)

Taking the derivative with respect to l results in the “flow equation”

@lH.l/ D Œ
.l/;H.l/�; (20.18)

which defines the change of the Hamiltonian during the flow. Note that 20.18 repre-
sents an infinite hierarchy of coupled differential equations, because for the general
case an increasing number of terms is generated on the right-hand side at each order.
In practice, one has therefore to perform a truncation (below).

The properties of the effective Hamiltonian depend strongly on the choice of the
generator. There are in essence two different modern variants. The first one uses
the generator introduced originally by Wegner [27], which aims to eliminate inter-
action matrix elements with the goal of obtaining an energy-diagonal effective
Hamiltonian. This approach has been applied successfully to a large class of
problems, with special attention being given to determining the ground state of
interacting quantum many-body problems ([27, 31]; [33] and references therein).
The second variant is the quasiparticle-conserving CUT which, as its name sug-
gests, maps the HamiltonianH0 to an effective Hamiltonian conserving the number
of quasiparticles [34–37]. This approach can be used either to study the excitations
of an already known quantum ground state [30, 37–41], one application for which
has been to bound states, or, in analogy to the previous case, to derive effective
low-energy models [42–46].

Returning to the point mentioned above, in all practical calculations it is neces-
sary to truncate the flow equation (20.18). For this there are two options: (a) cutting
the hierarchy at one level and solving the equations numerically (self-similar CUTs)
or (b) using a series-expansion ansatz for 
 and H, and solving the flow equations
perturbatively to high order (perturbative CUTs).

Here we focus only on presenting one illustrative example, for which we choose
the perturbative version of quasiparticle-conserving CUTs [34, 37, 47, 48]. If the
problem at hand meets the two conditions:

1. The unperturbed part has an equidistant spectrum bounded from below.
2. There is an integer numberN > 0 such that the perturbing part can be separated

as
PN

nD�N Tn, where Tn increments (or if n < 0 decrements) the number of
particles by n.

then the CUT in its quasiparticle-conserving form can be solved to high order in the
perturbation and the effective Hamiltonian is given by the general form [37]
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Heff.x/ D QC
1X

kD1

xk
X
jmjDk

M.m/D0

C.m/T .m/; (20.19)

where Q is the unperturbed part of the Hamiltonian, x an expansion parameter,
m D .m1; m2; : : : ; mk/, and M.m/ D Pk

iD1mi D 0 reflects the conservation of
the number of particles. The action of Heff can be viewed as a weighted sum of
particle-number-conserving virtual excitation processes, each of which is encoded
in a monomial T .m/ D Tm1

Tm2
: : : Tmk

. The coefficients C.m/ are rational num-
bers which can be calculated (to high order in the perturbation) exactly as the ratio of
two integers. It should be emphasized that the effective HamiltonianHeff, which has
known coefficientsC.m/, can be used straightforwardly in all perturbative problems
that meet the above conditions.

We illustrate the method first for an unfrustrated spin ladder in a magnetic field,
including from (20.2) only the magnetic exchange J? on the rungs, the magnetic
field B , and the unfrustrated exchange along the legs of the ladder, setting J11 D
J22 � Jk. Rewriting the Hamiltonian in terms of rung triplet operators t˛, with
˛ D fx; y; zg [49], we obtain

H D J?QC Jk
2
ŒT0 C TC2 C T�2�CHB ;

where

Q D
X
i;˛

t
�
˛;i t˛;i ;

T0 D
X
i;˛

t
�
˛;i t˛;iC1 C

X
i;˛;ˇ

h
t
�
˛;i t

�

ˇ;iC1
tˇ;i t˛;iC1 � t

�
˛;i t

�
˛;iC1tˇ;i tˇ;iC1

i
;

TC2 D
X
i;˛

t
�
˛;i t

�
˛;iC1;

T�2 D
X
i;˛

t˛;i t˛;iC1 D T
�
C2:

The operator Q counts the total number of triplet excitations, while the operators
Tn change the triplet number by n, and HB denotes the magnetic-field term.

In the following we consider the limit of weakly coupled rung dimers, i.e. we
set J? D 1 and consider Jk=J? � x as the small expansion parameter. The effec-
tive HamiltonianHeff obtained by a quasiparticle-conserving CUT has the property
ŒHeff;Q� D 0, meaning that the total number of triplons (dressed triplets which are
the elementary excitations of the spin ladder) is a conserved quantity. The effective
Hamiltonian at second order is

H
.2/
eff D QC xT0 C x2

4
ŒTC2T�2 � T�2T2�CHB :
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The total spin S z
tot is a conserved quantity. The magnetic-field term is therefore not

changed under the unitary transformation, and the low-energy physics is influenced
solely by the local singlet jsi and the triplet jt1i polarized parallel to the magnetic
field (as discussed in Sect. 2). Identifying jsi with an empty site and jt1i with the
presence of a hard-core boson, one may deduce the effective Hamiltonian in this
basis by calculating matrix elements on a finite cluster [47, 48]. The result is

H hb
eff D �tn

X
i;j 2f1;2g

�
b

�
i biCj C h:c:

�
� �

X
i

ni

� t 01
X

i

�
b

�
i�1biC1 C h:c:

�
ni C vj

X
i;j 2f1;2g

niniCj ; (20.20)

with t1 D x=2, t2 D x2=4, t 01 D �x2=4, v1 D x=2 � 3x2=8, v2 D 0, and � D
B � 1C 3x2=4.

We emphasize that a calculation such as this, based on coupled dimers in an
external magnetic field, can be performed for any frustrated lattice and to high orders
in the perturbation. By using appropriate extrapolations, a quantitative low-energy
effective Hamiltonian may be derived, which is usually applicable over a large part
of the parameter space. The high-order expansion (including extrapolation of the
bare series) becomes problematic only when the correlation length of the system
exceeds the spatial range covered by the maximum order treated, for example close
to a quantum phase transition. The method will break down if the ground state for
the parameters of interest is not unitarily connected to the ground state about which
one is expanding.

As a second example illustrating the importance of a quantitative effective
model, meaning one obtained with high-order accuracy, we discuss the 2D spin-
1/2 Heisenberg system known as the Shastry–Sutherland model [50] in a magnetic
field,

H D J 0 X
hi;j i

Si � Sj C J
X

�i;j �
Si � Sj � B

X
i

S z
i : (20.21)

The bonds denoted � i; j � represent an array of orthogonal dimers, while the
bonds hi; j i, which are inter-dimer couplings, form a square lattice (Fig. 20.3). This
theoretical model is believed to be realized experimentally in the layered copper
oxide material SrCu2(BO3)2, where the coupling ratio is J 0=J � 0:63. In the the-
oretical model, for J 0=J smaller than a critical ratio of order 0.7, the ground state
of the model is given exactly by the product of dimer singlets, and the magnetiza-
tion process of the system can be described in terms of hard-core bosons which, as
discussed for the spin ladder above, represent polarized jt1i triplons on the dimers,
interacting and moving on an effective square lattice [54, 55].

A consequence of the strong frustration is the appearance of several magnetiza-
tion plateaus which correspond to Mott-insulating phases of the hard-core bosons
[51–53], where the translational symmetry of the system is broken and triplon exci-
tations are frozen in the ground state as in a charge-ordered state (discussed in
the Chap. 10 by Takigawa and Mila). Theoretically, all approaches to the basic
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Fig. 20.3
Shastry–Sutherland lattice
and definition of the
two-body interactions. Vn is
the coefficient of the
two-body interactions
between the reference dimer
(thick bond) and the
corresponding dimer. Figure
courtesy of [62]

theoretical model agree on the presence of magnetization plateaus at 1/3 and 1/2
of the saturation value [54–58], in agreement with experiments [52, 59]. However,
the structure below 1/3 magnetization is rather controversial. On the experimental
side, the original pulsed-field data show only two anomalies which were interpreted
as plateaus at 1/8 and 1/4 [52], but the presence of additional phase transitions, and
of a broken translational symmetry above the 1/8-plateau have been established by
recent torque and NMR measurements performed up to 31 T [60, 61]. The pos-
sibility of additional plateaus has been pointed out by Sebastian et al. [59], who
interpreted their high-field torque measurements as evidence for plateaus at 1=q,
with 2 	 q 	 9, and at 2=9. On the theoretical side, the situation is also not
settled. The finite clusters available for exact-diagonalization studies are not large
enough to allow reliable predictions for high-commensurability plateaus, and the
accuracy of the Chern–Simons mean-field approach initiated by Misguich et al. [57],
and employed recently by Sebastian et al. [59] to explain their apparent additional
plateaus, is not easy to assess. The essential difficulty lies in the fact that, because
plateaus are a consequence of repulsive interactions between triplons, an accurate
determination of the low-density, high-commensurability plateaus requires a precise
knowledge of the long-range part of the interaction.

Such a precise analysis was conducted recently using perturbative CUTs [62].
The processes relevant for the physics in a finite magnetic field are those with max-
imum total spin and total Sz. Thus the general form of the effective Hamiltonian
obtained by the perturbative CUT takes the form

Heff D
X

nD2;4;6:::

X
r1;:::;rn

Cr1;:::;rn
b�

r1
: : : b�

rn=2
brn=2C1

: : : brn
; (20.22)

where ri labels the sites of the square lattice formed by the J bonds, while the hard-
core boson operator b�

r creates a polarized jt1i triplon at site r . The coefficients
Cr1;r2;:::;rn

are then obtained as high-order series in J 0=J , computed up to order 15
for the two-body interactions Vn to be discussed below.
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Fig. 20.4 Coefficients of the extrapolated two-body interactions Vn as function of J 0=J . Inset:
different extrapolations (solid lines) shown together with the bare series (dashed lines) for V 03 and
V5. Figure courtesy of [62]

It is found that the magnitudes of all the interaction terms decrease when the sep-
aration of the sites is increased. In addition, the physics at low density is dominated
by the two-body density-density interactions, while the standard two-site hopping
is, as expected, strongly suppressed due to the frustration [63]. The evolution with
J 0=J of the most relevant two-body interactions, defined in Fig. 20.3, is shown in
Fig. 20.4. At small J 0=J , interactions beyond V4 are small and may be neglected,
but for larger coupling ratios the higher-order terms V 0

3, V5, and V7 (appearing at
order 6) become important and contribute to the formation of low-density plateaus.

In general, the effective HamiltonianHeff is by no means simpler than the original
one, but it becomes so in the limit of low density and moderate J 0=J . Indeed, in this
limit the kinetic terms are very small, and they can be considered as a perturbation
of the interaction part, which is diagonal in the local Fock basis, jnr1

; nr2
; : : : i. It is

thus appropriate to use a Hartree approximation in which the variational ground state
is a product of local boson wave-functions, because this approximation becomes
exact in the limit of vanishing kinetic energy. This approach has the further advan-
tage that it can be used to compare and treat rather large unit cells, which is
important in the SrCu2(BO3)2 problem, where “solid” phases with a complicated
structure can be found at low magnetizations.

The resulting phase diagram in the Hartree approximation is shown in Fig. 20.5.
The phase diagram is dominated by a series of plateaus, which appear at 1/3 and
1/2 (not shown) even at very small J 0=J , and at 2/9, 1/6, 1/9, and 2/15 as J 0=J
is increased. A plateau structure of this kind is to be expected when the kinetic
terms, as here, are very small, because if these terms were completely absent, the
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Fig. 20.5 Magnetization plateaus as a function of � and J 0=J . The boson density n is equal to the
magnetization in units of the saturation value, and the chemical potential � is equal to the magnetic
field B . Solid lines denote results that are fully converged with respect to the terms retained in the
Hamiltonian. Well-converged results are then connected by dashed lines. Figure courtesy of [62]

magnetization curve would consist simply of a sequence of plateaus. At J 0=J D
0:5, the 1/6-plateau is by far the most prominent stucture below 1/3.

All of the plateaus found at low densities are actually stabilized by two-body
repulsive interactions Vn appearing at high orders in J 0=J . It is, therefore, crucial
to obtain the effective Hamiltonian very accurately, because the most significant
features in this density regime are found to result from the competition between
small interactions.

Finally, it is worth adding that the method of CUTs is also able to treat observ-
ables ([33]; and references therein [47, 62]). To this end, an observable O must be
transformed by the same CUT as the Hamiltonian,

@lO.l/ D Œ
.l/; O.l/�; (20.23)

yielding effective observables Oeff D O.l D 1/. Here we mention only one pos-
sible application which can be very useful for the physics of frustrated quantum
magnets: a typical situation in quantum magnetism is that, in addition to the dom-
inant nearest-neighbor Heisenberg exchange interactions, there are small coupling
terms Hadd, such as Dzyloshinskii–Moriya interactions, which can have a profound
influence on the physics of the system. Formally

Htot D H CHadd;

and it is both elegant and efficient to perform first a CUT on H , which contains the
dominant couplings, and then to treat Hadd as an observable

H eff
tot D H eff C U �HaddU:
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Here,H eff conserves the number of quasiparticles, whereas the transformed observ-
able U �HaddU does not. Thus in the second step, performed after the first CUT,
either ordinary perturbation theory or a second CUT can be applied to treat the term
U �HaddU , which contains the small couplings. In cases whereHadd mixes low- and
high-energy states, it is essential to retain access to the full Hilbert space of the
problem.

20.3.3 Contractor Renormalization

One further method which we highlight here for the derivation of low-energy
effective models is the Contractor Renormalization (CORE) technique, invented
by Morningstar and Weinstein [65, 66]. The underlying idea is to derive effective
Hamiltonians for a truncated local basis in such a manner that the low-energy spec-
trum of the model under study is reproduced exactly. As for CUTs, the CORE
approach can be used either in an analytically oriented form [67–71] or as a
numerical technique [72–76]. For recent reviews on CORE we refer the reader to
[77, 78].

The essential steps of the CORE algorithm are the following:

1. The system is divided into local subunits. One subunit is diagonalized, keeping
M suitable low-energy states.

2. The full Hamiltonian is diagonalized on a connected graph consisting of
N subunits. The low-energy eigenenergies �n and eigenstates jni are calculated.

3. A basis of dimension MN is obtained by projecting the eigenstates onto the
tensor product space of the retained states.

4. The effective Hamiltonian is constructed according to

H eff
N D

M NX
nD1

�nj nih nj:

5. The connected range-N interactions are determined by subtracting the contribu-
tions of all connected subclusters.

Finally, the effective Hamiltonian is deduced by a cluster expansion as

H eff
CORE D

X
i

Hi C
X
hi;j i

Hij C � � �

Note that H eff
CORE reproduces exactly the low-energy physics if one considers all of

the terms on the right-hand side.
In practice, it is necessary to perform a truncation. The convergence of the algo-

rithm therefore depends both on the range of the operators taken in the cluster
expansion and on the number and type of low-energy states retained for one subunit.
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Hence the successful application of the CORE technique does require some phys-
ical insight concerning the problem at hand. However, once the relevant degrees
of freedom have been selected, CORE represents a non-perturbative method for
deriving effective low-energy Hamiltonians.

An important feature of the CORE algorithm is that it does not rely on the system
being in a certain physical phase (to be contrasted with the example of quasiparticle-
conserving CUTs discussed in the preceding section) and therefore does not break
down even if a quantum phase transition takes place in the parameter space of the
original model. As an example, we present here some illustrative CORE results
for the magnetization curves of the 2D spin-1/2 Heisenberg model on the Shastry–
Sutherland lattice discussed in the previous section [64]. The CORE technique is
used to derive an effective Hamiltonian which is then treated by exact diagonaliza-
tion (ED). The effective model obtained by CORE is found to agree very well with
that obtained by perturbative CUTs. It is therefore expected that differences between
the two approaches arise primarily from the method used to treat the effective model,
which in the examples shown is either a classical limit [62] or ED [64].

Results obtained from CORECED are shown in Fig. 20.6. As in the treatment by
a perturbative CUT, a rich plateau structure is found below m D 1=3. This again
highlights the utility of an approach to the physics by first deriving a quantitative
effective model which is then treated by simpler techniques. One obvious advan-
tage of ED compared to the classical treatment is that it takes quantum fluctuations
fully into account. It is, therefore, striking that the magnetization curves in both
approaches are dominated by the presence of plateaus. By contrast, one drawback
in using ED as a solver for the effective model (and one advantage of the classical
solver) is the restriction on cluster sizes and shapes. Because the physics at low den-
sities involves solid phases with rather large unit cells, it is a challenge within the ED
approach to stabilize and to compare different solids, such as the 2=15 phase found
in [62]. Despite the differing aspects, both positive and negative, of these approaches
to this problem, it should be emphasized that the advanced techniques used to derive
effective Hamiltonians have proven to be crucial in the discovery and resolution of
the complicated magnetization processes of strongly frustrated quantum magnets.

20.4 Conclusions

In this chapter, we have summarized a variety of tools which are used in the field of
highly frustrated magnetism to derive effective low-energy Hamiltonians. We have
aimed to capture the essential technical aspects of these different approaches and
to provide examples of them for a number of physical applications. While it is not
possible in a chapter of this type to cover all such methods in full detail, where
relevant we have referred the interested reader to the more specialized literature.

We have shown that strong-coupling expansions and the derivation of effective
models are at the same time standard techniques used by theoretical physicists for a
broad range of physical questions and also a very active area of current research on
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courtesy of [64]

strongly correlated quantum systems. For the first type of application, it is often the
goal to identify the relevant low-energy degrees of freedom and to use an effective
model to leading order in perturbation theory to understand qualitatively the phase
diagram of a given model. By contrast, the aim of the current developments is to
obtain a quantitative derivation of effective models and a complete understanding of
the breakdown of such derivations.
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Chapter 21
Mobile Holes in Frustrated Quantum Magnets
and Itinerant Fermions on Frustrated
Geometries

Didier Poilblanc and Hirokazu Tsunetsugu

Abstract In a manner similar to those of spin, charge degrees of freedom in sys-
tems with frustrated geometries often exhibit complex and exotic types of behavior.
This chapter describes two classes of system with these properties. The first is the
case of doped Mott insulators with magnetic frustration, where spin-charge separa-
tion and superconductivity with unconventional pairing symmetries are among the
possible phenomena which emerge. The second is the case of itinerant fermions
at commensurate densities, where quantum fluctuation effects, acting on top of
the canonical metal–insulator transition or macroscopically degenerate classical
manifold of states, can lead to novel forms of behavior, and indeed to novel phases.

21.1 Introduction

As discussed in several chapters of this volume, frustration leads to unconven-
tional (insulating) ground states. On the other hand doped holes are known to have
profound effects in Mott insulators. Therefore doped frustrated systems offer the
prospect of novel phases with some of the most fascinating, challenging and exotic
behaviour. In addition, at commensurate electron fillings and in the presence of
strong (screened) Coulomb repulsion, geometrical frustration can also manifests
itself as an extensive degeneracy of the classical ground-state manifold providing
profound similarities with the field of quantum frustrated magnetism.

Magnetic frustration in quantum spin systems leads frequently to the formation of
spin singlets (dimers). Generically, systems of fluctuating quantum dimers can often
order, breaking lattice symmetries to give rise to Valence Bond Crystals (VBCs) [1],
but under other circumstances they may remain in a quite unconventional quantum
disordered state, the spin liquid, which breaks neither spin nor lattice symme-
tries. Anderson’s original d -wave Resonating Valence Bond (RVB) state [2, 3] is
a paradigm for the spin liquid (in fact, for a particular type of gapless spin liq-
uid, while the short-range RVB state composed of only nearest-neighbor dimers
is gapped spin liquid). In a number of cases, frustrated spin systems and/or dimer
systems can be doped, for example by chemical substitution in a Mott insulator.

563
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When both spin and charge degrees of freedom are present, the role of frustration
becomes unclear, and to date remains only poorly explored. It is, however, clear that
new and exotic phenomena emerge upon doping, including heavy-fermion behavior,
spin-charge separation or quasiparticle fractionalization, unconventional supercon-
ductivity, stripe formation, bond and/or charge ordering, and many others. Such
fundamental issues have motivated an increasing number of recent investigations,
as well as the continuing search for new, doped materials.

In this chapter, we describe some selected topics which illustrate the richness
and diversity of the field of doped, frustrated magnets. The first example con-
cerns the dynamics of a small number of doped holes in the two-dimensional (2D)
kagomé and checkerboard Heisenberg quantum antiferromagnets. Without doping,
the kagom’e Heisenberg antiferromagnet is believed to be a serious candidate for
spin-liquid behavior, while the checkerboard lattice is the 2D analog of the well-
known and highly frustrated 3D pyrochlore structure common in real materials.
With doping, issues such as particle fractionalization and pairing can be addressed.
In a second example, we move to the topic of Quantum Dimer Models (QDMs),
similar to those proposed by Rokhsar and Kivelson in the context of the pseudo-gap
phase of high-temperature superconductors. Two classes of (weakly) doped QDMs
will be discussed, which differ in the assumed statistics, bosonic or fermionic, of
the bare holes. We proceed further by considering strongly correlated electrons on
frustrated triangular lattices, and discuss the physics of an unconventional, reentrant
metal–insulator transition. As our final example, we consider correlated fermions
moving on frustrated lattices at special, commensurate densities for which exotic
but once again insulating ground states (GSs) are stabilized. For systems with strong
interactions (Mott insulators), we show briefly how their behavior is analogous to
the physics of (undoped) QDMs.

21.2 Doping Holes in Frustrated Quantum Magnets

21.2.1 The Holon–Spinon Deconfinement Scenario

We begin our discussion of the phenomena associated with doped holes in frustrated
magnets by considering the most popular paradigm for a nonmagnetic quantum
ground state, which is a dimer-based system. If we assume that a single hole is
“injected,” then the removal of the electron results in the breaking of one of the
dimers, leaving behind an empty site (holon) and a free spin (spinon) on the same
bond.

If the dimers can change their positions by quantum fluctuations, the holon and
the spinon can move on the lattice, across the diagonals of the plaquettes in a square-
lattice system, by exchanging with the dimers. A typical configuration is shown in
Fig. 21.1. Optimization of their kinetic energies would require the holon and spin to
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Fig. 21.1 Schematic
representation of a holon
(empty site, red) and a spinon
(free spin, green) embedded
in a fluctuating background of
bond singlets (black)

delocalize, and thus to become separated. In a (gapped) spin liquid, realized if the
system can fluctuate through all possible dimer coverings, a complete separation,
known as “deconfinement,” is possible. In this situation, the Landau quasiparticle
(QP) breaks apart into separate species, and an experimental technique which probes
the hole Green function, such as Angle-Resolved Photoemission Spectroscopy
(ARPES), would then show a broad maximum in place of the sharp QP peak. How-
ever, if dimer VBC order is present, i.e., only one specific (type of) covering lies
lowest in energy, one expects an effective string potential that binds the holon and
spinon: indeed, if the dimers had no internal structure, an attempt to separate these
two “particles” would lead to a continuous and linear increase of their energy. In
reality, this increase is bounded by the spin gap (the energy to break up a dimer),
beyond which pairs of spinons would be generated spontaneously along the string.

21.2.2 Single Hole Doped in Frustrated Mott Insulators

Frustrated magnets are good candidates for the observation of spin-charge separa-
tion upon doping. The checkerboard and kagomé lattices, shown in Fig. 21.2a,c,
are good examples of the types of frustrated lattice on which such a phenomenon
may be expected. They are composed, respectively, of strongly frustrated tetrahedra
and triangles, assembled in a 2D, corner-sharing structure. While the AF Heisen-
berg Hamiltonian for S D 1=2 spins (in this chapter we consider only systems of
S D 1=2 spins) on the checkerboard lattice is now thought to be a fully gapped sys-
tem exhibiting VBC order (plaquette phase) [4–8], by contrast no sign of ordering
has been found in the undoped kagomé antiferromagnet [9–13], which possesses
an exponentially large number of singlet states within the (finite-size) spin gap
[12–15]. It is these unconventional, low-lying excitations which open the door to
new and surprising phenomena upon hole doping.

We perform exact diagonalization (ED) calculations based on the standard t-J
model Hamiltonian,
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Fig. 21.2 (a) Checkerboard lattice. The two degenerate VBC GSs of the nearest-neighbor Heisen-
berg model (half-filling) are represented schematically in blue and red. This figure also serves
as a representation of the RSPC GSs of the quarter-filled, large-V Hubbard model of Sect. 21.5.2.
(b) Full Brillouin Zone (BZ) of the checkerboard lattice. The dotted line corresponds to the reduced
BZ associated with the
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where on both lattices all bonds have the same couplings t , describing the kinetic
energy of the hopping quasiparticles, and J , which is the superexchange interac-
tion between the spins. This model is believed to be a reliable description of the
low-energy physics of weakly doped Mott-Hubbard insulators with large optical
excitation gaps. Here and hereafter, we assume the value J D 0:4 (in units where
jt j is set to 1), which is the general order of the physical value in a number of real
materials. The hole spectral functions are defined in the standard way as

A.k; !/ D � 1

�
Im

��
�0jc�

k;�

1

! C E0 C i��H ck;� j�0

�	
; (21.2)

and calculated by Lanczos ED, supplemented with a continued-fraction technique,
on finite clusters with periodic boundary conditions to take advantage of the lattice
translation symmetry. The reader is referred to Chap. 18 of A. Läuchli in this volume
for a detailed discussion of numerical methods. Here we focus on the case of a single
dynamic hole, as studied in [16]. Because of the absence of particle-hole symmetry
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in frustrated lattices, it is necessary to distinguish between the cases t > 0 and t < 0.
Note that for t < 0, frustration can also appear in the hole motion: in the example of
a particle with the tight-binding dispersion on an isolated triangle, the kinetic-energy
gain is jt j, a factor of two smaller than for t > 0.

Typical results obtained for a 32-site cluster on the checkerboard lattice are
shown in Fig. 21.3 for the line �M line in the Brillouin Zone (BZ) (Fig. 21.2b).
At all points, most of the spectral weight is found to be incoherent, distributed over
a range of 7–9jt j. However, a small QP peak is visible, particularly for momenta
close to the M point. The region close to the � point has only a very small QP
peak, or possibly none at all, and the shape of the spectral function at � itself is
very special, probably because of its higher point-group symmetry.

The analogous spectral functions of the kagomé lattice, shown in Fig. 21.4, show
definite exotic behavior; they are very broad for all momenta (widths approximately
6–8jt j) and, in contrast to the checkerboard lattice, show no visible QP peaks, either
for t > 0 (left panel) or for t < 0 (right panel). We stress that the broad appearance
of these spectra has no connection to the value of � used in the calculation, but is
an intrinsic feature of the spectral function, as can be deduced from the large num-
ber of poles carrying spectral weight (circles in Fig. 21.4). These spectral-function
data support very strongly a spin-charge-separation scenario for the kagomé lattice.
Indeed, this spectacular phenomenon can be observed directly in the spin-density
profile in the vicinity of the hole: a repulsion between the net S D 1=2moment and
the mobile hole is clearly visible, providing further support to the deconfinement
scenario described above in the context of dimer-based systems.

This investigation provides the first example of the observation of spin-charge
separation in a 2D microscopic model. It establishes that the spin-liquid nature
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Fig. 21.3 Single-hole spectral functions obtained on a 32-site checkerboard cluster (
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32,
tilted at 45ı to the axes of Fig. 1.2) along the line �M . Left panel: t D C1; right panel: t D �1.
In both cases, J=jt j D 0:4. When a quasiparticle peak is present, the corresponding weight is
indicated. Magnification factors applied in some cases are as indicated. From [16].



568 D. Poilblanc and H. Tsunetsugu

-4 -2 0 2 4 0 2 46 -4 -2 6

Γ Γ

MM

× 0.5 × 0.5

t>0 t<0

ω / t ω / |t|

A
(k

,ω
) 

[a
. 
u.

]

Fig. 21.4 Single-hole spectral functions (black lines) along the line � $ M , computed on a
27-site kagomé cluster for t D C1 (left panels) and t D �1 (right panels). Contributions of both
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of the undoped ground state is crucial for such behavior. Indeed, in the checker-
board lattice, whose ground state exhibits a VBC structure, a weak holon–spinon
confinement manifests itself as QP peaks in the spectral function for some momenta.

21.2.3 Hole Pairing and Superconductivity

Whether doped holes could pair and lead to unconventional superconducting behav-
ior is another of the fundamental issues raised recently by the new prospect of
doping frustrated antiferromagnets. Indeed, superconductivity in the spinel oxide
LiTi2O4 [17, 18], in the recently synthesized 5d transition-metal pyrochlores [19–
21], and in a layered triangular CoO compound [22] suggests that geometrical
frustration, which could be magnetic and/or kinetic, might play a key role in
the mechanism of unconventional superconductivity (as discussed in Chap. 22 of
Z. Hiroi and M. Ogata).

Cluster calculations (Fig. 21.5) were used to discover the occurrence of pair-
ing in the doped checkerboard Heisenberg antiferromagnet described above [23].
It was shown that pairing, in several orbital channels including s- and d -wave,
appears at arbitrarily small J=t for the particular sign of the hopping amplitude
which leads to frustration in the motion of a single hole. In fact, hole delocalization
(i.e. a gain in kinetic energy) plays a key role in this new mechanism of unconven-
tional pairing, as also in some of the inter-layer tunneling mechanisms proposed by
Anderson [24]. From these numerical data, a simple scenario might be proposed
for t > 0: despite its suppressed coherent motion, a single hole retains a strong
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incoherent motion, and thus can act to “melt” the plaquette VBC in its vicinity. This
region, which may be somewhat extended in space, becomes more favorable for a
second hole to gain kinetic energy, leading to correlated (or assisted) hopping. It is
interesting to emphasize here the similarities with tight-binding studies of frustrated
lattices, which show both localized single-particle states and interaction-induced,
delocalized, two-particle bound states [25, 26].

In connection with cobaltates, superconductivity has also been investigated in the
t-J model on the triangular lattice, in particular using RVB variational Ansätze (pre-
sented in Chap. 22 of Z. Hiroi and M. Ogata). In these studies, dx2�y2 C idxy-wave
superconductivity is found to be stable near half-filling. The relationship between
this phase and the three-sublattice, 120-degree AF long-range order occurring at
half-filling remains at present unclear and in need of further investigation.

21.3 Doped Quantum Dimer Model

21.3.1 Origin of the Quantum Dimer Model

The conclusions obtained in Sect. 21.2.2 notwithstanding, both magnetic frustration
and the introduction of fermionic variables (holes) lead, together or independently,
to severe limits on the available numerical approaches. For example, quantum
Monte Carlo algorithms, known to be very efficient for simple quantum spin
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systems, suffer from the infamous “minus-sign problem” (introduced in Chap. 18
of A. Läuchli) and cannot be used at the required low temperatures. Practically,
zero-temperature ED (by the Lanczos algorithm) and variational approaches are the
only controlled methods practicable for systems such as the t-J model on frustrated
lattices. However, one alternative route to the investigation of microscopic models
of the t-J and Hubbard types is to construct effective models which would allow
the use of more efficient methods, or calculations on larger clusters, while retaining
the essential low-energy physics.

When the effect of magnetic frustration is such that dimer degrees of freedom are
relevant, one may consider the quantum hard-core dimer gas on a two-dimensional
lattice. We illustrate this type of model by considering a square lattice, on which it
is defined by the Hamiltonian

HQDM D V
X

c

Ncjcihcj � J
X

.c;c0/

jc0ihcj; (21.3)

where the sum over the index .c/ refers to all nearest-neighbor dimer coverings,Nc

is the number of “exchangeable” plaquettes, and the sum .c0; c/ is over all pairs of
configurations jci and jc0i that differ by a single dimer-exchange process of the type
illustrated in Fig. 21.6a. In a manner similar to the square lattice, on the triangular
lattice the exchange of parallel dimer pairs can be performed on the three differ-
ent types of two-triangle rhombi. This model was introduced originally by Rokhsar
and Kivelson [27] in the context of the RVB theory of cuprate superconductors.
The connection to the original spin formulation is, however, not completely clear:
among other truncations of the spin degrees of freedom, the QDM of (21.3) deals by
construction with orthogonal dimer coverings, which is not the case for the SU(2)
dimer basis relevant in frustrated Heisenberg antiferromagnets. In spite of these sub-
tleties, QDMs are expected to capture the essential physics of systems with singlet
ground states, one primary reason for this being that they do possess the extreme

Fig. 21.6 (a) Dimer-
exchange process and
(b) holon hopping process in
the QDM
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ground-state degeneracy of the basis manifold. More details concerning these issues
may be found in Chap. 17 of R. Moessner and K.S. Raman in this volume.

It is easy to introduce doping in the QDM. Holes may be injected only in pairs
(i.e. by removing dimers). However, doped holes can then move independently
by hopping between nearest-neighbor (on the triangular lattice) or diagonal next-
nearest-neighbor (on the square lattice) sites [27–29]. The full Hamiltonian for a
doped QDM is

H D HQDM � t
X

.c;c00/

jc00ihcj; (21.4)

where the .c00; c/ sum involves all pairs of configurations jci and jc00i, containing a
fixed number Nh of vacant sites (holes), that differ by a single hole hopping along
a plaquette diagonal as illustrated in Fig. 21.6b. In this formulation, bare holons, by
which is meant the moving vacancies, have Bose statistics. Note that, in contrast to
the triangular lattice, holes on the square lattice are constrained to remain only on
one of the two sublattices.

21.3.2 Phase Diagrams at Zero Doping

Somewhat remarkably, the square- and triangular-lattice QDMs have quite different
phase diagrams in the undoped case. First, exactly at V D jJ j, which is known
as the “RK point,” the GS takes the form of an equal superposition of all dimer
coverings, and exhibits algebraic dimer correlations on the square lattice but short-
ranged (exponentially decaying) correlations on the triangular lattice. Ordered VBC
states appear on the square lattice immediately away from the RK point, whereas
a gapped RVB liquid [30] is present over a finite region in V=J on the triangu-
lar lattice. This RVB phase of the triangular lattice has also been shown to exhibit
topological order [30–32], whose importance for frustrated systems is discussed in
Chap. 16 of G. Misguich, and for quantum information in Chap. 23 of J. van den
Brink, Z. Nussinov and A.M. Oleś. Comparative schematic phase diagrams for the
two lattices are depicted in Fig. 21.7. The square lattice shows a rich variety of VBC
phases [33] with, in particular, a novel mixed phase [34] which interpolates between
the columnar and the plaquette phases (the blue squares in Fig. 21.7 correspond to
plaquettes on which vertical and horizontal dimer pairs resonate).

21.3.3 Connection to the XXZ Magnet on the Checkerboard
Lattice

We have already explained the extent to which QDMs provide a natural frame-
work to describe the dynamics of SU(2) singlets in frustrated but isotropic quantum
antiferromagnets. We also mention briefly another case in which the QDM emerges
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Fig. 21.8 Representation of the Hilbert space of the large-Jz XXZ Heisenberg model on the
checkerboard lattice in terms of (a) loop and (b) dimer coverings, corresponding respectively to
(a) zero magnetization and (b) Mz D ˙1=2. The red dots represent hard-core bosons with, for
example, Sz D 1=2 on the corresponding sites, while all other sites have Sz D �1=2. A dimer
joining the centers of two “tetrahedra” is associated with each boson

as the model for the low-energy physics, that of the strongly anisotropic Heisenberg
magnet (in the Ising limit) on the checkerboard lattice and in the presence of a
magnetic field.

We begin with no magnetic field and only an Ising coupling, JzS
z
i S

z
j , on the

bonds of the checkerboard lattice: in this case, the (classical) ground state is highly
degenerate and can be fully represented by the “loop coverings” illustrated in
Fig. 21.8a. Here, an up- (down-)spin is represented by the presence (absence) of
a dimer, or boson, on the bonds of an effective square lattice whose sites are in
fact the centers of the “tetrahedra” (the squares including diagonal bonds). The
constrained nature of the classical GS is of the “ice-rule” type: the lowest Ising
energy is obtained when there are precisely two bosons on every tetrahedron.
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Second-order processes in the exchange coupling Jxy lead to the dynamics of a
six-vertex model [35] or a quantum loop model [36].

By applying a magnetic field, the density of dimers (bosons) can be altered sys-
tematically. When an average of one dimer per tetrahedron is reached, again the
ground-state manifold obeys an ice-rule constraint in the large-Jz limit, where all
states with precisely one dimer on every tetrahedron, as shown in Fig. 21.8b, are
ground states. Second-order processes in Jxy now lead to a QDM on the effective
square lattice with V D 0 and J D J 2

xy=Jz in (21.3).

21.3.4 Bosonic Doped Quantum Dimer Model

We turn now to the doped QDM and concentrate first on the case J > 0 in
(21.4). In the mapping from SU(2) dimers, this sign of J is expected for a bosonic
representation of the singlet bonds. The “monomers” (holes) of the doped QDM
discussed here could then be interpreted physically as entities such as unbound
spinons.

For J > 0 and t > 0, the off-diagonal matrix elements of the Hamilto-
nian (21.4) are all non-positive, so that (from the Perron–Frobenius theorem) its
GS has no node. Consequently, Green-function Monte Carlo (GFMC) techniques
can be applied, particularly in the vicinity of the RK point and for small t=J ratios
(i.e. when the exact RK GS is still a good guiding wave function), and the phase dia-
grams shown in Fig. 21.9a,b can be extracted by appropriate finite-size scaling. For
larger values of t=J , such calculations can be complemented by ED on smaller clus-
ters [37]. The phase-separation (PS) region consists of phase coexistence between
an undoped VBC and a superfluid, the latter becoming stable as a unique component
above a critical doping. It is notable that this superfluid exhibits flux quantization
in units of h=2e, in qualitative agreement with gauge theories of high-temperature
superconductors [38] and recent, related Z2 gauge theories [39, 40].
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Fig. 21.9 Schematic phase diagrams of the bosonic doped QDM as a function of dopant con-
centration x and V=J (a) or J=jt j (b). Accurate GFMC data are obtained for V=J ! 1 and at
moderate jt j=J ratios (as explained in [29])
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Fig. 21.10 Schematic phase diagrams of the non-Frobenius (J < 0) doped QDM as a function of
dopant concentration x and V=jJ j (a) or jJ=t j (b), estimated by ED calculations [37]

21.3.5 Non-Frobenius Doped Quantum Dimer Model
on the Square Lattice

Turning to the case of (21.4) with J < 0, a quite different type of behavior is
expected. The “non-Frobenius” nature of the Hamiltonian (which prohibits the
use of GFMC) reflects the original “Fermi sign” of the strongly correlated elec-
trons. Indeed, if one interprets the dimers as SU(2) singlets, a dimer creation
operator on the bond ij can be written in the fermionic representation [41–43] as
d

�
ij D .f

�

i"f
�

j # C f
�

j "f
�

i#/=
p
2. In this basis, it can be verified that the effective

dimer-exchange process generated by the underlying Heisenberg interaction within
a plaquette occurs for the sign J < 0 [41, 42]. In addition, the electron-destruction
operator takes the form ci� D fi�b

�
i , where the holon (hole or monomer) -creation

operator b�
i is bosonic.

The phase diagram of the non-Frobenius doped QDM obtained by ED [37] is
both exotic and rich, as shown in Fig. 21.10. First, bare holons can be seen binding to
topological defects (namely vortices, also known as “visons”), producing fermionic
composite particles; alternatively stated, the hole becomes a fermion. Secondly, in
contrast to the bosonic case, no PS is seen in the immediate vicinity of the (VBC)
Mott insulator. Instead, a d -wave pairing is expected, opening the possibility of
unconventional superconductivity. Finally, at large kinetic energies, holons and vor-
tices unbind, bosonic holes Bose-condense, and a superfluid phase is stabilized,
presumably of the same type (with 2e charge quanta) as that obtained for J > 0.
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21.4 Mott Transition on the Triangular Lattice

21.4.1 Frustration in Itinerant Electron Systems

In the first half of this chapter, we have discussed the dynamics of holes doped
into magnetic insulators with geometrical frustration. Another important class of
phenomena is driven by frustration in metallic systems. Several strongly correlated
metallic systems, such as LiV2O4 [44] and (Y,Sc)Mn2 [45], show unusually large
entropies at temperatures much lower than their bare energy scales (band width and
Coulomb repulsion), and this is thought to be related to the geometrical frustration
inherent in their lattice structure [46–48]. In strongly correlated electron systems,
double occupancy of a site is suppressed by the large, on-site Coulomb repulsion,
and the probability of single occupancy increases. This tends to enhance the for-
mation of a local magnetic moment at each site, which interacts with neighboring
moments, and frustrated configurations may be adopted depending on the lattice
geometry. The central issues for frustrated metals are the effects of exotic mag-
netic fluctuations on quasiparticle coherence and novel magnetic long-range order
or characteristic correlations in itinerant systems.

21.4.2 Mott Transition in Organic Compounds
with Triangular Geometry

One of the well-studied problems in the physics of frustrated metals is the Mott
metal–insulator transition on a triangular lattice [49–52]. When the Coulomb repul-
sion is much larger than the band width (U � W ), the half-filled system is
described effectively by the Heisenberg spin model in the sector of energies below
the Mott–Hubbard charge gap. In this case, the well-known 120ı structure appears in
the ground-state spin configuration. A more exotic situation can be expected when
the Coulomb repulsion is comparable with the band width (U � W ), when ring-
exchange processes involving multiple sites become important. These processes,
which are discussed in Chap. 16 by G. Misguich, open the possibility of stabilizing
exotic states.

Experiments on organic compounds with a triangular lattice structure [53–55]
have stimulated theoretical studies on the triangular-lattice Hubbard model. These
materials are quasi-two-dimensional�-(ET)2X systems with several possible mono-
valent anions X . ET denotes the bis(ethlylenedithio)-tetrathiafulvalene molecule,
also often represented as BEDT-TTF, and dimerized pairs of ET molecules con-
stitute a triangular lattice. Each pair provides one conduction electron, and the
system is well described by a half-filled Hubbard model on the triangular lattice
with nearest-neighbor hopping terms,

H D
X
hi;j i

X
�

tij c
�
i�cj� � �

X
i;�

ni� C U
X

i

ni"ni#: (21.5)
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Here, ni� D c
�
i�ci� and, because this model lacks electron-hole symmetry, the

chemical potential � is introduced to adjust the electron density to half filling,P
� hni� i D 1. The organic ET compounds have in fact only intermediate corre-

lation strengths: because each site in the model represents a pair of molecules and
the corresponding Wannier wave function is extended over the size of this pair,
the Coulomb repulsion U is smaller than in the case of typical inorganic com-
pounds, and as a result charge fluctuations have important effects. Because of the
non-spherical shape of the molecule pairs, there are two different hopping integrals
between nearest-neighbor sites, t and t 0 (Fig. 21.13a). The ratio t 0=t depends on the
anion species X , and is an important parameter controlling the frustration.

Extensive investigation of the ET systems [53–55] has demonstrated that their
low-energy magnetic properties change dramatically for different anions X . Par-
ticular highlights in the series include spin-liquid-like behavior in �-(ET)2Cu2CN3

[54] and a reentrant metal–insulator transition with decreasing temperature at inter-
mediate pressures in �-(ET)2Cu[N(CN)2]Cl [55]. The difference between these
systems lies in the different values of the frustration parameter t 0=t . Quantum
chemistry calculations estimate that t 0=t D 1:06 for �-(ET)2Cu2CN3 and 0.75 for
�-(ET)2Cu[N(CN)2]Cl [53]. From the viewpoint of their electronic structure, the
candidate spin-liquid material �-(ET)2Cu2CN3 is very close to being a regular tri-
angular system, in which all the hopping integrals are the same, while the reentrant
material �-(ET)2Cu[N(CN)2]Cl corresponds to a triangular geometry perturbed
towards an unfrustrated square lattice.

Figure 21.11 shows the temperature-pressure phase diagrams of these two com-
pounds. In these systems, the primary effect of applying pressure is to increase
the hopping integrals, and thus the region of higher pressure in experiments cor-
responds to smaller values of U=W in the Hubbard model. The boundaries between
the metallic and insulating phases in the two materials differ qualitatively in shape:
in �-(ET)2Cu2CN3, the insulating phase appears on the high-temperature side of the
boundary; in �-(ET)2Cu[N(CN)2]Cl, this is only the case above approximately 30
K, while below this the insulating phase extends as the temperature decreases. The
former type of behavior is beyond the naive expectation that the insulating phase
appears with decreasing temperature, but it is consistent with the conventional Mott
transition, as we explain in detail in the next section.

21.4.3 Mott Transition in the Triangular-Lattice Hubbard Model

A schematic phase diagram of the “frustrated” Hubbard model is shown in
Fig. 21.12a. There is a first-order phase transition separating metallic and insulat-
ing phases. As U=W is increased, spectral weight is transferred from the region
around ! D 0 to the lower and upper Hubbard bands at ! � ˙U (Fig. 21.12c).
The central peak disappears at the transition point and the insulating phase is on
the high-temperature side of the boundary. The model is frustrated in the sense
that these results are obtained from a single-site, dynamical mean-field theory (for



21 Mobile Holes in Frustrated Quantum Magnets 577

300 500 700

100

10

1

T
(K

)

P (MPa)

crossover 40

20

0
10 20 30 40

T
(K

) 1st order

cr
os

so
ve

r

P (MPa)

SLI

PM

SC

PI PM

AFI
SC

a b

Fig. 21.11 Temperature-pressure phase diagram of (a) �-(ET)2Cu2CN3 and (b) �-(ET)2
Cu[N(CN)2]Cl. PM: paramagnetic metal, PI: paramagnetic insulator, AFI: antiferromagnetic
insulator, SLI: spin-liquid insulator, SC: superconducting phase. Reproduced based on [54]
and [55]

U / W

T
/W

T
/W

0 U / W0high
pressure

high
pressure

PM

AFI

PM

a b c

PI

1

2

3

4

0
ω

−U +U

Fig. 21.12 Phase diagram of the Hubbard model determined by dynamical mean-field theory: (a)
single-site approximation and (b) results obtained when considering the possibility of AF long-
range order, corresponding to an unfrustrated lattice. The dotted line marks the metal–insulator
transition when magnetic order is absent. The same acronyms are used for labelling the phases
as in Fig. 21.11. (c) Schematic illustration of the electron spectral function at the Mott transition,
shown for different values of U=W (1 ! 4)

review [56]), which assumes the absence of a magnetic instability and thus describes
well the case of strong frustration; the phase diagram shows a line of Mott tran-
sitions in the original sense of this term, meaning transitions occurring with no
simultaneous magnetic order. In the insulating phase, each site has a finite static
magnetic moment, which is effectively decoupled from the surrounding moments,
and this leads to a large spin entropy of order log 2. This is the reason that the insu-
lating phase is stabilized at higher temperatures. In unfrustrated systems, as shown
in Fig. 21.12b, the metal–insulator transition takes place simultaneously with the
emergence of AF long-range order, and the genuine Mott transition does not occur.

We now return to the mysterious reentrant metal–insulator transition in �-(ET)2

Cu[N(CN)2]Cl. This problem was investigated in [57] by studying the half-filled
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Hubbard model on an anisotropic, triangular lattice (Fig. 21.13a) with t 0 D 0:8t ,
to determine the U –T phase diagram using cellular dynamical mean-field theory
(CDMFT). This method is a generalization of the conventional dynamical mean-
field theory which uses a cluster of multiple sites (four for this system) [58,59], and
allows one to calculate electronic Green functions and different correlation func-
tions in addition to thermodynamic quantities at finite temperatures. The CDMFT
approach has the advantage that both quantum and thermal fluctuations, and thus
frustration effects, are taken into account completely inside the cluster.

The phase diagram of the anisotropic, triangular-lattice Hubbard model is shown
in Fig. 21.13b. The band width at U D 0, W D 8:45t is taken as the unit of
energy. The phase diagram was determined by analyzing the double occupancy
D � hni"ni#i, which is a measure of metallicity. In the metallic and insulating
phases identified in this way, D.T / decreases with decreasing temperature in the
paramagnetic insulating (PI) phase, while it increases in the paramagnetic metal-
lic (PM) phase. In the high-temperature regime, these two phases merge smoothly
at the crossover line (dotted), which is defined by the condition dD=dT D 0. In
the low-temperature regime, the two phases are separated by a first-order transition,
where the double occupancy shows an abrupt jump.
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It is to be noted that reentrant behavior of the metal–insulator transition/crossover
is indeed found in the anisotropic, triangular-lattice Hubbard model for intermedi-
ate values, t 0=t � 0:8, of the hopping ratio. The nature of this reentrant behavior
is clearly visible in the wave vector-dependent electron spectral function Ak.!/,
shown in Fig. 21.14 for three representative temperatures and at the fixed value
U=W D 0:947. In the high-temperature PI phase, there is a wide Hubbard gap
in the spectrum around ! D 0. In the intermediate PM phase, a heavy-quasiparticle
band emerges in the Hubbard gap, a clear sign of metallic behavior and consistent
with the conventional Mott transition depicted in Figs. 21.12a,c. However, the
low-temperature, first-order transition line has a different character: the heavy-
quasiparticle band does not disappear, splitting instead into two bands separated
by a small energy gap, as shown in Fig. 21.14c. This behavior is similar to the case
of a metal–insulator transition driven by magnetic instability.

This type of explanation is confirmed by calculations of the magnetic suscep-
tibility, �q [60], which has a peak at the incommensurate wave vectors Q �
˙.0:7�; 0:7�/. This peak grows as the temperature decreases, and diverges at a
finite temperature indicated by the crosses in the phase diagram of Fig. 21.13b. The
line of magnetic instability is very close to the first-order metal–insulator-transition
line, and it is reasonable to expect that the metal–insulator transition is driven by
enhanced magnetic fluctuations. It should also be noted that the two lines are sep-
arate and there exists a finite region of a paramagnetic insulating phase between
them.

To summarize this section, the anisotropic, triangular-lattice Hubbard model has
a phase diagram showing a reentrant metal–insulator transition. This phenomenon
is a direct consequence of the effects of geometrical frustration on magnetic corre-
lations. Taking increasing pressure to reduce the ratio U=W , the calculated phase
diagram reproduces qualitatively the essential features of the phase diagram of �-
(ET)2Cu[N(CN)2]Cl. The finite values of the magnetic transition temperature in this
2D model are a consequence of the mean-field-type approximation made for inter-
cluster correlations, but may provide an estimate of the true values which would be
obtained on including the 3D couplings present in real materials.

21.5 Ordering Phenomena at Commensurate Fermion
Densities on Frustrated Geometries

In the preceding sections we have discussed only correlated systems at or near half-
filling (i.e. with one electron per lattice site). However, repulsive interactions with
longer range than the on-site terms considered above can also give rise to insulating
behavior at different commensurate densities. Examples include quarter-filling and
even 1/8-filling on the checkerboard lattice, and we illustrate this phenomenon here
by discussing two scenarios occurring on frustrated geometries. One is a Bond-
Order-Wave (BOW) instability is driven directly by particular nesting properties of
the Fermi surface. The other concerns the effects of nearest-neighbor interactions
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sufficiently strong that they produce a novel type of Mott insulator exhibiting an
exotic VBC order. The properties of this Mott insulator may be described by an
effective QDM, hence providing a formal connection with Sect. 21.3. This latter
insulator can also be doped, a point we mention briefly as a possible route towards
quite new and exotic metallic and superconducting behavior.

21.5.1 Bond Order Waves from Nesting Properties
of the Fermi surface

Let us consider the extended Hubbard Hamiltonian, H D H0 C Hint, on the 2D
frustrated kagomé and checkerboard lattices. We recall here that these lattices are
composed of corner-sharing units (respectively triangles and tetrahedra) residing on
an underlying bipartite lattice (respectively hexagonal and square), a point which
will be important in determining their behavior. The kinetic part of the Hamiltonian
is given by

H0 D �t
X
hij i

X
�D"#

�
c

�
i�cj� C h:c:

�
; (21.6)

with positive hopping matrix element t , and the sum
P

hij i is over all bonds on the
lattice. The interaction part is given by

Hint D U
X

i

ni"ni# C J
X
hij i

Si � Sj C V
X
hij i

ninj ; (21.7)

with on-site repulsion U , nearest-neighbor spin exchange J , and nearest-neighbor
repulsion V ; in this section, we consider the regime of weak and intermediate
couplings.

On kagomé and checkerboard lattices, the non-interacting hamiltonianH0 exhi-
bits a dispersionless (flat) band which, for t > 0, lies at the top of the spectrum and
plays no role. For the kagomé lattice, the band structure is remarkable for the pres-
ence of “Dirac cones” positioned exactly at the Fermi level of the 1/3-filled system
(n D 2=3) and leading to semi-metallic behavior (also relevant on the 3D pyrochlore
lattice). Renormalization-group and numerical techniques [61] have been applied
to demonstrate that a spontaneous symmetry-breaking occurs for arbitrarily small
interactions in this system: the instability corresponds to a BOW in which the kinetic
energy is staggered for neighboring triangular units on the underlying hexagonal
lattice. We stress that no charge modulation is present (so that all sites remain equiv-
alent), the BOW breaking only the spatial site-inversion (180ı) symmetry, such that
up- and down-pointing triangles in Fig. 21.2c become different, while translational
symmetry is preserved [61].

On the checkerboard lattice, a BOW instability appears at quarter-filling (n D
1=2). As on the kagomé lattice, this BOW (Fig. 21.15) is characterized by two types
of (tetrahedral) unit with different kinetic (and exchange) energies. However, in the
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Fig. 21.15 Bond Order Wave on the checkerboard lattice at n D 1=2. The four inequivalent bonds
are represented by different colors/line types and by different thicknesses (diagonal and x/y bonds
are different). All the sites (black dots) carry the same electron occupancy (1/2 electron on average)

case of the checkerboard lattice, translation symmetry is broken explicitly, although
once again there is no charge order. This symmetry-breaking occurs because of
perfect nesting of the square Fermi surface [62]. Alternatively, it can be physi-
cally understood as special, local (resonant) states formed on the building units (the
crossed plaquettes) when the filling is such that these are preferred; the occupation
states of the units can also be considered to differ. This local picture is in fact fully
equivalent to the nesting instability of the Fermi surface.

21.5.2 Metal–Insulator Transitions and Frustrated Charge Order

We consider next the strong-coupling limit, where at U D 1 one obtains the
Hamiltonian

Ht -J -V D PH0P C J
X
hij i

Si � Sj C V
X
hij i

ninj ; (21.8)

D Ht -J C V 0X
hij i

ninj ; (21.9)

where P is the projection operator enforcing the single-occupancy constraint and
V 0 D V C J=4. For V 0 D 0, the strong-coupling Hamiltonian reduces to the
conventional t-J model.

For simplicity, we restrict our considerations to the checkerboard lattice and
state only that similar behavior can be found for the kagomé lattice. Examining
first the limit V D 1 for the special, commensurate filling n D 1=4 (1/8-filling),
the minimum “classical” energy (E D 0) is obtained for all configurations fulfill-
ing the “ice rule” of precisely one particle on every tetrahedron, as in Fig. 21.8b.
The full Hilbert space is then obtained from all possible ways of “decorating” all
dimers with a spin index, i.e. the Hilbert space at n D 1=4 is exactly that of a
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n=1 / 4a

b

(π, 0) ordering

n=1 / 2 n=3 / 4

(π, π) ordering (π, 0) ordering

Fig. 21.16 Schematic representation of candidate plaquette (a) and columnar (b) phases of the
checkerboard lattice for electron densities n D 1=4, 1=2, and 3=4, as discussed in Sect. 21.5.2.
Dots, shaded plaquettes, and thick (red) lines correspond respectively to electrons, singlet pairs
resonating on a plaquette, and resonating four-electron plaquette singlets. From [64]

two-color QDM.1 A similar procedure, decorating the simple loop configurations
of Fig. 21.8a, can also be employed to construct the two-color loop configurations
which constitute the constrained Hilbert space at quarter-filling (n D 1=2) in the
large-V limit. It is then clear that, for these special fillings, the GS should be insu-
lating at sufficiently large V . The effective dimer (or loop) dynamics can be obtained
by perturbation in t=V . We note that in the original derivation [46, 47], for spinless
fermions, the lowest-order processes were of third order, whereas when spin degrees
of freedom are included, terms of dimer-exchange type (below) arise at second order
in t . Although the constrained quantum dynamics of fermions without [46, 47] and
with [63, 64] spin differ, the phase diagrams of these models contain a rich variety
of crystalline phases, breaking lattice translational and/or rotational symmetry, in
both cases. We postpone to Sect. 21.5.3 a discussion of the properties of this type
of system away from commensurate filling, and remark only that, among the novel
phenomena which can arise, one of the more exotic is the fractionalization under
some conditions of a single doped charge e into two e=2 components [46, 47, 65].2

1 For n D 3=4, empty bonds would be decorated if the dimers are considered as equivalent to the
absence of electrons.
2 In general, the two components are bound by a shallow “string” potential.
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Let us now focus in more detail on the insulating phases and consider the
effective Hamiltonian acting within the constrained Hilbert space as second-order
processes preserving the ice rule. Here QH D H CHJ with

H D �t2
X

s

P .s/; (21.10)

P .s/ D
�
c

�

i"c
�

j # � c
�

i#c
�

j "
� �
c

k#cl" � c
k"cl#

�
(21.11)

C
�
c

�

k"c
�

l# � c�

k#c
�

l"
� �
c

i#cj " � c
i"cj #

�
;

where t2 D 2t2

V
and the index s labels the empty plaquettes of the checkerboard

lattice (Fig. 21.2); the sites of a plaquette s are ordered as i; k; j; l in a clockwise (or
anti-clockwise) direction. The operatorP .s/ acts on two electrons forming a singlet
bond on one of the two diagonals of s, to rotate this bond by 90 degrees. Candidate
GSs breaking the translational symmetry of the lattice are shown in Fig. 21.16. For
a quarter-filled band (n D 1=2), the Resonating-Singlet-Pair Crystal (RSPC) of
Fig. 21.16a was shown to be stable for J=t2 < 1 [63,64]. In the twofold-degenerate
RSPC, electron pairs resonate on every second empty plaquette, breaking transla-
tional symmetry. One therefore expects, on increasing V=t and U=t , a first-order
transition from the BOW state discussed above [62] to the RSPC. The same analy-
sis also provides evidence [64] that the system exhibits plaquette order of the RSPC
type also at n D 1=4 or n D 3=4, albeit with a quadrupling of the lattice unit
cell (as opposed to the doubling found for n D 1=2) and a fourfold-degenerate
GS. Qualitative differences between these models and their bosonic analogs, which
are known for example to exhibit columnar order at n D 1=4 [36], emphasize
the important role of the spin degrees of freedom, not least in stabilizing plaque-
tte phases over phases breaking the rotational symmetry. However, the possibility is
being investigated [66] that mixed columnar-plaquette phases, similar to one discov-
ered recently in the square-lattice QDM [34] and which break both �=2 rotational
symmetry (as does the columnar phase) and translational symmetry in two perpen-
dicular directions (as does the plaquette phase), could be stable in some simple and
natural extensions of the Hamiltonian (21.10). Note that equivalent models of spin-
less harcore bosons (XXZ spin systems) can also exhibit exotic (commensurate)
VBC supersolid phases [67].

21.5.3 Away from Commensurability: Doping
the Resonating-Singlet-Pair Crystal

Whether plaquette ordering of the RSPC type can survive at sufficiently low but
finite hole (electron) dopant concentrations x D 1=2 � n (x D n � 1=2) remains
unsettled. It has been shown [63] that phase separation, a generic feature of
correlated systems in the vicinity of a Mott phase, is restricted to low hole kinetic
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energies, meaning to small t=J and t=t2 ratios, which leaves an extended regime
over which unconventional superconducting pairing may occur. However, the phase
diagram of these model for arbitrary electron densities remains largely unexplored,
and can be expected to harbor further surprises.

21.6 Summary

The richness and diversity of systems of doped, frustrated magnets and of itinerant
correlated electrons on frustrated lattices have been illustrated on selected didactic
examples. The dynamics of a small number of doped holes has been investigated
in the 2D kagomé and checkerboard Heisenberg quantum antiferromagnets reveal-
ing striking differences attributed to the different nature of their non-magnetic GS.
Two classes of (weakly) doped QDMs have also been discussed, which differ in
the assumed statistics, bosonic or fermionic, of the bare holes. We have proceeded
further by considering strongly correlated electrons on frustrated triangular lattices,
and discuss the physics of an unconventional, reentrant metal–insulator transition.
Assuming that increasing pressure reduce on-site correlations, the calculated phase
diagram reproduces qualitatively the essential features of the phase diagram of the
molecular solid �-(ET)2Cu[N(CN)2]Cl. As our final example, we consider corre-
lated fermions moving on frustrated lattices at special, commensurate densities for
which exotic insulating ground states (GSs) are stabilized. Interesting similarities
with frustrated Heisenberg magnets showing an extensive degeneracy of the classi-
cal GS manifold are outlined and are shown to be at the heart of their fascinating
properties.
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Chapter 22
Metallic and Superconducting Materials
with Frustrated Lattices

Zenji Hiroi and Masao Ogata

Abstract The nature of itinerant electrons on various frustrated lattices is discussed
from both a materials and a theoretical point of view. Many metallic transition-
metal oxides, intermetallic alloys, and organic compounds are reviewed, which
show interesting phenomena such as superconductivity, a metal-insulator transi-
tion, anomalous magnetoresistance, and heavy-fermion-like behavior. Of particular
interest in this context are the superconductors ˛-Cd2Re2O7 and ˇ-AOs2O6, which
have a pyrochlore lattice, and NaxCoO2 �yH2O and (BEDT-TTF)2X , which have
triangular lattices, where some effects of frustration on the mechanisms of super-
conductivity may be evident. Theoretically, RVB superconductivity is discussed to
be the most interesting and promising mechanism for unconventional superconduc-
tivity on frustrated lattices, although there remains as yet no direct experimental
evidence for such RVB-type superconductivity in real materials. Strong- and weak-
coupling theories, and spin- and charge-fluctuation mechanisms for superconduc-
tivity are reviewed. Possible mechanisms for the spin-liquid state observed in some
organic compounds are also discussed.

22.1 Introduction

In this chapter, we describe the behavior of itinerant electrons on various geomet-
rically frustrated lattices from the points of view of both materials and theory. The
idea of geometrical frustration on triangle-based lattices is straightforward for a
localized spin system, and has been studied extensively in various classes of mate-
rial. In contrast, once electrons are rendered itinerant, able to move from one atom to
another, the effect of frustration tends to be “diluted,” and its role becomes less clear.
However, at least in the case of strongly correlated electron systems, where electrons
are scarcely able to hop because of the Coulomb repulsion, both spin and charge
degrees of freedom survive in a form where they may potentially be affected by
some of the consequences of frustration. There is in addition another degree of free-
dom, the orbital of the d electrons, which exists for many transition-metal oxides
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(TMOs) and is often influenced by frustration effects when there is a tendency to
order.

It is well known that the leading physical effects of frustration are related to
a macroscopic degeneracy associated with certain degrees of freedom. A finite
entropy may remain down to very low temperatures, seemingly contradicting the
third law of thermodynamics. This is the situation expected in simple systems com-
posed of spins localized on frustrated lattices and interacting only with their nearest
neighbors. However, in real materials, there are always, at some level, additional
long-range interactions between distant spins and/or couplings to other degrees of
freedom, which may lift this degeneracy partially or completely, leading respec-
tively to less degenerate or non-degenerate ground states. For metallic systems, the
introduction of a transfer integral between electrons on different sites can serve as
such an additional interaction. To understand the various phenomena which can arise
as a result in a range of different compounds, it is thus important to study how such
a lifting of degeneracy can proceed and which ground state is selected as a result.

In many materials, because of coupling to the lattice degree of freedom, struc-
tural deformations are induced when a lifting of the degeneracy takes place. One
characteristic of metallic systems is that the process is often accompanied by local-
ization of carriers, resulting in a metal-insulator transition (MIT) or a transition
showing a sudden increase in resistivity on cooling across the critical tempera-
ture. The ground state attained below the transition could be charge-ordered, and/or
orbital-ordered, and may possess long-ranged magnetic order or various types of
local singlet configuration, depending on the lattice and on the electronic structure
of the system.

On the other hand, there is a small number of examples that remain free of lattice
distortions, and in which one would expect to see the more intrinsic physics of frus-
tration in itinerant systems, namely that associated with finite entropy. The ground
state in such a case is expected to have unconventional magnetic order or to be a
quantum spin liquid when the spin degree of freedom is dominant, or otherwise to
be a heavy-fermion (HF) state with a high density of low-lying charge degrees of
freedom [1]. It is clear that the chances of encountering such a novel state of matter
are higher in fully frustrated systems.

Metallic compounds on frustrated lattices can be classified into three groups in
terms of the relative sizes of their bandwidth,W , and electronic correlation,U . The
first group, W > U , includes relatively simple metals such as ˇ-Mn or Y(Sc)Mn2

[2, 3]. Because the electrons preserve their purely itinerant character in these sys-
tems, the nature of the spin fluctuations in the metallic state may be crucial in
deciding the ground state. The second group,W � U , contains most of the known
organic compounds and many TMOs. These are located close to the metal-insulator
(MI) boundary, and often exhibit a MIT as functions of temperature, pressure, or
doping. The last category, W < U , consists mostly of TMOs with strong electron
correlations, so that most compounds in this class with odd-integer numbers of elec-
trons become Mott insulators. Nevertheless, some mixed-valent compounds with
half-integer numbers of d electrons remain metallic, exhibiting unusual metallic
states or superconductivity of exotic origin.
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As target compounds for frustrated metallic systems, particularly interesting
would be systems where the effects of strong electronic correlations are induced by
doping with carriers, as in the case of cupric oxide superconductors. It is well known
that many perovskite-related TMOs are Mott insulators when they have odd-integer
numbers of d electrons per transition-metal (TM) ion, and readily become strongly
correlated metals upon doping [4]. As for materials with frustrated lattice structures,
there are also many candidate compounds for the parent insulating phase. However,
few of these compounds can actually be doped with carriers to become metallic.
One of the reasons for this may be a simple chemical tendency to avoid the substi-
tution necessary for doping. Another aspect that we regard as generally important is
the specific band structure near the Fermi level in frustrated compounds: it is well
known that materials with kagomé or pyrochlore lattice structures possess highly
degenerate flat bands near the Fermi level, which favor an insulating state with fer-
romagnetic interactions. If this is the case, a small concentration of doped carriers
cannot contribute to conduction, even though they exist at the Fermi level. Thus, a
metallic state would appear only when the carrier density becomes sufficiently large.
In fact, most metallic compounds on frustrated lattices are really metals with large
carrier density, and thus display fewer effects of electronic correlations in their most
straightforward sense.

A further disadvantage for rendering frustrated compounds metallic by doping
is a tendency towards only small electronic transfer integrals between the nearest-
neighbor ions on a triangle compared with those on a square. Because the bond angle
through the bridging (oxide) ions deviates very significantly from 180 degrees in the
former case, one would generally expect a smaller W in such frustrated systems.
Moreover, the bandwidth becomes rather sensitive to subtle changes in the bond
angle, so that an insulating state is easily stabilized by coupling to a lattice deforma-
tion, even when this is small. Strongly correlated electronic systems may therefore
be more difficult to obtain in frustrated lattices than in square-based lattices. Stated
the other way around, however, strongly correlated electron systems on frustrated
lattices have remained rare to date, and would be a gold mine of interesting physics.

In this chapter, we describe various metallic and superconducting materials with
frustrated lattices. We begin with an overview of the materials situation. The theo-
retical background important for understanding metallic frustrated systems is then
discussed. We conclude by reviewing three specific metals and superconductors:
the pyrochlore oxides Cd2Re2O7 and AOs2O6 (A D Cs, Rb, K), which have the
pyrochlore lattice structure, sodium cobaltate, NaxCoO2, and its hydrate, which
are triangular-lattice materials, and the organic compounds (BEDT-TTF)2X (for
review [5, 6]), which have anisotropic triangular lattices. Although detailed studies
are still in progress on these compounds, it seems that the frustrated lattices play an
important role in determining both their electronic structures and the mechanism of
superconductivity, as described in Chap. 21 by D. Poilblanc and H. Tsunetsugu in
this volume.
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22.2 Materials Overview

We begin by presenting a summary, in the form of Table 22.1, of the various materi-
als possessing frustrated lattices which exhibit intriguing physical properties associ-
ated with metallic conductivity. As mentioned above, in frustrated lattice geometries
there are not many metallic compounds compared to the number of insulators
with localized spins. Nevertheless, several metallic compounds are found in three-
dimensional frustrated lattices, and a rather small number in two-dimensional
lattices. We will first describe the former and then the latter.

22.2.1 Pyrochlore Lattice

Three classes of material possessing the three-dimensional pyrochlore lattice have
been studied, spinel compounds containing TM ions, manganese-based metals, and
pyrochlore oxides.

22.2.1.1 Spinel Compounds

Spinel compounds have the general formula AB2O4 and crystallize in the cubic
structure, as described in detail in Chap. 7 by H. Takagi and S. Niitaka in this vol-
ume. Because the B sublattice forms a pyrochlore lattice, compounds containing
TM ions with an unfilled d shell at the B site are of most interest. Although many
TMOs crystallize in the spinel structure, most of them are Mott insulators with inte-
ger numbers of d electrons, as in the examples of ZnV2O4 and MgFe2O4. However,
some compounds have half-integer numbers of d electrons and show metallic or
nearly metallic conductivity, at least at high temperatures.

Historically, the most famous spinel compound is magnetite, Fe3O4, which
shows a MIT known as the Verwey transition at TV � 120 K [7, 8]. The crystal
structure is cubic at temperatures above TV, where one third of the Fe ions (Fe2C)
occupy the A sites and the remaining two-thirds (on average Fe2:5C) occupy the
B sites and form the pyrochlore lattice. An abrupt increase in resistivity is observed
at TV on cooling, suggesting that the electrons at the B sites have localized into a
fixed charge-ordering pattern of Fe2C and Fe3C ions. The transition is of first order,
accompanied by a lattice deformation, but the low-temperature structure appears to
be very complicated, and has not yet been established experimentally. Despite very
serious efforts made thus far, the origin of the transition still remains the subject
of intense debate. Recent theoretical analysis proposed that orbital ordering occurs
at TV [9], as opposed to the basic charge ordering, or that both charge and orbital
ordering take place simultaneously [10, 11]. In any event, frustration in Fe3O4 is
lifted by coupling to the lattice degree of freedom.
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Table 22.1 Metallic materials with frustrated lattices showing physical properties including
superconductivity (SC), a metal-insulator transition (MIT), antiferromagnetism (AF), insulating
behavior (I), large magnetoresistance (MR) in a ferromagnetic metal, and heavy-fermion-like
behavior (HF). Parentheses in the fourth column indicate properties under pressure

Lattice Compound Electrons Property T (K) References

Triangular NaxCoO2�yH2O 3d5�6 SC 4.5 [44]
�-(BEDT-TTF)2X
X D Cu(NCS)2 p SC 10.4 [74]
X D Cu[N(CN)2]Br p SC 12.6 [75]
X D Cu[N(CN)2]Cl p AF(SC) 27(13.2) [75, 77]
X D Cu2(CN)3 p I (SC) – (4) [73, 79]

˛-(BEDT-TTF)2I3 p MIT(SC) 135(7.2) [99, 103]
� -(BEDT-TTF)2X
X D RbZn(SCN)4 p MIT 190 [109]
X D CsZn(SCN)4 p M [109]
X D I3 p SC 3 [116]

� -(BEDT-TTF)4X
X D Hg3�ıBr8 p I (SC) – (�2) [264]

AgNiO2 3d7 M [62]
Ag2NiO2 3d7 M [60]
Ag2MnO2 3d4 M [61]

Kagomé/triangular SrCo6O11 3d5:33 M [64]
NaV6O11 3d5:5 M [63]

Pyrochlore Fe3O4 3d5:5 MIT 124 [8]
(spinel oxides) LiTi2O4 3d0:5 SC 13.7 [12]

LiV2O4 3d1:5 HF [13]
AlV2O4 3d2:5 MIT 700 [14]
LiRh2O4 4d5:5 MIT 170 [18]
CuIr2S4 5d5:5 MIT 230 [19]

(Mn metals) Y(Sc)Mn2 3d HF [2]
ˇ-Mn 3d HF [3]

(˛-pyrochlore oxides) Tl2Mn2O7 3d3 MR 142 [31]
Nd2Mo2O7 4d2 MR 90 [32]
Hg2Ru2O7 4d3 MIT 108 [35, 36]
Tl2Ru2O7 4d4 MIT 120 [34]
Cd2Re2O7 5d2 SC 1.0 [187–189]
Cd2Os2O7 5d3 MIT 225 [37, 38]
Pr2Ir2O7 5d5 HF? – [41]
Sm2Ir2O7 5d5 MIT 117 [42]

(ˇ-pyrochlore oxides) CsOs2O6 5d2:5 SC 3.3 [190]
RbOs2O6 5d2:5 SC 6.3 [191–193]
KOs2O6 5d2:5 SC 9.6 [194, 196–200]

Many related spinel compounds contain mixed-valent TM ions only at the
B sites. A lithium spinel LiTi2O4, with Ti3:5C (3d0:5), becomes superconducting
at Tc D 13:7K, the highest known Tc for oxide materials before the discovery of
cupric oxide superconductors [12]. The mechanism of superconductivity in LiTi2O4
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can probably be understood in the framework of the conventional Bardeen–Cooper–
Schrieffer (BCS) theory. Because no anomalous behavior in its magnetic properties
has been observed, it appears that good itinerant character of the d electrons and a
wide band may prevail against the effects of frustration.

The situation with one more electron per TM ion added is found in LiV2O4,
which has V3:5C (3d1:5) and remains a good metal with no evidence for supercon-
ductivity, but shows instead unique HF-like behavior below 20 K [13]. Such a HF
state is common among f -electron systems but unique for d electrons. LiV2O4 may
exist near the MI boundary, W � U , but remains on the metallic side. Full details
are deferred to the next section.

Adding yet one more electron leads to the situation in AlV2O4, which has V2:5C
(3d 2:5) and shows low resistivity at high temperatures, followed by a sudden rise
at 700 K [14], as also observed in Fe3O4. A charge disproportionation and ordering
take place simultaneously at T D 700K, accompanied by a rhombohedral lattice
distortion along the h111i direction of the original cubic lattice to lift the charge
frustration on the pyrochlore lattice. Interestingly, it has been pointed out that the
transition is characterized by the formation of V clusters called heptamers, consist-
ing of seven V ions in a net spin-singlet state [15]. Thus, AlV2O4 clearly lies near
the MI boundary, but on the insulating side.

There is in fact one exceptional compound which shows a MIT despite having an
integer number of d electrons per TM ion. MgTi2O4 contains Ti3C (3d 2) ions and
becomes a spin-singlet insulator below 260 K [16]. The mechanism for the MIT has
been ascribed to an orbitally driven Peierls transition in which a static orbital order
occurs by selecting one of the t2g orbitals so as to form spin singlets at certain bonds
[17]. Here it is an orbital degree of freedom, rather than the lattice, which appears
to play an important role in lifting the frustration of spins on the pyrochlore lattice.

Compared with these 3d TM spinels, fewer spinel compounds are known with
4d and 5d TM elements. Of note in this category are LiRh2O4 [18] and CuIr2S4

[19, 20]. In LiRh2O4, which has Rh3:5C (4d 5:5) ions, the B sublattice consists of
low-spin (LS) Rh3C (S D 0, 4d 6) and Rh4C (S D 1=2, 4d 5) ions, and undergoes
a MIT at 170 K. In addition, there is another transition at 230 K, which is thought
to be an orbital ordering or a band Jahn-Teller transition. Thus the two degrees of
freedom, charge and orbital, are frozen at two separate temperatures in LiRh2O4. In
contrast, the two transitions seem to occur simultaneously in the thiospinel CuIr2S4,
which has a similar electronic configuration to LiRh2O4, namely Ir3C (S D 0, 5d 6)
and Ir4C (S D 1=2, 5d5). This system shows a MIT at 230 K, accompanied by the
formation of a unique charge- and orbital-ordering pattern consisting of isomorphic
octamers of Ir3C

8 S24 and Ir4C
8 S24 embedded in the spinel structure [20]. The origin

of this phenomenon is presumably related to that of the heptamer formation found in
AlV2O4 [15]. Forming such large “molecules” in the parent crystal through charge-
orbital ordering is certainly a novel route to avoiding frustration.
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22.2.1.2 Mn Metals and LiV2O4

In the previous section, we have reviewed a number of spinel compounds that exhibit
MITs at low temperatures, accompanied by various kinds of symmetry-lowering
which led to the loss of frustration in their ground states. On the other hand, there
are compounds that remain metallic even at the lowest temperatures, and these are
the Mn-based Laves-phase compounds Y(Sc)Mn2 and ˇ-Mn [2, 3], plus the more
recently discovered vanadium spinel LiV2O4 [13]. The Mn sublattice in YMn2 is
equivalent to a pyrochlore lattice, but exhibits a complicated AF order below 100 K
with a large Mn moment of 2:7�B. However, this order can be suppressed com-
pletely by substituting the smaller Sc ion for Y, even at concentrations of a few
percent. In Y0:97Sc0:03Mn2, a large enhancement of the electronic specific heat �
is observed, up to � D 150 mJ K�2 mol�1, which is 15 times the value expected
from the bare DOS. Moreover, strong AF spin fluctuations leading to a reduced Mn
moment of 1:3�B are detected in neutron scattering experiments [21]. It has been
suggested that the large entropy associated with the spin degree of freedom survives
and is combined with the charge degree of freedom, resulting in a heavy-mass state
analogous to the HF state found in many f -electron systems [2].

LiV2O4 presents another rare example for such a heavy-mass state on the
pyrochlore lattice [13,22]. It remains metallic without showing any order down to 50
mK, and has a very large � value of 420 mJ K�2 mol�1. The low-temperature prop-
erties below 20 K are quite similar to those of f -electron HF compounds [22, 23].
Thus an analogous mechanism has been proposed, where electrons filling the A1g

orbitals form localized spin-1/2 moments at each site, just as do the f electrons
in Ce compounds, and the remaining 0.5 electrons occupy the Eg band, giving rise
to Kondo screening [24]. However, alternative arguments stress the role of frustra-
tion [25–27]. It is likely that both the spins and the orbitals, or their coupled modes
enhanced by the frustration, are responsible for the d -electron HF state [27].

It is interesting to discuss whether or not the d -electron HF states found in
Y(Sc)Mn2 and LiV2O4 have a common origin. Although it is possible that geomet-
rical frustration on the pyrochlore lattice plays a central role in these compounds, the
relevant fluctuations can be different. For example, the chemical pressure caused by
Sc substitution transforms the AF order into the HF state in the former, which means
that the system lies close to a magnetic instability and that enhanced spin fluctua-
tions decide its properties [2]. By contrast, recent experiments on LiV2O4 revealed
that physical pressure tends to stabilize a charge- and orbital-ordered insulating state
similar to that found in AlV2O4, and not the HF state [28]. This reinforces the con-
clusion that LiV2O4 must be in the vicinity of the MI boundary, where electron
correlations should dominate [29]. Further experimental and theoretical studies are
required for a deeper understanding of the mechanisms for these d -electron HF
states.
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22.2.1.3 Pyrochlore Oxides

The pyrochlore lattice is also found in the families of ˛- and ˇ-pyrochlore oxides
[30], whose general formulas are respectively A2B2O7 and AB2O6, in which B
is the TM element. While many TMOs are known in the former structure, the lat-
ter is found only in osmates and tungstates. Most of the 3d ˛-pyrochlores have
ferromagnetic interactions between the nearest-neighbor spins, and thus geometri-
cal frustration is not an important topic except for some selected compounds. This
occurs primarily because the superexchange pathways for the magnetic interac-
tions are metal-oxygen-metal bonds with an angle of approximately 130 degrees,
as depicted in Fig. 22.1. In contrast to the case of spinel oxides, direct exchange
couplings may be less important in 3d ˛-pyrochlore oxides with strong electron
correlations. On the other hand, most but not all of the 4d and 5d pyrochlore
oxides with U relatively small compared to W exhibit AF interactions, such that
their properties may indeed be interesting from the viewpoint of frustration.

Most of the 3d pyrochlore oxides are ferromagnetic insulators, except for Tl2Mn2

O7 which is a ferromagnetic metal below 142 K and exhibits a large magnetoresis-
tance (MR) [31]. The primary source for the conduction electrons in Tl2Mn2O7 is
a Tl 6s band crossing the Fermi level, while the 3d electrons from Mn4C (3d3) are
well localized to give a large magnetic moment of 3�B on the pyrochlore lattice.
The interplay between the 6s and 3d electrons may give rise to the observed MR
effect. In contrast to the 3d compounds, many 4d and 5d pyrochlores show metal-
lic conduction because of their extended d orbitals, and sometimes have a MIT.

O

TM

Spinel Pyrochlore

Fig. 22.1 Local structures of the spinel (left) and pyrochlore geometries (right). One tetrahedron
composed of transition metal (TM) ions and the nearest oxide ions (O), which should be primarily
responsible for mediating the electron transfer and superexchange interactions, are drawn for each
lattice. The relative bond length is depicted to represent the actual scale for typical compounds,
indicating that the pyrochlore lattice of the spinel is much smaller than in the pyrochlore structure.
The oxide ions of the former are located above the center of the triangular face, while those of
the latter are above the center of the edge. Accordingly, the respective TM-O-TM bond angles are
approximately 90 and 130 degrees
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Some molybdenum oxides, such as Dy2Mo2O7 (Mo4C, 4d2), are ferromagnetic
metals showing an anomalous Hall effect possibly associated with spin chirality on
the pyrochlore lattice [32]. In contrast, Y2Mo2O7 is an insulator showing spin-glass
behavior, presumably because the smaller A-site cation results in a smaller bond
angle and lower band width.

MITs have been reported for Tl2Ru2O7 (Ru4C, 4d4) [33,34], Hg2Ru2O7 (Ru5C,
4d 3) [35, 36], and Cd2Os2O7 (Os5C, 5d3) [37, 38]. In these compounds, the mag-
netic interaction seems to be antiferromagnetic, judging from the large, negative
Weiss temperatures deduced from the magnetic susceptibility at high temperature,
and thus one would expect some frustration effect in these materials. Tl2Ru2O7�ı

shows a MIT at 120 K for the stoichiometric oxygen content (ı D 0), but metallic
behavior down to the lowest temperatures at ı � 0:3 [34]. Hg2Ru2O7 exhibits
a similar MIT at 108 K, but this is suppressed completely by applying a pres-
sure above 7 GPa [39]. It is worthwhile examining in detail whether these metallic
states possess some unconventional features related to frustration, such as the HF
states found in LiV2O4 and Y(Sc)Mn2. The ground states of the ruthenates are
non-magnetic, and the materials exhibit simultaneous structural transitions that are
first-order, resulting in heavily distorted structures below the MIT temperature. Thus
these systems realize singlet ground states accompanied by charge and/or orbital
order, as is the case in some spinel compounds. By contrast, the MIT of Cd2Os2O7

is second-order and possibly without structural deformation, suggesting that its ori-
gin is purely electronic [38]. Because the Fermi level of Cd2Os2O7 (Os5C, 5d3)
is located at the center of the t2g manifold, it may be a magnetic instability associ-
ated with the large density of states which causes the MIT [40]. Some form of AF
order sets in at the transition, but its nature has not yet been determined experimen-
tally. The mutual alignment of the spins in order to satisfy AF interactions on the
undistorted pyrochlore lattice remains a question of intense interest.

The presence or absence of MITs in the pyrochlore oxides is mysterious. It is
meaningful to make a comparison among two ruthenates, Hg2Ru2O7 and Cd2Ru2

O7, and two osmates, Hg2Os2O7 and Cd2Os2O7, which should have similar elec-
tronic structures based on 4d3 and 5d 3 electrons. A MIT is observed only in
Hg2Ru2O7 and Cd2Os2O7, but not in Cd2Ru2O7 and Hg2Os2O7, which remain
metallic. It is obvious that a simple discussion based on the bandwidth alone
is not adequate. Band-structure calculations have revealed that stoichiometric ˛-
pyrochlore oxides are basically semimetals with low carrier density, because of the
even number of d electrons in the unit cell. Because the overall band structures of
these four compounds appear to be almost the same (H. Harima, private commu-
nication), it is difficult to discern the origin of the MITs in calculations performed
on the parent structure. Probably it is a subtle feature in the band structure near the
Fermi level which causes an electronic instability resulting in the MIT, as in the case
of Cd2Re2O7 (discussed in Sect. 22.4.1).

It was reported recently that Pr2Ir2O7 (Ir4C, 5d5) shows good metallic con-
ductivity without magnetic long-range order associated with either Ir 5d or Pr 4f
moments [41]. Although a metallic spin liquid with a Kondo effect has been pro-
posed, the details remain under investigation. Still more recently, the related iridium
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pyrochlores A2Ir2O7 with A D Nd, Sm, and Eu, which are adjacent to Pr in the
periodic table, were found to exhibit MITs [42].

Superconductivity is found in ˛-Cd2Re2O7 (Re5C, 5d 2) at Tc D 1:0K and in
ˇ-AOs2O6 with A D Cs, Rb, and K at Tc D 3:3; 6:3, and 9.6 K, respectively. The
former is a semimetal with very low carrier density, while the latter are normal met-
als because of the mixed valence of Os5:5C.5d 2:5/. The properties of these materials
will be discussed in detail in Sect. 22.4.1.

22.2.2 Triangular and Kagomé Lattices

22.2.2.1 NaxCoO2 and Its Hydrate

The recent discoveries of an unusually large thermoelectric power in NaxCoO2 with
x � 2=3 [43], and of superconductivity below 4.5 K in hydrated NaxCoO2�yH2O
[44], stimulated a great deal of interest in this system. NaxCoO2 has a two-
dimensional layered structure as in the high-Tc cupric oxide superconductors, but
has a triangular lattice consisting of Co atoms (Fig. 22.2a) rather than the square
lattice of Cu in the CuO2 plane [45].

Here, we discuss the non-hydrated samples. Because the valence of the Co ions
in NaxCoO2 is Co.4�x/C, there are 1�x holes per Co ion and these occupy the t2g -
orbitals due to the crystal-field splitting. Thus the material with x D 0 corresponds,
if it exists, to half-filling. The electronic phase diagram as a function of x has been
proposed by several groups, a typical example being that of Foo et al.[46], where a
charge-ordered magnetic insulator exists at x D 0:5 with a “paramagnetic metal”
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Fig. 22.2 (a) CoO2 layer viewed along the c-axis. The Co ions form a perfect triangular lat-
tice in the layer. There are O ions on each corner of the octahedra. (b) Trigonal distortion of the
CoO6 octahedron (arrows) and a1g-orbital. (c) a1g-e0g splitting of the Co t2g levels, with energy
difference �, arising due to the trigonal crystal field induced by the distortion shown in (b)
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for x < 0:5 and a “Curie–Weiss metal” for x > 0:5. However, Yokoi et al. [47]
and recently several other groups [48,49] have found that the boundary between the
above two metals is located near x D 0:62 instead of at x D 0:5. Thus x D 0:5

appears as a rather singular point in the phase diagram, where Na ordering (existing
already at high temperature) triggers a magnetic transition as well as a MIT [46,47,
50, 51]. In this sense, the maximal frustration in the charge degrees of freedom at
x D 0:5 is lifted by the Na ordering. The system with x ¤ 0:5 is metallic probably
because of the incommensurate filling.

The existence of a “Curie–Weiss metal” for x > 0:62 is rather surprising, because
the system is well described in terms of a small number of holes in the fully occu-
pied t2g -band when x ! 1. In fact recent, detailed studies by nuclear magnetic
resonance (NMR) [49,52] have found quasi-two-dimensional ferromagnetic behav-
ior consistent with the Curie–Weiss susceptibility. Some magnetic phases are also
observed for x � 0:75–0.82, indicating the importance of electronic correlations in
this regime [53–55]. It has been confirmed that the magnetic structure is an A-type
antiferromagnetism, where ferromagnetic long-range order exists within the CoO2

planes but its direction alternates between them [56–58]. Further, Na order may
affect a number of possible phases appearing in the regime x > 0:62 [49]. In con-
trast, for x < 0:62, both the Pauli susceptibility and the Korringa behavior of the
NMR relaxation rate [49] indicate weak correlation in this regime, although a weak
pseudo-gap-like behavior is observed in the Knight shift.

22.2.2.2 Ag2MO2 and AgNiO2

The silver compounds Ag2MO2 (M D Ni, Mn) are unique two-dimensional (2D)
systems where the metallic (Ag2)C layers alternate with the magneticM 3CO2 lay-
ers of the triangular lattice, as depicted in Fig. 22.3a [59–61]. Spins 1/2 and 2 are
localized on the triangular lattice for M D Ni3C (3d7, LS) and Mn3C (3d4, HS),
respectively. Orbital ordering associated with the eg-orbital degeneracy takes place
in both compounds, which tends to reduce the magnetic frustration and leads to AF
order, while the metallic conductivity is preserved down to 2 K. Ag2MnO2 may be
particularly interesting as a classical spin system on the triangular lattice, because
it shows a peculiar magnetic phase transition at 80 K followed by a spin-glass tran-
sition at 24 K, but no long-range magnetic order down to 2 K in spite of the large
spin [61]. It may be necessary to consider additional magnetic interactions mediated
by the conduction electrons through the RKKY interaction in such a metallic system
and, possibly as a result of these, a moderately large mass enhancement has been
observed for both compounds.

A related silver nickelate, 2H-AgNiO2, crystallizes in the delafossite structure
and exhibits metallic conductivity down to the lowest temperatures [62]. It contains
the same Ni3C triangular lattice as in Ag2NiO2, separated by a single Ag sheet, as
depicted in Fig. 22.3b. However, a

p
3� p

3-type superstructure is already present at
room temperature, and is ascribed to an unusual charge disproportionation and order
expressed as 3Ni3C ! Ni2CC 2Ni3:5C or 3e1

g ! e2
gC 2e0:5

g . It has been suggested
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Fig. 22.3 Crystal structures of (a) Ag2NiO2, (b) 2H-AgNiO2, and (c) SrCo6O11. The NiO2 lay-
ers of Ag2NiO2 and 2H-AgNiO2 have the same structure as the CoO2 layer in NaxCoO2 , shown
in Fig. 22.2. These are separated respectively by double and single Ag planes in (a) and (b). In
SrCo6O11, the edge-sharing Co(1)O6 octahedra form kagomé layers, while the dimerized, face-
sharing octahedra containing Co(2) and trigonal bipyramids of Co(3) act as pillars between the
kagomé layers

that the e2
g electrons are well localized at one Ni site, displaying antiferromagnetic

order below 22 K, while the two e0:5
g electrons occupy the remaining Ni sites which

form a honeycomb network and are responsible for the metallic conduction. The
orbital degeneracy inherent to the Ni3C triangular lattice is lifted to a sufficient
extent by this charge disproportionation that frustration is relieved.
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22.2.2.3 AB6O11

The family of AB6O11 compounds presents another example consisting of alternat-
ing metallic layers and frustrated spin systems [63, 64]. These materials crystallize
in a hexagonal structure related to the magnetoplumbite structure (Fig. 22.3c). There
are three TM-ion sites: B.1/ forms a kagomé plane, while the B.2/ and B.3/ poly-
hedra act as pillars between the kagomé planes. In SrCo6O11, electrons in the Co(1)
kagomé layers are itinerant, probably due to the mixed valency, and large Ising
spins exist at the Co(3) sites, which form a triangular lattice between the kagomé
layers [65]. Thus one expects a unique situation where 2D conduction electrons
in the kagomé lattice can interact with frustrated spins on the triangular lattice. In
fact it is found that their coupling is so strong that the resistivity is affected dra-
matically by ordering of the moments below 20 K. Stepwise changes in resistivity
are observed at low temperatures as a function of magnetic field, coupled with a
spin-flip transition [64, 66].

The vanadium analogs of SrCo6O11, such as NaV6O11 and SrV6O11, also show
metallic conductivity due to itinerant electrons in the kagomé layer [63]. How-
ever, these materials undergo successive structural transitions to lower symmetries,
although the details of these processes are not yet clear. A magnetic transition takes
place at 70 K but the metallic conductivity is preserved at least down to 2 K in the
case of NaV6O11 [67].

22.2.3 Organic Conductors with Triangular Lattice

Organic conductors (for review [5, 6]) are among the most promising candidate
materials for the observation of exotic quantum mechanical states. This arises
because of a number of characteristic features: (1) low dimensionality, (2) relatively
strong correlation, (3) variety of constituent molecules and variety of lattice struc-
tures including frustrated geometries, (4) structural softness due to the weak van
der Waals bonding between molecules, (5) cleanness of the samples, and (6) simple
band structure originating from the highest occupied molecular orbital (HOMO)
or the lowest unoccupied molecular orbital (LUMO) [68]. Because of the soft-
ness, application of pressure can easily change the lattice parameters and hence
the relative strength of interactions. A great variety of physical states have been
observed and investigated intensively in organic conductors, including charge order,
superconductivity, spin-Peierls states, antiferromagnetism, and spin density waves
(SDWs).

Among the known organic materials, we concentrate on the quasi-two-dimen-
sional A2B compounds, known as 1:2 salts, which are shown in Fig. 22.4. Many
of these 1:2 salts show electron conduction at room temperature, where the carriers
are generated as a result of a charge transfer between the A molecules and the B
units. In many cases, the monovalentB� anion forms a closed shell and the average
valence for the A molecules becomes C1=2. The electronic band near the Fermi
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Fig. 22.4 (a) BEDT-TTF molecule [72] and (b) layered crystal structure of �-(BEDT-TTF)2X,
consisting of conducting BEDT-TTF layers and insulating anion layers. [Courtesy of Y. Hayashi.]

Fig. 22.5 Polytypes in the organic conductor (BEDT-TTF)2X

energy is then composed of the HOMO of the Amolecule, which is quarter-filled in
terms of holes.

The crystal structures of A2B compounds contain alternately stacked layers of
A molecules and B units (Fig. 22.4b), and thus realize quasi-two-dimensional elec-
tronic states; electron hopping between the layers is small due to the insulating
nature of the B layers. There is a variety of two-dimensional arrangements of the
Amolecules, sometimes even for the same chemical formula, which leads to the dis-
tinguishing of polytypes, classified by the Greek letters, ˛; ˇ; �; �; �; : : : [69–71].
Some representative examples are shown in Fig. 22.5. It is apparent that these are
based on triangular lattice structures, leading to possible frustration, although the
degree of frustration depends on the hopping integrals between the A molecules in
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b

Fig. 22.6 (a) Arrangement of BEDT-TTF molecules in the conducting layer of �-(BEDT-TTF)2X ,
viewed along the long axes of BEDT-TTF molecules. Also shown are the transfer integrals between
BEDT-TTF molecules, which are estimated from the highest occupied molecular orbital (HOMO)
energy and from overlap integrals calculated by the extended Hückel method. [Courtesy of Y.
Hayashi.] (b) Schematic representation of the two-dimensional BEDT-TTF layer obtained by
regarding the face-to-face BEDT-TTF dimer pair as a single unit

the different polytypes. Typical examples of interest here are �-, ˛-, and �-(BEDT-
TTF)2X , where BEDT-TTF is the abbreviation of bis(ethylenedithio)-tetrathiaful-
valene; the structure of the BEDT-TTF molecule is shown in Fig. 22.4a.

22.2.3.1 �-(BEDT-TTF)2X

The arrangement of BEDT-TTF molecules in the conducting layer of �-(BEDT-
TTF)2X , viewed along the long axes of the BEDT-TTF molecules, is shown in
Fig. 22.6a. In the �-type structure, the transfer integral connecting the “face-to-face”
pair of BEDT-TTF molecules, represented by tb1 in Fig. 22.6a, is large enough to
consider the pair as a dimer unit. Such dimer units form a triangular lattice, as shown
in Fig. 22.6b, a simplified picture first introduced by Kino and Fukuyama [68]. The
anisotropic triangular lattice shown in Fig. 22.6b will arise frequently in the discus-
sion to follow. Band-structure calculations for �-(BEDT-TTF)2X show that there is
a distinct energy gap in the dispersion due to the strong dimerization. Because the
BEDT-TTF molecules originally form a quarter-filled band, there is one hole per
dimer and the resulting band becomes half-filled. The effective transfer integrals
between the dimer units can be estimated as t D .jtpj C jtqj/=2 and t 0 D tb2=2,
where tp, tq, and tb2 are defined in Fig. 22.6a [73].

Superconductivity appears in �-(BEDT-TTF)2Cu(NCS)2 (Tc D 10:4K) [74]
and �-(BEDT-TTF)2Cu[N(CN)2]Br (Tc D 12:6K) [75] at ambient pressure [76].
Another compound, �-(BEDT-TTF)2Cu[N(CN)2]Cl, is an antiferromagnetic insu-
lator at ambient pressure, with a Néel temperature of 27 K and a spin moment
greater than 0:4�B per dimer. With increasing pressure, however, it undergoes an
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insulator-superconductor transition [75, 77], the maximum Tc being 13.2 K at
300 MPa, which is the highest among the �-type organic conductors. In this com-
pound, superconductivity occurs in direct proximity to antiferromagnetism, suggest-
ing a spin-fluctuation mechanism for superconductivity.

The compound �-(BEDT-TTF)2Cu2(CN)3, synthesized by Geiser et al. [78],
also undergoes an insulator-superconductor transition with increasing pressure, and
Tc D 4K at 360 MPa [79]. However, its insulating state is not an antiferromag-
net, but a nonmagnetic Mott insulator and apparent spin liquid, as evidenced by
NMR measurements [73, 80]. In fact the 1H NMR spectra show no changes down
to 32 mK, in clear contrast to the case of the Cu[N(CN)2]Cl salt, in which a clear
split of the NMR spectra is visible below the Néel temperature of 27 K [81]. This
means that no long-range magnetic order exists in �-(BEDT-TTF)2Cu2(CN)3 down
to 32 mK, which is 4 orders of magnitude smaller than the superexchange inter-
action, J D 250K, estimated from the temperature-dependence of the magnetic
susceptibility. Similar results are obtained by zero-field muon spin relaxation mea-
surements [82]. Furthermore, the temperature-dependences of the 1H and 13C NMR
relaxation rates [73,80], and of the static susceptibility, all show that there is no spin
gap down to the lowest temperatures. More precisely, below approximately 0.4 K,
the relaxation curve for 1H-NMR splits into two exponential functions, probably
due to some inhomogeneity, and each relaxation rate, 1=T1, is proportional to T or
T 2. These results have led to the conclusion that a “gapless spin liquid” is realized
in this system at ambient pressure. Recent specific-heat measurements support the
gapless nature of the excitation [83], although a thermal conductivity measurement
claims the existence of a small excitation gap [84].

There have been many theoretical proposals for explaining this quantum disor-
dered state. Here we note only that an isotropic triangular-lattice Heisenberg model
cannot explain the observed “gapless spin liquid,” because its ground state would
have long-range magnetic order of the three-sublattice 120-degree structure. The
gapless spin liquid may be understood by taking account of either long-range inter-
actions or anisotropy of the triangular lattice. In fact, for the �-type structure we
note that the system is slightly anisotropic [85, 86]; the anisotropies of the trans-
fer integrals t 0=t in Fig. 22.6b, together with the corresponding estimates for the
superexchange interactions, J 0=J D .t 0=t/2, are summarized in Table 22.2 for
various �-(BEDT-TTF) salts [85]. Here t 0 is the transfer integral along the one-
dimensional chain and t can be regarded as the interchain transfer integral, as shown
in Fig. 22.6b. It should be emphasized that only �-(BEDT-TTF)2Cu2(CN)3, the can-
didate spin-liquid system, has an anisotropy t 0=t > 1 in Table 22.2, meaning that
this system has quasi-one-dimensional anisotropy [86,87]. Specifically, based on the
extended Hückel method, the transfer integrals between the BEDT-TTF molecules
can be evaluated as tb1 D 223:6 meV, tb2 D 115:4 meV, tp D 80:1 meV, and
tq D �29:0 meV [88], and thus the interdimer transfer integrals become t D 54:6

meV and t 0 D 57:7 meV, giving a ratio t 0=t � 1:06. Theoretical investigations
based on this anisotropy are discussed in Sect. 22.3.1.
ˇ0-(BEDT-TTF)2ICl2 also has strong dimerization of BEDT-TTF molecules, and

can be regarded as a half-filled system. This salt has a pressure-temperature phase
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Table 22.2 Anisotropy of �-(BEDT-TTF)2X salts for various anions X [85, 86]. Here, t 0

denotes the transfer integral along the one-dimensional chain and t the interchain transfer integral
(Fig. 22.6b). J 0=J is estimated from .t 0=t/2. Note that t D 0 (J D 0) corresponds to decoupled
chains and t 0 D 0 (J 0 D 0) to the square lattice

Anion X t 0=t J 0=J

Cu2(CN)3 1.06 1.12
Cu(NCS)2 0.84 0.71
Cu[N(CN)2]Cl 0.75 0.56
Cu[N(CN)2]Br 0.68 0.46
Cu(CN)[N(CN)2] 0.68 0.46
Ag(CN)2�H2O 0.60 0.36
I3 0.58 0.34

diagram similar to that of �-(BEDT-TTF)2X [89]. Although the critical pressure
is very high (8.2 GPa), the superconducting transition temperature is the highest
among all the organic conductors (Tc D 14:2K).

22.2.3.2 ˛- and �-(BEDT-TTF)2X

There are many other quasi-two-dimensional organic conductors ofA2B type which
show MITs without dimerization. Because these are quarter-filled, their MITs can-
not be explained as a Mott transition, and instead the most common insulating state
turns out to be a charge-ordered phase [90].

Charge ordering was first reported by NMR measurements in a quasi-one-
dimensional organic conductor, DI-DCNQI2Ag [91]. In fact a .1010/-type charge-
ordered state had been predicted theoretically for this situation [92–94]. It is now
known that a significant number of materials shows charge ordering, and here
we focus on frustrated, two-dimensional charge-ordered systems in organic con-
ductors. Direct observations of charge order in quasi-two-dimensional compounds
were made first in �-(BEDT-TTF)2RbZn(SCN)4 [95, 96] and then in ˛-(BEDT-
TTF)2I3 [97] by 13C NMR experiments.

Let us discuss first the ˛-type salts [98]: ˛-(BEDT-TTF)2I3 has four BEDT-TTF
molecules in a unit cell and is quarter-filled due to the absence of dimerization.
At ambient pressure, there is a MIT at 135 K [99], and a spin-singlet state in the
insulator is suggested by spin susceptibility measurements [100]. Seo pointed out
that the insulating state should have a stripe-type charge ordering [101], which
was confirmed by means of NMR [97] and synchrotron X-ray diffraction [102].
When a uniaxial pressure is applied, superconductivity with Tc D 7:2K appears at
0.2 GPa [103]. At higher pressures than this, both charge order and superconductiv-
ity disappear, and, instead, a strange metal is obtained [104, 105]. In this metallic
state, the resistivity is almost temperature-independent, while the Hall coefficient
increases very rapidly, and by a factor of 106, with decreasing temperature. This
strange behavior can be understood by having a zero-gap state containing massless
fermions with a linear dispersion of the Dirac-cone type [106]. These fermions are
described by a tilted Weyl equation, and the Fermi surface of the system consists of
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two points in the Brillouin zone. It can be shown that these massless fermions induce
anomalous behavior of the conductivity, Hall conductivity, and orbital susceptibility,
which can explain the anomalous experimental observations [107, 108].

Moving to the �-type salts, �-(BEDT-TTF)2RbZn(SCN)4 undergoes a MIT at
T D 190K accompanied by a structural phase transition [109]. Direct observa-
tion of charge ordering was achieved by 13C NMR [95, 96]. This charge order
is characterized by a diffuse rod at q D .0; k; 1=2/ � q1, observed in X-ray
measurements [110], which led to the term “horizontal charge order.” By con-
trast, �-(BEDT-TTF)2CsZn(SCN)4 shows no phase transition: it is metallic above
T D 20K and in X-ray measurements a short-range, three-fold diffuse rod with
q D .2=3; k; 1=3/ � q2 is observed. Below T � 20K, the resistivity increases
rapidly [109], accompanied by the appearance of a short-range diffuse rod at
q D q1, which coexists with q2 [111, 112]. (The wave number q1 is same as that
observed in RbZn(SCN)4 salts at low temperatures, i.e. horizontal charge order.)
These experiments indicate that two types of charge-order fluctuation coexist in
the low-temperature regime for �-(BEDT-TTF)2CsZn(SCN)4, which may be a con-
sequence of frustration in the charge degree of freedom on the triangular lattice.
Probably as a result of the inhomogeneous mixture of the two charge-ordered
phases, a gigantic nonlinear conductivity [113, 114] and a thyristor-like I–V char-
acteristic [115] are observed, which have attracted considerable attention. Related
theoretical studies are discussed in Sect. 22.3.3.

Mori et al. summarized the experimental data for various �-(BEDT-TTF)2X salts
in a phase diagram using the temperature and the dihedral angle between BEDT-
TTF molecules [109]. The primary effect of the dihedral angle will be to change the
anisotropy of the hopping integrals between the BEDT-TTF molecules. According
to this phase diagram, the CsZn(SCN)4 salt has a smaller dihedral angle than the
RbZn(SCN)4 salt and is located close to the boundary between a metallic and a
charge-ordered state. �-(BEDT-TTF)2I3 has a dihedral angle still smaller than the
CsZn(SCN)4 salt, and is the only compound in the �-(BEDT-TTF)2X family which
shows superconductivity (Tc D 3 K) [116]. In this phase diagram, the I3 salt is
considered to be located in the vicinity of the charge-ordered phase, suggesting a
charge-fluctuation mechanism for the superconductivity.

Finally, we also mention ˇ00-(DODHT)2PF6, which undergoes a MIT at T D
225K accompanied by a charge ordering. When pressure is applied, superconduc-
tivity appears with Tc D 3:1K at 1.65 GPa [117].

22.3 Theoretical Background

22.3.1 RVB Spin State and RVB Superconductivity

In sufficiently frustrated quantum spin systems it is generally expected that magnetic
long-range order is destroyed, and that a quantum spin liquid can be realized. As a
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model for such a spin liquid, Anderson proposed a resonating-valence-bond (RVB)
state for the Heisenberg model on a triangular lattice [118]. This state consists of
superpositions of products of singlet bonds, called valence bonds, with finite bond
lengths which cover all the spins in the system.

When holes are doped into this RVB state, the pre-existing valence bonds become
directly the Cooper pairs, and then a new type of superconductivity would be real-
ized. Anderson showed that the strongly correlated BCS state can be rewritten in the
form of an RVB state as [119]
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is a projection operator which excludes the dou-

bly occupied sites from the wave function due to the strong correlation and ai;j is
defined as the Fourier transform of
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By applying a projection operator,PN , to the state for fixing the electron number,
we obtain
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In the case of singlet pairing, ak is an even function of k, leading to the relation
ai;j D aj;i . This means that the wave function PNPG jBCSi is a superposition of

many singlet-bond configurations, .c�

i"c
�

j # �c�

i#c
�

j "/=
p
2, i.e. an RVB state with the

amplitude of the singlet bond being ai;j .

22.3.1.1 Square- and Triangular-Lattice t-J Model

The superconducting RVB state has been studied extensively in the Hamiltonian
known as the t-J model,
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where the first term represents the kinetic energy for mobile doped holes and the sec-
ond term is the Heisenberg superexchange interaction. The summation over .i; j /
denotes pairs of lattice sites depending on the lattice structure, and the parameters
tij can be chosen to be t and t 0 as in Fig. 22.6b. When t 0 D 0, the system is a square
lattice, and when t 0 D t it is an isotropic triangular lattice. The spin index, � , takes
the values " and #, and c�

i� (ci� ) denotes the creation (annihilation) operator for an

electron with spin � at site i . The spin operator is defined as Si D c
�
i���� 0ci� 0=2.

For the two-dimensional square lattice (t 0 D 0), it has been shown that the RVB
state with a dx2�y2 -wave superconducting order parameter,�k, is a very good vari-
ational wave function [120–125]. Many of the features of high-Tc superconductivity
can be understood from the properties of this state [126]. At half-filling (n D 1),
the t-J model is equivalent to the Heisenberg model for the spin system, because
the kinetic-energy term vanishes, and in this case (22.3) does not show supercon-
ductivity even if the wave function contains the superconducting order parameter,
�k. In fact hci"cj #i D 0 for the wave function of (22.3) at n D 1 due to the
absence of holes. The variational energy of (22.3) is E D �0:3199 J per bond,
which is very close to the best numerical estimate, E D �0:3346J [127–129].
However, it is well known that there is antiferromagnetic (AF) long-range order for
the S D 1=2 Heisenberg model on the square lattice, and the best variational state
at half-filling studied to date accommodates coexisting RVB and AF nature which
gives E D �0:3323 J [130, 131].

For the two-dimensional triangular lattice (t 0 D t), mean-field approximations
for the t-J model show that (dx2�y2 C idxy)-wave superconductivity is stable near
half-filling [132–135]. dx2�y2 -wave and dxy-wave superconductivity are actually
degenerate here because of the C6 symmetry of the triangular lattice [132,134–136],
and as a result a complex combination of dx2�y2 C idxy order parameters is stabi-
lized below Tc, because the superconducting gap opens over all of the Fermi surface.
Numerical calculations (by variational Monte Carlo simulation) based on the RVB
wave function of (22.3) have confirmed the stabilization of this ground state near
half-filling (less than 10% doping) [137]. High-temperature series expansion studies
of the t-J model also show a rapid growth of the d -wave superconducting correla-
tion function, which indicates the appearance of RVB superconductivity [138,139],
and these studies lend weight to the speculation that a small amount of hole dop-
ing acts to destroy the magnetic long-range order and stabilize the superconducting
RVB state [138].

22.3.1.2 Triangular-Lattice Heisenberg Model

As discussed in Sect. 22.2.3, the spin-liquid state apparently observed in �-(BEDT-
TTF)2Cu2(CN)3 is realized on the almost isotropic triangular lattice. The simplified
model Hamiltonian for this system is thus an isotropic triangular-lattice Heisenberg
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spin model with J 0 D J . However, as mentioned Sect. 22.2.3, this model is believed
to have a ground state with long-range magnetic order of the 120-degree type. Exact
diagonalization studies of small clusters [140, 141], Ising expansions [142], high-
temperature series expansions [143], and variational Monte Carlo simulations [144]
all support this picture. Therefore, if one assumes finite three-dimensionality in
real materials, it is difficult to explain the spin-liquid state reported in �-(BEDT-
TTF)2Cu2(CN)3 within the simple Heisenberg model. However, if the long-range
order is neglected and approaches based on a disordered ground state are adopted,
one obtains an RVB state with (dx2�y2 C idxy)-wave symmetry [132–135] as in
the t-J model. Because the (dx2�y2 C idxy)-wave state should have a finite gap
(the spin gap at half-filling), this state remains nevertheless inconsistent with the
observed “gapless spin liquid” state.

In order to resolve this problem, the anisotropy, J 0 ¤ J [86, 87], in �-(BEDT-
TTF)2Cu2(CN)3 (Table 22.2) has been studied. Variational Monte Carlo simulations
show that the wave function continues from the one-dimensional limit (J D 0)
until J=J 0 D 0:65 or J=J 0 D 0:8 [87], although the state considered in these
studies was only a dx2�y2 -wave RVB state, whereas the RVB mean-field theory
predicts a (dx2�y2 C idxy)-wave state in this region. Although the (dx2�y2 C idxy)-
wave RVB state has a finite spin gap, the excitation spectrum obtained in the
mean-field theory is almost gapless over a wide parameter range from the one-
dimensional limit, probably because the interchain coupling, J , is frustrated [86].
Because the pure one-dimensional spin chain has no long-range order and its spin
excitations are gapless (the des Cloiseau-Pearson mode), we think that this kind of
one-dimensionalization [86] by frustration is a good candidate mechanism for the
formation of the “gapless spin liquid”.

22.3.2 Triangular-Lattice Hubbard Model

In contrast to the strong-coupling t-J model, a simple model for studying supercon-
ductivity away from the strong-coupling regime is the Hubbard model,
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We note that in the strong-coupling expansion of the Hubbard model in t=U , the
t-J model is derived, with higher terms.

In the hole-doped case, perturbation theories of the Hubbard model on a triangu-
lar lattice show that both d - andp-wave superconducting states are stable [145,146],
while the renormalization-group approach finds the dx2�y2 C idxy state to be most
stable [147]. In addition, f -wave pairing can be expected in the low-density region
where the Fermi surface is disconnected [148]. In these weak-coupling calculations,
the effects of frustration do not play an important role, and instead the superconduc-
tivity is determined from the subtle details of the Fermi surface and the low-lying
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spin excitations, which leads to inevitable controversy concerning the symmetry of
the superconducting order parameter.

The Hubbard model at half-filling on an anisotropic lattice was used to study the
superconductivity in the �-type organic conductors. Fluctuation-exchange approx-
imations show that the superconductivity has dx2�y2 -wave symmetry mediated by
antiferromagnetic spin fluctuations for the t 0 < t case [149–151]. The similarity
to the high-Tc cupric oxide superconductors has been discussed [152], and in fact
this d -wave state is stable when the lattice structure is changed continuously from
the triangular to the square lattice [135, 153]. Similar results were obtained in the
Hubbard–Heisenberg model [154].

However, recent numerical studies do not support the appearance of supercon-
ductivity in the Hubbard model. Neither the path-integral renormalization-group
method [155] nor the dynamical cluster approximation [156] find any evidence for
superconductivity at half-filling. Subsequent variational Monte Carlo studies were
performed [157, 158] using variational wave functions of the form

PQPg jBCSi or PQPg jAFi; (22.6)

where jBCSi and jAFi are respectively mean-field BCS and antiferromagnetic wave
functions. The operator Pg is a Gutzwiller factor for the Hubbard model, defined
as Pg D Q

i

�
1 � .1 � g/ni"ni#

	
, with g being a variational parameter, and acts

to reduce the probability of doubly occupied sites in the wave function by a fac-
tor of g. The operator PQ represents an intersite correlation factor [159,160] which
controls the binding strength between a doubly occupied site (doublon) and an unoc-
cupied site (holon). These two projection operators represent the effects of electron
correlation. The variational Monte Carlo result shows that antiferromagnetism is
stabilized in a wide region of parameter space, and that superconductivity is not
stabilized [158].

The stability of antiferromagnetism obtained in the variational Monte Carlo study
is interesting, because the effective hopping, t 0eff, in the optimized variational state
becomes zero. This means that the wave function itself is acting to deform the
Fermi surface so as to recover a strong nesting condition, even if the Hamiltonian
contains a bare hopping term t 0. This is similar to the “spontaneous Fermi surface
deformation” studied in the t-t 0-J model in connection with high-Tc cupric oxide
superconductors [161, 162], which provides an unconventional means of reducing
the frustration to stabilize an unfrustrated magnetic order.

In the search for the spin-liquid state, the Hubbard model on an anisotropic tri-
angular lattice with intermediate interaction strengths (U=t) has been studied by a
path-integral renormalization-group technique [155, 163] (Yoshioka et al., unpub-
lished). It has been claimed that, as U increases, the paramagnetic metallic state
undergoes a first-order phase transition to a nonmagnetic insulating state, followed
by another first-order phase transition to a magnetically ordered state. Although the
intermediate state seems to be nonmagnetic and insulating, its nature is not yet clear.
It remains to be seen whether such a state can be reproduced by other methods.
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22.3.3 Extended Hubbard Model for Organic Conductors

For theoretical studies of organic conductors, Kino and Fukuyama [68] considered
Hubbard-type models taking account of the full anisotropy in tij for each polytype,
and applied mean-field approximations to the on-site Coulomb interaction, U . In
this treatment, each molecule is represented by a “site” and only the HOMO and/or
LUMO closest to the Fermi level are considered. These authors provided a way to
handle the variety of organic materials regardless of the apparent complexity of the
crystal structures, and showed that hopping integrals between the HOMO and/or
LUMO lead to a single-band model. Now it has become possible to relate various
polytypes to each other and to discuss their electronic properties in a systematic
manner [90, 164–166].

When one studies charge ordering at quarter-filling in the materials discussed in
Sect. 22.2.3, it is important to include the longer-range Coulomb interaction terms.
The effective on-site repulsive interaction is actually relatively small compared with
inter-site interactions because screening effects are weak in these systems due to
the extended nature of the molecular orbitals. In this case, many theoretical studies
have been performed using the two-dimensional extended Hubbard model on an
anisotropic triangular lattice including the full anisotropy of the materials,
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Here .i; j / denotes a pair of lattice sites, by which is meant molecules at i and j
site, and the transfer integrals, tij, reflect the anisotropy resulting from the particular
spatial extent of the molecular orbitals, calculated, for example, by the extended
Hückel method [167,168] or from a tight-binding fit to first-principles calculations.
Actual values of the transfer integrals calculated by the extended Hückel method
are given in [69–71] and [164]. Whether or not the triangular geometry leads to
frustration depends on each value of tij [152, 169].

In addition to the kinetic-energy terms, the inter-site Coulomb interactions, Vij ,
must also be considered [170], which is crucial for properties such as charge order-
ing [90, 92]. The actual values for Vij =U , estimated as 0.2–0.7, remain rather
ambiguous, while U is believed to be of the order of 1 eV in the BEDT-TTF
compounds. Because typical values for jtij j are in the approximate range 0.2–
0.25 eV [171–173], these materials are strongly correlated electron systems with
U=jtij j � 4–5. We note that the degrees of anisotropy in tij and Vij are not neces-
sarily similar, because the parameters tij are determined from the overlap integrals
of the HOMO or LUMO wave functions, while Vij is determined largely from the
distance between the molecules [173].

As discussed in Sect. 22.2.3 for the case of �-type structures, each pair of
molecules is connected by a transfer integral that is considerably larger than any
others in the system, and thus can be regarded as a unit, in terms of which the
effective models for such systems become half-filled Hubbard models. In this case,
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the on-site repulsive interaction, U, is determined from the strength of dimeriza-
tion [164, 169, 170].

We focus here on the superconductivity which may be induced by charge fluctua-
tions in organic conductors. Superconductivity mediated by charge fluctuations was
first discussed in the extended Hubbard model on a cubic lattice [174], and the rel-
evance of this mechanism to the organic conductors was pointed out by Merino and
McKenzie [175, 176]. Theoretical studies show that the charge fluctuation associ-
ated with the nearest-neighbor Coulomb repulsion, V, can induce superconductivity
with dxy-wave symmetry in the square lattice [175, 177, 178]. Although the Fermi
surface nesting is poor at quarter-filling, the momentum-dependence of the pairing
interaction gives an attraction at wave vector .	; 	/, leading to dxy-wave supercon-
ductivity. This momentum-dependence is not determined by the nesting condition
of the noninteracting Fermi surface, but originates from the Fourier transform of
the nearest-neighbor repulsive interaction. However, when V becomes larger, a
checkerboard charge order appears, and as a result superconductivity is restricted
to only a small parameter region in the vicinity of charge ordering. In the real-
space picture, the stability of this dxy-wave pairing can be understood simply [177]:
the nearest-neighbor Coulomb repulsion repels electrons from the nearest-neighbor
sites, making the amplitude of the order parameter in real space larger at the four
next-nearest-neighbor sites and leading to dxy-wave pairing. In this sense, it is
reasonable that the next-nearest-neighbor superexchange interaction enhances the
dxy-wave pairing [179].

The studies mentioned above were performed on the square lattice, and the
checkerboard charge-ordering pattern does not have any frustration. However, frus-
tration in the anisotropic triangular lattice realized in some organic conductors can
lead to new possibilities. The search for superconductivity close to a charge-ordering
transition has been pursued by random-phase-approximation (RPA) [180], and
fluctuation-exchange (FLEX) [178] calculations, and by variational Monte Carlo
simulations [181]. In the anisotropic triangular lattice at quarter-filling, the nearest-
neighbor repulsive interactions have strong frustration, as a result of which several
charge-ordering patterns, including horizontal stripes [101], diagonal stripes, and a
period-three charge order [182,183], all compete with each other. In such a case, no
one of the possible charge-ordering patterns is particularly stable, and there appears
a large parameter regime in which a metallic state is realized as a consequence of the
frustration. This has been called the “quantum melting” of charge order [184, 185].
It was found that spin-triplet superconductivity with f -wave-like symmetry is sta-
bilized near the charge-ordering instability within the RPA [180]. This kind of
superconductivity is stable, because the momentum-dependence of the pairing inter-
action gives an attractive force at wave vectors such as Q D .2

3
	; 2

3
	/. Similar to

the case of the square lattice, the momentum Q originates from the Fourier trans-
form of the nearest-neighbor repulsive interactions. It is worth noting that the charge
fluctuation contributes equally to both the singlet and the triplet pairing channels,
because it is a consequence of the charge degrees of freedom.

A recent variational Monte Carlo calculation revealed that an f -wave supercon-
ducting state can be stabilized in the metallic state realized due to frustration [181].
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The stability of f -wave pairing in the anisotropic triangular lattice can also be
understood from the simple real-space picture [181, 186]: because the repulsive
nearest-neighbor Coulomb interaction expels electrons from the six nearest-neighbor
sites, the amplitude of the Cooper pairs in real space will be larger on the six
next-nearest-neighbor sites in the triangular lattice, which leads to the f -wave
pairing.

22.4 Superconducting Compounds

22.4.1 Pyrochlore Lattice: Cd2Re2O7 and AOs2O6

In the course of this decade, a family of pyrochlore oxide superconductors has been
found and characterized. The first system to be discovered was the ˛-pyrochlore
Cd2Re2O7, in which Tc D 1:0K [187–189], and the second was the ˇ-pyrochlore
AOs2O6, where Tc D 3:3; 6:3, and 9.6 K respectively for A D Cs [190], Rb [191–
193], and K [194]. Figure 22.7 shows these superconducting transitions as observed
in the resistivity. Perhaps surprisingly, Tc varies by one order of magnitude across
the series, in spite of the general similarity of the crystals and their electronic band
structures, and in particular the large enhancement of Tc in the ˇ-pyrochlores from
Cs to K suggests that this superconductivity is not of the conventional BCS type.

The materials all crystallize in the cubic pyrochlore structure with the same space
group, Fd -3m, and possess a common 3D skeleton composed of ReO6 or OsO6

octahedra, as illustrated in Fig. 22.8: the Re or Os sublattice forms the pyrochlore

Fig. 22.7 Resistivity
measured on high-quality
single crystals of the
pyrochlore oxide
superconductors, showing a
sharp superconducting
transition. The data for
RbOs2O6 and CsOs2O6 are
multiplied by a factor of 5 for
clarity
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OsO6KReO6O’ Cd

Fig. 22.8 Comparison of crystal structures between the ˛-pyrochlore Cd2Re2O6O’ (left) and the
ˇ-pyrochlore AOs2O6 (right). The two structures possess an identical skeleton of ReO6 or OsO6,
and differ in that the O’ atom in the former is replaced by the A atom in the latter with the nearby
Cd sites vacant

lattice of interest. The difference between the two types of system comes from the
fact that the O’ atom at the 8b site in the ˛-pyrochlore Cd2Re2O6O’ is replaced by
theA atom in the ˇ-pyrochloreAOs2O6 [194–196]. The Cd 16d site in the former is
also vacant in the latter. Alternatively stated, a relatively large CdO4 tetrahedral unit
is replaced only by a single A atom, which as a result suffers a large size mismatch
and can “rattle” around in an oversized atomic cage. It was pointed out that this mis-
match causes a peculiar, anharmonic vibration called a rattling mode, particularly
for the rather small K atom [196–200].

The electronic structures of ˛-Cd2Re2O7 and ˇ-AOs2O6 have been calculated
by first-principles, density-functional methods, which reveal that metallic conduc-
tion occurs in the (Re, Os)-O network [201,202]; the electronic states near the Fermi
level originate from the TM 5d and O 2p orbitals. Although the overall shape of the
density of states (DOS) is similar for the two compounds, the difference in band fill-
ing may result in different properties; Re5C in ˛-Cd2Re2O7 has two 5d electrons,
while Os5:5C in ˇ-AOs2O6 has 2.5. It is to be noted, however, that the calculated
DOS at the Fermi level for all the compounds is nearly equal, and thus one must
find an alternative explanation for the change in Tc across the series of compounds.

The mechanism of superconductivity for the pyrochlore oxides has been stud-
ied extensively. Most of the data obtained for Cd2Re2O7 have indicated that it is a
weak-coupling, BCS-type superconductor [203, 204]. In contrast, there are several
findings which suggest unconventional features for AOs2O6, including the anoma-
lous, concave-downward curvature of the resistivity, which suggests an unusual
scattering process involved in the normal state. Further, NMR experiments by Arai
et al. show a very small coherence peak in the relaxation rate below Tc for RbOs2O6,
while no peaks were found for KOs2O6 [205]. This finding is in strong contrast to
the result for Cd2Re2O7, in which a very large coherence peak was observed [204].



22 Metallic and Superconducting Materials with Frustrated Lattices 613

Phase I
Fd3 m

Phase II
I4m2Phase III

I4122

1

2
2

2
2

1
3

4 4
4

3

m
4

300

200

100

0
300250200150100500

TS2

TS1

1

3 2

1

3
2

3
2

1

1

2

ρ 
(μ

Ω
cm

)

T (K)

α-Cd2Re2O7

Fig. 22.9 Temperature-dependence of the resistivity for ˛-Cd2Re2O7, showing two anomalies at
Ts1 D 200K and Ts2 D 120K. These are accompanied by structural transitions between cubic
and two different tetragonal phases. A pair of tetrahedra drawn for each phase shows how the
pyrochlore lattice is deformed for a given space group

Although the superconductivity in Cd2Re2O7 is conventional, two structural
phase transitions were found, which represent one manifestation of the electronic
instability of itinerant electrons on the pyrochlore lattice. Two symmetry-lowering
structural transitions are observed at Ts1 D 200K and Ts2 D 120K, as shown
in Fig. 22.9 [206–208]. The upper transition is of second order, from the ideal
cubic pyrochlore structure (space group Fd -3m) to a tetragonally distorted struc-
ture (I -4m2), while the lower is of first order to another tetragonal space group,
I4122. It is of interest to consider how the tetrahedral lattice of Re ions can change
through the successive transitions: in Phase I at high temperature, all of the tetrahe-
dra are identical, while below Ts1 two neighboring tetrahedra become inequivalent
with loss of inversion symmetry. There is also a tetragonal distortion, but it is very
small. Below Ts2, the two tetrahedra become identical again, but now each has three
different types of bond (Fig. 22.9). The origin of these successive transitions remains
unclear at present, and is being studied in detail [209, 210].

Regarding the symmetry of the superconducting gap for the ˇ-pyrochlores,
several experiments provide evidence for s-wave superconductivity, which would
suggest that the fundamental pairing mechanism is of phononic origin. An important
question is then what kind of phonons are responsible for the occurrence of super-
conductivity, and an understanding of the reasons for the apparently singular behav-
ior on approaching K in the series may well be the key to the physics involved in
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Fig. 22.10 Electronic specific heat Ce divided by temperature, showing the superconducting
transitions of the pyrochlore oxides. The size of the jump at Tc increases with increasing Tc

this system. One approach is to consider the chemical trends of various parameters
in the series, which should provide insight into the pairing mechanism [211, 212].

Figure 22.10 shows the temperature-dependence of the electronic specific heat
for the four compounds. The magnitude of the jump at Tc is a measure for the cou-
pling strength of the Cooper pairs, the value of �C.Tc/=�Tc being 1.43 for the
weak-coupling limit in BCS theory. Here, �C.Tc/=�Tc for Cd2Re2O7, Cs, Rb,
and KOs2O6 increases through the respective values 1.15, 1.42, 1.84, and 2.87,
as shown in Fig. 22.11a. The size of the superconducting gap can be estimated
from the data by taking into account the strong-coupling correction, and the result,
shown in Fig. 22.11b as a function of Tc, demonstrates clearly that the type of
superconductivity changes from weak coupling to extremely strong coupling with
increasing Tc.

Also shown in Fig. 22.11 is the electronic specific-heat coefficient � in the
normal state obtained from Fig. 22.10. Compared with the value deduced from
band-structure calculations there is a strong enhancement, particularly for KOs2O6.
The reason for this enhancement must lie not in electronic correlations but in the
electron–phonon interactions, because there is no corresponding enhancement in
magnetic susceptibility.

The average energy of the phonons responsible for the superconductivity, !ln,
has been estimated based on a strong-coupling analysis: !ln deceases gradually
toward KOs2O6, as shown in Fig. 22.11d. This suggests strongly that a low-energy
phonon is the origin of the strong-coupling superconductivity, as well as of the large
mass enhancement, and that the systematic increase in the coupling strength must
be ascribed to a reduction in the energy of this phonon. It is known that many
strong-coupling superconductors with large coupling constants possess different
low-energy phonons. As examples, the A-15 compounds show soft phonon modes
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associated with a cubic-to-tetragonal transition [213], while the Chevrel-phase com-
pounds are assumed to be “molecular crystals” with low-lying phonon modes [214].
The role of such low-energy phonons in the mechanism of superconductivity has
been studied extensively in these strong-coupling superconductors.

It is reasonable in the case of ˇ-AOs2O6 to ascribe such a low-energy phonon to
the rattling vibration. The energy of the rattling mode may decrease on decreasing
the size of the A cations, because the open space available in the (rather rigid) cage
increases. In fact the isotropic atomic displacement parameter Uiso obtained from
structural analysis increases toward K, as shown in Fig. 22.11d, and it is noteworthy
that the value of Uiso for K is exceptionally large for a cation in a crystal. Moreover,
a characteristic rattling energy can be estimated from the specific-heat data over a
wide range of temperature by assuming that it as an Einstein mode, and the Einstein
temperature, TE, obtained from this procedure decreases towards K (Fig. 22.11d). It
is therefore clear that the rattling mode must play a crucial role in the mechanism
of superconductivity, and particularly for the strong-coupling superconductivity in
KOs2O6.

It should be emphasized that in most cases the lattice itself becomes unstable
when the electron-phonon coupling becomes too strong. In the ˇ-pyrochlore oxide
compounds, however, the conduction electrons are located on the hard skeleton of
OsO6 octahedra, while the low-energy phonons are associated with the rattling of
ions that are structurally only weakly bound to the skeleton. This structural dual-
ity can give rise to such unusually strongly coupled superconductivity. It would be
intriguing to investigate in further detail how this rattling, which is an essentially
anharmonic vibration almost localized in a cage, can mediate the Cooper pairing.
More experimental information, particularly from neutron diffraction experiments
that can determine the low-energy phonon DOS, is awaited for further discussion.
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22.4.2 Triangular Lattice: NaxCoO2 and Its Hydrate

In this section, we first describe the electronic states of NaxCoO2 and then discuss
the nature of superconductivity in the hydrate systems.

The electronic states of NaxCoO2 near the Fermi level consist of three Co
t2g -orbitals which hybridize with the O 2p-orbitals, as shown by band-structure cal-
culations [215–220]. Because the CoO6 octahedra are contracted along the c-axis,
as shown in Fig. 22.2b, the ligand oxygen ions generate a trigonal crystal field at
the Co sites, which lifts the degeneracy of the t2g -orbitals, producing lower-lying
a1g and higher-lying doublet e0

g levels with an energy splitting of � (Fig. 22.2c).
According to the band-structure calculations, the main part of the Fermi surface is
a large, cylindrical piece around the 
 point, due primarily to the a1g orbital. In
addition to this, there are two important features: one is a set of small hole pockets
near the K points, originating from the e0

g orbitals, to which we refer hereafter
as e0

g hole pockets. These are expected to appear at low fillings of order x � 0:3.
(Schematic representations of the energy dispersion and the Fermi surface are shown
in Fig. 22.12 (left).) The other feature is a small, concentric electron pocket around
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Fig. 22.12 Schematic representation of the band structure of NaxCoO2. Depicted are band disper-
sions along the 
 -K line (left), an expected density of states (DOS) profile (middle), and an x-T
phase diagram (right). The critical Na content x� in the phase diagram corresponds to a band fill-
ing with the Fermi energy equal to E�, as shown by the broken line, where the Fermi level touches
the base of the dip in the a1g band at the 
 point. In the left panel, two types of Fermi surface are
also shown: when E > E�, a small a1g electron pocket appears around 
 in addition to a large
hole pocket. In the phase diagram, a Curie–Weiss metal exists above x� and a Pauli paramagnetic
metal below x�. (Replotted from [227])



22 Metallic and Superconducting Materials with Frustrated Lattices 617

the 
 point, whose origin is a dip in the dispersion of the a1g band [217, 220], as
shown in Fig. 22.12 (left), and which we call the a1g electron pocket. This may
appear at high fillings, of order x � 0:7. There has also been some discussion con-
cerning the possibility that the band dispersions and the Fermi-surface topology are
very sensitive to the thickness of the CoO2 layer, which determines the trigonal
crystal field [221, 222].

Angle-resolved photoemission spectroscopy (ARPES) experiments observed the
large, cylindrical Fermi surface around 
 but failed to detect either the e0

g hole
pockets or the small a1g electron pocket [223–226]. However, a recent experiment
which effected very precise control over x showed that dramatic changes in the
electronic properties take place at x� � 0:62 [227]. In particular, the specific heat
increases rapidly for x > x�, which suggests that the Fermi level touches the bottom
of the a1g band at 
 when x D x�. A schematic illustration is shown in Fig. 22.12.

We turn next to a discussion of superconductivity in hydrated samples, which
occurs when water molecules are intercalated in NaxCoO2. The superconduct-
ing properties and the symmetry of the order parameter have been studied by
many experimental techniques [45]. Evidence for unconventional superconductiv-
ity has been reported in the forms of the absence of coherence peak in NMR/NQR
1=T1T [228–230], the power-law behavior of 1=T1T [228–231], and the specific
heat [232–235], which all support anisotropic pairing. Further, a magnetic phase
exists in the vicinity of the superconducting phase, and an enhancement in spin
fluctuations is observed when the system approaches the magnetic phase [236–238].
These results suggest the importance of electron correlation effects, which in general
lead to non-s-wave superconductivity. The Knight shift below Tc is also observed to
decrease when a magnetic field is applied in the plane [239, 240], suggesting either
a singlet pairing or a triplet pairing whose d -vector is fixed in the plane. Recent
measurements of the Knight shift in a magnetic field parallel to the c-axis show that
it also decreases below Tc [241, 242], indicating singlet pairing. However, another
group has claimed a constant Knight shift in a similar experimental set-up [243].

Water intercalation is expected to have several effects: (1) enhancement of two-
dimensionality, (2) smoothing the random Na potential by screening [244], and
(3) enhancement of the trigonal distortion of CoO6 octahedra. In fact the increase
of the c-axis lattice constant accompanying water-intercalation pushes the NaC ions
away from the CoO2 layers, which makes the effective thickness of the CoO2 layers
smaller. As a result, the level of the e0

g band becomes higher in hydrate samples than
in non-hydrate ones. This change has been observed in ARPES measurements for
hydrated NaxCoO2 [226], but the e0

g level remains below the Fermi energy, which
is not consistent with band-structure calculations [215].

In order to understand the superconductivity, there are two important parameters
in this system: one is the valence of the Co ions, or the electron density, and the
other is the thickness of the CoO2 layers, or the energy-level splitting,�, associated
with the trigonal distortion. Regarding the valence of the Co ions, it is necessary to
include the effects of the oxonium ions, H3OC [236,245]. Recent chemical analysis
shows that H3OC ions are intercalated simultaneously during hydration, and the
compound should be actually be represented as Nax(H3O)zCoO2�yH2O, where the
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Co valence is Co.4�x�z/C. Titration analysis reveals that superconductivity appears
at Co valences of C3:48 and C3:40, irrespective of x. These valences are different
from the value C3:65, which would be the simplest expectation based on x � 0:35.
However, it should be noted that one NMR result indicates that the Co valence is
not modified even after hydration [246], and more careful analysis of this issue will
therefore be necessary.

Based on the analysis of Co valences with oxonium ions, Sakurai et al. [236]
(Sakurai et al., unpublished) proposed the phase diagrams of the type shown in
Fig. 22.13; similar phase diagrams have also been proposed by other authors [231,
237, 238, 247]. When the Co valence is around C3:40, a superconducting phase
(SC2), a magnetically ordered phase (MO), and then another superconducting phase
(SC1) appear as x is increased. By contrast, when the Co valence is close to
C3:48, only one superconducting phase appears. Because the Co valence is fixed,
the increase of x means a decrease of z, and hence in the content of H3OC. This
change leads to a smaller c-axis lattice constant, because the H3OC ion is smaller
than the NaC ion, which leads in turn to a thicker CoO2 layer, meaning a smaller
trigonal distortion and as a result that � becomes smaller [222]. This tendency has
been observed in the NQR frequency, �Q, which decreases as the trigonal distortion
becomes smaller. Classifying samples on the basis of �Q would therefore be useful.

Before closing this section, let us discuss the implications of these results for
theory. ARPES experiments show that there is only a single, cylindrical Fermi sur-
face around the 
 point, meaning that a single-band model should be sufficient for
describing the hydrate systems. In this case, the RVB superconductivity discussed
in Sect. 22.3 is one of the most probable candidates [132–135]. High-temperature
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series expansion studies on the t-J model show that d -wave RVB superconductiv-
ity is favorable up to x � 0:5 (50% electron doping) [138,139], which is consistent
with the doping level observed in experiments. However, as discussed above and
noticed in the mean-field theory, the most probable symmetry of the superconduct-
ing order parameter below Tc on the triangular lattice is (dx2�y2 C idxy)-wave. If
this were the case, however, time-reversal symmetry would be broken in the super-
conducting state, contradicting the fact that �SR experiments do not find such a
symmetry-breaking [248]. Here it should be noted that pure d -wave superconduc-
tivity is realized in some regions of parameter space if the triangular symmetry is
broken [135], but it is not clear whether this result applies in the present case. In the
weak-coupling Hubbard model, on the other hand, the superconducting instability
is very weak, and it would be difficult to obtain superconductivity at temperatures
as high as Tc D 4:5K. As an alternative to electronic correlations, it has been pro-
posed that a phonon mechanism can explain superconductivity with an s-wave order
parameter [249], which would be consistent with the impurity effects [250].

Alternatively, on the assumption that the Fermi surface is not that of a single-band
model, several possible mechanisms for superconductivity have been discussed. If
there are e0

g hole pockets near the K points, spin-triplet superconductivity due to
nearly ferromagnetic spin fluctuation would be realized [251–253], for which the
disconnected nature of the Fermi surface plays an important role. Another possi-
bility, if there is a small concentric a1g electron pocket around 
 , as shown in
Fig. 22.12, is to stabilize spin-singlet extended s-wave superconductivity [254].

The changes of band dispersion and Fermi surface topology have been analyzed
microscopically within a multiband tight-binding model [222]. In this calcula-
tion, it is shown that several types of Fermi surface appear successively as the
CoO6 distortion increases, and that the phase diagrams shown in Fig. 22.13 can be
explained successfully. It is interesting to note that the two superconducting phases
in Fig. 22.13 have different types of pairing, SC1 being of extended s-wave type, due
to the presence of the small a1g electron pocket, while SC2 is a triplet superconduct-
ing state in the presence of the small e0

g hole pockets caused by the large trigonal
crystal-field splitting, � [222, 255]. The puzzling NMR/NQR and �SR results on
the character of the magnetic fluctuations can be understood by considering the
strong dependence of these fluctuations on the layer thickness [255]. It has been
proposed that the discrepancies in Hc2, in the specific heat, and in the superfluid
density can also be resolved by considering the presence of two types of supercon-
ductivity [256]. However, these theoretical calculations are based on the presence
of additional structures in the Fermi surface, which remains inconsistent with the
existing ARPES data, where only a single Fermi surface is observed. Thus there is
at present no reasonable theory capable of explaining all the experimental results
consistently.
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22.4.3 Anisotropic Triangular Lattice: Organic Superconductivity

The quasi-two-dimensional (BEDT-TTF)2X salts exhibit a variety of superconduct-
ing states. Because the presence of charge ordered phase next to the superconducting
phase suggests a crucial role of charge fluctuations, which is not the case for high-Tc

cupric oxide superconductors, the issue of the mechanism for superconductivity in
the organic conductors has been discussed with particular emphasis on the role of
spin and charge fluctuations [90, 257, 258].

In �-(BEDT-TTF)2X , the absence of a coherence peak in the NMR relaxation
rate, 1=T1, and its T 3-dependence below Tc are observed, suggesting dx2�y2 -
wave-like superconductivity [257]. Recent penetration-depth measurements [259]
and specific-heat measurements [260] also support dx2�y2 -wave superconductivity.
Because the superconducting phase is located next to SDW or antiferromagnetic
phases, it has been argued that superconductivity is induced by spin fluctuations,
in close analogy to many models for high-Tc cupric oxide superconductors. In fact
the NMR relaxation rate in deuterated �-(BEDT-TTF)2Cu[N(CN)2]Br, which lies
just on the border of the Mott transition [261], shows an increase on heating above
Tc, which is similar to the pseudo-gap phenomena observed in underdoped high-Tc

superconductors [126, 262]. Such a Nernst effect above Tc, as reported in high-
Tc systems, is also observed in �-(BEDT-TTF)2Cu[N(CN)2]Br [263]. However, as
discussed in Sect. 22.3.2, it remains an open question whether or not the simple
Hubbard model at half-filling contains superconductivity.

In �-(BEDT-TTF)2Cu2(CN)3, where the hallmarks of a spin-liquid phase are
observed, superconductivity appears under pressure (Tc D 4K at 360 MPa) [79].
NMR experiments suggest the presence of line nodes in the superconducting order
parameter, although no details are yet known. This superconductivity could also
be discussed in the half-filled Hubbard model, but it should be stressed here that
theoretical clarification of the nature of the spin-liquid state is necessary before
discussing the nature of the superconductivity.

Doping into organic conductors is possible in the exceptional case of �-(BEDT-
TTF)4Hg3�ıX8 (X D Br or Cl) [264]. The materials with Br and Cl are believed
to have dopings of approximately 11% and 22%, respectively. The properties of
the superconducting state observed under pressure have not yet been explored. One
key issue is to compare the two superconducting states appearing when pressure is
applied to the spin-liquid phase and when some holes are doped.

There are several two-dimensional A2B salts showing superconductivity in the
vicinity of charge-ordered phases, such as �-(BEDT-TTF)2I3 [109], ˇ00-(DODHT)2

PF6 [117], �-(DIETS)2Au(CN)4 [265], and ˛-(BEDT-TTF)2I3 [103]. In the last of
these, superconductivity appears within the charge-ordered phase. RPA calculations
have been performed on the basis of the reconstructed Fermi surface induced by
a stripe-type charge order obtained in a mean-field approximation [266], and the
results indicate that superconductivity appears in a metallic charge-ordered phase in
which both small hole pockets and electron pockets exist. The pairing interaction in
this case is given primarily by spin fluctuations originating from a self-doped one-
dimensional spin-1=2Heisenberg chain [266]. This implies that charge fluctuations
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are suppressed due to the stable charge order, and the pairing instability arises from
the newly formed Fermi surface.

As discussed in Sect. 22.3.3, the charge fluctuation at quarter-filling in the
extended Hubbard model can lead to dxy-wave or f -wave superconductivity. The
nature of the superconductivity observed under pressure in various organic conduc-
tors awaits investigation.

22.5 Summary

We have discussed the nature of itinerant electrons on frustrated lattices from both a
materials and a theoretical point of view. In the process we have reviewed metallic
transition-metal oxides and organic compounds that show interesting phenomena
such as superconductivity, a metal-insulator transition, anomalous magnetoresis-
tance, and heavy-fermion-like behavior. Of particular interest in this context are the
superconductors ˛-Cd2Re2O7 and ˇ-AOs2O6, which have a pyrochlore structure,
and NaxCoO2�yH2O and (BEDT-TTF)2X , which have triangular lattices, where
some effects of frustration on the mechanisms of superconductivity may be evident.

Theoretically, RVB superconductivity is the most interesting and promising
mechanism relating the spin-liquid state of frustrated systems with unconven-
tional superconductivity. However, there remains as yet no direct experimental
evidence for such RVB-type superconductivity. In many real materials, such as
NaxCoO2�yH2O, it seems necessary to take into account the additional effects of
orbital degrees of freedom. In contrast, the organic conductors, which are considered
to be single-band systems, may be good candidates for a simple RVB mechanism.
Further research into both materials and theories for frustrated systems is necessary.
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Chapter 23
Frustration in Systems with Orbital Degrees
of Freedom

Jeroen van den Brink, Zohar Nussinov, and Andrzej M. Oleś

Abstract We review the types of frustration encountered in Mott insulators with
orbital degrees of freedom and discuss the physical consequences. We first survey
the driving forces for the ordering of orbital degrees of freedom and then com-
pare the generic features of typical orbital and typical spin Hamiltonians. A primary
difference between the two is caused by the sensitivity of orbital interactions to the
spatial orientation of the orbitals involved. This leads in general to highly anisotropic
orbital Hamiltonians, to frustration of classical ordered states on unfrustrated lat-
tices, and to enhanced quantum fluctuations.
As a consequence of these effects, new types of symmetry can appear in orbital
models, in particular in compass models. These intermediate symmetries lie mid-
way between the extremes of global symmetries and local gauge symmetries. We
discuss briefly the generic consequences of this very particular type of symmetry,
and highlight in this context the relation between orbital models and the models of
Kitaev for quantum computation.
As a final topic, we include spin degrees of freedom into combined spin-orbital
models and consider a number of ways in which the orbital frustration in real mate-
rials is lifted by the magnetic degrees of freedom. Orbital degrees of freedom boost
the tendency to form disordered states or valence-bond phases. Enhanced quantum
fluctuations and spin-orbital entanglement occur in the vicinity of quantum criti-
cal points, where different types of order compete with each other. Taken together,
these phenomena demonstrate that orbital and spin-orbital physics contain a number
of unconventional features and peculiar symmetries which are qualitatively differ-
ent from the range of properties known in pure spin models with frustration, arising
either from frustrated geometries or due to longer-range magnetic interactions.

23.1 Introduction

The physical properties of transition-metal (TM) oxide materials are often deter-
mined not only by the charge and spin degrees of freedom of the electrons, but in
many cases also by their orbital degrees of freedom. In TM oxides, the 3d shell of
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the TM ion is only partially filled, while the electrons within that shell interact very
strongly through the Coulomb repulsion. As a consequence, many of these mate-
rials are Mott insulators – systems well-known for their rich variety of magnetic
properties.

Due to the strong Coulomb interactions also an extra electronic degree of free-
dom emerges: one electron can occupy different but (quasi-) degenerate 3d orbitals.
For extended reviews on the subject of orbital degrees of freedom in solids, and of
their ordering in TM oxides, we refer the reader to [1–4]. One of the characteristics
of orbital degrees of freedom is that they have a number of properties very similar
to the spin degree of freedom of the electron. But, as we will discuss in this chapter,
a distinct and essential feature of orbital degrees of freedom is that, quite gener-
ally, orbital–orbital interactions and the emerging orbital ordering are strongly and
intrinsically frustrated.

The aim of this chapter is not only to summarize some well-established facts
concerning orbital degrees of freedom and their ordering, but also to highlight some
of the recent developments in the field. It should be stressed that the choice of
advanced subjects is rather a reflection of the authors’ interests than an appraisal of
their importance per se. This is true in particular for the tentative relation between
orbital models and Kitaev models for quantum computation which we will discuss
in Sect. 23.6. One of our most important messages will be that, although orbital
physics has grown into a sizable field of research, much remains unexplored.

We begin with an elementary introduction to the concepts related to orbital
degrees of freedom: how they emerge (Sect. 23.2), how they interact and how they
are described mathematically in terms of orbital Hamiltonians (Sect. 23.3). We then
proceed in the second part by discussing in detail the types of symmetries which
these orbital models possess (Sect. 23.4). We will see that the symmetry of orbital
interactions is intermediate in nature between global (such as spin rotation in an
antiferromagnet) and local (such as gauge invariance in electromagnetism). We also
present a theorem on dimensional reduction and demonstrate how the phenomenon
of “order by disorder” appears in classical orbital models (Sect. 23.5). The relation-
ship between these orbital Hamiltonians and quantum computation is discussed in
Sect. 23.6. In the final sections of this chapter, we consider the more complex situ-
ation of coupled spin-orbital superexchange models (Sect. 23.7), which are relevant
in real materials where they serve to describe the physical properties of a class of
TM oxides with partly filled, degenerate 3d orbitals. This discussion includes a brief
exposition of spin-orbital entanglement (Sect. 23.8).

23.2 Orbital Degrees of Freedom

23.2.1 Orbitals and Their Energy Scales

The orbital part of the electronic wave function gives, by definition, the angular
distribution of electronic charge around the nucleus. For a free 3d ion, the orbital
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Fig. 23.1 (a) Orbitals corresponding to the angular part of atomic d wave functions and their
splitting in a cubic crystal field. Upper right: the two eg orbitals, 3z2 � r2 (left) and x2 � y2

(right); lower right: the three t2g orbitals, zx, xy, and yz. The twofold eg degeneracy remains in
the case of a high-spin d4 ion, such as Mn3C or Cr 2C, respective example materials being LaMnO3

and Rb2CrCl4. By contrast, in LaTiO3 or LaVO3 it is the threefold-degenerate t2g orbitals which
are relevant. (b) Jahn–Teller splitting of the degeneracy of eg orbitals due to deformation of the
RO6 octahedron, where R is a TM ion. Note that different types of deformation yield the same
energy-lowering

part of the wave function is given by the spherical harmonics, Y2;m, which are
fivefold-degenerate (when relativistic spin-orbit coupling is neglected), with jmj �2.
The spherical harmonic wave functions constitute a complete and orthonormal basis
for the 3d states. A partial filling of the 3d shell therefore implies that there is a
number of ways in which electrons can be distributed over the available degenerate
orbitals – the orbital degree of freedom. The five different d orbitals are shown in
Fig. 23.1. The eg states are x2�y2 � .Y2;�2CY2;2/=

p
2 and 3z2� r2 � Y2;0, and

the t2g states are respectively xy � .Y2;�2 � Y2;2/=
p
2, yz � .Y2;�1 C Y2;1/=

p
2,

and zx � .Y2;�1 � Y2;1/=
p
2. From the figure it is clear that the different orbital

states correspond to quadrupole moments of the charge-density distribution. When a
TM ion in a material possess an orbital degeneracy, local TM 3d states with different
quadrupole moments have the same energy.

The orbital-related properties of a given material depend on how exactly the 3d
levels are filled as electrons are introduced. Here, it should be stressed that adding
a further electron to an already partially filled d shell costs a Coulomb energy U
on the order of some electronvolts, due to the repulsion between the negatively
charged electrons. This large repulsive interaction U induces very strong correla-
tions between the electrons, rendering the TM oxides insulating in spite of the partial
filling of their d -shell [4]. In this chapter, we consider exclusively TM oxides in this
Mott-insulating regime, where the 3d electrons are localized and can form local
magnetic moments.

The Hund rule of atomic physics states that, in order to minimize the atomic
Coulomb repulsion, the electrons prefer to occupy different atomic orbitals but
with parallel spin alignment. The corresponding Hund exchange element, JH , also
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contributes a high energy scale: electrons whose spins are antiparallel cost approx-
imately 0.5 eV per anti-aligned pair (the full structure of Coulomb interactions
can be found in [5–7], and the multiplet structure of TM ions in [8]). Thus local
spin-flip processes have a considerable energy cost. However, relative rotation of
the spins on two different TM ions can still occur at a low energy scale – that
of the superexchange energy J – and it is this which is relevant for spin-wave
or magnon excitations. At this same energy scale, orbital degrees of freedom can
also be active because, as we will discuss, the strength of the superexchange inter-
actions depends critically on the orbital occupation. This is encapsulated in the
Goodenough-Kanamori rules (GKR) for superexchange [9,10], which will reappear
in Sect. 23.8.

An essential aspect of degenerate orbitals is that the orbital degrees of freedom
are in general coupled to the lattice, which leads to a Jahn–Teller distortion of the
lattice structure. Here the related energy scale for static deformation is EJT , the
energy gain associated with a local Jahn–Teller distortion, while the phonon energy
scale enters into the orbital dynamics.

23.2.2 Comparing Orbital and Spin Degrees of Freedom

In Mott insulators, both spin and orbital degrees of freedom can form local moments.
This observation suggest some similarity between orbitals and spins. Let us there-
fore compare the physics of orbitals with the one of spins in some more detail.

On a mathematical level, the similarity between spins and orbitals can be made
explicit. A spin doublet can be represented by the operator S D fSx; Sy ; S zg,
where S z D ˙1

2
corresponds to the spin being up/down along the z-axis and Sx ,

Sy are linear combination of raising and lowering operators SC and S�. The opera-
tor components have the well-known commutation relations ŒS˛; Sˇ � D i„�˛ˇ�S� .
An orbital doublet is described by exactly the same operators and the same algebra,
with the only difference that S z D ˙1

2
now corresponds to one or the other orbital

being occupied.
This parallel between spins and orbitals also extends to triplets and higher mul-

tiplets. It implies that all of the techniques which have been developed to treat
spin problems can be applied directly to orbital Hamiltonians. Another similar-
ity is that both spin-spin interactions and orbital–orbital ones can be mediated via
superexchange processes.

However, there are also important differences, also summarized in Table 23.1,
which are related primarily to the different symmetries of spin and orbital Hamil-
tonians. In general, for 3d systems the coupling of spins to the lattice by spin-
orbit coupling (a relativistic interaction) is weak, because the dominant interaction
between the spins is superexchange, which is governed by virtual charge excita-
tions between neighboring TM ions. This leads to effective spin Hamiltonians of the
Heisenberg type, with only weak anisotropies, the net effect being that the relevant
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Table 23.1 Comparing generic features of spin and orbital degrees of freedom

Common features of spins and orbitals

Local moments emerge from
Electron-electron interactions
SU(2) algebra: ŒS˛; Sˇ� D i„�˛ˇ�S� , ˛; ˇ; � D x; y; z
Intersite interaction due to superexchange

Differences

Spins Feature Orbitals

Weak Coupling to lattice Strong
High Symmetry of Hamiltionian Low
Gapless Excitations Gapped
Sometimes Frustration of order Almost always

spin Hamiltonians are characterized by a high symmetry, SU(2), corresponding to
rotational invariance in spin-space.

At the onset of magnetic order in a spin system, the continuous SU(2) sym-
metry is broken and gapless Goldstone modes appear as a consequence. These
modes govern the low-energy, long-wavelength magnetic properties, at least at tem-
peratures above the characteristic energy scale set by spin-orbit-coupling effects
such as single-ion spin anisotropies and Dzyaloshinskii-Moriya contributions to the
spin-spin interaction.

In contrast to spins, orbitals are spatially anisotropic degrees of freedom: as noted
above, they correspond to quadrupole moments of the charge (Fig. 23.1). The inter-
action between two orbitals on different sites depends on the relative orientation of
the lobes of the two quadrupole-moment distributions. Orbital Hamiltonians there-
fore depend intrinsically on the symmetry of the orbitals and the lattice. Shape and
symmetry of the orbital lobes is determined by the local point-group symmetry of
the lattice, so that the continuous symmetry which characterizes spin Hamiltonians
is broken. This observation may be phrased in the form “spins exist in spin-space,
orbitals exist in real space.” As the symmetry which can be broken spontaneously
in orbital Hamiltonians is not continuous, its breaking is not associated with the
appearance of Goldstone modes.

The fact that orbital–orbital interactions are spatially very anisotropic, depending
strongly on the orientation of the orbitals with respect to the direction of the bond
between two neighboring lattice sites, leads in general to strong frustration of orbital
ordering. As an example, if the interactions are such that it is favorable for orbitals
of the 3z2 � r2 type (dumbbell-shaped, Fig. 23.1a) to be aligned along the bond
between each pair of nearest-neighbor sites, satisfying this tendency for a given
bond implies simultaneously (in dimensions higher than one) that the orbitals are
wrongly aligned on bonds in the other lattice directions.
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23.3 Orbital Interactions and Orbital Models

23.3.1 Crystal-Field Splitting of Orbitals

The degeneracy of atomic 3d states is without exception lifted, partially or com-
pletely, in a solid. In this section we discuss the origin of this reduction of degener-
acy and which interactions become relevant in solids as a result.

In a perovskite structure, the TM ion is surrounded by oxygen ions (Fig. 23.1a).
The spherical symmetry of the TM ion in free space is therefore lowered in the
solid to a discrete point-group symmetry. The microscopic driving force is that the
surrounding oxygen ions produce a non-spherical electrical potential at the locus of
the TM ion, and this crystal-field potential changes the electronic orbital eigenstates
(wave functions) and energies. This lower symmetry causes the partial or total lifting
of orbital degeneracy. Whether a particular orbital degeneracy is lifted by the crystal
field depends on the actual symmetry of both the orbital wave functions and the
crystal-field potential.

Let us consider the case where the oxygen ions form a perfect octahedron with
the TM ion in its center. In this case, all six TM–O bonds have equal length and
all O–TM–O bond paths are 90-degree paths. The lobes of wave functions with
eg symmetry point towards the negatively charged oxygen ions (Fig. 23.1), and the
lobes of the t2g orbitals point precisely between two oxygen ions. The Coulomb
repulsion experienced by an electron in a t2g state is therefore less than that in an eg
state. As a consequence, the electronic 3d states of a TM ion located at the center
of a perfect octahedron are split into threefold-degenerate (orbital triplet) t2g states
and twofold-degenerate (orbital doublet) eg states. The t2g multiplet lies lower in
energy than the eg multiplet and the orbital degeneracy is lifted partially.

23.3.2 Jahn–Teller Deformation

Depending on the total number n of electrons in an ionic configuration dn, and their
total spin, S , the t2g triplet or eg doublet can be partially occupied and a degeneracy
of the system persists. This is the case for t2g orbitals when, for example, one d
electron is present (d 1 configuration), as for Ti3C ions in LaTiO3 [11] or V4C ions
in SrVO3 [12], or in the d2 configuration, as for V3C ions in LiVO2 [13] or LaVO3
[14]. However, it is not the case for d3 ions, when all three electrons have the same
spin (high-spin state), because then all three t2g orbitals are singly occupied. In this
case, which is favored by the Hund rules, the Pauli principle forbids electrons with
the same spin to occupy the same orbital. However, if in the d3 configuration one
of the electrons has a reversed spin, this electron could occupy any one of the three
orbitals and there is again an orbital degree of freedom.
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Orbital degeneracy in the eg doublet is also common in cubic geometry for d9

configurations, relevant for Cu2C (in materials such as KCuF3 [15]) and Ni3C (for
example LiNiO2 [16]) ions, which correspond to one hole in the eg doublet. An eg
degeneracy is present also for high-spin d4 ions, where the t2g orbitals are singly
occupied and one electron is pushed into the doublet (e.g. Mn3C in LaMnO3 and
other manganites, Cr2C in Rb2CrCl4 or KCrF3 [17, 18]). For other partial fillings
of the d shell, orbital degeneracy may be present in either the t2g or the eg sector,
depending on the exact spin state of the ions.

The famous Jahn–Teller theorem [19] states that a local degeneracy cannot occur
in the ground state: a degenerate state is unstable with respect to external pertur-
bations, and in any physical system this degeneracy will therefore always be lifted,
leaving a ground state characterized by one particular set of orbitals being occupied
while the others remain empty. Note, however, that it is not a priori clear either
which orbitals will be occupied in a solid, or whether the orbital configuration will
be the same for all the TM ions in a given lattice. In order to answer questions related
to the occurrence of orbital ordering, it is necessary to specify first the exact sym-
metry of the degenerate orbitals involved and second the nature of the interactions
between orbitals on neighboring lattice sites.

As noted above, the Jahn–Teller theorem implies that a local 3d doublet or triplet
degeneracy will be lifted. A distortion of the anion cage, for example the oxygen
octahedron in a perovskite, which surrounds the central TM ion – a Jahn–Teller
distortion – is very effective in achieving this, as shown in Fig. 23.2. When the Jahn–
Teller distortion of an octahedron occurs, an additional crystal field is generated

Fig. 23.2 (a) Jahn–Teller distortions of different symmetry. Upper left:Q3 andQ2 distortion of eg
symmetry; lower panel: linear combinations of these two distortions (� D ˙2�=3). (b) Schematic
representation of superexchange processes in the presence of orbital degrees of freedom. For
fermions with spin, the first state of the three shown has the lowest exchange energy, because
in the intermediate state the two electrons on the same ion have parallel spins (Hund rules). For
spinless fermions, the lower two processes are forbidden and the first favors anti-parallel align-
ment of the orbital degrees of freedom (alternating orbitals). The parameter U corresponds to the
Kanamori intraorbital Coulomb parameter in the lowest process, while in the two upper processes
it denotes the interorbital interaction U 0 D U � 2JH
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at the central TM site, whose symmetry reflects the symmetry of the distortion.
The electric quadrupole moments of different shapes, corresponding to different
occupied orbitals, which can be present on the central TM ion interact differently
with the crystal-field potential. A local Jahn–Teller distortion thus induces a splitting
of the locally degenerate states, causing particular orbitals to be occupied and others
to be empty.

It is important to note that even if after a Jahn–Teller distortion the electronic
degeneracy is lifted, the question which orbital will be occupied is still open. The
reason is that when orbital � of a certain symmetry is occupied, the lattice distorts
in a manner dictated by the symmetry of �. If one views this distortion as static,
one concludes that it lowers the energy of the occupied orbital � and increases the
energy of the empty orbital N�.

A Jahn–Teller distortion, however, always adopts itself to the symmetry of the
particular orbital that is occupied. Thus, if orbital N� is occupied and � is empty, the
lattice will distort in a different way, now lowering orbital N� in energy. The total
energy of the system does not depend on which particular orbital is stabilized as
long as the response of the lattice is harmonic (see Sect. 23.3.3). Therefore, � and N�
are still degenerate, provided the orbital occupation is combined with a lattice distor-
tion of the appropriate symmetry. Non-linearities or anisotropies in the Jahn–Teller
coupling and/or phonon response can in principle break this degeneracy.

23.3.3 Jahn–Teller-Mediated Orbital–Orbital Interactions

In a Mott insulator, interactions between orbital moments can be mediated both
by the lattice and by superexchange. The first mechanism is related to the Jahn–
Teller interaction of degenerate orbitals with the lattice distortions, as discussed for
example in [20]. The second, proposed in 1972 by Kugel and Khomskii [21,22], is a
direct generalization of the conventional superexchange [23] to orbitally degenerate
systems. We discuss both mechanisms in this section.

One potentially surprising conclusion will be that the symmetries of the effective
orbital Hamiltonians for the two cases can be quite similar. A major difference is that
lattice-mediated interactions lead to essentially classical orbital models (because the
lattice is “heavy”) whereas superexchange-mediated interactions lead to quantum
models.

To discuss this issue in a formal manner, we begin with an orbitally degenerate eg
doublet. The doublet is spanned by the states (orbitals) jzi and jxi (jzi � j3z2 � r2i
and jxi � jx2 � y2i). In general, the occupied state is a linear combination of eg
orbitals, j i D cos.�=2/jzi C sin.�=2/jxi, the angle � parameterizing the ground-
state wave function. We associate with this wave function a vector T D fT z; T xg
whose first component is the difference between the electron densities in orbitals jzi
and jxi, T z � h jzihzj i�h jxihxj i D cos � , and whose second component is a
measure of the entanglement (mixing) between the two orbitals in the ground state,
Tx � h jzihxj i C h jxihzj i D sin � . Thus T D .1; 0/ (� D 0) corresponds
to orbital jzi being fully occupied, and T D .�1; 0/ (� D �) to a pure jxi state,
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while any other orbital superposition can be obtained by rotating T on the unit
circle. Orbital degrees of freedom are of course quantized, because they correspond
to electrons occupying particular states, and the fermionic statistics of the electrons
mean that the orbital operator T obeys the spin-1/2 angular-momentum algebra,
T z D ˙1

2
.

If state jzi is occupied, the Jahn–Teller distortion Q3 is induced, while if jxi is
occupied, the opposite distortion �Q3 is induced (Fig. 23.2). A general lattice dis-
tortion can be expressed asQ3 cos�CQ2 sin�, and its elastic energy takes the form
Eelas D !.Q2

3CQ2
2/, or in vector notation, Q D .Q3;Q2/ D jQj.cos�; sin �/ and

Eelas D !jQj2. The orbital-lattice coupling is linear, whence the total local energy
is Elocal D �gT � Q C !jQj2, where g is the electron-phonon coupling constant.
This local energy is clearly minimal when T and Q are parallel, i.e. the ground state
is � D �. We assume henceforth that the orbital and distortion vectors are parallel.
Note, however, that after fixing � to � the local energy is independent of �, mean-
ing that the orbital-Jahn–Teller system in fact remains locally rotationally invariant
(under the assumptions of linear electron-phonon coupling and elasticity).

This local degeneracy can of course be lifted by the interactions between neigh-
boring orbital degrees of freedom on the lattice [20,22,24]. Such interactions occur
naturally in TM oxides, where the oxygen octahedra are connected: each oxygen
ion belongs to more then one octahedron [in the perovskite structure, the octahedra
are corner-sharing (Fig. 23.2)]. Thus, if a given octahedron is distorted, all octahedra
connected to it are automatically distorted. The orbital degeneracy can then in prin-
ciple be lifted globally. Such a global lifting of degeneracy implies that a long-range
ordering of orbitals emerges from the effective orbital–orbital interactions mediated
by the lattice distortions.

To derive the effective Hamiltonian of the orbital-lattice system, let us take the
example of a cubic perovskite and denote by a, b, and c the crystalographic axes
of the solid. To illustrate how the Jahn–Teller distortions of neighboring octahedra
interact, if the orbital 3z2�r2 is occupied on site i , the octahedron is elongated with
a Q3 distortion and the octahedron connected to it along the c-axis is automatically
compressed (distortion �Q3). Thus the interaction between the distortions at nearest
neighbors fi; j g in this direction is Q3;iQ3;j . However, the orbitals can be rotated
in any direction, and by choosing � D 2�=3 one obtains the orbital 3x2 � r2 D
1
2
.�j3z2 � r2i C p

3jx2 � y2i/, which is elongated along the a-axis. The distortion
accompanying this orbital is 1

2
.�Q3 C p

3 Q2/, and it is this linear combination of
distortions which determines the a-axis interaction. The situation for the b-axis is
analogous with � D �2�=3. The Hamiltonian for eg orbitals on a cubic lattice with
corner-sharing octahedra [25] is then

H120 D J
X

hij ik�
T
.�/
i T

.�/
j ; (23.1)

where hij i denotes a bond between two nearest-neighbor sites and J is the orbital
interaction. This form emerges because the orbital vector T D .T z; T x/ is paral-
lel to the distortion Q, and in terms of the axes � D a; b; c one has
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T .a/ D 1
2
.T z � p

3T x/, T .b/ D 1
2
.T z C p

3T x/, and T .c/ D T z (Fig. 23.2a).
We refer to this Hamiltonian as the 120-degree model because on the unit cir-
cle the three vectors T i have relative angles of 120 degrees (2�=3). This model
is essentially classical: the zero-point quantum oscillations of the heavy oxygen
ions which mediate the orbital–orbital interactions (equivalent to the interactions
between Jahn–Teller centers) are negligible. In the next section we discuss the proof
that the ground state for this model Hamiltonian is ordered by entropic stabiliza-
tion. We can define the Hamiltonian of the 90-degree model, where the three cubic
directions are Ta D T x , Tb D T y , and Tc D T z, in a similar way.

23.3.4 Superexchange-Mediated Orbital–Orbital Interactions

The situation for orbital degrees of freedom on different sites coupled by magnetic
superexchange interactions is more complex due to the intrinsic interconnection
of orbital and spin degrees of freedom. The results of considering superexchange
processes in the presence of orbital degrees of freedom (Fig. 23.2b) are encapsulated
in the Kugel-Khomskii (KK) spin-orbital models. These are in general quantum
mechanical in nature, because only electronic degrees of freedom are present in the
Hamiltonian. We will not derive these models at this point, and instead refer to the
excellent review Kugel and Khomskii [1] – a classic paper in the field.

It turns out that for spinless eg electrons on a cubic lattice, the superexchange
contribution to the orbital Hamiltonian is given by the same expression as in H120
[26]. However, in contrast to the Jahn–Teller Hamiltonian, the entities Ti appear-
ing in the KK Hamiltonian are pseudospin-1/2 operators obeying the standard spin
commutation relations. We postpone to the latter part of this chapter (Sect. 23.7) a
more detailed discussion of KK models, where the spin degrees of freedom of the
electrons are taken fully into account.

23.4 Symmetry and Symmetry-Breaking in Orbital Models

23.4.1 Types of Symmetry in Orbital Models

In terms of symmetry, orbital systems offer a richness not found elsewhere [25,27].
Before discussing these symmetries, we summarize for the present purposes the
classification of types of order and their relation to symmetry.

(i) Global symmetry-breaking order: in many condensed matter systems there
is an invariance of the basic interactions with respect to global symmetry opera-
tions (e.g. continuous rotations in the case of ferromagnets, uniform translations
and rotations for liquids) which are performed simultaneously on all of the con-
stituents of the system. At sufficiently low temperatures (or strong interactions),
such symmetries may be broken “spontaneously.” The complete symmetry is lifted
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and a reduced-symmetry state takes its place. Landau provided a general mean-field
framework for analyzing such symmetry-breaking and symmetry-broken states.

(ii)“Topological order” [28]: this is a type of order which cannot be characterized
by a local order parameter and may only be detected by non-local measurements.
Examples of systems displaying topological order are found in gauge theories
(familiar in high-energy physics) [28], whose local gauge symmetries are the cor-
responding symmetries to break. In these examples, indeed the only measurable
quantities are non-local, pertaining to correlation functions defined on “Wilson
loops,” or on open contours when the interaction of matter with the fundamental
gauge bosons is analyzed. The concept of topological order has been the object of
some fascination in recent years. Part of this activity is stimulated by the prospect of
error-tolerant quantum computation – an issue to which we return below. The key
property of topological order for this purpose is the observation that, even if global
symmetry-breaking cannot occur, a system may nevertheless exhibit robust order of
a topological type.

The crucial point we wish to emphasize here is that many orbital systems display
new, intermediate symmetries. These lie in general mid-way between the extremes
of global symmetries and local gauge symmetries. Many such orbital systems can
be proven to exhibit topological order. To make this statement precise, we rephrase
it mathematically in the following form.
An intermediate d -dimensional symmetry of a theory [29] that is characterized by a
HamiltonianH is a group of symmetry transformations such that the minimal non-
empty set of fields f�ig changed by the group operations occupies a d -dimensional
sub-volume (C) of the full D-dimensional spatial volume on which the theory is
defined.

To make contact with known cases, we note that local gauge symmetries have
dimension d D 0. Similarly, in the example of a nearest-neighbor ferromagnet on a
D-dimensional lattice, described byH D �J Phij i S i � S j , the system is invariant
under a global rotation of all spins. As the volume influenced by the symmetry
operation occupies a D-dimensional region, in this case d D D. Here, we show
that symmetries of intermediate dimension 0 < d < D arise in orbital systems.

23.4.2 Examples of Intermediate Symmetries in Orbital Systems

The symmetries we review are of two principal kinds: (i) symmetry operations
on the electronic orbital states and (ii) symmetry operations on the electronic
spin. Both types of operation appear in systems with orbital-only interactions and
orbital-dependent spin exchange. We begin our discussion by focusing on symmetry
operations applied to orbitals.

Orbitals – In TM compounds on cubic lattices, crystal fields lift the degener-
acy of the five 3d orbitals of the TM ion to two higher-energy eg levels, fj3z2 �
r2i; jx2 � y2ig, and to three lower-energy t2g states, fjxyi; jxzi; jyzig (Fig. 23.1).
Superexchange processes lead to the KK Hamiltonian [3, 22]
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H D
X

hij ik�
H
.�/
orb .ij /

�
S i � S j C 1

4

�
; (23.2)

in which S i is the spin of the electron at site i andH .�/

orb
.ij / are operators acting on

the orbital degrees of freedom. For TM ions arranged on a cubic lattice, where each
is coordinated by an octahedral cage of anions, these operators are given by

H
.�/
orb .ij / D J

�
4 O� .�/i O�.�/j � 2 O�.�/i � 2 O�.�/j C 1

�
; (23.3)

where O�.�/i denotes the orbital pseudospin and � D a; b; c is the direction of the
bond hij i.

(i) In eg systems (previous section),

O�.a;b/i D T
.a;b/
i � 1

4
.�	 z

i ˙ p
3	xi /; O�.c/i D T

.c/
i � 1

2
	 z
i ; (23.4)

operators in terms of which the orbital-only 120-degree Hamiltonian of (23.1)
for Jahn–Teller-mediated interactions in eg systems is given by

Horb D J
X

hij ik�
O�.�/i O�.�/j : (23.5)

The form of (23.5) with substitutions different from those of (23.4) gives rise to
Hamiltonians different from the 120-degree model, including the 90-degree (or
orbital compass) model mentioned in Sect. 23.3.4.
With regard to intermediate symmetries, the models contained in (23.5) are
rather special. Extra symmetries emerge only in the ground-state sector of large-
S (classical) variants of this system [30, 31]. Taking the standard S ! 1 limit
results in classical analogs of the different Hamiltonians, where the quantum
variables are replaced by classical two- or three-component spins [30, 31].
The classical analog of (23.5) may be specified as follows. At each site, we
assign a unit-length, two-component spin [associated with the two-dimensional
(2D) eg subspace] denoted by T . Let a, b, and c be vectors evenly spaced on
the unit circle, i.e. separated from each other by 120ı angles, and c be set at 0ı
with a and b at ˙120ı. Next, we define T .c/ D T � c, and similarly for T .a;b/,
whence the classical 120-degree orbital model Hamiltonian is

H D J
X
i

�
T
.a/
i T

.a/
iCex

C T
.b/
i T

.b/
iCey

C T
.c/
i T

.c/
iCez

�
: (23.6)

As anticipated above, this large-S model exhibits a high number of symmetries
in its ground-state sector, because ˙2�=3 rotations of the pseudospin in indi-
vidual planes leave the energy of the system invariant (Fig. 23.3). This results in
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Fig. 23.3 The symmetries of (23.7) applied to a uniform ground state (at left)

emerging ŒZ2�3L gauge-type symmetry operators in two dimensions [27,29,32],

O .�/ D
Y
i2P�

ei�T i �e� ; (23.7)

where P� is any plane orthogonal to the cubic e� axis. The peculiarity of the
classical 120-degree orbital model is that these are not true symmetries over the
entire spectrum.

(ii) For t2g compounds, we set in H �
orb.ij / (23.5),

O�.�/i D 

.�/
i � 1

2
	
.x;y;z/
i ; (23.8)

which defines the 90-degree orbital compass model. The (exact) symmetries of
this Hamiltonian are given by [27, 29, 32–35]

O .�/ D
Y
i2P�

O�.�/i ; (23.9)

the difference with the previous case being that operators of the form (23.9)
commute with the Hamiltonian, ŒO.�/;H � D 0, i.e. rotations of individual
planes about an orthogonal axis leave the system invariant.

Because the planes P� are objects of spatial dimensionality d D 2, the symme-
tries of (23.9) are of dimension d D 2. The fact that different symmetry operators
O.�/ of the orbital compass model do not commute implies that the ground-state
sector, and indeed any other state, is at least twofold-degenerate [33]. (By Kramers’
theorem, this statement also follows without the use of symmetries for any system
with an odd number of spins [67–69].)

The 2D orbital compass model on the square lattice is given by (23.5,23.8)
with � 2 fa; cg, and displays d D 1 Z2 symmetries (where the planes P of
(23.9) become lines) [27, 29, 32–35]. Figure 23.4a, depicts the action of the d D 1

symmetry operations on a uniform, semi-classical ground state.
From an exact solution of the one-dimensional (1D) version of the model [36],

one may conclude that the energy spectrum collapses at a quantum phase transition
between two possible types of order, with short-range correlations either in 	 z or
	x , and is thus highly degenerate. This behavior is similar to the 2D case [37],
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a b c

Fig. 23.4 The two-dimensional orbital compass model (D D 2). (a) The action of the d D 1

symmetry operation of (23.9) when the “plane” P is chosen to lie along the vertical axis. (b) A
d D 0 (local) gauge symmetry. Defects within a gauge theory have a finite energy cost. Local
symmetries such as this for an Ising lattice gauge theory cannot be broken. (c) A defect in a semi-
classical ground state. Defects such as this do not allow for a finite on-site magnetization. The
energy penalty for this defect is finite (there is only one unsatisfied bond, shown by the dashed line)
whereas, precisely as in d D 1 Ising systems, the entropy associated with such defects increases
monotonically with the system size (see text). Figure taken from [67–69]

where the degeneracy scales exponentially with the perimeter size (O.2L/) [35].
The possibility of such a high degeneracy is suggested by the O.L/ d D 1 Ising
symmetries [.Z2/L] which the system possesses [27, 29, 32–35].
Spins in TM compounds: we label the three t2g orbital states by [38]

jai � jyzi; jbi � jxzi; jci � jxyi: (23.10)

In cubic t2g compounds, hopping through intermediate oxygen p orbitals between
any two electronic states of orbital flavor j�i (� D a; b; c) is forbidden along the
� -axis of the cubic lattice (Fig. 23.5). As a consequence [38], a uniform rotation of
all spins whose electronic orbital state is j�i, in any plane (P ) orthogonal to the
� axis (c�i�� D P

� U
.P /
�;� d

�
i��, with 	; � the spin directions), leaves (23.2) invariant.

The total spin of electrons of orbital flavor j�i in any plane orthogonal to the cubic
� axis is conserved. In this case, one has d D 2 SU(2) symmetries

OOP I� � Œexp.iS �
P � �

�
P /=„�; ŒH; OOP I� � D 0; (23.11)

where S
�
P D P

i2P S
�
i is the sum of all the spins S i;� in the orbital state � in any

plane P orthogonal to the direction � (Fig. 23.5).

23.4.3 A Theorem on Dimensional Reduction

The existence of intermediate symmetries has important consequences. The cor-
responding dimensional reduction is only with respect to expectation values of
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Fig. 23.5 Representation of anisotropic hopping amplitudes leading to the KK Hamiltonian (after
[29]). Spins are indicated by blue rods. Four-lobed states denote the 3d orbitals of a TM ion, while
the intermediate p states are oxygen orbitals through which the superexchange process occurs
(cf. [38]). Orthogonality with the oxygen p states forbids hopping between sites separated along
the cubic �-axis for orbital state j�i (jci � jxyi above). The resulting KK Hamiltonian has a
d D 2 SU(2) symmetry corresponding to a uniform rotation of all spins whose orbital state is j�i
in any plane orthogonal to the cubic direction � . Such a rotation in the xy plane is indicated by the
red spins

local quantities: the free energies of these systems and the transitions which they
exhibit are generally those of systems in high dimensions [29]. More precisely, the
expectation value of any quantity hf i in the original system (of dimension D) is
bounded from above by the expectation value of the same quantity evaluated in a
d -dimensional region,

jhf ij � jhf iHd
j: (23.12)

The expectation value hf i refers to that obtained in the original system (lat-
tice), which resides in D spatial dimensions. The Hamiltonian Hd is defined in a
d -dimensional subregion of the full system (lattice), with d � D. This d dimen-
sional region corresponds to the spatial region in which an intermediate d dimen-
sional symmetry is present.Hd preserves the range of the interactions of the original
system. It is formed by extracting from the full Hamiltonian (on theD-dimensional
lattice) those parts which appear within the d -dimensional sub-region (C) on which
the symmetry operates. Fields (spins) external to C act as non-symmetry-breaking
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external fields in Hd . The upper bound of (23.12) becomes most powerful for
quantities which are not symmetry-invariant, because in this case the expectation
values hf iHd

must vanish for low spatial dimensions d (where no spontaneous
symmetry-breaking can occur). Taken together with (23.12), this then implies that
the expectation value hf i on the full D-dimensional lattice must vanish. By “non-
invariant” is meant here that f .�i/ vanishes when summed over all arguments
related to each other by a d -dimensional symmetry operation,

P
k f Œgik.�i/� D 0.

We illustrate this result by two examples related to orbital models.
Introductory Example I – Consider the orbital compass model of (23.8), focus-

ing on its 2D rendition (D D 2). This model possesses the d D 1 symmetries
of (23.9), the planes P� being rays normal to the Oe� -direction. Let the quantity
we consider be f D 	 z

i , with i 2 Px and Px a plane orthogonal to the Oex-
direction which contains the lattice site i (Fig. 23.4c). The quantity f is not invariant
under the discrete (Ising-type), d D 1 symmetry operations of (23.9), because
O.x/	 z

iO
.x/ D �	 z

i . Because no discrete (nor continuous) symmetry-breaking can
occur in one dimension at any finite temperature (T > 0), the expectation value
must satisfy hf iHdD1

D 0. With the aid of (23.12), we observe that h	 z
i i D 0 also

for the D D 2 orbital compass model. The physical mechanism for the loss of on-
site order in h	 z

i i is the proliferation of solitons, as shown in Fig. 23.4. As in one
dimensional systems, the pertinent topological defects are domain walls (solitons)
that entail only a finite amount of energy cost, while their entropy increases with sys-
tem size. The Hamiltonian HdD1 defined on the vertical chain of Fig. 23.4c where
these operations appear is simply a one dimensional Ising Hamiltonian augmented
by transverse fields generated by spins outside the chain. By virtue of their location
outside the region where the symmetry of (23.9) operates, these transverse fields
triggered by the spins 	x

i 62Px
do not break the discrete d D 1 symmetry associated

with the plane Px . As in any one dimensional chain with finite range interactions
(e.g., the one dimensional Ising model), this discrete d D 1 symmetry remains
unbroken at any non-zero temperature (and, consequently, h	 z

i i D 0) due to the
entropically favored proliferation of defects (domain walls/solitons) along the chain.

For a continuous symmetry, non-invariance means that
R
f Œgi.�i/�dg D 0.

Thermal fluctuations have a more dramatic effect for systems with continuous sym-
metries: no continuous symmetry-breaking can occur in systems with finite-range
interactions in d � 2 dimensions. The bound specified by (23.12) for continuous
symmetries implies even stricter results than it does for discrete symmetries: any
quantity which is not invariant under d � 2 continuous symmetries must have
vanishing expectation values at finite temperatures. Similarly, continuous, d < 2

symmetries cannot be broken even at zero temperature in systems which have an
energy gap between the ground-state sector and all excited states.

Introductory Example II – An example of a continuous, d D 2 symmetry for
which the bound of (23.12) prohibits local on-site order is provided by (23.11)
for the KK model (23.2) of t2g systems (Fig. 23.5). We return to this example in
Sect. 23.4.4, where we discuss in more depth the consequences of the bound on
these systems.
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We summarize for completeness the results of such symmetry-based analysis for
general systems, reiterating our conclusions from the above examples. By choos-
ing f to be the order parameter or a two-particle correlator, one may arrive at the
following general corollaries [29, 40].
Corollary I: any local quantity which is not invariant under local symmetries
(d D 0) or symmetries acting on 1D regions (d D 1) has a vanishing expecta-
tion value hf iHd

at any finite temperature. This follows because both zero- and 1D
systems cannot exhibit symmetry breaking: in one- and two- dimensional systems,
the expectation value of any local quantities not invariant under global symmetries
are hf i D 0. Physically, entropy overwhelms energetic penalties and forbids a sym-
metry breaking: as in zero- and one-dimensional systems, where much more entropy
is gained than the energy lost on introducing defects (domain walls in discrete sys-
tems), the same energy-entropy (im)balance is replicated when these symmetries are
embedded in higher dimensions. The particular case of local (d D 0) symmetry is
the Elitzur theorem [39] familiar from gauge theories, which can be regarded more
generally as a consequence of dimensional reduction.
Corollary II: the consequences may be extended by recalling that no symmetry-
breaking occurs for continuous symmetries in two spatial dimensions. Here again,
free-energy penalties are not sufficiently strong to induce order. When embed-
ding continuous, d D 2 dimensional symmetries in higher dimensions, the energy-
entropy balance remains the same and delivers the same result, hf i D 0 at all
finite temperatures for any quantity f not invariant under continuous d � 2 sym-
metries. On noting further that order does not exist in continuous two-dimensional
systems also at zero temperature in the presence of a gap between the ground and
the first excited state, we find that for a d < 2-dimensional continuous symme-
try, the expectation value of any local quantity not invariant under this symmetry
vanishes strictly at zero temperature. However, although local order is forbidden,
multi-particle (including topological) order can exist.
Corollary III: statements may be made concerning not only the absence of sym-
metry breaking, but also fractionalization of non-symmetry-invariant quantities in
high-dimensional systems. This can occur if no (quasiparticle-type) resonant terms
appear in the lower-dimensional spectral functions [40].

23.4.4 Consequences of the Theorem for Orbital (and Spin)
Orders and Excitations

Because intermediate symmetries may be found in many types of orbital interac-
tion, the bound of (23.12) and its corollaries reviewed above lead to a number of
symmetry-based selection rules, some of which are presented below.

(a) Selection rules for orbital and spin order in t2g systems – We begin by
returning to review Introductory Example II in a more general context. If the KK
Hamiltonian (23.2) captures the spin physics of t2g compounds, then no magnetiza-
tion can exist at finite temperatures [29] due to the continuous, d D 2 symmetries
it displays (23.11) [29, 38]. Empirically, however, a low-temperature magnetization
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is detected in many systems. Thus the Hamiltonian relevant in these materials must
be one in which (23.2) is augmented by other interactions which lift this symmetry.
By relying on the theorem [29], we can propose the following experimental test of
a selection rule for orbital order: if in a t2g system with H D HKK one has orbital
ordering in which all electrons are, for example, in states jxyi then, by the theorem
of [29],

I.kx ; ky ; z; !/ D
Z

dkz S.k; !/ eikzz D 0 (23.13)

for all z ¤ 0. Here, S.k; !/ is the Fourier-transformed spin-spin correlation function
(the “structure factor”). Only the z D 0 component of I will be finite. The origin
of this “selection rule” is that for z ¤ 0, one of the spins appearing in the two-
spin correlation function may be rotated independently of the other with no change
in energy. The quantity I.kx; ky ; z D 0; !/ is in general always finite, and may show
a Kosterlitz-Thouless-type transition. Similar considerations apply to more realistic,
non-uniform orbital order. If, for example, both jxyi and jyzi orbitals order, then
half of the contributions to I for z ¤ 0 will vanish by symmetry. It may be possible
to test this selection rule on such 1D linear transforms of S.k; !/ by considering
existing data to ascertain whether jI.z ¤ 0/j � I.z D 0/ for temperatures below
the onset of orbital order (T < TOO).

(b) Orbital order – In D D 3 dimensions, the orbital-only Hamiltonians dis-
cussed in the preceding section exhibit a discrete, 2DZ2 symmetry. The theorem of
[29] allows such symmetries to be broken, and indeed, as we discuss in the next sec-
tion, order already appears in these models at the classical level, a tendency which
is readily enhanced by quantum fluctuations.

(c) Nematic order in 2D orbital systems – As discussed in Introductory Exam-
ple I, the 2D orbital compass model exhibits a d D 1 Z2 symmetry. Because these
symmetries cannot be broken, no magnetization is possible, h	˛i D 0. The simplest
symmetry-allowed order parameter for spin S > 1=2 versions of the orbital com-
pass model is of the nematic type. This sort of order has been shown to be realized
classically [27, 32, 41].

(d) Fractionalization in spin and orbital systems – Corollary III allows for frac-
tionalization in quantum systems where d D 1 or 2. It enables symmetry-invariant,
quasiparticle excitations to coexist with non-symmetry-invariant, fractionalized exci-
tations. Fractional excitations may propagate in ds D .D � d/-dimensional regions
(D is the spatial dimensionality of the system). Examples can be found of frustrated
spin models where spinons may propagate along lines (ds D 1) on the square lattice
[42] and in ds D D-dimensional regions on the pyrochlore lattice [43].

23.5 Order by Disorder in Classical Orbital Models

When symmetry-breaking is allowed by the theorem of [29] [the bound of (23.12)
and its corollaries (Sect. 23.4.3)], order often emerges by a fluctuation-driven
mechanism (“order by disorder”) [44, 45]. Although a number of states may appear
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to be equally valid candidate ground states, fluctuations act to stabilize those states
which have the largest phase-space volume for low-energy fluctuations. These dif-
ferences are captured in the values of the free energies for fluctuations about
the contending states. Classically, fluctuations are driven by thermal effects, and
quantum tunneling processes may enhance such tendencies.

When entropic contributions are omitted, the spin-wave spectrum of the classical
model is gapless [15, 26, 46, 47]. This suggests that, on the classical level, these
orbital systems exhibit finite-temperature disorder, and it was generally believed for
some time that quantum fluctuations (tunneling between the different contending
classical ground states) were mandatory for the lifting of orbital degeneracy required
to account for the experimentally detected orbital order. Most studies of “quantum
order by disorder” have thus focused on 1=S corrections (S representing the spin
size) to the classical spin-wave spectrum.

The classical (or large S (i.e., S ! 1)) renditions of the orbital models that
we discussed exhibit their most extreme degeneracies within their ground state sec-
tor. In addition to the intermediate symmetries discussed earlier, within the ground
state sector of their classical renditions, the orbital compass and 120ı-models are
invariant under a global continuous rotation [27, 29] in which all of the fields are
rotated uniformly. In particular, any uniform field configuration is a ground state
of the classical renditions of these models. Such an invariance does not reflect a
true symmetry of the Hamiltonian (an “exact symmetry”) but rather only emerges in
the low energy limit of these classical models; such invariances are often known as
emergent symmetries. Compounding these emergent global rotational symmetries,
orbital systems such as the classical 120ı-model further exhibit emergent interme-
diate symmetries in their ground state sector leading to an even larger degeneracy
of the ground state subspace. As we discussed earlier and is depicted in Fig. 23.3,
in the classical 120ı-model, on starting from a given constant-field ground state,
another ground state may be obtained by a symmetry operation such as reflecting
all spins in the xy-plane through the vector ec (see (23.6) for the definition of the
unit vector ec). This operation is captured by the d D 2 operator of (23.7). The new
ground state can be further altered by introducing more reflections of this type in
other, parallel xy-planes. Obviously, analogous alterations of the uniform states can
take place in the other two coordinate directions. These states make up the set of all
possible ground states of the classical 120-degree model: there is one direction of
stratification (layering); the corresponding projection of S i is constant throughout
the system, leaving two possibilities for the other projections. In planes orthogonal
to the stratification direction, either of these choices can be implemented indepen-
dently. This may be seen by considering all elementary cubes with a single spin
fixed, and ensuring consistency in the tiling of the lattice (Fig. 23.3).

We next review in brief the effects of finite temperatures on the classical 120-
degree model of (23.6) [27]. It is essential to note that the free-energy minima, not
the energy minima, determine the ground states. Classical spins fS i g are param-
eterized by their angle f�ig with the a-axis, and in the uniform ground states all
�i D �?. At low temperatures, fluctuations are described by the small deviations
#i D �i � �?, and the quadratic (spin-wave) Hamiltonian corresponding to (23.6)
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becomes [27, 32]

HSW D 1

2
J
X
i;�

q� .�
?/ .#i � #iCe�

/2; (23.14)

where � D a; b; c while qc.�?/ D sin2.��/, qa.�?/ D sin2.�? C 2�=3/, and
qb.�

�/ D sin2.�? � 2�=3/. On a cubic lattice with periodic boundary conditions
and �� the average of �i on the lattice, the partition function is given by [27, 32]

Z.�?/ D
Z
ı
�X
i

#i D 0
�

e�ˇHSW
Y
i

d#ip
2�
; (23.15)

and a Gaussian integration leads to

logZ.�?/ D �1
2

X
k¤0

log
nX
�

ˇJq� .�
?/ E�.k/

o
; (23.16)

where k D .kx ; ky ; kz/ is a reciprocal-lattice vector and E� .k/ � 2 � 2 cosk� .
The spin-wave free energy F.��/ of (23.16) has minima at �� D n�=3 with integer
n [32].

The application of the d D 2 symmetry operations of (23.7) on each of these
uniform configurations (Fig. 23.3) leads to an interface with an effective surface
tension, a free-energy energy penalty additive in the number of operations [27, 32].
Finite-temperature fluctuations stabilize these six uniform ground states and favor
them above all others. By “blocking” the lattice and employing reflection positivity
bounds [27,32], it can indeed be proven that the results of the spin-wave analysis are
correct: the free energy has strict minima for six uniform orientations [27,32], S i D
˙Sea; S i D ˙Seb , and S i D ˙Sec . Thus, out of the large number of classical
ground states, only six are chosen. Orbital order already appears within the classical
(S ! 1) limit [27, 32] and does not rely exclusively on subtle quantum (zero-
point) fluctuations of the type captured by 1=S calculations for its stabilization.
Indeed, orbital order is detected up to relatively high temperatures [O.100K/] in
some systems [2,48–51]. However, in a recent numerical study by Dorier et al. [35],
it was shown that quantum fluctuations may not act to lift the orbital degeneracy in
the simplest S D 1=2 system, the planar orbital compass model [the 2D version
of (23.5,23.8)]. A 2D, spin-1/2 analog of the three-dimensional (3D) 120-degree
model of (23.3,23.4), a model with far lower symmetry (and frustration) than the
planar orbital compass model, has been shown recently to have a S D 0 order [32].
A mean-field analysis of the T D 1=2 orbital compass model on the square lattice
[52] suggests that, at zero temperature, the symmetric point Jx D Jz may mark a
first-order quantum transition similar to the 1D case [36, 37].

We conclude this section with a brief summary of recent results on diluted (or
“doped”) orbital compass-type systems [53,54]. These investigations found that the
critical doping fraction (x D 1=2) necessary to suppress order is smaller than the
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doping required in the problem of diluted magnets (such as KCu1�xZnxF3) [55,56].
In typical magnetic systems, the decrease in the ordering temperature and saturation
magnetization are governed by the percolation threshold (where the ordering tem-
perature vanishes at a critical dopant concentration of xc D 0:69 for the simple
cubic lattice). The faster degradation of orbital order with doping compared to sim-
ple percolation physics can be attributed to the directional character of the orbital
exchange interactions. Similar effects have been found in related systems [57]. The
concept of an orbital-driven quantum critical point was introduced [58] by consid-
ering an exact solution of diluted 2D and 3D orbital compass models. Similar to
charge- and spin-driven quantum critical fluctuations, orbital fluctuations may also
drive the system to quantum criticality. In real materials, such fluctuations may be
altered, and hence the system driven to criticality, by a combination of doping and
uniaxial pressure or strain [58]. Such a quantum critical point was considered for
spin-orbital singlets in [59]. Similarly, it can be shown that spin-glass-type behavior
can arise in diluted orbital systems with random exchange constants [58], where the
orbitals take the role of the spins in conventional spin-glass systems.

23.6 Connection with Quantum Computation

Quantum states can in principle be encoded in a fault-tolerant manner in order to
be protected against decoherence [60]. If one assumes that errors are of a local
nature, topological quantum memories [61, 62] would seem to be intrinsically sta-
ble because of physical fault-tolerance to weak, quasi-local perturbations. In this
section, we describe two of the prototypical models which have been invented to
explore the basic principles of topological quantum computing, and mention their
connection with spin-orbital Hamiltonians. The first model (“Kitaev’s Toric Code
model”) is essentially a pure Ising gauge theory. The second (“Kitaev’s honey-
comb model”) is far richer, and enables non-Abelian quantum computation. The
form of Kitaev’s honeycomb model is reminescent of the orbital models of (23.5),
but defined on a hexagonal lattice. In its more stable (gapped) phase, Kitaev’s
honeycomb model can be related to the Toric Code model).

23.6.1 Kitaev’s Honeycomb Model

This model is very similar to both the orbital compass model and the 120-degree
model. It reduces to Kitaev’s Toric Code model in the limit that one coupling con-
stant is much larger than all of the others. The Kitaev model on the hexagonal lattice
[62] is defined by the S D 1=2 Hamiltonian (Fig. 23.6)

HKh
D � Jx

X
x�bonds

	xj 	
x
k � Jy

X
y�bonds

	
y
j 	

y

k
� Jz

X
z�bonds

	 z
j	

z
k
; (23.17)
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Fig. 23.6 (a) Kitaev model on a honeycomb lattice with three types of bond. On each vertex
there is a S D 1=2 degree of freedom, indicated by a Pauli matrix � j (see text). (b) Elementary
plaquette (Bp) and star (As) interaction terms in Kitaev’s Toric Code model. Empty circles on the
bonds (links) represent a S D 1=2 degree of freedom, while thick (dashed or solid) lines represent
topological (d D 1) symmetry operators (see text). Figure taken from [67–69]

and is exactly solvable in its ground-state sector [62,71]. Local (d D 0) symmetries
are given by the products of spins around any hexagon (Fig. 23.6),

Oh D 	x1 	
y
2 	

z
3	
x
4 	

y
5 	

z
6: (23.18)

The model also has d D 1 symmetries given for example by
Q
i2C 	˛i for any

loop C that spans the system, when it is placed on a torus, in the a-direction. A
schematic representation of such a d D 1 invariant is given in Fig. 23.6, where for
the contour C illustrated, the product of f	 z

i g is taken for i 2 C .
A recent study [63] suggested that it may be possible to engineer, by the use

of spin-orbit coupling, interactions of Kitaev- and orbital-model type in Mott insu-
lators. The consideration of doubly degenerate orbital systems on the honeycomb
lattice has led a number of authors to study of a 120-degree version of Kitaev’s hon-
eycomb model, namely (23.1) with the a-, b-, and c-axis directions taken parallel
to the three bonds in the honeycomb lattice [64–66]. Dimer-covering overlap matrix
elements [64] may be computed in a manner similar to that employed in spin sys-
tems [43], and shown to reproduce faithfully the ground states. The dimers in the
120-degree version of the Kitaev model correspond to orbital states on bonds con-
necting two nearest-neighbor sites that minimize the bond energy [64]. Similar to
the orbital compass and 120-degree models, orbital order by disorder was found to
occur in this system.

In the limit Jz � Jx.y/, Kitaev’s honeycomb model (23.17) reduces to the Toric
Code model of (23.19,23.20) [62]. In this limit, the spins on all of the bonds along
the z-direction are so strongly correlated that they may be replaced by one effective
spin. The resulting geometry is the square lattice of Kitaev’s Toric Code model.
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23.6.2 Kitaev’s Toric Code model

Kitaev’s Toric Code model [61] in D D 2 spatial dimensions is defined on a square
lattice with L�L D Ns sites, where on each link hij i there is a S D 1=2 degree of
freedom (Fig. 23.6b). The Hamiltonian is

HK D �
X
s

As �
X
p

Bp ; (23.19)

with operators

As D
Y

hij i2star.s/

	xij ; Bp D
Y

hij i2plaquette.p/

	 z
ij ; (23.20)

and Pauli matrices 	�ij (� D x; y; z). Bp and As describe respectively the plaquette
(or face) and star (or vertex) operators, with

ŒAs ; As0 � D ŒBp ; Bp0 � D ŒAs ; Bp� D 0 (23.21)

8 s; s0; p; p0, which generate an Abelian group known as the “code stabilizer” [61].
The model has two d D 1 Z2 symmetries, given by [61]

Z1;2 D
Y

hij i2C1;2

	 z
ij ; X1;2 D

Y
hij i2C 0

1;2

	xij ;

fX�; Z�g D 0; ŒX�; Z	 � D 0;  ¤ �; (23.22)

where C1 .C 0
2/ are horizontal and C2 .C 0

1/ vertical closed contours [i.e. loops on the
lattice (dual lattice)]. The non-commutativity of the d D 1 symmetry operatorsX�
andZ� implies that the ground-state sector is degenerate. It is on basis states in this
ground-state manifold that schemes for topological quantum computing have been
devised. The logical operators Z1;2 and X1;2 commute with the code stabilizer but
are not part of it, thus acting non-trivially on the two “encoded” Toric Code qubits.

As shown in [67–69], HK is related to the plaquette model of Wen [70] and to
a model of two Ising chains by exact duality mappings. These three models there-
fore share the same spectrum. The ground state (protected subspace of the code)
is fourfold-degenerate (Abelian Z2 � Z2 symmetry) and there is a gap to all exci-
tations. The spectrum is essentially that of two uncoupled, circular Ising chains of
length Ns (2Ns being the total number of links of the originalD D 2 lattice). From
this mapping it is apparent that, in thermal equilibrium, this model is disordered at
all non-zero temperatures. However, if temperatures far below the spectral gap can
be achieved, the autocorrelation time associated with the topological invariants (the
d D 1 symmetries) of (23.22) can be made very large [67–69].
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The elementary excitations of HK are of two types [61],

j�z.� /i D
Y

hij i2

	 z
ij j�0i � S z.� /j�0i;

j�x.� 0/i D
Y

hij i2
 0

	xij j�0i � Sx.� 0/j�0i; (23.23)

where � .� 0/ is an open string on the lattice (dual lattice) and j�0i is a ground state.
[If� .� 0/were a closed contour circumscribing an entire Toric cycle, then the string
operators Sx;z would become the Toric symmetries of (23.22)]. In the case of the
open contours of (23.23), the operators Sx;z generate excitations at the end points of
these strings (thus always coming in pairs), which have abelian fractional statistics
(anyons). Excitations based on the vertices are the analogs of electric charges while
those on the plaquettes are magnetic vortices. These effective electric and magnetic
excitations obey fusion rules which enable abelian quantum computation. Due to the
exact equivalence between Kitaev’s Toric Code model and two Ising chains, no non-
trivial, finite-temperature, spontaneous symmetry-breaking, or any other transition,
can take place. The spectrum exhibits a multitude of low-energy states. At any (arbi-
trarily low) finite temperature, entropic contributions to the free energy overwhelm
energy penalties, leading to a free energy which is analytic everywhere.

23.6.3 Recent Discussions of Quantum Computing Realizations

There has been extensive recent activity in the study of orbital-related models
as candidates for topological quantum memories. One variant was proposed by
Bacon [72], while Douçot et al. [33] discussed a possible implementation of the
2D orbital compass model in a Josephson-junction array. Orbital and general frus-
trated models such as those of Kitaev may be implemented in atomic gases [73,74].
Another potential realization, closer to the orbital models we discuss here, was
investigated by Jackeli and Khaliullin [63].

23.7 Spin-Orbital Frustration

23.7.1 General Structure of Spin-Orbital Superexchange Models

Frustration of orbital interactions takes on a new quality in the spin-orbital superex-
change models which originate from the realistic electronic structure of TM oxides
with partly filled (quasi-)degenerate eg or t2g orbitals. As explained in Sect. 23.3,
frustration of orbital interactions is intrinsic in such models, and occurs even in
unfrustrated lattice geometries, such as square or cubic lattices. However, in some
cases this frustration may be removed by the onset of an appropriate combination
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of coexisting spin and orbital order. The topic of spin-orbital models is the sub-
ject of much active research, and a rich variety of both spin and orbital order, as
well as phases where one or both are disordered, has been found in these systems.
Here we concentrate only on some representative physical systems to demonstrate
the reasons behind spin-orbital frustration and, in some cases, the mechanisms for
removing it.

We begin this section by considering models for the perovskites. Thus we take
magnetic TM ions of dn configuration in a Mott (or charge-transfer) insulator,
which are located on a 3D lattice with three cubic axes labeled by � D a; b; c. As a
consequence of the strong Coulomb interaction, U � t , the low-energy physics is
described fully by the superexchange interaction J D 4t2=U ; here t is an effective
hopping matrix element (through the ligand orbitals), between either two directional
eg orbitals [.dd	/ element] or two identical t2g orbitals [.dd�/ element], belong-
ing to the TM ions at neighboring sites. As discussed in Sect. 23.4, spin-orbital
superexchange (23.2) in TM perovskites involves SU(2)-symmetric spin interac-
tions Si � Sj on the bond hij i, coupled to orbital operators which obey only a lower
(cubic) symmetry, and its general form is [5–7]

HJ D J
X

hij ik�

n�
S i � S j

� OJ .�/ij C OK.�/
ij

o
: (23.24)

Here, the orbital operators OJ .�/ij and OK .�/
ij involve active orbitals on each individual

bond hij i k � , either eg or t2g , which participate in dni d
n
j • dnC1

i dn�1
j virtual

charge excitations, so in a perovskite lattice they have a cubic symmetry. These
orbital operators depend on the T D 1=2 pseudospin operators at sites i and j , as
introduced in Sect. 23.3 (this holds also for t2g orbitals, because only two of these

are active in any given cubic direction � ). The form of the operators OJ .�/ij and OK.�/
ij

depends on the system under consideration, i.e. on the actual valence n of the TM
ions in the ground state of the dn electronic configuration, and on the type (eg or
t2g ) of active orbital degrees of freedom.

23.7.2 Spin-Orbital Models for eg Perovskites

Our first example is the KK model derived for Cu2C ions (d 9 configuration) in
KCuF3 [15, 47]. Its structure becomes transparent when one realizes that virtual
excitations on the bond hiji involve a pair of eg orbitals (at least one of which must
allow hopping of its electron), and the spin state on each bond, which is conserved in
the charge excitation, may be either a triplet or a singlet, with respective projection
operators PSD1 D .S i �S j C 3

4
/ and PSD0 D . 1

4
� S i �S j /. The orbital projections

on a directional orbital j�i [.3z2 � r2/-type] oriented along the bond (and along the
cubic axis) � , or j�i [.x2�y2/-type] oriented orthogonal to it, are Pi� � .1

2
�T .�/i /

and Pi� � .1
2

C T
.�/
i /, with Pi� C Pi� D 1 and T .�/i defined as in (23.4).
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The Hamiltonian consists of three terms,

H.d9/ D 1

2
J
X

hijik�

�	
�r1

�
S i �S j C 3

4

�
C r2

�
S i �S j � 1

4

�
�
1

4
� T

.�/
i T

.�/
j

�

C .r2 C r4/

�
S i �S j � 1

4

��
1

2
� T

.�/
i

��
1

2
� T

.�/
j

��
; (23.25)

which follow from virtual excitations at sites i and j involving either two holes in
different orbitals (first line), with singlet and triplet excited states, or two holes in
j�i orbitals (second line), leading to spin singlets in doubly occupied j�i orbitals.
In addition to the common energy scale J, the interactions are parameterized by the
ratio of the Hund exchange JH to the intraorbital Coulomb element U [5–7],

� D JH

U
: (23.26)

The coefficients r1; r2; and r4 in (23.25) depend on �, which typically lies in the
range 0:1 < � < 0:2, according to

r1 D 1

1 � 3�
; r2 D 1

1 � �
; r4 D 1

1C �
; (23.27)

and are determined by the multiplet structure of the excited d 8 ions [8], where the
excitation energies are .U � 3JH / for a spin triplet and .U � JH / or .U C JH / for
the possible spin-singlet states (the first of which is doubly degenerate) [47].

Individual terms in the Hamiltonian H.d9/ (23.25) can be minimized for chosen
spin and orbital configurations: when two different (j�i and j�i) orbitals are occu-
pied, the favored spin state is a triplet (for finite Hund exchange, � > 0), while for
two j�i orbitals the favored spin state is a singlet. This behavior highlights immedi-
ately the intrinsic frustration of the spin-orbital model (23.25), and is also consistent
with the GKR [9, 10]. These dictate that alternating orbital (AO) order favors ferro-
magnetic (FM) spin order, while ferro-orbital (FO) order favors antiferromagnetic
(AF) spin order.

The interactions in (23.25) are particularly strongly frustrated at � D 0, where

H0.d
9/D 1

2
J
X

hij ik�

�
2

�
S i �S j � 1

4

��
1

2
� T

.�/
i

��
1

2
� T .�/j

�
�
�
1

4
� T

.�/
i T

.�/
j

��
;

(23.28)
implying that on each bond the energy is minimized by a singlet state when both
orbitals (occupied by holes) are oriented along the bond. This frustration is absent
only in a 1D model, where for � � c the occupied orbitals may be taken parallel
to the c-axis. Then both orbital operators give a constant hT .c/

i.j /
i D �1

2
, whence

h.1
2

� T
.c/
i /.1

2
� T .c/j /i D 1. The resulting AF Heisenberg model,
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HJ D J
X

hij ikc

�
S i �S j � 1

4

�
; (23.29)

is equivalent to that derived from the nondegenerate Hubbard model. Here the
orbitals play no role because their state has been fixed to maximize the energy
gain from the nearest-neighbor spin correlations, similar to the situation encoun-
tered on a single bond. However, this becomes impossible when the coordination
increases with the dimension of the lattice, i.e. on a square (2D) or a cubic lat-
tice (3D). In these cases, for any frozen orbital configuration on the lattice, the
orbitals will not be oriented along the bond axes on some (or even all) of the bonds,
giving h.1

2
� T

.�/
i /.1

2
� T

.�/
j /i < 1, and thus the spin exchange interaction and

corresponding energy gains per bond are reduced.
To appreciate further the intrinsic frustration of orbital interactions, let us com-

pare the exact ground states of the Heisenberg (23.29) and spin-orbital (23.28)
models for a plaquette in the ab plane. The ground state of the spin model is a spin
singlet obtained as a symmetric combination of two valence-bond (VB) wave func-
tions, with singlets either on two horizontal or on two vertical bonds. It is crucial
to examine the resonance processes stabilising these VB states, which leads to the
energy E.s/� D �3J (here and below the energy includes a constant �1

4
J per bond

which is contained in the superexchange term). Indeed, this value is obtained for a
symmetric (bonding) linear combination of two VB states, with two spin singlets
occupying either the horizontal or the vertical bonds, so this state may be seen as a
bonding state formed by these two configurations. The energy of each VB state on
the plaquette is E.s/VB D �2:5J , and the energy gain due to the resonance amounts

to E.s/� � E
.s/
VB D �0:5J . When the same calculation is performed for the spin-

orbital model (23.28), one finds instead much higher energies: E.so/� D �2:3744J
for the plaquette ground state [75] and E.so/VB D �2:2188J for each individual VB
state. In the latter, the spin singlets are associated with a j�i�j i orbital configura-
tion in which the orbitals are oriented along each singlet bond (the other bonds give
only a small energy contribution because the orbitals are neither aligned with these
bonds nor in the opposite states). Note that the energy gain due to the resonance,
as well as the overlap, between the two VB states is reduced in the spin-orbital
model when compared to the spin model. This illustrative example demonstrates
that the orbital variables frustrate spin interactions due to their directional nature
and partly suppress the resonance between different VB states, contributing to an
intrinsic frustration of spin-orbital superexchange on square and cubic lattices. In
fact this frustration occurs predominantly in the orbital sector (Sects. 23.4 and 23.5),
but the combined spin-orbital state is always entangled (Sect. 23.8).

Frustration of spin-orbital interactions is removed partially in real materials due
to the finite Hund exchange JH (and to Jahn–Teller distortions, discussed below).
This acts to modify the strength of the interaction terms in (23.25), favoring FM
superexchange. As a compromise between competing superexchange terms, the
state known as an A-type AF (A-AF) phase, which has FM planes alternating
their spin direction along the c axis, emerges in KCuF3 below a rather low Néel
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temperature, TN 	 38 K [76]. This systems is best considered as AF chains along
the c axis, with weak FM interactions which induce FM order within the ab planes,
accompanied by an AO order (this order is ofC -type, where the orbitals repeat along
the c-axis and alternate in the ab-planes). This compound actually provides a good
example of dimensional reduction, because the competing magnetic interactions
nearly compensate each other in the ab-planes (when charge-transfer contributions
are included [5–7]), and as a result KCuF3 becomes one of the best-known realiza-
tions of a disordered AF Heisenberg chain, exhibiting a spinon excitation spectrum
over a broad temperature range [76].

Another mechanism which removes frustration is the coupling to the lattice.
When large, local Jahn–Teller distortions occur for RO6 octahedra, where R repre-
sents a TM ion, they remove the orbital degeneracy and induce an orbital splitting
Ez (parameterized by " D Ez=J ), so that the orbital dynamics is quenched and
the orbital operators may be simply replaced by their expectation values. An exam-
ple here is a 2D G-type AF order (G-AF, AF in both directions in each ab plane)
observed in La2CuO4, where the holes occupy x2 � y2 orbitals.

Whether or not some kind of joint spin-orbital order may emerge at the point
.�; "/ D .0; 0/ in the model of (23.28) remains the subject of some controversy
[77, 78], and this case is regarded as a good candidate for a spin-liquid state with
only short-range orbital correlations. To date it has been established that the long-
range order in the G-AF and A-AF phases is destabilized near this point due to
enhanced quantum fluctuations [78], and wave functions with short-range VB-type
orbital correlations are favored instead [15].

Superexchange interactions between the Mn3C (d 4) ions, which have S D 2

spins, in LaMnO3 show an intrinsic frustration similar to KCuF3. The domi-
nant part of the superexchange in this system comes from .t32ge

1
g /i .t

3
2ge

1
g/j •

.t32ge
2
g/i .t

3
2g/j charge excitations arising from the hopping of an eg electron,

but t2g excitations also contribute to a superexchange interaction Jt (defined in
[79] and frequently called core-spin superexchange) through .t32ge

1
g/i .t

3
2ge

1
g/j •

.t42ge
1
g/i .t

2
2ge

1
g/j charge excitations. This latter term is AF (Jt > 0), because it does

not involve any high-spin excited states for half-filled t2g orbitals. The spin-orbital
model in this system has the form [79]

H.d 4/ D 1

2
J
X

hij ik�

�	
� 1

10
r1
�
S i �S j C 6

�C
�
3

80
r5 C 1

16
r6

� �
S i �S j � 4

�


�
�
1

4
�T .�/i T

.�/
j

�
C 1

16
.r6Cr7/

�
S i �S j�4�

�
1

2
�T .�/i

��
1

2
�T .�/j

��

CJt
X
hij i

�
S i �S j � 4�; (23.30)

where the coefficients

r5 D 1

1C 3�=4
; r6 D 1

1C 5�=4
; r7 D 1

1C 13�=4
; (23.31)



23 Frustration in Systems with Orbital Degrees of Freedom 657

follow again from the multiplet structure of Mn2C (d 5) excited states [r1 is as in
(23.25)] [8]. The spin operators in (23.30) are for spins of total S D 2, and the
prefactors of the different terms are determined by their spin algebra and by the
respective Clebsch-Gordon coefficients. One may recognize the FM .S i �S j C 6/

and AF .S i �S j � 4/ terms, which are analogous to the spin projections in (23.25).
The large value of the spin makes quantum effects in the spin subsystem less impor-
tant in this case, the behavior of the model being considerably more classical than
for S D 1=2 spins (23.25). Indeed, spin and orbital operators may be treated here as
decoupled from each other [5–7].

In (23.30), one recognizes another mechanism which removes frustration of spin-
orbital superexchange interactions in the manganites. In addition to the interactions
with the lattice, which here play a role as important as in the case of KCuF3 [80],
the orbital frustration in LaMnO3 may be removed by the spin interactions. This
effect is best shown by investigating a quantum phase transition in the 1D man-
ganite model derived from (23.30), where, as a function of the t2g superexchange
Jt , the system undergoes a transition between the FM spin phase with AO order
and the AF spin phase with FO order [81]. This transition can also be driven by
changing the value of the orbital splitting between two AO states, which is a conse-
quence of the Jahn–Teller potential, and in this latter case the spin state is dictated
by the orbital order. Such competition between different phases plays an important
role also in the more realistic situations of 2D [82] and 3D models [80, 83, 84] at
finite temperatures. The orbital superexchange interactions are in fact supported by
the Jahn–Teller interactions [79], and thus AO order in the ab planes occurs first
at high temperature, TOO D 780 K. The A-AF phase observed in LaMnO3 below
TN ' 140 K can be thus considered to be dictated by one particular compromise
between spin and orbital interactions, with the orbital frustration quenched by the
Jahn–Teller effect.

23.7.3 Spin-Orbital Superexchange for t2g Perovskites

Many challenging and still not fully understood examples of spin-orbital frustra-
tion, with even more pronounced quantum effects than in the eg -orbital systems,
are encountered in titanate and vanadate perovskites. The relevant model for the
S D 1=2 spins of Ti3C ions (d 1 configuration), which have only t2g orbital degrees
of freedom, is quite different from that of (23.25). In this case the symmetry allows
hopping for only two of the three t2g orbitals along each cubic � axis [24, 85],
whereas the third orbital lies in the plane perpendicular to this axis, along which
hopping through the intermediate 2p� oxygen orbital is forbidden (Fig. 23.5). This
motivates the convenient notation used below (23.10), where the inactive orbital
along a given cubic direction � is labeled by its index as j�i.

The superexchange Hamiltonian for the titanate perovskites is determined by
intersite charge excitations of the type .t12g /i .t

1
2g/j • .t22g/i .t

0
2g /j , which lead to

a form similar to the d 9 configuration of Cu2C ions in KCuF3, with either a triplet
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virtual state at energy .U � 3JH /, or to one of three different singlet states, with the
energies .U � JH / (doubly degenerate) and .U C 2JH / [8]. Once again, if these
excitation energies are parameterized by � (23.26) and one uses the coefficients r1
and r2 (23.27) together with

r3 D 1

1C 2�
; (23.32)

one obtains compact expressions for the superexchange interactions between S D
1=2 spins in the cubic titanates [85, 86],

H.d 1/ D J
X

hij ik�
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S i � S j C 3

4

��
�i � �j � 1

4
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4
ninj

�.�/
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4
.ni C nj /C 1

4
ninj
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�2
3
.r2 � r3/

�
S i � S j � 1

4

��
�i � �j C 1

4
ninj

�.�/)
; (23.33)

where the term
�i � �j D 
xi 


x
j � 


y
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y
j C 
 z

i 

z
j (23.34)

originates from the structure of Coulomb interactions [5–7] and is responsible
for nonconservation of the total orbital quantum numbers fT ; T zg. The opera-
tors �

.�/
i D f
xi ; 
yi ; 
 z

i g represent the conventional components of a pseudospin


 D 1=2 entity active along the � axis, and the number operators n.�/i represent the
density of electrons in the two active t2g orbitals for each individual bond hij i k � .
Thus it is only when each of both sites i and j contains a single electron in one of the
active t2g orbitals that the scalar product �i ��j and the cross product �i��j (23.34)
contribute to the superexchange energy. Clearly, bonds which do not contribute with
finite energy occur more frequently in this case than for eg orbitals.

The model for cubic vanadates with S D 1 spins, relevant for V3C ions [87, 88],

H.d2/ D J
X

hij ik�

(
1

3
r1
�
S i � S j C 2

� �
�i � �j C 1

4
ninj

�.�/

C 1

12

�
S i � S j � 1

� "�3
�

�i � �j C 1

4
ninj

�.�/
C 2

#

C 1

12
.2C 3r3/

�
S i � S j � 1

� �
�i � �j C 1

4
ninj

�.�/)
; (23.35)

is the consequence of virtual .t22g/i .t
2
2g/j • .t32g/i .t

1
2g/j charge excitations and

contains the same coefficients r1 and r3 as (23.32). The origin of the additional terms
lies in two intermediate, low-spin states with energy U , which therefore contribute
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with the coefficient 1. As in (23.33), the operators �
.�/
i describe orbital pseudospins


 D 1=2 on the axis � . In the known materials in this class, the intrinsic frustration
of spin-orbital superexchange is removed by lattice distortions: structural data for
the RVO3 perovskites (R D Lu, Yb, : : : , La [14]) suggest that the jci � jxyi
orbitals are occupied at every site (nic D 1), and hence the cubic symmetry of
(23.35) is broken. In this case there is precisely one electron in both active orbitals
along the bonds hij i k c (nia C nib D 1 per site), as a result of which quantum
fluctuations contribute only in this direction, but are blocked in the ab-planes.

Two different types of order may emerge from the superexchange model of
(23.35), as a function of the Hund exchange �. In the regime of small �, the quan-
tum fluctuations stabilize a dimerized 1D orbital VB (OVB) phase, with .ab/ orbital
singlets on every second bond supporting locally FM spin order, and weak AF
spin interactions between these chains [88, 89], as shown in Fig. 23.7a. By con-
trast, at large � the interdimer AF interactions in the c-direction are suppressed
and quantum fluctuations along the disordered orbital chain support uniform FM
spin interactions [87]. The cubic symmetry of the orbital superexchange is broken
here, the full SU(2) pseudospin (orbital) interaction � i � �j contributing only along
the c-axis, while the orbital interactions in the ab-planes are of Ising type. This
explains the physical origin of the C -AF order observed in the RVO3 perovskites
[14], which coexists with rather weak G-AO order due to fa; bg orbital fluctuations,
as shown in Fig. 23.7b. Orbital order (occurring at T < TOO) and magnetic order
(at T < TN1) set in almost simultaneously (TOO ' TN1) in LaVO3, whereas in
other RVO3 perovskites, which have smaller ionic radii, the G-AO order occurs
first and is followed later by C -AF order at a rather lower magnetic transition [14].
A recent theoretical analysis [90] demonstrates that the systematic changes observed
in the phase diagram of the RVO3 perovskites for these two types of order can be

a b c

c
a OVB

bb a a

C–AF / G–AO G–AF / C–AO

Fig. 23.7 Possible spin and orbital order in the ac-planes of cubic RVO3 perovskites [92]: (a)
OVB phase, with alternating FM bonds occupied by .ab/ orbital singlets (double lines), coupled
by weak AF bonds (dashed lines); (b) C -AF and G-AO order; (c) G-AF and C -AO order (yz and
zx orbitals are represented schematically by squares). In the phases with orbital order, (b) and (c),
spins and orbitals alternate also along the b axis (not shown); these states [but not state (a)] are
consistent with the GKR [9, 10]
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well understood by extending the microscopic model of (23.35) to include both the
orbital-lattice coupling and the orbital–orbital interactions induced by Jahn–Teller
and by GdFeO3-type distortions [12].

In some RVO3 perovskites with small rare-earth ions, such as YVO3, a com-
plementary type of spin-orbital order has also been observed [14]: this features
coexisting G-AF and C -AO order, and is shown in Fig. 23.7c. This phase was
first observed in YVO3 [91], at a magnetic phase transition which is particularly
surprising because the ordering moments change direction at TN2 ' 77 K from
approximately parallel to the c-axis in the low-temperature G-AF phase to lying
almost within the ab-planes in the high-temperatureC -AF phase, with only a small,
alternating G-AF component. The stability of the low-temperature G-AF phase
in YVO3 was addressed theoretically, and it was argued that the orbital interac-
tions induced by lattice distortions stabilize this phase [87]. In this way, the lattice
removes the spin-orbital frustration and dictates a different and more classical type
of the spin-orbital order then that induced by superexchange (23.35). It has been
argued further [92] that a transition to the C -AF phase with weakG-AO order could
be triggered by the large gain in the free energy of the C -AF phase due to its large
entropy. In fact, both spin and orbital excitations have lower energies in the latter
phase than in G-AF phase.

The above entropy argument follows from the experimental observation that the
two AF phases of YVO3 have remarkably different magnon spectra, as shown in
Fig. 23.8: these change due not only to the different type of the AF order, but also
to the strong reduction in the characteristic energy scale of the magnetic excitations
in the high-temperature C -AF phase [93]. This latter effect remains an outstanding
unsolved problem in the field. Another spectacular effect, which may be considered
as a consequence of competing interactions, is the dimerization observed in the
magnon spectra in the C -AF phase: this can be described by a FM interaction
Jc.1 ˙ ı/ alternating along the c axis (Fig. 23.8b). A recent theoretical study [94]

a b

Fig. 23.8 Magnon dispersion data obtained by neutron scattering in (a) the G-AF phase and
(b) the C -AF phase of YVO3. The data points are shown with effective linewidths indicated by
the bars; lines show the fit to the data obtained with Jab D Jc D 5:7 meV in the G-AF phase and
with Jab D 2:6, Jc D �3:1 meV and ı D 0:35 (see text) in the C -AF phase. Figure reproduced
from [93]
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indicates that, somewhat surprisingly, a Peierls dimerization can in fact be activated
by thermal fluctuations in a FM spin chain, when either spin-phonon or spin-orbital
coupling is present, the latter being relevant for YVO3. The measured magnon dis-
persion curves can be reproduced within the vanadate spin-orbital model of (23.35)
after appropriate averaging over the orbital operators (see also Sect. 23.8).

We close this discussion of cubic systems by noting that, unlike the case of active
eg orbitals, a relativistic spin-orbit coupling modifies the local states of strongly
correlated t2g electrons, particularly in later TM oxides such as NaxCoO2 [95].
This coupling plays a role also in the RTiO3 and RVO3 perovskites, being found
to modify the spin and orbital order for realistic parameters. As one example of
its effects, it has been suggested [88] that the parameters of YVO3 drive a system
close to the regime of local entangled states induced by the spin-orbit interaction.
Thus, the inclusion of a finite spin-orbit coupling could be crucial for a complete
understanding of spin and orbital excitations even in 3d TM systems.

23.7.4 Spin-Orbital Frustration on a Triangular Lattice

Spin-orbital superexchange interactions on a triangular lattice are particularly
intriguing. In general, geometrical frustration enhances the overall frustration of
orbital interactions in spin-orbital models. An important difference between the
perovskite lattice and lattices with geometrical frustration is the angle between
the oxygen-metal bonds connecting two neighboring TM ions: while this angle is
close to 180ı in perovskites, in layered (quasi-2D) materials with triangular lattice
geometry (Fig. 23.9) and in spinels (Sect. 23.7.5) it is 90ı.

We begin our consideration of the triangular lattice with the prominent example
of LiNiO2, which has active eg orbital degrees of freedom [15]. It is a rather remark-
able and still outstanding problem in this field that the Mott insulators LiNiO2 and
NaNiO2 behave quite differently in spite of their structural and electronic similar-
ity: while NaNiO2 undergoes a cooperative Jahn–Teller transition followed by a
magnetic transition at TN D 20 K, both transitions are absent in LiNiO2. Possi-
ble reasons for this distinctly different behavior have been discussed in a number
of papers, most notably in [15, 16] and [96–99]. We do not present here all of
the theoretical concepts which have been suggested to account for the differences
between LiNiO2 and NaNiO2, but focus instead on extracting some essential fea-
tures. The triangular lattice which occurs in both compounds (and also in NaTiO2,
discussed below) is formed by edge-sharing MO6 octahedra, shown in Fig. 23.9,
where successive h111i planes of TM ions are well separated from each other.

There is to date no consensus concerning the simplest microscopic spin-orbital
model which would capture all the essential features of both compounds. On the
one hand, following the approach of the previous section and the relevant symmetry
arguments [97], a general spin-orbital model for NiC3 ions in d 7 configuration,
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Li, Na

O

Fig. 23.9 Left: LiNiO2 (or NaTiO2) structure. TM ions are located in the centers of the TMO6

octahedra. Right: orbital eg states of the seventh d -electron of NiC3 (d7) in two representative
NiO6 octahedra. Figure reproduced from [99]
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is characterized by rather anisotropic orbital interactions. Here, rm are the coef-
ficients given in (23.27), T i � T j is a pseudospin scalar product for T D 1=2

pseudospins with components T ˛j (˛ D x; y; z), the operators T .�/j are defined as in
(23.4) and depend on the bond direction � in the triangular lattice, J D 4t2=U , and
c0 D 1

4
.1C �2/. The parameter � D t 0=t is an unknown ratio of two effective hop-

ping matrix elements between pairs of identical jzi or jxi orbitals in the triangular
geometry (the interorbital hopping vanishes by symmetry). A schematic representa-
tion may be found in Fig. 23.9. The phase diagram of the model Hamiltonian (23.36)
investigated in a mean-field (MF) approach on a 16-site cluster suggests two differ-
ent realizations of resonating valence-bond (RVB) states as a possible explanation
of the disordered phase in LiNiO2, the “SU(4) phase” (see also Sect. 23.8) and the
fluctuating dimer phases. The latter states have motivated some authors to consider
approaches based on quantum dimer models [98, 99].

On the other hand, the excitations on oxygen orbitals are crucial in the geometry
of LiNiO2, which has 90ı Ni–O–Ni bonds, and arguments have been articulated
[96] that the leading term in the LiNiO2 spin-orbital model is of the form
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where each Ni–Ni bond lies in the plane ˛ˇ, with ˛; ˇ D x; y:z being the main
directions in the crystal structure of NaNiO2 [96]. The orbital operators which
couple to the spins are
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and all the interaction parameters .JT ; JST ; JS / in (23.37) are positive. By con-
struction, excited Ni2C (d 8) states do not occur here, and terms with coefficients rm
are absent. Analysis of the relevant charge-transfer model shows that JT � JST
and JT � JS , so the strongly anisotropic orbital interaction JT dominates [16].
In fact, the structure of the model derived by considering 90ı Ni–O–Ni bonds is
even richer, because the low-spin states must also be included [16], but the general
conclusion that orbital interactions of the compass-model type dominate in LiNiO2
remains valid.

This discussion of the relevant energy scales suggests that a scenario in which
the spin and orbital degrees of freedom are decoupled [96] could be realistic, par-
ticularly if the coupling to the lattice is also included in the spin-orbital model.
Local NiO6 distortions in fact favor directional jzi-type orbitals and induce a frozen
orbital order [16]. In addition, the real materials feature a non-stoichiometry of the
form Li1�xNi1CxO2, and disorder due to Ni2C ions in the Li planes can prevent the
onset of 3D magnetic order. Thus at present one may conclude only that LiNiO2
is unlikely to be a spin-orbital liquid, and that the reasons behind the observed
disordered state in LiNiO2 are quite subtle [16, 97].

The properties of the spin-orbital model analogous to (23.33), derived for the
d 1 occupancy of t2g orbitals but on a triangular lattice (as realized in the geome-
try of NaTiO2), were recently discussed in extenso [100]. This model is somewhat
involved, because the electrons change their t2g orbital flavor during charge exci-
tations, in a manner similar to hopping in the CoO2 layer of NaxCoO2 [101]. By
considering the phase diagram as a function of the ratio between the superexchange
and direct-exchange interactions, one finds that the effective orbital interactions are
always frustrated, and that orbital correlations are generally dictated by the spin
state, manifesting an intrinsic entanglement of these degrees of freedom. In the
absence of Hund exchange, the ground state changes from a highly resonating,
dimer-based, symmetry-restored spin and orbital liquid phase in the superexchange
limit to one based on completely static, but highly degenerate, spin-singlet VB states
in the direct-exchange limit. The latter limit, also discussed in [102], is reminis-
cent of the dimer singlet states in spinels, which we discuss in the next section. It
is worth noting that the generic properties of frustration and entanglement survive
in the triangular-lattice t2g model even when the spins and orbitals are nominally
decoupled in the FM phases stabilized by strong Hund coupling [100].
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23.7.5 Spin-Orbital Frustration in Spinels

It was shown recently that novel phases based on singlet dimer coverings arise in
S D 1=2 spin models with the frustrated pyrochlore geometry, and may thus be
expected on spinel lattices [43] (the reader is referred also to Chap. 7 by H. Takagi
and S. Niitaka in this volume). One may expect that spin-orbital superexchange
leads also to similar phases of singlet dimer states, and with particular types of
symmetry-breaking in the singlet distribution on the lattice. Indeed, the frustration
of superexchange obtained for t2g orbital degrees of freedom is further amplified
when the lattice is frustrated [103], as in the example of the spinel titanate MgTi2O4.
In this case, only one orbital is active for a bond in a given plane, e.g. the jci � jxyi
orbital in the ab-plane. This situation thus resembles the d 9 model (23.25), and the
orbital variables are of Ising type. The model for the spinel titanate MgTi2O4, which
has Ti3C ions with spins S D 1=2, is [103, 104]
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: (23.39)

This expression contains the same coefficients fr1; r2; r3g as in the perovskite
titanate. Its first line (terms with orbital operators Oij;˛ˇ ) describes the competing
FM and AF contributions when one active and one inactive orbital are occupied on
a bond hij i in the plane ˛ˇ (with f˛; ˇg D fx; y; zg), while the last term describes
the AF interaction obtained for bonds hij i with active ˛ˇ orbitals at both sites of
the bond. The bond projection operators

Oij;˛ˇ D Pi;˛ˇ .1 � Pj;˛ˇ /C Pj;˛ˇ .1 � Pi;˛ˇ /; (23.40)
NOij;˛ˇ D Pi;˛ˇPj;˛ˇ ; (23.41)

include the on-site projectors Pi;˛ˇ onto the ˛ˇ orbital at site i .
The superexchange model on the spinel lattice (23.39) features the now familiar

intrinsically frustrated interactions. However, unlike in the d 9 model for KCuF3
on the perovskite lattice (23.25), here the three orthogonal t2g orbitals correspond
to the bonds in three different planes, ab, bc, and ca, and they contribute with
finite energy only when at least one site contains an electron in an active orbital.
Because only one out of the three orbitals on each site is active, the probability 4

9

of obtaining a neutral bond is relatively high. In fact, the interactions favor a dimer
phase consisting of spin singlets on bonds whose effective spin interaction is AF
and on which both electrons are in active orbitals. A priori, these bonds appear with
a relatively low probability of 1

9
, but they contribute a large energy �J in the limit

� D 0 [103]. This situation resembles the VB states in the d 9 model (23.25), but
in the spinel case the spin dimer state is exact in the limit � ! 0. In this state, the
bonds with one active and one inactive orbital also give a finite energy contribution
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independent of the spin state (spins on the interdimer bonds are disordered), and this
orbital configuration favors local triplet spin states at � > 0. As a result, the ground
state is a collection of spin-singlet dimers, and is highly degenerate with respect to
the dimer configurations. It was shown that this “orientational” degeneracy can be
lifted by a magnetoelastic interaction that optimizes the energy gain by distorting the
bonds in suitable directions, leading to a tetragonal distortion and to the formation
of a VB crystal through the condensation of dimers along helical chains winding
around the tetragonal c-axis. In this way, the orbital state with FO order along the
helices and AO order between them, as observed in MgTi2O4, could be explained
[103, 104].

The vanadate model on the spinel lattice [105–107] is equally strongly frustrated.
In this case, the superexchange involves S D 1 spins from the d 2 triplet configura-
tions of V3C ions in theAV2O4 spinels, withA D Zn, Mg, and Cd. Two t2g orbitals
are now singly occupied at each site due to the finite Hund exchange (JH > 0), and
similar excitation energies (and coefficients rm) follow from the active orbitals in
this geometry as in the perovskite case of (23.35). The Hamiltonian [105–107]
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X
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(23.42)

contains the same projection operators as HP .d
1/, given in (23.40) and (23.41).

One finds again a particularly strong frustration of the spin-orbital interactions when
� ! 0. It has been shown [107] that at � D 0, all real orbital patterns are degenerate.
Several factors play a role in removing this frustration in physical systems, where
the observed spin structure is AF. This may be explained by considering not only
a finite � and the orbital ordering of complex orbital states of the type .jxzi ˙
i jyzi/=p2, but also a finite spin-orbit coupling [107]. This type of orbital order
also implies the coherent flattening of VO6 octahedra along a unique axis, leading
to the experimentally observed tetragonal distortion.

23.8 Spin-Orbital Entanglement

With the exception of specific cases in one dimension where the orbital operators are
of Ising type [81], spin and orbital operators are in general entangled. Spin-orbital
entanglement means here that the eigenstates cannot be written as product states of
spin and orbital states, i.e. the eigenstates cannot be factorized. It occurs both for
eg and t2g spin-orbital superexchange models, but is qualitatively stronger and has
more profound consequences in the latter case [75]. Here, we discuss spin-orbital
entanglement in the ground state of the t2g spin-orbital models on the perovskite
lattice (23.33) and (23.35), by evaluating in exact-diagonalization calculations the
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composite correlation function defined for a bond hij i as

Cij D 1

.2S/2

˚˝
.S i � S j /.T i � T j /

˛ � ˝
S i � S j

˛˝
T i � T j

˛�
: (23.43)

It it sufficient to investigate four-site spin-orbital chains oriented along the c-axis
and with active a and b orbitals, using periodic boundary conditions. By definition,
if Cij D 0, the spin and orbital operators are disentangled and their MF decoupling
is exact, while if Cij < 0, the operators are entangled and a MF procedure cannot
be justified (leading to systematic errors). Spin-orbital entanglement is evident in
the titanate d1 model (23.33), where one recovers the SU(4)-symmetric point [46]
at � D 0. In this clear example, spin-orbital entanglement is manifest in a large,
negative value of the spin-orbital correlation function, Cij D �0:25 (Fig. 23.10a).
At finite �, the SU(4) degeneracy of all intersite correlations is removed and one
finds Tij < Cij < Sij < 0, where

Sij D 1

.2S/2

˝
S i � S j

˛
and Tij D hT i � T j i (23.44)

are the conventional spin and orbital correlation functions, when the system is in
the regime, � . 0:21, with a spin singlet (S D 0) ground state. The GKR, which
imply that the signs of Sij and Tij should be complementary, are thus violated in
this region. Instead, by analyzing the values of the intersite correlations, one finds
that the ground-state wave function for each bond hij i is close to a global SU(4)
singlet, equivalent to a linear combination of (spin singlet/orbital triplet) and (spin
triplet/orbital singlet) bond wavefunctions [75]. The vanadate d 2 model (23.35)
behaves in a similar way, with all three correlation functions Sij , Tij , and Cij being
negative simultaneously in the spin-singlet regime of fluctuating a and b orbitals,
which is obtained in that case for � . 0:07 (Fig. 23.10b). Here again the composite
spin-orbital correlations are significant (Cij < 0) and their MF factorization is not
allowed due to the manifest entanglement of spin and orbital variables.

To provide further evidence that the GKR do not apply to the RTiO3 and RVO3
perovskites, which have active t2g orbitals and low �, we compare the intersite spin
correlation function Sij with the effective values of the spin exchange constants

Jij �
D OJ .�/ij

E
(23.45)

obtained by averaging the operators OJ .�/ij in (23.24) over the orbital variables in a
MF approach. Such a factorization of spin and orbital operators is usually assumed
[5–7] in the analysis of results from neutron scattering experiments or optical spec-
troscopy within spin-orbital superexchange models. However, this procedure yields
a net FM exchange interaction, Jij < 0 (23.45), on averaging the orbital operators
over an orbital-disordered phase with Tij < 0 (Fig. 23.10c and d), and one finds that
this is in fact accompanied by AF spin correlations (Sij < 0) (Fig. 23.10a and b).



23 Frustration in Systems with Orbital Degrees of Freedom 667

0.2
1.0

– 1.0

– 2.0

– 0.2

– 0.4

– 3.0
0.2

0.0

0.0

ηS

0.00 0.05 0.10 0.15

ηS

0.00 0.05 0.10 0.15

S
ij,

 T
ij,

 C
ij

S
ij,

 T
ij,

 C
ij

– 0.2

– 0.4

– 0.6

0.0

0.2

– 0.2

– 0.4

– 0.6

0.0

J i
j

J i
j

a

b

c

d

Fig. 23.10 Spin-orbital entanglement in: (a), (c) d1 model (23.33), and (b), (d) d2 model (23.35),
after [75]. Left: intersite spin, orbital, and spin-orbital correlation functions along the c-axis as a
function of Hund exchange �S , showing respectively the quantities Sij (filled circles), Tij (empty
circles), and Cij (crosses) of (23.44) and (23.43). Right: spin exchange constants Jij (23.45). In
the shaded areas Jij Sij > 0, violating the classical GKR

Thus JijSij > 0 and the ground-state energy deduced from such a MF decou-
pling is unrealistically high, indicating the qualitative importance of spin-orbital
entanglement [75]. In contrast, a similar analysis performed for the d 9 spin-orbital
model (23.25), which has eg orbital degrees of freedom, gives JijSij < 0 in the
entire parameter regime, and the GKR are satisfied [75]; however, here also one
finds quantitative corrections to the ground-state energy which lie beyond the MF
decoupling.

This qualitative difference between t2g and eg systems is a consequence of the
importance of composite spin-orbital fluctuations, which are responsible for the
dynamical nature of the exchange constants Jij . By considering this quantity, one
finds that its fluctuations on the bonds,

ıJ D
�D � OJ .�/ij

�2 E � J 2ij

� 1=2
; (23.46)

are particularly large at � D 0 in the d 1 (23.33) and d2 models (23.35), while its
average Jij is small in both cases (Jij ' 0 for d 1 and Jij ' �0:04 for d2 [75]).
In the d 1 case, the fluctuations between (S D 0/T D 1) and (S D 1/T D 0)
wavefunctions on each bond are so large that ıJ D 1. Also in the d 2 model, the
orbital bond correlations change dynamically from singlet to triplet, resulting in
ıJ > jJij j, with ıJ ' 0:25, whereas these fluctuations are small for the eg d 9

model (23.25).
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We close this section by emphasizing that spin-orbital entanglement effects are
most pronounced for spin S D 1=2 and pseudospin T D 1=2 operators in the 1D
SU(2)˝SU(2) model [108]

HJ D J
X
i

.S i � S iC1 C p/ .T i � T iC1 C p/; (23.47)

which is similar to the SU(4) model [46]. In both cases, the composite correlations
Cij (23.43) are finite, and the spin or pseudospin exchange constants Jij (23.45)
cannot be obtained by using the MF decoupling procedure for any p > �0:25.
In fact, one finds that similarly strong spin-orbital entanglement (measured again by
Cij < 0) occurs at the SU(4) symmetry point,p D 0:25, and for the exactly solvable
1D spin-orbital chain at p D 0:75 [108]. In this latter case, the ground state is doubly
degenerate, with alternating spin and orbital singlets along the chain [109], similar
to the Majumdar-Ghosh states of the 1D J1-J2 AF Heisenberg model with J2 D
J1=2 [4]. This demonstrates once again the intrinsic frustration present in spin-
orbital superexchange models, which occurs here in the absence of any geometrical
frustration and with nearest-neighbor interactions only.
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89. S.Q. Shen, X.C. Xie, F.C. Zhang, Phys. Rev. Lett. 88, 027201 (2002)
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