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The general properties of the factorized S-matrix in two-dimensional space-time are 
considered. The relation between the factorization property of the scattering theory and the 
infinite number of conservation laws of the underlying field theory is discussed. The fac- 
torization of the total S-matrix is shown to impose hard restrictions on two-particle matrix 
elements: they should satisfy special identities, the so-called factorization equations. The 
general solution of the unitarity, crossing and factorization equations is found for the 
S-matrices having isotopic O(N)-symmetry. The solution turns out to have different propert- 
ies for the cases N = 2 and N > 3. For N = 2 the general solution depends on one para- 
meter (of coupling constant type), whereas the solution for N > 3 has no parameters but 
depends analytically on N. The solution for N = 2 is shown to be an exact sohton S-matrix 
of the sine-Gordon model (equivalently the massive Thirring model). The total S-matrix 
of the model is constructed. In the case of N > 3 there are two “minimum” solutions, 
i.e., those having a minimum set of singularities. One of them is shown to be an exact 
S matrix of the quantum O(N)-symmetric nonlinear a-model, the other is argued to describe 
the scattering of elementary particles of the Gross-Neveu model. 

1. INTRODUCTION 

The general two-dimensional relativistic S-matrix (not to mention higher space-time 
dimensionalities) is a very complicated object. In two space-time dimensions, how- 
ever, a situation is possible in which the total S-matrix being nontrivial is simplified 
drastically. This is the case of factorized scattering. Generally, the factorization 
of a two-dimensional S-matrix means a special structure of the multiparticle S-matrix 
element: it is factorized into the product of a number of two-particle ones as if an 
arbitrary process of multiparticle scattering would be a succession of space-time 
separated elastic two-particle collisions, the movement of the particles in between 
being free. 
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The factorized S-matrix has been first discovered in the nonrelativistic problem of 
one-dimensional scattering of particles interacting through the S-function pair 
potential [l-3]. Furthermore, the factorization is typical for the scattering of solitons 
of the nonlinear classical field equations completely integrable by the inverse scattering 
method [4-61. Note, that all the dynamical systems leading to the factorized S-matrix 
possess, as a common feature, an infinite set of “close to free” conservation laws1 
This set of conservation laws is considered to be a necessary and sufficient condition 
for the S-matrix factorization [7-l I]. Some speculations about this point are presented 
in Section 2. 

The expressibility of the multiparticle S-matrix in terms of two-particle ones pro- 
vides an essential simplification and enables one to construct in many cases the total 
S-matrix up to the explicit calculation of the two-particle matrix elements themselves. 
In the present paper we construct a certain class of the relativistic factorized S-matrices 
being invariant under O(N) isotopic transformations. We use the method first 
suggested by Karowski, Thun, Truong and Weisz [12] (in the sine-Gordon context). 
The selfconsistency of the factorized structure of the total S-matrix turns out to 
impose special cubic equations (the factorization equations in what follows) on the 
two-particle S-matrix elements (see Section 2). Therefore, the factorization, unitarity 
and crossing symmetry provide a nontrivial system of equations which is basic for 
the method mentioned above. The general solution of these equations has an am- 
biguity of CDD type: there is a “minimum solution” (i.e., the solution having mini- 
mum set of singularities); one obtains the general one adding an arbitrary number of 
auxiliary CDD poles. 

Are there any two-dimensional quantum field theory (QFT) models that lead to 
these S-matrices? Most of the nonlinear classical field equations have evident QFT 
versions. The problem of factorizing quantum S-matrices of these models (which is 
closely connected with that of “surviving” classical conservation laws under quanti- 
zation) is nontrivial and requires special investigation in each case. In this paper we 
consider three models, the aim is to show that they lead to O(N)-symmetric factorized 
S-matrices. 

(1) The quantum sine-Gordon model, i.e., the model of a single scalar field 
d(x), which is defined by the Lagrangian density: 

where m, is a mass-like parameter and j3 is a coupling constant. 

It is well-known that the classical sine-Gordon equation is completely integrable 
[6]. The structure of the quantum theory has been also studied in detail. The mass 

1 The meaning of this term is as follows. In the asymptotic states where all particles are far enough 
from each other these conservation laws tend to those of the theory of free particles. The latter laws 
lead to conservation of the individual momentum of each particle and can be formulated, e.g., as 
the conservation of sums of the entire powers of all particle momenta C, p."; n = 1, 2,... [71. 
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spectrum of this model has been found by a quasiclassical method [13-l 51. It contains 
particles carrying the so-called “topological charge”‘-quantum solitons and corre- 
sponding antisolitons-and a number of neutral particles (quantum doublets) which 
can be thought of as the soliton-antisoliton bound states; the “elementary particle” 
corresponding to field #J turns out to be one of these bound states. Some of the quasi- 
classical results (the mass formula for the doublets) proved to be exact [ 151. 

The other exact result has been obtained by Coleman [16] (see also Refs. [ 17, 191). 
The quantum sine-Gordon model is equivalent to the massive Thirring model, i.e., 
the model of charged fermion field, defined by the Lagrangian density 

provided the coupling constants are connected by 

g/x = 47rjB” - 1. (1.3) 

Fundamental fermions of (1.2) are identical to quantum solitons of (1.1). 
There is a considerable amount of results in support of the factorization of the 

quantum sine-Gordon S-matrix; these results are mentioned in Section 4. 

(2) The quantum chiral field on the sphere S”-’ (N = 3,4,...) (O(N) symmetric 
nonlinear a-model) defined by the Lagrangian density and the constraint 

(1.4) 

where g, is a (bare) coupling constant. This model is O(N) symmetric, renormalizable 
and asymptotically free [20, 121. The infrared charge singularity of this model seems 
to cause the disintegration of the Goldstone vacuum [22]. True vacuum is O(N) 
symmetric and nondegenerate: all particles of the model are massive and form 
O(N)-multiplets. This situation is surely the case when N is large enough [23, 241 
and we suppose it is valid for N > 3. 

In Section 5 some arguments in favour of S-matrix factorization in the model (1.4) 
are presented. The first evidence of this phenomenon is based on the properties of 
the l/N expansion of the model [23,24]. Namely, the absence of 2 + 4 production 
amplitude and the factorization of 3 ---, 3 amplitude can be shown to the leading order 
in l/N [25]. A more rigorous proof of the o-model S-matrix factorization follows from 
the recently discovered infinite set of quantum conservation laws [26,27]. In Section 5 
we review briefly the results of Ref. [26]. 

2 In model (1.1) the topologic charge q is connected with the asymptotic behaviour of the field 

+(.Y, t ) as x ---t & m : 
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(3) The Gross-Neveu model, i.e., the model of N-component self-conjugated 
Fermi-field &(x); i = 1, 2,..., N (N > 3) with four-fermion interaction 

(1.5) 

where 5, = &y,, . Like the chiral field this model is renormalizable, asymptotically 
free and explicitly O(N) symmetric. 

Model (1.5) has been studied by Gross and Neveu in the limit of N + cc [28]. 
They have found a spontaneous breakdown of discrete y,-symmetry (the field 

d-l1 dirlli 9 ac mres a nonzero vacuum expectation value) leading to the dynamical 
mass transmutation. Using quasiclassical method Dashen, Hasslacher and Neveu 
[29] have studied the model in the same N + 03 limit. These authors have found a 
rich spectrum of bound states of the fundamental fermions of this model and deter- 
minded their masses. 

We support the factorization of the Gross-Neveu S-matrix by arguments which 
are quite analogous to those for model (1.4). 

The paper is arranged as follows. In Section 2 general properties of factorized 
scattering are considered, factorization equations are introduced and their meaning 
is cleared up. Furthermore, a convenient algebraic representation of the factorized 
S-matrix is suggested. Sect. 3 contains the general solution of analyticity, unitarity 
and factorization equations for the S-matrix having O(N) isotopic symmetry. The 
“minimum” solutions of these equations turn out to be essentially different for N = 2 
and N 2: 3. The solution for N = 2 depends on one parameter of coupling constant 
type. As it is shown in Section 4 this solution turns out to be the exact S-matrix of 
quantum sine-Gordon solitons. In this Section we construct the total sine-Gordon 
S-matrix too, which includes all bound states (doublets). For the case N ,Y 3 “mini- 
mum” solutions of Section 3 do not depend on any free parameters. They correspond 
to asymptotically free field theories with the dynamical mass transmutation. In 
Sections 5 and 6 one of these solutions is shown to be the S-matrix of model (1.4) 
and the other-to be an exact one of elementary fermions of (1.5). 

2. FACTORIZED SCATTERING, GENERAL PROPERTIES, FACTORIZATION EQUATIONS 

Consider a two-dimensional scattering theory and suppose that the underlying 
dynamical theory is governed by the infinite set of conservation laws, the corre- 
sponding conserving charges Qn : n = 1, 2,..., co being diagonal in one-particle 
states: 

Qn 1 p’“‘; z w;,“‘(p) p’“‘,.,. (2.1) 

In (2.1) p is the particle momentum and (a) letters the kind of particle (if the theory 
contains more than one kind). Suppose, furthermore, that the eigenvalues wll(p) 
form the set of independent functions. Tn fact. all the known systems with the infinite 
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number of conservation laws permit such a choice of the set Qn that w,(p), speaking 
roughly, should be the entire powers of the momentum p. E.g., for the sine-Gordon 
case they are: 

wg+l(p) = pzn+l; d$ (p) = (p’ + may pzn, (2.2) 

where IYI, is the mass of the particle (a). The laws described above are said to be 
“deformation of free laws”. If the theory is governed by laws of this type the corre- 
sponding scattering theory satisfies strong selection rules (first noticed by Polyakov). 
Namely: 

(i) Let {m,} be the mass spectrum of the theory. Then the number of particles 
of the same mass m, remains unchanged after collision. 

(ii) The final set of the two-momenta of particles is the same as the initial one.3 

These two selection rules become evident if one takes into account that: 

(a) Qn i ppl’, pkL) ,..., p$;‘, in(out):) 

= [~‘,“~‘(p~) + ... + w$)(p,)] 1 pj”“,..., p$’ . in(out)j. (2.3 

(b) d&j& = 0 

and hence 

c w$‘(pj) = c wy(pJ. (2.4) 
jein @out 

Note that all the intermediate states where the particles are far enough from each 
other should satisfy both selection rules (i) and (ii) too. This note, together with the 
special properties of the two-dimensional kinematics, gives an impression that if 
the theory is governed by an infinite set of conservation laws the multiparticle S-matrix 
elements can be expressed in terms of two-particle ones. 

To clarify this point consider the space of configurations of the system of Nparticles. 
There are N! disconnected domains in this space where all the particles are far enough 
from each other and one can neglect interaction between them. Let {x} = {x1 ,..., xN} 
be the coordinates of the particles and R-the interaction range (we suppose the 
latter to be finite). Then each domain can be identified by the succession of inequalities 
xpl < xp3 < ... < xpN where 1 .Y~~+~ - xpi 1 > R and P is any permutation of the 
integers I, 2,..., N. We denote this domain by X, . 

The free motion of particles in these domains can be described in terms of the wave 
function Y(x, ,..., x,~); {x} E X, Selection rules (i) and (ii) mean now that if the incident 
particles are of momenta p1 > p2 > ... > pN , the wave function in each domain 

3 It may appear that (i) and (ii) mean that the S-matrix is diagonal in the momentum representa- 
tion. It is not true if the theory contains different particles (having different internal quantum numbers, 
e.g., particle and antiparticle) of the same mass. In this case the exchanges of momenta between these 
particles and other nondiagonal processes are possible (see Sect. 3). 
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should be a superposition of waves, the set of wave vectors being selected by these 
rules: 

YP(Xl >..., xN) = 1 C(P, P’) exp{ip,,x-P,, -t ... + ipPNxP,Nj; {xj E xp . (2.5) 
P’ 

Here summation is carried out over all permutation P' of p1 ,..., pN , permitted by 
(i) and (ii). Symmetrization (antisymmetrization) in the coordinates of identical 
particles is implied in (2.5). The coefficients C(P, P’) are functions of the domain 
X, and of the permutation P'. In particular, the coefficient C(P, Z) describes the inci- 
incident wave in the domain X, ; to obtain the scattering wave function one 
puts C(P, 1) = 0 if P # I and C(I, I) = 1 (here I is identical transposition). The 
coefficients C(P, 1) (1 is the inverse transposition ?(I, 2,..., N) = (N, N - l,..., 1)) 
describe outgoing waves in these domains and thus they are elements of the N-particle 
S-matrix. For example, in the case of two particles of the same mass the wave function 
becomes 

YJ z14ic2(x1 , &) = eimeiw’ _ SR(P1 , pz) e’“““le’“‘““; 

(2.6) 
Y 51sr2(x1 , x,) = ST(p, , pz) eip1s1eip2sz. 

In Eq. (2.6) SR and S, are two-particle S-matrix elements corresponding to backward 
scattering (reflection) and forward scattering (transition). 

It is convenient to picture the situation as the scattering of the N-dimensional 
plane wave in the system of semipenetrable hypersurfaces xi = .‘cj (for any i andI). 
Far enough from these hypersurfaces the wave is described by (2.5); near them the 
motion is more complicated because of the interaction between the particles. More- 
over, if the relativistic problem is taken into consideration the motion in the inter- 
action region cannot be treated in terms of the wave function of a finite number of 
variables (because the virtual pair creation is possible). The determination of the coeffi- 
cients C(P, P’) in (2.5) requires the extrapolation of the wave function from one 
domain of free motion to another through the boundary between them, where the 
particles are in interaction. The solution of the problem of interacting particles is, 
in general, a very complicated task. Note, however, that the extrapolation of the wave 
function can pass through the region of the boundary, where two particles are close 
and others are arbitrary far from them and each other (e.g., / x, - xa ! 5 R, 
I xi - xl I 3 R / x, - xi I > R and 1 xi - xi 1 > R; i, j = 3, 4 ,... ). These regions 
describe two-particle collisions and there the extrapolation conditions are the same 
as in the two-particle problem. Therefore, in this case the knowledge of the two- 
particle S-matrix elements provides one with a sufficient information to determine 
all the coefficients C(P, P’) and, therefore, to obtain the multiparticle S-matrix. 
N-particle S-matrix element turns out to be a product of N(N - I)/2 two particle 
ones. Such a structure is spoken about as the factorized S-matrix. Note that the 
possibility of this structure is due to the fact that the wave function in each domain 
A’, is a superposition of a finite number of waves, the latter being a consequence 
of the infinite set of conservation laws. 
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Of course, this consideration connecting the factorization and the existance of 
infinite number of conservation laws is not a rigorous proof; a complete evidence can 
be found in a recent paper [l I]. All the considerations presented in the above para- 
graph are of exact sense in the case of the one dimensional problem of nonrelativistic 
particles interacting via the S-function potential [l-3]. 

The factorized Smatrix corresponds to the following simple scattering picture. In 
the infinite past particles of momenta p1 > pz > .‘. > p.” were spatially arranged 
in the opposite order: x1 < x2 < “’ < .xN . In the interaction region the particles 
successively collide in pairs; they move as free real (not virtual) particles in between. 
The set of momenta of particles is conserved in each pair collision; if the particles 
are of different mass the transition is possible only, the collision of particles of the 
same mass may result in the reflection too. After N(N - 1)/2 pair collisions the par- 
ticles are arranged along the x axis in the order of momenta increasing. This corre- 
sponds to the final state of scattering-outgoing particles. 

FIG. I. The space-time picture illustrating the multiparticle factorized scattering. 

The space-time picture of the multiparticle factorized scattering can be represented 
by a spatial diagram; an example is drawn in Fig. 1. Each straight line in the diagram 
corresponds to any value of momentum, obviously connected with the slope of 
the line (in this diagram time is assumed to ff ow up). Two-particle collisions are repre- 
sented by the vertices where the lines cross each other; the corresponding two particle 
amplitude should be attached to each cross. The total multiparticle S-matrix element 
of the process drawn in the diagram is given by a sum of products of all the N(N - 1)/2 
two-particle amplitudes corresponding to each vertex. The summation mentioned 
above should be carried out over all possible kinds of particles flowing through 
the internal lines of the diagram and resulting in a given final state. 

The following is to be mentioned. The same scattering process can be represented 
by a number of different diagrams in which some of the lines are translated in parallel 
(e.g., see Figs. 2a and 2b). The amplitudes of these diagrams should not be added in 
the multiparticle S-matrix element. In terms of the wave function in sectors X, 
amplitudes drawn in Figs. 2a and 2b correspond to different semifronts of the same 
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a b 

FIG. 2. Two possible ways of the three-particle scattering. 

outgoing wave. Both should have the same amplitudes and phases (because of (i) 
and (ii)), i.e., be coherent. This requirement makes two-particle matrix elements 
satisfy special cibic equations, the latter being necessary conditions of the factorization. 
In what follows these equations play an essential role and we shall call them the 
factorization equations.” 

In the present paper the relativistic scattering is mainly considered. The following 
notations are convenient in this case. We shall use rapidities 8, instead of momenta 
pn of particles (of mass ITI,) 

P” ‘) = m, ch %a ; pnl = m, sh 8, (2.7) 

Two-particle amplitudes S( pa , P,J become functions of the rapidity difference of 
colliding particles 19~~ = 0, - 19, , the latter being simply connected with the s-channel 
invariant s,~ = ( pnu + pbu)2 

s ab -zz ma2 + mb2 

(m, and m,, are masses of the particles). 

+ 2m,mb ch tiab (2.8) 

right cut 
l - 

(ma+md2 

FIG. 3. The analytical structure of two-particle amplitudes in the physical sheet of the s-plane. 

4 Factorization equations and their physical sense in the problem of nonrelativistic particles 
interacting via the S-function potential have been considered in Ref. [2]; in the case of the sine- 
Gordon problem they were obtained in Refs. [30, 311 and used in Ref. [12]. 
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Two-particle amplitudes S(s) are the analytical functions in the complex s-plane 
with two cuts along the real axis s < (ma - mJ2 and s 3 (m, + VZ~)~ (see Fig. 3). The 
points s = (ma - rn# and s = (ma + mb)2, being the two-particle thresholds, 
are square root branching point of S(s). In the case of the factorized scattering 
there is only the two-particle unitarity and it is natural to suppose functions S(s) 
not to exibit other branching points. If it is the case, the functions S(0) should 
be meromorphic. Mapping (2.8) transforms physical sheet of the s-plane 
into the strip 0 < Im 8 < r (if it cannot lead to a misunderstanding we shall drop 
subindices 0 = 19,~) in the e-plane, the edges of the right and the left cuts of the 
s-plane physical sheet being mapped on the axes Tm 0 = 0 and Im 19 = 71, respectively 
(see Fig. 4). The axes Im 0 = 1~; 1 = - 1, &2 . . . . correspond to the edges of cuts of 
the other complex s-plane sheets. 

I 
I I Physical 
I 4-l 

; q 
strip 1 

I 21 I 
I 

I I 
I $,I bound 1 

I 
I 

I F I /states , 1 JmB I - - - 
I I I 

FIG. 4. The structure of the O-plane. 

The functions S(0) are real at the imaginary axis of the B-plane (real analyticity). 
In particular, at Im 6’ = 0 the relation ,S(-0) = S*(e) is valid. Crossing symmetry 
transformation s ---f 2ma2 + 2mbz - S corresponds in terms of the variable 0 to 
substitution % + ir - 0. 

In the nonrelativitic limit pnl << m, rapidities can be replaced by the nonrelativistic 
velocities e, + D, = pa/ma . All the following expressions (except those connected 
with the crossing relations) can be applied to the case of nonrelativistic S-matrices 
after replacement %, --f v, , 8, --f V~ , eoh + L’,, - vb . 

It is convenient to describe a general structure of the factorized S-matrix by means 
of a special algebraic construction [30, 251. Consider a factorized scattering theory 
containing several kinds of particles (A, B, C and so on; particles of the same kind 
are supposed to be identical; statistics is not important for our consideration). 
These particles are represented in our construction by the special noncommutative 
symbols A(B), B(B), C(e),..., the variable Q being the rapidity of the correponding 
particle. These symbols are frequently called the particles. 

The scattering theory is stated as follows. Identify asymptotical states of the 
scattering theory with the products of all the particles in the state. The arrangement of 
the symbols in the product corresponds to that of particles along the spatial axis x: 
in-states should be identified with the products arranged in the order of decreasing 
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rapidities of particles while out-states with those arranged in the order of increasing 
rapidities. For example, in-state of three particles A, A and B having rapidities 19, , 
19~ and 19~ , respectively (0, > 19~ > 0,) acquires the form A(0,) A(&) B(0,). 

Any product can be rearranged by means of a number of subsequent commutations 
of neighbour particles (the associativity of the symbol multiplication is supposed). 
Each commutation corresponds to the certain two-particle collision; this leads to 
commutation rules for the symbols A(B), B(e),.... For example, if particles A and B 
are of different mass, one writes 

44) B(b) = s~vu m) 4e,), (2.9) 

where S$B(B,,) is the transition amplitude for the reaction AB ---f AB (remind, that 
in the case of different masses, reflection is forbidden by (ii)). If particles of differerent 
kinds (say A and C) but of the same mass are under consideration the reflection is 
permitted and we should write 

Ace,) w,) -= s~~(e,,) cm 44) + sicce,,) 40,) wd. (2.10) 

Reflection and transition are indistinguishable in the case of identical particles, 
therefore 

Ate,) he,) = swu Auu 44). (2.11) 

As it was mentioned above (see footnote 3) if there are different particles of the same 
mass one of them is permitted to turn into the other in the process of two-particle 
scattering. It means that additional channels in the two-particle scattering are open 
and, hence, corresponding terms should be added into the right hand sides 
of Eqs. (2.9) (2.10) and (2.1 I). We shall not discuss this point here, there are some 
examples of such situation in the next section. 

The consistency of the commutation relations of type (2.9), (2.10), (2.11) in the 
calculation of symbols A(@, B(o) and so on and their associativity requires certain 
equations for the two-particle amplitudes to be satisfied. The latter are of two kinds. 
The identities of the first kind arise when one performs the opposite transposition of 
symbols after the direct one, and requires the result to be equal to the initial com- 
bination; these identities coincide with the two-particle unitarity relations. The multi- 
particle in-states may be rearranged into out-states in many possible successions of 
pair commutations but the result should be the same. This leads to the identities of 
the second kind. Clearly, it is sufficient to consider three particle states only and 
require the same result of permutations in two possible successions. One obtains all 
the required identities which coincide, of course, with the conditions ensuring the 
equality of triangle diagrams (see Figs. 2a, 2b), and so they are the factorization 
equations. 

If identities of both kinds are satisfied the commutation relations permit one to 
rearrange unambiguously any in-state into a superposition of out-states and then this 
construction represents the total factorized S-matrix. Its unitarity is trivial. One 
obtains the matrix S-l after the rearrangement of out-states into in-states: it differs 
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from the S-matrix in the signs of the arguments of all two-particle amplitudes 
e ab + --Bab . This change of signs leads to the complex conjugation of the two- 
particle matrix elements. Taking into account the symmetry of the S-matrix one 
obtains S- = S-l. 

3. RELATIVISTIC S-MATRIX WITH O(N)-TSOSYMMETRY. GENERAL SOLUTION 

Following the general consideration of the previous section we treat now the class 
of relativistic factorized S-matrices characterized by the isotopic O(N) symmetry. 
To introduce the O(N) symmetry we assume the existance of isovector N-plet of 
particles A, ; i = 1,2,..., N with equal masses m and require the O(N) symmetry 
of the two-particle scattering (this ensures O(N) symmetry of the total S-matrix due 
to the factorization). Namely, we assume for two-particle S-matrix the form: 

iksjl = CAj(P;) AdPi), Out i ALPI) ~k(f%~, ini, 

zx %Pl - Pi) %P2 - PI)[siksjLsl(s) + sijskLS2(s) A silsjk~2(~)] 

I-t (i tf k, PI- P2k (3.1) 

where s = ( pIP + pZL”)2 and the +(-) refers to bosons (fermions). The functions 
S,(s) and S,(s) are the transition and reflection amplitudes, respectively, while S,(s) 
describes the “annihilation” type processes: Ai + A, 4 Aj + Aj (i #j). 

The S-matrix (3.1) will be cross-symmetric provided the amplitudes S(s) satisfy 
equations S,(s) = S,(4m2 - s) and S,(s) = S,(4m2 - s). After introducing the rapidity 
variables (2.7), (2.8) we deal with meromorphic functions s,(e), S,(e) and S,(B), 
where s = 4m2 ch2(e/2), and the cross-symmetry relations become 

s,(e) = s,(h - e), (3.2a) 

s,(e) = s,(h - e). (3.2b) 

To describe now the factorized total S-matrix let us introduce, following the general 
method of Section 2, symbols Ai( i = 1, 2,..., N. The commutation rules corre- 
sponding to (3.1) are 

A,(e,) 4ce2) = SdXe12) i ue,) A,(e,) 
I;=1 

+ s,(e,,) ae,) Ai + s,ce,,) A,(e,) A,(e,). (3.3) 

It is straightforward to obtain the unitarity conditions for two-particle S-matrix (3.1) 

s,(e) s,( - 69 + s,(e) s,( -- 0) = I, 
s,(e) we) + s,w) s,(e) = 0, 

m(e) m-0) + s,(e) s,w) + sms,(-e) 

+ s,(e) we) + s,(e) a- 8) = 0. 

(3.4a) 

(3.4b) 

(3.4c) 
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Obviously, Eqs. (3.2) and (3.4) are not sufficient to determine the functions S(e). 
Further restrictions arise from the factorization equations (see Section 2). One 
obtains the factorization equations considering all possible three-particle in-products 
Ai A,(%,) &(%a), reordering them to get out-products by means of (3.3) and 
requiring the results obtained in two possible successions of two-particle commu- 
tations to be equal. The equations arising are evidently different for the cases N = 2 
and N > 3 (fewer different three-particle products are possible at N = 2). Therefore 
it is convenient to make a notational distinction between these two cases. Dealing 
with the case N > 3 we redenote the amplitudes S, , S, and S, by ur , uZ and (~a, 
respectively, reserving the original notations for the case N = 2. 

The factorization equations have the form (the derivation is straightforward but 
somewhat cumbersome) 

S,SJ, + &SJ, + SJ,S, = %w, + &S,S, + WlS2 2 

S3SlS3 + SJ2S3 = S,S,Sl + &w, + S2S3Sl 

+ s,s,s, + ~&%& + SlS,S, + w3s3 + SlS2Sl + &Wl 

for N = 2 and 

(3.5a) 

(3.5b) 

u+p3 + u$J3u2 = u3u’2u’3 ) (3.6a) 

u2u1(31+ U$J2Ul = u3qu2, (3.6b) 

Nv,u, + ul"3u2 + UlU303 + uluzu1 

+ u2"3ul + u3"3u1+ ul”lul = u3"lu3 (3.6~) 

for N > 3. For each term in (3.5) and (3.6) the argument of the first, the second and 
the third S (u in (3.6)) is implied to be 8, 8 + 0’ and %‘, respectively. 

The factorization equations turn out to be rather restrictive. They allow one to 
express explicitly all the amplitudes in terms of one function. 

General solutions for both systems (3.5) and (3.6) satisfying the real-analyticity 
condition (all the amplitudes are real if 8 is purely imaginary) are derived 
in Appendix A. For system (3.5) (i.e., for N = 2) this solution is 

S,(6) = i ctg (9) cth (+) S,(e) 

S,(e) = i ctg (9) cth ( ‘“@- ‘) ) S,(e) 

(3.7a) 

with arbitrary real y and 6. The general solution for (3.6) contains only one free 
parameter h and have the form: 

CT,(%) = - g a,(%) (3.8a) 

al(%) = - 
i X 

i[(N - 2)/2] h - % u2(e)’ 
(3.8b) 
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The restrictions on the amplitudes S,(e) and ~~(0) come from the unitarity condi- 
tions (3.4). The equations (3.4b) and (3.4~) are satisfied by (3.7) and (3.8) identically, 
while equation (3.4a) gives 

s2te> S2(-@ = 
sin2 (+I sh2 (+I 

sin2 (-f!$) sh2 (?I + ~0~2 ($!-I ch2 (9) (3’g) 

for N = 2 and 

for N 3 3. 
Until now we have deliberately avoided 

82 
=8” (3.10) 

the use of the cross-symmetry relations 
(3.2). Although the above consideration concerns the relativistic case, the unitarity 
conditions (3.4) and factorization equations (3.5), (3.6) are valid for any non- 
relativistic O(N) symmetric factorized S-matrix as well, under the substitution: 

e k ~ -+-.-I k - k, 
m m ’ 

(3.11) 

where k, and k, are momenta of the colliding particles. Therefore, the general 
solutions (3.7), (3.9) and (3.8), (3.10) are still valid (after the substitution (3.11)) in 
a nonrelativistic case. This will be used at the end of Section 4. 

Equations (3.2) are especially relativistic. They turn out to give restrictions on 
free parameters in (3.7) and (3.8). It is easy to see that (3.2) is satisfied only if 

S=?i- (3.12) 

in (3.7), (3.9) and 

x=-i% 
N-2 

(3.13) 

in (3.8), (3.10). Thus, the formulas for N 3 3 do not actually contain any free para- 
meter. This circumstance will be important in Section 5. 

Equation (3.2a) (which is certainly valid for a2(B) as well as for S,(S)) together 
with (3.9) and (3.10) will be used to determine S,(S) and a,(B). In both cases N = 2 
and N > 3 the solution admits the CDD-ambiguity only [32]: an arbitrary solution 
can be obtained multiplying some “minimum” solution by a meromorphic function 
of the type 

(3.14) 
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where 01~ , 01~ ,..., (Ye are arbitrary real5 numbers. It is the “minimum” solutions, i.e., 
the solutions having a minimum set of singularities in the 0 plane, that will be of most 
interest below. For N = 2 such a solution can be represented in the form 

(3.15) 

where 

In the case N > 3 there are, in general, two different “minimum” solutions (the 
exceptional cases are N = 3 and N = 4, when these two solutions coincide). We 
denote these solutions a;+‘(O) and u:-)(O); they can be written in the form 

p(e) = Q(*)(e) ~(*)(h - e), (3.17) 

Q'*'(e) = 
ri;&- . e I,,T(h-i&) 

+$-- i&)T(-i&)' 

(3.18) 

The difference between these two solutions is of the CDD type (3.14) 

(3.19) 

In the following Sections we point out the relation between the solutions (3.15) 
and (3.17) and certain two-dimensional quantum field theory models. Namely, we 
show that (3.15) together with (3.7a, b) is an exact S-matrix of quantum sine-Gordon 
solitons, while the solutions us+’ and &‘(O) for N > 3 give the exact S-matrices 
for the quantum chiral field (1.4) and for the “fundamental” fermions of Gross- 
Neveu model (1.5), respectively. 

5 We consider the solutions having singularities on the imaginary 8 axis only, i.e., the solutions 
exhibiting bound and virtual states only. 
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4. EXACT S-MATRIX OF THE QUANTUM SINE-GORDON MODEL 

Quantum sine-Gordon model (1.1) is the most known example of relativistic 
quantum field theory leading to the factorized scattering. There are various results 
ensuring the factorization of the sine-Gordon S-matrix. Complete integrability of the 
classical sine-Gordon equation [6] means the existance of an infinite number of 
conservation laws in the classical theory which are “deformation of free ones”. 
The analogous set of conservation laws is also present in the “classical” massive 
Thirring model (which corresponds to the “tree” approximation for the Lagrangian 
(1.2) [33, 341). The important problem of the conservation laws in quantum theory 
has been treated in Ref. [34] where such conservation laws were shown to survive 
after quantization by the perturbation theory approach (in all perturbational orders). 
The absence of particle production and factorization of multiparticle quantum 
S-matrix which are the consequenses of conservation laws has been previously 
demonstrated applying the direct sine-Gordon perturbative calculations by Arefyeva 
and Korepin [S].6 The same result can be obtained in perturbation theory of massive 
Thirring model, i.e., for the soliton scattering [35, 361. The semiclassical arguments 
for the soliton S-matrix factorization are also possible [14]. We use here the results 
mentioned above and treat the total sine-Gordon S-matrix as a factorized one. 

The bound states of quantum solitons (the quantum doublets) and the soliton 
scattering have been investigated by a semiclassical approach in Refs. [13-15, 37, 381. 
We represent here some semiclassical formulas which will be necessary below. 

The two-particle scattering amplitude s(O) for the solitons of the same sign and 
the transition amplitude s,(O) for soiton-antisoliton scattering calculated in the main 
semiclassical approximation have the form [13, 14, 371 

(4.1) 

(where fl is introduced in (1 .I)) which is connected in a simple way with parameters 
of the classical soliton scattering. Calculation of one-loop correction leads to the 
change /J’ + y’ in (4.1) (see Ref. [46]) where7 

y’ = 8’ [l - g]-‘. 

6 Besides the explicit expressions for the factorized sine-Gordon “elementary” particle S-matrix 
has been first proposed in [8] (see also [9, lo]). 

’ The singularity of the sine-Gordon theory at p2 = 8~ has been discussed by Coleman [16]. 
As shown in [16], the Hamiltonian of the theory becomes unbounded from below at /3” > 8n, 
provided the standard renormalization technique is used; the phenomenon is of the ultraviolet 
nature. This scarcely means the failure of the theory with ,!I” > 8a, but rather indicates a lack of 
superrenormalizability property and suggests that another renormalization prescription is necessary 
at 8” > 877. Throughout this paper we restrict our consideration to the case 8” < 8~. 
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The semiclassical soliton-antisoliton reflection amplitude (which takes into account 
an imaginary time classical trajectory, see Ref. [38]) is 

(4.2) 

The derivation of the semiclassical mass spectrum of the quantum doublets was 
carried out in papers [13-151. In the first two semiclassical approximations it is 

n,(sem) 
71 = 2m sin +$- ; 

( 1 
n = 1, 2,... < +, 

Y 

where m is a soliton mass. The authors of [15] have presented some arguments for 
formula (4.3) to be not only semiclassical but exact. Independent supports for this 
hypothesis have been given in [lo, 39, 401. The exact solution for the S-matrix which 
is derived in this section also confirms the exactness of spectrum (4.3). 

We begin constructing the quantum sine-Gordon S-matrix stressing that the model 
exhibits an O(2) isotopic symmetry. In terms of the massive Thirring fields Z/ this 
symmetry is quite obvious; it corresponds to the phase invariance # - eid# of (1.2). 
From the view-point of the sine-Gordon Lagrangian O(2) symmetry is of a more 
delicate nature; it is the rotational symmetry of the disorder parameter (see Ref. [41] 
for the concept of the disorder parameter). The detailed discussion of the last point 
is beyond the scope of this paper. For our purpose it is sufficient to note only that 
the soliton and antisoliton of model (1.1) can be incorporated into an isovector O(2) 
doublet. Following the convention of Section 3 we denote real components of this 
doublet by symbols A,(@; i = 1, 2. Then th e soliton and antisoliton themselves will 
be the combinations 

A(B) = Al(e) + d,(e); A(e) = Al(e) - hi,(e). (4.4) 

In terms of the particles A(8) and A(0) commutation rules (3.3) take the form 

44) mu = w,,) A(h) m4) + s,(e,,) A(e,) A(e,), 
44) 4h) = w,,bw,) w,), 
44) ace,) = qe,,) Ace,) iqe,). 

(4.5) 

In (4.5) S,(e) and s,(e) are transition and reflection amplitudes for the soliton-anti- 
soliton scattering while s(0) is the scattering amplitude for identical solitons. They 
are connected in a simple way with amplitudes S,(0), s,(e) and S,(e) from (3.3) 

s(e) = s,(e) + s,(e), 
w) = s,(e) + sm 
s,(e) = s,(e) -c s,(e). 

(4.6) 
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It is seen from (3.2) that 

S(O) = &.(k - 19); S,(B) = SR(h - 0). (4.7) 

The factorization and O(2) symmetry of the sine-Gordon soliton S-matrix allows 
one to apply immediately the results of the previous section. It follows from (3.71, b), 
(3.12) and (3.15) that 

S,(e) = -i sh (cy s 

sin ~ 
i 1 

(6) 
R > (4.8a) 

Y 

sh 
S(0) = -i 

i 

where (with arbitrariness of the CDD-type (3.14) only) 

s,(d) = + sin (5) u(e) 

(4.8b) 

(4.9) 

FIG. 5. The soliton-antisoliton scattering amplitudes. Location of poles (dots) and zeroes 
(crosses) in the O-plane. (a) Transition amplitude SR(O). (b) Reflection amplitude Sr(B). Some of the 
dots and crosses are displaced from imaginary axis for the sake of transparancy; actually all the 
singularities are at R,B = 0. 

and U(0) is given by (3.16). The location of zeroes and poles of functions S,(0) 
and S,(e) (4.Q (4.9) is shown in Fig. 5. Note the equidistant (with separation y/8) 
positions of S,(e) poles in the physical strip 0 < Im 0 < r. Such positions are in 
accord with the semiclassical mass spectrum (4.3). The correspondence is exact if 

y = y’. (4.10) 
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Therefore, the whole bound state spectrum (4.3) is already contained in the 
“minimum” solution (4.9), (3.16) and CDD poles need not be added. This solution 
automatically stisfies also another necessary requirement for the exact sine-Gordon 
S-matrix. If y = 8n(fiz = 47) the massive Thirring-model coupling vanished and 
the S-matrix should become unity. In fact when y = 877 one has from (4.8) (4.9) 
and (3.16) 

These two remarkable properties of the “minimum” solution (together with its 
obvious aesthetic appeal) may serve as initial arguments to choose it as the exact 
S-matrix of quantum sin-Gordon solitons. We present below a number of checks 
which confirm such a choice. 

Ify- 8n the formulas (4.8), (4.9) and (3.16) can be expanded in powers of 2g/r = 
87r/y - 1 and the expansion coefficients can be compared with the results of diagram- 
matic calculus in massive Thirring model (1.2). Such a comparison has been carried 
out in [42] up to g3 and the coincidence has been found. 

Another check is a comparison with semiclassical formulas (4.1), (4.2). The semi- 
classical limit for Lagrangian (1.1) corresponds to /?? + 0. At 0 fixed and p2 + 0 exact 
relation (4.8a) converts into semiclassical one (4.2). Furthermore, it can be easily 
verified that asymptotics of the exact amplitudes S(0) and S,(e) as y - 0 coincide 
with (4.1). To do this one represents the exact ,S,(e) from (4.8a), (4.9) in the form 

h(e) = fi 
I-1 r 

i 
1 
2 

x - (4.11) 

Changing in (4.4) the infinite product by a sum in the exponent and then replacing 
at y + 0 the summation by the integration one reproduced (4.1) exactly. 

The larger the coupling parameter, the larger the mass of each bound state (4.3) 
(in units of the soliton mass). The n-th bound state acquires the soliton-antisoliton 
threshold when y = 8rr/n, and when y > 8rjn it disappears from the spectrum 
converting into the virtual state. At y 2 87~ all bound states (4.3) including the 
“elementary” particle of sine-Gordon Lagrangian (1 .I) become unbound (remind 
that “elementary” particle is one of states (4.3), corresponding to n = 1 [15, 141). 
Thus, at y 3 85~ the spectrum contains soliton and antisoliton only. The values 
“J >- 87~ correspond to g < 0 in (1.2), i.e.. to the repulsion between soliton and anti- 
soliton. 

Note that at y = 87r/r1 the reflection amplitude (4.9) vanishes identically (this 
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property appears already in semi-classical formula (4.2)) while transition apmplitude 
S,(O) acquires, as a result of special cancellation of poles and zeroes in Fig. 5, a simple 
form: 

n-1 

This expression together with the hypothesis of its exact nature at y = 8rr/n has 
been first presented by Korepin and Faddeev [14]. The general formulas (4.8), (4.9), 
(3.16) for arbitrary y were given in [43]*. 

Commutation rules (4.5) together with explicit expressions (4.8), (4.9) and (3.16) 
for the two-particle amplitudes represent S-matrix for an arbitrary number of solitons 
and antisolitions. To obtain the total sine-Gordon Smatrix one should supplement 
it with elements describing the scattering of any number of solitons and bound states 
(4.3). We denote the latter particles as B, ; n = 1,2,... < 87r/y. 

Particles B, with even (odd) values of n turn out to have positive (negative) C-parity. 
This can be seen if one considers the soliton-antisoliton ammplitudes with the definite 
s-channel C-parity: 

s+(e) = H&(e) + S,(@l, (4.14a) 

S-(d) = &!-ge> - s,(e)]. (4.14b) 

The amplitude s+(O) has even subset n = 2,4,... of bound state poles 0 = i?~ - in(r/8) 
only, while S-(O) exhibits only odd subset 12 = 1, 3,... (these poles of s,(e) have 
positive residues as it should be). In particular, the sine-Gordon “elementary” particle 
Bl is C-odd. 

Since the particles B, appear as poles of soliton-antisoliton amplitudes, an arbitrary 
S-matrix element involving these particles can be calculated as a residue of an 
appropriate multiparticle soliton amplitude. In terms of the algebraic formalism 
described in Section 2 algebra (3.5) of particles A(B) and A(B) should be supplemented 
with new symbols B,(B); n = 1,2,... < 87rjy and commutation rules of B, with A 
and A and of B, with B, should be specified. The procedure for the residue calcu- 
lation mentioned above corresponds to the following definition of symbols B,(o) 
in terms of A and A 

(4.15a) 

for n even, and 

for n odd. 

8 The derivation presented in 1431 is based on certain special assumptions such as exactness of mass 
spectrum (4.3) and vanishing of reflection at y = &r/n. A derivation relying on the factorization 
equations and not referring to these assumptions was first given in [12]. 
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This definition has a formal character and should be used to derive the rules for 
commutation of B, with A and of B, with B, . Considering, for instance, in-product 

-WA) @G) A(4)> using (4.5) and taking the limit O1 - 8, -+ in(r/S) by means of 
(4.15) one obtains 

44) me,) = sv4,) we,) A(4), 
2iu4) B,(e,) = we,,) ~,ce,) mu, 

(4.16) 

where 

sh tl + i cos 3 n--l sina ___ 
p)(e) l6 

1 
= rI 

f n - 32 21 
(4.17) 

sh 0 nY 1=1 

n - 21 
- i cos 16 sin2 i ~ 32 1 

is the amplitude of two-particle scattering A + B, + A + B, . Analogous consi- 
deration leads to commutation rules 

B,(4) B,(e,) = s(~~v42) Bm(e2) B,uu (4.18) 

where Pi”‘) is the two-particle amplitude for B, + B, + B, f B, scattering. 
Its explicit form is 

sh 0 t- i sin 
pi,ye) = i 

n + nz 

-id 
sh 0 + i sin 

i 

n - ttt 
___ 

16 ’ 1 

sh B - i sin 
( 

n + 171 n - nl 
~ 

16 
y 

1 
sh 0 - i sin 

( 
16 y 

1 

m-1 sin2 
171 - II - 21 

U-I 

i 32 

Z-1 sin2 

t 

m-n-21 
32 

n > tn. (4.19) 

Amplitudes (4.17) and (4.18) turn out to be %&-periodic functions of 8 (in fact, 
this property is dictated by the cross-symmetry and the two-particle unitarity of 
P)(e) and S(“sWZ)(0)). The location of poles and zeroes of these amplitudes is shown 
in Fig. 6. Note the set of double poles OZ = i(n/2) i- [(21 - n)/l6] y; I = 1, 2,..., n - 1 
of Pn)(e) for n 3 2; these “redundant” poles do not correspond to any bound states. 
Single poles 0 = i(r/2) + in(y/l6) and 19 = i(n/2) - in(y/l6) are the s-channel and 
u-channel soliton poles, respectively: in the s-plane these poles are at s = m2 and 
u = m2 (m is the soliton mass). 

In amplitude S(n,m)(e) only the poles 0 = i[(n + m)/l6] y and 0 = ir - 
i[(n + m)/16] y correspond to the real particle B,+, , all other poles are redundant. 
The appearance of poles Bnfm in the amplitude S(n.7n)(@ allows one to interpret 
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FIG. 6. Poles and zeroes of the soliton-bound state and the bound state - bound state scattering 
amplitudes. (a) S(n+9) amplitude for n = 5. (b) S In+)(@) amplitude for n = 4, m = 2. 

any particle BL for 1 > 2 as a bound state B, + B, with n + m = I9 and, conse- 
quently, to interpret Bz as a bound state of I “elementary” particles B, . A possibility 
of such interpretation was mentioned in Ref. [15]. 

In the case m = n = I Eq. (4.19) gives the two-particle amplitude of “elementary” 
particles 

~‘l.l’(~) = sh 0 + i sin(r/8) 
sh 0 - i sin(r/8) ’ 

(4.20) 

This expression can be expanded in powers of /3” and compared with /3*-pertur- 
bation theory results for Lagrangian (1.1). Formula (4.20) together with its pertur- 
bation verification was presented in [g-10] as a solution of analyticity and unitarity 
for particles B, . 

Formulas (4.16-4.19) solve the bound state problem of the sine-Gordon model. 
Together with (4.5) (4.84.10) and (3.16) they represent the total quantum sine- 
Gordon S-matrix. 

To conclude this section let us consider the nonrelativistic version of 0(2)-symmetric 
S-matrix. After substitution (3.11) the general solution of the factorization equations 
becomes, instead of (4.8), (see Appendix A) 

9 One can verify that definition 

is consistent with (4.14) and completely self-consistent [31]. 
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S(K) = -i 

(4.21a) 

(4.21 b) 

where K = 86/y. Since we do not require any crossing-symmetry now, y and K 

are independent parameters. The unitarity condition, then, gives the following 
equation 

S,(k) S,(-k) = 

The “minimum” solution of (4.22) is 

T(-i+ - K)+i+K+ 1) 

ym 

’ 

(4.22) 

(4.23) 

Formulas (4.21-4.23) clearly give the nonrelativistic limit of the sine-Gordon 
soliton S-matrix. Furthermore, amplitudes (4.23) and (4.21a) are just reflection and 
transition ones for the scattering on the potential 

V&x) = - g  

2 

‘h’rt ) *lY __ x 
8 

while amplitude (4.21b) describes the scattering on the potential 

VAX) = : sh2 ($ x) 

(4.24) 

(4.25) 

where G = K2 - K + 2. It is known that a system of N + M nonrelativistic particles 
of two different kinds described by the Hamiltonian 

(4.26) 

is completely integrable, i.e., it possesses an infinite number of conservation laws, 
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and its S-matrix is factorized [44,45]. So, system (4.26) describes just the nonrelativistic 
dynamics of quantum sine-Gordon solitons. The analogy between the sine-Gordon 
soliton scattering and the one on potential ~--1/cIz2x was noticed in Ref. [38]. 

5. O(N)-SYMMETRIC NONLINEAR CT-MODEL WITH IV>, 3 

Now we consider the problem what type of quantum field theory can serve as a 
dynamical background of the O(N)-symmetric factorized S-matrix of Section 3 
with N > 3. 

First of all, remind the essential difference between a general solution of Section 3 
with N 3 3 and that with N = 2. For N = 2 the solution depends on a free para- 
meter which could be interpreted as a coupling constant (in particular, a “weak 
coupling regime” can be achieved by a special choice of this parameter), while for 
N 3 3 no free parameter enters the solution (the only umbiguity is (3.14)) but it 
depends analytically on the symmetry group rank Nl” and can be expanded in powers 
of l/N. 

The coupling constant independence of all observable properties but the overall 
mass scale is the phenomenon characteristic for asymptotically free theories with 
dynamical mass transmutation (actually, it is a consequence of renormalizability 
[28]). One can believe, therefore, that a theory of this very type describes the dynamics 
of factorized scattering of Section 3 with N 3 3. 

To ensure the fact that a certain quantum field theory really leads to the S-matrix 
of Section 3 one should reveal its following properties: 

(a) The model is one of the massive particles with O(N)-symmetric spectrum. 
The spectrum contains the isovector N-plet. 

(b) The total S-matrix of this theory is factorized. 

If these properties turn out to be true the problem of CDD-umbiguity (3.14) 
should be solved to obtain an exact S-matrix of the theory. 

Consider O(N)-symmetric chiral field model (1.4). The usual g-perturbation theory 
of (1.4) is based on the Goldstone vacuum and leads in two dimensions to infrared 
catastrophe. Therefore, it is unlikely applicable to elucidate observable properties 
such as the spectrum and the S-matrix. However, there is another powerful approach 
to this model, namely, the l/N-expansion. This method for the model (1.4) has been 
developed in Refs. [23,24] (see Appendix B). It is based on the exact solution at 
N --+ cc which obviously satisfies the requirement (a): at N --f co the model contains 
an isovector N-plet of free massive particles only. l1 The interaction of these particles 
is of the order of l/N and l/N expansion is just the perturbation theory in this inter- 
action. The property (a) is still valid in any order of this perturbation theory. Thus, 
it is obviously true as N is sufficiently large. It is not ultimately clear whether the 

lo In this case the weak coupling limit is achieved as N + co. 
I1 The absence of other particles at large N is shown in [48]. 
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situation is the same if N becomes not large, say N = 3,4. However, we shall assume 
that the situation characteristic of large N is still valid at all N > 3. The result of this 
section confirms this assumption to some extent. 

Let us turn to the scattering properties of this model. The existence of an infinite 
number of conservation laws for classical model (1.4) has been discovered by 
Pohlmeyer [47]. However, since the quantum vacuum of the model appears to be 
crucially different from the classical one, the relation between the classical conser- 
vation laws and quantum ones cannot be straightforward. In particular, the conformal 
invariance of the classicai theory which is of essential use in Pohlmeyer’s derivation 
is surely broken in a quantum case due to coupling constant renormalization. 

The presence of higher conservation laws in quantum model (1.4) has been shown 
by Polyakov [26]. Here we present briefly Polyakov’s derivation. 

The equations of motion corresponding to Lagrangian (1.4) are: 

g,, + wd = 0; i (4” = 1, (5.1) 

where w  is a Lagrange field (see Appendix B) and the indices 0 and T mean derivation 
with respect to 

CJ = x0 + xl; 7 = x0 - xl. (5.2) 

Equations (5. I) in the classical theory imply 

[i WJ”]I = [$ (4)2]o = 0. (5.3) 

These equations, which are of essential use in Pohlmeyer’s derivation [47], mean 
both the conservation of energy-momentum and the conformal invariance of classical 
theory. In the quantum case the conformal symmetry is broken by stress-energy 
tensor anomaly and instead of (5.3) one has 

= bw., , 
T 

(5.4) 

where b is a constant which can be easily related to the Gell-Mann-Low function. 
Of course, relations (5.4) imply the energy-momentum conservation in the quantum 
theory since they are just of the divergence-zero type. 

To obtain the next conservation law let us consider, following Polyakov, the deriv- 
atives [Cr=, (nf,J2], and [cy=r (nf11)2]V _ Jn a classical theory one has, for instance, 

(5.5) 
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In the quantum case this relation is deformed by anomalies. 1 t is easy to see that the 
most general quantum variant of (5.5) is 

(5.6) 

where the term proportional to 01 is the anomaly. Furthermore, one can consider the 
derivative [XL, (nfJ217 and obtain in a quantum case, quite analogously to (5.6), 

Now it is straightforward to construct a new conservation law 

No difficulties arise in constructing a further conservation law. The equation 

(5.7) 

(5.8) 

(5.9) 

can be satisfied, in the same manner as (5.8), by an appropriate choice of parameters 
a,, up and u3. Higher conservation laws of the infinite set require more delicate 
investigation; they have been constructed in a recent paper [27]. We do not discuss 
all the infinite set here. As shown in [26], the first two conservation laws (5.4) and (5.8) 
are already sufficient to restrict the S-matrix to the processes satisfying the selection 
rules (i) and (ii) pointed in Section 2. According to the general consideration of 
Section 2, this implies the S-matrix factorization for model (1.4). 

It is instructive to observe the last property of the chiral field S-matrix in the l/N- 
perturbation theory [25]. Let us do this in the order of l/N2 (in the order of l/N 
these properties are trivial, being determined by kinematics). In this order we are 

. i 

22 
k 

. tc 3 . 3 
FIG. 7. The 2 4 4 amplitude. 
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i 
j 

k 
FIG. 8. The 3 -+ 3 amplitude. 

interested in the amplitudes 2 + 4 (Fig. 7) and in connected amplitudes 3 + 3 
(Fig. 8). 

Using the diagrammatic technique of 1 /N-expansion (see Appendix B) one can repre- 
sent the amplitudes 2 + 4 by a sum of diagrams shown in Fig. 9 (we consider only 
the case i # j # k # i for simplicity; a general case includes more diagrams, but 
the result is the same). To demonstrate the total cancellation among the diagrams 
in Fig. 9 it is useful to take into account the explicit expression for arbitrary two dimen- 
sional one-loop diagram [S]. The extession is shown schemtatically in Fig. IO: an 
arbitrary boson loop is the sum of terms, each corresponding to any division of the 

FIG. 9. Diagrams of the order of l/N2 contributing to the amplitude in Fig. 7 in the case i # j # 
k # i. 
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loop through two lines. The contribution of each division is equal to the product of 
two “tree” diagrams separated by a dashed line in Fig. 10 by the function 

s 

d’?p 
(p2 _ m2 + ic)((p + k, + k,j2 - m2 + ie) 

(5.10) 

FIG. 10. The “division rule” for calculation of an arbitrary one-loop diagram. 

where s,,~ = (k, f k,J2, the momenta k, and kb of cut lines being determined by the 
condition Ka2 = kb2 = m2. At s,~ fixed this equation has two solutions connected 
by the exchange k, +-+ k, , both should be taken into account in Fig. 10. 

It is easy to see that all possible divisions of triangle loop in diagram in Fig. 9g 
cancel exactly the other diagrams in Fig. 9. Consider, for example, the division shown 
in Fig. 11. Two solutions of equation k,” = h-,2 = m2 are k, = ps ; k, = p6 and 

. k, = ~6 . k, = p5 . The factor i@(s& in this division is just - l/D(sS6), where D 
is a w’ field propagator (wavy line). Therefore, the division in Fig. 11 cancels diagrams 
in Fig. 9e and Fig. 9f. The other divisions of the loop cancel diagrams in Fig. 9a-d. 

FIG. 11. A division of the three w’ vertex in Fig. 9g. 

The factorization of connected amplitudes 3 + 3 in the order of l/N2 can be shown 
analogously. Corresponding diagrams are listed in Fig. 12 (we again consider the 
the case i + ,j # k f i only). It is easily seen, that in the kinematical regions, where 
the solid-line propagators in diagrams in Fig. 12a-f are nonsingular, all possible 
divisions of the loop in Fig. 12g cancel out contributions of other diagrams. Mass-shell 
singularities of the solid-line propagators in Fig. 12a-f require special consideration. 
For example, if pi - pa , pi - p1 , pj 4 pZ the intermediate solid lines of diagrams 
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a c 

FIG. 12. Diagrams of the order of l/W contributing to the amplitude in Fig. 8 in the case i f  j # 
k # i. 

in Figs. 12c, d and f acquire their mass shell poles. These propagators can be written 
in the form 

1 
p2 - ~2 + ic = ’ p2 1 ,v2 + ii7 %p2 - m2J (5.11) 

It can be shown that the principal parts of these singularities are cancelled among 
three diagrams in Figs. I2c, d and f, leaving the a-function terms only, corresponding 
to intermediate particles on the mass shell. The diagram 12g cannot cancel these 
a-function terms, being nonsingular in the region under consideration (where all 
the momenta transferred are space-like). So, only the terms with mass-shell Sfunc- 
tions remain in the sum of diagrams in Fig. 12. These &functions ensure the factorized 
structure of the amplitude in Fig. 8. 

We have shown that quantum model (1.4) satisfies properties (a) and (b). Hence, 
one of the solutions (3.8) (3.13), (3.17) specified by a choice of CDD poles (3.14) 
can be used to describe the scattering of this model. We do not know any way to 
remove the CDD-ambiguity rigorously, but the choice of “minimum” solution, 
namely ~~(0) = ~~“(0) from (3.17) appears to be the most natural. Below we present 
some arguments in support of this choice. 

At first let us note that CDD-poles (3.14) if added, in general, result in additional 
poles in all three channels of two-particle scattering: isoscalar, antisymmetric-tensor 



FACTORIZED S-MATRICES IN TWO DIMENSIONS 281 

and symmetric tensor l2 Such a strong isospin degenerasy of states seems to be un- . 
natural. The “minimum” solution ~~(0) = CJ~“(I~) possess no poles in the physical 
strip 0 < Im 8 < 7~ and therefore “elementary” isovector particles A, of (1.4) 
produce no bound states. 

Furthermore, a calculation of two-particle amplitudes for model (1.4) by i/N- 
expansion technique (see Appendix B) in the order of l/N leads to the result: 

(5.12) 

The signs in (5.12) mean that the interaction between Ai is of repulsive type (at least 
for large N). Hence, Ai is unlikely to form bound states. It is easy to verify that 
expressions (5.12) really coincide with the first terms of l/N-expansion of exact 
solution (3.Q (3.13), (3.17) with a,(B) = o:+‘(6). Thus, the latter choice is in 
accordance with l/N-expansion of (1.4). 

It is interesting to compare the solution of Section 3 with the results of the ordinary 
g-perturbation theory of model (1.4). Adopting the S-matrix (3.Q (3.17) to correspond 
to some renormalizable asymptotically free field theory, one can expand the scattering 
ampIitudes, which are the functions of variable 

(5.13) 

in the asymptotic series in powers of g(p). Using the first term of o-model Gell- 
Mann-Low function p(g) [20] 

P(g) = - v g” + O(g3) 

one obtains up to g2 (g z g(p)) 

(5.15) 

I2 The only exceptional case is that of single CDD-pole c+ = A added to u:“(O), where bound 
states appear in isoscalar and antisymmetric tensor channels only. This case corresponds to up(B) = 
o’-’ 0) (see (3 19)) and is under consideration in the further Section. 2( . 
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In (5.15) the asymptotics s -+ co is written down and power terms in s are 
dropped. 

The usual perturbation theory (expansion in g) is based on Goldstone vacuum and 
deals with N - 1 plet of Goldstone particles instead of N-plet of massive particles Ai . 
In this perturbation theory the loop diagram calculation leads to infrared divergencies. 
However, all the infrared divergencies are cancelled among the diagrams contri- 
buting to the scattering amplitude of Goldstone particles in the order of g2. Hence, 
one can believe that calculation of these diagrams results in the correct ultraviolet 
asymptotics of the reeal A, particle scattering amplitude. This calculation is straight- 
forward and does lead to (5.15). 

6. S-MATRIX OF THE GROSS-NEVEU “ELEMENTARY" FERMIONS 

Another example of an asymptotically free field theory exhibiting the properties 
(a) and (b) of Section 5 and therefore leading to the factorized S-matrix of Section 3 
with N > 3 is Gross-Neveu model (1.5). 

An infinite set of nontrivial conservation laws for a classical version of model (1.5) 
has been found in a recent paper [49]. These classical conservation laws are quite 
analogous in their structure to those of the nonlinear a-model found by Pohlmeyer. 
Again the conformal invariance of the classical theory (1.5) (which is broken in a 
quantum case) plays the crucial role in the derivation of these conserved currents. 
However, it is natural to expect that higher conservation laws are present in quantum 
theory (1.5) as well. Dashen, Hasslacher and Neveu [29] have investigated the classical 
field equation which determine the stationary phase points of the effective action 
(B.5’) (see Appendix B). They have been able to find out explicitly a series of time- 
dependent solutions. It means almost surely the complete integrability of the system 
determined by these equations. 

To make sure that quantum theory (1.5) really possesses higher conservation laws 
let us derive the first nontrivial law following Polyakov’s method [26]. All the con- 
siderations will be quite parallel to those applied in Section 5 to the case of 
the u-model. 

It is convenient to use the motion equations of (1.5) explicitly in terms of right and 
left-handed components of Majorana “bispinors” z,!J~(x) = (&‘(x), I&“(X)) 

i*;,r = wg, 
(6.1) 

i*E,, = +y$r; i = 1, 2,. . . , N, 

where w = g, &, #ir#iz. The momentum-energy conservation and conformal 
invariance of equations in classical case imply analogously to (5.3) 

(6.2) 
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which should be, of course, replaced in the quantum theory 

(6.3 

Using these quantum equations one can easily verify that the following equations 
can be satisfied by an appropriate choice of the parameter C 

(6.4) 

These equations are just the first nontrivial conservation law of the Gross-Neveu 
model. 

The existence of higher conservation laws implies that the Gross-Neveu S-matrix 
satisfies property (b) of Section 5 [26]. 

Alternatively one could discover this property of the Gross-Neveu S-matrix 
in 1 /N-expansion [50]. The 1 /N-expansion technique for this model has been developed 
in Ref. [28] (it is described briefly in Appendix B). It is similar in the main to that used 
in the case of the nonlinear o-model. In particular, the diagrammatic consideration 
of previous section can be repeated word for word in the Gross-Neveu case. 

There is an important difference, however, between the a-model l/N technique 
and that of the Gross-Neveu model. Note the additional minus sign in (B.9’) against 
(B.9) which is connected with the fermion nature of #,-fields (see Appendix B). 
This leads to the significant difference between two scattering theories. For instance, 
for model (1.5) one has, instead of (5.12) 

(6.3 

The signs in Eq. (6.5) correspond to attractive interaction of “elementary” fermions 
(which we denote again by Ai ; i = 1,2,..., N). Therefore, bound states of Ai should 
exist. 

The bound state problem in model (1.5) has been investigated by a semiclassical 
large N method in Ref. [29]. The rich spectrum of O(N)-multiplets of bound states 
has been found. There are isoscalar, isovector multiplets and a number of higher 
rank antisymmetric-tensor ones. The semiclassical spectrum possesses a strong 
isospin degenracy: different isospin multiplets are gathered into supermultiplets 

595/I=+3 
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defined by the “main quantum number” n which corresponds to the number of 
bounded “elementary” fermions. Semiclassical masses depend on this number only 

%-I? 
sm (sem) 3 --xf- 1 m, = m . = 

sin ( -5 1 
7 n 1, 2,... < $ ) 

N 

(6.6) 

where m is the mass of A+ . 
There are other particles apart from Ai--bound states-“kinks” of the W(X) 

field [29]. Their semiclassical masses are 

(6.7) 

and the existence of these “kinks” is just an explanation of the upper bound for n 
in Eq. (6.6). 

The qualitative structure of semiclassical bound state spectrum (which becomes 
exact as N -+ co ) makes one choose solution (3.8), (3.13), (3.17) with a,(B) = ok’(e) 
as an exact S-matrix of “elementary” Gross-Neveu fermions. The l/N-expansion 
of this solution turns out to coincide with (6.5). Furthermore, let us consider two 
particle amplitudes of A,-scattering with the definite s-channel isospin 

uttsocalar) = NOI + 0~ + ~3 = - 
(0 + ace + in> &y(j) 

O(i7-r - 19) 9 

a(antisymm) = g2 - O3 = 
!LIi+h &)(e), 

u(symm) = u2 + CT3 = e ; jh &)(e). 

(6.8a) 

As it is seen from (6.8), bound states exist only in isoscalar and antisymmetric- 
tensor channels. We denote these particles B and Bij . Their masses are 

mB - mBk, = m2 =, m sin (&)[sin (&)I-‘. (6.9) 

Higher bound states appear as poles in multiparticle amplitudes. The investigation 
of these poles (quite parallel to that made in Ref. [IO] for the bound states of sine- 
Gordon “elementary” particles) leads to the spectrum of multiparticle Ai-bound 
states which agrees qualitatively with the semiclassical spectrum of Dashen, Hasslacher 
and Neveu [29]. Semiclassical isospin degeneracy turns out to be exact while the exact 
mass formula is 

m n = m sin (*)[sin (&)1-l; n = 1, 2,... < F, (6.10) 



FACTORIZED S-MATRICES IN TWO DIMENSIONS 285 

which differs from the semiclassical one (6.6) by substitution N + N - 2 only. 
It is natural to suppose that all the qualitative picture of semiclassical spectrum 
remains unchanged in the exact solution provided the substituion N + N - 2 
is made. In particular, there are “kink” particles at any N and formula (6.10) in terms 
of kink mass becomes 

m, = 2Mkinb sin (yy; II = 1, 2,... < F. (6.11) 

It follows from Eq. (6.11) that the bound states subsequently disappear from the 
spectrum with the decrease of N and no particles but the “kinks” remain in the system 
at N < 4. In particular, there are no “fundamental” fermions Ai at N = 3,4. There- 
fore, the exact S-matrix of Gross-Neveu “fundamental” fermions presented above 
has a direct physical meaning at N > 4 only being quite fictitious at N = 3,4. 

To construct the total Gross-Neveu S-matrix for any N 3 3 one should calculate 
the factorized S-matrix for the “kinks”. The essential problem arises in this way: 
what representation of internal symmetry group do the “kinks” belong to ? There 
are some arguments that these particles form O(N) isospinor multiplets (E.Witten, 
Private communication). In any event the problem of obtaining the total Gross- 
Neveu S-matrix remains open. 

For the further development of the subject reviewed in this paper see Refs. [51-541. 

APPENDIX A 

In this Appendix we derive solutions of Eqs. (3.5) and (3.6) [12, 251. 

(1) Consider system (3.5). It is convenient to introduce the ratios 

h(8) = $+ ; 
3 

g(e) = $#. 
3 

Then Eqs. (3.5a, b) become 

(A.11 

h(B) + I@‘) - h(8 + e’) = g(B’) h(B + e’) 
- hm de + 0 + de7 de + 07 h(e), 

[I + h(e + 8’) + de + emi - de) de71 + h(e) hp) 
= (1 + g(e) + h(e))(l + de;) + hum 

(A.3 

(A.3) 

Substituting t9 = 0 or 8’ = 0 into (A.3) and (A.2) one obtains the following relations 

~1 - gwi h(o) = 0, 
11 + gum1 + de) + h(e)) g(o) + h(o)] = 0, 

[1 + dmh(o) - g(o) h(e)] = 0. 
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These equations can be satisfied in three possible ways: (a) g(B) = 1; h(B) = -1 
(b) g(8) = -1; h(0) IS arbitrary, (c) g(0) = h(0) = 0. The first two cases are not 
interesting for us since possibility (a) is against unitarity (3.4b) and possibility (b) 
cannot satisfy crossing relation (3.2b). Therefore, 

g(0) = h(0) = 0. (A.4) 

Differentiating (A.2) and (A.3) with respect to 8’ and then setting 0’ = 0 one gets 

we) = (1 + gvm - kwe)); 
w3 + d(e) = (1 + gmb + ph(e) + j3(1 + g(e))], 

(A.3 
(‘4.6) 

where a: = h’(O) and /3 = g’(0). These equations can be easily turned to the form 

(A.7) 

64.8) 

The solution of (A.8) and (A.7) is 

h(e) = 4 tg ($f-) th (+); 

g(e) = th C-4$] cth [$- (i6 - e)], (A.lO) 

where 0: = -i(47r/y) tg(4&/y); /3 = -$45-/y) ctg(4rrS/y). The real analyticity con- 
dition for the scattering amplitudes requires h(0) and g(e) to be real at Re 0 -= 0. 
Hence, y and 6 are real parameters. Formulas (A.9) and (A.lO) are equivalent to 
(3.7). 

(2) Let us turn to the system (3.6). Using the notation h(B) = ~z(f?)/~,(0) one 
reduces (3.6a) to the form 

h(e) + h(e’) = h(e + et). (A.1 1) 

Hence 

u,(e) = 4 3 +(e), (A.12) 

where x is an arbitrary real parameter. Substitution of (A.12) into (3.6b) leads to the 
following equation 

de + 0 do = + [de7 - de + 01, (A.13) 
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where p(e) = ul(e)/uz(6). The solution of (A.13) is 

Pm = - gJj, (A.14) 

where K is the other real parameter. Now Eq. (3.6~) leads to the restriction 

and we obtain (3.8). 

,N-2h 
’ 2 

(A.15) 

APPENDIX B 

This Appendix is intended for the derivation of the diagrammatic technique of 
1 /N expansion of models (1.4) and (1.5) [23, 24,281. 

All the following calculations will be performed for both models (1.4) and (1.5) 
simultaneously. To avoid any confusion, relative variables corresponding to models 
(1.4) and (I .5) are marked by subindices CF (chiral field) and GN (Gross-Neveu). 
Furthermore, all the numbers of formulas relating to model (1.5) are primed. 

Following [23, 281 introduce the auxiliary Lagrange field and write 

u;,=L 2go it [(a,,,)2 t w(x) n,“] - r”) ; 
0 

03.1) 

The generating functional for the Green functions of the field ni(.u)($i(x) in the 
case of (1.5)) can be written in the form 

where 

WI = m/ml, 03.2) 

cYLP;7-[ni , co] + (goV2 f -h(x) ni(x)]l, (B.3) 
i=l 

ZdJl = j- n [ddx) ‘T’ d+,(x)] 
z 

(B.3’) 
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The integration over ni(x) in expression (B.3) (over I+&(X) in (B.3’)) may be carried 
out explicitly, and results in (irrelevant factor which is cancelled in (B.2) is dropped): 

IcdJil 

where 

and G,,(x, x’ w) and G&x, x’ j W) are Green functions of differential operators 

m dw(x) 
.i? 

X exp /j$$“[w] + f J d’x d”x’ J,(x) Jo GCp(x, x’ / co)/; (B.4) 

m d4x) 
z 

x exp [#$,,f)[wl + i 1 d2x d% Ii(x) G&X, X’ / CO) Jo/, (B.4’) 

sgJ = i $f tr ln[aW2 - w(x)] - j d2x s ; (B-5) 

sg0 = --i G tr ln[y,@ - W(X)] - j d2x q ; (B.5’) 

respectively. 

iju2 - w(x), 03.6) 

YJU - 44 (B.6’) 

One obtains the 1 /N-series of model (I .4)((1.5)) calculating integral (B.4)((B.4’)) 
perturbatively. The stationary phase point of this integral at w = &j 

Gc, = rn’cF = A2 exp 

2rr WGN = mGN = A exp - ~ 
I I Ngo 

should be taken into account and functionals S$f)[w] and G,,(x, x’ 1 w)($$,~‘[w] 
and GGN(x, x’ 1 w)) should be expanded in w’ = w - &.13 

It is easy to follow from the integrals (B.4) and (B.4’) to the simple diagrammatic 
technique with elements drawn in Fig. 13a, b, where the sign +(-) in multileg 
vertices (Fig. 13b) corresponds to the case of the chiral field (Gross-Neveu) model 
Constructing any diagram from these elements one should not draw closed solidline 
loops since they are already taken into account by multileg vertices in Fig. 13b. 

IS In fact, there are two symmetrical stationary phase points 63 = *mGN in (B.4’). The system is 
settled in one of them by the Higgs effect. This corresponds to spontaneous breakdown of the discrete 
y,-symmetry [28]. 
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A=+, ; . . . . 

FIG. 13. Elements of the l/N-diagrammatic technique for chiral field and Gross-Neveu models. 

Functions corresponding to the solid an wavy lines in Fig. 13 are different for the 
cases of (1.4) and (1.5): 

Gcdk) = 
i 

k2 - in2 + ie ’ 

G,,(k) = i 
Iz + in 

p _ m3 + jc ’ 

(B.8) 

and 

PcF(~2r’ = (2trj2 s 
d*p 

(p2 - m2 t k)((p + k)2 - in2 + i6) ’ 03.9) 

1 
PGN(~~)I-~ = - (2.5r)2 tr S[ 

d2p 
(6 -771 f iE)($ + i - Vl + k) 

d2P - 1 (~-wl~k)” 

In formulas (B.9) and (B.9’) and in the general part of the paper indices CF and 
GN near the masses of particles are dropped. 
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