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1 Motivation
Spin chains have been studied extensively in condensed matter physics. The simplest and
most well-known example is that of the spin-1/2 Heisenberg model, given by

H = J
N∑
i=1

Si · Si+1, (1)

with J > 0, the solution of which was essentially given by Hans Bethe (1931). The
antiferromagnet exhibits a gapless spectrum in the the thermodynamic limit and power-
law correlations. Specifically, the quantum fluctuations are significant enough to wipe out
Néel order.

Are power-law correlations and a gapless spectrum generic of spin chains?

1.1 Lieb-Schultz-Mattis theorem
This important theorem shows that for any half-odd-integer S spin chain with a reasonably
local Hamiltonian satisfying translational and rotational invariance, that either

• the spectrum has zero gap i.e. is massless
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• the ground state is degenerate i.e. spontaneously breaks parity (site-reflection).

Consider a finite chain of even length L and periodic boundary conditions. We denote
one of potentially many ground states byt |ψ0〉, respecting parity and rotational invariance.
The key point of the proof is to construct a state |ψ1〉 which is orthogonal to |ψ0〉 and has
a low expectation energy i.e.

〈ψ1|ψ0〉 = 0, 〈ψ1|(H − E0)|ψ1〉 = O(L−1), (2)

with H|ψ0〉 = E0|ψ0〉. |ψ1〉 may or may not be an eigenstate, but if we can satisfy (2) then
such an eigenstate does exist. Labelling the sites from −L/2, · · ·L/2 − 1, we define the
unitary operator

U = exp
iπ
l

l∑
j=−l

(j + l)Szj

 , |ψ1〉 = U |ψ0〉. (3)

This operator creates a 2π twist of spins about the z-axis over a length 2l+1. We take l to
be O(L). We must now show that the two criteria of (2) are satisfied. Due to the assumed
rotational symmetry, a uniform twist over the entire chain is cost-free and therefore we
expect a slow twist to be cheap, so for |i| ≤ |l|

U †S±i U = e−iπ/l(l+i)[S
z
i , ]S±i = e±

iπ
l

(i+l),

U †S+
i S
−
i+1U = e−iπ/lS+

i S
−
i+1.

(4)

Considering the Heisenberg chain for illustrative purposes

δE = 〈ψ1|(H − E0)|ψ1〉,

= J

2 〈ψ0|
∑
i

[
(e−iπ/l − 1)S+

i S
−
i+1 + (eiπ/l − 1)S−i S+

i+1

]
|ψ0〉.

(5)

If the system is parity-invariant, we can write

δE = J (cos π/l − 1)
∑
i

〈ψ0|S+
i S
−
i+1|ψ0〉,

∼ e0l(cosπ/l − 1) = O(l−1).
(6)

This easily generalises to a large number of local Hamiltonians i.e. δE will be the expec-
tation value of a local operator times a quantity of O(l−1).

So far, we haven’t relied on any properties of the particular representation of SU(2), but
we still need that 〈ψ1|ψ0〉 = 0, otherwise we may still have that, as l → ∞, |ψ1〉 → |ψ0〉,
which will tell us very little. The orthogonality is simply implied by the parity of the two
states being opposite. Specifically, we take the twist operation of (3) and combine this
with Szi → −Sz−i i.e.

U = exp
iπ
l

l∑
j=−l

(j + l)Szj

 , |ψ1〉 = U exp
−2πi

l∑
j=−l

Szj

 |ψ0〉 (7)
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The energy of this new |ψ1〉 is unchanged but, as the sum contains an odd number of
spins, the exponential simply reduces to 2πi(n − s) n ∈ Z. Therefore, for s integer/half-
odd integer, |ψ1〉 is parity even/odd respectively, relative to the ground state. Hence, for
half-odd integer, both of the criteria are satisfied.

This means that as L→∞, there may be a gapless, particle-like excitation with nega-
tive parity, or parity may be spontaneously broken with two ground states and a gap above
each. An example of this is dimer configurations e.g. |ψ〉 = |α1, α2, α3, α4, · · · 〉εα1,α2εα3,α4 · · · .

1.2 Haldane conjecture
This proof can be made more rigorous, but still only holds for half-odd integer spin chains.
What about generic integer spin chains? For large spins, one can map such spin chains
onto an O(3) non-linear sigma model. From this, Haldane conjectured that the Heisenberg
antiferromagnet is gapped for integer spin, but not for half-odd integer spin.

2 Majumdar-Ghosh model
A natural extension to the spin-1/2 Heisenberg model is the J1-J2 model, which accounts
for a next-nearest-neighbour exchange interaction. This has the general form of

H = J1

N∑
i=1

Si · Si+1 + J2

N∑
i=1

Si · Si+2 (8)

This Hamiltonian has, a priori, richer physics than the Heisenberg model, as one might
expect that the J2 term could introduce frustration into the system. The specific case
where J1 = J = 2J2 is known as the Majumdar-Ghosh model viz.

HMJ = J
N∑
i=1

Si · Si+1 + J

2

N∑
i=1

Si · Si+2 (9)

2.1 Exact ground state of MJ
The reason that the MJ model has a special name is that it is possible to find exactly the
(twofold degenerate) ground state of this model. This is most easily achieved by considering
the operator

Str
i := Si−1 + Si + Si+1 (10)

This has the property that

Str
i · Str

i = 2Si · (Si−1 + Si+1) + 2Si−1 · Si+1 (11)

If this is summed over all of the spins, we recover the Majumdar-Ghosh Hamiltonian up
to a constant, i.e.

HMG = J

4
∑
i

(
Str
i

)2
+ const.. (12)
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In order to find the ground state of the Hamiltonian, we would want to find the ground
state of this operator. In fact, we can put a lower bound on the energy of the ground state
straight away:

〈HMG〉 ≥
J

4
∑
i

3
4 = 3JN

16 (13)

Therefore, if we can find a state which saturates this bound, then we must have found a
ground state. The real question to answer, therefore, is can we find a spin-1/2 state for
every triplet of sites? Let’s try to construct one!

| ↑〉123 := (| ↑↓〉 − | ↓↑〉) | ↑〉 (14)

Naively, we would take some sort of spin-singlet coupled to another spin, to give a total
Sz = 1/2, specifically the state defined in (14). This might put us in the S = 3/2 space,
but also might put us in the S = 1/2 space or indeed a combination of both! But, it is
plausible that this, in fact, is the appropriate state: why? Well, we could calculate

(Str)2 (| ↑↓〉 − | ↓↑〉) | ↑〉 (15)

But instead consider the action of Str± on these states. As the first two spins are in the
singlet state, this just acts as a single S = 1/2 raising/lowering operator, and therefore
this must sweep out the S = 1/2 subspace. This is in the Str = 1/2 subspace for the spin
being up or down and therefore we can immediately write down two states which saturate
the bound on the ground-state energy

|MG1〉 = (| ↑↓〉 − | ↓↑〉) (| ↑↓〉 − | ↓↑〉) . . . (16)

And, due to translation invariance of the Hamiltonian, this shifted by one site. We use the
notation

|MG1〉 = [12][34][56] . . . (17)
|MG2〉 = [23][45][67] . . . (18)

It is also clear that these are the only two states which saturate this bound and are therefore
all of the ground states of the model. For a finite system without PBCs, the two states are
non-degenerate, and the splitting is exponentially small in the system size. These states
can be pictorially represented by “dimerisation” or “valence-bonding” of the spin-1/2s in
the chain.

3 AKLT Model
As the The Majumdar-Ghosh model may be viewed as a sum of projectors of three neigh-
bouring spins onto an S = 3/2 space. What exactly does this mean? We could view this
as the statement that if we are seeking a ground state of the dimerised form i.e. we want
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the ground state to be comprised of triples of S = 1/2, then the easiest way to do this is
to project into the orthogonal subspace and these states will necessarily have zero energy.
How would we construct this? Well, for composing three spin-1/2s, we must either be in an
S = 1/2 or S = 3/2 state, so we can just project away the S = 1/2 state, i.e. (Str)2 − 1/2
would do this!

AKLT’s idea was to take this idea to try to say something about spin-chains of higher
spin. Note that there is an important philosophical departure from typical condensed
matter physics: normally the idea is to write down a model of a system observed in
experiment and determine various properties about said system, such as ground state,
excitations, correlation functions etc. In this case, the perspective is turned on its head:
we cook up a specific state and then engineer a “parent Hamiltonian” for which this is the
ground state.

To do this, we must generalise the notion of a valence bond. The key observation is
that a spin S state can be represented by symmetrisation over 2S spin-1/2s. A valence
bond (i.e. spin singlet) occurs when all of these 2s spin-1/2s terminate on another site.

Imagine we have a spin-1 chain, this is described by symmetrising pairs of spin-1/2s
for each site, we then make valence bonds to neighbouring sites. For this to be the ground
state we must project out the spin-2 component for adjacent sites, as spin singlets preclude
the largest spin between pairs occurring. All we need to do is to set the Hamiltonian to
be the projector onto local spin-2 pairs to have the constructed state be the ground state
i.e. consider

(Si + Si+1)2((Si + Si+1)2 − 2), (19)

which gives the total Hamiltonion as

HAKLT =
∑
i

(1
2Si · Si+1 + 1

6(Si · Si+1)2 + 1
3

)
. (20)

Note that this doesn’t guarantee anything about uniqueness or correlation length, which
is the crucial question. If we take periodic boundary conditions, then the ground state is
unique. The state is, however, simple enough that some properties can be calculated.

We write the local wavefunction on each site by ψα and define

ψαβ = 1√
2

(ψα ⊗ ψβ + ψβ ⊗ ψα) (21)

We also take the “metric” to be the antisymmetric tensor, writing ψα = εαβψβ with ε↑,↓ = 1.
The constructed state is then written as

χαN+1
α1 = ψα1,α2ψ

α2,α3 · · ·ψαN ,αN+1 . (22)

As the inner product ψ†α1ψα2 = δα1
α2 we can calculate the norm of this state. First, we end

up with terms on each site of the form

δβiαiδ
βi+1
αi+1

+ δβiαi+1
δβi+1
αi

. (23)
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Verify, for the un-antisymmetrised terms:

1
2
(
ψ†

βi
ψ†

βi+1 + ψ†
βi+1

ψ†
βi
) (
ψαiψ

αi+1 + ψαi+1ψ
αi
)

= δβiαiδ
βi+1
αi+1

+ δβiαi+1
δβiαi+1

(24)

and for the antisymmetrised we find

εβi,β
′
iεβi+1,β′i+1εαi,α

′
iεαi+1,α′i+1

(
δ
β′i
α′i
δ
β′i+1
α′i+1

+ δ
β′i
α′i+1

δ
β′i+1
α′i

)
(25)

using εijεik = δik we have the same as in the previous case. So, we now need to expand
out the product and do the sum: if we consider∑

α2,β2

(Aδα1,β1δα2,β2 + δα2,β1δα1,β2) (δα2,β2δα3,β3 + δα2,β3δα3,β2) (26)

This is given by
(3A+ 1)δα1,β1δα3,β3 + δα1,α3δβ1,β3 (27)

We can solve this recurrence relation to give

χ†
β1
βN+1

χαN+1
α1 = 3N − 1

2 δβ1
α1δ

αN+1
βN+1

+ δβ1
βN+1

δαN+1
α1 (28)

In the periodic chain, this is simply

χ†
β1
β1χ

α1
α1 = 3N + 3. (29)

We can also calculate the correlation function 〈Sα0 Sβr 〉 via the same approach as AKLT
originally did, but we will look at it differently.

4 A glimpse of matrix product states
We can write the state of (22) in a different form. We first label the pairs of sites
{a1, b1}, {a2, b2}, · · · . The state can then always be written as

|ψ〉 =
∑

a

∑
b
cab|ab〉. (30)

where |a〉 = |a1, · · · , aN〉, |b〉 = |b1, · · · ,bN〉. We are then forced to have singlets between
bi and ai+1, which for each pair site we can write as

|Σ(i)〉 =
∑

bi,ai+1

Σbi,ai+1|bi〉|ai+1〉,

Σ =
(

0 1√
2

− 1√
2 0

)
.

(31)
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The state with all of these singlet bonds now reads

|ψΣ〉 =
∑

a

∑
b

Σb1,a2Σb2,a3 · · ·ΣbN ,a1|a〉|b〉, (32)

note that this is a product state across the “internal sites” of the composite spins. We
now need to symmetrise to reduce the spin-1/2s to spin-1s, as before. We can do this by
projecting with

Mσ
ab|σ〉〈ab|, (33)

which projects the configiuration |ab〉 into the spin-1 state |σ〉 on each site. We take

M+ =
(

1 0
0 0

)
, M0 =

(
0 1√

2
1√
2 0

)
, M− =

(
0 0
0 1

)
. (34)

Doing this projection, we find the total projection operator is∑
σ

∑
ab
Mσ1

a1,b1 · · ·M
σL
aL,bL
|σ〉〈ab|, (35)

and therefore the AKLT state is given by

|ψ〉 =
∑
σ

Tr [Mσ1Σ · · ·MσLΣ] |σ〉. (36)

Defining Ãσ = MσΣ, we can write this as

|ψ〉 =
∑
σ

Tr
[
Ãσ1 · · · ÃσL

]
|σ〉. (37)

This is known as a matrix product state. For the AKLT model, the ground state is precisely
of this form, with A given by 2×2 matrices. Encoding the full quantum state in essentially
three matrices is very efficient and can reduce the calculation of various physical quantities
to fast linear algebra calculations. Upon normalising we have

|ψ〉 =
∑
σ

Tr [Aσ1 · · ·AσL ] |σ〉,

A+ =
(

0
√

2
3

0 0

)
, A0 =

(
− 1√

3 0
0 1√

3

)
, A− =

( 0 0
−
√

2
3 0

)
.

(38)

Just to clarify, this is done by evlauating

〈ψ|ψ〉 =
∑
σi,σ′i

〈σ′|σ〉Tr
[
Aσ
′
1 · · ·Aσ′N

]
Tr [Aσ1 · · ·AσN ] ,

= Tr
(∑
σ1

Aσ1∗ ⊗ Aσ1

)
· · ·

(∑
σ1

AσN ∗ ⊗ AσN
)
,

= TrEN .

(39)
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with

E =
∑
σ

Aσ∗ ⊗ Aσ =


1
3 0 0 2

3
0 −1

3 0 0
0 0 −1

3 0
2
3 0 0 1

3

 , (40)

(N.B. This is (92), which is incorrect in Schollwöck), which has eigenvalues 1,−1/3,−1/3,−1/3,
which means that for L → ∞ this is exponentially well normalised. To calculate the cor-
relator, we will just consider the correlator 〈S+

r S
−
0 〉. With the MPS formulation, this is

simply

〈ψ|S+
r S
−
0 |ψ〉 =

∑
{σi,σ′i}

〈σ′|S+
r S
−
0 |σ〉Tr

[
Aσ
′
0 · · ·Aσ′N−1

]
Tr [Aσ0 · · ·AσN−1 ] . (41)

The matrix element is trivial and enforces σ′r = σr +1, σ′0 = σ0−1. We therefore, similarly
to before, just need to calcuate

〈ψ|S+
r S
−
0 |ψ〉 = Tr

[(
A+ ⊗ A0 + A0 ⊗ A−

)
Er−1

(
A− ⊗ A0 + A0 ⊗ A+

)
EN−r−1

]
. (42)

This is simple linear algebra and can be done exactly for the 4× 4 matrices we are dealing
with, yielding

〈ψ|S+
r S
−
0 |ψ〉 = 4

3(−1)r3−r + 4
3(−1)L−r3−L+r,

lim
N→∞

〈ψ|S+
r S
−
0 |ψ〉 = 4

3(−1)r3−r.
(43)

This shows that the correlation function of this local variable is exponentially localised.
AKLT also go on to show that the energy gap is finite and various other features of the
model.
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