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1 Motivation

Bosonisation is typically used to describe he low-energy properties of Fermionic systems
in one dimension. We first want to consider free electrons in one dimension. One of the
distinguishing properties of these systems is that we have a filled Fermi sea with two Fermi
points:
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(a) Free Fermion dispersion relation and a
particle-hole excitation on top of the filled
ground state
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(b) The continuum for particle-hole excitations
in a one-dimensional free Fermion model

Figure 1: Free Fermions in one dimension

The essence of bosonisation is to recognise that, in one dimension, at low energies, the
particle-hole dispersion relation is essentially linear.

For a free electronic system with linear dispersion, we can easily calculate the dispersion
relation to be

〈ψ(x)ψ(0)†〉 ∼ 1

x
(1)
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We also know that for a free, massless bosonic system, the correlation function behaves
as

〈φ(x)φ(0)〉 ∼ − lnx. (2)

It is therefore plausible, but by no means obvious that an identification of the form
ψ(x) ∼ eiφ(x) could give a sensible representation of a Fermionic operator in terms of
bosonic operators.

2 Constructive approach

Prerequisites

In order to establish the discussion, we have Fermionic creation and annihilation operators
of various species {η}, obeying the anti-commutation relations

{c†kη, ck′η′} = δηη′δkk′ (3)

We must also have that k ∈ (−∞,∞), where k = 2π
L

(nk − 1
2
δη), where δη = 0, 1

depending on the choice of boundary conditions and nk ∈ Z.

ψη(x) =

√
2π

L

∞∑
k=−∞

e−ikxckη (4)

We can see how δη effects the boundary conditions, as

ψη(x+ L/2) = eiπδηψη(x− L/2) (5)

We will use the fact that the Fock space can be decomposed as the direct sum of
N -particle Hilbert spaces i.e.

F =
⊕
N

HN . (6)

We must also define a vacuum state for the theory |0〉0 s.t.

ckη|0〉0 = 0, k > 0 (7)

c†kη|0〉0 = 0, k ≤ 0 (8)

i.e. a filled Fermi sea up to k = 0. We can also define a number operator which means
the number of Fermions relative to the filled Fermi sea, i.e.

Nη :=
∞∑

k=−∞

: c†kηckη :=
∞∑

k=−∞

{
c†kηckη − 0〈0|c†kηckη|0〉0

}
(9)

The N -particle ground state can therefore be defined as

|N〉0 = (C1)N1 . . . (CM)NM |0〉0 (10)
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where

(Cη)
Nη :=


c†Nηη . . . c

†
1η Nη > 0

1 Nη = 0

cNη+1η . . . c0η Nη < 0

(11)

Bosonic operators

With this set up, we are now in a position to define a bosonic operator. This can be
understood as being related to the Fermionic density operator, creating a superposition of
particle-hole excitations:

b†qη =
i
√
nq

∞∑
k=−∞

c†k+q,ηck,η (12)

This operator has a well-defined momentum and is normalised such that the operators
obey

[bq,η, b
†
q′,η′ ] = δηη′δqq′ (13)

And we also have, by construction,

bq,η|N〉0 = 0 (14)

Theorem 2.1. Completeness of states in HN For every |N〉0, there exists a function
f({b†, b}) such that a general state |N〉 can be reached i.e. there is an f satisfying

|N〉 = f({b, b†})|N〉0 (15)

The proof can be found in Schöller and von Delft.

The upshot of this is that the individual N -particle Hilbert spaces are now equivalent.
The only part remaining is that the electronic operators connect the separate N -particle
Hilbert spaces and by understanding these we will be able to construct a full correspondence
of the Fock spaces.

The operators that do this are the so-called Klein factors : F †η , Fη. These satisfy

[bqη, F
†
η′ ] = [b†qη, F

†
η′ ] = 0 (16)

and behave as
F †η |N〉 = f(b†)c†Nη+1,η|N1, . . . , Nη, . . . , NM〉 (17)

and
F †η |N〉 = f(b†)cNη ,η|N1, . . . , Nη, . . . , NM〉 (18)

as well as obeying anti-commutation relations

{Fη, F †η′} = 2δη,η′ (19)

[Nη, F
†
η′ ] = δη,η′F

†
η (20)
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The Fock spaces are therefore in one-to-one correspondence and thus equivalent. Before
exhibiting the operator equivalence, we construct the bosonic fields

ϕη(x) := −
∑
q>0

1
√
nq
e−iqxbq,ηe

−aq/2 (21)

φη(x) = ϕη(x) + ϕ†η(x) = −
∑
q>0

1
√
nq

[
e−iqxbq,η + eiqxb6†q,η

]
e−aq/2 (22)

with a a regulator, which can be removed at the end of any calculation. Using the
mode expansion, it is clear that

[ϕη(x), ϕη′(x
′)] = [ϕ†η(x), ϕ†η′(x

′)] = 0 (23)

and

[ϕη(x), ϕ†η′(x
′)] = −δη,η′ ln

[
1− e−

2πi
L

(x−x′−ia)
]
L→∞−→ −δη,η′ ln

(
2πi

L
(x− x′ − ia)

)
(24)

And utilising the Baker-Campbell-Hausdorff formula, we can see that

eiϕ
†
η(x)eiϕη(x) = ei(ϕ

†
η(x)+ϕη(x))e−[ϕ†

η(x),ϕη(x)]/2 =

√
L

2πa
eiφη(x) (25)

and

[φη(x), ∂ϕη′(x
′)]

L→∞,a→0−→ 2πi

[
δ(x− x′)− 1

L

]
(26)

[φη(x), ϕη′(x
′)]

L→∞,a→0−→ −δη,η′iπε(x− x′) (27)

If we look at the commutation relations of the bosonic operators with the Fermionic
operators, we can see that

[bq,η′ , ψν(x)] = δη,η′αq(x)ψη(x), αq(x) =
i
√
nq
eiqx (28)

This therefore means, that as we noted earlier bq,η′ |N〉0 = 0, that

bqη′ψη(x)|N〉0 = δη,η′αq(x)ψη(x)|N〉0 (29)

That the state ψη(x)|N〉0 is a coherent state of the bosonic operator! Because the
Fermionic operator links sectors of different particle-number, we will also need a Klein
factor, as well as having some undetermined function of x multiplying the state, but this
can be determined:

ψη(x)|N〉0 = λη(x)e
∑
q>0 αq(x)b†qηFη|N〉0 (30)

The undetermined factor λη(x) can be extracted by considering

0〈N|F †ηψη(x)|N〉0 = λη(x) =

√
2π

L
e−i2π/L(Nη−δη/2) (31)

4



We have seen how ψη(x) acts on an N -particle ground state, and we are not very
far from establishing how it acts on a general N -particle state. Using the commutation
relations, we can see that

eiϕη(x)|N〉0 = |N〉0 (32)

Therefore, with a little algebra, one can establish that

ψη(x)|N〉 = Fηλη(x)e−iϕ
†
η(x)e−iϕη(x)|N〉 (33)

And therefore obtain the bosonisation identity

ψη(x) = Fηλη(x)e−iϕ
†
η(x)e−iϕγ(x) (34)

or, employing BCH
ψη(x) = Fηa

−1/2e−iΦη(x) (35)

Φη(x) := ϕ†η(x) + ϕη(x) +
2π

L
(Nη − δη/2) (36)

3 Field-theoretical approach

We start from the free massless Dirac Fermion, i.e.

He = ivF

∫
dx
[
L†(x)∂xL(x)−R†(x)∂xR(x)

]
(37)

In this model, we can show that

〈L†(x, t)L(0, 0)〉 = − i

2π(x+ vt)
(38)

〈R†(x, t)R(0, 0)〉 =
i

2π(x− vt)
(39)

This can be compared to the free compact massless boson

H0 =
v

2

∫
dx
[
(∂xΦ)2 + Π2

]
(40)

with

Π(x, t) =
1

v
∂tΦ(x, t), [Φ(x, t),Π(x′, t)] = iδ(x− x′) (41)

If we compactify the boson to a ring of radius R i.e. impose that

Φ = Φ + 2πR (42)

then confining the x-coordinate to a ring of length L, examining the equation of motion
for the fields (

∂2
t − v2∂2

x

)
Φ(x, t) = 0 (43)
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suggests a mode expansion of the form

Φ(x, t) = q + π0
vt

L
+ π̃0

x

L
+
∑
n 6=0

1√
4π|n|

[
βne

i(kn−i|vkn|t) + h.c.
]

(44)

Where the {βn} obey bosonic commutation relations and kn = 2πn
L

. Importantly, we have
a zero-mode and q is an angular coordinate due to the compactification of the boson. π̃0

counts the number of times that the field winds around the circle. We ideally want to split
this field into left- and right-moving pieces. This is not so simple due to the presence of
the zero mode. We introduce the operator q̃ conjugate to π̃0 such that

[q̃, π̃0] = i (45)

We can then write Φ = ϕR + ϕL where

ϕR(vt− x) = Q+
P

2L
(vt− x) +

∑
n>0

1√
4πn

[
βne

ikn(x−vt) + β†ne
−ikn(x−vt)] (46)

ϕL(vt+ x) = Q̄+
P̄

2L
(vt+ x) +

∑
n>0

1√
4πn

[
βne

−ikn(x+vt) + β†−ne
−ikn(x+vt)

]
(47)

where

Q =
q − q̃

2
, Q̄ =

q + q̃

2
, P =

π0 − π̃0

2
, P̄ =

π0 + π̃0

2
(48)

and we can see that
[Q,P ] = [Q̄, P̄ ] = i (49)

If we consider the right-moving field and some exponential of this, we can show that P ∼
Fermion number. This already hints at the bosonisation relation we want to establish. We
actually proceed here by comparing correlation functions. Consider a correlation function
of the form

〈eiαϕR(x)e−iβϕR(x′)〉 = δα,β

(
ia0

x− x′

)α2

4π

(50)

which can be evaluated by simply using the mode expansion. This suggests that if we pick
α =
√

4π, that we can reproduce the Fermionic operators by taking

R(x) =
η√

2πa0

e−i
√

4πϕR(x) (51)

L(x) =
η̄√

2πa0

e−i
√

4πϕL(x) (52)

where the η, η̄ are introduced to reproduce the correct commutation relations i.e.

{η, η̄} = 0, η2 = η̄2 = 1 (53)
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4 Interacting electrons

If we consider an interacting model

H = Hfree +Hint, (54)

Hfree = −J/2
L∑
j=1

c†jcj+1 + h.c.+ h′
L∑
j=1

nj, (55)

Hint = J∆
∑
j

:nj: :nj+1:. (56)

Then, taking the continuum limit and looking at the low-energy theory, we can expand
the Fermionic operators in terms of the right- and left-moving modes

cj →
√
a0

[
R(x)eikF x + L(x)e−ikF x

]
(57)

Plugging this into the free Hamiltonian, we recover the Dirac Hamiltonian. The deriva-
tive arises from expanding L(x + a0). The free theory is therefore, as established earlier,
equivalent to the free compactified massless boson. We can to add the interaction piece,
now, and we expect this description to be valid for small ∆. Doing this, we find that we
can throw away rapidly oscillating pieces, in the appropriate filling regime, yielding

H =
vF
2

∫
dx

[(
1 +

4∆

π
sin kFa0

)
:(∂Φ)2: + :(∂Θ)2: +

J∆ sin 2kFa0√
π

:∂Φ:

]
(58)

where Θ = ϕR−ϕL. This is just a free theory, again! Completing the square and rescaling
Φ etc., we can write this as

H =
ṽF
2

∫
dx
[
:(∂Φ̃)2: + :(∂Θ̃)2:

]
(59)

Where we have changed the Fermi velocity

ṽF = vF

(
1 +

2∆

π
sin 2kFa0

)
(60)

Φ̃ = Φ̃ + 2πR̃ (61)

R̃ =
1√
4π

(
1 +

4∆ sin kFa0

π

)1/2

(62)

Using the Bethe Ansatz for the XXZ model, we can see exactly in what regime of ∆
this approximation is reasonable.
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