
i

QUANTUM FIELD THEORY

OF NON-EQUILIBRIUM STATES

by

Jørgen Rammer.



ii



iii



iv



Contents

Preface xi

1 Quantum fields 1
1.1 Quantum mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 N -particle system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Identical particles . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Kinematics of fermions . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.3 Kinematics of bosons . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.4 Dynamics and probability current and density . . . . . . . . . 13

1.3 Fermi field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4 Bose field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4.1 Phonons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.4.2 Quantizing a classical field theory . . . . . . . . . . . . . . . . 26

1.5 Occupation number representation . . . . . . . . . . . . . . . . . . . . 29
1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2 Operators on the multi-particle state space 33
2.1 Physical observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2 Probability density and number operators . . . . . . . . . . . . . . . . 37
2.3 Probability current density operator . . . . . . . . . . . . . . . . . . . 40
2.4 Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.4.1 Two-particle interaction . . . . . . . . . . . . . . . . . . . . . . 42
2.4.2 Fermion–boson interaction . . . . . . . . . . . . . . . . . . . . . 45
2.4.3 Electron–phonon interaction . . . . . . . . . . . . . . . . . . . . 45

2.5 The statistical operator . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3 Quantum dynamics and Green’s functions 53
3.1 Quantum dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.1.1 The Schrödinger picture . . . . . . . . . . . . . . . . . . . . . . 54
3.1.2 The Heisenberg picture . . . . . . . . . . . . . . . . . . . . . . 56

3.2 Second quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3 Green’s functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3.1 Physical properties and Green’s functions . . . . . . . . . . . . 62
3.3.2 Stable of one-particle Green’s functions . . . . . . . . . . . . . 64

v



vi CONTENTS

3.4 Equilibrium Green’s functions . . . . . . . . . . . . . . . . . . . . . . 70
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4 Non-equilibrium theory 79
4.1 The non-equilibrium problem . . . . . . . . . . . . . . . . . . . . . . . 79
4.2 Ground state formalism . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.3 Closed time path formalism . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3.1 Closed time path Green’s function . . . . . . . . . . . . . . . . 87
4.3.2 Non-equilibrium perturbation theory . . . . . . . . . . . . . . . 90
4.3.3 Wick’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.4 Non-equilibrium diagrammatics . . . . . . . . . . . . . . . . . . . . . . 103
4.4.1 Particles coupled to a classical field . . . . . . . . . . . . . . . . 104
4.4.2 Particles coupled to a stochastic field . . . . . . . . . . . . . . . 106
4.4.3 Interacting fermions and bosons . . . . . . . . . . . . . . . . . 107

4.5 The self-energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.5.1 Non-equilibrium Dyson equations . . . . . . . . . . . . . . . . . 116
4.5.2 Skeleton diagrams . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5 Real-time formalism 121
5.1 Real-time matrix representation . . . . . . . . . . . . . . . . . . . . . . 121
5.2 Real-time diagrammatics . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.2.1 Feynman rules for a scalar potential . . . . . . . . . . . . . . . 123
5.2.2 Feynman rules for interacting bosons and fermions . . . . . . . 125

5.3 Triagonal and symmetric representations . . . . . . . . . . . . . . . . . 127
5.3.1 Fermion–boson coupling . . . . . . . . . . . . . . . . . . . . . . 129
5.3.2 Two-particle interaction . . . . . . . . . . . . . . . . . . . . . . 131

5.4 The real rules: the RAK-rules . . . . . . . . . . . . . . . . . . . . . . . 133
5.5 Non-equilibrium Dyson equations . . . . . . . . . . . . . . . . . . . . . 135
5.6 Equilibrium Dyson equation . . . . . . . . . . . . . . . . . . . . . . . . 138
5.7 Real-time versus imaginary-time formalism . . . . . . . . . . . . . . . 140

5.7.1 Imaginary-time formalism . . . . . . . . . . . . . . . . . . . . . 140
5.7.2 Imaginary-time Green’s functions . . . . . . . . . . . . . . . . . 142
5.7.3 Analytical continuation procedure . . . . . . . . . . . . . . . . 143
5.7.4 Kadanoff–Baym equations . . . . . . . . . . . . . . . . . . . . . 148

5.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6 Linear response theory 151
6.1 Linear response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.1.1 Density response . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.1.2 Current response . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.1.3 Conductivity tensor . . . . . . . . . . . . . . . . . . . . . . . . 158
6.1.4 Conductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.2 Linear response of Green’s functions . . . . . . . . . . . . . . . . . . . 159
6.3 Properties of response functions . . . . . . . . . . . . . . . . . . . . . . 164
6.4 Stability of the thermal equilibrium state . . . . . . . . . . . . . . . . 165



CONTENTS vii

6.5 Fluctuation–dissipation theorem . . . . . . . . . . . . . . . . . . . . . 169
6.6 Time-reversal symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . 173
6.7 Scattering and correlation functions . . . . . . . . . . . . . . . . . . . 174
6.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

7 Quantum kinetic equations 179
7.1 Left–right subtracted Dyson equation . . . . . . . . . . . . . . . . . . 179
7.2 Wigner or mixed coordinates . . . . . . . . . . . . . . . . . . . . . . . 181
7.3 Gradient approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 184

7.3.1 Spectral weight function . . . . . . . . . . . . . . . . . . . . . . 185
7.3.2 Quasi-particle approximation . . . . . . . . . . . . . . . . . . . 186

7.4 Impurity scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
7.4.1 Boltzmannian motion in a random potential . . . . . . . . . . . 192
7.4.2 Brownian motion . . . . . . . . . . . . . . . . . . . . . . . . . . 193

7.5 Quasi-classical Green’s function technique . . . . . . . . . . . . . . . . 198
7.5.1 Electron–phonon interaction . . . . . . . . . . . . . . . . . . . . 200
7.5.2 Renormalization of the a.c. conductivity . . . . . . . . . . . . . 206
7.5.3 Excitation representation . . . . . . . . . . . . . . . . . . . . . 207
7.5.4 Particle conservation . . . . . . . . . . . . . . . . . . . . . . . . 209
7.5.5 Impurity scattering . . . . . . . . . . . . . . . . . . . . . . . . . 211

7.6 Beyond the quasi-classical approximation . . . . . . . . . . . . . . . . 211
7.6.1 Thermo-electrics and magneto-transport . . . . . . . . . . . . . 215

7.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

8 Non-equilibrium superconductivity 217
8.1 BCS-theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

8.1.1 Nambu or particle–hole space . . . . . . . . . . . . . . . . . . . 225
8.1.2 Equations of motion in Nambu–Keldysh space . . . . . . . . . 228
8.1.3 Green’s functions and gauge transformations . . . . . . . . . . 231

8.2 Quasi-classical Green’s function theory . . . . . . . . . . . . . . . . . . 232
8.2.1 Normalization condition . . . . . . . . . . . . . . . . . . . . . . 235
8.2.2 Kinetic equation . . . . . . . . . . . . . . . . . . . . . . . . . . 236
8.2.3 Spectral densities . . . . . . . . . . . . . . . . . . . . . . . . . . 236

8.3 Trajectory Green’s functions . . . . . . . . . . . . . . . . . . . . . . . . 238
8.4 Kinetics in a dirty superconductor . . . . . . . . . . . . . . . . . . . . 242

8.4.1 Kinetic equation . . . . . . . . . . . . . . . . . . . . . . . . . . 244
8.4.2 Ginzburg–Landau regime . . . . . . . . . . . . . . . . . . . . . 246

8.5 Charge imbalance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
8.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

9 Diagrammatics and generating functionals 253
9.1 Diagrammatics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

9.1.1 Propagators and vertices . . . . . . . . . . . . . . . . . . . . . . 255
9.1.2 Amplitudes and superposition . . . . . . . . . . . . . . . . . . . 258
9.1.3 Fundamental dynamic relation . . . . . . . . . . . . . . . . . . 261
9.1.4 Low order diagrams . . . . . . . . . . . . . . . . . . . . . . . . 265



viii CONTENTS

9.2 Generating functional . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
9.2.1 Functional differentiation . . . . . . . . . . . . . . . . . . . . . 272
9.2.2 From diagrammatics to differential equations . . . . . . . . . . 274

9.3 Connection to operator formalism . . . . . . . . . . . . . . . . . . . . . 281
9.4 Fermions and Grassmann variables . . . . . . . . . . . . . . . . . . . . 282
9.5 Generator of connected amplitudes . . . . . . . . . . . . . . . . . . . . 284

9.5.1 Source derivative proof . . . . . . . . . . . . . . . . . . . . . . . 284
9.5.2 Combinatorial proof . . . . . . . . . . . . . . . . . . . . . . . . 290
9.5.3 Functional equation for the generator . . . . . . . . . . . . . . 294

9.6 One-particle irreducible vertices . . . . . . . . . . . . . . . . . . . . . . 296
9.6.1 Symmetry broken states . . . . . . . . . . . . . . . . . . . . . . 301
9.6.2 Green’s functions and one-particle irreducible vertices . . . . . 302

9.7 Diagrammatics and action . . . . . . . . . . . . . . . . . . . . . . . . . 306
9.8 Effective action and skeleton diagrams . . . . . . . . . . . . . . . . . . 307
9.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

10 Effective action 313
10.1 Functional integration . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

10.1.1 Functional Fourier transformation . . . . . . . . . . . . . . . . 314
10.1.2 Gaussian integrals . . . . . . . . . . . . . . . . . . . . . . . . . 315
10.1.3 Fermionic path integrals . . . . . . . . . . . . . . . . . . . . . . 319

10.2 Generators as functional integrals . . . . . . . . . . . . . . . . . . . . 320
10.2.1 Euclid versus Minkowski . . . . . . . . . . . . . . . . . . . . . . 323
10.2.2 Wick’s theorem and functionals . . . . . . . . . . . . . . . . . . 324

10.3 Generators and 1PI vacuum diagrams . . . . . . . . . . . . . . . . . . 330
10.4 1PI loop expansion of the effective action . . . . . . . . . . . . . . . . 333
10.5 Two-particle irreducible effective action . . . . . . . . . . . . . . . . . 339

10.5.1 The 2PI loop expansion of the effective action . . . . . . . . . . 346
10.6 Effective action approach to Bose gases . . . . . . . . . . . . . . . . . 351

10.6.1 Dilute Bose gases . . . . . . . . . . . . . . . . . . . . . . . . . . 351
10.6.2 Effective action formalism for bosons . . . . . . . . . . . . . . . 352
10.6.3 Homogeneous Bose gas . . . . . . . . . . . . . . . . . . . . . . . 356
10.6.4 Renormalization of the interaction . . . . . . . . . . . . . . . . 359
10.6.5 Inhomogeneous Bose gas . . . . . . . . . . . . . . . . . . . . . . 363
10.6.6 Loop expansion for a trapped Bose gas . . . . . . . . . . . . . . 365

10.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372

11 Disordered conductors 373
11.1 Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373

11.1.1 Scaling theory of localization . . . . . . . . . . . . . . . . . . . 374
11.1.2 Coherent backscattering . . . . . . . . . . . . . . . . . . . . . . 377

11.2 Weak localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
11.2.1 Quantum correction to conductivity . . . . . . . . . . . . . . . 388
11.2.2 Cooperon equation . . . . . . . . . . . . . . . . . . . . . . . . . 392
11.2.3 Quantum interference and the Cooperon . . . . . . . . . . . . . 398
11.2.4 Quantum interference in a magnetic field . . . . . . . . . . . . 402



CONTENTS ix

11.2.5 Quantum interference in a time-dependent field . . . . . . . . . 404
11.3 Phase breaking in weak localization . . . . . . . . . . . . . . . . . . . . 408

11.3.1 Electron–phonon interaction . . . . . . . . . . . . . . . . . . . . 410
11.3.2 Electron–electron interaction . . . . . . . . . . . . . . . . . . . 416

11.4 Anomalous magneto-resistance . . . . . . . . . . . . . . . . . . . . . . 423
11.4.1 Magneto-resistance in thin films . . . . . . . . . . . . . . . . . 424

11.5 Coulomb interaction in a disordered conductor . . . . . . . . . . . . . 428
11.6 Mesoscopic fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . 437
11.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448

12 Classical statistical dynamics 449
12.1 Field theory of stochastic dynamics . . . . . . . . . . . . . . . . . . . . 450

12.1.1 Langevin dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 450
12.1.2 Fluctuating linear oscillator . . . . . . . . . . . . . . . . . . . . 451
12.1.3 Quenched disorder . . . . . . . . . . . . . . . . . . . . . . . . . 454
12.1.4 Dynamical index notation . . . . . . . . . . . . . . . . . . . . . 455
12.1.5 Quenched disorder and diagrammatics . . . . . . . . . . . . . . 457
12.1.6 Over-damped dynamics and the Jacobian . . . . . . . . . . . . 459

12.2Magnetic properties of type-II superconductors . . . . . . . . . . . . . . 460
12.2.1 Abrikosov vortex state . . . . . . . . . . . . . . . . . . . . . . . 460
12.2.2 Vortex lattice dynamics . . . . . . . . . . . . . . . . . . . . . . 462

12.3 Field theory of pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . 464
12.3.1 Effective action . . . . . . . . . . . . . . . . . . . . . . . . . . . 467

12.4 Self-consistent theory of vortex dynamics . . . . . . . . . . . . . . . . 469
12.4.1 Hartree approximation . . . . . . . . . . . . . . . . . . . . . . . 470

12.5 Single vortex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
12.5.1 Perturbation theory . . . . . . . . . . . . . . . . . . . . . . . . 473
12.5.2 Self-consistent theory . . . . . . . . . . . . . . . . . . . . . . . 474
12.5.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476
12.5.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . 476
12.5.5 Hall force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482

12.6 Vortex lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487
12.6.1 High-velocity limit . . . . . . . . . . . . . . . . . . . . . . . . . 488
12.6.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . 489
12.6.3 Hall force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492

12.7 Dynamic melting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
12.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500

Appendices 501

A Path integrals 503

B Path integrals and symmetries 511

C Retarded and advanced Green’s functions 513

D Analytic properties of Green’s functions 517



x CONTENTS

Bibliography 523

Index 530



Preface

The purpose of this book is to provide an introduction to the applications of quantum
field theoretic methods to systems out of equilibrium. The reason for adding a
book on the subject of quantum field theory is two-fold: the presentation is, to my
knowledge, the first to extensively present and apply to non-equilibrium phenomena
the real-time approach originally developed by Schwinger, and subsequently applied
by Keldysh and others to derive transport equations. Secondly, the aim is to show the
universality of the method by applying it to a broad range of phenomena. The book
should thus not just be of interest to condensed matter physicists, but to physicists in
general as the method is of general interest with applications ranging the whole scale
from high-energy to soft condensed matter physics. The universality of the method,
as testified by the range of topics covered, reveals that the language of quantum
fields is the universal description of fluctuations, be they of quantum nature, thermal
or classical stochastic. The book is thus intended as a contribution to unifying the
languages used in separate fields of physics, providing a universal tool for describing
non-equilibrium states.

Chapter 1 introduces the basic notions of quantum field theory, the bose and
fermi quantum fields operating on the multi-particle state spaces. In Chapter 2, op-
erators on the multi-particle space representing physical quantities of a many-body
system are constructed. The detailed exposition in these two chapters is intended
to ensure the book is self-contained. In Chapter 3, the quantum dynamics of a
many-body system is described in terms of its quantum fields and their correla-
tion functions, the Green’s functions. In Chapter 4, the key formal tool to describe
non-equilibrium states is introduced: Schwinger’s closed time path formulation of
non-equilibrium quantum field theory, quantum statistical mechanics. Perturbation
theory for non-equilibrium states is constructed starting from the canonical operator
formalism presented in the previous chapters. In Chapter 5 we develop the real-time
formalism necessary to deal with non-equilibrium states; first in terms of matrices
and eventually in terms of two different types of Green’s functions. The diagram
representation of non-equilibrium perturbation theory is constructed in a way that
the different aspects of spectral and quantum kinetic properties appear in a physi-
cally transparent and important fashion for non-equilibrium states. The equivalence
of the real-time and imaginary-time formalisms are discussed in detail. In Chap-
ter 6 we consider the coexistence regime between equilibrium and non-equilibrium
states, the linear response regime. In Chapter 7 we develop and apply the quantum
kinetic equation approach to the normal state, and in particular consider electrons

xi



xii Preface

in metals and semiconductors. As applications we consider the Boltzmann limit, and
then phenomena beyond the Boltzmann theory, such as renormalization of transport
coefficients due to interactions. In Chapter 8 we consider non-equilibrium supercon-
ductivity. In particular we introduce the quasi-classical Green’s function technique
so efficient for the description of superfluids. We derive the quantum kinetic equation
describing elastic and inelastic scattering in superconductors. The time-dependent
Ginzburg–Landau equation is obtained for a dirty superconductor. As an applica-
tion of the quasi-classical theory, we consider the phenomena of conversion of normal
currents to supercurrents and the corresponding charge imbalance.

Unlike Schwinger, not stooping to the paganism of using diagrams, we shall, like
the boys in the basement, take heavy advantage of using Feynman diagrams. By
introducing Feynman diagrams, the most developed of our senses can become func-
tional in the pursuit of understanding quantum dynamics, an addition that shall
make its pursuit easier also for non-equilibrium situations. Though the picture of
reality that the representation of perturbation theory in terms of Feynman diagrams
inspires might be a figment of the imagination, its usefulness for developing phys-
ical intuition has amply proved its value, as witnessed first in elementary particle
physics. We develop the diagrammatics for non-equilibrium states, and show that
the additional rules for the universal vertex display the two important features of
quantum statistics and spectral properties of the interacting particles in an explicit
fashion. In Chapter 9 we shall take the stand of formulating the laws of physics in
terms of propagators and vertices and their Feynman diagrams representing prob-
ability amplitudes as dictated by the superposition principle. In fact, we take the
Shakespearian approach and construct quantum dynamics in terms of Feynman di-
agrams by invoking the only two options for a particle: to act or not to interact.
From this diagrammatic starting point, and employing the intuitive appeal of dia-
grammatic arguments, we then construct the formalism of non-equilibrium quantum
field theory in terms of the powerful functional methods; first in terms of the gen-
erating functional and functional differentiation technique. In Chapter 10 we then
introduce the final tool in the functional arsenal: functional integration, and arrive at
the effective action description of general non-equilibrium states. As an application
of the effective action approach we consider the dilute Bose gas, and the case of a
trapped Bose–Einstein condensate. In Chapter 11 we consider quantum transport
properties of disordered conductors, weak localization and interaction effects. In par-
ticular we show how the quasi-classical Green’s function technique used in describing
non-equilibrium properties of a dirty superconductor can be utilized to describe the
destruction of phase coherence in the normal state due to non-equilibrium effects
and interactions. Finally, in Chapter 12, we consider the classical limit of the devel-
oped general non-equilibrium quantum field theory. We consider classical stochastic
dynamics and show that field theoretic methods and diagrammatics are useful tools
even in the classical context. As an example we consider the flux flow properties of
the Abrikosov lattice in a type-II superconductor. We thus demonstrate the fact that
quantum field theory, through its diagrammatics and functional formulations, is the
universal language for describing fluctuations whatever their nature.

Readers’ guide. Firstly, readers bothered by the old-fashioned habit of footnotes
can simply skip them; they are either quick reminders or serve the purpose of pro-
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viding a general perspective. The book can be read chronologically but, like any fox
hole, it has two entrances. For the reader whose interest is the general structure of
quantum field theories, the book offers the possibility to jump directly to Chapter 9
where a quantum field theory is defined in terms of its propagators and vertices and
their resulting Feynman diagrams as dictated by the superposition principle. The
powerful methods of generating functionals are then constructed from the diagram-
matics. However, the reader acquainted with Chapter 4 will then have at hand the
general quantum field theory applicable to non-equilibrium states.

The scope of the book is not so much to dwell on a detailed application of the non-
equilibrium theory to a single topic, but rather to show the versatility and universality
of the method by applying it to a broad range of core topics of physics. One purpose
of the book is to demonstrate the utility of Feynman diagrams in non-equilibrium
quantum statistical mechanics using an approach appealing to physical intuition. The
real-time description of non-equilibrium quantum statistical mechanics is therefore
adopted, and the diagrammatic technique for systems out of equilibrium is developed
systematically, and a representation most appealing to physical intuition applied.
Though most examples are taken from condensed matter physics, the book is intended
to contribute to the cross-fertilization between all the fields of physics studying the
influence of fluctuations, be they quantum or thermal or purely statistical, and to
establish that the convenient technique to use is in fact that of non-equilibrium
quantum field theory. The book should therefore be of interest to a wide audience of
physicists; in particular the book is intended to be self-contained so that students of
physics and physicists in general can benefit from its detailed expositions. It is even
contended that the method is of importance for other fields such as chemistry, and
of course useful for electrical engineers.

A complete allocation of the credit for the progress in developing and applying
the real-time description of non-equilibrium states has not been attempted. However,
the references, in particular the cited review articles, should make it possible for the
interested reader to trace this information.

The book is intended to be sufficiently broad to serve as a text for a one- or
two-semester graduate course on non-equilibrium statistical mechanics or condensed
matter theory. It is also hoped that the book can serve as a useful reference book
for courses on quantum field theory, physics of disordered systems, and quantum
transport in general. It is hoped that this attempt to make the exposition as lucid as
possible will be successful to the point that the book can be read by students with
only elementary knowledge of quantum and statistical mechanics, and read with
benefit on its own. Exercises have been provided in order to aid self-instruction.

I am grateful to Dr. Joachim Wabnig for providing figures.

Jørgen Rammer
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1

Quantum fields

Quantum field theory is a necessary tool for the quantum mechanical description
of processes that allow for transitions between states which differ in their particle
content. Quantum field theory is thus quantum mechanics of an arbitrary number of
particles. It is therefore mandatory for relativistic quantum theory since relativistic
kinematics allows for creation and annihilation of particles in accordance with the
formula for equivalence of energy and mass. Relativistic quantum theory is thus in-
herently dealing with many-body systems. One may, however, wonder why quantum
field theoretic methods are so prevalent in condensed matter theory, which consid-
ers non-relativistic many-body systems. The reason is that, though not mandatory,
it provides an efficient way of respecting the quantum statistics of the particles,
i.e. the states of identical fermions or bosons must be antisymmetric and symmet-
ric, respectively, under the interchange of pairs of identical particles. Furthermore,
the treatment of spontaneously symmetry broken states, such as superfluids, is fa-
cilitated; not to mention critical phenomena in connection with phase transitions.
Furthermore, the powerful functional methods of field theory, and methods such as
the renormalization group, can by use of the non-equilibrium field theory technique
be extended to treat non-equilibrium states and thereby transport phenomena.

It is useful to delve once into the underlying mathematical structure of quantum
field theory, but the upshot of this chapter will be very simple: just as in quan-
tum mechanics, where the transition operators, |φ〉〈ψ|, contain the whole content of
quantum kinematics, and the bra and ket annihilate and create states in accordance
with

(|φ〉〈ψ|) |χ〉 = 〈ψ|χ〉 |φ〉 (1.1)

we shall find that in quantum field theory two types of operators do the same job.
One of these operators, the creation operator, a†, is similar in nature to the ket in
the transition operator, and the other, the annihilation operator, a, is similar to
the action of the bra in Eq. (1.1), annihilating the state it operates on. Then the
otherwise messy obedience of the quantum statistics of particles becomes a trivial
matter expressed through the anti-commutation or commutation relations of the
creation and annihilation operators.

1



2 1. Quantum fields

1.1 Quantum mechanics

A short discussion of quantum mechanics is first given, setting the scene for the
notation. In quantum mechanics, the state of a physical system is described by a
vector, |ψ〉, providing a complete description of the system. The description is unique
modulo a phase factor, i.e. the state of a physical system is properly represented by
a ray, the equivalence class of vectors eiϕ|ψ〉, differing only by an overall phase factor
of modulo one.

We consider first a single particle. Of particular intuitive importance are the
states where the particle is definitely at a given spatial position, say x, the corre-
sponding state vector being denoted by |x〉. The projection of an arbitrary state onto
such a position state, the scalar product between the states,

ψ(x) = 〈x|ψ〉 , (1.2)

specifies the probability amplitude, the so-called wave function, whose absolute square
is the probability for the event that the particle is located at the position in question.1

The states of definite spatial positions are delta normalized

〈x|x′〉 = δ(x− x′) . (1.3)

Of equal importance is the complementary representation in terms of the states
of definite momentum, the corresponding state vectors denoted by |p〉. Analogous to
the position states they form a complete set or, equivalently, they provide a resolution
of the identity operator, Î, in terms of the momentum state projection operators∫

dp |p〉〈p| = Î . (1.4)

The appearance of an integral in Eq. (1.4) assumes space to be infinite, and the
(conditional) probability amplitude for the event of the particle to be at position x
given it has momentum p is specified by the plane wave function

〈x|p〉 =
1

(2π�)3/2
e

i
�
p·x , (1.5)

the transformation between the complementary representations being Fourier trans-
formation. The states of definite momentum are therefore also delta normalized2

〈p|p′〉 = δ(p− p′) . (1.6)

The possible physical momentum values are represented as eigenvalues, p̂|p〉 =
p|p〉, of the operator

p̂ =
∫

dp p |p〉〈p| (1.7)

1Treating space as a continuum, the relevant quantity is of course the probability for the particle
being in a small volume around the position in question, P (x)∆x = |ψ(x)|2∆x, the absolute square
of the wave function denoting a probability density.

2If the particle is confined in space, say confined in a box as often assumed, the momentum states
are Kronecker normalized, 〈p|p′〉 = δp,p′ .
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representing the physical quantity momentum. Similarly for the position of a particle.
The average value of a physical quantity is thus specified by the matrix element of
its corresponding operator, say the average position in state |ψ〉 is given by the three
real numbers composing the vector 〈ψ|x̂|ψ〉. In physics it is customary to interpret a
scalar product as the value of the bra, a linear functional on the state vector space,
on the vector, ket, in question.3

The complementarity of the position and momentum descriptions is also expressed
by the commutator, [x̂, p̂] ≡ x̂ p̂− p̂ x̂, of the operators representing the two physical
quantities, being the c-number specified by the quantum of action

[x̂, p̂] = i� . (1.8)

The fundamental position and momentum representations refer only to the kine-
matical structure of quantum mechanics. The dynamics of a system is determined
by the Hamiltonian Ĥ = H(p̂, x̂), the operator specified according to the correspon-
dence principle by Hamilton’s function H(p̂, x̂), i.e. for a non-relativistic particle of
mass m in a potential V (x) the Hamiltonian, the energy operator, is

Ĥ =
p̂2

2m
+ V (x̂) . (1.9)

It can often be convenient to employ the eigenstates of the Hamiltonian

Ĥ |ελ〉 = ελ |ελ〉 . (1.10)

The completeness of the states of definite energy, |ελ〉, is specified by their resolution
of the identity ∑

λ

|ελ〉〈ελ| = Î (1.11)

here using a notation corresponding to the case of a discrete spectrum.
At each instant of time a complete description is provided by a state vector, |ψ(t)〉,

thereby defining an operator, the time-evolution operator connecting state vectors at
different times

|ψ(t)〉 = Û(t, t′) |ψ(t′)〉 . (1.12)

Conservation of probability, conservation of the length of a state vector, or its nor-
malized scalar product 〈ψ(t)|ψ(t)〉 = 1, under time evolution, determines the evo-
lution operator to be unitary, U−1(t, t′) = U †(t, t′). The dynamics is given by the
Schrödinger equation

i�
d|ψ(t)〉

dt
= Ĥ |ψ(t)〉 (1.13)

and for an isolated system the evolution operator is thus the unitary operator

Û(t, t′) = e−
i
�

Ĥ(t−t′) . (1.14)

Here we have presented the operator calculus approach to quantum dynamics, the
equivalent path integral approach is presented in Appendix A.

3For a detailed introduction to quantum mechanics we direct the reader to chapter 1 in reference
[1].
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In order to describe a physical problem we need to specify particulars, typically in
the form of an initial condition. Such general initial condition problems can be solved
through the introduction of the Green’s function. The Green’s function G(x, t;x′, t′)
represents the solution to the Schrödinger equation for the particular initial condition
where the particle is definitely at position x′ at time t′

lim
t↘t′

ψ(x, t) = δ(x − x′) = 〈x, t′|x′, t′〉 . (1.15)

The solution of the Schrödinger equation corresponding to this initial condition there-
fore depends parametrically on x′ (and t′), and is by definition the conditional prob-
ability density amplitude for the dynamics in question4

ψx′,t′(x, t) = 〈x, t|x′, t′〉 = 〈x|Û(t, t′)|x′〉 ≡ G(x, t;x′, t′) . (1.16)

The Green’s function, defined to be a solution of the Schrödinger equation, satis-
fies (

i�
∂

∂t
− H(−i�∇x,x)

)
G(x, t;x′, t′) = 0 (1.17)

where, according to Eq. (1.3), the Hamiltonian in the position representation, H , is
specified by the position matrix elements of the Hamiltonian

〈x|Ĥ |x′〉 = H(−i�∇x,x) δ(x − x′) . (1.18)

The Green’s function, G, is the kernel of the Schrödinger equation on integral
form (being a first order differential equation in time)

ψ(x, t) =
∫

dx′ G(x, t;x′, t′)ψ(x′, t′) (1.19)

as identified in terms of the matrix elements of the evolution operator by using the
resolution of the identity in terms of the position basis states

〈x|ψ(t)〉 =
∫

dx′〈x|Û(t, t′)|x′〉〈x′|ψ(t′)〉 . (1.20)

The Green’s function propagates the wave function, and we shall therefore also refer
to the Green’s function as the propagator. It completely specifies the quantum
dynamics of the particle.

We note that the partition function of thermodynamics and the trace of the
evolution operator are related by analytical continuation:

Z = Tr e−Ĥ/kT =
∫

dx 〈x|e−Ĥ/kT |x〉 = Tr Û(−i�/kT, 0)

=
∫

dx G(x,−i�/kT ;x, 0) (1.21)

4In the continuum limit the Green’s function is not a normalizable solution of the Schrödinger
equation, as is clear from Eq. (1.15).
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showing that the partition function is obtained from the propagator at the imaginary
time τ = −i�/kT . The formalisms of thermodynamics, i.e. equilibrium statistical
mechanics, and quantum mechanics are thus equivalent, a fact we shall take advan-
tage of throughout. The physical significance is the formal equivalence of quantum
and thermal fluctuations.

Quantum mechanics can be formulated without the use of operators, viz. using
Feynman’s path integral formulation. In Appendix A, the path integral expressions
for the propagator and partition function for a single particle are obtained. Various
types of Green’s functions and their properties for the case of a single particle are
discussed in Appendix C, and their analytical properties are considered in Appendix
D.

1.2 N -particle system

Next we consider a physical system consisting of N particles. If the particles in an
assembly are distinguishable, i.e. different species of particles, an orthonormal basis
in the N -particle state space H(N) = H1 ⊗H2 ⊗ · · · ⊗HN is the (tensor) product
states, for example specified in terms of the momentum quantum numbers of the
particles

|p1,p2, . . . ,pN 〉 ≡ |p1〉 ⊗ |p2〉 ⊗ · · · ⊗ |pN 〉 ≡ |p1〉|p2〉 · · · |pN 〉 . (1.22)

We follow the custom of suppressing the tensorial notation.
Formally everything in the following, where an N -particle system is considered,

is equivalent no matter which complete set of single-particle states are used. In prac-
tice the choice follows from the context, and to be specific we shall mainly explicitly
employ the momentum states, the choice convenient in practice for a spatially trans-
lational invariant system.5 These states are eigenstates of the momentum operators

p̂i |p1,p2, . . . ,pN 〉 = pi |p1,p2, . . . ,pN 〉 , (1.23)

where tensorial notation for operators are suppressed, i.e.

p̂i = Î1 ⊗ · · · Îi−1 ⊗ p̂i ⊗ Îi+1 ⊗ · · · ÎN , (1.24)

each operating in the one-particle subspace dictated by its index. In particular the
N -particle momentum states are eigenstates of the total momentum operator

P̂N =
N∑

i=1

p̂i (1.25)

5In the next sections we shall mainly use the momentum basis, and refer in the following to
the quantum numbers labeling the one-particle states as momentum, although any complete set
of quantum numbers could equally well be used. The N-tuple (p1,p2, . . . , pN ) is a complete
description of the N-particle system if the particles do not posses internal degrees of freedom. In
the following, where we for example have electrons in mind, we suppress for simplicity of notation
the spin labeling and simply assume it is absorbed in the momentum labeling. If the particles
have additional internal degrees of freedom, such as color and flavor, these are included in a similar
fashion. If more than one type of species is to be considered simultaneously the species type, say
quark and gluon, must also be indicated.
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corresponding to the total momentum eigenvalue

P =
N∑

i=1

pi . (1.26)

The position representation of the momentum states is specified by the plane wave
functions, Eq. (1.5), the scalar product of the momentum states and the analogous
N -particle states of definite positions being

ψp1,...,pN (x1, . . . ,xN ) = 〈x1,x2, . . . ,xN |p1,p2, . . . ,pN 〉 =
N∏

i=1

〈xi|pi〉

=
(

1
(2π�)3/2

)N

e
i
�
p1·x1 e

i
�
p2·x2 · · · e

i
�
pN ·xN . (1.27)

1.2.1 Identical particles

For an assembly of identical particles a profound change in the above description
is needed. In quantum mechanics true identity between objects are realized, viz.
elementary particle species, say electrons, are profoundly identical, i.e. there exists
nothing in Nature which can distinguish any two electrons. Identical particles are in-
distinguishable. States which differ only by two identical particles being interchanged
are thus described by the same ray.6 As a consequence of their indistinguishability,
assemblies of identical particles are described by states which with respect to inter-
change of pairs of identical particles are either antisymmetric or symmetric

|p1,p2, . . . ,pN 〉 = ± |p2,p1, . . . ,pN 〉 , (1.28)

this leaving the probability for a set of momenta of the particles, P (p1,p2, . . . ,pN ), a
function symmetric with respect to interchange of any pair of the identical particles.

A word on notation: the particle we call the first particle is in the momentum
state specified by the first argument, and the particle we call the Nth particle is
in the momentum state specified by the Nth argument. Particles whose states are
symmetric with respect to interchange are called bosons , and for the antisymmetric
case called fermions.7

6The quantum state with all of the electrons in the Universe interchanged will thus be the same
as the present one. A radical invariance property of systems of identical particles!

7Quantum statistics and the spin degree of freedom of a particle are intimately connected as
relativistic quantum field theory demands that bosons have integer spin, whereas particles with
half-integer spin are fermions. This so-called spin-statistics connection seems in the present non-
relativistic quantum theory quite mysterious, i.e. unintelligible. It only gets its explanation in
the relativistic quantum theory, which we usually connect with high energy phenomena, where for
any particle relativity, through Lorentz invariance, requires the existence of an anti-particle of the
same mass and opposite charge (some neutral particles, such as the photon, are their own anti-
particle). Then, in fermion anti-fermion pair production the particles must be antisymmetric with
already existing particles as unitarity, i.e. conservation of probability, requires such a minus sign
[2]. Historically, the exclusion principle, which is a direct consequence of Fermi statistics, was
discovered by Pauli before the advent of relativistic quantum theory as a vehicle to explain the
periodic properties of the elements. Pauli was also the first to show that the spin-statistics relation
is a consequence of Lorentz invariance, causality and energy and norm positivity.
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Any N -particle state |p1,p2, . . . ,pN 〉 can be mapped into a state which is either
symmetric or antisymmetric with respect to interchange of any two particles. To
obtain the symmetric state we simply apply the symmetrization operator Ŝ which
symmetrizes an N -particle state according to

Ŝ |p1,p2, . . . ,pN 〉 =
1

N !

∑
P

|pP1
〉|pP2

〉 · · · |pPN
〉 (1.29)

and the antisymmetrization operator Â antisymmetrizes according to

Â |p1,p2, . . . ,pN 〉 =
1

N !

∑
P

(−1)ζP |p
P1
〉|p

P2
〉 · · · |p

PN
〉 . (1.30)

The summations are over all permutations P of the particles. Permutations form
a group, and any permutation can be build by successive transpositions which only
permute a pair. In the case of antisymmetrization, each term appears with the sign
of the permutation in question

sign(P ) =
∏

1≤i<j≤N

j − i

Pj − Pi
. (1.31)

We have written this in terms of the number ζP which counts the number of trans-
positions needed to build the permutation P , since sign(P ) = (−1)ζP .

If the single-particle state labels in the N -particle state to be symmetrized on the
left in Eq. (1.29) are permuted, the same symmetrized state results, since if P ′ can
be any of the N ! permutations, then P ′P for fixed permutation P will run through
them all, Ŝ |p

P1
,p

P2
, . . . p

PN
〉 = Ŝ |p1,p2, . . . ,pN 〉.

We note that the sign of a product of permutations, Q = P ′P , equals the product
of the signs of the two permutations, sign(Q) = sign(P ′) ·sign(P ), and a permutation
and its inverse have the same sign (owing to their equal number of transpositions),
ζP−1 = ζP . Antisymmetrization of a permuted state gives the same antisymmetric
state multiplied by the sign of the permutation permuting the original N -particle
state since

Â |p
P1

,p
P2

, . . . p
PN
〉 =

1
N !

∑
P ′

(−1)ζP ′ |p
Q1
〉|p

Q2
〉 · · · |p

Q N
〉 (1.32)

and as P ′ runs through all the permutations so does Q = P ′P , and therefore

Â |p
P1

,p
P2

, . . . p
PN
〉 = (−1)ζP

1
N !

∑
Q

(−1)ζQ |p
Q1
〉|p

Q2
〉 · · · |p

Q N
〉

= (−1)ζP Â |p1,p2, . . . ,pN 〉 . (1.33)

Therefore, if any two single-particle states are identical, the antisymmetrized state
vector equals the zero vector, since the two states obtained by permuting the two
identical labels are identical and yet upon antisymmatrization they differ by a minus
sign, i.e. Pauli’s exclusion principle for fermions: no two fermions can occupy the
same state.
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Further, according to Eq. (1.33), applying the antisymmetrization operator twice

Â2 |p1,p2, . . . ,pN 〉 = Â 1
N !

∑
P

(−1)ζP |p
P1
〉|p

P2
〉 · · · |p

PN
〉

=
1

N !

∑
P

(−1)ζP (−1)ζP Â |p1,p2, . . . ,pN 〉

= Â |p1,p2, . . . ,pN 〉 (1.34)

gives the same state as applying it only once, i.e. the symmetrization operators are
projectors, Â2 = Â, Ŝ2 = Ŝ. The presence of the factor 1/N ! in the definitions,
Eq. (1.29) and Eq. (1.30), is thus there to ensure the operators are normalized pro-
jectors. Representing mutually exclusive symmetry properties, they are orthogonal
projectors, their product is the operator that maps any vector onto the zero vector

Â Ŝ = 0̂ = Ŝ Â (1.35)

since symmetrizing an antisymmetric state, or vice versa, gives the zero vector.
The symmetrization operators are hermitian, Â† = Â, Ŝ† = Ŝ, as verified for

example for Â by first noting that according to the definition of the adjoint operator

〈p1, . . . ,pN |Â†|p′
1,p

′
2, . . . ,p′

N 〉 = 〈p′
1, . . . ,p′

N |Â|p1,p2, . . . ,pN〉∗

=
1

N !

∑
P

(−1)ζP 〈p′
1|pP1

〉∗ · · · 〈p′
N |pPN

〉∗

=
(−1)ζS

N !
〈p

S1
|p′

1〉 · · · 〈pSN
|p′

N 〉 (1.36)

the matrix element being nonzero only if the set {p′
i}i=1,...,N is a permutation of the

set {pi}i=1,...,N , S being the permutation that brings the set {pi}i=1,...,N into the set
{p′

i}i=1,...,N , p
Si

= p′
i. Permuting both sets of indices by the inverse permutation

S−1 of S, and using that ζS−1 = ζS , we get

〈p1, . . . ,pN |Â†|p′
1,p

′
2, . . . ,p′

N 〉 =
1

N !
(−1)ζS −1 〈p1|p′

S−1
1
〉 · · · 〈pN |p′

S−1
N

〉

=
1

N !

∑
P

(−1)ζP 〈p1, . . . ,pN |p′
P1

, . . . ,p′
PN
〉

= 〈p1, . . . ,pN |Â|p′
1, . . . ,p′

N 〉 . (1.37)

Exercise 1.1. Show that the adjoint of a product of linear operators A and B is the
product of their adjoint operators in opposite sequence

(AB)† = B† A† (1.38)

and generalize to the case of an arbitrary number of operators.
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Exercise 1.2. The vector space of state vectors, the kets, and the dual space of
linear functionals on the state space, the bras, are isomorphic vector spaces, which
we express by the adjoint operation, |ψ〉† = 〈ψ| and 〈ψ|† = |ψ〉. This mapping
is anti-linear and isomorphic, and we use the same symbol as for the adjoint of an
operator.

Show that for arbitrary state vectors and operators on the state space the rela-
tionship (X̂|ψ〉)† = 〈ψ|X̂†. An operator being its own adjoint, X̂† = X̂, is said to
be a hermitian operator and its eigenvalues are real, such operators being of primary
importance in quantum mechanics.

Exercise 1.3. Show that the symmetrization operator, Ŝ, is hermitian.

The linear operators Ŝ and Â project any state onto either of the two orthogonal
subspaces of symmetric or antisymmetric states.8 The state space for a physical
system consisting of N identical particles is thus not H(N), the N -fold product of
the one-particle state space, but either the symmetric subspace, B(N), for bosons,
or antisymmetric subspace, F (N), for fermions, obtained by projecting the states of
H(N) by either type of symmetrization operator depending on the statistics of the
particles in question.

1.2.2 Kinematics of fermions

Let us introduce the orthogonal, normalized up to a phase factor, antisymmetric
basis states in the antisymmetric N -particle state space F (N)

|p1 ∧ p2 ∧ · · · ∧ pN 〉 ≡
√

N ! Â |p1,p2, . . . ,pN 〉

=
1√
N !

∑
P

(−1)ζP |p
P1
〉 ⊗ |p

P2
〉 ⊗ · · · ⊗ |p

PN
〉

=
1√
N !

∑
P

(−1)ζP |p
P1
〉|p

P2
〉 · · · |p

PN
〉

=
1√
N !

∑
P

(−1)ζP |p
P1

,p
P2

, . . . ,p
PN
〉 . (1.39)

We demonstrate that they are orthogonal by using the properties of the antisym-
metrization operator (we first for simplicity of the Kronecker function assume box
normalization, i.e, the momentum values are discrete)

〈p1 ∧ · · · ∧ pN |p′
1 ∧ · · · ∧ p′

N 〉 = N !〈p1, . . . ,pN |Â†Â|p′
1, . . . ,p′

N 〉

= N !〈p1, . . . ,pN |Â|p′
1, . . . ,p′

N 〉
8Only for the case of two particles do the two subspaces of symmetric and antisymmetric states

span the original state space, H(2) = H ⊗ H. In general, the other subspaces for the case of more
than two particles do not seem to be state spaces for systems of identical particles.
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= 〈p1, . . . ,pN |
∑
P

(−1)ζP |p′
P1

, . . . ,p′
PN
〉

=


(−1)ζS {p′}i ≡ {p}i

0 otherwise
(1.40)

where {p′
i}i=1,...,N ≡ {pi}i=1,...,N is short for the labels {p′

i}i=1,...,N being a permuta-
tion of the labels {pi}i=1,...,N , and S the permutation that takes the set {pi}i=1,...,N

into {p′
i}i=1,...,N , p

Si
= p′

i. Or simply in words, only if the primed set of momenta
is a permutation of the unprimed set is the scalar product of the states nonzero (we
have of course assumed that all momenta are different since otherwise for fermions
the vector is the zero-vector).

Incidentally we have

〈p1 ∧ p2,∧ · · · ∧ pN | p′
1,p

′
2, ..,p

′
N 〉 =


1√
N !

(−1)ζS {p′}i ≡ {p}i

0 otherwise
(1.41)

expressing that additional permutations are redundant, for example an additional an-
tisymmetrization is redundant as expressed by the second equality sign in Eq. (1.40),
or equivalently that the symmetrization operators are hermitian projectors.

The scalar product of antisymmetric states is the determinant of the N × N
matrix with entries 〈pi|p′

j〉

〈p1 ∧ · · · ∧ pN |p′
1 ∧ · · · ∧ p′

N 〉 = det(〈pi|p′
j〉)

=
∑
P

(−1)ζP 〈p1|p′
P1
〉 · · · 〈pN |p′

PN
〉 , (1.42)

the Slater determinant.
In the operator calculus perturbation theory for a single particle, the resolution

of the identity plays a crucial efficient role. For an assembly of identical particles
this role will be taken over by the commutation rules for the quantum fields we shall
shortly introduce. The resolutions of the identity on the symmetrized subspaces
reflect the redundancy of antisymmetrized or symmetrized states. Though not of
much practical use, we include them for completeness (the resolution of the identity
makes a short appearance in Section 3.1.1). The resolution of the identity on the
antisymmetric state space can be written in terms of the N -state identity operator
since the identity operator commutes with any operator

1 = Â Î(N) Â = Â
(
Î1 ⊗ Î2 ⊗ Î3 ⊗ · · · ⊗ ÎN

)
Â†

= Â
∑

p1,...,pN

|p1〉〈p1| ⊗ |p2〉〈p2| ⊗ · · · ⊗ |pN 〉〈pN | Â†

= Â
∑

p1,...,pN

|p1,p2, . . . ,pN 〉〈p1,p2, . . . ,pN | Â†
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=
1

N !

∑
p1,...,pN

|p1 ∧ p2 ∧ · · · ∧ pN 〉〈p1 ∧ p2 ∧ · · · ∧ pN |

=
∑

|p1|<|p2|< ··· <|pN |
|p1 ∧ p2 ∧ · · · ∧ pN 〉〈p1 ∧ p2 ∧ · · · ∧ pN | . (1.43)

In obtaining the last equality we have used the fact that if the momenta of the
particles are interchanged in the N -particle state to be antisymmetrized, the same
antisymmetric state vector is obtained modulo a phase factor ±1, for example

Â |p1,p2, . . . ,pN 〉 = − Â |p2,p1, . . . ,pN 〉 . (1.44)

In the sum in the second last expression in Eq. (1.43), there are thus N ! identical
terms.

The symmetrization phase factor in Eq. (1.40) can always be chosen to equal 1 by
considering proper orderings in the definition of the basis states, thereby removing
the redundancy in the general definition, Eq. (1.39), of the basis states. For example,
if we choose to use only basis vectors where the momenta appear ordered according
to the ordering |p1| < |p2| < · · · < |pN |, this restriction on defining the set of
basis states |p1 ∧p2 ∧ · · · ∧pN 〉 results in them forming an orthonormal basis in the
antisymmetric state space FN , as also expressed by the last equality in Eq. (1.43).

1.2.3 Kinematics of bosons

We now turn to a discussion of the state space relevant for N identical bosons. In
the symmetric state space, B(N), we introduce the symmetric orthogonal basis states

|p1 ∨ p2 ∨ · · · ∨ pN 〉 ≡
√

N ! Ŝ |p1,p2, . . . ,pN 〉

=
1√
N !

∑
P

|p
P1
〉 ⊗ |p

P2
〉 ⊗ · · · ⊗ |p

PN
〉

=
1√
N !

∑
P

|pP1
〉|pP2

〉 · · · |pPN
〉

=
1√
N !

∑
P

|p
P1

,p
P2

, . . . ,p
PN
〉 . (1.45)

All derivations of formulas to be obtained for symmetric basis states runs equivalent
to those for antisymmetric basis states. For example,

〈p1 ∨ · · · ∨ pN |p′
1 ∨ · · · ∨ p′

N 〉 =
∑
P

〈p1|p′
P1
〉 · · · 〈pN |p′

PN
〉

= per(〈pi|pj′〉) , (1.46)

where the last equality defines the permanent of the N × N matrix which has the
entries 〈pi|p′

j〉.
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In fact, the bose and fermi cases, i.e. the symmetric and antisymmetric basis
states, can be treated simultaneously if we introduce the factor (ε)ζP inside the
summation sign

|p1� · · ·�pN 〉 ≡ 1√
N !

∑
P

(ε)ζP |p
P1

,p
P2

, . . . ,p
PN
〉 (1.47)

since then the fermi case corresponds to ε = −1 and the bose case to ε = +1, and �

stands for ∨ or ∧ for the bose and fermi cases, respectively.
The states introduced in Eq. (1.45) provide a resolution of the identity in the

symmetric state space, B(N), specified by

1 = Ŝ Î(N) Ŝ = Ŝ
(
Î1 ⊗ Î2 ⊗ Î3 ⊗ · · · ⊗ ÎN

)
Ŝ†

= Ŝ
∑

p1,...,pN

|p1〉〈p1| ⊗ |p2〉〈p2| ⊗ · · · ⊗ |pN 〉〈pN | Ŝ†

= Ŝ
∑

p1,...,pN

|p1,p2, . . . ,pN 〉〈p1,p2, . . . ,pN | Ŝ†

=
1

N !

∑
p1,···,pN

|p1 ∨ p2 ∨ · · · ∨ pN 〉〈p1 ∨ p2 ∨ · · · ∨ pN | . (1.48)

The symmetric states introduced in Eq. (1.45) are not normalized in general, since
for bosons the momenta need not differ. Of course, if the momentum values are all
different, the state |p1 ∨ p2 ∨ · · · ∨ pN 〉 is a sum of N ! normalized N -particle states
which are all orthogonal to each other, and the state is therefore normalized in view
of the overall prefactor. However, if say n1 of the momentum values equals p1 and all
the rest are different, the state |p1∨p2∨· · ·∨pN 〉 will be a sum of N !/n1! N -particle
states each orthogonal to each other but now appearing with the prefactor n1! ,
since permutations among the identical labels produce the same N -particle state. In
general, if ni is the number of times pi occurs among the vectors p1,p2, . . . ,pN , nj

being equal to 0 if the momentum value pj does not appear, then the set of ordered
vectors, choosing for example the ordering according to |p1| ≤ |p2| ≤ · · · ≤ |pN |,

1√
n1!n2! · · ·nN !

|p1 ∨ p2 ∨ · · · ∨ pN 〉 =

√
N !

n1!n2! · · ·nN !
Ŝ |p1,p2, . . . ,pN 〉(1.49)

constitute an orthonormal basis for the symmetric state space.
Equivalently we can state for the scalar product in Eq. (1.46)

〈p1 ∨ · · · ∨ pN |p′
1 ∨ · · · ∨ p′

N 〉 =


n1! n2! · · · {p′}i ≡ {p}i

0 otherwise.
(1.50)

The resolution of the identity in the symmetric N -particle state space can there-
fore also be expressed in terms of orthonormal states according to

Î
(N)
S =

1
n1!n2!n3! · · ·

∑
|p1|≤|p2|≤···≤|pN |

|p1 ∨ p2 ∨ · · · ∨ pN 〉〈p1 ∨ p2 ∨ · · · ∨ pN |. (1.51)
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1.2.4 Dynamics and probability current and density

The quantum dynamics of an N -particle system of identical particles is given by the
Schrödinger equation

i�
∂ψ(x1,x2, . . . ; t)

∂t
= H ψ(x1,x2, . . . ; t) , (1.52)

where H is the Hamiltonian in the position representation for the N -particle sys-
tem. For example, for the case of N non-relativistic electrons interacting through
instantaneous two-particle interaction the Hamiltonian is

H =
N∑

i=1

1
2m

(
�

i

∂

∂xi

)2

+
1
2

∑
i�=j

V (xi − xj) . (1.53)

In non-relativistic quantum mechanics the even or odd character of a wave function
is preserved in time as any Hamiltonian for identical particles is symmetric in the
degrees of freedom, here in the momenta and positions, but as well as other degrees
of freedom in general (this is the meaning of identity of particles, no interaction can
distinguish them). So if even- or oddness of a wave function is the state of affairs at
one moment in time it will stay this way for all times.9

All physical properties are expressible in terms of the wave function, for example
the average density of the particles, or rather the probability for the event that one
of the particles is at position x, is

n(x, t) =
N∑

i=1

1
N

∫ N∏
j=1

dxj δ(xi − x) |ψ(x1,x2, . . . ; t)|2 =
∫∏

i�=1

dxi |ψ(x,x2, . . . ; t)|2

(1.54)

where the last equality follows from the symmetry of the wave function for identical
particles.

Taking the time derivative of the probability density, and using the Schrödinger
equation, gives the continuity equation

∂ n(x, t)
∂t

+ ∇x · j(x, t) = 0 , (1.55)

where the probability current density is10

j(x, t) =
e�

2mi

N∑
i=1

1
N

∫ N∏
j=1

dxj δ(xi − x)
(
∇xi −∇x′

i

)
ψ(x1, . . . ; t)ψ∗(x′

1, ..; t)

x′
i =xi

=
e�

2mi

∫∏
i�=1

dxi (∇x −∇x′)ψ(x,x2, . . . ; t)ψ∗(x′,x′
2, . . . ; t)

x′=x

, (1.56)

9For the cases of more than two identical particles there are other time invariant subspaces than
the symmetric and antisymmetric ones. They do not seem to be of physical relevance.

10In the presence of a vector potential the formula must be amended with the diamagnetic term,
see Exercise 1.4 and Section 2.3.
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again the last equality follows from the symmetry of the wave function for identical
particles. The Schrödinger equation guarantees conservation of probability, i.e. the
continuity equation, Eq. (1.55), as a consequence of the Hamiltonian being hermitian.

Exercise 1.4. The Hamiltonian for a charged spinless particle coupled to a vector
potential, A, is11

Ĥ =
1

2m

(
�

i

∂

∂x
− eA(x, t)

)2

. (1.57)

Show that the probability current density for the particle in state ψ is

j(x, t) =
1

2m

(
�

i
∇x −

�

i
∇x′ − 2eA(x, t)

)
ψ(x, t)ψ∗(x′, t)

x′=x

. (1.58)

Rarely can the dynamics of an N -particle system of identical particles be solved
exactly. When it comes to performing actual approximate calculations, the quantum
statistics of the particles will even in the non-relativistic quantum theory of an in-
teracting N -particle system cause havoc, and a more flexible vehicle for respecting
the quantum statistics of identical particles is convenient. We now turn to introduce
these, the quantum fields. In relativistic quantum theory and conveniently for many-
body systems, the quantum fields instead of the wave function become the carriers
of the dynamics, as we will discuss in Chapter 3.

1.3 Fermi field

We introduce the fermion creation operator, a†
p, corresponding to momentum value

p, as the linear mapping of F (N) into F (N+1) defined for an arbitrary (not necessarily
ordered) basis vector by12

a†
p |p1 ∧ p2 ∧ · · · ∧ pN 〉 ≡ |p ∧ p1 ∧ p2 ∧ · · · ∧ pN 〉 , (1.59)

i.e. it maps an antisymmetrized N -particle state into the antisymmetrized (N + 1)-
particle state where an additional fermion has momentum p. The choice of placing
p at the front is, of course, arbitrary. The other popular choice is to place it at the
end. This reflects that a creation operator, like a state vector, is defined only modulo
a phase factor.

If in the N -fermion state the momentum state p is already occupied, i.e. exactly
one of the pis equals p, then owing to the antisymmetric nature of the state

a†
p |p1 ∧ p2 ∧ · · · ∧ pN 〉 = 0N+1 , (1.60)

11The form of the Hamiltonian follows from gauge invariance; i.e. the gauge transformation of
the electromagnetic field, A(x, t) → A(x, t) + ∇Λ(x, t), φ(x, t) → φ(x, t) − Λ̇(x, t), and the trans-

formation of the wave function ψ(x, t) → ψ(x, t) e
ie
�

Λ(x,t), leaves all physical quantities invariant.
The gauge invariance of quantum mechanics is a consequence of the wave function obtained by the
above phase transformation equally well represents the probability distribution of the particle.

12As emphasized, the label on the creation operator could refer to any state; usually though, it
refers to a complete set of single-particle states.
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the zero vector of state space H(N+1). This is the expedience with which the fermion
creation operators respect Pauli’s exclusion principle.

We introduce the sum of state spaces F (N) and F (N+1). For example, F (1) +F (2)

consists of states spanned by 2-tuple states, (|p〉, |p1∧p2〉), and is equipped with the
scalar product, which is the sum of the scalar products in the subspaces, i.e. for the
above vector and (c1|p′〉, c2|p′

1 ∧ p′
2〉) the scalar product is

(〈p|, 〈p1 ∧ p2|)(c1|p′〉, c2|p′
1 ∧ p′

2〉) = c1〈p|p′〉 + c2〈p1 ∧ p2|p′
1 ∧ p′

2〉 .

(1.61)

In order for an operator to represent an observable physical quantity it must
map a state space onto itself. In order to facilitate this experience for the fermion
creation operators,13 the multi-particle space or Fock space F (named after the Soviet
physicist Vladimir Fock), is introduced as the sum of the state spaces14

F =
∞∑

N=0

F (N) , (1.62)

where by definition F (0) is the set of complex numbers.
The inclusion of F (0) is demanded in relativistic quantum theory since relativistic

kinematics predicts the creation and annihilation of particles. The zero vector in Fock
space can not represent the state of absence of any particle.15 Particle species not
present in the initial and final states must, before and after a reaction, be in a state
in their respective Fock spaces so that their scalar products equal one, thereby not
influencing the probabilities for the various possible reactions. Since none of these
particle states is initially and finally occupied, though they may appear virtually
in intermediate states to facilitate the reaction, and since the zero vector does not
respect the above property, the state where particles of a given species are absent,
the vacuum state for these particles is represented by (choosing the simplest phase
choice)

|0〉 ≡ (1, 01, 02, . . .) . (1.63)

Even for a non-relativistic system, the vacuum state is a convenient vehicle for gen-
erating all states of the multi-particle space as we will see shortly.

The set of basis states of the Fock space consists of the vacuum state and all
the basis vectors of each N -particle subspace. In the Fock space, states of the type
(0, |p1〉, 02, |p′

1 ∧ p′
2 ∧ p′

3〉, . . . , |p1 ∧ p2,∧ · · · ∧ pN 〉, . . .) are thus encountered, su-
perposition of states with different number of particles. In accordance with the
definition of the scalar product of states in the multi-particle space, it can only

13Whether a fermi field is an observable, i.e. a measurable quantity, is doubtful. For example, it
does not have a classical limit as states can at most be singly occupied. A bose field (introduced
in Section 1.4) on the other hand is an observable, since any number of bosons can occupy a single
state and the average value of a bose field can thus be nonzero, an example being the classical state
of light, the coherent state, created by a laser.

14In mathematical terms, the state space is a Hilbert space, and the Fock space is a Hilbert sum
of Hilbert spaces, and itself a Hilbert space.

15The zero vector in the Fock space is of course (0, 01, 02, . . .) ≡ 0, for which the obvious short
notation has been introduced.
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be nonzero if the states have components with the same number of particles. An
N -particle basis state in the multi-particle space is usually shortened according to
(0, 01, 02, . . . , |p1 ∧ p2 ∧ · · · ∧ pN 〉, 0N+1, 0N+2, . . .) → |p1 ∧ p2 ∧ · · · ∧ pN 〉.

For the vacuum state, the creation operator operates also in accordance with its
general prescription of adding a particle

a†
p |0〉 = |0, |p〉, 02, 03, . . .〉 . (1.64)

The state vector (using the abbreviated notation introduced above)

a†
p1
· · · a†

pN
|0〉 = |p1 ∧ p2 ∧ · · · ∧ pN 〉 (1.65)

is an antisymmetric N -particle basis state in the multi-particle state space, provided
that all the momenta are different of course, otherwise it is the zero-vector.16 The
bracket notation appears a little clumsy in this context, and the notation

Φp1,...,pN = a†
p1
· · · a†

pN
Φ0 (1.66)

is often used, where Φ0 denotes the vacuum. For a state which is a superposition
of states with different number of particles we can also express it in terms of the
vacuum state, for example (0, |p1〉, |p′

1 ∧ p′
2〉, 03, . . .〉 = (a†

p1
+ a†

p′
1
a†
p′

2
)|0〉.

By construction, any two fermion creation operators, a†
p and a†

p′ , anti-commute,
i.e.

{a†
p, a†

p′} ≡ a†
p a†

p′ + a†
p′ a†

p = 0 , (1.67)

meaning that operating with the anti-commutator {a†
p, a†

p′} on any vector in Fock
space produces the zero vector in Fock space, 0 ≡ (0, 01, 02, . . .), just as multi-
plying any vector in Fock space by the number 0 does. This follows immediately
from the fact that operating with the anti-commutator on any basis vector, say
(0, 01, 02, . . . , |p1 ∧ p2 ∧ · · · ∧ pN 〉, 0N+1, 0N+2, . . .), gives the sum of two vectors
which differ only by a minus sign (or if the momentum labels in the anti-commutator
are equal, the sum of two zero vectors). For the case p′ = p, the anti-commutation
relation Eq. (1.67) becomes a†

p a†
p = − a†

p a†
p and therefore by itself a†

p a†
p = 0. This is

Pauli’s exclusion principle expressed in terms of the creation operator: two fermions
can not be accommodated in the same state.

We then introduce the fermion annihilation operator, ap, as the adjoint of the
fermion creation operator a†

p. Since the creation operator maps an N -particle state
into an (N + 1)-particle state, the annihilation operator, being the adjoint, will map
an N -particle state into an (N − 1)-particle state. To understand its properties we
can restrict attention to the basis vectors of the subspaces F (N) and F (N−1) of the
Fock space, and we have

〈p′
2 ∧ · · · ∧ p′

N |ap|p1 ∧ · · · ∧ pN 〉∗ = 〈p1 ∧ · · · ∧ pN |a†
p|p′

2 ∧ · · · ∧ p′
N 〉

= 〈p1 ∧ · · · ∧ pN |p ∧ p′
2 ∧ · · · ∧ p′

N−1〉

= det(〈pi|p′
j〉) , (1.68)

16With the chosen ordering convention of the previous section it is the ground state for N non-
interacting fermions.
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where, in the last equality, we have introduced the notation p′
1 = p, and used

Eq. (1.42). Expanding the determinant in terms of its first column we get

〈p′
2 ∧ · · · ∧ p′

N |ap|p1 ∧ · · · ∧ pN 〉∗ =
N∑

n=1

(−1)n−1 〈pn|p〉det(〈pi|p′
j〉(n))

=
N∑

n=1

(−1)n−1 〈pn|p〉det(〈pi|p′
j〉(n)) ,

(1.69)

where the sub-determinant, det(〈pi|p′
j〉(n)), is the determinant of the matrix Eq. (1.68),

with row n and the first column removed. Using 〈p|p′〉∗ = 〈p′|p〉 we get

〈p′
2 ∧ · · · ∧ p′

N |ap|p1 ∧ · · · ∧ pN 〉 =
N∑

n=1

(−1)n−1 〈p|pn〉det(〈p′
j |pi〉(n))

(1.70)

and using Eq. (1.42) for the (N−1)-particle case, the right-hand side can be rewritten
as

N∑
n=1

(−1)n−1 〈p|pn〉〈p′
2 ∧ · · · ∧ p′

N |p1 ∧ · · · ( no pn) .. ∧ pN 〉 (1.71)

and we have

ap |p1 ∧ · · · ∧ pN 〉 =
N∑

n=1

(−1)n−1 〈p|pn〉|p1 ∧ · · · ( no pn) · · · ∧ pN 〉 .

(1.72)

Thus operating with the fermion annihilation operator labeled by p on an N -particle
basis state produces the zero vector unless exactly one of the momentum values equals
p, and in that case it equals the (N − 1)-particle state where none of the fermions
occupies the originally occupied momentum state p. The annihilation operator ap

thus annihilates the particle in state p. In the simplest of situations we have

ap |p〉 = |0〉 . (1.73)

Annihilating the single-particle state turns it into the vacuum state.
In particular it follows from Eq. (1.68) that operating with any fermion annihila-

tion operator on the vacuum state produces the zero vector

ap |0〉 = 0 . (1.74)
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According to Eq. (1.67), the fermion annihilation operators anti-commute

{ap, ap′} = 0 . (1.75)

For the case p′ = p, the anti-commutation relation Eq. (1.75) has the consequence
ap ap = 0, expressing the exclusion principle: no two identical fermions can occupy
the same momentum state.

Next we inquire into the relations obtained by subsequent operations with fermion
creation and annihilation operators, and calculate, according to Eq. (1.72),

ap′ a†
p |p1 ∧ · · · ∧ pN 〉 = ap′ |p ∧ p1 ∧ · · · ∧ pN 〉

= 〈p′|p〉 |p1 ∧ · · · ∧ pN 〉

+
N∑

n=1

(−1)n 〈p′|pn〉|p ∧ p1 ∧ · · · ( no pn) · · · ∧ pN 〉

(1.76)

and similarly

a†
p ap′ |p1 ∧ · · · ∧ pN 〉 = a†

p

N∑
n=1

(−1)n−1〈p′|pn〉|p1 ∧ · · · ( no pn) · · · ∧ pN 〉

=
N∑

n=1

(−1)n−1〈p′|pn〉|p ∧ p1 ∧ · · · ( no pn) · · · ∧ pN 〉 ,

(1.77)

and by adding the two equations we realize the relation

{ap′, a†
p} = 〈p′|p〉 . (1.78)

The anti-commutator of fermion creation and annihilation operators is not an oper-
ator but a c-number, i.e. proportional to the identity operator. This is the funda-
mental relation obeyed by the fermion creation and annihilation operators, and its
virtue is that it makes respecting the quantum statistics a trivial matter. When do-
ing calculations for fermion processes, we can in fact, as we show later, forget all the
previous index-nightmare Fock state vector formalism, and we need only remember
the fundamental anti-commutation relation.

We note that, according to Eq. (1.77) and Eq. (1.72),

a†
p ap|p1 ∧ · · · ∧ pN 〉 =

{
|p1 ∧ · · · ∧ pN 〉 if exactly one of the p′

is equals p
0N−1 otherwise ,

(1.79)

i.e. the operator a†
p ap counts the number of particles in state p, i.e. the eigenvalue of

the operator is either 1 or 0, depending on the state in question being occupied or not.
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The operator np = a†
p ap is therefore referred to as the number operator for state

or mode p. The number of particles counted in the vacuum state is correctly zero.
One readily verifies (see Exercise 1.6 below), that all the mode number operators
commute and each number operator has only two eigenvalues, 0 or 1. The total
set of momentum state number operators, {np}p, thus constitutes a complete set of
commuting operators as specifying the eigenvalues for each number operator uniquely
specifies a basis vector. They can therefore be used to define a representation, as
discussed in Section 1.5.

Had we used any other complete set of single particle states, say labeled by
index λ, we would analogously have obtained for the commutation relations for the
operators creating and annihilating particles in states λ1 and λ2

{aλ1 , a
†
λ2
} = 〈λ1|λ2〉 = δλ1,λ2 , (1.80)

where the set of chosen single-particle states here is assumed orthonormal and discrete
unless we use compact notation to include a continuum as well, Kronecker including
delta. An example could be that of the energy eigenstates. In the case of momentum
states, we encounter in Eq. (1.78) either a Kronecker function or a delta function
depending on whether the particles are confined or not.

Since the creation and annihilation operators are defined in terms of operations
on state vectors, they inherit their invariance with respect to a global phase trans-
formation

aλ → eiφ aλ , a†
λ → e−iφ a†

λ . (1.81)

Note that indeed all the anti-commutation relations remain invariant under the phase
transformation.

Exercise 1.5. Show for arbitrary operators A, B and C the relations

[A, BC] = B [A, C] + [A, B] C = [A, B] C − B [C, A] (1.82)

and analogously for [AB, C], and in terms of anti-commutators

[A, BC] = {A, B}C − B {C, A} . (1.83)

Exercise 1.6. Let us familiarize ourselves with the consequences of the algebra of
creation and annihilation operators

{a†
λ1

, a†
λ2
} = 0 = {aλ1 , aλ2} (1.84)

and, according to Eq. (1.80) for different state labels, creation and annihilation op-
erators also anti-commute as

{aλ1 , a
†
λ2
} = 0 . (1.85)

It therefore suffices to consider a single pair of creation and annihilation operators,
denoted a = aλ, and we have {a, a†} = 1. As a consequence of the anti-commutation
relations, Eq. (1.84),

a2 = 0 = (a†)2 (1.86)
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and verify therefore

(a†a)2 = a†a . (1.87)

Show that for any c-number ε

eεa†a = aa† + eεa†a . (1.88)

Show that for the number operator, n = a†a, we have its characteristic equation

n(n− 1) = 0 (1.89)

demonstrating that its eigenvalues can be either zero or one.
Show that for different state labels, the number operators commute as

[nλ, nλ′ ] = 0 (1.90)

even though the creation and annihilation operators all anti-commute, and the num-
ber operators behave as bose operators. Or, in general, polynomials containing an
even number of anti-commuting operators behave algebraically as numbers.

Exercise 1.7. Show that the infinite product state

|BCS〉 =
∏
p

(
up + vp a†

p↑ a†
−p↓

)
|0〉 (1.91)

is normalized provided that |up|2 + |vp|2 = 1 for all p.

If, instead of momentum states, position states had been used we would analo-
gously have encountered creation operators which create fermions at definite posi-
tions, for example

a†
x1

a†
x2

. . . a†
xN
|0〉 = |x1 ∧ x2 ∧ · · · ∧ xN 〉 . (1.92)

Creation operators of different representations are related through their transforma-
tion functions. For position and momentum we have, according to Eq. (1.5),

|x〉 =
∫

dp |p〉 〈p|x〉 =
∫

dp
(2π�)3/2

e−
i
�
p·x |p〉 (1.93)

and therefore the relationship

a†
x =

∫
dp

(2π�)3/2
e−

i
�
p·x a†

p . (1.94)

In accordance with tradition, instead of using the notation a†
x we shall introduce

ψ†(x) = a†
x . (1.95)

To obtain the inverse relation we use

|p〉 =
∫

dx |x〉 〈x|p〉 =
∫

dx
(2π�)3/2

e
i
�
x·p |x〉 (1.96)
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and we have the relationships between the operators creating particles with definite
position and momentum

ψ†(x) =
∫

dp
(2π�)3/2

e−
i
�
p·x a†

p , a†
p =

∫
dx

(2π�)3/2
e

i
�
p·x ψ†(x) . (1.97)

Taking the adjoint we obtain analogously for the annihilation operators or quantum
fields

ψ(x) =
∫

dp
(2π�)3/2

e
i
�
p·x ap , ap =

∫
dx

(2π�)3/2
e−

i
�
p·x ψ(x) . (1.98)

How one prefers to keep track of factors of 2π� in the above Fourier transfor-
mations, is, of course, a matter of taste. With the above convention determined by
the fundamental choice of Eq. (1.5), no such factors appear in the fundamental anti-
commutation relation, Eq. (1.78). If the fermions are confined to a box of volume V
we shall use (guided by our preference for fields to have the same dimensions as wave
functions)

ψ(x) =
1√
V

∑
p

e
i
�
p·x ap , ap =

1√
V

∫
V

dx e−
i
�
p·x ψ(x) , (1.99)

leaving the fundamental anti-commutation relation Eq. (1.78)

{ap′ , a†
p} = δp,p′ , (1.100)

where the discrete allowed momentum values are specified by the boundary condition
for the states, say periodic boundary conditions.

One readily verifies, as a consequence of the analogous Eq. (1.78), or by using
Eq. (1.97) and Eq. (1.98), the fundamental anti-commutation relations for Fermi
fields in the position representation17

{ψ(x), ψ†(x′)} = δ(x− x′) (1.101)

and

{ψ(x), ψ(x′)} = 0 = {ψ†(x), ψ†(x′)} . (1.102)

For equal position the latter two equations have, as a consequence, ψ(x)ψ(x) = 0
and ψ†(x)ψ†(x) = 0, expressing the exclusion principle: no two identical fermions
can occupy the same position.

For the N -particle basis state with particles at the indicated locations we shall
also use the notation

Φx1 x2...xN = ψ†
x1

ψ†
x2
· · ·ψ†

xN
|0〉 (1.103)

17If the particles represented by the fields have internal degrees of freedom, say spin, we have

{ψ(x, σz ) , ψ†(x′, σ′
z )} = δσz ,σ′

z
δ(x − x′) .

Often the notation ψσz (x) = ψ(x, σz ) is used.
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where |0〉 denotes the vacuum state for the fermions.
As stressed, any complete set of single-particle states, not just the position or

momentum states, could have been employed. For example in the absence of transla-
tion invariance and using the single-particle energy eigenstates we have analogously
for the quantum fields

ψ(x) =
∑

λ

〈x|λ〉 aλ =
∑

λ

ψλ(x) aλ , aλ =
∫

dx ψ∗
λ(x)ψ(x) , (1.104)

where ψλ(x) are the orthonormal eigenstates of a single-particle Hamiltonian.
Instead of characterizing the quantum statistics of a collection of fermions in

terms of the antisymmetry of their state vectors, which as we have seen is a bit
messy or at least requires a substantial amount of indices-writing, it is now taken
care of by the simple anti-commutation relations for the creation and annihilation
operators. The price paid for this enormous simplification is of course that the
operators now are operators on a super-space, the multi-particle space. As shown in
the next section, the implementation for bosons is identical to the above except that
the quantum statistics is taken care of by the commutation relations of the creation
and annihilation operators.

Exercise 1.8. For N non-interacting spin one-half fermions, an ideal Fermi gas, the
ground state is obtained from the vacuum state according to

|G0〉 =

 ∏
σ,|p|<pF

a†
p,σ

 |0〉 , (1.105)

i.e all the states below the Fermi energy, εF = p2
F/2m, are occupied in accordance

with Pauli’s exclusion principle, and all states above are empty for the case of the
ground state. Pictorially, the ground state is that of a filled sphere in momentum
space, the Fermi sea, with the Fermi surface separating occupied and unoccupied
states.

Show that the one-particle Green’s function or density matrix becomes

Gσ(x− x′) ≡ 〈G0|ψ†
σ(x)ψσ(x′)|G0〉

=
3n

2
sinkF|x− x′| − kF|x− x′| coskF|x− x′|

(kF|x− x′|)3 , (1.106)

where n is the density of the fermions, and kF = pF/�, and in the considered three
dimensions k3

F = 3π2n. The considered amplitude specifies the overlap between the
state where a particle with spin σ at position x′ has been removed from the ground
state and the state where a particle with spin σ at position x has been removed
from the ground state. Or equivalently, it specifies the amplitude for transition to
the ground state of the state where a particle with spin σ at position x′ has been
removed from the ground state and subsequently a particle with spin σ has been
added at position x.
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At small spatial separation

〈G0|ψ†
σ(x)ψ†

σ(x′)|G0〉 �
n

2

(
1− (kF|x− x′|)2

10

)
(1.107)

and at x = x′ it counts the density of fermions per spin at the position in question.
Show that the pair correlation function is related to the one-particle density ma-

trix according to

〈G0|ψ†
σ(x)ψ†

σ′ (x′)ψσ′ (x′)ψσ(x)|G0〉 =


(

n
2

)2
σ′ �= σ(

n
2

)2 −G2
σ(x − x′) σ′ = σ.

(1.108)

Interpret the result and note in particular the anti-bunching of non-interacting fermions:
the avoidance of identical fermions to be at the same position in space, a repulsion
solely due to the exchange symmetry, the exclusion principle at work in real space.

So far the creation operators are just a kinematic gadget giving an equivalent way
of describing the N -particle state space for arbitrary N , since for example

a†
p1

a†
p2
· · · a†

pN
|0〉 = |p1 ∧ p2 ∧ · · · ∧ pN 〉 (1.109)

specifies the basis states in terms of the creation operators and the vacuum state.
In Chapter 2, we shall show how operators representing physical quantities can be
expressed in terms of the creation and annihilation operators, and thereby realize in
Chapter 3 their usefulness in describing quantum dynamics in the most general case
where the number of particles is not conserved. But first we consider the kinematics
for the case where the identical particles are bosons.

1.4 Bose field

The bose particle creation operator, a†
p, is introduced according to its action on the

basis states of Eq. (1.45)

a†
p |p1 ∨ p2 ∨ · · · ∨ pN 〉 ≡ |p ∨ p1 ∨ p2 ∨ · · · ∨ pN 〉 (1.110)

and the adjoint operates according to

ap |p1 ∧ · · · ∧ pN 〉 =
N∑

n=1

〈p|pn〉|p1 ∧ · · · ( no pn) · · · ∧ pN 〉 , (1.111)

i.e. it annihilates a particle in state p, and is referred to as the bose annihilation
operator. As previously noted, the derivation is equivalent to the antisymmetric case.

Since no minus signs ever occur, the bose creation and annihilation operators sat-
isfy the commutation relations (the analogous equations to Eq. (1.76) and Eq. (1.77)
are now subtracted to give the following result)

[ap′ , a†
p] = 〈p′|p〉 (1.112)
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and

[a†
p′ , a

†
p] = 0 = [ap′ , ap] . (1.113)

We note that, according to the equation for bosons analogous to Eq. (1.77), the
operator a†

p ap counts the number of particles in state p

a†
p ap |p1 ∨ · · · ∨ pN 〉 = np |p1 ∨ · · · ∨ pN 〉 (1.114)

where np denotes the number of particles in momentum state p in the basis state
|p1 ∨ · · · ∨pN 〉, i.e. the number of pis which are equal to p, and the operator np =
a†
p ap is referred to as the number operator for state or mode p. In contrast to the

case of fermions, the boson number operators have besides the eigenvalue 0 all natural
numbers as eigenvalues. As in the case of fermions, the total set of momentum state
number operators, {np}p, thus constitute a complete set of commuting operators
giving rise to a representation as discussed in Section 1.5.

Quite analogous to the case of fermions, creation and annihilation operators with
respect to position can be introduced. For the N -particle basis state with particles
at the indicated locations we have

Φx1 x2 ... xN = ψ†
x1

ψ†
x2

. . . ψ†
xN
|0〉 , (1.115)

where |0〉 denotes the vacuum state for the bosons.
Kinematically, independent boson fields are assumed to commute, and bose fields

commute with fermi fields (at equal times).
Though already stated, the expression for the resolution of the identity is not

of much practical use; the job has been taken over by the creation and annihilation
operators, we include it for completeness. The resolution of the identity in the multi-
particle space takes the form (and identically for fermions by using the antisymmetric
states)

1 =
1

N !

∞∑
N=0

∑
p1,p2,...,pN

|p1 ∨ p2 ∨ · · · ∨ pN 〉〈p1 ∨ p2 ∨ · · · ∨ pN |

=
∞∑

N=0

1
n1! · · ·nN !

∑
p1≤p2≤···

|p1 ∨ p2 ∨ · · · ∨ pN 〉〈p1 ∨ p2 ∨ · · · ∨ pN | ,

(1.116)

where the term N = 0 denotes the projection operator onto the vacuum, |0〉〈0|.

Exercise 1.9. Compact notation encompassing both bosons and fermions can some-
times be convenient. Writing an anti-commutator {A, B} ≡ [A, B]+, the double val-
ued variable, s = ±, comprises both anti-commutators and commutators, [A, B]s,
and distinguishes the two types of quantum statistics. Show that

[np, a†
p]s = a†

p , [np, ap]s = s ap . (1.117)
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1.4.1 Phonons

The bose field does not occur only in connection with the elementary bosonic par-
ticles of the standard model, but can be useful in describing collective phenomena
such as the long wave length oscillations of the ions in say a metal or a semicon-
ductor, and we turn to see how this comes about. The Hamiltonian describing the
ions of mass M and density ni in a crystal lattice is given by the kinetic energy
term for the ions and an effective ion–ion interaction determined by the screened
Coulomb interaction. Expanding the effective ion–ion interaction potential to low-
est, quadratic, order, neglecting anharmonic effects and thus only accounting for
small oscillations of the ions, the Hamiltonian can be diagonalized by an orthogo-
nal transformation rendering it equivalent to that of a set of independent harmonic
oscillators. In this long wave length description, the background dynamics can be
described by a continuum limit quantum field, the quantum displacement field, u(x),
a coarse-grained description of the ionic displacements at position x. For longer than
interatomic distance, the screened Coulomb interaction is effectively a delta function,
Veff(x − x′) = Z2/2N0 δ(x − x′), and together with the kinetic energy of the back-
ground ions, the background Hamiltonian functional valid for small displacements
then becomes18

Hb =
∫
dx
[

1
2Mni

(Π(x))2 +
Mni c

2

2
(∇x · u(x))2

]
, (1.118)

where the components of the momentum density and the displacement field inherit
the canonical commutation relations of the ions

[Πα(x) , uβ(x)] =
�

i
δαβ δ(x− x′) (1.119)

and the sound velocity is given by

c2 =
Zn

2N0M
=

Z

3
m

M
v2
F (1.120)

where n = Zni is the equilibrium electron density and m the electron mass. We
note that the longitudinal sound velocity is typically smaller by a factor of 100 than
the Fermi velocity, vF. The continuum description of the oscillations of the in fact
discretely located ions appeared because the ions were assumed to exhibit only small
oscillations.

The Hamiltonian describing the dynamics of the background is in fact just a set
of harmonic oscillators, as obtained by diagonalizing the Hamiltonian. Introducing
the normal mode operators

ak =
(

2Mni ωk

�V

)1/2 k · ck

k
, where ck + c†−k =

∫
V

dx e−ix·k u(x) (1.121)

18For details of these arguments, starting from the quantum mechanics of the individual ions and
then taking the continuum limit, we refer the reader to, for example, chapter 10 of reference [1].
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or
u(x) =

1
V

∑
k �=0,|k|<kD

(ck eik·x + c†−k e−ik·x) (1.122)

the background Hamiltonian becomes the free longitudinal phonon Hamiltonian

Hph = Hb =
∑

|k|≤kD

�ωk

(
a†
k ak +

1
2

)
(1.123)

with linear dispersion ωk = c |k|, and the operators satisfy the harmonic oscillator
normal mode commutation relations

[ak, a†
k′ ] = δk,k′ , [a†

k, a†
k′ ] = 0 , [ak, ak′ ] = 0 (1.124)

inherited from the canonical commutation relations for the position and momentum
operators of the individual ions. A quantum of an oscillator, a quantized sound mode,
is referred to as a phonon. In the Debye model, the lattice vibrations are assumed
to have linear dispersion all the way to the cut-off wave vector kD.

However, instead of the above quantum mechanical argument, we can also here
take the opportunity to discuss the classical field theory of oscillations in an isotropic
elastic medium, and then obtain the corresponding quantum field theory by quan-
tizing the dynamics of the normal modes. This trick can then be elevated to give us
the quantum theory of the electromagnetic field.

1.4.2 Quantizing a classical field theory

As an example of quantizing a classical field theory we consider an elastic isotropic
medium of volume V specified by its longitudinal sound velocity c and mass density
ρ. In terms of the displacement field, u(x, t), describing the displacement of the
background matter at position x at time t, we have for small displacements

δnb(x, t)
ni

= − ∇ · u(x, t) , (1.125)

where δnb(x, t) is the deviation of the medium density from the average density
ni. Newton’s equation and the continuity equation leads for small δnb(x, t) to this
density disturbance satisfying the wave equation(

x −
1
c2

∂2

∂t2

)
δnb(x, t) = 0 (1.126)

or the dynamics of the elastic medium is equivalently, through the principle of least
action, described by the Lagrange functional

L[u, u̇] =
ρ

2

∫
dx

[(
∂u(x, t)

∂t

)2

− c2 (∇ · u(x, t))2
]

. (1.127)

In accordance with the assumed isotropy of the elastic medium, it exhibits no
shear or vorticity, sustaining only longitudinal waves

∇x × u(x, t) = 0 , k× uk(t) = 0 , k ‖ uk(t) . (1.128)
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The classical equations of motion for the displacement field of the medium, the
Lagrange field equations following from Hamilton’s principle of least action, can be
expressed in terms of the displacement field

�u(x, t) = 0 , ük(t) + c2k2uk(t) = 0 (1.129)

specified by the d’Alembertian

� =
(
x −

1
c2

∂2

∂t2

)
. (1.130)

The solution is, for example, the running normal mode expansion with periodic
boundary conditions

u(x, t) =
1
V

∑
k �=0

[ck(t) eik·x + c∗k(t) e−ik·x] , ck(t) = ck e−iωkt , ωk = c|k|

(1.131)
or equivalently for the Fourier components

uk(t) = ck(t) + c∗−k(t) , (1.132)

as the vector field u(x, t) is real.
Introducing the momentum density of the medium19

Π(x, t) ≡ ρ
∂u(x, t)

∂t
=

δL[u, u̇]
δu̇(x, t)

(1.133)

and recalling that the Hamilton and Lagrange functions are related through a Legen-
dre transformation (see, for example, Eq. (3.46) or Eq. (A.10)), we have the Hamilton
functional for the dynamics of the elastic medium

Hb =
∫
dx
[
1
ρ

(Π(x, t))2 +
ρ c2

2
(∇ · u(x, t))2

]
. (1.134)

Introducing

ak(t) =
(ρ ωk

�V

)1/2 k · ck(t)
k

(1.135)

we obtain
Hb =

1
2

∑
k

�ωk(ak(t) a∗
k(t) + a∗

k(t) ak(t)) . (1.136)

The classical theory is now quantized by letting the normal mode expansion co-
efficients become operators, a∗

k(t) → a†
k(t), which satisfy the harmonic oscillator

creation and annihilation equal time commutation relations20

[ak(t), a†
k′(t)] = δk,k′ , [a†

k(t), a†
k′(t)] = 0 , [ak(t), ak′(t)] = 0 . (1.137)

19Functional differentiation is discussed in section 9.2.1.
20This so-called second quantization procedure is discussed further in Section 3.2.
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There is for the present purpose nothing conspicuous about this quantization proce-
dure, as it gives the same Hamiltonian as the one derived quantum mechanically in
the previous section, where these commutation relations are directly inherited from
the canonical commutation relations for the position and momentum operators of
the individual ions of the material. The continuum description was appropriate since
only long wave length oscillations, long compared with the inter-ionic distance, were
of relevance.

In classical physics, kinematics and dynamics of physical quantities are expressed
in terms of the same quantities. Kinematics, i.e. the description of the physical state
of an object is, in classical physics, intuitive, described in terms of the position and
velocity of an object, (x(t),v(t)): we can point to the position of an object and from
its motion construct its velocity. The classical dynamics is expressed in terms of
the time dependence of the positions and velocities (or momenta) of the concerned
objects, say in terms of Hamilton’s equations. In quantum mechanics, dynamics and
kinematics can be separated, as is the case in the Schrödinger picture, where the
dynamics is carried by a state vector and the physical properties of a system by
operators. When quantizing a classical theory, the Hamiltonian is thus obtained in
the so-called Heisenberg picture, where the operators representing physical quantities
are time dependent and also carrying the dynamics of the system. The quantized
elastic medium Hamiltonian is therefore expressed in the Heisenberg picture, and the
Hamiltonian in the Schrödinger picture is here obtained simply by removing the time
variable, recalling ak(t) = ak e−iωkt, i.e. we implement the commutation relations
for the ak quantities, and we recover the expression in Eq. (1.123) for the phonon
Hamiltonian. The Schrödinger and Heisenberg pictures are discussed in detail in
Section 3.1.2.

A similar prescription in fact works for quantizing the free Maxwell equations
of classical electrodynamics, producing the quantum theory of electromagnetism,
quantum electrodynamics or QED, as discussed in Exercise 1.10, where the quanta
of the field are Einstein’s photons. In the case of phonons, the quanta describe
the quantum states of small oscillations of an assembly of atoms as described by the
Schrödinger equation. However, for the case of electromagnetism, the photons do not
refer to any dynamics of a medium. The non-relativistic field theory of interacting
electrons, described by the Hamiltonian for Coulomb interaction, Eq. (1.53), is only a
limiting case of QED, but the one relevant for the dynamics of, say, electrons in solids.
In the next chapter we shall therefore take the approach to non-relativistic quantum
field theory which starts from the known interactions of an N -particle system and
then construct their forms on the multi-particle state spaces. However, when we
eventually consider the dynamics of a quantum field theory in terms of its Feynman
diagrammatics in Chapter 9, all theories appear on an equal footing, particulars are
just embedded in the various indices possibilities for propagators and vertices.

Exercise 1.10. Maxwell’s equations, the classical equations of motion for the elec-
tromagnetic field, can for vacuum, the free theory, be obtained from Hamilton’s
principle of least action with the Lagrange density (SI units are employed)

L =
4π

2
(
ε0 E2 + µ0 B2

)
. (1.138)
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Representing the electric field solely in terms of a vector potential, ϕ = 0, and
choosing the Coulomb or radiation gauge, ∇·A = 0, show that the Lagrange density
becomes

L =
4π

2

(
ε0 Ȧ2 + µ0 (∇×A)2

)
(1.139)

and the Euler–Lagrange equation becomes(
∇2 − 1

c2

∂2

∂t2

)
A(x, t) = 0 , (1.140)

where c = 1/
√

µ0 ε0 denotes the velocity of light. Note that manifest Lorentz and
gauge invariance have been sacrificed in the Coulomb gauge. Expressing the solution
in terms of running normal modes, obtain that the Hamiltonian for free photons has
the form

Hph =
∫

dk
(2π)3

∑
p=1,2

�c|k| a†
kp akp , (1.141)

where since we are in the transverse gauge two perpendicular polarizations occur,
and the creation and annihilation operators for photons with wave vectors k and
polarizations p satisfy the commutation relations

[akp, a
†
k′p′ ] = (2π)3 δ(k− k′) δpp′ . (1.142)

1.5 Occupation number representation

In this section we make a side remark which is not necessary for understanding any
of the further undertakings; we just include it for its historical relevance, since this is
how quantum field theory traditionally was presented, originating in the treatment
of the electromagnetic field and emulated for fermions in many textbooks.

The operator
Nλ = a†

λ aλ (1.143)

counts, as noted in the previous sections, the number of particles in state λ in any
N -particle basis state expressed in terms of these states

Φλ1 λ2...λN = a†
λ1

a†
λ2
· · · a†

λN
|0〉 . (1.144)

The set of numbers, {nλi }i, counted in the basis states by the set of number operators
{Nλi }i therefore uniquely characterizes the basis states, and the set of these oper-
ators therefore forms a complete set of commuting operators in the corresponding
multi-particle space, symmetric or antisymmetric. They therefore give rise to a repre-
sentation, the occupation number representation. As a basis set in the multi-particle
space, we can therefore equally well use the occupation number representation, where
the orthonormal basis states are defined by this complete set of commuting opera-
tors, and simply are labeled by stating how many particles are present in any of the
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single particle states λ, |nλ1 , nλ2 , nλ3 , . . .〉. These states are related to our previous
basis states according to

|nλ1 , nλ2 , nλ3 , . . .〉 ≡
1√

n1!n2!n3! · · ·
|λ1� · · ·�λ1�λ2� · · ·�λ2�λ3� · · ·�λ3� · · ·〉 ,

(1.145)
where ni is the number of times state λi occurs, and � stands for ∨ or ∧ for the bose
or fermi case, respectively. In the fermion case, each λi can of course at most occur
once, i.e. ni = 0 or ni = 1.

We note that if, as in the following, the λ-label refers to the single-particle energy
states, the sum of single-particle energies

E0({nλ}λ) =
∑

λ

ελ nλ (1.146)

of an assembly of identical particle is the energy eigenvalue of the free Hamiltonian

H0 =
∑

λ

ελ Nλ (1.147)

in state |nλ1 , nλ2 , nλ3 , . . .〉, i.e. the single-particle or free Hamiltonian can be ex-
pressed in terms of the number operators.

The occupation number representation is not necessary, since the introduction
of the workings of the creation and annihilation operators as done in the previous
sections is easier. However, one notices that, for the case of bosons, the creation
operator operates on an occupation number eigenstate according to21

a†
λi
|nλ1 , nλ2 , nλ3 , . . .〉 =

√
ni + 1 |nλ1 , nλ2 , nλ3 , . . . , nλi + 1, . . .〉 (1.148)

and the annihilation operator according to

aλi |nλ1 , nλ2 , nλ3 , . . .〉 =
√

ni |nλ1 , nλ2 , nλ3 , . . . , nλi − 1, . . .〉 (1.149)

and we realize that, in the bose case, creation and annihilation operators act analo-
gously to creation and annihilation operators for a harmonic oscillator. The quanta
in a harmonic oscillator thus have an equivalent interpretation in terms of particles
occupying the energy states of a harmonic oscillator. Here emerges the reason for
the success of Einstein’s revolutionary interpretation of Planck’s lumps of energy in
the electromagnetic field as particles. This is how the quanta of the electromagnetic
field oscillators are interpreted as particles, viz. photons. Vice versa, the collec-
tive small oscillations of lattice ions performed by the atoms or ions in a solid can
be represented in terms of harmonic oscillators, the so-called phonons as described
in Section 1.4.1, or equivalently has identical properties to particles obeying bose
statistics. For bosons such as photons, i.e. in quantum optics, the occupation, or
just number representation, is of course of fundamental relevance.

21For fermions additional sign factors appear as discussed in Exercise 1.11.
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Exercise 1.11. Consider the case of fermions and define the basis states in the
number representation in terms of the vacuum state economically according to

|n1, n2, n3, . . . , n∞〉 = (a†
1)

n1(a†
2)

n2(a†
3)

n3 . . . (a†
∞)n∞ |0〉 (1.150)

where the nis can take on the values 0 or 1.
Show that, for ns = 1,

as |n1, n2, n3, . . . , n∞〉 = (−1)Ss (a†
1)

n1 . . . (asa
†
s) . . . (a†

∞)n∞ |0〉 , (1.151)

where Ss = n1+n2+ · · ·+ns−1 counts how many anti-commutations it takes to move
as to its place displayed on the right-hand side. If ns = 0, the annihilation operator
as could be moved all the way to act on the vacuum, producing the zero-vector.

Use the above observations to show that

as | . . . , ns, . . .〉 = (−1)Ss
√

ns | . . . , ns − 1, . . .〉 (1.152)

and
a†

s | . . . , ns, . . .〉 = (−1)Ss
√

ns + 1 | . . . , ns + 1, . . .〉 (1.153)

and thereby
Ns | . . . , ns, . . .〉 = ns | . . . , ns, . . .〉 . (1.154)

Here we have used modulo one-notation in the ns-state labeling: 1 + 1 = 0 and
0 − 1 = 0. These relations are therefore similar to those for bosons except that
obnoxious sign factors occur owing to the Fermi statistics. The occupation number
representation for fermions is therefore not attractive as the wedge is not explicit.

1.6 Summary

In this chapter we have considered the quantum mechanical description of systems
which can be in superposition of states with an arbitrary content of particles. To
deal with such situations, endemic to relativistic quantum theory, quantum fields were
introduced, describing the creation and annihilation of particles. The states in the
multi-particle state space could be simply expressed by operating with the creation
field on the vacuum state, the state corresponding to absence of particles. The
whole kinematics of a many-body system is thus expressed in terms of just these two
operators. Our first encounter with a quantum field theory was the case of quantized
lattice vibrations, phonons, and equivalent to the quantum mechanics of a set of
harmonic oscillators, and the archetype resulting from the scheme of quantizing a
classical field theory. The scheme was then exploited to quantize the electromagnetic
field where the quanta of the field, the photons, were particles with two internal spin
or polarization or helicity states. In the case of phonons, the continuum quantum
field description was only an appropriate long wave length description, whereas in
the case of photons the quantum field theory is truly a description of a system with
an infinite number of degrees of freedom. In the next chapter we shall consider
non-relativistic many-body systems, and the task is therefore not to assess the form
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of the Hamiltonian, but the more mundane task of elevating a known N -particle
Hamiltonian to its form on the multi-particle state space.

As we develop the various topics of the book the following conclusion will emerge:
quantum fields are the universal vehicle for describing fluctuations whatever their
nature, being quantum or thermal or purely classical stochastic.



2

Operators on the
multi-particle state space

A physical property A is characterized by the total set of possible values {a}a it can
exhibit. In quantum mechanics, the same information is expressed by the operator
representing the physical quantity in question, expressed by the weighted sum of
projection operators

Â =
∑

a

a |a〉〈a| (2.1)

weighted by the eigenvalues of the operator in question.1 We now want to find the
expression for the operator on the multi-particle space whose restriction to any N -
particle subspace reduces to the operator in question for the system consisting of N
identical bosons or fermions. We show that all operators for an N -particle system are
lifted very simply to the multi-particle space through an expression in terms of the
creation and annihilation operators in a way analogous to the bra and ket expression
in Eq. (2.1).

2.1 Physical observables

In quantum mechanics, physical properties are represented by operators, say momen-
tum by an operator denoted p̂, and for an N -particle system their total momentum
is represented by the operator in Eq. (1.25), denoted P̂N . We now want to find
the expression for the operator on the multi-particle space whose restriction to any
N -particle subspace reduces to the total momentum operator for the N identical par-
ticles. In the following we consider the case of fermions; as usual for kinematics the
case of bosons is a trivial corollary. We have for the operation of the total momentum

1For details on the construction of operators from values of physical outcomes, we refer to chapter
1 of reference [1].

33
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operator on a general antisymmetric N -particle basis state

P̂N |λ1 ∧ λ2 ∧ · · · ∧ λN 〉 =

(
N∑

i=1

p̂i

)
1√
N !

∑
P

(−1)ζP |λ
P1
〉|λ

P2
〉 · · · |λ

PN
〉

=
∑
P

(−1)ζP

(
(p̂|λ

P1
〉)|λ

P2
〉 · · · |λ

PN
〉

+ |λ
P1
〉(p̂|λ

P2
〉) · · · |λ

PN
〉 + · · ·

+ |λ
P1
〉|λ

P2
〉 · · · (p̂|λ

PN
〉)
)

. (2.2)

Presently we are discussing the one-body momentum operator

p̂ =
∫

dp p |p〉〈p| (2.3)

but it is in fact appropriate first to access how the general one-body transition oper-
ator |p′〉 〈p| is implemented, and thereby the whole operator algebra.2

For a general one-body operator, f̂ (1), the corresponding operator for the N -
particle system

F̂
(1)
N =

N∑
i=1

f̂
(1)
i (2.4)

operates according

F̂
(1)
N |λ1 ∧ λ2 ∧ · · · ∧ λN 〉 = |f (1) λ1 ∧ λ2 ∧ · · · ∧ λN 〉

+ |λ1 ∧ f (1) λ2 ∧ · · · ∧ λN 〉 + · · ·

+ |λ1 ∧ λ2 ∧ · · · ∧ f (1) λN 〉 , (2.5)

where f (1) λ labels the state which f̂ (1) maps the state labeled by λ into

|f (1) λ〉 = f̂ (1) |λ〉 . (2.6)

The operator, F̂
(pp′)
N , on the N -particle space corresponding to the one-body

operator f̂ (1) = |p′〉〈p| thus operates according to

F̂
(pp′)
N |λ1 ∧ λ2 ∧ · · · ∧ λN 〉 = 〈p|λ1〉 |p′ ∧ λ2 ∧ · · · ∧ λN 〉

+ 〈p|λ2〉 |λ1 ∧ p′ ∧ λ3 ∧ · · · ∧ λN 〉 + · · ·

+ 〈p|λN 〉 |λ1 ∧ λ2 ∧ · · · ∧ λN−1 ∧ p′〉. (2.7)
2We are here guided by the knowledge that a bra has the feature of an annihilation operator

and a ket has the feature of a creation operator, and the transition operators constitute the basis
of the measurement algebra of a quantum system, i.e. completeness of a basis in the state space
is expressed, in the λ-representation, by the identity

∑
λ |λ〉〈λ| = 1, and the set {|λ〉〈λ′|}λ,λ′ is a

basis in the dual space, the space of linear operators on the state space. For details see chapter 1
in reference [1].
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Since by antisymmetrization

(−1)n−1 |p′ ∧ λ1 ∧ · · · ∧ ( no λn) ∧ · · · ∧ λN 〉

= |λ1 ∧ · · · ∧ λn−1 ∧ p′ ∧ λn+1 ∧ · · · ∧ λN 〉 (2.8)

we have

F̂
(pp′)
N |λ1 ∧ · · · ∧ λN 〉 =

N∑
n=1

〈p|λn〉(−1)n−1|λ1 ∧ · · · (no λn insteadp′) · · · ∧ λN 〉 ,

(2.9)

but according to Eq. (1.77) this is the same state which is obtained when operating
with the operator a†

p′ ap so that

F̂
(pp′)
N |λ1 ∧ · · · ∧ λN 〉 = a†

p′ ap|λ1 ∧ · · · ∧ λN 〉 . (2.10)

We have thus established how to implement a one-body operator onto the multi-
particle space so that its restriction to any N -particle subspace is the corresponding
N -particle operator. The implementation for bosons is identical to the above, as
usual the derivation is completely analogous, in fact simpler since no minus signs
occur.

There is of course nothing special about momentum labels; the formal machinery,
i.e. the combinatorics, works for any set of one-particle states, say labeled by µ,
so that corresponding to the one-particle operator |µ2〉〈µ1| corresponds the operator
F (1) in the multi-particle space

F (1) = a†
µ2

aµ1 . (2.11)

An arbitrary one-particle operator has, in an arbitrary basis, the form

f̂ (1) =
∑
λ,λ′

|λ〉〈λ|f̂ (1)|λ′〉〈λ′| (2.12)

and by linearity the corresponding operator F (1) in the multi-particle space is thus

F (1) =
∑
λ,λ′

〈λ|f̂ (1)|λ′〉 a†
λ aλ′ . (2.13)

We note that if f̂ (1) is hermitian in the one-particle state space, as is F (1) in the
multi-particle state space.

The total momentum operator P in the multi-particle space is thus

P =
∫

dp p a†
p ap =

∫
dx ψ†(x)

�

i
∇x ψ(x) (2.14)

expressed in either the momentum or position representation of the field.
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Exercise 2.1. Show that the commutator of the total momentum operator and the
field is

[ψ(x),P] =
�

i
∇x ψ(x) (2.15)

or equivalently
ψ(x) = e−

i
�
x·P ψ(0) e

i
�
x·P . (2.16)

We now have the prescription for mapping any one-particle operator into the
corresponding operator on the multi-particle space. For a non-relativistic particle of
mass m in a potential V the Hamiltonian is

Ĥ =
p̂2

2m
+ V (x̂, t) =

p̂2

2m
+
∫

dx n̂(x)V (x, t) , (2.17)

where in the second equality we have introduced the probability density operator for
a particle, n̂(x) = δ(x̂− x) (recall Section 1.2.4). In the position representation the
Hamiltonian has the matrix elements

〈x|
(

p̂2

2m
+ V (x̂, t)

)
|x′〉 =

(
1

2m

(
�

i

)2
∂2

∂x2
+ V (x, t)

)
δ(x− x′) (2.18)

and according to Eq. (2.13) the corresponding Hamiltonian on the multi-particle
space becomes

H =
∫

dx ψ†(x)

(
1

2m

(
�

i

)2
∂2

∂x2
+ V (x, t)

)
ψ(x) . (2.19)

We note that the single particle properties can be expressed in terms of the
occupation number operators. For the case of energy, the energy eigenstates should be
used, recall Eq. (1.147) and see Exercise 2.2, and of course for the case of momentum,
Eq. (2.14), the reference states should be the momentum states.

Exercise 2.2. Show that the kinetic energy operator for an assembly of non-relativistic
free identical particles of mass m

H =
∫

dx ψ†(x)

(
1

2m

(
�

i

)2
∂2

∂x2

)
ψ(x) (2.20)

in the momentum and energy representation has the form

H =
∑
p

εp a†
p ap =

∑
p

εp np , (2.21)

where εp = p2/2m is the kinetic energy of the free particle with momentum p.
The sum over momenta occurs, one momentum state per momentum volume ∆p =
(2π�)3/V in three dimensions, as the particles are assumed enclosed in a box of
volume V .
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Exercise 2.3. Show that the average value of the kinetic energy operator for an
electron gas consisting of N electrons in the ground state, i.e. the energy of N free
electrons in the ground state, is∑

p

εp 〈a†
p ap〉 =

3
5

p2
F

2m
N , (2.22)

where pF is the Fermi momentum, the radius of the sphere of occupied momentum
states (in three dimensions pF = �(3π2n)1/3, where n = N/V is the density of the
electrons).

Exercise 2.4. Show that the vacuum state is non-degenerate and uniquely charac-
terized by all the eigenvalues of the state number operators np being zero.

Exercise 2.5. For the quantities discussed so far, a possible (say) spin degree of free-
dom of the particles did not have its two spin states discriminated, and its presence
was left implicit in the notation. To consider a situation where spin states needs to be
specified explicitly, consider (say) electrons interacting with the magnetic moments
of impurities. The interaction of an electron interacting with the magnetic moments
of impurities is

V
(sf)
α,α′ (x) =

∑
a

u(x− xa) Sa · σα,α′ (2.23)

where xa is the location of a magnetic impurity with spin Sa and σ represents the
electron spin. In the multi-particle space, the interaction of the impurity spins and
the electrons thus becomes

Vsf =
∑
a

∫
dx u(x− xa) ψ†

α(x) Sa · σα,α′ ψα′(x) . (2.24)

Show it can be rewritten in the form

Vsf =
∑
a

∫
dx u(x− xa)

(
S−ψ†

↑(x)ψ↓(x) + S+ψ†
↓(x)ψ↑(x)

+ Sz
(
ψ†
↑(x)ψ↑(x) − ψ†

↓(x)ψ↓(x)
))

, (2.25)

where S± = Sx ± iSy.

Density and current density operators are important as well as their coupling
to external fields, and we now turn to their construction in the multi-particle state
space.

2.2 Probability density and number operators

The one-particle probability density operator (recall Section 1.2.4)

n̂(x) = δ(x̂ − x) = |x〉〈x| (2.26)
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maps according to the general prescription, Eq. (2.13), to the operator on the multi-
particle space

n(x) =
∫

dx1

∫
dx2 〈x1|n̂(x)|x2〉ψ†(x1)ψ(x2) (2.27)

and therefore the probability density operator in the multi-particle space is

n(x) = ψ†(x)ψ(x) . (2.28)

By construction this operator reduces in each N -particle subspace to the N -particle
density operator

n̂(x) =
N∑

i=1

δ(x̂i − x) . (2.29)

The identity operator in the one-particle state space3

Î =
∫

dx |x〉〈x| =
∫
dx n̂(x) (2.30)

becomes in the multi-particle space according to the general prescription, Eq. (2.13),
the operator

N =
∫

dx ψ†(x)ψ(x) =
∫

dp a†
p ap , (2.31)

which is the operator that counts the total number of particles in each N -particle
state, the total number operator. For example, according to the equation analogous
to Eq. (1.77) but in the position representation

N |x1 ∧ x2〉 =
∫

dx ψ†(x) ψ(x) |x1 ∧ x2〉

=
∫

dx (〈x|x1〉 |x ∧ x2〉 − 〈x|x2〉 |x ∧ x1〉)

= 2 |x1 ∧ x2〉 . (2.32)

Or more efficiently by just using the basic anti-commutation or commutation relation
for the fields, we obtain by consecutively anti-commuting or commuting, depending
on the particles being fermions or bosons, the ψ(x)-operator in the number operator
to the right and eventually killing the vacuum, that for the basis state Eq. (1.115)

N Φx1 x2 ... xn = n Φx1 x2 ... xn . (2.33)

For the case of the vacuum state the eigenvalue is zero, there are no particles
in the vacuum. In non-relativistic quantum mechanics, the total number operator
for each set of species is always conserved; however, this is of course not the case
in relativistic quantum theory. We note that the vacuum state has zero energy and
momentum (and of course, as noted, zero number of particles).

3The physical interpretation of the identity operator in the one-particle state space is the number
operator, counting the particle number in any one-particle state, Î |ψ〉 = 1 |ψ〉.
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Exercise 2.6. Show that if |ψn〉 represents a state with n particles, N |ψn〉 = n |ψn〉,
then

N ψ†(x) |ψn〉 = (n + 1) ψ†(x) |ψn〉 (2.34)

i.e. ψ†(x) |ψn〉 is a state with (n + 1) particles.

Since ψ(x) removes a particle from any state, the relationship

ψ(x) f(N) = f(N + 1) ψ(x) (2.35)

is valid for an arbitrary function, f , of the number operator. In particular we have

e−αN ψ(x) eαN = eα ψ(x) . (2.36)

Exercise 2.7. Show that the number operator for electrons in the momentum rep-
resentation takes the form

N =
∑

σ

∫
dp a†

pσ apσ . (2.37)

Exercise 2.8. The state considered in Exercise 1.7 on page 20 is the famous BCS-
state, which describes remarkably well the ground state properties of many s-wave
superconductors as realized by J. Bardeen, L. N. Cooper and J. R. Schrieffer (in
1957). Note its total disrespect for the sacred conservation law of non-relativistic
Fermi systems, the conservation of the number of particles or, equivalently, we can
say that the state corresponds to a situation with broken global gauge invariance.

For the reader interested in BCS-ology (which is further investigated in Section
8.1), verify for the average of the number operator

〈N〉 ≡ 〈BCS|N |BCS〉 = 2
∑
p

|vp|2 (2.38)

and for the variance

〈(N − 〈N〉)2〉 = 〈N2〉 − 〈N〉2 = 4
∑
p

u2
p v2

p . (2.39)

Show that a†
p↑|BCS〉 and a−p↓|BCS〉 represent the same state and that they are

orthogonal to the state |BCS〉. The BCS-pairing state consists of linear superpositions
of particle and hole states. Show that, as a consequence, anomalous moments are
non-vanishing in the state |BCS〉, for example

〈BCS|ap↑ a−p↓|BCS〉 = −u∗
p vp . (2.40)
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2.3 Probability current density operator

For a single particle, the probability current density operator is, according to Eq.
(1.58),

ĵ(x) =
1
m
{p̂, n̂(x)} . (2.41)

For particles carrying electric charge, e, the electric current density operator or charge
current density operator in the presence of a vector potential, A(x, t), is specified in
terms of the kinematic momentum operator (p̂can being the operator satisfying the
canonical commutation relation, Eq. (1.8))

p̂kin
t = p̂can − eA(x̂, t) (2.42)

and the charge current density operator is

ĵt(x) =
e

2m
{p̂kin

t , n̂(x)} . (2.43)

The current density operator then has two distinct parts

ĵt(x) = ĵp(x) + ĵdt (x) (2.44)

consisting of the so-called paramagnetic current density operator (or simply the cur-
rent density operator in the absence of a vector potential)

ĵp(x) =
e

2m
{p̂can, n̂(x)} (2.45)

and in the present case a time-dependent so-called diamagnetic current density op-
erator

ĵdt (x) = − e2

2m
{A(x̂, t), n̂(x)} = −e2

m
n̂(x)A(x̂, t) , (2.46)

the last equality sign following from the fact that the two operators commute.
For particles carrying electric charge e, the electric current density operator on

the multi-particle space is therefore, according to Eq. (2.12),

jA(t)(x, t) = ψ†(x) ĵA(t)(x, t) ψ(x) , (2.47)

where

ĵA(t)(x, t) = ĵ(1)(x, t) − e2

m
A(x, t) (2.48)

is the one-particle current density operator in the position representation in the
presence of an external vector potential A(x, t) and

ĵ(1)(x, t) =
e�

2mi

( →
∂

∂x
−

←
∂

∂x

)
, (2.49)

the arrows indicating on which field, to the left or right, the differential operator
operates.
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The interaction between an electron and an electromagnetic field represented by
a vector potential, A(x, t), can be written in terms of the current density operator
and the density operator

ĤA(t) = −
∫

dx ĵt(x) ·A(x, t) − e2

2m

∫
dx n̂(x)A2(x, t)

= −
∫

dx ĵp(x) ·A(x, t) +
e2

2m

∫
dx n̂(x)A2(x, t) , (2.50)

which becomes the operator on the multi-particle space

HA(t) = −
∫

dx jA(t)(x, t) ·A(x, t) − e2

2m

∫
dx n(x)A2(x, t)

= −
∫

dx jp(x) ·A(x, t) +
e2

2m

∫
dx n(x)A2(x, t) , (2.51)

where

jp(x) = ψ†(x) ĵ(1)(x, t) ψ(x) . (2.52)

The total Hamiltonian on the multi-particle space for an assembly of charged
identical particles interacting with a classical electromagnetic field is thus4

HAφ =
∫

dx ψ†(x)

(
1

2m

(
�

i

∂

∂x
− eA(x, t)

)2

+ eφ(x, t)

)
ψ(x) . (2.53)

Physical observables as well as their couplings to classical fields are thus repre-
sented on the multi-particle space by operators quadratic in the fields.

Exercise 2.9. Show that the current density operator for electrons in the momentum
representation takes the form

jp(x) = e
∑

σ

∫
dp′

(2π�)3/2

∫
dp

(2π�)3/2

p′ + p
2m

e−
i
�
(p′−p)·x a†

p′σ apσ . (2.54)

Having established how to implement one-particle operators on the multi-particle
space, we now turn to implement more complicated operators, viz. those describing
interactions.

4Here expressed in the so-called Schrödinger picture, where the dynamics is carried by state
vectors and the quantum field operators are time independent. The opposite scenario, the Heisenberg
picture, will be discussed in Chapter 3.
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2.4 Interactions

In this section we shall consider interactions between particles. In relativistic quan-
tum theory, the forms of interaction are determined by Lorentz invariance and ex-
pressed in terms of polynomials of the field operators describing the creation and
annihilation of particles. Our main interest shall be the typical interactions that are
relevant in condensed matter physics, and there the task is to obtain their form in
the multi-particle space knowing their form on any N -particle system. We therefore
start by considering the case of two-body interaction, and consider fermions as the
case of bosons follows as a simple corollary.

2.4.1 Two-particle interaction

If the identical particles, say fermions, interact through an instantaneous two-body
potential, V (2)(xi,xj), the interaction between two fermions is represented in the
antisymmetric two-particle state space by the operator

V̂ (2) =
1
2

∫
dx1

∫
dx2 |x1 ∧ x2〉V (2)(x1,x2)〈x1 ∧ x2| (2.55)

since

V̂ (2)|x1 ∧ x2〉 =
1
2
V (2)(x1,x2) |x1 ∧ x2〉 −

1
2
V (2)(x2,x1) |x2 ∧ x1〉

= V (2)(x1,x2) |x1 ∧ x2〉 (2.56)

and thereby

〈x1 ∧ x2|V̂ (2)|ψ〉 = V (2)(x1,x2)ψ(x1,x2) , (2.57)

where ψ(x1,x2) is the wave function describing the state of the two fermions, by
construction it is an antisymmetric function of its arguments.

We now show that the two-body interaction which operates on an N -particle basis
state according to

V̂
(2)
N |x1 ∧ x2 ∧ · · · ∧ xN 〉 =

∑
i<j

V (2)(xi,xj) |x1 ∧ x2 ∧ · · · ∧ xN 〉

=
1
2

∑
i�=j

V (2)(xi,xj) |x1 ∧ x2 ∧ · · · ∧ xN 〉 (2.58)

in the Fock space is represented by the operator

V =
1
2

∫
dx
∫

dx′ψ†(x)ψ†(x′)V (2)(x,x′)ψ(x′)ψ(x) . (2.59)
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First we note that by twice applying the equation analogous to Eq. (1.72) for the
annihilation operator in the position representation we get

ψ(x′)ψ(x) |x1 ∧ · · · ∧ xN 〉 = ψ(x′)
N∑

n=1

(−1)n−1δ(x− xn)|x1 ∧ · · · ( no xn) · · · ∧ xN 〉

=
N∑

n=1

(−1)n−1δ(x− xn)
N∑

m=1,(m �=n)

(−1)m−θ(n−m)δ(x′ − xm)

× |x1 ∧ x2 ∧ · · · ( no xn andxm) · · · ∧ xN 〉 , (2.60)

where θ denotes the step function. The second statistics exponent factor is m if
m > n and of the usual form m − 1 if m < n, simply adjusting to when operating
with the second annihilation operator the labeling of the state vector differs from the
one used in the definition Eq. (1.72). Then by operating with creation operators we
get

ψ†(x)ψ†(x′)ψ(x′)ψ(x) |x1 ∧ · · · ∧ xN 〉 =
∑

m( �=n)

δ(x− xn)δ(x′ − xm)

× (−1)n−1(−1)m−θ(n−m)|x ∧ x′ ∧ x1 ∧ x2 ∧ · · · ( no xn andxm) · · · ∧ xN 〉

=
∑

m( �=n)

δ(x− xn) δ(x′ − xm) |x1 ∧ x2 ∧ x3 ∧ · · · ∧ xN 〉 (2.61)

and multiplying with V (2)(x,x′) and integrating over x and x′ in Eq. (2.59) there-
fore reproduces Eq. (2.58). Clearly, the operator V on the multi-particle space is
hermitian since the function V (2)(x,x′) is real.

We note that the perhaps more intuitive guess for the two-body interaction in
terms of the density operator

V ′ =
1
2

∫
dx
∫

dx′ n(x)V (2)(x,x′)n(x′) (2.62)

differs from the correct expression, Eq. (2.59), by a self-energy term

V ′ = V +
1
2

∫
dx V (2)(x,x)n(x) , (2.63)

which, for example, for the case of Coulomb interaction would be infinite unless no
particles are present, in which case it becomes the other extreme, viz. zero.

The two-particle interaction part of the Hamiltonian, Eq. (2.59), is so-called
normal-ordered, i.e. all annihilation operators appear to the right of any creation op-
erator. We recall that the one-body part of the Hamiltonian is also normal-ordered,
as are those representing physical observables. We note that, as a consequence, the
vacuum state has zero energy and momentum.
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The derived expression, Eq. (2.59), for two-body interaction of fermions is of
course the same for two-particle interaction of bosons, the derivation being identical,
in fact simpler since no minus sign is involved in the interchange of two bosons.

The Hamiltonian for non-relativistic identical particles interacting through an
instantaneous two-body interaction is thus

H =
∫

dx ψ†(x)

(
1

2m

(
�

i

)2
∂2

∂x2

)
ψ(x)

+
1
2

∫
dx
∫

dx′ ψ†(x)ψ†(x′)V (2)(x,x′)ψ(x′)ψ(x) . (2.64)

Exercise 2.10. Show that the Hamiltonian for an assembly of particles interacting
through two-particle interaction commutes with the number operator.

Exercise 2.11. Show that if the two-particle potential is translational invariant

V (2)(x,x′) = V (x− x′) , (2.65)

we have in the momentum representation for the operator on multi-particle space

V =
1
2

∫
dq

(2π�)3

∫
dp
∫

dp′ V (−q) a†
p−q a†

p′+q ap′ ap , (2.66)

where V (q) is the Fourier transform of the real potential V (x)

V (q) =
∫

dx e−
i
�
x·q V (x) . (2.67)

If the potential furthermore is inversion symmetric, V (−x) = V (x), we obtain

V =
1
2

∫
dq

(2π�)3

∫
dp
∫

dp′ V (q) a†
p+q a†

p′−q ap′ ap . (2.68)

If the particles possess spin and their two-body interaction is spin dependent, the
interaction in the multi-particle space becomes

V =
1
2

∑
αα′,ββ′

∫
dx
∫

dx′ ψ†
α(x)ψ†

β(x′)Vαα′,ββ′(x,x′) ψβ′(x′)ψα′(x) , (2.69)

where, in accordance with custom, the spin degree of freedom appears as an index.

Exercise 2.12. Consider a piece of metal of volume V and describe it in the Som-
merfeld model where the ionic charge is assumed smeared out to form a fixed uniform
neutralizing background charge density.
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Show that, in the momentum representation, the operator on the multi-particle
space representing the interacting electrons is

V =
1

2V
∑

q �=0,p,p′,σσ′

e2

ε0q2
a†
p+q,σ a†

p′−q,σ′ ap′,σ′ ap,σ , (2.70)

i.e. the interaction with the background charge eliminates the (q = 0)-term in the
Coulomb interaction.

2.4.2 Fermion–boson interaction

In relativistic quantum theory the creation and annihilation operators, the quan-
tum fields, are necessary to describe dynamics, since particle can be created and
annihilated. Relativistic quantum theory is thus inherently dealing with many-body
systems. In a non-relativistic quantum theory the introduction of the multi-particle
space is never mandatory, but is of convenience since it allows for an automatic way of
respecting the quantum statistics of the particles even when interactions are present.
It is also quite handy, but again not mandatory, when it comes to the description
of symmetry broken states such as the cases of condensed states of fermions in su-
perconductors and superfluid 3He, and for describing Bose–Einstein condensates of
bosons.

The generic interaction between fermions and bosons is of the form

Hb−f = g

∫
dx ψ†(x)φ(x)ψ(x) , (2.71)

where ψ(x) is the fermi field and φ(x) is the real (hermitian) bose field, and the
interaction is characterized by some coupling constant g, and possibly dressed up in
some indices characteristic for the fields in question, such as Minkowski and spinor
in the case of QED.5 The fermi and bose fields commute since they operate on
their respective multi-particle spaces making up the total product multi-particle state
space.6 For the fermion–boson interaction which shall be of interest in the following,
viz. the electron–phonon interaction, Eq. ( 2.71) is also a relevant form.

2.4.3 Electron–phonon interaction

Of importance later is the interaction between electrons and the quantized lattice
vibrations in, say, a metal or semiconductor, the electron–phonon interaction. For
illustration it suffices to consider the jellium model where the electrons couple only to
longitudinal compressional charge configurations of the lattice ions, the longitudinal
phonons. A deformation of the ionic charge distribution in a piece of matter, will
create an effective potential felt by an electron at point xe, which in the jellium model

5Even the standard model has only fermionic interactions of this form. The fully indexed theory
will be addressed in Chapter 9.

6If a theory contains two or more kinematically independent fermion species their corresponding
fields are taken to anti-commute.



46 2. Operators on the multi-particle state space

is given by the deformation potential7

V (xe) =
n

2N0
∇xe · u(xe) , (2.72)

where u is the displacement field of the background ionic charge, N0 is the density of
electron states at the Fermi energy per spin (in three dimensions N0 = mpF/2π2

�
3),

and n is the electron density. The quantized lattice dynamics leads to the electron–
phonon interaction in the jellium model becoming (recall Eq. (1.131))

V̂e−ph(xe) =
n

2N0
∇xe · û(xe) =

i

2

√
�

N0V

∑
|k|≤kD

√
ωk [âk eik·xe − â†

k e−ik·xe ] (2.73)

where the harmonic oscillator creation and annihilation operators satisfy the commu-
tation relations, [âk, â†

k′ ] = δk,k′ , and describe the weakly perturbed collective ionic
oscillations (recall Sections 1.4.1 and 1.4.2). We assume a finite lattice of volume V .
The set of harmonic oscillators is in its multi-particle description thus specified by
the phonon field operator

φ(x) ≡ c
√

Mni ∇x · u(x) = i

√
�

2V

∑
|k|≤kD

√
ωk [ak eik·x − a†

k e−ik·x] , (2.74)

which is a real scalar bose field whose quanta, the phonons, are equivalent to bose
particles, the bose field in the multi-particle space of longitudinal phonons. The
interaction between the lattice of ions and an electron is thus transmitted in discrete
units, the quanta we called phonons. In accordance with custom we leave out hats on
operators on a multi-particle space; the phonon creation and annihilation operators
of course satisfy the above stated canonical commutation relations as well as those of
Eq. (1.113).8 The (longitudinal) phonon field, Eq. (2.74), is a real or hermitian field,
φ†(x) = φ(x), and contains a sum of creation and annihilation operators. Except for
the explicit upper (ultraviolet) cut off, imposed by the finite lattice constant, it is
thus analogous to the field describing a spin zero particle.

The electron–phonon interaction in the product of multi-particle spaces for elec-
trons and phonons is according to Eq. (2.72) given in terms of the phonon field and
the electron density reflecting that the electrons couple to the (screened) ionic charge
deformations (or equivalently, Eq. (2.72) is a one-body operator for the electrons since
it is a potential-coupling)9

Ve−ph = g

∫
dx ne(x)φ(x) = g

∫
dx ψ†(x)φ(x)ψ(x) , (2.75)

7The electron–phonon interaction is an effective collective description of the underlying screened
electron–ion Coulomb interaction. For the argument leading to the expression of the deformation
potential see, for example, chapter 10 of reference [1].

8Phonons refer to collective oscillations of the ions and their screening cloud of electrons, similarly
as the effective Coulomb electron–electron interaction describes the interaction between electrons
and their screening clouds. Such objects are referred to as quasi-particles.

9That the electron–phonon interaction takes this form is the reason for introducing the phonon
field, Eq. (2.74), instead of using the displacement field.
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where the electron–phonon interaction coupling constant, g, in the jellium model is
given by

g2 =
1

2N0
=

4
9

ε2F
Mnic2

(2.76)

and for the last rewriting in Eq. (2.75) we have used the fact that fermi and bose
fields commute since they are operators on different parts of the product space con-
sisting of the (tensorial) product of the multi-particle space for fermions and bosons,
respectively. The electron field operates on its Fock space and the bose field operates
on its multi-particle space.

We note that in the jellium model, the electron–phonon interaction is local just
as in relativistic interactions,10 but here in the context of solid state physics it is
only an approximation to an in general non-local interaction between the electrons
and the ionic charge deformations. Furthermore, in general the phonon field is not a
scalar field as a real crystal supports besides longitudinal also transverse vibrations.
The general form of the electron–phonon interaction is

Ve−ph =
∑

k,k′,q,b,σ

gkk′qb c†k′σ ckσ

(
aqb + a†

−qb

)
, (2.77)

where c and a are the electron and phonon fields, respectively, and in addition to
the two transverse phonon branches, optical branches can in general be present if
the unit cell of the crystal contains several atoms. Owing to the presence of the
periodic crystal lattice, the momentum is no longer a good quantum number, and
instead states are labeled by the Bloch or so-called crystal wave vector as defined
by the translations respecting the crystal symmetry. The coupling function, gkk′qb,
vanishes unless the crystal wave vector is conserved modulo a reciprocal lattice vector,
k′ = k + q + K. The new type of interaction processes, corresponding to K �= 0,
so-called Umklapp-processes, are the signature of the periodic crystal structure.

The phonons and electrons have dynamics of their own as described by the Hamil-
tonians of Eq. (1.123) and Eq. (2.64), and we have thus arrived at the Hamiltonian
describing electrons and phonons.

Exercise 2.13. Interaction between photons and electrons is obtained by minimal
coupling, P→ P− eA, where the photon field in the Schrödinger picture is specified
by (recall Exercise 1.10 on page 28)

A(x) =
∫

dk
(2π)3

√
�

2c|k|
∑

p=1,2

(
akp eik·x + a†

kp e−ik·x
)

ep(k) , (2.78)

where in the transverse gauge the two perpendicular unit polarization vectors, ep(k),
are also perpendicular to the wave vector, k, of the photon.

10In relativistic quantum theory the form of the interactions can be inferred from the symmetry
properties of the system. In condensed matter physics the interactions typically originate in the
Coulomb interaction; this is the case for the electron–phonon interaction, which originates in the
Coulomb interaction between the electrons and nuclei constituting a piece of material such as a
metal.
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The total electron–photon Hamiltonian, for the case of non-relativistic electrons,
then becomes

H = Hph + Hel + Hel−ph (2.79)

where
Hel + Hel−ph =

1
2m

(P − eA(x))2 (2.80)

and P is the total momentum operator for the electrons, Eq. (2.14).
Show that the electron–photon interaction can be written in the form

Hel−ph = −
∫

dx jp(x) ·A(x) +
e2

2m

∫
dx n(x)A2(x) (2.81)

where the current and density operators for the electrons are specified in Sections 2.3
and 2.2.

2.5 The statistical operator

Up until now, we have described the physical states of a system in terms of state
vectors in the multi-particle state space. A general state vector, |Ψ〉, can be expanded
on the basis vectors (using for once the resolution of the identity on the multi-particle
state space)

|Ψ〉 =
∞∑

N=0

1
N !

∑
p1,...,pN

〈p1 ∨ p2 ∨ · · · ∨ pN |Ψ〉 |p1 ∨ p2 ∨ · · · ∨ pN 〉 (2.82)

or expressed in terms of the vacuum state with the help of our new, so far only
kinematic gadget, the field operator

|Ψ〉 =
∞∑

N=0

∑
p1,...,pN

c(p1, . . . ,pN ) a†
p1
· · · a†

pN
|0〉 , (2.83)

where the cs are the complex amplitude coefficients specifying the state. Equivalently
the state vector could be expressed in terms of the field operator in the position
representation.

The description of a system in terms of its wave function is not the generic one
as systems often can not be considered isolated, and instead will be in a mixture of
states described by a statistical operator or density matrix (at a certain moment in
time)

ρ ≡
∑

k

pk |ψk〉〈ψk| (2.84)

allowing only the statements for the events of the system that it occurs with prob-
ability pk in the quantum states |ψk〉 in the multi-particle state.11 Certainly this is

11In general a statistical operator is specified by a set of (normalized) state vectors, |ψ1〉,
|ψ2〉, . . . , |ψn〉, not necessarily orthogonal, and a set of non-negative numbers adding up to one,∑n

i=1 pi = 1, according to ρ =
∑n

i=1 pi |ψi〉〈ψi |. Since the statistical operator is hermitian and
non-negative, it is always possible to find an orthonormal set of states |φ1〉, |φ2〉, . . . , |φN 〉, so that

ρ =
∑N

n=1 πn |φn〉〈φn |, where πn ≥ 0 and
∑N

n=1 πn = 1.
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the generic situation in condensed matter physics and statistical physics in general.
A diagonal element of the statistical operator, 〈ψ|ρ|ψ〉, thus gives the probability for
the occurrence of the arbitrary state |ψ〉.

For the evaluation of the average value of a physical quantity represented by the
operator A, a mixture adds an additional purely statistical averaging, as the quantum
average value in a state is weighted by the probability of occurrence of the state

〈A〉 ≡
∑

k

pk 〈ψk|A|ψk〉 . (2.85)

In view of Eq. (2.84), the average value for a mixture can be expressed in terms of
the statistical operator according to

〈A〉 = Tr(ρ A) (2.86)

where Tr denotes the trace in the multi-particle state, i.e. the sum of all diagonal
elements evaluated in an arbitrary basis, generalizing the matrix element formula for
the average value in a pure state |ψ〉, 〈A〉 = Tr(|ψ〉〈ψ|A).

The statistical operator is seen to be hermitian and positive, 〈ψ| ρ |ψ〉 ≥ 0, and
has unit trace for a normalized probability distribution. The statistical operator is
only idempotent, i.e. a projector, for the case of a pure state, ρ = |ψ〉〈ψ|. For a
mixture we have ρ2 �= ρ, and Tr ρ2 < 1.

In practice the most important mixture of states will be the one corresponding to
a system in thermal equilibrium at a temperature T (including as a limiting case the
zero temperature situation where the system definitely is in its ground state). In that
case, applying the zeroth law of thermodynamics (that two systems in equilibrium
at temperature T will upon being brought in thermal contact be in equilibrium at
the same temperature) gives, for the thermal equilibrium statistical operator (Boltz-
mann’s constant, the converter between energy and absolute temperature scale, is
denoted k)

ρT =
1
Z

e−H/kT , (2.87)

where the normalization factor

Z(T, V, Ns) = Tr e−H/kT = e−F (T,V,Ns)/kT (2.88)

expressing the normalization of the probability distribution of Boltzmann weights,
is the partition function. Here Tr denotes the trace in the multi-particle state space
of the physical system of interest, but since the number of particles is fixed there is
only the contributions from the corresponding N -particle subspace

e−H/kT =
∑

n

e−En /kT (2.89)

as we are describing the system in the canonical ensemble. As the temperature ap-
proaches absolute zero, the term with minimum energy, the non-degenerate ground
state energy, dominates the sum, and at zero temperature, the average value of a
physical quantity becomes the N -particle ground state average value. The partition
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function or equivalently the free energy, F , are functions of the macroscopic param-
eters, the temperature, T , and the volume, V , and the number of particles, Ns, of
different species in the system, and it contains all thermodynamic information.

When a system consists of a huge number of particles, it is more convenient to
perform calculations in the grand canonical ensemble, where instead of the inconve-
nient constrain of a fixed number of particles, their chemical potential and average
number of particles are specified. In the grand canonical ensemble, the system is thus
described in the multi-particle state space. The system is thus imagined coupled to
particle reservoirs, or a subsystem is considered. The system can exchange particles
with the reservoirs which are described by their chemical potentials (assuming in
general several particle species present). This feature is simply included by introduc-
ing Lagrange multipliers, i.e. tacitly understanding that single-particle energies are
measured relative to their chemical potential, H → H −

∑
s µsNs. In this case, the

partition function instead of being a function of the number of particles, is a function
of the chemical potentials for the species in question

Zgr(T, µs) = Tr e−(H−µsNs)/kT = e−Ω(T,µs)/kT (2.90)

specified by the average number of particles according to

〈Ns〉 = −
(

∂Ω
∂µs

)
T,V

. (2.91)

For systems of particles where the total number of particles is not conserved,
i.e. where the Hamiltonian and the total number operator do not commute, such as
for phonons and photons, the chemical potential vanishes, and the grand canonical
ensemble is employed. For degenerate fermions, such as electrons in a metal, the
chemical potential is a huge energy compared to relevant temperatures, viz. tied to
the Fermi energy as discussed in Exercise 2.15.

The average value in the grand canonical ensemble of a physical quantity repre-
sented by the operator A is thus

〈A〉 = Tr(ρ A) =
∑
N,n

e(Ω−En +µN)/kT 〈N, En|A|En, N〉 . (2.92)

As the following exercise shows, if alternatively attempted in the canonical ensem-
ble, calculations run smoothly in the grand canonical ensemble free of the constraint
of a fixed number of particles. In the thermodynamic limit, using either of course
gives the same results as the fluctuations in the particle number in the grand canon-
ical ensemble around the mean value then is negligible.

Exercise 2.14. Show that the grand canonical partition function for non-interacting
non-relativistic fermions or bosons of mass m contained in a volume V is given by

ln Z(0)
gr (T, V, µ) = ∓

∑
p

ln (1 ∓ e−(εp−µ)/kT ) = e−Ω0/kT , εp =
p2

2m
(2.93)
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and the average number of particles are specified by the Bose–Einstein or Fermi–Dirac
distributions, respectively,

〈N〉 = −
(

∂Ω0

∂µ

)
T,V

=
∑
p

1
e(εp−µ)/kT ∓ 1

(2.94)

from which one readily verifies that the thermodynamic potential is specified by the
pressure, P , and volume of the system according to

Ω0(T, µ, V ) = −PV . (2.95)

Exercise 2.15. Show that for a system of non-interacting degenerate fermions, i.e.
at temperatures where kT � µ, the chemical potential is pinned to the Fermi energy,
εF = �

2(3π2n)2/3/2m, as

µ = εF

(
1 − a

(
T

TF

)2
)

, (2.96)

where the fermions of mass m are assumed residing in three spatial dimensions (in
which case the constant of order one is a = π2/12) with a density n, and TF = εF/k
is the Fermi temperature which for a metal, in view of the large density of conduction
electrons, is seen to be huge, typically of the order 104 K.

Exercise 2.16. At zero temperature, a system of fermions such as a metal contains
high-speed electrons, all states below the Fermi energy are fully occupied, a reservoir
for injecting electrons into other conductors. For bosons the opposite, coming to rest,
can happen. First we observe that for non-interacting bosons the chemical potential
can not be positive, µ ≤ 0, as dictated by the Bose–Einstein distribution function
for occupation of energy levels. As the temperature decreases, the chemical potential
increases and becomes vanishingly small at and below the temperature T0 determined
by the density, n, and mass, m, of the bosons (say, spinless and enclosed in a volume
V ) according to

n =
N

V
=

(m)3/2

√
2 π2�3

∞∫
0

dε
ε1/2

eε/kT0 − 1
. (2.97)

At this temperature, the lowest energy level, εp=0 = 0, starts to be macroscopically
occupied.

Show that at temperatures below T0, the number of bosons in the lowest level is
(the population of the other levels are governed by the Bose–Einstein distribution)

N0 = N

(
1 −

(
T

T0

)3/2
)

. (2.98)

In the degenerate region at temperatures below T0, the bosons comes to rest, the
phenomenon of Bose–Einstein condensation (1925), the bosons become ordered in
momentum space. The total condensation at zero temperature is of course a trivial
feature of the quantum statistics of non-interacting bosons. Using the model of non-
interacting bosons to estimate T0 for the case of 4He gives T0 � 3.2 K, quite close to
the temperature 2.2 K of the λ-transition where liquid Helium becomes a superfluid
(discovered 1928 and proposed a Bose–Einstein condensate by Fritz London, 1938).
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2.6 Summary

In this chapter we have constructed the operators of relevance on the multi-particle
space, and shown how they are expressed in terms of the quantum fields, the creation
and annihilation fields. The kinematics of a many-body system, its possible quantum
states and the operators representing its physical quantities, is thus expressed in
terms of these two objects. The Hamiltonians on the multi-particle state space were
constructed for the generic types of many-body interactions. We now turn to consider
the dynamics of many-body systems described by their quantum fields on a multi-
particle state space. In particular the quantum dynamics of a quantum field theory
describing systems out of equilibrium. This will lead us to the study of correlation
functions for quantum fields, the Green’s functions for non-equilibrium states.



3

Quantum dynamics and
Green’s functions

In the previous chapter we studied the kinematics of many-body systems, and the
form of operators representing the physical properties of a system, all of which were
embodied by the quantum field. In this chapter we shall study the quantum dynamics
of many-body systems, which can also be embodied by the quantum fields. We shall
employ the fact that the quantum dynamics of a system, instead of being described
in terms of the dynamics of the states or the evolution operator, i.e. as previously
done through the Schrödinger equation, can instead be carried by the quantum fields.
The quantum dynamics is therefore expressed in terms of the correlation functions
or Green’s functions of the quantum fields evaluated with respect to some state of
the system. In particular we shall consider the general case of quantum dynamics
for arbitrary non-equilibrium states. After introducing various types of Green’s func-
tions and relating them to measurable quantities, we will discuss the simplifications
reigning for the special case of equilibrium states.

3.1 Quantum dynamics

Quantum dynamics can be described in different ways since quantum mechanics is
a linear theory and the dynamics described by a unitary transformation of states.1

This will come in handy in the next chapter when we study a quantum theory in
terms of its perturbative expansion using the so-called interaction picture. Here we
first discuss the Schrödinger and Heisenberg pictures.

1This should be contrasted with classical mechanics where dynamics is specified in terms of
the physical quantities themselves, the generic case being intractable nonlinear partial differential
equations. We shall study such a classical situation in Chapter 12 with the help of methods borrowed
from quantum field theory, and where in addition the classical system interacts with an environment
as described by a stochastic force.

53
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3.1.1 The Schrödinger picture

Having the Hamiltonian on the multi-particle space at hand we can consider the
dynamics described in the multi-particle space. An arbitrary state in the multi-
particle space has at any time in question the expansion on, say the position basis
states

|Ψ(t)〉 =
∞∑

N=0

∫
dx1dx2 . . . dxN ψN (x1,x2, . . . ,xN , t) |x1�x2 · · ·�xN 〉 , (3.1)

where � stands for ∨ or ∧ for the bose or fermi cases respectively. The coefficients

ψN (x1,x2, . . . ,xN , t) = 〈x1�x2 · · ·�xN |Ψ(t)〉 (3.2)

are the wave functions describing each N -particle system, and they are symmetric
or antisymmetric due to the symmetry properties of the basis states |x1�x2 · · ·�xN 〉,
i.e. no new state is produced by using non-symmetric coefficients ψN (x1,x2, . . . ,xN , t).

The dynamics of a multi-particle particle state is specified by the Schrödinger
equation in the multi-particle space

i�
d|Ψ(t)〉

dt
= H(t) |Ψ(t)〉 , (3.3)

where H(t) is the Hamiltonian on the multi-particle space, which can be explic-
itly time dependent due to external forces as our interest will be to consider non-
equilibrium states. In the multi-particle space, the dynamics of all N -particle sys-
tems are described simultaneously since the above equation contains the infinite set
of equations, N = 0, 1, 2, . . ., which in the position representation are

i�
∂ψN (x1,x2, . . . ,xN , t)

∂t
=

∞∑
M=0

∫
dx′

1dx
′
2 . . . dx′

M ψM (x′
1,x

′
2, . . . ,x

′
M , t)

× 〈x1�x2 · · ·�xN |H(t)|x′
1�x′

2 · · ·�x′
M 〉 . (3.4)

The even or odd character of a wave function is preserved in time as any Hamil-
tonian for identical particles is symmetric in the p̂is and x̂is as well as other degrees
of freedom (this is the meaning of identity of particles, no interaction can distinguish
them), so if even- or oddness of a wave function is the state of affairs at one moment
in time it will stay this way for all times.2

For the case of two-particle interaction, Eq. (2.59), the Hamiltonian has only
nonzero matrix elements between configurations with the same number of particles,
the total number of particles is a conserved quantity, and the infinite set of equa-
tions, Eq. (3.4), splits into independent equations describing systems with the definite
number of particles N = 0, 1, 2, . . . .3 For N = 0, the vacuum state, we have for the

2Time-invariant subspaces other than the symmetric and anti-symmetric ones do not seem to be
physically relevant.

3For the case of an N-particle system, the multi-particle space is then not needed, we could
discuss it solely in terms of its N-particle state space.



3.1. Quantum dynamics 55

c-number representing its wave function

i�
dψ0(t)

dt
= 〈0|H(t)|0〉 ψ0(t) = 0 , (3.5)

where the last equality sign follows from the fact that since the Hamiltonian for two-
particle interaction, Eq. (2.59), operates first with the annihilation operator on the
vacuum state, it annihilates it. Since Hamiltonians are normal-ordered, this result is
quite general: the vacuum state is without dynamics.

In the case of electron–phonon interaction, the Hamiltonian has off-diagonal ele-
ments with respect to the phonon multi-particle subspace. The number of phonons is
owing to interaction with the electrons not conserved; an electron can emit or absorb
phonons just like an electron in an excited state of an atom can emit a photon in the
decay to a lower energy state. The chemical potential of phonons thus vanishes.

Instead of describing the dynamics in terms of the state vector we can introduce
the time development or time evolution operator4

|ψ(t)〉 = U(t, t′) |ψ(t′)〉 (3.6)

connecting the state vectors at the different times in question where they provide a
complete description of the system. Solving the Schrödinger equation, Eq. (3.3), by
iteration gives

U(t, t′) = Te−
i
�

∫ t
t′dt̄H(t̄) , (3.7)

where T denotes time-ordering.5 The time-ordering operation orders a product of
time-dependent operators into its time-descending sequence (displayed here for the
case of three operators)

T (A(t1)B(t2)C(t3)) =


A(t1)B(t2)C(t3) for t1 > t2 > t3
B(t2)A(t1)C(t3) for t2 > t1 > t3

etc. etc.
(3.8)

In case of fermi fields, the time-ordering (and anti-time-ordering which we shortly en-
counter) shall by definition include a product of minus signs, one for each interchange
of fermi fields. Since the Hamiltonian contains an even number of fermi fields, no sta-
tistical factors are thus involved in interchanging Hamiltonians referring to different
moments in time under the time-ordering symbol.

The Schrödinger equation, Eq. (3.3), then gives the equation of motion for the
time evolution operator6

i�
∂U(t, t′)

∂t
= H(t)U(t, t′) . (3.9)

4It is amazing how compactly quantum dynamics can be captured, encapsulated in the single
object, the evolution operator.

5For details see, for example, chapter 2 of reference [1].
6From a mathematical point of view, convergence properties of limiting processes for operator

sequences At are inherited from the topology of the vector space; i.e. convergence is defined by
convergence of an arbitrary vector At |ψ〉. The dual space of linear operator on the multi-particle
state space can also be equipped with its own topology by introducing the scalar product for
operators A and B, Tr(B†A). But the result of differentiating is gleaned immediately from simple
algebraic properties.
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We note the semi-group property of the evolution operator

U(t, t′′)U(t′′, t′) = U(t, t′) (3.10)

and the unitarity of the evolution operator, U †(t, t′) = U−1(t, t′), as a state vec-
tor has the scalar product with itself of modulus one enforced by the probability
interpretation of the state vector. As a consequence, U †(t, t′) = U(t′, t).

Exercise 3.1. Show that

U †(t, t′) ≡ [U(t, t′)]† = T̃ e
i
�

∫
t
t′dt̄H(t̄) , (3.11)

where the anti-time-ordering symbol, T̃ , orders the time sequence oppositely as com-
pared with the time-ordering symbol, T , as the adjoint inverts the order of a sequence
of operators. Use this (or the unitarity of the evolution operator, I = U †(t, t′)U(t, t′))
to verify

−i�
∂U †(t, t′)

∂t
= U †(t, t′)H(t) , −i�

∂U(t, t′)
∂t′

= U(t, t′)H(t′) . (3.12)

The dynamics of a mixture is described by the time dependence of the statistical
operator which, according to Eq. (3.6), is

ρ(t) = U(t, t′) ρ(t′) U †(t, t′) (3.13)

and the statistical operator satisfies the von Neumann equation

i�
dρ(t)
dt

= [H(t), ρ(t)] . (3.14)

A diagonal element of the statistical operator, 〈ψ|ρ(t)|ψ〉, gives the probability for
the occurrence of the arbitrary state |ψ〉 at time t (explaining the use of the word
density matrix).

An important set of mixtures in practice for an isolated system (i.e. the Hamilto-
nian is time independent) is the stationary states in which all physical properties are
time independent. The statistical operator is thus for stationary states a function of
the Hamiltonian of the system, ρ = ρ(H).

For an isolated system, the evolution operator takes the simple form

U(t, t′) = e−
i
�
(t−t′)H . (3.15)

The generator of time displacements is the only operator in the Heisenberg picture
which, in general, is time independent, and the quantity it represents we call the
energy. For an isolated system, the Hamiltonian thus represents the energy.

3.1.2 The Heisenberg picture

Instead of having the dynamics described by an equation of motion for a state vector
or realisticly by a statistical operator, the Schrödinger picture discussed above, it
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is convenient to transfer the dynamics to the physical quantities, resembling in this
feature the dynamics of classical physics. In this so-called Heisenberg picture, the
state of the system

|ψH〉 ≡ U †(t, tr) |ψ(t)〉 = |ψ(tr)〉 (3.16)

is time independent, according to Eq. (3.3) and Eq. (3.12), whereas the operators
representing physical quantities are time dependent

AH(t) ≡ U †(t, tr)AU(t, tr) . (3.17)

At the arbitrary reference time, tr, the two pictures coincide, the evolution operator
satisfying U(t, t) = 1.

We note that if {|a〉}a is the set of eigenstates of the operator A then the Heisen-
berg operator has the same spectrum but different eigenstates

AH(t) |a, t〉 = a |a, t〉 , |a, t〉 ≡ U †(t, tr) |a〉 . (3.18)

The operator representing a physical quantity in the Heisenberg picture satisfies
the equation of motion7

i�
∂AH(t)

∂t
= [AH(t),HH(t)] , (3.19)

where

HH(t) ≡ U †(t, tr)H(t)U(t, tr) . (3.20)

Introducing the field in the Heisenberg picture

ψH(x, t) = U †(t, tr)ψ(x)U(t, tr) (3.21)

we obtain its equation of motion

i�
∂ψH(x, t)

∂t
= [ψH(x, t),H(t)] . (3.22)

Often context allows us to leave out the subscript, writing ψ(x, t) = ψH(x, t).
In the Heisenberg picture, only the equal time anti-commutator or commutator,

for fermions or bosons, respectively, of the fields is in general a simple quantity, of
course the c-number function:

[ψ(x, t), ψ†(x′, t)]s = δ(x− x′) . (3.23)

At unequal times, the anti-commutator or commutator of the fields are, owing to
interactions, complicated operators whose unravelling will be done in terms of the
correlation functions of the fields, the Green’s functions we introduce in the next
section.

7If the Schrödinger operator is time dependent, such as can be the case for the current operator
in the presence of a time-dependent vector potential representing a classical field, of course an
additional term appears.
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Exercise 3.2. Show that the probability density for a particle to be at position x
at time t

n(x, t) = Tr(ρ(t)ψ†(x)ψ(x)) (3.24)

can be rewritten in terms of the fields in the Heisenberg picture

n(x, t) = Tr(ρ ψ†(x, t)ψ(x, t)) , (3.25)

where ρ is an arbitrary statistical operator at the reference time where the two
pictures coincide.

For an isolated system, where the Hamiltonian is time independent, the quantum
field (or any other) operator in the Heisenberg picture is related to the operator in
the Schrödinger picture in accordance with Eq. (3.17), which in that case becomes
(the coincidence with the Schrödinger picture is chosen to be at time t = 0)

ψ(x, t) = e
i
�

Ht ψ(x) e−
i
�

Ht . (3.26)

Exercise 3.3. Show that the time evolution of a free field in the Heisenberg picture
specified by the free or kinetic energy Hamiltonian in Eq. (2.21), is given by

ap(t) = ap e−
i
�

εpt , (3.27)

where εp = p2/2m is the kinetic energy of the free particle with momentum p, and
the coincidence with the Schrödinger picture is chosen to be at time t = 0.

Show the commutation relations for the free fields is

[ψ0(x, t), ψ†
0(x

′, t′)]s =
1
V

∑
p

e
i
�
p·(x−x′)− i

�
εp(t−t′) . (3.28)

For the case of an isolated system of particles interacting through an instanta-
neous two-particle interaction, Eq. (2.59), the Hamiltonian transformed according to
Eq. (3.17) can be expressed in terms of the fields in the Heisenberg picture

HH(t) =
∫

dx ψ†
H(x, t)

(
1

2m

(
�

i

∂

∂x

)2
)

ψH(x, t)

+
1
2

∫
dx
∫

dx′ψ†
H(x, t)ψ†

H(x′, t)V (2)(x,x′)ψH(x′, t)ψH(x, t) (3.29)

and according to Eq. (3.19),H(t) = H, i.e. the Hamiltonian in the Heisenberg picture
is the Hamiltonian, representing the energy of the system.

Our interest shall be the case of non-equilibrium situations where a system is
coupled to external classical fields, for example the coupling of current and density
of charged particles to electromagnetic fields as represented by the Hamiltonian

HA,φ(t) =
∫

dx ψ†
H(x, t)

(
1

2m

(
�

i

∂

∂x
− eA(x, t)

)2

+ eφ(x, t)

)
ψH(x, t) , (3.30)
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where the quantum fields are in the Heisenberg picture.
Considering the case of two-particle interaction, and using the operator identities

[A, BC] = [A, B]C − B[C, A] = {A, B}C − B{C, A} (3.31)

for bose or fermi fields, respectively, and their commutation relations, the equation
of motion for the field in the Heisenberg picture becomes

i�
∂ψ(x, t)

∂t
= h(t)ψ(x, t) +

∫
dx′ V (2)(x,x′)ψ†(x′, t)ψ(x′, t)ψ(x, t) , (3.32)

where h = h(−i∇x,x, t) is the free single-particle Hamiltonian, which can be time-
dependent due to external classical fields. For example, for the case of a charged
particle coupled to an electromagnetic field

h(−i�∇x,x, t) =
1

2m

(
�

i

∂

∂x
− eA(x, t)

)2

+ eϕ(x, t) . (3.33)

The dynamics of a system, specified by the time dependence of the quantum field in
the Heisenberg picture, is thus described in terms of higher-order expressions in the
field operators.

Exercise 3.4. Multiply Eq. (3.32) from the left by ψ†(x, t), and obtain also the
adjoint of this construction. Obtain the continuity or charge conservation equation
in the multi-particle space

∂ n(x, t)
∂t

+ ∇x · j(x, t) = 0 , (3.34)

where
n(x, t) = ψ†(x, t) ψ(x, t) (3.35)

and
j(x, t) =

�

2mi

(
ψ†(x, t)∇x ψ(x, t) − (∇x ψ†(x, t))ψ(x, t)

)
(3.36)

are the probability current and density operators on the multi-particle space in the
Heisenberg picture.

Exercise 3.5. Show that the commutation relation for the displacement field oper-
ator in the Heisenberg picture at equal times is[

uαx, t), niM
∂uβ(x′, t)

∂t

]
−

= i� δαβ δ(x− x′) (3.37)

reflecting the canonical commutation relations of non-relativistic quantum mechanics
for the position and momentum operators of the ions in a lattice.

Exercise 3.6. Show that the phonon field in the Heisenberg picture satisfies the
equal-time commutation relation (neglecting the ultraviolet or Debye cut-off, ωD →
∞) [

φ(x, t),
∂φ(x′, t)

∂t

]
−

= −i
�c2

2
x δ(x− x′) . (3.38)
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Exercise 3.7. Show that, for an isolated system of identical particles interacting
through an instantaneous two-body interaction, V (x − x′), the field operator in the
Heisenberg picture, say in the momentum representation, satisfies the equation of
motion (recall Exercise 2.10 on page 44)

i�
dap(t)

dt
= εp ap(t) +

∫
dq

(2π�)3

∫
dp′ V (−q) a†

p′+q(t) ap′(t) ap+q(t) . (3.39)

Show that the Hamiltonian in the Heisenberg picture can be expressed in the
form

H(t) =
1
2

∑
p

(
εp a†

p(t) ap(t) + i�a†
p(t)

dap(t)
dt

)
. (3.40)

Exercise 3.8. Obtain the equation of motion for the electron and phonon fields in
the Heisenberg picture for the case of longitudinal electron–phonon interaction.

Any property of a physical system is expressed in terms of a correlation function
of field operators taken with respect to the state in question. In Section 3.3, we turn
to introduce these, the Green’s functions. But first, we will take a short historical
detour.

3.2 Second quantization

Quantum field theory, as presented in the previous chapters, is simply the quantum
mechanics of an arbitrary number of particles. For the non-relativistic case the
practical task was to lift the N -particle description to the multi-particle state space.
Quantum fields are often referred to as second quantization, which in view of our
general introduction of quantum field theory for many-body systems is of course a
most unfortunate choice of language. The misnomer has its origin in the following
analogy.

Consider the Schrödinger equation for a single particle, say in a potential

i�
∂ψ(x, t)

∂t
=

(
1

2m

(
�

i

∂

∂x

)2

+ V (x, t)

)
ψ(x, t) . (3.41)

Next, interpret the equation as a classical field equation à la Maxwell’s equations. A
difference is, of course, that the field is complex, and in the case of the electromagnetic
field there are additional field components. The Schrödinger equation, Eq. (3.41),
can be derived from the variational principle

δ

∫
dt

∫
dx L = 0 , (3.42)

where the Lagrange density is

L = ψ∗(x, t) i�
∂ψ(x, t)

∂t
− �

2

2m
∇xψ∗(x, t) · ∇xψ(x, t) − ψ∗(x, t)V (x, t)ψ(x, t).

(3.43)
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The conjugate field variable is then

Π(x, t) =
∂L

∂ ∂ψ(x,t)
∂t

= i� ψ∗(x, t) (3.44)

in analogy with the canonical momenta in classical mechanics

p =
∂L

∂ẋ
(3.45)

and the variables of the field, x, is in the analogy equivalent to the labeling, i, of the
mechanical degrees of freedom, and Π(x) corresponds to pi.

Analogous to Hamilton’s function

H =
∑

i

pi ẋi − L (3.46)

enters the Hamilton function for the classical Schrödinger field

H =
∫

dx
∫

dt

(
Π(x, t)

∂ψ(x, t)
∂t

− L
)

. (3.47)

In analogy with the canonical commutation relations

[pi, xj ] =
�

i
δij , [xi, xj ] = 0 , [pi, pj ] = 0 (3.48)

the quantum field theory of the corresponding species is then obtained from the
classical Schrödinger field by imposing the quantization relations for the quantum
fields (not distinguishing them in notation from their classical counterparts)

[Π(x, t), ψ(x′, t)] =
�

i
δ(x− x′) (3.49)

and
[ψ(x, t), ψ(x′, t)] = 0 , [Π(x, t), Π(x′, t)] = 0 . (3.50)

Since according to Eq. (3.45), Π(x, t) = i� ψ†(x, t), these are the commutation rela-
tions for a bose field, Eq. (1.101) and Eq. (1.102). The Hamiltonian, Eq. (3.47), is seen
to be identical to the Hamiltonian operator on the multi-particle space, Eq. (2.19).

In this presentation the bose particles emerge as quanta of the field in analogy to
the quanta of light in the analogous second quantization of the electromagnetic field
(recall Section 1.4.2). The quantum field theory of fermions is similarly constructed
as quanta of a field, but this time anti-commutation relations are assumed for the
field.8

8A practicing quantum field theorist need thus not carry much baggage, short-cutting the road
by second quantization.
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3.3 Green’s functions

An exact solution of a quantum field theory amounts, according to Eq. (3.32), to
knowing all the correlation functions of the field variables; needless to say a mis-
sion impossible in general. We shall refer to these correlation functions generally as
Green’s functions.9 We shall also use the word propagator interchangeably for the
various types of Green’s functions.

To get an intuitive feeling for the simplest kind of Green’s function, the single-
particle propagator, consider adding at time t1′ a particle in state p1′ to the arbitrary
state |Ψ(t1′)〉, i.e. we obtain the state a†

p1′
|Ψ(t1′)〉, which at time t has evolved to

the state

|Ψp1′ t1′ (t)〉 = e−iH(t−t1′ ) a†
p1′
|Ψ(t1′)〉 = e−iHt a†

p1′
(t1′) |ΨH〉 , (3.51)

where in the last equality we have introduced the creation operator and state vector
in the Heisenberg picture (choosing the time of coincidence with the Schrödinger
picture at time tr = 0). Similarly, we could consider the state where a particle at
time t1 is added in state p1. The amplitude for the event that the first constructed
state is revealed in the other state at the arbitrary (and irrelevant) moment in time
t is then

〈Ψp1t1(t)|Ψp1′ t1′ (t)〉 = 〈ΨH |ap1(t1) a†
p1′

(t1′) |ΨH〉 (3.52)

and the single-particle Green’s function is a measure of the persistence, in time span
|t1 − t1′ |, of the single-particle character of the excitation consisting of adding a
particle to the system (or determining the persistence of a hole state when removing
a particle upon the interchange a↔ a†).

3.3.1 Physical properties and Green’s functions

Physical quantities for a many-body system such as the average (probability) density
of the particles or the average particle (probability) current density are specified in
terms of one-particle Green’s functions. For a system in an arbitrary state described
by the statistical operator ρ, the average density at a space-time point for a particle
species of interest is (recall the result of Exercise 3.2 on page 58, which amounted to
employing the cyclical property of the trace)

n(x, t) =
∑
σz

Tr(ρ ψ†
H(x, σz , t)ψH(x, σz , t)) , (3.53)

where the quantum field describing the particles ψH(x, σz , t) is in the Heisenberg
picture with respect to the arbitrary Hamiltonian H(t), and Tr denotes the trace in
the multi-particle state space of the physical system in question. The reference time
where the Schrödinger and Heisenberg pictures coincide is chosen as the moment
where the state is specified, i.e. when the arbitrary statistical operator, ρ, repre-
senting the state of the system is specified. Here σz describes an internal degree of

9Thus using the notion in a broader sense than in mathematics, where it denotes the fundamental
solution of a linear partial differential equation as discussed in Appendix C.
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freedom of the identical particles in question. For example, in the case of electrons
this is the spin degree of freedom, and the density is the sum of the density of elec-
trons with spin up and down, respectively.10 The average density is expressed in
terms of the diagonal element of the so-called G-lesser Green’s function

n(x, t) = ±i
∑
σz

G<(x, σz , t,x, σz, t) , (3.54)

where11

G<(x, σz , t,x′σ′
z , t

′) = ∓i Tr(ρ ψ†
H(x′, σ′

z, t
′)ψH(x, σz, t))

≡ ∓i 〈ψ†
H(x′, σ′

z, t
′)ψH(x, σz , t)〉 , (3.55)

where upper (lower) sign corresponds to bosons (fermions), respectively, and we have
introduced the notation that the bracket means trace of the operators in question
weighted with respect to the state of the system, all quantities in the Heisenberg
picture,

〈. . .〉 ≡ Tr(ρ . . .) . (3.56)

For the case of a pure state, ρ = |Ψ〉〈Ψ|, we see that G<(x, t,x′, t′) is the amplitude
for the transition at time t′ to the state ψH(x′, σ′

z , t
′) |Ψ〉, where a particle with

spin σ′
z is removed at position x′ from state |Ψ〉, given the system at time t is

in the state ψH(x, σz , t) |Ψ〉 where a particle with spin σz is removed at position
x (assuming t < t′, otherwise we are dealing with the complex conjugate of the
opposite transition). Equivalently, it is the amplitude to remain in the state |Ψ〉 after
removing at time t a particle with spin σz at position x and restoring at time t′ a
particle with spin σ′

z at position x′. For the case of a mixture, an additional statistical
averaging over the distribution of initial states takes place. Average quantities, such
as the probability density, can thus be expressed in terms of the one-particle Green’s
function.

The average electric current density for an assembly of identical fermions having
charge e in an electric field represented by the vector potential A is, according to
Eq. (2.47),

j(x, t) =
e�

2m

∑
σz

(
∂

∂x
− ∂

∂x′

)
G<(x, σz , t,x′, σz , t)

x′=x

+ i
e2

m
A(x, t)

∑
σz

G<(x, σz , t,x, σz, t) , (3.57)

the particles assumed to have an internal degree of freedom, say spin as is the case
for electrons.

10One can, of course, also encounter situations where interest is in the density of electrons of a

given spin, in which case one studies n(x, σz , t) = Tr(ρ ψ†
H(x, σz , t) ψH(x, σz , t)) .

11The annoying presence of the imaginary unit is for later convenience with respect to the Feynman
diagram rules. However, one is entitled to the choice of favorite for defining Green’s functions, and
the corresponding adjustment of the list of Feynman rules.
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From the equation of motion for the field operator, Eq. (3.32), the equation
of motion for the Green’s function G-lesser becomes, for the case of two-particle
interaction (assuming spin independent interaction so the spin degree of freedom is
suppressed or using inclusive notation),(

i�
∂

∂t
− h(t)

)
G<(x, t,x′, t′) =

∫
dx′′ V (2)(x,x′′)G(2)(x, t,x′′, t,x′′, t,x′, t′) ,

(3.58)
where

G(2)(x, t,x′′, t,x′′, t,x′, t′) = ±i〈ψ(x, t)ψ(x′′, t)ψ†(x′′, t)ψ†(x′, t′)〉 (3.59)

is a so-called two-particle Green’s function since it involves the propagation of two
particles. The dynamics of a system, specified by the time dependence of the one-
particle Green’s function, is thus described in terms of higher-order correlation func-
tions in the field operators. The equation of motion for the one-particle Green’s
function thus leads to an infinite hierarchy of equations for correlation functions con-
taining ever increasing numbers of field operators, describing the correlations set up
in the system by the interactions.12 Since there is no closed set of equations for re-
duced quantities such as Green’s functions, approximations are, in practice, needed
in order to obtain information about the system. On some occasions the system pro-
vides a small parameter that allows controlled approximations; a case to be studied
later is that of electron–phonon interaction in metals. In less controllable situations
one in despair appeals to the tendency of higher-order correlations to average out
for a many-particle system, when it comes to such average properties as densities
and currents, so that the hierarchy of correlations can be broken off self-consistently
at low order. We shall discuss such situations in Section 10.6 and in Chapter 12 in
the context of applying the effective action approach to such differing situations as
a trapped Bose–Einstein condensate and classical statistical dynamics, respectively.

3.3.2 Stable of one-particle Green’s functions

The correlation function G-lesser appeared in the previous section most directly
as related to average properties such as densities and currents. However, we shall
encounter various types of quantum field correlation functions, i.e. various kinds of
Green’s functions that appear for reasons of their own. For definiteness we collect
them all here, though they are not needed until later. The rest of this chapter can
thus be skipped on a first reading if one shares the view that things should not be
called upon before needed.

We shall also encounter the so-called G-greater Green’s function

G>(x, t,x′, t′) = −i 〈ψH(x, t)ψ†
H(x′, t′)〉 = −iTr(ρ ψH(x, t)ψ†

H(x′, t′)) , (3.60)

the amplitude for the process of an added particle at position x at time t given a
particle is added at position x′ at time t′, the one-particle propagator in the presence
of interaction with all the other particles.

12Analogous to the BBGKY-hierachy in classical kinetics or for any description of a system in
terms of a reduced, i.e. partially traced out, quantity.
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We shall later, for reasons of calculation in perturbation theory, encounter the
time-ordered Green’s function

G(x, t,x′, t′) = −i〈T (ψH(x, t)ψ†
H(x′, t′))〉 (3.61)

and we note (valid for both bosons and fermions, recalling the minus sign convention
when two fermi fields are interchanged)

G(x, t,x′, t′) =
{

G<(x, t,x′, t′) t′ > t
G>(x, t,x′, t′) t > t′ .

(3.62)

In perturbation theory, the time-ordered Green’s function appears because of the
crucial role of time-ordering in the evolution operator, Eq. (3.7). Quantum dynamics
is ruled by operators, non-commuting objects. However, as shown in Chapter 5, the
necessity of the time-ordered Green’s function is only in one version of perturbation
theory, and then an additional analytic continuation needs to be invoked. Or, if
one is interested only in ground state properties, then perturbation theory can be
formulated in closed form involving only the time-ordered Green’s function. The
general real-time perturbation theory valid for non-equilibrium situations will be
formulated in Chapter 5 in terms of essentially two Green’s functions, and in a way
which displays physical information of systems most transparently.

Finally, in this set-up we shall also later encounter the anti-time-ordered Green’s
function

G̃(x, t,x′, t′) = −i〈T̃ (ψH(x, t)ψ†
H(x′, t′))〉 , (3.63)

where T̃ anti-time orders, i.e. orders oppositely to that of T . We note that the
time-ordered and anti-time-ordered Green’s functions can be expressed in terms of
G-greater and G-lesser, for example

G̃(x, t,x′, t′) = θ(t− t′)G<(x, t,x′, t′) + θ(t′ − t)G>(x, t,x′, t′) , (3.64)

where θ is the step or Heaviside function.
Recalling Eq. (3.58), we note for the free Green’s functions the relations

G−1
0 (x, t)G<

0 (x, t,x′, t′) = 0 , G−1
0 (x, t)G>

0 (x, t,x′, t′) = 0 (3.65)

and for the time-ordered

G−1
0 (x, t) G0(x, t,x′, t′) = � δ(x− x′) δ(t− t′) (3.66)

and anti-time-ordered

G−1
0 (x, t) G̃0(x, t,x′, t′) = −� δ(x− x′) δ(t− t′) , (3.67)

where

G−1
0 (x, t) =

(
i�

∂

∂t
− h

(
�

i
∇x,x, t

))
, (3.68)
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which for the case of a charged particle coupled to an electromagnetic field is

G−1
0 (x, t) =

(
i�

∂

∂t
− 1

2m

(
�

i

∂

∂x
− eA(x, t)

)2

− eϕ(x, t)

)
. (3.69)

Introducing
G−1

0 (x, t,x′, t′) = G−1
0 (x, t) δ(x − x′) δ(t− t′) (3.70)

we obtain a quantity on equal footing with the Green’s function, the inverse free
Green’s function (here in the position representation) as

(Ĝ−1
0 ⊗ Ĝ0) (x, t,x′, t′) = � δ(x− x′) δ(t− t′) , (3.71)

where ⊗ signifies matrix multiplication in the spatial and time variables, i.e. internal
integrations over space and for the latter internal integration from minus to plus
infinity of times.

Exercise 3.9. The equation of motion for the free phonon field is (recall Section
2.4.3)

� φ(x, t) = 0 . (3.72)

Show that the time-ordered free phonon Green’s function

D0(x, t,x′, t′) = −i〈T (φ(x, t)φ(x′, t′))〉 (3.73)

therefore satisfies the equation of motion

� D0(x, t,x′, t′) =
�

i
x δ(x− x′) δ(t− t′) . (3.74)

Exercise 3.10. From the equation of motion for the field operator, show that the
equation of motion for the time-ordered Green’s function is(

i�
∂

∂t
− h0(t)

)
G(x, t,x′, t′) = � δ(x− x′)δ(t− t′)

− i〈T ([ψ(x, t), Hi(t)] ψ†(x′, t′))〉 , (3.75)

where Hi(t) is the interaction part of the Hamiltonian in the Heisenberg picture.

Other combinations of field correlations will be of importance in Chapter 5 when
the real-time perturbation theory of general non-equilibrium states are considered,
viz. the retarded Green’s function

GR(x, t,x′, t′) = −iθ(t− t′)〈[ψ(x, t) , ψ†(x′, t′)]∓〉

= θ(t− t′)
(
G>(x, t,x′, t′) − G<(x, t,x′, t′)

)
(3.76)
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and advanced Green’s functions

GA(x, t,x′, t′) = iθ(t′ − t)〈[ψ(x, t) , ψ†(x′, t′)]∓〉

= −θ(t′ − t)
(
G>(x, t,x′, t′) − G<(x, t,x′, t′)

)
(3.77)

and the Keldysh or kinetic Green’s function

GK(x, t,x′, t′) = −i〈[ψ(x, t) , ψ†(x′, t′)]±〉

= G>(x, t,x′, t′) + G<(x, t,x′, t′) , (3.78)

where upper and lower signs, as usual, are for bose and fermi fields, respectively.
Introducing the notation s̄ = −s, the two kinds of statistics can be combined leaving
the Green’s functions in the forms

GR(x, t,x′, t′) = −iθ(t− t′)〈[ψ(x, t) , ψ†(x′, t′)]s̄〉 (3.79)

and

GA(x, t,x′, t′) = iθ(t′ − t)〈[ψ(x, t) , ψ†(x′, t′)]s̄〉 (3.80)

and

GK(x, t,x′, t′) = −i〈[ψ(x, t) , ψ†(x′, t′)]s〉 = GS(x, t,x′, t′) (3.81)

where the superscript on the last Green’s function also could remind us of it being
symmetric with respect to the quantum statistics.

Exercise 3.11. Show that the density, up to a state independent constant, can be
expressed in terms of the kinetic Green’s function according to

n(x, t) = ± i
∑
σz

GK(x, σz , t,x, σz , t) . (3.82)

Exercise 3.12. Show that the current density can be expressed in terms of the
kinetic Green’s function according to (in the absence of a vector potential)

j(x, t) =
e�

2m

(
∂

∂x
− ∂

∂x′

)
GK(x, t,x′, t)

x′=x

. (3.83)

The presence of a vector potential just adds the diamagnetic term (recall Eq. (3.57))
in accordance with gauge invariance, −i�∇→ −i�∇− eA.

We note the relationship

GR(x, t,x′, t′) − GA(x, t,x′, t′) = G>(x, t,x′, t′) − G<(x, t,x′, t′) (3.84)



68 3. Quantum dynamics and Green’s functions

irrespective of the quantum statistics of the particles. The above combination is of
such importance that we introduce the additional notation for the spectral weight
function

A(x, t,x′, t′) = i(GR(x, t,x′, t′) − GA(x, t,x′, t′)) = 〈[ψ(x, t) , ψ†(x′, t′)]∓〉

= i
(
G>(x, t,x′, t′) − G<(x, t,x′, t′)

)
. (3.85)

We note as a consequence of the equal time anti-commutation or commutation rela-
tions of the field operators, that the spectral function at equal times satisfies

A(x, t,x′, t) = δ(x− x′) (3.86)

irrespective of the state of the system.

Exercise 3.13. Introduce the mixed or Wigner coordinates13

R =
x + x′

2
, r = x− x′ (3.87)

and

T =
t + t′

2
, t = t− t′ . (3.88)

Show that the spectral weight function expressed in these variables satisfies the
sum-rule

∞∫
−∞

dE

2π
A(E,p,R, T ) = 1 . (3.89)

Exercise 3.14. Verify the relations, valid for both bosons and fermions,

GA(x, t,x′, t′) =
(
GR(x′, t′,x, t)

)∗
(3.90)

and

GK(x, t,x′, t′) = −
(
GK(x′, t′,x, t)

)∗
(3.91)

and

A(x, t,x′, t′) = (A(x′, t′,x, t))∗ (3.92)

and

G<(x, t,x′, t′) = −
(
G<(x′, t′,x, t)

)∗ (3.93)

and

G>(x, t,x′, t′) = −
(
G>(x′, t′,x, t)

)∗
. (3.94)

Note the relations are valid for arbitrary states.
13There will be more about Wigner coordinates in Section 7.2.
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For the case of a hermitian bose field, such as the phonon field, additional useful
relations exist

DR(x, t,x′, t′) = DA(x′, t′,x, t) (3.95)

and

DK(x, t,x′, t′) = DK(x′, t′,x, t) (3.96)

and

D>(x, t,x′, t′) = D<(x′, t′,x, t) . (3.97)

We thus have that DR(A)(x, t,x′, t′) are real functions, whereas DK(x, t,x′, t′) is
purely imaginary.

Above, the Green’s function are displayed in terms of the fields in the position
representation. Equally, we can introduce the Green’s function displayed in the
momentum representation, related to the above by Fourier transformation, or for
that matter in any representation specified by a complete set of states, say the energy
representation specified in terms of the eigenstates of the Hamiltonian.

Correlation functions of the quantum fields can be obtained by differentiation of
a generating functional. For example, to generate time-ordered Green’s functions we
introduce

Z[η, η∗] =
〈
T ei

∫
dx
∫ ∞
−∞dt (ψ(x,t)η(x,t) + ψ†(x,t)η∗(x,t))

〉
(3.98)

generating for example the time-ordered Green’s function for bosons, Eq. (3.61), by
differentiating twice with respect to the complex c-number source function η,14 to
give

G(x, t;x′, t′) = i
δ2Z[η, η∗]

δη∗(x′, t′)δη(x, t)
η=0=η∗

= −i〈T (ψ(x, t)ψ†(x′, t′))〉 . (3.99)

The generating functional is a device we shall consider in detail in Chapter 9.
The Green’s functions introduced in this section are the correlation functions for

the case of an arbitrary state. Before we embark on the construction of the general
non-equilibrium perturbation theory and its diagrammatic representation starting
from the canonical formalism as presented here and in the first two chapters, we
consider briefly equilibrium theory, in particular the general property characterizing
equilibrium.15

14For the case of fermions, the sources must be anti-commuting c-numbers, so-called Grassmann
variables. We elaborate on this point in Chapter 9.

15In Chapter 9 we proceed the other way around, and the reader inclined to take diagrammatics
as a starting point of a physical theory can thus start from there.
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3.4 Equilibrium Green’s functions

In this section we shall consider a system in thermal equilibrium. In that case the
state of the system is specified by the Boltzmann statistical operator, Eq. (2.87),
characterized by its macroscopic parameter, the temperature T .

In thermal equilibrium, the correlation functions of a system are subdued to a
boundary condition in imaginary time as specified by the fluctuation–dissipation
theorem.16 In the canonical ensemble, for example the relation

〈ψH(x, t)ψ†
H(x′, t′)〉 = 〈ψ†

H(x′, t′)ψH(x, t + iβ)〉 (3.100)

is valid, where β = �/kT , as a consequence of the cyclic invariance of the trace as
the bracket denotes the average

〈. . .〉 ≡ Tr
(

e−H/kT

Tr(e−H/kT )
. . .

)
. (3.101)

The relationship in Eq. (3.100) can, for example, be stated in terms of the Green’s
functions as

G<(x, t + iβ,x′, t′) = ±G>(x, t,x′, t′) (3.102)

valid for arbitrary interactions among the particles in the system.

Exercise 3.15. Show that in the grand canonical ensemble, for example the following
relation, is valid

〈ψH(x, t − iβ)ψ†
H(x′, t′)〉 = e

β µ
� 〈ψ†

H(x′, t′) ψH(x, t)〉 (3.103)

in which case the average is

〈. . .〉 ≡ Tr
(

e−(H−µN)/kT

Tr(e−(H−µN)/kT
. . .

)
(3.104)

and the Hamiltonian and the total number operator commute if the chemical poten-
tial is nonzero (recall Eq. (2.36)). Stated in terms of Green’s functions we have

G<(x, t,x′, t′) = ± e
β µ
� G>(x, t− iβ,x′, t′) , (3.105)

where in the grand canonical ensemble for example

G<(x, t,x′, t′) = ∓ i 〈ψ†
H(x′, t′) ψH(x, t)〉

=
∓ i

Tr(e−(H−µN)/kT )
Tr(e−(H−µN)/kT ψ†

H(x′, t′) ψH(x, t)).

(3.106)

16Additional discussion of the fluctuation–dissipation theorem and its importance in linear re-
sponse theory are continued in Chapter 6. That the operators in Eq. (3.100) are the field operators
is immaterial; the relationship is valid for arbitrary operators.
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The importance of the canonical ensembles should be stressed for the validity of
these fluctuation–dissipation relations or so-called Kubo–Martin–Schwinger bound-
ary conditions. They state that the Green’s functions are anti-periodic or periodic
in imaginary time depending on the particles being fermions or bosons, the interval
of periodicity being set by the inverse temperature. This is the crucial observation
for the Euclidean or imaginary-time formulation of quantum statistical mechanics,
as further discussed in Section 5.7.

In thermal equilibrium, correlation functions only depend on the difference be-
tween the times, t− t′, i.e. they are invariant with respect to displacements in time.
If in addition the equilibrium state is translationally invariant, then all Green’s func-
tions are specified according to

G(x, t,x′, t′) =
∫

dp
(2π�)3

∞∫
−∞

dE

2π
e

i
�
(p·(x−x′)−E(t−t′)) G(p, E) (3.107)

or equivalently

G(p, E,p′, E′) = 2π(2π�)3 δ(p− p′) δ(E − E′) G(p, E) . (3.108)

For example,

GK(p, E) = −i

∞∫
−∞

d(t− t′) e
i
�
(t−t′)E 〈[ap(t) , a†

p(t′)]±〉 . (3.109)

The relationship in Eq. (3.105) then takes the form of the detailed balancing
condition

G<(p, E) = ± e−
E −µ
kT G>(p, E) . (3.110)

Exercise 3.16. Show that, for free bosons or fermions specified by the Hamiltonian
in Eq. (2.21), we have

GR
0 (p, E) − GA

0 (p, E) = −2πi δ(E − εp) , εp =
p2

2m
. (3.111)

Exercise 3.17. Show that, for free longitudinal phonons,, specified by the Hamilto-
nian in Eq. (1.123), we have

DR
0 (k, ω) − DA

0 (k, ω) = −2πi ω2
k sign(ω) δ(ω2 − ω2

k) θ(ωD − |ω|) (3.112)

where the sign-function, sign(x) = θ(x) − θ(−x) = x/|x|, is plus or minus one,
depending on the sign of the argument.
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Instead of defining the unitary transformation to the Heisenberg picture according
to Eq. (3.26), we can let it be governed by the grand canonical Hamiltonian, H−µN ,
and we have, according to Eq. (2.36),17

ψµ(x, t) = e−
i
�

µNt ψH(x, t) e
i
�

µNt = e
i
�

µt ψH(x, t) . (3.113)

Defining the grand canonical Green’s functions in terms of these fields, we observe
that they are related to those defined according to Eq. (3.106), or those in the canon-
ical ensemble in the thermodynamic limit, according to

Gµ(x, t,x′, t′) = G(x, t,x′, t′) e
i
�

µ(t−t′) . (3.114)

Since average densities and currents are expressed in terms of the equal time Green’s
function, formulas have the same appearance in both ensembles.

For the Fourier transformed Green’s function with respect to time, the transition
to the grand canonical ensemble thus corresponds to the substitution E → E +µ, as
energies will appear measured from the chemical potential. The detailed balancing
condition, Eq. (3.110), can therefore, for a translationally invariant state, equivalently
be stated in the form

G<(E,p) = ± e−E/kT G>(E,p) (3.115)

and we have dropped the chemical potential index as these are the Green’s functions
we shall use in the following. The absence of the chemical potential in the exponential
shows that the relationships are specified in the grand canonical ensemble, where
energies are measured relative to the chemical potential (upper and lower signs refer
as usual to bosons and fermions, respectively).

In thermal equilibrium, the kinetic Green’s function and the retarded and ad-
vanced Green’s functions, or rather the spectral weight function, are thus related for
the case of fermions according to

GK(E,p) = (GR(E,p) − GA(E,p)) tanh
E

2kT
. (3.116)

In thermal equilibrium, all Green’s functions can thus be specified once a single of
them is known, say the retarded Green’s functions, and the quantum statistics of the
particles is then reflected in relations governed by the fluctuation–dissipation type
relationship such as in Eq. (3.116). Occasionally we keep Boltzmann’s constant, k,
explicitly, the non-essential converter between energy and temperature scales.

Exercise 3.18. Show that, for bosons in equilibrium at temperature T , the fluctuation–
dissipation theorem reads

GK(E,p) = (GR(E,p) − GA(E,p)) coth
E

2kT
. (3.117)

17The number operator is assumed to commute with the Hamiltonian. If the number operator
does not commute with the Hamiltonian, such as for phonons, the description is of course in the
grand canonical ensemble and the chemical potential vanishes.
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Exercise 3.19. Show that

i G>(E,p) = (1± f∓(E))A(E,p) (3.118)

and
± i G<(E,p) = f∓(E)A(E,p) , (3.119)

where the functions
f∓(E) =

1
eE/kT ∓ 1

(3.120)

denote either the Bose–Einstein distribution or Fermi–Dirac distribution, for bosons
and fermions respectively.

Exercise 3.20. Show that the average energy in the thermal equilibrium state for
the case of two-body interaction between fermions (recall Exercise 3.7 on page 60),
for example, can be expressed as

〈H〉 =
1
2

∑
p

〈(
εp a†

p(t) ap(t) + i�a†
p(t)

dap(t)
dt

)
t=0

〉

= −i
1
2

∑
p

(
i�

d

dt
+ εp

)
G<(p, t)

t=0

= −i
1
2

∑
p

∞∫
−∞

dE

2π
(E + εp) G<(p, E)

=
1
2

∑
p

∞∫
−∞

dE

2π
(E + εp) A(p, E) f(E) , (3.121)

where f is the Fermi function, and thereby for the energy density

〈H〉
V

=
1
2

∫
dp

(2π�)3

∞∫
−∞

dE

2π
(E + εp) A(p, E) f(E) . (3.122)

For a system in thermal equilibrium, the correlation function

〈ψµ(x, t) ψ†
µ(x′, t′)〉 = Tr(e(Ω−(H−µN))/kT ψµ(x, t) ψ†

µ(x′, t′)) (3.123)

can be spectrally decomposed by inserting a complete set of energy states in the
multi-particle space

(H − µN)|En, N〉 = (En − µN)|En, N〉 (3.124)
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giving

〈ψµ(x, t) ψ†
µ(x′, t′)〉 =

∑
N,n,m

e(Ω−En +µN)/kT ei(t−t′)(En −Em +µ) ×

〈N, En|ψ(x, t = 0))|Em, N + 1〉 ×

〈N + 1, Em|ψ†(x′, t′ = 0)|En, N〉. (3.125)

From this expression we observe that the G-greater Green’s function G>(x, t,x′, t′)
considered as a function of imaginary times is an analytic function in the region,
−1/kT < �m(t − t′) < 0, if the exponential exp{−En(1/kT + i(t− t′))} dominates
the convergence of the sum.

Exercise 3.21. Show similarly that G<(x, t,x′, t′) is an analytic function in the
region of imaginary times, 0 < �m(t− t′) < 1/kT .

Assuming a translational invariant system and using Eq. (2.16) we have

〈ψµ(x, t) ψ†
µ(x′, t′)〉 =

∑
N,n,m

e(Ω−En +µN)/kT ei(t−t′)(En −Em +µ)

× e−i(x−x′)pn m 〈N, En|ψ(0, 0)|Em, N + 1〉

× 〈N + 1, Em|ψ†(0, 0)|En, N〉 , (3.126)

where pnm = Pn − Pm is the difference between the total momentum eigenvalues
for the two states in question. For the Fourier transform we then have

〈ap(t) a†
p(t′)〉 = (2π)3

∑
N,n,m

e(Ω−En +µN)/kT ei(t−t′)(En−Em +µ)

× δ(p− pmn)|〈N, En|ψ(0, 0))|Em, N + 1〉|2.
(3.127)

Noting the analyticity in the upper-half ω-plane of the following function, we have
for real values of ω

∞∫
−∞

dt θ(t) eiωt =
1

ω + iδ
, (3.128)

where δ = 0+, or equivalently

θ(t) =

∞∫
−∞

dω

−2πi

e−iωt

ω + iδ
. (3.129)
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Therefore for the retarded and advanced Green’s functions we have the spectral
representations

GR(A)(p, E) = (2π)3eΩ/kT
∑

Nn ,n,m

e−(En−µN)/kT ×

(
δ(p− pmn)

|〈Nn, En|ψ(0, 0))|Em, Nm〉|2
E + Emn

+
(−) iδ

∓ (n ↔ m)
)

, (3.130)

where Emn = Em−En +µ(Nm−Nn), and we recall that Nm = Nn±1. The retarded
(advanced) Green’s function is thus analytic in the upper (lower) half-plane for the
energy variable E. The simple poles for the retarded (advanced) Green’s function
are thus spread densely just below (above) the real axis, and in the thermodynamic
limit this spectrum of simple poles coalesces into a continuum creating a branch cut
for the functions along the real axis.

In equilibrium all propagators are thus specified in terms of a single Green’s
function, say the retarded or equivalently the spectral function, as by analyticity the
retarded and advanced Green’s functions satisfy the causality or Kramers–Kronig
relations for their real and imaginary parts, or compactly

GR(A)(E,p) =

∞∫
−∞

dE′

−2πi

GR(E′,p)−GA(E′,p)
E − E′ +

(−) i0

=

∞∫
−∞

dE′

2π

A(E′,p)
E − E′ +

(−) i0
. (3.131)

The spectral weight function, has according to Eq. (3.130), the spectral decom-
position

A(p, E) = −(2π)4
∑

Nn ,n,m

e(Ω−(En−µNn ))/kT

×
(
δ(p− pmn) δ(E − Emn)|〈Nn, En|ψ(0, 0))|Em, Nm〉|2

∓ (n ↔ m)) (3.132)

or equivalently

A(p, E) = (2π)4
∑

Nn ,n,m

e(Ω−(En−µNn ))/kT
(
1 ∓ e−

E m n
kT

)

× δ(p− pmn) δ(E − Emn)|〈Nn, En|ψ(0, 0))|Em, Nm〉|2 , (3.133)

where the upper and lower sign is for bosons and fermions, respectively.
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The analytic properties of the retarded (or advanced) Green’s function determines
the analytic properties of all the other introduced Green’s functions, and are further
studied in Section 5.6.

The three Green’s functions, GR,A,K, thus carry different information about the
many-body system: GR,A the spectral properties and GK in addition the quantum
statistics of the concerned particles. In Chapter 5 we will construct the diagrammatic
perturbation theory that, even for non-equilibrium states, keeps these important
features explicit.

Exercise 3.22. Show that for large energy variable, E → ∞, the retarded and
advanced Green’s functions always have the asymptotic behavior

GR(A)(E,p) � 1
E

. (3.134)

In the absence of interactions, i.e. for free bosons or fermions specified by the
Hamiltonian in Eq. (2.21), one readily obtains for the spectral weight function,
Eq. (3.85),

A0(p, E) = 2π δ(E − ξp) , ξp = εp − µ =
p2

2m
− µ , (3.135)

and according to the fluctuation–dissipation theorem, all one-particle Green’s func-
tion are then immediately obtained.

In the presence of interactions, the delta-spike in the spectral weight function
will be broadened and a tail appears, however, subject to the general sum-rule of
Eq. (3.89) which for the equilibrium state reads

∞∫
−∞

dE

2π
A(E,p) = 1 . (3.136)

Exercise 3.23. The quantum statistics of particles have, according to the above,
a profound influence on the form of the Green’s function. Show that, for the case
of non-interacting fermions at zero temperature, the Fermi surface is manifest in
the time-ordered Green’s function, Eq. (3.61), according to (say) in the canonical
ensemble,

G0(E,p) =
1

E − εp + iδ sign(|p| − pF)
, (3.137)

where δ = 0+, and the sign-function, sign(x) = θ(x)−θ(−x) = x/|x|, is plus or minus
one depending on the sign of the argument. The grand canonical case corresponds
to the substitution εp → ξp = εp − µ.
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Exercise 3.24. For N non-interacting bosons in a volume V at zero temperature,
they all occupy the lowest energy level corresponding to the label p = 0. In the field
operator, ψ(x) = ξ0 + ψ′(x), the creation operator for the lowest energy level is
singled out, ξ0 = a0/

√
V , and ξ0 and ξ†0 can, for a non-interacting system in the

thermodynamic limit, be regarded as c-numbers, [ξ0, ξ†0] = 1/V .
Show that the time ordered Green’s function for non-interacting bosons in the

ground state, |ΦN 〉 = (N !)−1/2(a†
0)N |0〉, is given by

G0(x, t,x′, t′) = G(0)(t− t′) + G′
0(x, t,x′, t′) , (3.138)

where
G(0)(t− t′) = −i〈ΦN |T (ξ0(t) ξ†0(t′))|ΦN 〉 (3.139)

is specified at t′ = t + 0 by iG(0)(0−) = n, where n = N/V is the density of the
bosons, and G′

0(x, t,x′, t′) is specified by its Fourier transform

G′
0(E,p) =

1
E − εp + iδ

(3.140)

corresponding to G-lesser vanishing for the field ψ′, or equivalently, the density of the
bosons is solely provided by the occupation of the lowest energy level. The presence
of a Bose–Einstein condensate at low temperatures thus leads to such modifications
for boson Green’s function expressions.18

As mentioned, perturbation theory and diagrammatic summation schemes are
the main tools in unraveling the effects of interactions on the equilibrium properties
of a system. This has been dealt with in textbooks mainly using the imaginary-
time formalism (which we will discuss in Section 5.7.1), and unfortunately most
numerously in the so-called Matsubara technique. This technique, which is based on
a purely mathematical feature, lacks physical transparency. A main purpose of this
book is to show that the real-time technique, which is based on the basic feature of
quantum dynamics, has superior properties in terms of physical insight. Furthermore,
there is no need to delve into equilibrium theory Feynman diagrammatics since it will
be a simple corollary of the general real-time non-equilibrium theory we now turn to
develop.

3.5 Summary

In this chapter we have shown that by transforming to the Heisenberg picture, the
quantum dynamics of a many-body system can be described by the time development
of the field operator in the Heisenberg picture. The measurable physical quantities
of a system were thus expressed in terms of strings of Heisenberg operators weighted

18If the ground state of a system of interacting bosons has no condensed phase, standard zero-
temperature perturbation theory can not be applied. In the opposite case, the zero-momentum fields
can be treated as external fields. This leads to additional vertices in the Feynman diagrammatics
as encountered in Section 10.6.
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with respect to a state, generally a mixture described by a statistical operator. The
dynamics of such systems are therefore described in terms of the correlation functions
of field operators, the Green’s functions of the theory.

In thermal equilibrium, the fluctuation–dissipation relation leads to simplification
as all the one-particle or two-point Green’s functions can be expressed in terms of the
spectral weight function. Different schemes pertaining to equilibrium can be devised
for calculating equilibrium Green’s functions but we shall not entertain them here as
they will be simple corollaries of the general non-equilibrium theory presented in the
next chapter.

The equations of motion for Green’s functions of interacting quantum fields in-
volve ever increasing higher-order correlation functions. The rest of the book is
devoted to the study and calculation of Green’s functions for non-equilibrium states
using diagrammatic and functional methods. We therefore turn to develop the for-
malism necessary for obtaining information about the properties of systems when
they are out of equilibrium.



4

Non-equilibrium theory

In this chapter we will develop the general formalism necessary for dealing with
non-equilibrium situations. We first formulate the non-equilibrium problem, and
discuss why the standard method applicable for the study of ground state properties
fails for arbitrary states. We then introduce the closed time path formulation, and
construct the perturbation theory for the closed time path or contour ordered Green’s
function valid for non-equilibrium states. The diagrammatic perturbation theory in
the closed time path formulation is then formulated, and generic types of interaction
are considered.1

4.1 The non-equilibrium problem

Let us consider an arbitrary physical system described by the Hamiltonian H . Since
we consider non-equilibrium quantum field theory, the Hamiltonian acts on the multi-
particle state space introduced in the first chapter, consisting of products of multi-
particle spaces for the species involved. The generic non-equilibrium problem can be
construed as follows: far in the past, prior to time t0, the system can be thought
of as having been brought to the equilibrium state characterized by temperature T .
The state of the system is thus at time t0 described by the statistical operator2

ρ(H) =
e−H/kT

Tr(e−H/kT )
, (4.1)

where Tr denotes the trace in the multi-particle state space of the physical system
in question. At times larger than t = t0, a possible time-dependent mechanical
perturbation, described by the Hamiltonian H ′(t), is applied to the system. The

1In this chapter we follow the exposition given in reference [3].
2We can also imagine and treat the case where the particles in the system are coupled to particle

reservoirs described by their chemical potentials as this is simply included by tacitly understanding
that single-particle energies are measured relative to their chemical potentials, H → H −

∑
s µsNs,

i.e. shifting from the canonical to the grand canonical ensemble. In fact, in actual calculations it is
the more convenient choice, as discussed in Sections 2.5 and 3.4.
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total Hamiltonian is thus

H(t) = H + H ′(t) . (4.2)

The simplest non-equilibrium problem is concerned with the calculation of some
average value of a physical quantity A at times t > t0. The state of the system is
evolved to

ρ(t) = U(t, t0) ρ(H)U †(t, t0) , (4.3)

where (recall Eq. (3.7))
U(t, t′) = Te−

i
�

∫ t
t′dt̄H(t̄) (4.4)

is the evolution operator, and the average value of the quantity of interest is thus

〈A(t)〉 = Tr(ρ(t)A) , (4.5)

where A is the operator representing the physical quantity in question in the Schrödinger
picture. Transforming to the Heisenberg picture

〈A(t)〉 = Tr(ρ(H)AH(t)) = 〈AH(t)〉 , (4.6)

where, as discussed in Section 3.1.2, AH(t) denotes the operator representing the
physical quantity in question in the Heisenberg picture with respect to H(t), and we
have chosen the reference time in Eq. (3.17) to be t0. The average value is typically
a type of quantity of interest for a macroscopic system, i.e. a system consisting of a
huge number of particles. For example, for the average (probability) density of the
particle species described by the quantum field ψ, we have according to Eq. (2.28),3

n(x, t) = 〈ψ†
H(x, t)ψH(x, t)〉 . (4.7)

The average density is seen to be equal to the equal-time and equal-space value of
the G-lesser Green’s function, G<, introduced in Section 3.3

n(x, t) = ∓iG<(x, t,x, t) , (4.8)

where upper (lower) sign is for bosons and fermions, respectively.
If fluctuations are of interest or importance we encounter higher order correlation

functions, generically according to Section 2.1, then appears the trace over products
of pairs of Heisenberg field operators for particle species weighted by the initial
state. If one is interested in the probability that a certain sequence of properties are
measured at different times, one encounters arbitrary long products of Heisenberg
operators.4 Since physical quantities are expressed in terms of the quantum fields of
the particles and interactions in terms of their higher-order correlations, of interest
are the correlation functions, the so-called non-equilibrium Green’s functions.

Owing to interactions, memory of the initial state of a subsystem is usually rapidly
lost. We shall not in practice be interested in transient properties but rather steady

3Possible spin degrees of freedom are suppressed, or imagined absorbed in the spatial variable.
4See chapter 1 of reference [1] for a discussion of such probability connections or histories with

a modern term.
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states, where the dependence on the initial state is lost, and the time dependence is
governed by external forces. Initial correlations can be of interest in their own right,
even in many-body systems.5 In fact, for all of the following, the statistical operator
in the previous formulae, say Eq. (4.6), could have been chosen as arbitrary. This
would lead to additional features which we point out as we go along, and in practice
each case then has to be dealt with on an individual basis.

The equation of motion for the one-particle Green’s function leads to an infinite
hierarchy of equations for correlation functions containing ever increasing numbers of
field operators, describing the correlations between the particles set up in the system
by the interactions and external forces. In order to calculate the effects of interac-
tions, we now embark on the construction of perturbation theory and the diagram-
matic representation of non-equilibrium theory starting from the canonical formalism
presented in the first chapter. But first we describe why the zero temperature, i.e.
ground state, formalism is not capable of dealing with general non-equilibrium situ-
ations, before embarking on finding the necessary remedy, and eventually construct
non-equilibrium perturbation theory and its corresponding diagrammatic represen-
tation.

4.2 Ground state formalism

To see the need for the closed time path description consider the problem of pertur-
bation theory. The Hamiltonian of a system

H = H0 + H(i) (4.9)

consists of a term quadratic in the fields, H0, describing the free particles, and a
complicated term, H(i), describing interactions.

Constructing perturbation theory for zero temperature quantum field theory, i.e.
the system is in its ground state |G〉, only the time-ordered Green’s function

G(x, t,x′, t′) = −i〈T (ψH(x, t)ψ†
H(x′, t′))〉 = −i〈G|T (ψH(x, t)ψ†

H(x′, t′))|G〉
(4.10)

needs to be considered. Here ψH(x, t) is the field operator in the Heisenberg picture
with respect to H for one of the species of particles described by the Hamiltonian.6

The time-ordered Green’s function contains more information than seems necessary
for calculating mean or average values, since for times t < t′ it becomes the G-lesser
Green’s function

G(x, t,x′, t′) = G<(x, t,x′, t′) (4.11)

5All transient effects for the above chosen initial condition are of course included. Whether this
choice is appropriate for the study of transient effects depends on the given physical situation.

6For a reader not familiar with zero temperature quantum field theory, no such thing is required.
It will be a simple corollary of the more powerful formalism presented in Section 4.3.2, and devel-
oped to its final real-time formalism presented in Chapter 5. The reason for the usefulness of the
time ordering operation is to be expected remembering the crucial appearance of time-ordering in
the evolution operator. Also, under the governing of the time-ordering symbol, operators can be
commuted without paying a price except for the possible quantum statistical minus signs in the
case of fermions.
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and thereby are all average values of physical quantities specified once the time-
ordered Green’s function is known for t < t′. However, a perturbation theory involv-
ing only the G-lesser Green’s function can not be constructed.

The time-ordered Green’s function can, instead of being expressed in terms of the
field operator ψH(x, t), i.e. in the Heisenberg picture with respect to H , be expressed
in terms of the field operators ψH0(x, t), the Heisenberg picture with respect to H0

or the so-called interaction picture,

ψH0(x, t) = e
i
�

H0(t−tr) ψ(x) e−
i
�

H0(t−tr) (4.12)

as they are related according to the unitary transformation

ψH(x, t) = U †(t, tr)ψH0(x, t)U(t, tr) , (4.13)

where
U(t, tr) = T e−i

∫ t
tr

dt̄ H
(i)
H0

(t̄) (4.14)

is the evolution operator in the interaction picture (leaving out for brevity an index
to distinguish it from the full evolution operator exp{−iH(t− tr)}) and

H
(i)
H0

(t) = eiH0(t−tr) H(i) e−iH0(t−tr) . (4.15)

This is readily seen by noting that the expression on the right-hand side in Eq. (4.13)
satisfies the first-order in time differential equation

i�
∂ψ(x, t)

∂t
= [ψ(x, t), H ] , (4.16)

the same equation satisfied by the field ψH(x, t), and at the reference time tr, the two
operators are seen to coincide (coinciding with the field in the Schrödinger picture,
ψ(x)).

Transforming to the interaction picture, and using the semi-group property of the
evolution operator, U(t, t′′)U(t′′, t′) = U(t, t′),7 and the relation U †(t, t′) = U(t′, t),
the time ordered Green’s function can be expressed in the form

G(x, t,x′, t′) = −i
〈
U †(t, tr)ψH0(x, t)U(t, t′)ψ†

H0
(x′, t′)U(t′, tr)

〉
θ(t− t′)

± i
〈
U †(t′, tr)ψ

†
H0

(x′, t′)U(t′, t)ψH0 (x, t)U(t, tr)
〉

θ(t′ − t) (4.17)

which can also be expressed on the form (tm denotes max{t, t′})

G(x, t,x′, t′) = −i
〈
U †(tm, tr)T

(
ψH0(x, t)ψ†

H0
(x′, t′)U(tm, tr)

)〉
(4.18)

since the time-ordering symbol places the operators in the original order.8

7For a detailed discussion of the evolution operator and the Heisenberg and interaction pictures
we refer to chapter 2 of reference [1].

8In fact the operator identity

T (ψH (x, t) ψ†
H (x′, t′)) = U†(tm, tr)T

(
ψH0 (x, t) ψ†

H0
(x′, t′) U(tm, tr)

)
is valid since only transformation of operators was involved, and nowhere is advantage taken of the
averaging with respect to the state in question.
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Usually, say in a scattering experiment realized in a particle accelerator, only
transitions from an initial state in the far past are of interest so that the reference
time is chosen in the far past, tr = −∞, and inserting 1 = U(tm,∞)U(∞, tm) after
U † gives9

G(x, t,x′, t′) = −i〈U †(∞,−∞)T (ψH0(x, t)ψ†
H0

(x′, t′)U(∞,−∞))〉 . (4.19)

If the average is with respect to the ground state of the system, one can make use
of the trick of adiabatic switching, i.e. the interaction is assumed turned on and off
adiabatically, say by the substitution H

(i)
H0

(t) → e−ε|t|H
(i)
H0

(t). The non-interacting
(non-degenerate) ground state |G0〉, H0|G0〉 = E0|G0〉, is evolved by the full adiabatic
evolution operator Uε into the normal ground state of the interacting system at time
t = 0, |G〉ε = Uε(0,−∞)|G0〉. The ε on the evolution operator indicates that the
interaction is turned on and off adiabatically. In perturbation theory it can then be
shown, that in the limit of ε → 0, the true interacting ground state at time t = 0
is obtained modulo a phase factor that is obtained from the limiting expression of
turning the interaction on and off adiabatically, (the Gell-Mann–Low theorem [4]),10

Uε(∞,−∞) |G0〉 = eiφ |G0〉 , eiφ = 〈G0|Uε(∞,−∞)|G0〉 . (4.20)

As a consequence, the time-ordered Green’s function, Eq. (4.10), can be expressed
in terms of the non-interacting ground state and the fields in the interaction picture
according to

G(x, t,x′, t′) = −i
〈G0|T (ψH0(x, t)ψ†

H0
(x′, t′)U(∞,−∞))|G0〉

〈G0|U(∞,−∞)|G0〉
. (4.21)

In the next section we will show that the artifice of turning the interaction on
and off adiabatically is not needed when using the closed time path formulation
and generalizing time-ordering to contour-ordering, and it can also be avoided by
using functional methods as in Chapter 9, and plays no role in the non-equilibrium
formalism. In describing a scattering experiment, adiabatic switching is of course an
innocent initial and final boundary condition as the particles are then free.11

Since the Gell-Mann–Low theorem fails for states other than the ground state,
and thus even for an equilibrium state at finite temperature, we are in general stuck

9In fact as an operator identity

T (ψH (x, t) ψ†
H (x′, t′)) = U†(∞,−∞)T (ψH0 (x, t) ψ†

H0
(x′, t′) U(∞,−∞)).

10Clearly, it is important that no dissipation or irreversible effects takes place. Contrarily, in
statistical physics, reduced dynamics is the main interest, i.e. certain degrees of freedom are left
unobserved and emission and absorption takes place, technically partial traces occurs.

11As will become clear from the following sections, the denominator in Eq. (4.21) is diagrammati-
cally the sum of all the vacuum diagrams that therefore cancel all the disconnected diagrams in the
numerator, and one obtains the standard connected Feynman diagrammatics for the time-ordered
Green’s function for a system at zero temperature such as is relevant in, say, QED. In QED one
works with the so-called scattering matrix or S-matrix, S(∞,−∞), defined in terms of the full

evolution operator, S(t, t′) = eiH0tU(t, t′)e−iH0t′ , so that the matrix elements of the S-matrix are
expressed in terms of the free-particle states.
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with the operator U †(∞,−∞) inside the averaging in Eq. (4.19) and Eq. (4.18). At
finite temperatures and a fortiori for non-equilibrium states, a perturbation theory
involving only one kind of a real-time Green’s functions can not be obtained. In
order to construct a single object which contains all the dynamical information we
shall follow Schwinger and introduce the closed time path formulation [5].

4.3 Closed time path formalism

Let us return to the non-equilibrium situation of Section 4.1 where the dynamics is
determined by a time dependent Hamiltonian H(t) = H + H ′(t), where H is the
Hamiltonian for the isolated system of interest and H ′(t) is a time-dependent pertur-
bation acting on it. The unitary transformation relating operators in the Heisenberg
pictures governed by the Hamiltonians H(t) and H , respectively, is specified by the
unitary transformation

OH(t) = V †(t, t0)OH(t)V (t, t0) , V (t, t0) = Te
− i

�

∫ t
t0

dt̄ H′
H (t̄) (4.22)

and
H ′

H(t) = U †
H(t, t0)H ′(t)UH(t, t0) , UH(t, t0) = e−

i
�

H(t−t0) (4.23)

and we have chosen t0 as reference time where the two pictures coincide. This
relation between the two pictures is obtained by first comparing both pictures to the
Schrödinger picture obtaining

OH(t) = U †
H(t, t0)UH(t, t0)OH(t)U †

H(t, t0)UH(t, t0) , (4.24)

where
UH(t, t0) = Te

− i
�

∫ t
t0

dt̄H(t̄) (4.25)

is the evolution operator corresponding to the Hamiltonian H(t). Then one notes
that V (t, t0) and U †

H(t, t0)UH(t, t0) satisfy the same first-order in time differential
equation and the same initial condition. We have thus obtained Dyson’s formula

V (t, t0) = U †
H(t, t0)UH(t, t0) (4.26)

or explicitly
Te−

i
�

∫ t
t′dt̄ H′

H (t̄) = e
i
�

H(t−t0) Te−
i
�

∫ t
t′dt̄H(t̄) . (4.27)

Here Dyson’s formula appeared owing to unitary transformations between Heisen-
berg and interaction pictures, but once conjectured it can of course immediately be
established by direct differentiation. Dyson’s formula is useful in many contexts,
be the time variable real or imaginary, and also for equilibrium states such as when
phase transitions are studied in, for instance, a renormalization group treatment. We
shall in fact apply Dyson’s formula for imaginary times in Section 4.3.2.

We now introduce the contour, the closed time path, which starts at t0 and
proceeds along the real time axis to time t and then back again to t0, the closed
contour ct as depicted in Figure 4.1.
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t0

ct t

Figure 4.1 The closed time path contour ct.

We then show that the transformation between the two Heisenberg pictures,
Eq. (4.24), can be expressed on closed contour form as (units are chosen to set �

equal to one at our convenience)

OH(t) = Tct

(
e
−i
∫

ct
dτ H′

H (τ)
OH(t)

)
, (4.28)

where τ denotes the contour variable proceeding from t0 along the real-time axis to
t and then back again to t0, i.e. the variable on ct. The contour ordering symbol Tct

orders products of operators according to the position of their contour time argument
on the closed contour, earlier contour time places an operator to the right.

The crucial equivalence of Eq. (4.24) and Eq. (4.28), which form a convenient
basis for formulating perturbation theory in the closed time path formalism, is based
on the algebra of operators under the contour ordering being equivalent to the algebra
of numbers.12 Expanding the exponential in Eq. (4.28) gives

OH(t) =
∞∑

n=0

(−i)n

n!

∫
ct

dτ1 . . .

∫
ct

dτn Tct (H ′
H(τ1) . . . H ′

H(τn)OH(t)) . (4.29)

Let us consider the nth order term. In order to verify Eq. (4.28), we note that the
contour can be split into forward and backward parts

ct = −→c +←−c . (4.30)

Splitting the contour into forward and backward contours gives 2n terms. Out of these
there are n!/(m!(n −m)!) terms (m = 0, 1, 2, . . . , n), which contain m integrations
over the forward contour, and the rest of the factors, n−m, have integratons over the
backward contour. Since they differ only by a different dummy integration labeling
they all give the same contribution and∫

ct

dτ1 . . .

∫
ct

dτn Tct (H ′
H(τ1) . . . H ′

H(τn)OH(t)) =
n∑

m=0

n!
m!(n−m)!

×
∫
←−c

dτm+1 . . .

∫
←−c

dτn T←−c (H ′
H(τm+1) . . . H ′

H(τn)) OH(t)

×
∫
−→c

dτ1 . . .

∫
−→c

dτm T−→c (H ′
H(τ1) . . . H ′

H(τm)) , (4.31)

12Even though the Hamiltonian for fermions contains non-commuting objects, the fermi fields,
they appear in pairs and quantum statistical minus signs do not occur.
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where T−→c and T←−c denotes contour ordering on the forward and backward parts,
respectively. Adding a summation and a compensating Kronecker function the nth-
order term can be rewritten in the form13∫

ct

dτ1 . . .

∫
ct

dτn Tct (H ′
H(τ1) . . .H ′

H(τn)OH(t)) =
∞∑

k=0

∞∑
m=0

n!
m! k!

δn,k+m

×
∫
←−c

dτ1 . . .

∫
←−c

dτk T←−c (H ′
H(τ1) . . . H ′

H(τk))OH(t)

×
∫
−→c

dτ ′
1 . . .

∫
−→c

dτ ′
m T−→c (H ′

H(τ ′
1) . . . H ′

H(τ ′
m)) . (4.32)

The summation over n in Eq. (4.29) is now trivial, giving

Tct

(
e
−i
∫

ct
dτH′

H (τ)
OH(t)

)
=

∞∑
k=0

∞∑
m=0

(−i)k(−i)m

m! k!

×
∫
←−c

dτ1 . . .

∫
←−c

dτk T←−c (H ′
H(τ1) . . . H ′

H(τk)) OH(t)

×
∫
−→c

dτ ′
1 . . .

∫
−→c

dτ ′
m T−→c (H ′

H(τ ′
1) . . . H ′

H(τ ′
m)) (4.33)

and thereby

Tct

(
e
−i
∫

ct
dτH′

H (τ)
OH(t)

)
= T←−c

(
e
−i

∫
←−c

dτH′
H (τ)

)
OH(t)T−→c

(
e
−i

∫
−→c

dτH′
H (τ)

)
.

(4.34)

Parameterizing the forward and backward contours according to

τ(t′) = t′ t′ε [t0, t] , (4.35)

we get

T−→c

(
e
−i

∫
−→c

dτH′
H (τ)

)
= T e

−i
t∫

t0

dt′ H′
H (t′)

= V (t, t0) (4.36)

and

T←−c

(
e
−i

∫
←−c

dτH′
H (τ)

)
= T̃ e

i
∫ t

t0
dt′ H′

H (t′) = V †(t, t0) (4.37)

i.e. contour ordering along the forward contour is identical to ordinary time ordering,
T−→c = T , whereas contour ordering along the backward contour corresponds to anti-
time ordering, T←−c = T̃ . The equivalence of Eq. (4.24) and Eq. (4.28) has thus been
established. We have shown that the times in V †(t, t0) corresponds to contour times

13Under the ordering operation, the algebra of non-commuting objects reigning the operators is
not important, and the consideration is essentially the algebra of showing exp(a+b) = exp(a) exp(b).
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lying on the backward part, and the times in V (t, t0) corresponds to contour times
lying on the forward part.

We shall now use Eq. (4.28) to introduce the contour variable instead of the time
variable. We hereby embark on Schwinger’s closed time path formulation of non-
equilibrium quantum statistical mechanics originally introduced in reference [5].14

We shall thereby develop the diagrammatic perturbative structure of the closed time
path or contour ordered Green’s function.

4.3.1 Closed time path Green’s function

A generalization offers itself, which will lead to a single object in terms of which non-
equilibrium perturbation theory can be formulated. The trick will be to democratize
the status of all times appearing in the time-ordered Green’s function, Eq. (4.18),
i.e. the original real times t and t′ will be perceived to reside on the closed time path
or contour. The one-particle Green’s function in Eq. (4.18) contains two times; let
us now denote them t1 and t1′ . We introduce the contour, which starts at t0 and
proceeds along the real-time axis through t1 and t1′ and then back again to t0, the
closed contour c as depicted in Figure 4.2, c = −→c +←−c .15 We have hereby freed the
time variables, which hitherto were tied to the real axis, to lie on either the forward
or return part of the contour, and we introduce the contour variable τ to signify this
two-valued choice of the time variable, examples of which are given in Figure 4.2.16

τ1

t0 t1 t1′ t
τ1′

Figure 4.2 Examples of real times being elevated to contour times.

We are thus led to study the closed time path Green’s function or the contour-
ordered Green’s function

G(x1, sz1 , τ1,x1′ , sz1′ , τ1′) = −i
Tr(e−H/kT Tc(ψH(x1, sz1 , τ1)ψ†

H(x1′ , sz1′ , τ1′)))
Tr(e−H/kT )

(4.38)
14Reviews of the closed time path formalism stressing various applications are, for example, those

of references [6], [7] and [8].
15If we discussed a correlation function involving more than two fields, the contour should stretch

all the way to the maximum time value, or in fact we can let the contour extend from t0 to t = ∞
and back again to t0, since, as we soon realize, beyond max(t1, t1′ , . . .) the forward and backward
evolutions take each other out, producing simply the identity operator.

16For mathematical rigor, i.e. proper convergence, both the forward and backward contours
should be conceived of as being located infinitesimally below the real axis. This will be witnessed
by the analytical continuation procedure discussed in Section 5.7, but in practice this consideration
will not be necessary.
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where τ1 and τ1′ can lie on either the forward or backward parts of the closed contour.
We have had a particle with spin in mind, say the electron, but introducing the
condensed notation 1 = (x1, sz1 , τ1) we have17

G(1, 1′) = −i 〈Tc(ψH(1)ψ†
H(1′))〉 = −i Z−1 Tr(e−H/kT Tc(ψH(1)ψ†

H(1′))) (4.39)

at which stage any particle could be under discussion as the only relevant thing in
the rest of the section is the contour variable. A contour ordering symbol Tc has been
introduced, which orders operators according to the position of their contour-time
argument on the closed contour, for example for the case of two contour times

Tc(ψ(x1, τ1)ψ†(x1′ , τ1′)) =

{
ψ(x1, τ1)ψ†(x1′ , τ1′) τ1

c
> τ1′

∓ψ†(x1′ , τ1′)ψ(x1, τ1) τ1′
c
> τ1

(4.40)

where the upper (lower) sign is for fermions (bosons) respectively. An obvious nota-
tion for ordering along the contour has been introduced, viz. τ1

c
> τ1′ means that τ1

is further along the contour c than τ1′ irrespective of their corresponding numerical
values on the real axis. The contour ordering thus orders an operator sequence ac-
cording to the contour position; operators with earliest contour times are put to the
right. The algebra of bose fields under the contour ordering is thus like the algebra
of (complex) numbers, whereas the algebra of fermi fields under the contour ordering
is like the Grassmann algebra of anti-commuting numbers.18

We also introduce greater and lesser quantities for the contour ordered Green’s
function, and note according to the contour ordering, Eq. (4.40),

G(1, 1′) =

{
G<(1, 1′) τ1′

ct

> τ1

G>(1, 1′) τ1

ct

> τ1′ .
(4.41)

Here lesser refers to the contour time τ1 appearing earlier than contour time τ1′ , and
vice versa for greater. Note that these relationships are irrespective of the numerical
relationship of their corresponding real time values: if the contour times in G<(1, 1′)
and G>(1, 1′) are identified with their corresponding real times we recover their
corresponding real-time Green’s functions discussed in Section 3.3.

Transforming from the Heisenberg picture with respect to the Hamiltonian H(t)
to the Heisenberg picture with respect to the Hamiltonian H , gives, according to
Eq. (4.28),

G>(1, 1′) = −i〈ψH(1)ψ†
H(1′)〉

= −i

〈
Tct1

(
e
−i
∫

ct1
dτ H′

H (τ)
ψH(1)

) (
Tct1′

e
−i
∫

ct1′
dτ H′

H (τ)
ψ†

H(1′)
)〉

17In the following we shall consider the fields as entering the Green’s function, however, for
the following it could be any type of operators and any number of products, G(1, 2, 3, . . .) =

〈Tc(AH(1) B†
H(2) C†

H(3) . . .)〉. Note that if the operators represent physical quantities, they are
specified in terms of the fields, and we are back to strings of field operators modulo the operations
specific to the quantities in question.

18In Chapter 10 we shall in fact show that in view of this, quantum field theory can, instead of
being formulated in terms of quantum field operators, be formulated in terms of scalar or Grassmann
numbers by the use of path integrals.
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= −i

〈
Tct1+ct1′

(
e
−i
∫

ct1+ct1′
dτ H′

H (τ)
ψH(1)ψ†

H(1′)
)〉

, (4.42)

where the contours ct1 (ct1′ ) starts at t0 and passes through t1 (t1′), respectively,
and returns to t0. In the last equality the combined contour, ct1 + ct1′ , depicted
in Figure 4.3, has been introduced. It stretches from t0 to min{t1, t1′} and back to
t0 and then forward to max{t1, t1′} before finally returning back again to t0. The
contributions from the hatched parts depicted in Figure 4.3 cancel since for this part
the field operators at times t1 and t1′ are not involved and a closed contour appears
which gives the unit operator, or equivalently U †(t1, t0)U(t1, t0) = 1, and the last
equality in Eq. (4.42) is established. By the same argument, the contour could be
extended from max{t1, t1′} all the way to plus infinity before returning to t0, and we
encounter the general real-time contour.
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t0

c1

c1′

t1′t1

Figure 4.3 Parts of contour evolution operators canceling in Eq. (4.42).

We have an analogous situation for G<(1, 1′), and we have shown that

G(1, 1′) = −i〈Tc(ψH(1)ψ†
H(1′))〉

= −i
〈
Tc

(
e−i

∫
c

dτ H′
H (τ) ψH(1)ψ†

H(1′)
)〉

, (4.43)

where the contour c starts at t0 and stretches through max(t1, t1′) (or all the way to
plus infinity) and back again to t0. By introducing the closed contour and contour
ordering we have managed to bring all operators under the ordering operation, which
will prove very useful when it comes to deriving the perturbation theory for the
contour-ordered Green’s function.

Exercise 4.1. From the equation of motion for the field operator, show that the
equation of motion for the contour-ordered Green’s function is(

i�
∂

∂τ
− h0(τ) + µ

)
G(x, τ,x′, τ ′) = � δ(x− x′) δc(τ − τ ′)

− i〈Tc([ψ†(x, τ), Hi(τ)]ψ†(x′, τ ′))〉 , (4.44)

where h0 denotes the single-particle Hamiltonian, and we have introduced the contour
delta function

δc(τ − τ ′) =


δ(τ − τ ′) for τ and τ ′ on forward branch
−δ(τ − τ ′) for τ and τ ′ on return branch
0 for τ and τ ′ on different branches

(4.45)
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and Hi(τ) is the interaction part of the Hamiltonian in the Heisenberg picture (recall
Exercise 3.10 on page 66).

The equation of motion for the Green’s function leads, as noted in Section 3.3, to
an infinite hierarchy of equations for correlation functions containing an ever increas-
ing number of field operators describing the correlations between the particles set
up in the system by the interactions and external forces. Needless to say, an exact
solution of a quantum field theory is a mission impossible in general. At present,
the only general method available for gaining knowledge from the fundamental prin-
ciples about the dynamics of a system is the perturbative study. This goes for
non-equilibrium states a fortiori, and we shall now construct the perturbation the-
ory valid for non-equilibrium states. This consists of dividing the Hamiltonian into
one part representing a simpler well-understood problem and a nontrivial part, the
effect of which is studied order by order.

In the next section we construct the general perturbation theory valid for non-
equilibrium situations. We thus embark on the construction of the diagrammatic
representation starting from the canonical formalism presented in Chapter 1.

4.3.2 Non-equilibrium perturbation theory

We now proceed to obtain the perturbation theory expressions for the contour-
ordered Green’s functions. The Hamiltonian of the system, Eq. (4.9) consists of
a term quadratic in the fields, H0, describing the free particles, and a complicated
term, H(i), describing interactions. To get an expression ready-made for a pertur-
bative expansion of the contour-ordered Green’s function, the Hamiltonian in the
weighting factor needs to be quadratic in the fields, i.e. we need to transform the
operators in Eq. (4.42) to the interaction picture with respect to H0. Quite analogous
to the manipulations in the previous section we have

OH(t) = Tct

(
e
−i
∫

ct
dτ (H

(i)
H0

(τ)+H′
H0

(τ))
OH0(t)

)
, (4.46)

where we have further, or directly, transformed from the Heisenberg picture with
respect to the Hamiltonian H to the Heisenberg picture with respect to the free
Hamiltonian H0, the relation being equivalent to that in Eq. (4.28). The operator
H ′

H0
(τ) is thus the mechanical external perturbation in the Heisenberg picture with

respect to H0.19 We have thus analogous to the derivation of the expression Eq. (4.42)
for the contour-ordered Green’s function, Eq. (4.39), that the contour-ordered Green’s
function in the interaction picture is

G(1, 1′) = −i
Tr
(
e−βH Tc

(
e−i

∫
c

dτ(H
(i)
H0

(τ)+H′
H0

(τ)) ψH0(1)ψ†
H0

(1′)
))

Tr (e−βH)
. (4.47)

We have introduced the notation β = 1/kT for the inverse temperature.

19We shall later take advantage of the artifice of employing different dynamics on the forward and
backward paths, making the closed time path formulation a powerful functional tool.
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We can now employ Dyson’s formula, Eq. (4.27), for the case of a time-independent
Hamiltonian, H , and imaginary times, to express the Boltzmann weighting factor in
terms of the weighting factor for the free theory

e−βH = e−βH0 Tca e−i
∫ t0−iβ

t0
dτ H

(i)
H0

(τ) (4.48)

where Tca contour orders along the contour stretching down into the lower complex
time plane from t0 to t0− iβ, the appendix contour ca as depicted in Figure 4.4. We
then get the expression

iG(1, 1′)=

Tr

e−βH0

Tcae
−i

t0−iβ∫
t0

dτH
(i)
H0

(τ)

Tc

(
e
−i
∫
c

dτ(H
(i)
H0

(τ)+H′
H0

(τ))
ψH0(1)ψ†

H0
(1′)

)
Tr
(
e−βH0 Tcae

−i
∫ t0−iβ

t0
dτ H

(i)
H0

(τ)
)

(4.49)
ready-made for a perturbative expansion of the contour-ordered Green’s function
valid for the non-equilibrium case. The term involving imaginary times stretching
down into the lower complex time plane from t0 to t0− iβ can be brought under one
contour ordering by adding the appendix contour ca to the contour c giving in total
the contour ci as depicted in Figure 4.4, and we thus have

G(1, 1′) = −i

Tr
(

e−βH0 Tci

(
e
−i
∫

c i
dτ H

(i)
H0

(τ)
e−i

∫
c

dτ H′
H0

(τ) ψH0(1)ψ†
H0

(1′)
))

Tr
(

e−βH0Tci

(
e
−i
∫

c i
dτ H

(i)
H0

(τ)
e−i

∫
c

dτ H′
H0

(τ)

)) .

(4.50)
The contour ci stretches from t0 to max{t1, t1′} (or infinity) and back again to t0
and has in addition to the contour c the additional appendix ca, i.e. stretches further
down into the lower complex time plane from t0 to t0− iβ, as depicted in Figure 4.4.
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ci

t0 t1′t1

t0 − iβ

Figure 4.4 The contour ci.

In the numerator we have used the fact that, under contour ordering, operators can
be commuted, leaving operator algebra identical to that of numbers, so that for
example

Tc

(
e−i

∫
c

dτ (H
(i)
H0

(τ)+ H′
H0

(τ))
)

= Tc

(
e−i

∫
c

dτ H
(i)
H0

(τ) e−i
∫

c
dτ H′

H0
(τ)
)

. (4.51)
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The expression in Eq. (4.50) is of a form for which we can use Wick’s theorem
to obtain the perturbative expansion of the contour-ordered Green’s function and
the associated Feynman diagrammatics. Before we show Wick’s theorem in the next
section, some general remarks are in order.

In the denominator in Eq. (4.50), we introduced a closed contour contribution,
that of contour c, stretching from t0 to max{t1, t1′} (or infinity) and back again to t0,
which since no operators interrupts at intermediate times is just the identity operator

Tc

(
e−i

∫
c

dτ (H
(i)
H0

(τ)+ H′
H0

(τ))
)

= 1 . (4.52)

This was done in order for the expression in Eq. (4.50) to be written on the form where
the usual combinatorial arguments applies to show that unlinked or disconnected
diagrams originating in the numerator are canceled by the vacuum diagrams from
the denominator. However, for the non-equilibrium states of interest here, such
features are actually artificial relics of the formalisms used in standard zero and
finite time formalisms. A reader not familiar with these combinatorial arguments
need not bother about these remarks since we shall now specialize to the situation
where this feature is absent.20

We note that only interactions are alive on the appendix contour part, ca, whereas
the external perturbation vanishes on this part of the contour. If we are not interested
in transient phenomena in a system or physics on short time scales of the order
of the collision time scale due to the interactions, we can let t0 approach minus
infinity, t0 → −∞, and the contribution from the imaginary part of the contour ci

vanishes. The physical argument is that a propagator with one of its arguments on
the imaginary time appendix is damped on the time scale of the scattering time of the
system. Thus as the initial time, t0, where the system is perturbed by the external
field, retrudes back into the past beyond the microscopic scattering times of the
system, then effectively t0 → −∞, and contributions due to the imaginary appendix
part ca of the contour vanish.21 The denominator in Eq. (4.49) thus reduces to the
partition function for the non-interacting system and we finally have for the contour-
ordered or closed time path Green’s function

G(1, 1′) = Tr
(
ρ0 TC

(
e−i

∫
C

dτ (H
(i)
H0

(τ)+ H′
H0

(τ)) ψH0(1)ψ†
H0

(1′)
))

= Tr
(
ρ0 TC

(
e−i

∫
C

dτ H
(i)
H0

(τ) e−i
∫

C
dτ H′

H0
(τ) ψH0(1)ψ†

H0
(1′)
))

, (4.53)

where

ρ0 =
e−H0/kT

Tr e−H0/kT
(4.54)

20In Section 9.5, where we start studying physics from scratch in terms of diagrammatics, the
cancellation of the vacuum diagrams is discussed in detail. There, both a diagrammatic proof as
well as the combinatorial proof relevant for the present discussion are given for the cancellation of
the numerator by the separated off vacuum diagrams of the numerator.

21If the interactions are turned on adiabatically, then as the arbitrary initial time is retruding
back into the past, t0 → −∞, the interaction vanishes in the past, and therefore vanishes on
the imaginary appendix part of the contour. However, there is no need to appeal to adiabatic
coupling since interaction always has the physical effect of intrinsic damping. We note that at ever
increasing temperatures, the appendix contour contribution disappears, since thermal fluctuations
then immediately wipe out initial correlations.
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is the statistical operator for the equilibrium state of the non-interacting system at
the temperature T . The last equality sign follows since the algebra of Hamiltonians
under contour ordering is equivalent to that of numbers. The contour C appearing
in Eq. (4.53) is Schwinger’s closed time path [5], the Schwinger–Keldysh or real-time
contour, which starts at time t = −∞ and proceeds to time t = ∞ and then back
again to time t = −∞, as depicted in Figure 4.5.

t

c1

c2

Figure 4.5 The Schwinger–Keldysh closed time path or real-time closed contour.

We note that non-equilibrium perturbation theory in fact has a simpler structure
than the standard equilibrium theory as there is no need for canceling of unlinked or
disconnected diagrams. The contour evolution operator for a closed loop is one: in
the perturbative expansion for the denominator in Eq. (4.50)

D = Tr
(
e−βH0Tc

(
e−i

∫
c

dτ H
(i)
H0

(τ) e−i
∫

c
dτ H′

H0
(τ)
))

(4.55)

only the identity term corresponding to no evolution survives, all other terms comes
in two, one with a minus sign, and the sum cancels. We shall take advantage of the
absence of this so-called denominator-problem in Chapter 12, and this aspect of the
presented non-equilibrium theory is a very important aspect in the many applications
of the closed time path formalism: from the dynamical approach to perform quenched
disorder average to the field theory of classical statistical dynamics.22

Before turning to obtain the full diagrammatics of non-equilibrium perturbation
theory, let us acquaint ourselves with lowest order terms. The simplest kind of
coupling is that of particles to an external classical field V (x, t). In that case the
contour ordered Green’s function has the form ready for a perturbative expansion

GC(1, 1′) = Tr

(
ρ0 TC

(
e
−i
∫

C
dτ
∫
dx V (x,τ)ψ†

H0
(x,τ)ψH0(x,τ)

ψH0(1)ψ†
H0

(1′)

))
.

(4.56)
Expanding the exponential we get strings of, say, fermi field operators traced and
weighted with respect to the free statistical operator. The zeroth-order term just
gives the free contour Green’s function

G
(0)
C (1, 1′) = −iTr

(
ρ0 TC

(
ψH0(1)ψ†

H0
(1′)
))

. (4.57)

22This is an appealing alternative in the quantum field theoretic treatment of quenched disorder,
more physically appealing than the obscure Replica trick or supersymmetry methods, the latter
being limited to systems without interactions.
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For the first-order term we have the expression

G
(1)
C (1, 1′) = (−i)2

∫
dx2

∫
C

dτ2 V (2)Tr
(
ρ0 TC

(
ψ†

H0
(2)ψH0(2)ψH0(1)ψ†

H0
(1′)
))

.

(4.58)
Wick’s theorem will provide us with the recipe for decomposing such averages over
strings of fermi or bose field operators into products involving the free contour Green’s
function, Eq. (4.57).

Let us then look at the generic fermion–boson interaction, Eq. (2.71), (or equiva-
lently, the jellium electron–phonon interaction), and let the ψ-field denote the fermi
field in the Green’s function in Eq. (4.53). Expanding the exponential we get terms in
increasing order of the coupling constant. The zeroth-order term again gives the free
contour Green’s function. We shall soon realize that the term linear in the phonon
or boson field vanishes, and therefore consider the second order term23

G(2)(1, 1′) = −iTr
(
e−βH0Tci

(
(−i)2

2!

∫
ci

dτ3 H
(i)
H0

(τ3)
∫

ci

dτ2 H
(i)
H0

(τ2)ψH0 (1)ψ†
H0

(1′)
))

=
i

2!
g2

∫
ci

dτ3dτ2Tr
(
e−βH0 Tci

(
ψ†(x, τ3)ψH0 (x, τ3)φH0(x, τ3)

× ψ†
H0

(x, τ2)ψH0(x, τ2)φH0 (x, τ2)ψH0(1)ψ†
H0

(1′)
))

. (4.59)

This has the form of a trace over a string of fermi and bose operators under the
contour ordering symbol weighted by the Hamiltonian for the free fields which is
Gaussian. The trace over these independent degrees of freedom splits into a product
of two separate traces containing only fermi or bose fields weighted by their respective
free field Hamiltonians, H0 = H

(0)
f + H

(0)
b . Higher-order terms in the expansion

have the same form, they just contain strings with a larger number of fields. In
perturbation theory the task is to evaluate such terms. Owing to the Gaussian
nature of the average there is a simple prescription for the form of an arbitrary such
term. We now turn to show this.

4.3.3 Wick’s theorem

In the previous section we realized that the quantities appearing in perturbation
theory for the contour-ordered Green’s function are strings of field operators weighted
by the statistical operator for the free theory. The way to decompose such Gaussian
averages of strings we refer to as Wick’s theorem, honoring its precursor in QED.24

The perturbative expansion of the contour-ordered Green’s function now proceeds
23An exception to this is the case of Bose–Einstein condensation. In that case it can be convenient

to work with states which are superpositions of states with different number of particles, allowing
nonzero field averages due to spontaneously broken gauge symmetry. This case is discussed further
in Section 10.6.

24We are here dealing with Wick’s theorem at the factory floor, which is good for a start: con-
structing the decomposition. In Chapters 9 and 10 we will proceed from the top down, having
explicit expressions for the construction.
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by expanding the exponentials. When we expand the exponential in Eq. (4.50)
or Eq. (4.53), products of interaction Hamiltonians appear under contour ordering.
The generic case for the perturbative expansion to nth order of the contour-ordered
Green’s function is the trace of products, or strings, of the field operators of the theory
in the interaction picture weighted by the free part of the Hamiltonian, a quadratic
form in these fields. For example, in the case of electron–phonon interaction a string
of n phonon fields and 2n fermi fields occurs; see Eq. (4.126). The weighted trace over
the fermi and bose fields separates into the two traces over these independent degrees
of freedom. To be explicit, let us first consider the trace over the bose degrees of
freedom, and of interest is therefore the calculation of the weighted trace of a string
of contour-ordered bose field operators, ordered along a contour C.25 We introduce
the representation of the bose field in terms of its creation and annihilation operators
as in Eq. (2.74) and encounter strings of creation and annihilation operators26

S = tr(ρT TC(c(τn) c(τn−1) . . . c(τ2) c(τ1)))

≡ 〈TC(c(τn) c(τn−1) . . . c(τ2) c(τ1))〉 , (4.60)

where the cs denote either a creation or annihilation operator, a or a†, and

ρT =
e−H

(0)
b /kT

Tr e−H
(0)
b /kT

(4.61)

is the statistical operator for the equilibrium state of the non-interacting bosons or
phonons at temperature T , and

H
(0)
b =

∑
q

hq =
∑

q

εq a†
q aq (4.62)

or for the grand canonical ensemble, substituting in Eq. (4.62) H
(0)
b → H

(0)
b − µbNb

(i.e. we measure energies from the chemical potential, ωq = εq − µ) and we have
introduced the notation

〈. . .〉 = tr(ρT . . .) (4.63)

where tr denotes trace with respect to the bose species under consideration. As in
Eq. (4.60) we suppress whenever possible reference to the, for argument’s sake, irrele-
vant state labels, here momentum or wave vectors (and possibly spin and longitudinal
and transverse phonon labels).

The contour ordering symbol, TC , orders the operators according to their position
on the contour C (earlier contour positions orders operators to the right) so that, for
example, for two bose operators indexed by contour times τ and τ ′

TC(c(τ) c(τ ′)) =


c(τ) c(τ ′) for τ >C τ ′

c(τ ′) c(τ) for τ ′ >C τ
(4.64)

25In the following the contour C can be the real-time contour depicted in Figure 4.5 or the contour
depicted in Figure 4.4, allowing us to include the general case of transient phenomena.

26Although the Hamiltonian contains fields at equal times, we can in the course of the argument
assume them infinitesimally split, and all the contour time variables can thus be considered different.
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where the upper identity is for contour time τ being further along the contour than
τ ′ and the lower identity being the ordering for the opposite case (for the fermi case,
we should remember the additional minus sign for interchange of fermi operators).

Such an ordered expression of bose field operators as in Eq. (4.60) can now be
decomposed according to Wick’s theorem, which relies only on the simple property

[cq, ρT ] = ρT cq [exp{λcωq/kBT } − 1] (4.65)

valid for a Hamiltonian quadratic in the bose field (λc = ±1, depending upon whether
cq is a creation or an annihilation operator for state q). We now turn to prove Wick’s
theorem, which is the statement that the quadratically weighted trace of a contour-
ordered string of creation and annihilation operators can be decomposed into a sum
over all possible pairwise products

〈TC(c(τn) c(τn−1) . . . c(τ2) c(τ1))〉 =
∑

a.p.p.

∏
q,q′

〈Tct (cq(τ) cq′ (τ ′))〉 (4.66)

where the sum is over all possible ways of picking pairs (a.p.p.) among the n operators,
not distinguishing ordering within pairs. Equivalently, Wick’s theorem states that
the trace of a contour-ordered string of creation and annihilation operators weighted
with a quadratic Hamiltonian has the Gaussian property. The expressions on the
right are free thermal equilibrium contour-ordered Green’s functions, quantities for
which we have explicit expressions.

Before proving Wick’s theorem and the relation Eq. (4.65), we first observe some
preliminary results. Different q-labels describe different momentum degrees of free-
dom, so operators for different qs commute, and algebraic manipulations with com-
muting operators are just as for usual numbers giving for example

ρT =
∏
q

ρT
q , (4.67)

where we have introduced the thermal statistical operator for each mode

ρT
q = z−1

q e−hq /kT (4.68)

and the partition function for the single mode

zq =
1

1− e−ωq /kT
. (4.69)

The independence of each mode degree of freedom, as expressed by the commutation
of operators corresponding to different degrees of freedom, gives

cq ρT =

 ∏
q′( �=q)

ρT
q′

 cq ρT
q . (4.70)

Now, using the commutation relations for the creation and annihilation operators we
have

cqhq = (hq − λcωq) cq , (4.71)
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where

λc =
{

+1 for cq = a†
q

−1 for cq = aq .
(4.72)

Using Eq. (4.71) repeatedly gives

cqh
n
q = (hq − λcωq)n cq (4.73)

and upon expanding the exponential function and re-exponentiating we can commute
through to get

cq ρT = eλc ωq /kT ρT cq (4.74)

so that for the commutator of interest we have the property stated in Eq. (4.65).
We then prove for an arbitrary operator A that in the bose case

〈[cq, A]〉 = (1− eλc ωq /kT )〈cq A〉 (4.75)

as we first note, by using the cyclic invariance property of the trace, that

〈[cq, A]〉 = −tr([cq , ρT ] A) (4.76)

and then by using Eq. (4.65) we get Eq. (4.75).

Exercise 4.2. Show that for the case of fermions

〈{cq, A}〉 = (1 + eλc ωq /kT )〈cq A〉 . (4.77)

Employing Eq. (4.75) with A = 1, 1, a, a†, respectively, we observe that all the
following averages vanish

0 = 〈a(t)〉 = 〈a†(t)〉 = 〈a(t)a(t′)〉 = 〈a†(t)a†(t′)〉 (4.78)

and as a consequence the average value of the interaction energy vanishes, 〈Hi(t)〉 =
0, for the case of fermion–boson interaction (and electron–phonon interaction). These
equalities are valid for any state diagonal in the total number of particles, i.e. a state
with a definite number of particles.

Repeating the algebraic manipulations leading to Eq. (4.74), or by analytical
continuation of the result, we have

cq(t) = cq e−itH
(0)
b = eiλc ωq t e−itH

(0)
b cq (4.79)

from which we get that the creation and annihilation operators in the interaction
picture have a simple time dependence in terms of a phase factor

cq(t) = eitH
(0)
b cq e−itH

(0)
b = cq eiλc ωq t . (4.80)

The commutators formed by creation and annihilation operators in the interaction
picture are thus c-numbers, the only non-vanishing one being specified by

[aq(t), a
†
q′ (t′)] = δq,q′ e−iωq (t−t′) . (4.81)
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According to Eq. (4.75) we thereby have

〈aq(t) a†
q′(t′)〉 = (1− e−ωq /kT )−1〈[aq(t), a

†
q′(t′)]〉

= δq,q′ (1− e−ωq /kT )−1e−iωq (t−t′)

= δq,q′ (n(ωq) + 1)e−iωq (t−t′)

≡ i D>
qq′(t, t′) , (4.82)

where the Bose–Einstein distribution appears as specified by the Bose function

n(ωq) =
1

eωq /kT − 1
=

1
e(εq−µb )/kT − 1

. (4.83)

Exercise 4.3. Show that, for the opposite ordering of the creation and annihilation
operators, the correlation function is

i D<
qq′(t, t′) ≡ 〈a†

q′ (t′) aq(t)〉 = tr(ρT a†
q′(t′) aq(t))

= n(ωq) δq,q′ e−iωq (t−t′) . (4.84)

Exercise 4.4. Show that, for the case of fermi operators, the correlation functions
are

G<
qq′(t, t′) ≡ i〈a†

q′(t′) aq(t)〉 = itr(ρT a†
q′(t′) aq(t))

= if(εq) δq,q′ e−iεq (t−t′) (4.85)

and

G>
qq′ (t, t′) ≡ −i〈aq(t) a†

q′ (t′)〉 = −itr(ρT aq(t) a†
q′(t′))

= −i(1− f(εq)) δq,q′ e−iεq (t−t′) , (4.86)

where f(εq) is the Fermi function

f(εq) =
1

e(εq−µ)/kT + 1
. (4.87)

Exercise 4.5. Show that, for the case of fermi operators,

〈{aq(t), a
†
q′(t′)}〉 = δq,q′ e−iεq (t−t′) . (4.88)

If the string S, Eq. (4.60), contains an odd number of operators, the expression
equals zero since the expectation value is with respect to the thermal equilibrium



4.3. Closed time path formalism 99

state.27 For an odd number of operators we namely encounter a matrix element
between states with different number of particles or quanta; for example,

〈aq a†
q aq〉 = Z−1

∑
{nq }q

e−E({nq }q )/kT (
√

nq)3〈nq|nq − 1〉 = 0 , (4.89)

which is zero by orthogonality of the different energy eigenstates.
As an example of using Wick’s theorem we write down the term we encounter at

fourth order in the coupling to the bosons (we suppress, for the present consideration,
the immaterial q labels)

tr(ρT Tct (a(τ1)a†(τ2)a(τ3)a†(τ4))) = 〈Tct (a(τ1)a†(τ2))〉 〈Tct (a(τ3)a†(τ4))〉

+ 〈Tct (a(τ1)a†(τ4))〉 〈Tct (a(τ3)a†(τ2))〉 .

(4.90)

Here we have deleted terms that do not pair creation and annihilation operators,
because such terms, just as above, lead to matrix elements between orthogonal states:

〈Tct (a(τ)a(τ ′))〉 = 0 = 〈Tct (a
†(τ)a†(τ ′))〉 . (4.91)

At the fourth-order level the ordered Gaussian decomposition can of course be ob-
tained by noting that only by pairing equal numbers of creation and annihilation op-
erators can the number of quanta stay conserved and the matrix element be nonzero
as we have the expression

tr(ρT Tct (a(τ1)a†(τ2)a(τ3)a†(τ4)))

=
∑
{nq }q

e−E({nq }q )/kT 〈{nq}q|Tct (a(τ1)a†(τ2)a(τ3)a†(τ4))|{nq}q〉 . (4.92)

Wick’s theorem is the generalization of this simple observation.
We now turn to the general proof of Wick’s theorem for the considered case of

bosons. Wick’s theorem is trivially true for N = 1 (and for N = 2 according to the
above consideration), and we now turn to prove Wick’s theorem by induction. Let
us therefore consider an N -string with 2N operators

SN = 〈TC(c(τ2N ) c(τ2N−1) . . . c(τ2) c(τ1))〉 . (4.93)

We can assume that the contour-time labeling already corresponds to the contour-
ordered one, since the bose operators can be moved freely around under the contour

27This would not be the case for, say, photons in a coherent state in which case the substitution
c → c − 〈c〉 is needed. Also in describing a Bose–Einstein condensate it is convenient to work with
a superposition of states containing a different number of particles so that 〈c〉 is non-vanishing, a
situation we shall deal with in due time. For the case of electron–phonon interaction we thus assume
no linear term in the phonon Hamiltonian, which would correspond to a displaced oscillator, or that
such a term is effectively removed by redefining the equilibrium position of the oscillator.
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ordering, or otherwise we just relabel the indices, and we have28

SN =

〈
2N∏
n=1

c(τn)

〉
=

〈
c(τ2N )

2N−1∏
n=1

c(τn)

〉
. (4.94)

We then use the above proved relation, Eq. (4.75), to rewrite

SN =
(
1− eλc ωq /kT

)−1
〈

[c(τ2N ),
2N−1∏
n=1

c(τn)]

〉
. (4.95)

In the first term in the commutator we commute c(τ2N ) to the right[
c(τ2N ),

2N−1∏
n=1

c(τn)

]
= c(τ2N−1) c(τ2N )

2N−2∏
n=1

c(τn) + [c(τ2N ), c(τ2N−1)]
2N−2∏
n=1

c(τn)

−
(

2N−1∏
n=1

c(τn)

)
c(τ2N ) . (4.96)

We now keep commuting c(τ2N ) through in the first term repeatedly, each time
generating a commutator, and eventually ending up with canceling the last term in
Eq. (4.96), so that[

c(τ2N ),
2N−1∏
n=1

c(τn)

]
=

2N−1∑
n=1

[c(τ2N ), c(τn)]
2N−1∏

m =1
m (�=n )

c(τm) . (4.97)

Then we use that the commutator is a c-number, which according to Eq. (4.75) we
can rewrite as

[cq(τ2N ), cq′(τn)] = δq,q′

(
1− eλcq ωq /kT

)
〈cq(τ2N ) cq′(τn)〉 (4.98)

and being a c-number it can be taken outside the thermal average in Eq. (4.95), and
we obtain

SN =
2N−1∑
n=1

〈c(τ2N ) c(τn)〉
〈

2N−1∏
m =1

m (�=n )

c(τm)

〉

=
2N−1∑
n=1

〈Tct (c(τ2N ) c(τn))〉
〈

Tct

2N−1∏
m =1

m (�=n )

c(τm)

〉 , (4.99)

where we reintroduce the contour ordering. By assumption the second factor can
be written as a sum over all possible pairs (on a.p.p.-form), and by induction the N

28For fermions interchange of fields involves a minus sign, and an overall sign factor occurs, (−1)ζP ,
where ζP is the sign of the permutation P bringing the string of fields to a contour time-ordered
form.



4.3. Closed time path formalism 101

case is then precisely seen to be of that form too. We note, that to prove Wick’s
theorem we have only exploited that the weight was a quadratic form, leaving the
commutator a c-number.29

The contour label uniquely specifies from which term in the spatial representation
of the bose field it originates, and since Eq. (4.99) is valid for both creation and
annihilation operators, and therefore for any linear combinations of such, we have
therefore shown30

〈TC(φ(x2n, τ2n)φ(x2n−1, τ2n−1) . . . φ(x2, τ2)φ(x1, τ1))〉

=
∑

a.p.p.

∏
i�=j

〈TC(φ(xi, τi)φ(xj , τj))〉 ≡
∑

a.p.p.

∏
i�=j

iN D0(xi, τi;xj , τj) .(4.100)

The index on the contour-ordered Green’s functions indicates they are the free ones.
Performing the trace over a string of bose operators weighted by a quadratic form
therefore corresponds to pairing the operators together pairwise in all possible ways.31

For the case of fermi operators, the proof of Wick’s theorem runs analogous to
the above, in fact the bose and fermi cases can be handled in unison if we unite
Eq. (4.75) and Eq. (4.77) by introducing the notation

〈[cq, A]s〉 =
(
1 + s eλc ωq /kT

)
〈cq A〉 , (4.101)

where s = ∓ signifies the case of bose and fermi statistics, respectively. The argu-
ments relating Eq. (4.94) to Eq. (4.106) run identical with commutators replaced by
anti-commutators and a minus sign, or for treating the two cases simultaneous s is
introduced. For the combined case we have

SN =

〈
2N∏
n=1

c(τn)

〉
=

〈
c(τ2N )

2N−1∏
n=1

c(τn)

〉

=
(
1 + s eλc(τ2N )ωq /kT

)−1
〈

[c(τ2N ),
2N−1∏
n=1

c(τn)]s

〉
(4.102)

and〈
[c(τ2N ),

2N−1∏
n=1

c(τn)]s

〉
=

〈
−s(c(τ2N−1) c(τ2N )− s[c(τ2N ), c(τ2N−1)]s)

2N−2∏
n=1

c(τn)

〉

+ s

〈(
2N−1∏
n=1

c(τn)

)
c(τ2N )

〉
29If the weight was not quadratic, we would have encountered correlations that must be handled

additionally.
30A reader familiar with the standard T = 0 or finite temperature imaginary-time Wick’s theorem,

will recognize that their validity just represents special cases of the above proof.
31The presented general version of Wick’s theorem is capable of dealing with many-body systems

of bosons, irrespective of the absence or presence of a Bose–Einstein condensate, if one employs the
grand canonical ensemble.
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= (−s)

〈
c(τ2N−1) c(τ2N )

2N−2∏
n=1

c(τn)

〉

+ [c(τ2N ), c(τ2N−1)]s

〈
2N−2∏
n=1

c(τn)

〉

+ s

〈(
2N−1∏
n=1

c(τn)

)
c(τ2N )

〉
, (4.103)

where the (anti- or) commutator, being a c-number, can be taken outside the operator
averaging. We now keep (anti- or ) commuting c(τ2N ) through in the first term
repeatedly, each time generating a (anti- or) commutator and a factor (-s), and
eventually ending up with canceling the last term, so that[

c(τ2N ),
2N−1∏
n=1

c(τn)

]
s

=
2N−1∑
n=1

(−s)n−1[c(τ2N ), c(τn)]s
2N−1∏
m =1

m (�=n )

c(τm) . (4.104)

Then we use the fact that the (anti- or ) commutator is a c-number, which we can
rewrite

[cq(τ2N ), cq′(τn)]s = δq,q′

(
1 + s eλcq ωq /kT

)
〈cq(τ2N ) cq′(τn)〉 (4.105)

and taking it outside the thermal average we obtain

SN =
2N−1∑
n=1

〈c(τ2N ) c(τn)〉
〈

2N−1∏
m =1

m (�=n )

c(τm)

〉

=
2N−1∑
n=1

〈Tct (c(τ2N ) c(τn))〉
〈

Tct

2N−1∏
m =1

m (�=n )

c(τm)

〉 . (4.106)

For the case of a fermi field we thus obtain the analogous result to Eq. (4.100)

〈TC(ψ(x2n, τ2n)ψ(x2n−1, τ2n−1) . . . ψ(x2, τ2)ψ(x1, τ1))〉

=
∑

a.p.p.

∏
i�=j

(−1)ζP 〈TC(ψ(xi, τi)ψ(xj , τj))〉

≡
∑

a.p.p.

∏
i�=j

(−1)ζP iN G0(xi, τi;xj , τj) , (4.107)

where the quantum statistical factor (−1)ζP counts the number of transpositions
relating the orderings on the two sides. For the case of a state with a definite number
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of particles, only if fermi creation and annihilation fields are paired do we get a
non-vanishing contribution.32 In the last equality, the free contour ordered Green’s
function is introduced.33

In the perturbative expansion of the Green’s functions, the quantum fields, and
their associated multi-particle spaces, have left the stage, absorbed in the expressions
for the free propagators.

The perturbative expansion lends itself to suggestive diagrammatics, the Feynman
diagrammatics for non-equilibrium systems, which we now turn to introduce.

Exercise 4.6. Consider a harmonic oscillator, where x̂(t) is the position operator in
the Heisenberg picture, and show that, for the generating functional we have

Z[ft] ≡
〈
Tei

∫ ∞
−∞dt ft x̂(t)

〉
= tr

(
ρT Te

i
√

�

2M ω q

∫ ∞
−∞dt ft (â(t)+â†(t))

)

= e−
1
2

∫ ∞
−∞dt

∫∞
−∞dt′ ft 〈T (x̂(t) x̂(t′))〉 f ′

t . (4.108)

In Chapter 9 we will consider the generating functional technique for quantum field
theory. Quantum mechanics is then the case of the zero dimensional field theory.

4.4 Non-equilibrium diagrammatics

Empowered by Wick’s theorem, we can envisage the whole perturbative expansion
of the contour ordered Green’s function. Writing down the nth-order contribution
from the expansion of the exponential in Eq. (4.53) containing the interaction, and
employing Wick’s theorem, we get expressions involving products of propagators and
vertices. However, the expressions resulting from perturbation theory quickly become
unwieldy. A convenient method of representing perturbative expressions by diagrams
was invented by Feynman. Besides the appealing aspect of representing perturba-
tive expressions by drawings, the diagrammatic method can also be used directly for
reasoning and problem solving. The easily recognizable topology of diagrams makes
the diagrammatic method a powerful tool for constructing approximation schemes as
well as exact equations that may hold true beyond perturbation theory. Furthermore,
by elevating the diagrams to be a representation of possible alternative physical pro-
cesses, the diagrammatic representation becomes a suggestive tool providing physical
intuition into quantum dynamics. In this section we construct the general diagram-
matic perturbation theory valid for non-equilibrium situations. We shall illustrate
the diagrammatics by considering the generic cases.

32The use of states with a non-definite number of fermions, as useful in the theory of supercon-
ductivity, would lead to the appearance of so-called anomalous Green’s functions, as we discuss in
Chapter 8.

33Minus the imaginary unit provided N-fold times from the expansion of the exponential function
containing the interaction, explains why the imaginary unit was introduced in the definition of the
contour-ordered Green’s function in the first place. However, one is of course entitled to keep track
of factors at one’s taste.
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4.4.1 Particles coupled to a classical field

The simplest kind of coupling is that of an assembly of identical particle species
coupled to an external classical field, V (x, t). In that case the contour-ordered
Green’s function, written in the form ready for a perturbative expansion, Eq. (4.53)
or Eq. (4.50), has the form

GC(1, 1′) = −iTr

(
ρ0 Tc

(
e
−i
∫

c
dτ
∫

dxV (x,τ)ψ†
H0

(x,τ)ψH0(x,τ)
ψH0(1)ψ†

H0
(1′)

))
,

(4.109)
where c is the contour that starts at t0 and stretches through max(t1, t1′) and back
again to t0, as depicted in Figure 4.4. If t0 is taken to be in the far past, t0 → −∞,
we obtain the real-time contour of Figure 4.5. Expanding the exponential we get
strings of, say, fermion operators subdued to the contour-ordering operation and
thermally weighted by the Hamiltonian for the free field, which is Gaussian as ρ0 is
given by Eq. (4.54). Higher-order terms in the expansion have the same form, they
just contain strings with a larger number of fields. In perturbation theory the task
is to evaluate such terms, or rather first break them down into Gaussian products
as accomplished by Wick’s theorem, i.e. decomposed into a product of free thermal
equilibrium contour-ordered Green’s functions.

For the first-order term, Eq. (4.58), we have according to Wick’s theorem the
expression

G
(1)
C (1, 1′) =

∫
dx2

∫
c

dτ2 G
(0)
C (1, 2)V (2)G

(0)
C (2, 1′) (4.110)

and equivalently for higher order terms. The term where the external points are
paired, giving rise to a disconnected or unlinked diagram with a vacuum diagram
contribution, clearly vanishes owing to the integration along both the forward and
return parts of the contour, giving two terms differing only by a minus sign.

The generic component in a diagram, the first order term, is graphically repre-
sented by the diagram

G
(1)
C (x, τ ;x′, τ ′) =

x1τ1xτ x′τ ′ (4.111)

where a cross has been introduced to symbolize the interaction of the particles with
the scalar potential

xτ
≡ V (x, τ) (4.112)

and a thin line is used to represent the zeroth-order or free thermal equilibrium
contour-ordered Green’s function

xτ x′τ ′
R ≡ G

(0)
C (x, τ ;x′, τ ′) (4.113)

in order to distinguish it from the contour-ordered Green’s function in the presence
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of the potential V , the full contour-ordered Green’s function

xτ x′τ ′ ≡ GC(x, τ ;x′, τ ′) (4.114)

depicted as a thick line.
With this dictionary or stenographic rules, the analytical form, Eq. (4.110), is ob-

tained from the diagram, Eq. (4.111), since integration is implied over the variables
of the internal points where interaction with the potential takes place. The only dif-
ference to equilibrium standard Feynman diagrammatics is that internal integrations
are not over time or imaginary time, but over the contour variable.

The second-order expression in perturbation theory leads to two terms giving
identical contributions, since interchange of pairs of fermion operators introduces no
factor of −1. The resulting factor of two exactly cancels the factor of two originat-
ing from the expansion of the exponential in Eq. (4.109). This feature repeats for
the higher-order terms, and for particles interacting with a scalar potential V (x, t),
we have the following diagrammatic representation of the contour-ordered Green’s
function:

GC(x, τ ;x′, τ ′) =
xτ x′τ ′ =

xτ x′τ ′

+
x1τ1xτ x′τ ′ +

x2τ2xτ x′τ ′x1τ1

+
x2τ2xτ x3τ3 x′τ ′x1τ1

+ . . . , (4.115)

where all ingredients now represent contour quantities according to the above dictio-
nary.

Exercise 4.7. Show that for a particle coupled to a scalar potential V (x, t), the
infinite series

G(1, 1′) = G0(1, 1′) +
∫

dx2

∫
c

dτ2 G0(1, 2)V (x2, τ2)G0(2, 1′) + · · · (4.116)

by iteration can be captured in the Dyson equation

G(1, 1′) = G0(1, 1′) =
∫

dx2

∫
c

dτ2 G0(1, 2)V (x2, τ2)G(2, 1′) , (4.117)

which has the diagrammatic representation

x1t1 x1′ t1′
=

x1t1 x1′ t1′
+

x2t2x1t1 x1′ t1′
. (4.118)
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If in Eq. (4.117) we operate with the inverse free contour ordered Green’s function
which satisfies (recall Exercise 4.1 on page 89)∫

dx2

∫
c

dτ2 G−1
0 (1, 2) G0(2, 1′) = δ(1 − 1′) (4.119)

we obtain ∫
dx2

∫
c

dτ2 (G−1
0 (1, 2) − V (2))G(2, 1′) = δ(1− 1′) . (4.120)

As expected, the coupling to a classical field can be accounted for by adding the
potential term to the free Hamiltonian. The δ-function contains, besides products
in δ-functions in the degrees of freedom, the contour variable δ-function specified
in Eq. (4.45). We shall write the equation, absorbing the potential in the inverse
propagator, in condensed matrix notation

(G−1
0 � G)(1, 1′) = δ(1− 1′) = (G � G−1

0 )(1, 1′) (4.121)

where � signifies matrix multiplication in the spatial variable (and possible inter-
nal degrees of freedom) and contour time variables. The latter, adjoint, equation
corresponds to the choice of iterating from the left instead of the right.

4.4.2 Particles coupled to a stochastic field

If the potential V (x, t) of the previous section is treated as a stochastic Gaussian
random variable (with zero mean), the diagrams in perturbation theory, Eq. (4.115),
will be turned into the diagrams for the averaged Green’s function according to
the prescription: pair together pairwise potential crosses in all possible ways and
substitute for the paired crosses the Gaussian correlator of the stochastic variable.
For the lowest order contribution to the averaged contour ordered Green’s function
we thus have the diagram

〈G(2)
C (1, 1′)〉 =

(4.122)

where the outermost labels 1 and 1′ as well as the internal labels 2 and 3 are sup-
pressed, and the following notation has been introduced for the correlator:

x,τ

x′,τ ′

= 〈V (x, τ)V (x′, τ ′)〉 . (4.123)
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If the stochastic variable is taken as time independent, V (x), we cover the case of
particles in a random impurity potential (treated in the Born approximation), and
the correlator, the impurity correlator, is given by

〈V (x)V (x′)〉 = ni

∫
dr Vimp(x − r)Vimp(x′ − r) . (4.124)

where Vimp(x) is the potential created at position x by a single impurity at the origin,
and ni is their concentration.34

4.4.3 Interacting fermions and bosons

The next level of complication is the important case of interacting fermions and
bosons. Let us look at the generic fermion–boson interaction, Eq. (2.71), or equiva-
lently, the jellium electron–phonon interaction, and let the ψ-field denote the fermi
field in the Green’s function we are looking at

G(1, 1′) = −i Tr
(
ρ0 TC

(
e−i

∫
C

dτ H
(i)
H0

(τ) ψH0(1)ψ†
H0

(1′)
))

. (4.125)

Here the contour C is either the real-time contour of Figure 4.5, or the general contour
of Figure 4.4.35

Expanding the exponential we get terms in increasing order of the coupling con-
stant. The zeroth-order term just gives the free or thermal equilibrium contour-
ordered Green’s function, say for fermions, Eq. (4.57). The term linear in the phonon
or boson field vanishes as discussed in Section 4.3.3, and we consider the second-order
term36

G(2)(1, 1′) = −iTr
(
ρ0TC

(
(−i)2

2!

∫
C

dτ3 H
(i)
H0

(τ3)
∫

C

dτ2 H
(i)
H0

(τ2) ψH0(1)ψ†
H0

(1′)
))

=
i

2!
g2

∫
C

dτ3dτ2

∫
dx3dx2Tr

(
e−βH0TC

(
ψ†

H0
(x3, τ3)ψH0(x3, τ3)φH0(x3, τ3)

× ψ†
H0

(x2, τ2)ψH0(x2, τ2)φH0 (x2, τ2)ψH0(1)ψ†
H0

(1′)
))

. (4.126)

The expression has the form of a string of fermi and bose operators subdued to the
contour-ordering operation and thermally weighted by the Hamiltonian for the free
fields which is Gaussian. The trace over these independent degrees of freedom splits

34For details on quenched disorder and impurity averaging see Chapter 3 of reference [1].
35For the general contour of Figure 4.4, we should recall the cancelation of the disconnected

diagrams against the vacuum diagrams of the denominator. However, the uninitiated reader need
not worry about this by adopting the closed real-time contour. For the general case, the proof of
cancelation can be consulted in Section 9.5.2.

36The use of states with a non-definite number of bosons, as useful in the theory of Bose–Einstein
condensation, will be discussed in Section 10.6.
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into a product of two separate traces containing only fermi or bose fields weighted
by their respective free field Hamiltonians, H0 = H

(0)
f + H

(0)
b . Higher-order terms in

the expansion have the same form, they just contain strings with a larger number of
fields. In perturbation theory the task is to evaluate such terms, or rather first break
them down into Gaussian products as accomplished by Wick’s theorem.

Consider the expression in Eq. (4.126), and perform the following choice of pair-
ings: the creation fermi field indexed by the external label 1′, ψ†

H0
(1′), is paired with

the annihilation field associated with an internal point whose creation field is paired
with the annihilation field associated with the other internal point, thereby fixing
the final fermion pairing. Since the internal points represents dummy integrations
this kind of choice gives rise to two identical expressions, an observation that can
be used to cancel the factorial factor, 1/2!, originating from the expansion of the
exponential function in Eq. (4.125). The string of boson or phonon fields contains
only two fields simply leading to the appearance of their contour-ordered thermal
average. The considered second-order expression from the Wick decomposition for
the contour-ordered fermion Green’s functions thus becomes

G
(2)
C (1, 1′) → ig2

∫
dx3

∫
C

dτ3

∫
dx2

∫
C

dτ2 G
(0)
C (1, 3)G

(0)
C (3, 2)D

(0)
C (3, 2)G

(0)
C (2, 1′) .

(4.127)
The presence of the imaginary unit in Eq. (5.26) is the result of one lacking factor
of −i for our convention of Green’s functions: two factors of −i are provided by the
interaction and one provided externally in the definition of the Green’s function.

The next step is then to visualize these unwieldy expressions arising in perturba-
tion theory in terms of diagrams and a few stenographic rules, the Feynman rules.
The considered second-order term in the coupling constant, Eq. (4.127), can be rep-
resented by the first diagram in Figure 4.6.

,

Figure 4.6 Lowest order fermion–boson diagrams.
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Here the straight line represents the free or thermal equilibrium contour ordered
fermion Green’s function and the wavy line represents the thermal equilibrium contour-
ordered boson Green’s function:

xτ x′τ ′ ≡ D
(0)
C (x, τ ;x′, τ ′) (4.128)

i.e.

D
(0)
C (1, 1′) = −i trb (ρ(0)

b Tc(φH0 (1)φ†
H0

(1′))) = −i 〈Tc(φH0 (1)φ†
H0

(1′))〉 (4.129)

as trb denotes the trace with respect to the boson degrees of freedom and ρ
(0)
b is the

thermal equilibrium statistical operator for the free bosons. As a Feynman rule, each
vertex carries a factor of the coupling constant.

Another decomposition according to Wick’s theorem of the second-order expres-
sion in Eq. (4.126) corresponds to when the fermi field indexed by the external label
1′, ψ†

H0
(1′), is paired with the annihilation field associated with an internal point and

the creation field of that vertex is paired with the field corresponding to the external
point 1, thereby fixing the final fermion pairing, and again giving rise to two identical
expressions, which in this case are the expression

G
(2)
C (1, 1′) → −ig2

∫
dx3

∫
C

dτ3

∫
dx2

∫
C

dτ2 G
(0)
C (1, 2)G

(0)
C (2, 1′)D

(0)
C (3, 2)G

(0)
C (3, 3) .

(4.130)
The corresponding expression can, according to the above dictionary for Feynman
diagrams, be represented by the second diagram in Figure 4.6. We note the relative
minus sign compared with the term represented by the first diagram in Figure 4.6
that reflects a general feature, which in diagrammatic terms can be stated as the
Feynman rule: associated with a closed loop of fermion propagators is a factor of
minus one.

The considered expressison corresponding to the second diagram in Figure 4.6
contains the fermion contour-ordered Green’s function taken at equal contour times,
G

(0)
C (x, τ ;x, τ), and therefore needs interpretation. Recalling that the annihilation

field occurs to the right of the creation field originally in the interaction Hamiltonian,
and labeling the contour variable of the latter by τ ′, we then have for the contour
variables of these fields τ

c
< τ ′, and the propagator closing on itself represents the G-

lesser Green’s function, G<
0 (x, τ ;x, τ), corresponding to the density of the fermions.

This is indicated by the direction of the arrow on the propagator closing on itself in
the second diagram in Figure 4.6.
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The final option for pairings in the Wick decomposition of the second-order ex-
pression in Eq. (4.126) corresponds to pairing the fermi creation field indexed by the
external label 1′, ψ†

H0
(1′), with the annihilation field indexed by the external label

1, ψH0(1). The pairings of the fermi fields labeled by the internal points can again
be done in a two-fold way, and the corresponding expression arises

G
(2)
C (1, 1′) → −ig2G

(0)
C (1, 1′)

∫
dx3

∫
C

dτ3

∫
dx2

∫
C

dτ2 G
(0)
C (3, 2)D

(0)
C (3, 2)G

(0)
C (2, 3) ,

(4.131)
which can be represented by the diagram depicted in Figure 4.7.

1 1′

Figure 4.7 Unlinked or second-order vacuum diagram contribution to GC .

The vacuum bubble gives a vanishing overall factor owing to forward and return
contour integrations canceling each other for the case of the real-time closed contour.

The expression corresponding to the second diagram in Figure 4.6 vanishes for
the case of electron–phonon interaction as it contains an overall factor that vanishes.
Letting x, τ represent the internal point where the fermi propagator closes on itself
(representing the quantity G<

0 (x, τ ;x, τ), the free fermionic density which is inde-
pendent of the variables), the term involving the phonon propagator then becomes∫

dx D0(x, τ ;x′, τ ′) = 0 (4.132)

since the integrand is the divergence of a function with a vanishing boundary term.37

The second-order contribution in the electron–phonon coupling to the contour-
ordered electron Green’s function is thus represented by the diagram depicted in
Figure 4.8.

37Thus the theory does not contain any so-called tadpole diagrams, which is equivalent to the
vanishing of the average of the phonon field. In the Sommerfeld treatment of the Coulomb interaction
in a pure metal, tadpole or Hartree diagrams are also absent, though for a different reason. They
are canceled by the interaction with the homogeneous background charge (recall Exercise 2.12 on
page 44).
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1 3 2 1′

Figure 4.8 Second-order contribution to GC for the electron–phonon interaction.

We observe the usual Feynman rule expressing the superposition principle: inte-
grate over all internal space points (and sum over all internal spin degrees of freedom)
and integrate over the internal contour time variable associated with each vertex. In
addition we have the Feynman rule: only topologically different diagrams appear; in-
terchange of internal dummy integration variables has been traded with the factorial
from the exponential function.

The next non-vanishing term will, according to Wick’s theorem for a string of bose
fields, be the fourth order term for the fermion–boson coupling, and the expression

G
(2)
C (1, 1′) = −i

(−i)4

4!
Tr
(
−ρ0 TC

(∫
C

d2 . . .

∫
C

d5 H
(i)
H0

(2) H
(i)
H0

(3)

× H
(i)
H0

(4) H
(i)
H0

(5) ψH0(1)ψ†
H0

(1′)
))

(4.133)

needs to be Wick de-constructed. To get the diagrammatic expression for this term
plot down four dots on a piece of paper representing the four internal points in
the fourth-order perturbative expression; label them 2, 3, 4 and 5, and the two
external states, 1 and 1′. Attach at each internal dot, or vertex, a wiggly stub
and incoming and outgoing stubs representing the three field operators for each
interaction Hamiltonian. To get connected diagrams (the unlinked diagrams again
vanish owing to the vanishing of vacuum bubbles) we proceed as follows. The external
field ψ†

H0
(1′) can be paired with any of the fermi annihilation fields associated with

the internal points, giving rise to four identical contributions since the internal points
represent dummy integration variables. The creation field emerging from this point
can be paired with annihilation fields at the remaining three vertices, giving rise to
three identical contributions, and the creation field emerging from this vertex has
two options: either connecting to one of the two remaining internal vertices or to the
external point. In both cases, two identical terms arise, thereby canceling the overall
factor from the expansion of the exponential function, 1/4!, in Eq. (4.133). In the
latter case, the factor of two occurs because of the two-fold way of pairing the boson
fields, and this latter term is thus, according to the above dictionary, represented
by the last diagram in Figure 4.9. Pairing the boson fields for the former case gives
three different contributions as represented by the first three topologically different
diagrams in Figure 4.9.
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3 2 1′1 45

1 4 1′235 1′1 5 2

34

1 1′2345

−

+

+

Figure 4.9 Fourth-order diagrams in the coupling constant.

The first three diagrams in Figure 4.9 are solely the result of emission and absorption
of phonons by the electron or bosons by fermions in general. The last diagram is
the signature of the presence of the Fermi sea: a phonon can cause electron–hole
excitations, or in QED a photon can cause electron–positron pair creation. From the
boson point of view, such bubble-diagrams with additional decorations are basic, the
generic boson self-energy diagram, the self-energy being a quantity we introduce in
the next section.

Exercise 4.8. Obtain by brute force application of Wick’s theorem for the fermi and
phonon field strings the corresponding Feynman diagrams for the fermi propagator
to sixth order in the fermion–boson coupling.

Exercise 4.9. Obtain by brute force application of Wick’s theorem for the fermi and
phonon field strings the corresponding Feynman diagrams for the phonon propagator
to second order in the coupling.

The feature that the total combinatorial choice factor cancels the factorial factor,
1/n!, originating from the expansion of the exponential function is quite general. For
the Nth order term

−i
(−i)N

N !
Tr
(
e−βH0TC

(∫
C

d2 . . .

∫
C

d(N + 1)H
(i)
H0

(2) · · ·H(i)
H0

(N + 1)ψH0(1)ψ†
H0

(1′)
))
(4.134)

all connected combinations that differ only by permutations of H
(i)
H0

give identical
contributions, thus canceling the factor 1/N ! in front, and as a consequence only
topologically different diagrams appear. This has a very important consequence for
diagrammatics, viz. that it allows separating off sub-parts in a diagram and summing
them separately. We shall shortly return to this in the next section, and in much
more detail in Chapter 9.38

38We note that the diagrammatic structure of amplitudes for quantum processes can be captured
in the two options: to interact or not to interact! The resulting Feynman diagrams being all
the topologically different ones constructable by the vertices and propagators of the theory. We
shall take this Shakespearian point of view as the starting point when we construct the general
diagrammatic and formal structure of quantum field theories in Chapter 9.
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The diagrammatic representation of the perturbative expansion of the electron
Green’s function for the case of electron–phonon interaction, or in general the fermion
Green’s function for fermion–boson interaction, thus becomes

xτ x′τ ′ =
xτ x′τ ′ +

+ +

+ + · · · . (4.135)

In the perturbative expression for the contour-ordered Green’s function for the
case of electron–phonon interaction, each interaction contains one phonon field op-
erator, a fermion creation and annihilation field, all with the same contour time.
The Feynman diagrammatics is thus characterized by a vertex with incoming and
outgoing fermi lines and a phonon line, a three-line vertex.

The totality of diagrams can be captured by the following tool-box and instruc-
tions. With the diagrammatic ingredients, an electron propagator line, a phonon
propagator line and the electron–phonon vertex construct all possible topologically
connected diagrams. This is Wick’s theorem in the language of Feynman diagrams.
We recall that, whenever an odd number of fermi fields are interchanged, a minus
sign appears. Diagrammatically this can be incorporated by the additional sign rule:
for each loop of fermi propagator lines in a diagram a minus sign is attributed. Ac-
companying this are the additional Feynman rules, which for our choices become
the following. In addition to the usual rule of the superposition principle: sum over
all internal labels, our conventions leads for fermion–boson interaction to the addi-
tional Feynman rule: a diagram containing n boson lines is attributed the factor
ing2n(−1)F , where F is the number of closed loops formed by fermion propagators.

4.5 The self-energy

We have so far only derived diagrammatic formulas from formal expressions. Now
we shall argue directly in the diagrammatic language to generate new diagrammatic
expressions from previous ones, and thereby diagrammatically derive new equations.

In order to get a grasp of the totality of diagrams for the contour-ordered Green’s
function or propagator we shall use their topology for classification. We introduce
the one-particle irreducible (1PI) propagator, corresponding to all the diagrams that
can not be cut in two by cutting an internal particle line. In the following example



114 4. Non-equilibrium theory

1PI 1PR

(4.136)

the first diagram is one-particle irreducible, 1PI, whereas the second is one-particle
reducible, 1PR. Here we have used the diagrammatics for the impurity-averaged
propagator in a Gaussian random field instead of the analogous diagrammatics for
the electron–boson or electron–phonon interaction to illustrate that the arguments
are topological and valid for any type of interaction and its diagrammatics.39

Amputating the external propagator lines of the one-particle irreducible diagrams
(below displayed for the impurity-averaged propagator), we obtain the self-energy:

Σ(1, 1′) ≡ 1 Σ 1′

= +

+ +

+ + · · · (4.137)

consisting, by construction, of all amputated diagrams that can not be cut in two by
cutting one bare propagator line.

39For a detailed discussion of the impurity-averaged propagator, which is of interest in its own
right, we refer to Chapter 3 in reference [1].
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We can now go on and uniquely classify all diagrams of the (impurity-averaged)
propagator according to whether they can be cut in two by cutting an internal particle
line at only one place, or at only two, three, etc., places. By construction we uniquely
exhaust all the possible diagrams for the propagator (the subscript is a reminder that
we are considering the contour-ordered Green’s function, but we leave it out from
now on)

GC(1, 1′) =

= + Σ

+ Σ Σ

+ Σ Σ Σ

+ · · · . (4.138)

By iteration, this equation is seen to be equivalent to the equation40

= + Σ (4.139)

and we obtain the Dyson equation

G(1, 1′) = G0(1, 1′) +
∫

dx3

∫
C

dτ3

∫
dx2

∫
C

dτ2 G0(1, 3)Σ(3, 2)G(2, 1′) (4.140)

40In the last term we can interchange the free and full propagator, because iterating from the left
generates the same series as iterating from the right.
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which we can write in matrix notation

G = G0 + G0 � Σ � G (4.141)

where � signifies matrix multiplication in the spatial variable (and possible internal
degrees of freedom) and contour time variables. Arguing on the topology of the
diagrams has reorganized them and we have obtained a new type of equation.41

4.5.1 Non-equilibrium Dyson equations

The standard topological arguments of the previous section for diagrams organizes
them into irreducible sub-parts and we obtained the Dyson equation, Eq. (4.141).
We could of course have iterated Eq. (4.138) from the other side to obtain

G = G0 + G � Σ � G0 . (4.142)

For an equilibrium state the two equations are redundant, since time convolutions
by Fourier transformation become simple products for which the order of factors is
irrelevant (as discussed in detail in Section 5.6). However, in a non-equilibrium state,
the two equations contain different information and subtracting them is a useful way
of expressing the non-equilibrium dynamics as we shall exploit in Chapter 7.

Introduce the inverse of the free contour-ordered Green’s function, Eq. (4.141),

(G−1
0 � G0)(1, 1′) = δ(1− 1′) = (G0 � G−1

0 )(1, 1′) , (4.143)

where
G−1

0 (1, 1′) = G−1
0 (1) δ(1− 1′) (4.144)

and

G−1
0 (1) =

(
i�

∂

∂τ1
− h(1)

)
, (4.145)

where h denotes the single-particle Hamiltonian for the theory under consideration.
The two non-equilibrium Dyson equations, Eq. (4.141) and Eq. (5.69), can then be
expressed through operating with the inverse free contour-ordered Green’s function
from the left

(G−1
0 − Σ) � G = δ(1− 1′) (4.146)

and from the right
G � (G−1

0 − Σ) = δ(1− 1′) . (4.147)
These two non-equilibrium Dyson equations will prove useful in Chapter 7 where
quantum kinetic equations are considered.42

By operating with the inverse of the free propagator, the explicit appearance of
the free propagator (or rather the non-interacting propagator since, possible external
fields can be included) has been removed. We can in fact remove its presence com-
pletely by expressing the self-energy in terms of skeleton diagrams where only the
full propagator appears, and we now turn to these.

41The self-energy is just one out of the infinitely many one-particle irreducible vertex functions
which occur in a quantum field theory. Their significance will become clear when, in Chapter 10,
we encounter the usefulness of the effective action.

42If one, by the end of the day, in the Dyson equations uses the lowest-order approximation for the
self-energy, this whole venture into the diagrammatic jungle is hardly worthwhile since a civilized
Golden Rule calculation suffices.
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4.5.2 Skeleton diagrams

So far we have only a perturbative description of the self-energy; i.e. we have a
representation of the self-energy as a functional of the free contour-ordered Green’s
function and the impurity correlator, Σ[G0]. For the case of fermion–boson inter-
action the self-energy is a functional of both types of free contour-ordered Green’s
functions, Σ[G0, D0]. The self-energy, Σ, can in naive perturbation theory be de-
scribed as the sum of diagrams that can not be cut in two by cutting only one
internal free propagator line. In a realistic description of a physical system, we al-
ways need to invoke the specifics of the problem in order to implement a controlled
approximation. To this end we must study the actual correlations in the system,
and it is necessary to have the self-energy expressed in terms of the full propagator.
Coherent quantum processes correspond to an infinite repetition of bare processes,
and the diagrammatic approach is precisely useful for capturing this feature, as ir-
reducible re-summations are easily described diagrammatically. In order to achieve
a description of the self-energy in terms of the full propagator, let us consider the
perturbative expansion of the self-energy.

For any given self-energy diagram in the perturbative expansion, Eq. (4.137),
we also encounter self-energy diagrams with all possible self-energy decorations on
internal lines; for example, for the case of particles in a random potential:

→ + + + · · ·

= + Σ + · · ·

→ + Σ
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+ Σ Σ + · · ·

= . (4.148)

We can uniquely classify all these self-energy decorations in the perturbative expan-
sion according to whether the particle line can be cut into two, three, or more pieces
by cutting particle lines (the step indicated by the second arrow in Eq. (4.148)). We
can therefore partially sum the self-energy diagrams according to the unique pre-
scription: for a given self-energy diagram, remove all internal self-energy insertions,
and substitute for the remaining bare particle propagator lines the full propaga-
tor lines.43 Through this partial summation of the original perturbative expansion
of the self-energy only so-called skeleton diagrams containing the full propagator
will then appear, i.e. Σ[G]. Since in the skeleton expansion we have removed self-
energy insertions (decorations), which allowed a 1PI self-energy diagram to be cut
in two by cutting two lines, we can characterize the skeleton expansion of the self-
energy as the set of skeleton diagrams that can not be cut in two by cutting two
lines (2PI-diagrams). Since propagator and impurity correlator lines, or say phonon
lines, appear topologically equivalently, we can restate quite generally: the skeleton
self-energy expansion consists of all the two-line or two-particle irreducible skeleton
diagrams.

By construction, only self-energy skeleton diagrams that can not be cut in two
by cutting only two full propagator lines appear, and we have the partially summed
diagrammatic expansion for the self-energy:

Σ(1, 1′) = 1 1′

+ 1 1′

43Synonymous names for the full Green’s function or propagator are renormalized or dressed
propagator.
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+ 1 1′

+ 1 1′ + · · · . (4.149)

The partial summation of diagrams is unique, since the initial and final impurity
correlator lines are attached internally in different ways in each class of summed
diagrams. No double counting of diagrams thus takes place owing to the different
topology of the skeleton self-energy diagrams, and all diagrams in the perturbative
expansion of the self-energy, Eq. (4.137), are by construction contained in the skeleton
diagrams of Eq. (4.149).

What has been achieved by the partial summation, where each diagram corre-
sponds to an infinite sum of terms in perturbation theory, is that the self-energy is
expressed as a functional of the exact propagators or full Green’s functions

Σ(1, 1′) = Σ(1,1′)[G, D] . (4.150)

We can continue this topological classification, and introduce the higher-order
vertex functions; however, we defer this until Chapter 9.

Exercise 4.10. Draw the rest, in Eq. (4.149), of the four skeleton self-energy dia-
grams with three impurity correlators.

Exercise 4.11. Draw the skeleton self-energy diagrams for fermion–boson interac-
tion to fourth order in the coupling.

4.6 Summary

We have presented the formalism needed for treating general non-equilibrium situ-
ations. The closed time path formalism was shown to facilitate a convenient and
compact treatment of non-equilibrium statistical Green’s functions. Perturbation
theory valid for non-equilibrium states turned out in standard fashion, reflecting a
general Wick theorem for closed time path strings of operators, and the Feynman
diagrams for the contour ordered Green’s functions become of standard form. For
the reader with knowledge of equilibrium theory the good news is thus that the gen-
eral non-equilibrium formalism is formally equivalent to the equilibrium theory if
one elevates time to the contour level. For the reader not familiar with equilibrium
theory the good news is rejoice: knowledge of equilibrium theory is not needed, since
the equilibrium case is just a special simple case of the presented general theory.
However, the apparatus of the closed time path formalism needs a physical inter-
pretation, we need to get back to real time. In the next chapter we shall introduce
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the real-time technique and develop the diagrammatic structure of non-equilibrium
theory in a physically appealing language.



5

Real-time formalism

The contour-ordered Green’s function considered in the previous chapter was ideal
for discussing general closed time path properties such as the perturbative diagram-
matic structure for non-equilibrium states. However, the contour-ordered Green’s
function lacks physical transparency and does not appeal to intuition.1 We need a
different approach, which brings quantities back to real time. To accomplish this we
introduce a representation where forward and return parts of the closed time path
are ordered by numbers, specifying the position of a contour time by two indices,
i = 1, 2. Next is the diagrammatic perturbation theory in the real-time technique
then formulated in a fashion where the aspects of non-equilibrium states emerge in
the physically most appealing way. In particular, we shall construct the representa-
tion where spectral properties and quantum statistics show up on a different footing
in the diagrams. Lastly, we consider the connection to the imaginary-time treatment
of non-equilibrium states, and establish its equivalence to the real-time approach
propounded in this chapter.2

5.1 Real-time matrix representation

To let our physical intuition come into play; we need to get from contour times back
to real times. This is achieved by labeling the forward and return contours of the
closed time path, depicted in Figure 4.5, by numbers, specifying the position of a
contour time by an index. The forward contour we therefore label c1 and the return
contour c2, i.e. a contour time variable gets tagged by the label 1 or 2 specifying its
belonging to forward or return contour, respectively.3

The contour ordered Green’s function is by this tagging mapped onto a 2 × 2-
1As the imaginary time Green’s function discussed in Section 5.7.1 does not appeal to intuition.
2In this chapter we follow the exposition given in references [3] and [9].
3Instead of labeling the two branches by 1 and 2, one can also label them by ± as in the original

works of Schwinger [5] and Keldysh [10]. However, when stating Feynman rules, numbers are
convenient for labeling.

121
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matrix in the dynamical index or Schwinger–Keldysh space

GC(1, 1′) → Ĝ(1, 1′) ≡
(

Ĝ11(1, 1′) Ĝ12(1, 1′)
Ĝ21(1, 1′) Ĝ22(1, 1′)

)
(5.1)

according to the prescription: the ij-component in the matrix Green’s function Ĝ is
Gc(1, 1′) for 1 lying on ci and 1′ lying on cj , i, j = 1, 2. The times appearing in the
components of the matrix Green’s function are now standard times, 1 = (x, t1), and
we can identify them in terms of our previously introduced Green’s functions, the real-
time Green’s functions introduced in Section 3.3. The matrix structure reflects the
essence in the real-time formulation of non-equilibrium quantum statistical mechanics
due to Schwinger [5]: letting the quantum dynamics do the doubling of the degrees
of freedom necessary for describing non-equilibrium states.4

The 11-component of the matrix in Eq. (5.1) becomes

Ĝ11(1, 1′) = −i〈T (ψ(x1, t1)ψ†(x1′ , t1′))〉 = −i〈T (ψ(1)ψ†(1′))〉 , (5.2)

the time-ordered Green’s function, where ψ(x, t) = ψH(x, t) is the field in the
full Heisenberg picture for the species of interest. Contour ordering on the forward
contour is just usual time-ordering.

Analogously, the 21-component becomes

Ĝ21(1, 1′) = G>(1, 1′) = −i〈ψ(1)ψ†(1′)〉 , (5.3)

i.e. G-greater, and the 12-component is G-lesser

Ĝ12(1, 1′) = G<(1, 1′) = ∓ i 〈ψ†(1′)ψ(1)〉 , (5.4)

where upper and lower signs refer to bose and fermi fields, respectively, and the
22-component is the anti-time-ordered Green’s function

Ĝ22(1, 1′) = G̃(1, 1′) = −i〈T̃ (ψ(1)ψ†(1′))〉 . (5.5)

We note that the time-ordered and anti-time-ordered Green’s functions can be
expressed in terms of G-greater and G-lesser, recall Eq. (3.64), and

Ĝ11(1, 1′) = θ(t1 − t1′)G>(1, 1′) + θ(t1′ − t1)G<(1, 1′) . (5.6)

The matrix Green’s function in Eq. (5.1) can therefore be expressed in terms of
the real-time Green’s functions introduced in Section 3.3

Ĝ(1, 1′) =
(

G(1, 1′) G<(1, 1′)
G>(1, 1′) G̃(1, 1′)

)
. (5.7)

The way of representing the information in the contour-ordered Green’s function
as in Eq. (5.1) or equivalently Eq. (5.7) is respectable as, for example, the matrix

4The thermo-field approach to non-equilibrium theory also employs a doubling of the degrees of
freedom (see, for example, reference [11]), but in our view not in as physically appealing way as
does the real-time version of the closed time path formulation.
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is anti-hermitian with transposition meaning interchange of all arguments including
that of the dynamical index (note the importance of the sign convention for han-
dling fermi fields under ordering operations). For real bosons the matrix is real and
symmetric. However, when it comes to understanding non-equilibrium contributions
from various processes, as described by Feynman diagrams, the present form of the
matrix Green’s function lacks physical transparency, and offers no basis for develop-
ing intuition. We shall therefore eventually transform to a different matrix form, and
as a final act liberate ourselves from the matrix outfit altogether.

Let us now establish the Feynman rules in the real-time technique for the matrix
Green’s function in the dynamical index or Schwinger–Keldysh space.

5.2 Real-time diagrammatics

Instead of having the diagrammatics represent the perturbative expansion of the
contour Green’s function as in the previous chapter, we shall map the diagrams
to the real-time domain where eventually a proper physical interpretation of the
diagrams can be obtained.

5.2.1 Feynman rules for a scalar potential

We start with the simplest kind of coupling, that of particles interacting with an
external classical field. For particles interacting with a scalar potential V (x, t), we
have the diagrammatic expansion of the contour ordered Green’s function depicted
in Eq. (4.115) on page 105. The first-order diagram corresponded to the term

G
(1)
C (1, 1′) =

∫
dx2

∫
C

dτ2 G
(0)
C (1, 2)V (2)G

(0)
C (2, 1′) . (5.8)

Parameterizing the real-time contour we have∫
C

dτ2 =
∫ ∞

−∞
dt +

∫ −∞

∞
dt =

∫ ∞

−∞
dt −

∫ ∞

−∞
dt (5.9)

and the first order term for the matrix ij-component becomes

Ĝ
(1)
ij (1, 1′) =

∫
dx2

∫ ∞

−∞
dt2 Ĝ

(0)
i1 (1, 2)V (2) Ĝ

(0)
1j (2, 1′)

−
∫

dx2

∫ ∞

−∞
dt2 Ĝ

(0)
i2 (1, 2)V (2) Ĝ

(0)
2j (2, 1′) . (5.10)

Introducing in Schwinger–Keldysh or dynamical index space the matrix

V̂ij(1) = V (1) τ
(3)
ij (5.11)

proportional to the third Pauli-matrix

τ (3) =
(

1 0
0 −1

)
(5.12)
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we have

Ĝ
(1)
ij (1, 1′) =

∫
dx2

∫ ∞

−∞
dt2 Ĝ

(0)
ik (1, 2) V̂kk′ (2) Ĝ

(0)
k′j(2, 1′) , (5.13)

where summation over repeated Schwinger–Keldysh or dynamical indices are implied.
Instead of treating individual indexed components, the condensed matrix notation is
applied and the matrix equation becomes

Ĝ(1) = Ĝ(0) ⊗ V̂ Ĝ(0) = Ĝ(0) V̂ ⊗ Ĝ(0) , (5.14)

where ⊗ signifies matrix multiplication in the spatial variable (as well as possible
internal degrees of freedom) and the real time, for the latter integration from minus
to plus infinity of times. For the components of the free equilibrium matrix Green’s
function, Ĝ(0), we have, according to Section 3.4, explicit expressions.

We introduce a diagrammatic notation for this real-time matrix Green’s function
contribution

Ĝ(1)(x1, t1;x1′ , t1′) =
x2t2x1t1 x1′ t1′

(5.15)

The diagram has the same form as the one depicted in Eq. (4.111) for the contour
Green’s function, but is now interpreted as an equation for the matrix propagator in
Schwinger–Keldysh space: each line now represents the free matrix Green’s function,
Ĝ(0), and the cross represents the matrix for the potential coupling, Eq. (5.11). We
get the extra Feynman rule characterizing the non-equilibrium technique: matrix
multiplication over internal dynamical indices is implied.

For the coupling to the scalar potential, the higher-order diagrams are just repe-
titions of the basic first-order diagram, and we can immediately write down the ex-
pression for the matrix propagator for a diagram of arbitrary order. Re-summation of
diagrams to get the Dyson equation, as discussed in Section 4.5, is trivial for coupling
to external classical fields, giving

Ĝ = Ĝ(0) + Ĝ(0) ⊗ V̂ Ĝ , Ĝ = Ĝ(0) + Ĝ V̂ ⊗ Ĝ(0) , (5.16)

where the potential can be placed on either side of the convolution symbol.
According to Eq. (3.65), Eq. (3.66) and Eq. (3.67), the free equilibrium matrix

Green’s function, Ĝ(0), satisfies

G−1
0 (1) Ĝ0(1, 1′) = τ (3) δ(1− 1′) , (5.17)

where G−1
0 (1) is given by Eq. (3.69) for the case of coupling to both a scalar and

a vector potential. Since we want the inverse matrix Green’s function operating
on the free equilibrium matrix Green’s function to produce the unit matrix in all
variables including the dynamical index, it can be accomplished by either of the
objects carrying the third Pauli matrix, τ (3). For example, introducing the matrix
representation

Ǧ(1, 1′) ≡ τ (3) Ĝ(1, 1′) =
(

Ĝ11(1, 1′) Ĝ12(1, 1′)
−Ĝ21(1, 1′) −Ĝ22(1, 1′)

)
(5.18)
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we then have

G−1
0 (1) Ǧ0(1, 1′) = 1 δ(1− 1′) , (5.19)

where the unit matrix 1 in the dynamical index space will often be denoted by 1 and
often left out when operating on a matrix in the dynamical index space. Introducing
the inverse free matrix Green’s function

G−1
0 (1, 1′) = G−1

0 (1) δ(1− 1′) 1 (5.20)

we have

(G−1
0 ⊗ Ǧ0)(1, 1′) = 1 δ(1− 1′) = (Ǧ0 ⊗G−1

0 )(1, 1′) . (5.21)

We can therefore rewrite the Dyson equations for real-time matrix Green’s function
in the forms

((G−1
0 − V )⊗ Ǧ)(1, 1′) = 1 δ(1− 1′) (5.22)

and

(Ǧ⊗ (G−1
0 − V ))(1, 1′) = 1 δ(1− 1′) . (5.23)

We note that in the matrix representation, Eq. (5.18), the coupling to a scalar
potential is a scalar, i.e. proportional to the unit matrix in Schwinger–Keldysh space

Ǧ(1) = Ǧ(0) ⊗ V̌ Ǧ(0) , (5.24)

where
V̌ij(1) = V (1) δij , V̌ (1) = V (1) 1 . (5.25)

The matrix representation introduced in Eq. (5.18) serves the purpose of absorb-
ing the minus signs associated with the return contour into the third Pauli matrix.

5.2.2 Feynman rules for interacting bosons and fermions

For a three-line type vertex, such as in the case of fermion–boson interaction or
electron–phonon interaction, more complicated coupling matrices appear in the dy-
namical index or Schwinger–Keldysh space than for the case of coupling to an external
field. For illustration of the matrix structure in the dynamical index space it suffices
to consider the generic boson–fermion coupling in Eq. (2.71). As noted in Section
2.4.3, this is also equivalent to considering the electron–phonon interaction in the
jellium model where the electrons couple only to longitudinal compressional charge
configurations of the ionic lattice, the longitudinal phonons. Our interest is to dis-
play the dynamical index structure of propagators and vertices; later these can be
sprinkled with whatever additional indices they deserve to be dressed with: species
index, spin, color, flavor, Minkowski, phonon branch, etc.

In the expression for the lowest-order perturbative contribution to the contour
ordered Green’s function, Eq. (4.127), we parameterize the two real-time contours
according to Eq. (5.9). In Schwinger–Keldysh space this term then becomes

Ĝ
(1)
ij = ig2Ĝ

(0)
ii′ ⊗ γ̂k

i′l′ Ĝ
(0)
l′l D̂

(0)
kk′ ˆ̃γ

k′

lj′ ⊗ Ĝ
(0)
j′j (5.26)
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or equivalently for the components of the lowest order self-energy matrix components

Σ̂(1)
ij = ig2γ̂k

il′ Ĝ
(0)
l′l D̂

(0)
kk′ ˆ̃γ

k′

lj , (5.27)

where the third rank tensors representing the phonon absorption and emission ver-
tices are identical

γ̂k
ij = δij τ

(3)
jk = ˆ̃γ

k

ij . (5.28)

The third rank vertex tensors vanish unless electron and phonon indices are identical,
reflecting the fact that the fields in a vertex correspond to the same moment in
contour time. The presence of the imaginary unit in Eq. (5.26) is the result of
one lacking factor of −i for our convention of Green’s functions: two factors of −i
are provided by the interaction and one provided externally in the definition of the
Green’s functions. Such features are collected in one’s own private choice of Feynman
rules.

In the present representation, Eq. (5.1), instead of thinking in terms of the dia-
grammatic matrix representation one can visualize the components diagrammatically,
and we would have diagrams with Green’s functions attached to either of the forward
or return parts of the contour. It can be useful once to draw these kind of diagrams,
but eventually we shall develop a form of diagram representation without reference
to the contour but instead to the distinct different physical properties represented
by the retarded and kinetic Green’s functions of Section 3.3.2.

The vertices, Eq. (5.28), are diagonal in the fermion, i.e. lower Schwinger–Keldysh
indices since the two fermi field operators carry the same time variable. The boson
field attached to that vertex has of course the same time variable, but the other
bose field it is paired with can have a time variable residing on either the forward or
backward path, giving the possibilities of ±1 as reflected in the matrix elements of
the third Pauli matrix.

The diagrammatic representation of the matrix Green’s function, Eq. (5.26), is
displayed in Figure 5.1, where straight and wiggly lines represent fermion and bo-
son matrix Green’s functions, or the free electron and free phonon matrix Green’s
functions, respectively, and the vertices represent the third rank tensors specified in
Eq. (5.28).

1 3 2 1′

Figure 5.1 Diagrammatic representation of the matrix Green’s function G for
fermion–boson interaction.
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In the matrix representation specified by Eq. (5.18), the diagram represents (using
δij = τ

(3)
ik τ

(3)
kj ),

Ǧ
(1)
ij = ig2Ǧ

(0)
ii′ ⊗ γ̌k

i′l′ Ǧ
(0)
l′l Ď

(0)
kk′ ˇ̃γ

k′

lj′ ⊗ Ǧ
(0)
j′j , (5.29)

where the absorption vertex is

j

i

k

= γ̌k
ij = γ̂k′

ii′ τ
(3)
i′j τ

(3)
k′k = δij τ

(3)
jk (5.30)

and the emission vertex is

j

i

k
= ˇ̃γ

k
ij = ˆ̃γ

k

ii′ τ
(3)
i′j = δij δjk . (5.31)

In this representation the absorption and emission vertices thus differ.
In terms of the lowest order matrix self-energy, Eq. (5.29) becomes

Ǧ(1) = Ǧ(0) ⊗ Σ̌(1) ⊗ Ǧ(0) . (5.32)

5.3 Triagonal and symmetric representations

Since only two components of the matrix Green’s function, Eq. (5.1), are independent
it can be economical to remove part of this redundancy. In the original article of
Keldysh [10], one component was eliminated by the linear transformation, the π/4-
rotation in Schwinger–Keldysh space,

Ĝ → L ĜL† , (5.33)

where the orthogonal matrix, L† = L, is

L =
1√
2
(1 − iτ (2)) =

1√
2

(
1 −1
1 1

)
(5.34)

i.e. 1 denotes the 2 × 2 unit matrix and τ (2) is the second Pauli matrix

τ (2) =
(

0 −i
i 0

)
. (5.35)

Using the following identities (recall Section 3.3)

GR(1, 1′) = Ĝ11(1, 1′) − Ĝ12(1, 1′) = Ĝ21(1, 1′) − Ĝ22(1, 1′) (5.36)
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and

GA(1, 1′) = Ĝ11(1, 1′) − Ĝ21(1, 1′) = Ĝ12(1, 1′) − Ĝ22(1, 1′) (5.37)

and

GK(1, 1′) = Ĝ21(1, 1′) + Ĝ12(1, 1′) = Ĝ11(1, 1′) + Ĝ22(1, 1′) (5.38)

and

0 = Ĝ11(1, 1′) − Ĝ12(1, 1′) − Ĝ21(1, 1′) + Ĝ22(1, 1′) (5.39)

the linear transformation, the π/4-rotation in Schwinger–Keldysh space Eq. (5.33),
amounts to5 (

Ĝ11 Ĝ12

Ĝ21 Ĝ22

)
→
(

0 GA

GR GK

)
(5.40)

where the retarded, advanced and the Keldysh or kinetic Green’s functions all were
introduced in Section 3.3.2.

For real bosons or phonons, the matrix

D =
(

0 DA(x, t,x′, t′)
DR(x, t,x′, t′) DK(x, t,x′, t′)

)
(5.41)

is real and symmetric, regarded as a matrix in all its arguments, i.e. including its
dynamical indices which at this level amounts to the interchange R ↔ A. This
symmetric form is the useful representation, the symmetric representation, needed
when functional methods are employed, as discussed in Chapters 9 and 10.

In condensed matter physics a representation in terms of triagonal matrices is
often used, originally introduced by Larkin and Ovchinnikov [12]. To obtain this
triagonal representation, the π/4-rotation in Schwinger–Keldysh space is performed
on the matrix Green’s function in Eq. (5.18)

G = L ǦL† (5.42)

and the triagonal matrix is obtained6

G =
(

GR GK

0 GA

)
. (5.43)

Not only are these representations economical, they are also appealing from a
physical point of view as GR and GK contain distinctly different information: the
spectral function has the information about the quantum states of a system, the
energy spectrum, and the kinetic Green’s function, GK, has the information about

5The alternative not to work with matrices at this stage, but instead base the description on the
G-greater and G-lesser Green’s functions is discussed in detail in Section 5.7. This choice emerges
if one starts from the so-called imaginary-time formalism, as we shall discuss. We shall eventually
abandon the matrices and interpret diagrams directly in terms of the three types of Green’s functions
and two simple rules for their behavior at vertices, the real rules: the RAK-rules.

6No confusion with the notation for the time-ordered Green’s function should arise.
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the occupation of these states for non-equilibrium situations as discussed in Section
3.4.

The identity in Eq. (5.39) is of the type that guarantees that vacuum diagrams
lead to vanishing contributions.

Exercise 5.1. Consider free phonons in thermal equilibrium at temperature T , and
show that their matrix Green’s function in the triagonal representation

D(0) =
(

DR
0 DK

0

0 DA
0

)
(5.44)

has components that in terms of the momentum and energy variables or equivalently
wave vector and frequency variables are specified by

DR
0 (k, ω) = (DA

0 (k, ω))∗ =
−ω2

k

ω2
k − (ω + iδ)2

(5.45)

and
DK

0 (k, ω) = (DR(k, ω) − DA(k, ω)) coth
�ω

2kT
, (5.46)

where ωk = c |k| is the linear dispersion relation for the longitudinal phonons, c being
the longitudinal sound velocity.

5.3.1 Fermion–boson coupling

Let us consider what happens to the fermion–boson interaction or electron–phonon
interaction dynamical index vertices when transforming to the triagonal matrix rep-
resentation, i.e. let us find the tensors for the vertices. To obtain the coupling
matrices for the fermion–boson interaction in this representation we transform all
matrix Green’s functions according to

G
(1)
ij = Lii′ Ǧ

(1)
i′j′ L†

j′j (5.47)

and similarly for the phonon Green’s function, and inserting the identity according
to7

δij = L†
ii′ Li′j (5.48)

the absorption vertex becomes

γk
ij = Lii′ γ̌k′

i′j′ L†
j′j L†

k′k =
j

i

k

(5.49)

and the emission vertex becomes
7From this it immediately follows that the coupling matrix for a scalar field in the triagonal

representation is the unit matrix in Schwinger–Keldysh space.
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γ̃k
ij = Lii′ Lkk′ γ̌k′

i′j′ L†
j′j =

j

i

k

(5.50)

and simple calculation gives for the vertices

γ1
ij = γ̃2

ij =
1√
2

δij (5.51)

and
γ2

ij = γ̃1
ij =

1√
2

τ
(1)
ij , (5.52)

where τ
(1)
ij is the first Pauli matrix

τ (1) =
(

0 1
1 0

)
. (5.53)

The fermion–boson vertices can be considered basic as two-particle interaction
can also be formulated in terms of them, as discussed in Section 5.3.2. The above
four types of vertices thus represent the additional dressing of vertices needed for
describing non-equilibrium situations. In Section 5.4 we shall describe the physical
significance of the dynamical index structure of the vertices in the symmetric or
triagonal representations.

The diagrammatic representation is the same irrespective of the matrix represen-
tation used, only the matrices and tensors vary. The diagram displayed in Figure 5.1
represents in the triagonal representation the string of matrices

G
(1)
ij (1, 1′) = ig2G

(0)
ii′ (1, 3)⊗ γk

i′l′ G
(0)
l′l (3, 2)D

(0)
kk′(3, 2) γ̃k′

lj′ ⊗ G
(0)
j′j(2, 1′) , (5.54)

where straight and wiggly lines represent the free fermion and boson matrix Green’s
functions, or the free electron and free phonon matrix Green’s functions, respec-
tively, in the triagonal representation, and the vertices are specified in Eq. (5.51) and
Eq. (5.52).

The virtues of the triagonal representation are that the coupling matrix for a
classical field is the unit matrix in Schwinger–Keldysh space, and both the matrix
Green’s function and matrix self-energies are triagonal matrices, as we show in Section
5.5,

Σ =
(

ΣR ΣK

0 ΣA

)
, (5.55)

making operative the property that triagonal matrix structure is invariant with re-
spect to matrix multiplication.
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5.3.2 Two-particle interaction

Another important interaction we will encounter is the two-body or two-particle
interaction, say Coulomb electron–electron interaction. The ready-made form for
perturbative expansion of the contour ordered Green’s function becomes, for the
case of two-particle interaction,

G(1, 1′) = Tr
(
ρ0 TC

(
S ψH0(1)ψ†

H0
(1′)
))

, (5.56)

where

S = e−i
∫

C
dτ1

∫
dx1

∫
C

dτ2
∫

dx2 ψ†
H0

(x1,τ1) ψ†
H0

(x2,τ2)U(x2,τ2;x1,τ1)ψH0 (x2,τ2) ψH0(x1,τ1)

(5.57)
and for an instantaneous interaction

U(x2, τ2;x1, τ1) = V (x2,x1) δ(τ2 − τ1) , (5.58)

where, V (x2,x1) is for example the Coulomb interaction, and the contour delta
function of Eq. (4.45) appears. In the hat-representation, the two-body interaction
will thus get the matrix representation

Û(x2, t2;x1, t1) = τ (3) δ(t2 − t1)V (x2,x1) . (5.59)

The basic vertex for two-particle interaction is thus the one depicted in Figure
5.2, where the wiggly line represents the matrix two-particle interaction specified in
Eq. (5.59).

Figure 5.2 Two-particle interaction vertex.

However, the basic vertex for two-particle interaction can be interpreted as two
separate vertices in terms of the action of the real-time dynamical indices, and can be
formulated identically to the case of electron–boson or electron–phonon interaction.
Although γ̂e−ph, Eq. (5.28), of course is capable of coupling the upper and lower
branch it is of no importance since such terms vanish since Û is diagonal. One is
thus free to choose either of the forms

γ̂k
ij ∝ δij τ

(3)
jk or γ̂k

ij ∝ δij δjk (5.60)

the former choice making the separated two-particle or electron–electron interaction
vertices identical in the dynamical indices to the case of fermion–boson or electron–
phonon interaction.

Exercise 5.2. The wavy line in Figure 5.2, representing the two-body interaction,
can be assigned an arbitrary direction, which then in turn can be put to use in ac-
counting for the momentum flow in the Feynman diagrams for two-body interactions.
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Assuming the interaction in Eq. (5.58) is translational invariant and instantaneous,
its Fourier transform becomes independent of the energy variable, U(q, ω) = V (q).

Show that, for the two-body interaction, the following Feynman rule applies in the
momentum-energy variables. At both vertices in the basic interaction appearing in
diagrams, Figure 5.2, the out-going electron momentum and energy variables equals
the in-coming electron variables plus, for the case of momentum, the amount carried
by the interaction line, counted with a plus or minus sign determined by convention
by the arbitrarily assigned direction of the interaction wavy line. As a result, of
course, the total out-going electron momenta and energies equals the in-coming ones
in Figure 5.2.

Exercise 5.3. Obtain the matrix equations corresponding to the two lowest-order
terms in the electron–electron interaction for the electron matrix Green’s function
corresponding to the diagrams in Figure 5.3.

± +

Figure 5.3 Lowest-order two-particle interaction diagrams.

These correspond to the following self-energies.

± +

Figure 5.4 Lowest-order two-particle interaction self-energy diagrams.

These are the Hartree and Fock terms.8
8In order for all diagrams to appear with a plus sign it is customary to bury fermionic quantum

statistical minus signs in the Feynman rule: each closed loop of fermi propagators is assigned a
minus sign.
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Exercise 5.4. Apply Wick’s theorem to obtain the result that, to second order in the
electron–phonon interaction, the diagrams for the electron matrix Green’s function
are given by the diagrams corresponding to the first three self-energy diagrams in
Figure 5.5.

Exercise 5.5. Apply Wick’s theorem to obtain the connected diagrams for the
fermion matrix Green’s function to second order in the two-particle interaction cor-
responding to the self-energy diagrams depicted in Figure 5.5.

+ +

+ ± + ± ±

± ±

Figure 5.5 Second-order two-particle interaction self-energy diagrams.

5.4 The real rules: the RAK-rules

The matrix structure of the contour ordered Green’s function was studied in the
previous sections, and the proper choice of representation, that of Section 5.3, was
governed by the split of information carried by the various matrix components, spec-
tral properties and quantum statistics. The matrix structure of the basic interaction
vertices should also be interpreted and will give rise to efficient rules in terms of our
preferred labeling of propagators. Going through the functioning of the dynamical
indices of vertices and the various possibilities for propagator attachments, leads to
the observation that the diagrammatic rules significant for describing non-equilibrium
states need not be formulated in terms of the individual dynamical or Schwinger–
Keldysh indices of the vertices, but can with profit be formulated in terms of the
labels of the three different types of propagators entering in the non-equilibrium
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description R, A and K. Consider, for example, the basic fermion–boson diagram
depicted in Figure 5.6.

Figure 5.6 Basic fermion–boson diagram.

The boson propagator can be either DR, DA or DK, and the non-equilibrium
diagrammatic rules can now be stated as the following two rules, the real rules.

For the case of DA a change in the dynamical index for the fermion takes place
only at the Absorption vertex and vice versa for the case of DR.

For the case of DK no change in the dynamical fermion index takes place at either
of the vertices.

The effect of the DK component is thus analogous to that of a Gaussian dis-
tributed classical field with DK as correlator, an observation we shall take advantage
of when discussing the dephasing properties of the electron–electron interaction on
the weak localization effect in Section 11.3.2.

To analyze the dynamical index structure for the propagator given by the dia-
gram in Figure 5.6, we can for example use the fact that the G21 component for
the fermion matrix Green’s function vanishes, i.e. we use the triagonal representa-
tion, and one immediately scans the diagram by in addition using identities such as
GR(1, 1′)DA(1, 1′) = 0, and obtains for the corresponding self-energy components
(adapting here the Feynman rule of absorbing the factor ig2 into the phonon propa-
gator)

ΣR(1, 1′) =
1
2
(
DR(1, 1′)GK(1, 1′) + DK(1, 1′)GR(1, 1′)

)
(5.61)

and

ΣA(1, 1′) =
1
2
(
DA(1, 1′)GK(1, 1′) + DK(1, 1′)GA(1, 1′)

)
(5.62)

and

ΣK(1, 1′) =
1
2
(DR(1, 1′)GR(1, 1′) + DA(1, 1′)GA(1, 1′) + DK(1, 1′)GK(1, 1′))

=
1
2
((GR(1, 1′) − GA(1, 1′))(DR(1, 1′) − DA(1, 1′)))

+
1
2

DK(1, 1′)GK(1, 1′) . (5.63)
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Equivalent to an external Gaussian distributed classical field, the DK component
does not sense the quantum statistics of the fermions for the case of retarded and
advanced quantities, but of course carries the information of the quantum statistics
of the bosons. Contrarily, the DR and DA components introduce the GK compo-
nent carrying the information of the quantum statistics of the fermions, the non-
equilibrium distribution of the fermions.

The choice of the arrow on the boson Green’s function in Figure 5.6 is of course ar-
bitrary, the opposite one corresponding to the interchange DR(1, 1′) → (DA(1′, 1))∗,
the complex conjugation being irrelevant for a real boson field, say for phonons.

We have finally arrived at a convenient and complete physical interpretation of
the dynamical index that reflects the need for doubling the degrees of freedom to
describe non-equilibrium states.

5.5 Non-equilibrium Dyson equations

The standard topological arguments for partial summation of Feynman diagrams,
as presented in Section 4.5.2, organizes them into one-particle irreducible sub-parts
and two-particle irreducible self-energy skeleton diagrams, and we arrived at the
Dyson equation, Eq. (4.141), where the self-energy is expressed in terms of the full
propagators. When the corresponding equation for contour ordered quantities are
lifted to the real time matrix representation we obtain the matrix Dyson equation

Ĝ = Ĝ0 + Ĝ0 ⊗ τ (3) Σ̂ τ (3) ⊗ Ĝ , (5.64)

where the τ (3)-matrices absorb the minus signs from the return part of the closed
time path, or equivalently

Ǧ = Ǧ0 + Ǧ0 ⊗ Σ̌⊗ Ǧ . (5.65)

In the triagonal representation, the three equations in the matrix Dyson equation

G = G0 + G0 ⊗ Σ⊗G (5.66)

take the forms

GR(A) = G
R(A)
0 + G

R(A)
0 ⊗ ΣR(A) ⊗GR(A) (5.67)

and, for the kinetic Green’s function,

GK = GK
0 + GR

0 ⊗ ΣR ⊗GK + GR
0 ⊗ ΣK ⊗GA + GK

0 ⊗ ΣA ⊗GA . (5.68)

The matrix self-energy, Σ, can in naive perturbation theory be described as the
sum of diagrams that can not be cut in two by cutting only one internal free prop-
agator line, and is from this point of view a functional of the free matrix Green’s
functions, Σ = Σ[G0, D0]. As discussed in Section 4.5.2, the self-energy can also be
thought of as a functional of the full matrix Green’s function, Σ = Σ[G, D], and is
then the sum of all the skeleton self-energy diagrams, i.e. the diagrams which can not
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be cut in two be cutting only two full propagator lines. It is the latter representation
that is useful in the Dyson equation.

Equivalently, by iterating from the left gives the matrix Dyson equation

G = G0 + G⊗ Σ⊗G0 . (5.69)

For an equilibrium state the two equations are redundant, since time convolutions
by Fourier transformation become simple products for which the order of factors is
irrelevant. However, in a non-equilibrium state, the two matrix equations contain
different information and subtracting them is a useful way of expressing the non-
equilibrium dynamics, and we shall exploit this in Chapters 7 and 8.

Since the transformation of the real-time matrix self-energy is identical to the one
for the matrix Green’s function we get, analogously to the equations from Eq. (5.36)
to Eq. (5.39), and therefore for the components of the self-energy matrix,

ΣR = Σ̂11 − Σ̂12 = Σ̂21 − Σ̂22 (5.70)

ΣA = Σ̂11 − Σ̂21 = Σ̂12 − Σ̂22 (5.71)

ΣK = Σ̂11 + Σ̂22 = Σ̂12 + Σ̂21 (5.72)

0 = Σ̂11 − Σ̂12 +− Σ̂21 + Σ̂22 . (5.73)

By construction

Σ̂11(x1, t1,x1′ , t1′) =
{

Σ̂12(x1, t1,x1′ , t1′) t1′ > t1
Σ̂21(x1, t1,x1′ , t1′) t1 > t1′

(5.74)

and

Σ̂22(x1, t1,x1′ , t1′) =
{

Σ̂21(x1, t1,x1′ , t1′) t1′ > t1
Σ̂12(x1, t1,x1′ , t1′) t1 > t1′

(5.75)

and the matrix self-energy has in the triagonal representation the same triagonal
form as the matrix Green’s function

Σ =
(

ΣR ΣK

0 ΣA

)
. (5.76)

Exercise 5.6. Introducing

Σ<(x1, t1,x1′ , t1′) = Σ̂12(x1, t1,x1′ , t1′) (5.77)

and
Σ>(x1, t1,x1′ , t1′) = Σ̂21(x1, t1,x1′ , t1′) (5.78)

show that we have, identically to the relationships for the Green’s functions, the
relation for the retarded self-energy

ΣR(x, t,x′, t′) = θ(t− t′)
(
Σ>(x, t,x′, t′) − Σ<(x, t,x′, t′)

)
(5.79)

and advanced self-energy

ΣA(x, t,x′, t′) = −θ(t′ − t)
(
Σ>(x, t,x′, t′) − Σ<(x, t,x′, t′)

)
(5.80)
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and for the kinetic component

ΣK(x, t,x′, t′) = Σ>(x, t,x′, t′) + Σ<(x, t,x′, t′) . (5.81)

Show that the components of the self-energy matrix satisfies

ΣA(x, t,x′, t′) =
(
ΣR(x′, t′,x, t)

)∗
(5.82)

and

ΣK(x, t,x′, t′) =
(
ΣK(x′, t′,x, t)

)∗
. (5.83)

Exercise 5.7. Show that in the case where the matrix Green’s function is represented
in symmetric form

G =
(

0 GA

GR GK

)
(5.84)

the matrix self-energy has the form

Σ =
(

ΣK ΣR

ΣA 0

)
. (5.85)

We shall not at present take the diagrammatics beyond the self-energy to higher-
order vertices, since in the following chapters only the Dyson equation is needed. In
Chapter 9 we shall study diagrammatics in their full glory.

From the equation of motion for the free Green’s function (or fields) we then get,
for the matrix Green’s function, the equations of motion

(i∂t1 − h(1))G(1, 1′) = δ(1− 1′) + (Σ⊗G)(1, 1′) (5.86)

and
(i∂t1′ − h∗(1′))G(1, 1′) = δ(1− 1′) + (G⊗ Σ)(1, 1′) (5.87)

or introducing the inverse free Green’s function

G−1
0 (1, 1′) = (i∂t1 − h(1)) δ(1 − 1′) (5.88)

the two equations can be expressed through operating with the inverse free matrix
Green’s function from the left

(G−1
0 − Σ)⊗G = δ(1− 1′) (5.89)

and from the right
G⊗ (G−1

0 − Σ) = δ(1− 1′) . (5.90)

These two non-equilibrium Dyson equations will prove useful in Chapter 7 where
quantum kinetic equations are considered.

The matrix equation, Eq. (5.89), comprises the three coupled equations for GR,A,K

(G−1
0 − ΣR(A))⊗GR(A) = δ(1 − 1′) (5.91)
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and
G−1

0 ⊗GK = ΣR ⊗GK + ΣK ⊗GA . (5.92)

Analogously, from Eq. (5.90), we obtain

GR(A) ⊗ (G−1
0 − ΣR(A)) = δ(1 − 1′) (5.93)

and
GK ⊗G−1

0 = GR ⊗ ΣK + GK ⊗ ΣA . (5.94)

Exercise 5.8. Show that, subtracting the left and right Dyson equations for GK,
the resulting equation can be written in the form

[G−1
0

⊗, GK]− − 1
2
[ΣR + ΣA ⊗, GK]− − 1

2
[ΣK ⊗, GR + GA]−

= −1
2
[ΣK ⊗, (GR −GA)]+ +

1
2
[(ΣR − ΣA) ⊗, GK]+ . (5.95)

If at the end of the day, one makes the lowest-order approximation for the self-
energy (as often done!), introducing the Green’s function formalism and diagrammat-
ics is of course ridiculous as final results follow from Fermi’s Golden Rule.9 A virtue
of the real-time formalism and its associated Feynman diagrams is that nontrivial
approximations can be established using the diagrammatic estimation technique, and
higher-order correlations studied systematically, as we shall consider in the following
chapters, not least in chapter 10.10

Before studying applications of the real-time technique we shall make obsolete
one version of the imaginary-time formalism, viz. the too pervasive Matsubara tech-
nique. The general imaginary-time formalism has virtues for special Euclidean field
theory purposes as well as for expedient proofs establishing conserving approxima-
tions. After the discussion of the equilibrium Dyson equation in the next section,
we demonstrate the equivalence of the imaginary-time formalism to the closed time
path formulation and the real-time technique introduced in this chapter.

5.6 Equilibrium Dyson equation

In equilibrium all quantities depend only on time differences, and for translational
invariant situations also only on spatial differences, and convolutions are by Fourier
transformation turned into products. In terms of the self-energy we therefore have
for the retarded Green’s function the equilibrium Dyson equation11

GR(p, E) = GR
0 (p, E) + GR

0 (p, E)ΣR(E,p)GR(p, E) (5.96)

9In the same vein, if one employs a mean-field approximation, introducing the formalism of
quantum field theory seems excessive. This point of view was taken in references [1] and [13].

10For a discussion of the diagrammatic estimation technique see chapter 3 of reference [1].
11We recall the result of Section 3.4, that in thermal equilibrium all the various Green’s functions

can be expressed in terms of, for example, the (imaginary part of the) retarded Green’s function.
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which we immediately solve to get

GR(p, E) =
1

G−1
0 (p, E)− ΣR(E,p)

=
1

E − εp − ΣR(E,p)
. (5.97)

The retarded self-energy determines the analytic structure of the retarded Green’s
function, i.e. the location of the poles of the analytically continued retarded Green’s
function onto the second Riemann sheet through the branch cut along the real axis
(recall Section 3.4), the generic situation being that of a simple pole. For given
momentum value the simple pole is located at E = E1 + iE2, determined by E1 =
εp + �e Σ(E, εp) and E2 = �m Σ(E, εp), and as

GR(p, t) =
∫ ∞

−∞
dE e−iEt GR(p, E) (5.98)

the imaginary part of the self-energy thereby determines the temporal exponential
decay of the Green’s function, i.e. the lifetime of (in the present case) momentum
states. The effect of interactions are clearly to give momentum states a finite lifetime.

For the Fourier transform of Eq. (5.97) we get (in three spatial dimensions for
the prefactor to be correct)

GR
E(x− x′) =

−m

2π�2

e
i
�
|x−x′|

√
2m(E−ΣR(E, pE p̂))

|x− x′| (5.99)

where pE is the solution of the equation pE =
√

2m(E − ΣR(E, pEp̂)). Interactions
will thus provide a finite spatial and temporal range of the Green’s function.

For the case of electrons, say in a metal, the advanced Green’s function likewise
describes the attenuation of the holes.

Exercise 5.9. Show that the spectral function in equilibrium is given by (using now
the grand canonical ensemble)

A(E,p) =
Γ(E,p)(

E − ξp −�eΣR(E,p)
)2

+
(

Γ(E,p)
2

)2 (5.100)

where
�eΣ(E,p) ≡ 1

2

(
ΣR(E,p) + ΣA(E,p)

)
(5.101)

and
Γ(E,p) ≡ i

(
ΣR(E,p) − ΣA(E,p)

)
. (5.102)

We note that the sum-rule satisfied by the spectral weight function, Eq. (3.89), sets
limitation on the dependence of the self-energy on the energy variable. The general
features of interaction is to broaden the peak in the spectral weight function and to
shift, renormalize, energies.
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Exercise 5.10. Show that for bosons in equilibrium at temperature T , their self-
energy components satisfy the fluctuation–dissipation relations

ΣK(E,p) =
(
ΣR(E,p) − ΣA(E,p)

)
coth

E

2kT
(5.103)

and for fermions

ΣK(E,p) =
(
ΣR(E,p) − ΣA(E,p)

)
tanh

E

2kT
. (5.104)

5.7 Real-time versus imaginary-time formalism

Although we shall mainly use the real-time technique presented in this chapter
throughout, it is useful to be familiar with the equivalent imaginary-time formalism
in view of the vast amount of literature where this method has been employed. Or
more importantly to realize the link between the imaginary-time formalism and the
Martin–Schwinger–Abrikosov–Gorkov–Dzyaloshinski–Eliashberg–Kadanoff –Baym–
Langreth analytical continuation procedure. In the classic textbooks of Kadanoff
and Baym [14] and Abrikosov, Gorkov and Dzyaloshinski [15] on non-equilibrium
statistical mechanics, the imaginary-time formalism introduced by Matsubara [16]
and Fradkin [17] and Martin and Schwinger [18] was used. Being then a Euclidean
field theory it possesses nice convergence properties. However, it lacks appeal to
intuition.

5.7.1 Imaginary-time formalism

The workings of the imaginary-time formalism are based on the mathematical formal
resemblance of the Boltzmann statistical weighting factor in the equilibrium statis-
tical operator ρ ∝ e−H/kT and the evolution operator Û ∝ e−iHt/� for an isolated
system. The imaginary time Green’s function

G(x, τ ;x′, τ ′) ≡ −Tr
(
e−

H −µN
kT Tτ (ψ(x, τ) ψ̃(x′, τ ′))

)
(5.105)

is defined in terms of field operators depending on imaginary time according to (we
suppress all other degrees of freedom than space)

ψ(x, τ) = e
1
�

τ(H−µN) ψ(x) e−
1
�

τ(H−µN) (5.106)

and
ψ̃(x, τ) = e

1
�

τ(H−µN) ψ†(x) e−
1
�

τ(H−µN) , (5.107)

where ψ(x) is the field operator in the Schrödinger picture, and Tτ provides the
imaginary time ordering (with the usual minus sign involved for an odd number
of interchanges of fermi fields). The τs involved are real variables, the use of the
word imaginary refers to the transformation t→ −iτ in which case the time-ordered
real-time Green’s function, Eq. (4.10), transforms into the imaginary-time Green’s
function (more about this shortly). Note that ψ(x, τ) and ψ̃(x, τ) are not each others
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adjoints. Knowledge of the imaginary-time Green’s function allows the calculation
of thermodynamic average values.

The imaginary-time single-particle Green’s function respects the Kubo–Martin–
Schwinger boundary conditions, for example

G(x, τ ;x′, 0) = ±G(x, τ ;x′, β) , (5.108)

owing to the cyclic invariance property of the trace (the notation β = �/kT is used).
The periodic boundary condition is for bosons, and the anti-periodic boundary con-
dition is for fermions (the identical consideration in connection with the fluctuation–
dissipation theorem was discussed in Section 3.4, and is further discussed in Section
6.5). We note the crucial role of the (grand) canonical ensemble as elaborated in
Section 3.4.

In its simple equilibrium applications in statistical mechanics, thermodynamics, or
in linear response theory, the involved imaginary-time Green’s functions are expressed
in terms of a single so-called Matsubara frequency

G(x, τ ;x′, τ ′) =
1
β

∑
ωn

e−iωn (τ−τ ′) G(x,x′; ωn) , (5.109)

where ωn = 2nπ/β for bosons and ωn = (2n + 1)π/β for fermions, respectively,
n = 0,±1,±2, . . . . Equilibrium or thermodynamic properties and linear transport
coefficients can therefore be expressed in terms of only one Matsubara frequency,
and the analytical continuation to obtain them from the imaginary-time Green’s
functions is trivial, say the retarded Green’s function is obtained by GR(x,x′; ω) =
G(x,x′; iωn → ω + i0+) as the two functions coincide according to GR(iωn) = G(ωn)
for ωn > 0.

The imaginary-time Green’s functions can also be used to study non-equilibrium
states by letting the external potential depend on the imaginary time. The Matsub-
ara technique is then a bit cumbersome, but can be used to derive exact equations,
say, the Dyson equation for real-time Green’s functions. In fact this was the method
used originally to study non-equilibrium superconductivity in the quasi-classical ap-
proximation [19].12 However, for general non-equilibrium situations, the necessary
analytical continuation in arbitrarily many Matsubara frequencies becomes nontrivial
(and are usually left out of textbooks), and are more involved than using the real-
time technique. Furthermore, when approximations are made, the real-time results
obtained upon analytical continuation can be spurious. However, the main disad-
vantage of the imaginary-time formalism is that it lacks physical transparency. We
shall therefore not discuss it further in the way it is usually done in textbooks, but
use a contour formulation to show its equivalence to the real-time formalism.13

12Amazingly, the non-equilibrium theory of superconductivity was originally obtained using the
Matsubara technique [19], as, I guess, the imaginary-time formalism was in rule at the Landau
Institute. A plethora of papers and textbooks have perpetrated the use of the imaginary-time
formalism. It is the contestant to be the most important frozen accident in the evolution of non-
equilibrium theory. Let’s iron out unfortunate fluctuations of the past! Its proliferation also testifies
to the fact that idiosyncratically written papers, such as the seminal paper of Schwinger [5], can be
a long time in germination.

13The imaginary-time formalism can be useful for special purpose applications such as diagram-
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5.7.2 Imaginary-time Green’s functions

The imaginary-time Green’s functions are profitably interpreted as contour-ordered
Green’s function, viz. on an imaginary-time contour. First we note, that the times
entering the imaginary-time Green’s function can be interpreted as contour times.
Choosing the times in the time ordered Green’s function in Eq. (3.61), instead to lie
on the contour starting at, say, t0 and ending down in the lower complex time plane
at t0 − iβ, the appendix contour ca in Figure 4.4, turns the expression Eq. (3.61)
into the equation for the imaginary-time Green’s function, Eq. (5.105). This observa-
tion, by the way, gives the standard Feynman diagrammatics for the imaginary-time
Green’s function since Wick’s theorem involving the appendix contour is a trivial
corollary of the general Wick’s theorem of Section 4.3.3. We can thus, for example,
immediately write down the non-equilibrium Dyson equation for the imaginary-time
Green’s function, t1 and t1′ lying on the appendix contour ca. Considering the case
where the non-equilibrium situation is the result of a time-dependent potential, V ,
the Dyson equation for the imaginary-time Green’s functions or appendix contour-
ordered Green’s function is

G(1, 1′) = G0(1, 1′) +
∑
σ3σ2

∫
dx3

∫
ca

dτ3

∫
dx2

∫
ca

dτ2 G0(1, 3)Σ(3, 2)G(2, 1′)

+
∑
σ2

∫
dx2

∫
ca

dτ2 G0(1, 2)V (2)G(2, 1′) . (5.110)

The appendix contour interpretation of the imaginary-time Green’s function is in
certain situations more expedient than the real-time formulation when it for example
comes to diagrammatically proving exact relationships, since it has fewer diagrams
than the real-time approach if unfolding its matrix structure is needed. It should
thus be used in such situations, but then it is preferable not to use the Matsubara
frequency technique, but instead stick to the appendix contour formalism.

In practice we need to know how to analytically continue imaginary-time quanti-
ties to real-time functions, say for the imaginary-time Dyson equation, or for terms
appearing in perturbative expansions of imaginary-time quantities. Instead of turn-
ing to standard textbook imaginary-time formalism, the Matsubara technique, it is in
view of the above preferable to go to the appendix contour ordered Green’s functions,
and perform the analytical continuation from there. In fact, this analytical contin-
uation procedure becomes equivalent to the analytical continuation of the contour
ordered functions in the general contour formalism, for example the transition from
the contour-ordered Green’s function to real-time Green’s functions, which we now
turn to discuss. We illustrate this in the next section by performing the proceduce
for the Dyson equation.

The Boltzmann factor can guarantee analyticity of the Green’s function for times
on the appendix contour ca and indeed in the whole strip corresponding to translating
the real time t0 (recall Exercise 3.21 on page 74). The appendix contour can therefore

matic proofs of conservation laws, i.e. for proving exact relations. The imaginary-time formalism is
seen to be a simple corollary of the closed time path formalism.
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be deformed into the contour depicted in Figure 4.4 on page 91, landing the original
times on the imaginary appendix contour onto the real axis producing the contour-
ordered Green’s function. This provides the analytical continuation from imaginary
times to the real times of interest. We now turn to discuss the procedure in detail.

5.7.3 Analytical continuation procedure

By using the closed time path approach, the analytical continuation procedure is
automated, and the equations of motion for the real-time correlation functions are
obtained without the irrelevant detour into Matsubara frequencies.

The procedure to obtain the real time Dyson equation from either the imaginary-
time formalism, i.e. from Eq. (5.110), or from the general contour formalism Dyson
equation, Eq. (4.141), is in fact the same. In, for example, the perturbative expansion
of the contour-ordered Green’s function or in the Dyson equation, we encounter
objects integrated over the contour depicted in Figure 4.4 on page 91, and we need
to obtain the corresponding formulae in terms of real-time functions, and as we
demonstrate now this is equivalent to analytical continuation.

Since space (and spin) and contour-time variables play different roles in the fol-
lowing argument, in fact only the contour-time variables play a role, we separate
space and contour-time matrix notations

(A×B)(1, 1′) ≡
∑
σ2

∫
dx2 A(1, 2)B(2, 1′) (5.111)

and

(A�B)(1, 1′) ≡
∫
c

dτ2 A(1, 2)B(2, 1′) . (5.112)

Here the contour-time integration could refer to the imaginary time appendix contour
ca, or the contour ci, stretching from t0 through t1 and t1′ and back again to t0 (or
all the way to infinity and back) and finally along the appendix contour to t0 − iβ,
the contour depicted in Figure 4.4. The latter contour is obtained from the appendix
contour by the allowed analytical continuation procedure as discussed at the end
of the previous section. We shall not be interested in initial correlations, and can
therefore let the initial time protrude to the far past, t0 → −∞, and the contour
in Figure 4.4 becomes the real-time closed contour, C, depicted in Figure 4.5. In
the case of analytical continuation from the imaginary-time appendix contour we
shall also eventually let the real-time t0 protrude to the far past. Everything in the
following, however, would be equally correct if we stick to the general contour, ci,
depicted in Figure 4.4, allowing treating general initial states and therefore including
the completely general non-equilibrium problem. We would then just in addition
to integrations over the closed time path, have terms with integrations over the
imaginary time appendix contour ca.

Consider the case where the non-equilibrium situation is the result of a time-
dependent potential, V . The Dyson equation for the imaginary-time Green’s func-
tion is then given in Eq. (5.110), and for the contour-ordered Green’s function we
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analogously have the equation

GC(1, 1′) = G
(0)
C (1, 1′) +

∑
σ3σ2

∫
dx3

∫
C

dτ3

∫
dx2

∫
C

dτ2 G
(0)
C (1, 3)Σ(3, 2)GC(2, 1′)

+
∑
σ2

∫
dx2

∫
C

dτ2 G
(0)
C (1, 2)V (2)GC(2, 1′) , (5.113)

which can be written on the form (dropping the contour reminder subscript)

G = G0 + G0 � Σ � G + G(0) V � G , (5.114)

where Σ denotes the self-energy for the problem of interest.
We thus encounter explicitly contour matrix-multiplication, or multiplication in

series, a term of the form

C(τ1, τ1′) =
∫
c

dτA(τ1, τ)B(τ, τ1′ ) = (A�B)(τ1, τ1′) , (5.115)

where A and B are functions of the contour variable, and the involved contour could
be any of the three one can encounter as discussed above. Degrees of freedom are
suppressed since they play no role in the following demonstration that contour inte-
grations can be turned into integrations over the real-time axis. To accomplish this
we recall that the functions C<(τ1, τ1′) and C>(τ1, τ1′) are analytic functions in the
strips 0 < �m(τ1 − τ1′) < β and −β < �m(τ1 − τ1′) < 0, respectively.

Let us demonstrate the analytical continuation procedure for the case of C<. A
lesser quantity means by the general prescription, Eq. (4.41), that the contour time
τ1 appears earlier than the contour time τ1′ , whatever contour is involved, i.e. we
have chosen the relationship τ1

<
c τ1′ (irrespective of the numerical relationship of

their corresponding real time values in the case of the real-time contour). Exploiting
analyticity, the contour C or ci or the imaginary time contour ca is deformed into
the contour c1 + c1′ depicted in Figure 5.7.14

t0

c1

τ1′τ1

c1′

Figure 5.7 Deforming either of the contours C or ci or ca into the contour built by
the contours c1 and c1′ .

14Starting the ascent to real times, we essentially follow Langreth [20].
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The expression in Eq. (5.115), for the chosen contour ordering, therefore becomes

C<(1, 1′) =
∫
c1

dτ A(τ1, τ)B(τ, τ1′ ) +
∫
c1′

dτ A(τ1, τ)B(τ, τ1′ )

=
∫
c1

dτ A(τ1, τ)B<(τ, τ1′) +
∫
c1′

dτ A<(τ1, τ)B(τ, τ1′ ) (5.116)

and in the last equality, we have used the fact that on contour c1 we have τ
<
c τ1′ ,

and on contour c1′ we have τ
>
c τ1. In the event of including initial correlations, or

rather staying with the general exact equation, the additional term with integration
over the appendix contour should be retained in the above equation.

Splitting in forward and return contour parts we have (as a consequence of the
contour positioning of the times on the contour parts in question as indicated to the
right)

C<(1, 1′) =
∫
−→c1

dτ A>(τ1, τ)B<(τ, τ1′) −→c1 : τ
<
c τ1

+
∫
←−c1

dτ A<(τ1, τ)B<(τ, τ1′) ←−c1 : τ
>
c τ1

+
∫
−→c1′

dτ A<(τ1, τ)B<(τ, τ1′ ) −→c1′ : τ
<
c τ1′

+
∫
←−c1′

dτ A<(τ1, τ)B>(τ, τ1′ ) ←−c1′ : τ
>
c τ1′ . (5.117)

Parameterizing the contours in terms of the real time variable, as in Eq. (4.35), and
noting that the external contour variables, τ1 and τ1′ , now can be identified by their
corresponding values on the real time axis, gives (t0 → −∞)

C<(1, 1′) =
∫ t1

−∞
dt (A>(t1, t) − A<(t1, t))B<(t, t1′)

+
∫ t1′

−∞
dt A<(t1, t)(B<(t, t1′) − B>(t, t1′)) (5.118)
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and thereby

C<(1, 1′) =

∞∫
−∞

dt θ(t1 − t)(A>(t1, t) − A<(t1, t))B<(t, t1′)

+

∞∫
−∞

dt A<(t1, t) θ(t1′ − t)(B<(t, t1′) − B>(t, t1′)) . (5.119)

Introducing the retarded function

AR(1, 1′) = θ(t1 − t1′) (A>(1, 1′) − A<(1, 1′)) (5.120)

and the advanced function

AA(1, 1′) = θ(t1′ − t1) (A>(1, 1′) − A<(1, 1′)) (5.121)

we have the real-time rule for multiplication in series

C< = AR ◦B< + A< ◦BA , (5.122)

where ◦ symbolizes matrix multiplication in real time, i.e. integration over the inter-
nal real-time variable from minus infinity to plus infinity of times.

Analogously one shows

C> = AR ◦B> + A> ◦BA . (5.123)

We shall also need an expression for CR, and from Eq. (5.122) and Eq. (5.123)
we get

CR(t1, t1′) = θ(t1 − t1′)
(
(AR ◦B>)(t1, t1′) + (A> ◦BA)(t1, t1′)

− (AR ◦B<)(t1, t1′) + (A< ◦BA)(t1, t1′)
)

= θ(t1 − t1′)((AR ◦ (B> −B<))(t1, t1′) + ((A> −A<) ◦BA)(t1, t1′)).

(5.124)

Expressing retarded and advanced functions according to Eq. (5.120) and Eq. (5.121)
gives

CR(t1, t1′) = θ(t1 − t1′)

 t1∫
−∞

dt (A>(t1, t) − A<(t1, t)) (B>(t, t1′)−B<(t, t1′))

+

t1′∫
−∞

dt (A>(t1, t) − A<(t1, t)) (B>(t, t1′)−B<(t, t1′))
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= θ(t1 − t1′)

t1∫
t1′

dt (A>(t1, t) − A<(t1, t)) (B>(t, t1′)−B<(t, t1′)) .

(5.125)

Using the fact that t1′ < t < t1 (as otherwise both left- and right-hand sides vanish)
we obtain

CR = AR ◦BR . (5.126)

Analogously one arrives at

CA = AA ◦BA . (5.127)

By using Eq. (5.122), Eq. (5.123), Eq. (5.126) and Eq. (5.127) we find, owing to
the associative property of the composition, that the analytical continuation of the
contour quantity

D = A�B�C (5.128)

becomes

D
>
< = AR ◦BR ◦ C

>
< + AR ◦B

>
< ◦ CA + A

>
< ◦BA ◦ CA (5.129)

and, by induction, Eq. (5.129) generalizes to an arbitrary number of functions mul-
tiplied in series. Note that the retarded and advanced functions appear to the left
and right, respectively, of the greater and lesser Green’s functions.

Employing the analytical continuation procedure, one can thus from the imaginary-
time Green’s function formalism arrive with equal ease at the real-time non-equilibrium
Dyson equations of Section 5.5.

The only other ingredient encountered in perturbation expansions is the product
of contour-ordered Green’s functions of the form

C(τ1, τ1′) = A(τ1, τ1′)B(τ1, τ1′) , (5.130)

multiplication in parallel. This occurs, for example, for pair-creation or electron-
hole excitations, etc., or for a self-energy diagram for example for fermion–boson
interaction, in which case one might prefer to have the same sequence of the contour
variables in all of the functions as in the self-energy insertion of the diagram in Figure
5.6 (this is, of course, a matter of taste).

Following the above procedure we immediately get for the analytical continuation
of multiplication in parallel

C
>
<(t1, t1′) = A

>
<(t1, t1′)B

>
<(t1, t1′) . (5.131)

With these tools at hand, we can turn any exact imaginary-time formula, or any
diagram in the perturbative expansion of the imaginary-time Green’s function or a
contour ordered quantity, say the contour-ordered Green’s functions of Section 4.4,
into products of real-time Green’s functions. This automatic mechanical continuation
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to real times is much preferable than to do it in the Matsubara frequencies. With
this at hand a very effective way of studying non-equilibrium states in the real time
formalism is available, as discussed in the classic text [14], and whether using this or
the other three-fold representation is a matter of taste. However, the G-greater and
G-lesser Green’s functions are quantum statistically quantities of the same nature,
whereas in the representation introduced in Section 5.3, the Green’s functions carry
distinct information.

5.7.4 Kadanoff–Baym equations

As an example of using the analytical continuation procedure we shall, from the
Dyson equation for the imaginary-time Green’s function in Eq. (5.110) (or the general
contour-ordered Green’s function, Eq. (5.114)), obtain the equations of motion for
the physical correlation functions, the lesser and greater Green’s functions on the
real-time axis. Let us therefore consider the Dyson equation for the imaginary-time
Green’s function or the general contour-ordered Green’s function of the form

G−1
0 � G = δ(1− 1′) + Σ � G , (5.132)

where external fields are included in G−1
0 . Applying the rule for multiplication in

series gives

G−1
0 ⊗G

>
< = ΣR ⊗G

>
< + Σ

>
< ⊗GA (5.133)

and similarly for the right-hand Dyson equation

G
>
< ⊗G−1

0 = GR ⊗ Σ
>
< + G

>
< ⊗ ΣA . (5.134)

Subtracting the left and right Dyson equations gives

[G−1
0

⊗, G
>
<]− = ΣR ⊗G

>
< − G

>
< ⊗ ΣA + Σ

>
< ⊗GA − GR ⊗ Σ

>
< (5.135)

which can be rewritten

[G−1
0

⊗, G
>
<]− − 1

2
[ΣR + ΣA ⊗, G

>
<]− − 1

2
[Σ

>
< ⊗, GR + GA]−

= −1
2
[Σ< ⊗, G>]+ +

1
2
[Σ> ⊗, G<]+ . (5.136)

These two equations, the Kadanoff–Baym equations, can be used as basis for consid-
ering quantum kinetics.

We recall that the kinetic Green’s function is specified according to GK = G> +
G<, and note that adding the two equations in Eq. (5.136) we recover Eq. (5.95). We
note that the equations, Eq. (5.129), satisfied by GK are satisfied by both G> and
G<, or rather we should appreciate the observation that their equations are identical
with respect to splitting into retarded and advanced Green’s functions.

Since the equations for G
>
< mixes, through for example self-energies according to

Eq. (5.131), it is economical to work instead solely with GK. However, there can be
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special circumstances where the advantage is reversed, for example when discussing
the dynamics of a tunnel junction. One should note that the quantum statistics of
particle species manifests itself quite differently depending on which type of kinetic
propagator one chooses to employ.

5.8 Summary

We have presented the real-time formalism necessary for treating non-equilibrium
situations. For the reader not familiar with equilibrium theory the good news is that
equilibrium theory is just an especially simple case of the presented general theory.
In the real-time formulation of the properties of non-equilibrium states the dynamics
is used to provide a doubling of the degrees of freedom, and one encounters at least
two types of Green’s functions. To get a physically transparent representation, we
introduced the real-time matrix representation of the contour-ordered Green’s func-
tions to describe non-equilibrium states. This allowed us to represent matrix Green’s
function perturbation theory in terms of Feynman diagrams in a standard fashion.
We introduced the physical representation corresponding to the two Green’s func-
tions representing the spectral and quantum statistical properties of a system. We
then showed that the matrix notation can be broken down into two simple rules for
the universal vertex structure in the dynamical indices. This allowed us to formulate
the non-equilibrium aspects of the Feynman diagrams directly in terms of the vari-
ous matrix Green’s function components, R, A, K, establishing the real rules. In this
way we were able to express how the different features of the spectral and quantum
statistical properties enter into the diagrammatic representation of non-equilibrium
processes. We ended the chapter by showing the equivalence of the imaginary-time
and the closed time path and the real-time formalisms, all formally identical, and
transformed into each other by analytical continuation. In the rest of the book we
shall demonstrate the versatility of the real-time technique. Before constructing the
functional formulation of quantum field theory from its Feynman diagrams, and show
that its classical limit can be used to study classical statistical dynamics, as done in
the last chapter, in the next three chapters we demonstrate various applications of
the real-time formalism to the study of quantum dynamics.
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6

Linear response theory

There exists a regime of overlap between the equilibrium and non-equilibrium be-
havior of a system, the non-equilibrium behavior of weakly perturbed states. When
a system is perturbed ever so slightly, its response will be linear in the perturba-
tion, say the current of the conduction electrons in a metal will be proportional to
the strength of the applied electric field. This regime is called the linear response
regime, and though the system is in a non-equilibrium state all its characteristics
can be inferred from the properties of its equilibrium state. In the next chapter we
shall go beyond the linear regime by showing how to obtain quantum kinetic equa-
tions. The kinetic-equation approach to transport is a general method, and allows
in principle nonlinear effects to be considered. However, in many practical situa-
tions one is interested only in the linear response of a system to an external force.
The linear response limit is a tremendous simplification in comparison with general
non-equilibrium conditions, and is the subject matter of this chapter. In particular
the linear response of the density and current of an electron gas are discussed. The
symmetry properties of response functions, and the fluctuation–dissipation theorem
are established. Lastly we demonstrate how correlation functions can be measured in
scattering experiments, as illustrated by considering neutron scattering from matter.
Needless to say, in measurements of (say) the current in a macroscopic body, far less
information in the current correlation function is probed.

6.1 Linear response

In this section we consider the response of an arbitrary property of a system to a
general perturbation. The Hamiltonian consists of two parts:

H = H0 + H ′
t , (6.1)

where H0 governs the dynamics in the absence of the perturbation H ′
t.

For the expectation value of a quantity A for a system in state ρ we have

A(t) = Tr(ρ(t)A) = Tr(U(t, t′) ρ(t′)U †(t, t′)A) . (6.2)
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Expanding the time-evolution operator to linear order in the applied perturbation
we get

U(t, t′) = U0(t, t′) − U0(t, tr)
i

�

∫ t

t′
dt̄ H ′

I(t̄)U †
0 (t′, tr) + O((H ′

t)
2) , (6.3)

where the perturbation is in the interaction picture with respect to H0

H ′
I(t) = U †

0 (t, tr)H
′

t U0(t, tr) . (6.4)

For the statistical operator we thus have the perturbative expansion in terms of the
perturbation

ρ(t) = ρ0(t) + ρ1(t) +O((H ′
t)

2) , (6.5)

where
ρ0(t) = U0(t, ti) ρi U

†
0 (t, ti) = U0(t, tr) ρ0(tr)U †

0 (t, tr) (6.6)

and the linear correction in the applied potential is given by

ρ1(t) =
i

�
U0(t, ti) ρi U0(ti, tr)

t∫
ti

dt̄ H ′
I(t̄)U †

0 (t, tr)

− i

�
U0(t, tr)

∫ t

ti

dt̄ H ′
I(t̄)U †

0 (ti, tr) ρi U
†
0 (t, ti) . (6.7)

We have assumed that prior to time ti, the applied field is absent, and the system is
in state ρi. For the expectation value we then get to linear order

A(t) = Tr(ρ0(t)A) +
i

�

∫ t

ti

dt̄ Tr(ρ0(tr) [H ′
I(t̄), AI(t)]) . (6.8)

So far the statistical operator at the reference time has been arbitrary; however,
typically we shall assume the state prior to the application of the perturbation is the
thermal equilibrium state of the system.

We first discuss the density response to an external scalar potential, and after-
wards the current response to a vector potential.

6.1.1 Density response

In this section we consider the density response to an applied external field. The
external field is represented by the potential V (x, t), and the Hamiltonian consists
of two parts:

H(t) = H + HV (t) , (6.9)

where H governs the dynamics in the absence of the applied potential, and the
applied potential couples to the density of the system as specified by the operator,
Eq. (2.28),

HV (t) =
∫

dx n(x)V (x, t) . (6.10)
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The density will adjust to the applied potential, and according to Eq. (6.8) the
deviation from equilibrium is to linear order

δn(x, t) = n(x, t)− n0(x, t) =
∫

dx′
∞∫

ti

dt′ χ(x, t;x′, t′)V (x′, t′) , (6.11)

where
n0(x, t) = Tr(ρ0(t)n(x)) (6.12)

is the density in the absence of the potential, and the linear density response can be
specified in the various ways by the density–density response function:1

χ(x, t;x′, t′) = − i

�
θ(t− t′)Tr(ρ0(tr)[n(x, t), n(x′, t′)])

≡ − i

�
θ(t− t′)〈[n(x, t), n(x′, t′)]〉0

= − i

�
θ(t− t′)Tr(ρ0(tr)[δn(x, t), δn(x′, t′)])

≡ χR(x, t;x′, t′) . (6.13)

The density operator is in the interaction picture with respect to H

n(x, t) = eiH(t−tr) n(x) e−iH(t−tr) (6.14)

and we have introduced the density deviation operator δn(x, t) ≡ n(x, t) − n0(x, t).
The retarded density response function appears in Eq. (6.11) in respect of causality;
i.e. a change in the density at time t can occur only as a cause of the applied potential
prior to that time.

Before the external potential is applied we assume a stationary state with respect
to the unperturbed Hamiltonian H , and the initial state is described by a statistical
operator of the form

ρi = ρi(H) =
∑

λ

ρλ |λ〉〈λ| (6.15)

where the |λ〉s are the eigenstates of H ,

H |λ〉 = ελ |λ〉 (6.16)

and ρλ = ρi(ελ) is the probability for finding the unperturbed system with energy
ελ. The unperturbed statistical operator is then time independent, ρ0(t) = ρi, and
the equilibrium density profile is time independent, n0(x, t) = n0(x) = Tr(ρi n(x)).

1A response function is a retarded Green’s function. Our preferred choice of Green’s functions, for
which we developed diagrammatic non-equilibrium perturbation theory, is thus the proper physical
choice.
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The response function will then only depend on the time difference:

χ(x, t;x′, t′) = χ(x,x′; t− t′)

= − i

�
θ(t− t′)

∑
λλ′

(ρλ − ρλ′) 〈λ|n(x)|λ′〉〈λ′|n(x′)|λ〉e i
�
(ελ−ελ ′)(t−t′) . (6.17)

In linear response, each Fourier component contributes additively, so without loss
of generality we just need to seek the response at one driving frequency, say ω,

V (x, t) = Vω(x) e−iωt . (6.18)

For any ω in the the upper half plane, �m ω > 0, the applied potential vanishes in
the far past, V (t → −∞) = 0, and the state of the system in the far past becomes
smoothly independent of the applied potential. For ω real we are thus interested
in the analytic continuation from the upper half plane of the frequency-dependent
response function.

Since we shall be interested in steady-state properties, the time integration in
Eq. (6.11) can be performed by letting the arbitrary initial time ti be taken in the
remote past. By letting ti approach minus infinity, transients are absent, and there
is then only a linear density response at the driving frequency

δn(x, t) = n(x, t)− n0(x) = δn(x, ω) e−iωt . (6.19)

We obtain for the Fourier transform of the linear density response

δn(x, ω′) = δn(x, ω) δ(ω − ω′) , (6.20)

where
δn(x, ω) =

∫
dx′ χ(x,x′; ω)Vω(x′) (6.21)

and
χ(x,x′; ω) =

∑
λλ′

ρλ − ρλ′

ελ − ελ′ + �ω + i0
〈λ|n(x)|λ′〉〈λ′|n(x′)|λ〉 (6.22)

is the Fourier transform of the time-dependent linear response function for a steady
state. The positive infinitesimal stems from the theta function; i.e. causality causes
the response function χω ≡ χR

ω to be an analytic function in the upper half plane.
If the Hamiltonian H describes the dynamics of independent particles, the linear

response function becomes

χ(x,x′; t− t′) = − i

�
θ(t− t′)

∑
λλ′

(ρλ − ρλ′)e
i
�
(ελ −ελ ′)(t−t′)ψ∗

λ(x)ψλ′ (x)ψ∗
λ′ (x′)ψλ(x′)

(6.23)
where ψλ(x) = 〈x|λ〉 now denotes the energy eigenfunction of a particle correspond-
ing to the energy eigenvalue ελ, and ρλ the probability for its occupation. For the
Fourier transform we have

χ(x,x′; ω) =
∑
λλ′

ρλ − ρλ′

ελ − ελ′ + �ω + i0
ψ∗

λ(x)ψλ′ (x)ψ∗
λ′ (x′)ψλ(x′) . (6.24)
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Looking ahead to Eq. (D.22), we can express the Fourier transform of the density
response function in terms of the single particle spectral function (see Appendix D)

χ(x,x′; ω) =

∞∫
−∞

dE

2π

∞∫
−∞

dE′

2π

ρi(E′)− ρi(E)
E′ − E + �ω + i0

A(x,x′; E)A(x′,x, E′). (6.25)

Introducing the propagators for a single particle instead of the spectral functions

A(x,x′; E) = i
[
GR(x,x′, E)−GA(x,x′, E)

]
(6.26)

we have expressed the response function in terms of the single-particle propagators,
quantities we know how to handle well, as we have developed the diagrammatic
perturbation theory for them.2

6.1.2 Current response

In this section, we shall discuss the linear current response. We shall specifically
discuss the electric current response to an applied time-dependent electric field rep-
resented by a vector potential A:3

E = −∂A
∂t

, (6.27)

thereby in view of the preceding we have covered the general case of coupling to an
electromagnetic field.

Inserting the expression for the current density operator, Eq. (2.47), into the
linear response formula, Eq. (6.8), and recalling the perturbation, Eq. (2.51), the
average current density becomes to linear order

j(x, t) = Tr(ρ0(t) jA(t)(x, t)) =
i

�

t∫
ti

dt̄ Tr(ρ0(tr)[jp(x, t), HA(t̄)]) , (6.28)

where jp(x, t) is just the paramagnetic part of the current density operator in the
interaction picture with respect to H .

To linear order in the external electric field we therefore see that the current
density

jα(x, t) = Tr(ρ0(t) jp
α(x)) +

∑
β

∫
dx′

∞∫
ti

dt′ Qαβ(x, t;x′, t′)Aβ(x′, t′) (6.29)

is determined by the current response function

Qαβ(x, t;x′, t′) = Kαβ(x, t;x′, t′) − e2ρ0(x,x, t)
m

δαβ δ(x− x′) δ(t− t′) , (6.30)

2If the particles have coupling to other degrees of freedom the propagators are still operators
with respect to these, and a trace with respect to these degrees of freedom should be performed, as
discussed in Section 6.2.

3The case of representing the electric field as the gradient of a scalar potential can be handled
with an equal amount of labor and the treatments are equivalent by gauge invariance.
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where we have introduced the current-current response function

Kαβ(x, t;x′, t′) =
i

�
θ(t− t′) Tr(ρ0(tr) [jp

α(x, t), jp
β(x′, t′)])

≡ i

�
θ(t− t′)〈[jp

α(x, t), jp
β(x′, t′)]〉0 (6.31)

and Tr(ρ0(t)jp
α(x)) is a possible current density in the absence of the field. Here we

shall not consider superconductivity or magnetism, and can therefore in the following
assume that this term vanishes.

Assuming that we have a stationary state with respect to the unperturbed Hamil-
tonian before the external field is applied, the response function depends only on the
relative time

Kαβ(x, t;x′, t′) =
i

�
θ(t− t′)

∑
λλ′

(ρλ−ρλ′)〈λ|jp
α(x)λ′〉〈λ′|jp

β(x′)|λ〉e i
�
(ελ −ελ ′)(t−t′).

(6.32)

In linear response each frequency contributes additively so we just need to seek
the response at one driving frequency, say ω,

A(x, t) = A(x, ω) e−iωt . (6.33)

The time integration in Eq. (6.29) can then be performed by letting the arbitrary
initial time, ti, be taken in the remote past (letting ti approach minus infinity), and
we only get a current response at the driving frequency

jα(x, t) = jα(x, ω) e−iωt . (6.34)

For the Fourier transform of the current density we then have

jα(x, ω) = +
∑

β

∫
dx′ Qαβ(x,x′; ω)Aβ(x′, ω) + O(E2) , (6.35)

where

Qαβ(x,x′; ω) = Kαβ(x,x′; ω) − ρ0(x,x)e2

m
δαβ δ(x− x′) (6.36)

and

Kαβ(x,x′; ω) =
∑
λλ′

ρλ′ − ρλ

ελ − ελ′ + �ω + i0
〈λ|jp

α(x)λ′〉 〈λ′|jp
β(x′)|λ〉 . (6.37)

For the case of a single particle, the paramagnetic current density matrix element
is given by

〈λ|jp(x)|λ′〉 =
e�

2im
ψ∗

λ(x)

( →
∂

∂x
−

←
∂

∂x

)
ψλ′ (x) , (6.38)
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where the arrows indicate whether differentiating to the left or right. For a system
of independent particles, the response function then becomes

Kαβ(x,x′; ω) =
(

e�

m

)2 ∫ ∞

−∞

dE

2π

∫ ∞

−∞

dE′

2π

ρi(E′)− ρi(E)
E′ − E + �ω + i0

× [GR(x,x′; E)−GA(x,x′; E)]

×
↔
∇xα

↔
∇x′

β
[GR(x′,x, E′)−GA(x′,x, E′)] . (6.39)

We have introduced the abbreviated notation

↔
∇x=

1
2

( →
∂

∂x
−

←
∂

∂x

)
(6.40)

for the differential operator associated with the current vertex in the position repre-
sentation.

In the expression for the current response kernel we can perform one of the energy
integrations, and exploiting the analytical properties of the propagators half of the
terms are seen not to contribute, and we obtain for the current response function for
an electron gas (the factor of 2 accounts for spin)

Kαβ(x,x′, ω) = −2
(

e�

m

)2
∞∫

−∞

dE

2π
f0(E)

(
A(x,x′; E)

↔
∇xα

↔
∇x′

β
GA(x′,x; E − �ω)

+ GR(x,x′; E + �ω)
↔
∇xα

↔
∇x′

β
A(x′,x; E)

)
. (6.41)

Gauge invariance implies a useful expression for the longitudinal part of the cur-
rent response function, i.e. the current response to a longitudinal electric field,
∇×E = 0, viz.4

Kαβ(x,x′; ω = 0) =
e2ρ0(x,x, ω = 0)

m
δαβ δ(x− x′) (6.42)

and the longitudinal part of the current response function can be written in the form

Qαβ(x,x′; ω) = Kαβ(x,x′; ω) − Kαβ(x,x′; ω=0) . (6.43)

We can therefore express the longitudinal current density response solely in terms
of the paramagnetic response function

jα(x, ω) =
∑

β

∫
dx′ [Kαβ(x,x′; ω)−Kαβ(x,x′; ω=0)] Aβ(x′, ω) . (6.44)

4For a detailed discussion see chapter 7 of reference [1], and for its relation to the causal and
dissipative character of linear response see appendix E of reference [1].
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6.1.3 Conductivity tensor

Expressing the current density in terms of the electric field

jα(x, ω) =
∑

β

∫
dx′ σαβ(x,x′; ω)Eβ(x′, ω) + O(E2) (6.45)

introduces the conductivity tensor,

σαβ(x,x′; ω) =
Qαβ(x,x′; ω)

iω
(6.46)

or, equivalently for the longitudinal part,

σαβ(x,x′, ω) =
Kαβ(x,x′, ω)−Kαβ(x,x′, ω = 0)

iω
. (6.47)

We note that the conductivity tensor is analytic in the upper half plane as causality
demands, and as a consequence the real and imaginary parts are related through
principal value integrals, Kramers–Kronig relations,

�e σαβ(x,x′, ω) =
1
π

P

∞∫
−∞

dω′ �m σαβ(x,x′; ω′)
ω′ − ω

(6.48)

and

�m σαβ(x,x′, ω) = − 1
π

P

∞∫
−∞

dω′ �e σαβ(x,x′; ω′)
ω′ − ω

. (6.49)

The time average of the response function, Kαβ(x,x′; ω = 0), is a real function,
and we have (for ω real)

�e σαβ(x,x′; ω) = �e

(
−i

ω
Kαβ(x,x′;−ω)

)
=

1
ω
�m Kαβ(x,x′; ω) . (6.50)

The real part of the conductivity tensor for an electron gas is according to
Eq. (6.41) given by

�e σαβ(x,x′, ω) =
1
π

( e

m

)2
∞∫

−∞

dE
f0(E) − f0(E + �ω)

ω

× [GR(x,x′; E + �ω)−GA(x,x′; E + �ω)]

×
↔
∇xα

↔
∇x′

β
[GR(x′,x; E)−GA(x′,x; E)] . (6.51)

In the case where the electron gas in the absence of the applied field is in the thermal
state, only electrons occupying levels in the thermal layer around the Fermi surface
contribute to the real part of the longitudinal conductivity, as expected.
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6.1.4 Conductance

Often we are interested only in the total average current through the system (S
denotes a cross-sectional surface through the system)

I(ω) =
∫
S

ds · j(x, ω) (6.52)

and a proper description is in terms of the conductance, the inverse of the resistance.
Let us consider a hypercube of volume Ld, and choose the surface S perpendicular
to the direction of the current flow, say, the α-direction. In terms of the conductivity
we have (where dsα denotes the infinitesimal area on the surface S):

Iα(ω) =
∑

β

∫
S

dsα

∫
dx′ σαβ(x,x′, ω)Eβ(x′, ω) . (6.53)

Since the current, by particle conservation, is independent of the position of the
cross section we get

Iα(ω) = L−1

∫
dx j(x, ω) = L−1

∑
β

∫
dx
∫

dx′ σαβ(x,x′, ω)Eβ(x′, ω) . (6.54)

For the case of a spatially homogeneous external field in the β-direction, Eα(x, ω) =
δαβ E(ω), we have in terms of the applied voltage across the system, Vβ(ω) = E(ω)L,

Iα(ω) = Gαβ(ω) Vβ(ω) (6.55)

where we have introduced the conductance tensor

Gαβ(ω) = L−2

∫
dx
∫

dx′ σαβ(x,x′, ω) (6.56)

the inverse of the resistance tensor.
For a translational invariant state, the conductance and conductivity are related

according to

Gαβ(L) = Ld−2 σαβ(L) . (6.57)

6.2 Linear response of Green’s functions

The linear response of physical quantities can also, for a many-body system, con-
veniently be expressed in terms of the linear response of the single-particle Green’s
function as it specifies average quantities. For example, the average current density
can be expressed in terms of the kinetic component of the matrix Green’s function
(recall Eq. (3.83)), and we are therefore interested in its linear response. We repre-
sent the external electric field E by a time-dependent vector potential A according to
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Eq. (6.27), and not by a scalar potential; the two cases can be handled with an equal
amount of labor and are equivalent by gauge invariance. According to Eq. (2.51),
the linear coupling to the vector potential is through the coupling to the current
operator. The linear correction to the Green’s function for this perturbation is thus
represented by the diagram depicted in Figure 6.1.
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1

2

Figure 6.1 Linear response diagram for a propagator.

The vertex in Figure 6.1 consists of the diagrams produced by inserting the vector
potential coupling into any electron line in any diagram for the Green’s function in
question. For our interest, the Green’s function is the kinetic or Keldysh propagator,
as the labels 1 and 2 allude to in Figure 6.1, referring to the triagonal representation
of the matrix Green’s function. The resulting propagator to linear order in the vector
potential is denoted by δGK.

To get the current density, say for electrons, we insert the kinetic Green’s function
into the current density formula, Eq. (3.83), and assuming that the current density
vanishes in the absence of the field we obtain

j(x, t) =
e�

2m

(
∂

∂x
− ∂

∂x′

)
δGK(x, t,x′, t)

x′=x

+ i
e2

m
A(x, t)GK(x, t,x, t) . (6.58)

Recall, if the particles are coupled to other degrees of freedom, the propagators are
still operators with respect to these, and a trace with respect to these degrees of
freedom should be performed, resulting in the presence of vertex corrections corre-
sponding to insertion of the external vertex into all propagators.

According to the expression for the linear correction to the Green’s function, as
depicted in Figure 6.1, the propagator to linear order in the vector potential is

δGK(1, 1′) =
ie�

2m
Tr

τ1

∫
d2A(2) ·

(
∂

∂x2
− ∂

∂x2′

)
G(1, 2′)G(2, 1′)

2′=2

 , (6.59)
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if in the trace Tr we include the trace over interactions as well as meaning trace over
Schwinger–Keldysh indices. The matrix τ1 in Schwinger–Keldysh space insures that
the kinetic component is projected out at the measuring vertex.

For the conductivity tensor we then get in the triagonal matrix representation of
the Green’s functions

σαβ(ω) =
e2

�

2πω
Tr

τ1 1
V

∑
pp′

∞∫
−∞

dE pα p′β G(p+,p′
+, E + ω)G(p′

−,p−, E)

 − ne2

iωm
,

(6.60)
where n is, for example, the density of electrons, and p± = p±q and p′

± = p′±q, q
being the wave vector of the electric field. Here we have directly arrived at expressing
the response function, the conductivity, in terms of the single-particle propagators,
quantities we know how to handle well, as we have developed the diagrammatic
perturbation theory for them.5

Transport coefficients are thus represented by Feynman diagrams of the form
depicted in Figure 6.2, an infinite sum of diagrams captured in the conductivity
diagram.
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Figure 6.2 Linear response or conductivity diagram.

Different types of linear response coefficients correspond to the action of different
single-particle operators at the excitation and measuring vertices. The excitation ver-
tex is proportional to the unit matrix in the dynamical or Schwinger–Keldysh index
in the triagonal representation and the measuring vertex is attributed in the dynam-
ical indices the first Pauli matrix in order that the trace over the dynamical indices
picks out the kinetic component. As we discuss next, for the case of fermions the
high-energy contribution from the propagator term exactly cancels the diamagnetic
term in Eq. (6.60).

Let us consider the case where the electrons only interact with a random potential,
5If the particles have coupling to other degrees of freedom the propagators are still operators

with respect to these, and a trace with respect to these degrees of freedom should be performed.
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in which case the conductivity becomes

σαβ(ω) =
e2

�

2πω
Tr

τ1

∫
dE p · p′ 〈G(p,p′, E + ω)G(p′,p, , E)〉

 − ne2

iωm
, (6.61)

where the bracket means average with respect to the random potential. The quantity
to be impurity averaged is thus the product of two Green’s functions, as depicted in
Figure 6.3.

2

1

Figure 6.3 Propagator linear response diagram.

Denoting the first term on the right in Eq. (6.61) by Kαβ(q, ω), and unfolding the
trace in the dynamical indices it can explicitly be represented by the three terms6

Kαβ(q, ω) = KRA
αβ (q, ω) + KRR

αβ (q, ω) + KAA
αβ (q, ω) , (6.62)

where

KRA
αβ (q, ω) =

i

π

( e

m

)2 1
V

∑
pp′

∫ ∞

−∞
dE (f0(E) − f0(E + �ω))

× pα p′β〈GR(p+,p′
+; E + �ω)GA(p′

−,p−; E)〉 (6.63)

and

KRR
αβ (q, ω) = − i

π

( e

m

)2 1
V

∑
pp′

pα p′β

∫ ∞

−∞
dE f0(E)

× 〈GR(p+,p′
+; E + �ω)GR(p′

−,p−; E)〉 (6.64)

6Actually, the terms should be kept together under the momentum summation for reasons of
convergence. For clarity of presentation, however, we write the three terms separately.
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and

KAA
αβ (q, ω) =

i

π

( e

m

)2 1
V

∑
pp′

pα p′β

∫ ∞

−∞
dE f0(E)

× 〈GA(p+,p′
+; E)GA(p′

−,p−; E − �ω)〉 . (6.65)

In the first term integrations are limited to the Fermi surface and can be easily
performed. The two other terms are regular, having the poles of the product of
Green’s functions in the same half plane. The leading-order contribution from these
terms cancels exactly the density terms giving for a degenerate electron gas the
conductivity tensor

σαβ(q, ω) =
e2v2

F

π

∫ ∞

−∞
dE

f0(E)− f0(E + �ω)
ω

× 1
V

∑
pp′

p̂α p̂′β〈GR(p+,p′
+; E + �ω)GA(p′

−,p−; E)〉. (6.66)

The apparent singular ω-dependence is thus canceled which is no accident but, as
noted earlier, a consequence of gauge invariance.7

We shall make use of this formula in Chapter 11, where we discuss weak localiza-
tion.

Exercise 6.1. The classical conductivity of a disordered conductor corresponds to
including only the ladder diagrams for the impurity averaged vertex function, i.e. all
the diagrams of order (�/pFl)0,

p−E

p+E+

qω
=

p−E

p+E+

qω
+

p−E

p+E+

p′
−E

p′
+E+

qω
A

R

.

(6.67)

Analytically we have that the three-point vector vertex in the ladder approximation,
ΓL, satisfies the equation

ΓL
E(p,q, ω) = p + ni

∫
dp′

(2π�)3
|Vimp(p− p′)|2GR(p′

+, E+)GA(p′
−, E)ΓL

E(p′,q, ω).

(6.68)
7For details of the calculations regarding this point we refer the reader to chapter 8 of reference

[1].
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Consider the normal skin effect, where the wavelength of the electric field is much
larger than the mean free path, q l � 1.8 We can therefore set the wave vector of the
electric field q equal to zero in the propagators, and thereby in the vertex function
as its scale of variation consequently is the Fermi wave vector kF = pF/�.

Show that the classical conductivity is given by

σ(ω) =
σ0

1− iωτtr
, σ0 =

ne2τtr

m
(6.69)

where τtr ≡ τtr(εF) is the transport relaxation time

�

τtr(εF)
= 2πniN0

∫
dp̂′

F

4π
|Vimp(pF − p′

F
)|2(1 − p̂F · p̂′

F
) . (6.70)

In the following we shall assume that, prior to applying the perturbation, the
system is in its thermal equilibrium state. It is therefore of importance for the
relevance of linear response theory to verify that this is a stable state, i.e. weak fields
do not perturb a system out of this state, as will be shown in Section 6.4. But first we
establish the general properties of response functions satisfied in thermal equilibrium
states.

6.3 Properties of response functions

Response functions must satisfy certain relationships. In order to be specific, we
illustrate these relationships by considering the current response function. We have
already noted that causality causes the response function to be analytic in the upper
half ω-plane. The current response function therefore has the representation in terms
of the current spectral function, �mKαβ (the current response function vanishes in
the limit of large ω),

Kαβ(x,x′; ω) =
∫ ∞

−∞

dω′

π

�mKαβ(x,x′; ω′)
ω′ − ω − i0

. (6.71)

Since Kαβ(x, t;x′, t′) contains a commutator of hermitian operators multiplied by
the imaginary unit, it is real, and we have the property of the response function (ω
real)

[Kαβ(x,x′; ω)]∗ = Kαβ(x,x′;−ω) (6.72)

and the real part of the response function is even9

�eKαβ(x,x′;−ω) = �eKαβ(x,x′; ω) (6.73)

8For an applied field of wavelength much shorter than the mean free path, q 
 1/l, the corrections
to the bare vertex can be neglected.

9In the presence of a magnetic field B, we must also reverse the direction of the field, for example,
�mKαβ (x, x′; ω, B) = −�mKαβ (x,x′;−ω,−B).
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and the imaginary part is odd

�m Kαβ(x,x′;−ω) = − �mKαβ(x,x′; ω) . (6.74)

From the spectral representation, Eq. (6.37), we have

�mKαα(x,x; ω) = π
∑
λλ′

ρ(ελ)|〈λ| jp
α(x)|λ′〉|2 (δ(ελ−ελ′−�ω)− δ(ελ−ελ′+�ω)) .

(6.75)
For the thermal equilibrium state, where

ρ(ελ′) = ρ(ελ) e
ελ −ε

λ ′
kT (6.76)

we then obtain10

�m Kαα(x,x; ω) = π
(
1− e−�ω/kT

)∑
λλ′

ρ(ελ) |〈λ| jp
α(x)|λ′〉|2 δ(ελ − ελ′ + �ω).

(6.77)
For a state where the probability distribution, ρ(ελ), is a decreasing function of the
energy, such as in the case of the thermal equilibrium state, the imaginary part of
the diagonal response function is therefore positive for positive frequencies

�m Kαα(x,x; ω ≥ 0) ≥ 0 . (6.78)

For the imaginary part of the diagonal part of the response function K we therefore
have11

ω �mKαα(x,x, ω) ≥ 0 . (6.79)

From the spectral representation, Eq. (6.71), we then find that the real part of the
response function at zero frequency is larger than zero, �eKαα(x,x, ω = 0) > 0. The
diagonal part of the real part of the response function is therefore positive for small
frequencies. Since for large frequencies, the integral in Eq. (6.71) is controlled by
the singularity in the denominator, and as �mKαα(x,x, ω) is a decaying function,
the real part of the response function is negative for large frequencies, eventually
approaching zero.

6.4 Stability of the thermal equilibrium state

In this section we shall show that the thermal equilibrium state is stable; i.e. manip-
ulating the system by coupling its physical properties to a weak classical field that
vanishes in the past and future can only increase the energy of the system. The
average energy of a system is

E(t) = 〈H(t)〉 = Tr(ρ(t)H(t)) . (6.80)

10Note that the nature of the discussion is general; we already encountered the similar one for
the spectral weight function in Section 3.4.

11We stress the important role played by the canonical ensemble.
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The rate of change of the expectation value for the energy (the term appearing when
differentiating the statistical operator with respect to time vanishes, as seen by using
the von Neumann equation, Eq. (3.14), and the cyclic property of the trace),

dE

dt
= Tr

(
ρ(t)

dH

dt

)
= −

∫
dx Tr(ρ(t) jt(x)) · Ȧ(x, t) (6.81)

has the perturbation expansion in the time-dependent external field, A,

dE

dt
=

−i

�

∑
αβ

∫
dx
∫

dx′
t∫

ti

dt′ Ȧα(x, t) 〈[jp
α(x, t), jp

β(x′, t′)]〉0 Aβ(x′, t′)

−
∫

dx 〈jt(x)〉0 · Ȧ(x, t) +O(A3)

= −
∑
αβ

∫
dx
∫

dx′
∞∫

ti

dt′ Ȧα(x, t)Qαβ(x, t;x′, t′)Aβ(x′, t′)

−
∫

dx 〈jt(x)〉0 · Ȧ(x, t) +O(A3) . (6.82)

The dot signifies differentiation with respect to time. We recall that the equilibrium
current, 〈jt(x)〉0, is in fact time independent.

An external field therefore performs, in the time span between ti and tf , the work

W ≡ E(tf)− E(ti)

= −
∑
αβ

tf∫
ti

dt

∫
dx
∫

dx′
∞∫

ti

dt′ Ȧα(x, t)Kαβ(x, t;x′, t′)Aβ(x′, t′)

=
∑
αβ

tf∫
ti

dt

∫
dx
∫

dx′
∞∫

ti

dt′ Aα(x, t)
dKαβ(x, t;x′, t′)

dt
Aβ(x′, t′)

+ O(A3) . (6.83)

In the first equality we have noticed that the diamagnetic term in the response
function Q does not contribute. For the second equality we have assumed that the
vector potential vanishes in the past and in the future (i.e. the time average of the
electric field is zero), so that the boundary terms vanish, and we observe that in
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that case there is no linear contribution; to linear order the energy of the system is
unchanged.

For an isotropic system we have

Kαβ(x,x′, ω) = K(x, ω) δ(x − x′) δαβ (6.84)

and we obtain, in view of Eq. (6.79), the result that the mean change in energy of
the system to second order is positive

∆E ≡ W =
∫

dx

∞∫
−∞

dω

2π
ω�m K(x, ω)A(x, ω) ·A∗(x,−ω) ≥ 0 . (6.85)

Interacting weakly with the physical quantities of a system in thermal equilibrium
through a classical field, which vanishes in the past and in the future, can thus only
lead to an increase in the energy of the system; the energy never decreases. The
thermodynamic equilibrium state is thus a stable state.12

In the case of a monochromatic field

A(x, t) =
1
2
(
A(x, ω)e−iωt + A∗(x, ω)eiωt

)
= �e

(
A(x, ω) e−iωt

)
(6.86)

we have for the mean rate of change of the energy to second order in the applied
field, T ≡ 2π/ω,

dEω

dt

T

≡ 1
T

T∫
0

dt
dE

dt
=

−i

4�

1
T

∑
αβ

T∫
0

dt

t∫
ti

dt′
∫

dx
∫

dx′ Ȧα(x, t)

× 〈[jp
α(x, t), jp

β(x′, t′)]〉0 Aβ(x′, t′) (6.87)

as the diamagnetic term averages in time to zero. Turning the field on in the far
past, ti → −∞, we have in terms of the response function

dEω

dt

T

=
−iω

4

∑
αβ

∫
dx
∫

dx′ A∗
α(x, ω) (Kαβ(x,x′, ω)−Kβα(x′,x,−ω))Aβ(x′, ω)

=
ω

2

∑
αβ

∫
dx
∫

dx′ A∗
α(x, ω)�mKαβ(x,x′, ω)Aβ(x′, ω) . (6.88)

We can, according to Eq. (6.74), rewrite the average work performed by the external
field in the form

dEω

dt

T

=
∑

λ

�ω ρ(ελ) (Pλ(�ω)− Pλ(−�ω)) , (6.89)

12It is important to stress the crucial role of the canonical (or grand canonical) ensemble for the
validity of Eq. (6.79).
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where

Pλ(�ω) =
2π

�

∑
λ′

∣∣∣∣∣∣12
∫

dx 〈λ′| jp(x) ·A(x, ω)|λ〉

∣∣∣∣∣∣
2

δ(ελ − ελ′ + �ω) (6.90)

is Fermi’s Golden Rule expression for the probability for the transition from state λ to
any state λ′ in which the system absorbs the amount �ω of energy from the external
field, and Pλ(−�ω) is the transition probability for emission of the amount �ω of
energy to the external field. The equation for the change in energy is thus a master
equation for the energy, and we infer that the energy exchange between a system and
a classical field oscillating at frequency ω takes place in lumps of magnitude �ω.

At each frequency we have for the average work done on the system by the external
field:

dEω

dt

T

=
1
2

∑
αβ

∫
dx
∫

dx′ E∗
α(x, ω)�eσαβ(x,x′, ω)Eβ(x′, ω) , (6.91)

where we have utilized Eq. (6.50) to introduce the real part of the conductivity tensor.
For a translational invariant system we have

σαβ(x,x′, ω) = σαβ(x− x′, ω) =
1
V

∑
q

eiq·(x−x′) σαβ(q, ω) (6.92)

and we get for each wave vector

Eα(x, ω) = Eα(q, ω) eiq·x (6.93)

the contribution

dEqω

dt

T

=
V

2

∑
αβ

E∗
α(q, ω)�eσαβ(q, ω)Eβ(q, ω) . (6.94)

Each harmonic contributes additively, and we get for the average energy absorption
for arbitrary spatial dependence of the electric field the expression

dEω

dt

T

=
V

2

∑
αβ

∑
q

E∗
α(q, ω)�eσαβ(q, ω)Eβ(q, ω) . (6.95)

For an isotropic system the conductivity tensor is diagonal

σαβ(x,x′, ω) = δαβ σ(x− x′, ω) (6.96)

and we have
dEω

dt

T

=
V

2

∑
α

|Eα(q, ω)|2�eσαα(q, ω) . (6.97)
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For the spatially homogeneous field case, Eα(q �= 0, ω) = 0, we then obtain

dEω

dt

T

=
V

2

∑
α

|E∗
α(q = 0, ω)|2

∑
q

�e σαα(q, ω) . (6.98)

Since

1
V

∑
q

�e σαα(q, ω) = �e σαα(x,x, ω) =
1
ω
�mKαα(x,x, ω) ≥ 0 (6.99)

we obtain the result that, for a system in thermal equilibrium, the average change in
energy can only be increased by interaction with a weak periodic external field13

dEω

dt

T

≥ 0 . (6.100)

The thermal state is stable against a weak periodic perturbation.14

Considering the isotropic d.c. case we get directly from Eq. (6.91) the familiar
Joule heating expression for the energy absorbed per unit time in a resistor biased
by voltage U

dE

dt

T

=
1
2

GU2 =
1
2

R I2 , (6.101)

where R is the resistance, the inverse conductance, R ≡ G−1, and we have used the
fact that in the d.c. case the imaginary part of the conductance tensor vanishes.

The absorbed energy of a system in thermal equilibrium interacting with an ex-
ternal field is dissipated in the system, and we thus note that �e σ, or equivalently
�m K, describes the dissipation in the system.

6.5 Fluctuation–dissipation theorem

The most important hallmark of linear response is the relation between equilibrium
fluctuations and dissipation. We shall illustrate this feature by again considering the
current response function; however, the argument is equivalent for any correlation
function. We introduce the current correlation function in the thermal equilibrium
state

K̃
(j)
αβ (x, t;x′, t′) ≡ 1

2
〈{δjp

α(x, t), δjp
β(x′, t′)}〉0 , (6.102)

where
δjp

α(x, t) ≡ jp
α(x, t) − 〈jp

α(x, t)〉0 (6.103)

is the deviation from a possible equilibrium current, 〈jp(x, t)〉0, which in fact is inde-
pendent of time. However, for notational simplicity we assume in the following that

13In fact, from the positivity of �e σαα(q, ω) for arbitrary wave vector we find that the conclusion
is valid for arbitrary spatially varying external field.

14Since this result is valid at any frequency, we again obtain the result that a system in thermal
equilibrium is stable.
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the equilibrium current density vanishes. By taking the anti-commutator, we have
symmetrized the correlation function, and since the current operator is hermitian,
the correlation function is a real function.

Since the statistical average is with respect to the equilibrium state (for an arbi-
trary Hamiltonian H), we have on account of the cyclic property of the trace

K>
αβ(x, t;x′, t′) ≡ Tr

(
e−H/kT jp

α(x, t) jp
β(x′, t′)

)
≡ 〈jp

α(x, t) jp
β(x′, t′)〉0

= Tr
(
e−H/kT jp

β(x′, t′) jp
α(x, t + i�/kT )

)
= K<

αβ(x, t + i�/kT ;x′, t′) (6.104)

as we define

K<
αβ(x, t;x′, t′) ≡ Tr

(
e−H/kT jp

β(x′, t′) jp
α(x, t)

)
≡ 〈jp

β(x′, t′) jp
α(x, t)〉0 . (6.105)

We note the crucial role played by the assumption of a (grand) canonical ensemble.
We assume the canonical ensemble average exists for all real times t and t′, and

consequently K< is an analytic function in the region 0 < �m(t − t′) < �/kT , and
K> is analytic in the region −�/kT < �m(t − t′) < 0. For the Fourier transforms
we therefore obtain the relation

K>
αβ(x,x′; ω) = e−�ω/kT K<

αβ(x,x′; ω) . (6.106)

We observe the following relation of the commutator to the retarded and advanced
correlation functions

K>
αβ(x, t;x′, t′) − K<

αβ(x, t;x′, t′) = 〈[jp
α(x, t), jp

β(x′, t′)]〉0

= −i�
(
KR

αβ(x, t;x′, t′)−KA
αβ(x, t;x′, t′)

)
, (6.107)

where we have introduced the advanced correlation function

KA
αβ(x, t;x′, t′) = − i

�
θ(t′ − t) 〈[jp

α(x, t), jp
β(x′, t′)]〉0 (6.108)

corresponding to the retarded one appearing in the current response, Eq. (6.31),

KR
αβ(x, t;x′, t′) ≡ Kαβ(x, t;x′, t′) . (6.109)

Since the response function involves the commutator of two hermitian operators
we immediately verify that (for ω real)

K
R(A)
αβ (x,x′,−ω) = [KR(A)

αβ (x,x′, ω)]∗ . (6.110)

Analogous to Eq. (6.105) we have for the correlation function, the anti-commutator,

〈{jp
α(x, t), jp

β(x′, t′)}〉0 = K>
αβ(x, t;x′, t′) + K<

αβ(x, t;x′, t′) . (6.111)
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Using Eq. (6.105) we can rewrite

K̃
(j)
αβ (x,x′, ω) =

1
2

K>
αβ(x,x′, ω) (1 + e�ω/kT )

=
(

1
2

(
K>

αβ(x,x′, ω) + K<
αβ(x,x′, ω)

)
− 1

2

(
K>

αβ(x,x′, ω) − K<
αβ(x,x′, ω)

))

× 1
2

(1 + e�ω/kT ) (6.112)

and thereby15

K̃
(j)
αβ (x,x′, ω) =

(
KR

αβ(x,x′, ω) − KA
αβ(x,x′, ω)

)
�

2i
coth

�ω

2kT
. (6.113)

Using Eq. (6.113), and noting that for omega real (we establish this as a conse-
quence of time-reversal invariance in the next section)

KA
αβ(x,x′, ω) = [KR

αβ(x,x′, ω)]∗ (6.114)

we then get the relation between the correlation function and the imaginary part of
the response function

K̃
(j)
αβ (x,x′, ω) = � coth

�ω

2kT
�mKαβ(x,x′, ω) . (6.115)

We have established the relationship between the imaginary part of the linear re-
sponse function, governing according to Eq. (6.88) the dissipation in the system, and
the equilibrium fluctuations, the fluctuation–dissipation theorem.16

According to the fluctuation–dissipation theorem we can express the change in
energy of a system in an external field of frequency ω, Eq. (6.88), in terms of the
current fluctuations

dEω

dt

T

=
1

2�ω coth �ω
2kT

∑
αβ

∫
dx
∫

dx′ E∗
α(x, ω) K̃j

αβ(x,x′, ω)Eβ(x′, ω) . (6.116)

For the current fluctuations we have (recall Eq. (6.50))

1
2
〈{jp

α(x, ω), jp
β(x′,−ω)}〉 = K̃

(j)
αβ (x,x′, ω)

15If we introduced

KK
αβ (x, t;x′, t′) =

i

�
〈{δjp

α(x, t), δjp
β (x′, t′)}〉0 = 2

i

�
K̃

(j)
αβ (x, t;x′, t′)

we would be in accordance with the standard notation of the book.
16Formally the fluctuation–dissipation theorem expresses the relationship between a commu-

tator and anti-commutator canonical equilibrium average. The fluctuation–dissipation relation,
Eq. (6.115), is also readily established by comparing the spectral representation of the imaginary
part of the retarded current response function, Eq. (6.37), with that of K̃(j). The fluctuation–
dissipation relationship expresses that the system is in equilibrium and described by the canonical
ensemble.



172 6. Linear response theory

= �ω coth
�ω

2kT
�e σαβ(x,x′, ω) (6.117)

and the equal-time current fluctuations are specified by

K̃
(j)
αβ (x, t;x′, t) =

∞∫
−∞

dω

2π
K̃

(j)
αβ (x,x′, ω) = �

∞∫
−∞

dω

2π
coth

�ω

2kT
�mKαβ(x,x′, ω)

(6.118)
and Eq. (6.79) guarantees the positivity of the equal-time and space current density
fluctuations.

In a macroscopic description we have a local relationship between field and current
density, Ohm’s law,

jα(x, ω) = σαβ(x, ω)Eβ(x, ω) (6.119)

or equivalently
σαβ(x,x′, ω) = σαβ(x, ω) δ(x − x′) . (6.120)

The equilibrium current density fluctuations at point x are then specified by

〈j2
α〉xω ≡ 1

2V

∫
d(x− x′) 〈{jp

α(x, ω), jp
α(x′,−ω)}〉0

=
1
V

K̃(j)
αα(x, ω) =

1
V

�ω coth
�ω

2kT
�e σαα(x, ω) . (6.121)

We note that the factor

�ω

2
coth

�ω

2kT
= �ω

(
n(ω) +

1
2

)
(6.122)

is the average energy of a harmonic oscillator, with frequency ω, in the thermal state.
The average energy consists of a thermal contribution described by the Bose function,
and a zero-point quantum fluctuation contribution.

In the high-temperature limit where relevant frequencies are small compared to
the temperature, �ω � kT , we get for the current fluctuations in a homogeneous
conductor with conductivity σ, Johnson noise,

〈j2
α〉ω =

2kTσ

V
(6.123)

independent of the specific nature of the conductor.
In the linear response treatment we have assumed the field fixed, and studied the

fluctuations in the current density. However, fluctuations in the current (or charge)
density gives rise to fluctuations in the electromagnetic field as well. As an example
of using the fluctuation–dissipation theorem we therefore turn the point of view
around, and using Ohm’s law obtain that the (longitudinal) electric field fluctuations
are given by

〈E2
α〉xω =

1
|σ(x, ω)|2 〈j

2
α〉xω . (6.124)
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According to Eq. (6.121) we then obtain for the (longitudinal) electric field fluctua-
tions

〈E2
α〉xω =

1
V

�ω coth
�ω

2kT

�eσαα(x, ω)
|σαα(x, ω)|2 . (6.125)

In the high-temperature limit, �ω � kT , we have for the (longitudinal) electric
field fluctuations, Nyquist noise,

〈E2
α〉ω =

2kT

σV
. (6.126)

6.6 Time-reversal symmetry

Hermitian operators will by suitable phase choice have a definite sign under time
reversal: position and electric field have positive sign, and velocity and magnetic
field have negative sign.17 The following considerations can be performed for any
pair of operators (see Exercise 6.2), but we shall for definiteness consider the current
operator, and show that Eq. (6.114) is a consequence of time-reversal invariance.

In case the Hamiltonian is time-reversal invariant,(
T [jp

α(x, t), jp
β(x′, t′)] T †

)†
= [T jp

β(x′, t′)T †, T jp
α(x, t)T †]

= − [jp
α(x,−t), jp

β(x′,−t′)] (6.127)

and

〈ψ|[jp
α(x, t), jp

β(x′, t′)]|ψ〉 = 〈Tψ|T [jp
α(x, t), jp

β(x′, t′)]†T †|Tψ〉 , (6.128)

where |Tψ〉 is the time-reversed state of |ψ〉. Consequently,

Tr(ρ(H)[jp
α(x,−t), jp

β(x′,−t′)]) = −Tr(ρ(H)[jp
α(x, t), jp

β(x′, t′)]) (6.129)

and we therefore find that time-reversal invariance implies

KR
αβ(x,x′; ω) =

[
KA

αβ(x,x′; ω)
]∗

(6.130)

i.e. we have established Eq. (6.114).

Exercise 6.2. Consider two physical quantities represented by the operators A1(x, t)
and A2(x, t), which transform under time reversal according to

T Ai(x, t)T † = si Ai(x,−t) , si = ±1, i = 1, 2. (6.131)

Show that when the Hamiltonian is invariant under time reversal, the response func-
tion

Aij(x,x′, t− t′) ≡ Tr(ρ(H)[Ai(x, t), Aj(x′, t′)]) (6.132)
17For a discussion of time-reversal symmetry we refer the reader to chapter 2 of reference [1].



174 6. Linear response theory

satisfies the relations

Aij(x,x′, t− t′) = −sisjAij(x,x′, t′ − t) = sisjAij(x′,x, t− t′) (6.133)

and thereby18

Aij(x,x′, ω) = −sisjAij(x,x′,−ω) = sisjAij(x′,x, ω) . (6.134)

6.7 Scattering and correlation functions

In measurements on macroscopic bodies only very crude information of the micro-
scopic state is revealed. For example, in a measurement of the current only the
conductance is revealed and not any of the complicated spatial structure of the con-
ductivity. To reveal the whole structure of a correlation function takes a more indi-
vidualized source than that provided by a battery. It takes a particle source such as
the one used in a scattering experiment, using for example neutrons from a spallation
source.

In this section we shall consider transport of particles (neutrons, photons, etc.)
through matter. To be specific we consider the scattering of slow neutrons by a
piece of matter. A neutron interacts with the nuclei of the substance (all assumed
identical). The interaction potential is short ranged, and we take for the interaction
with the nucleus at position RN

19

V (rn −RN ) = a δ(rn −RN ) . (6.135)

We have thus neglected the spin of the nuclei (or consider the case of spin-less
bosons).20 For the interaction of a neutron with the nuclei of the substance we
then have

V (rn) =
∑
N

V (rn −RN) = a
∑
N

δ(rn −RN ) . (6.136)

The interaction is weak, and the scattering can be treated in the Born approximation.
For the transition rate between initial and final states we then have

Γfi =
2π

�
|〈f|
∑
N

V (r̂n − R̂N)|i〉|2 δ(Ef − Ei) . (6.137)

For simplicity we assume that the states of the substance can be labeled solely by
their energy

|i〉 = |p′, E
(i)
S 〉 = |p′〉|E(i)

S 〉 , |f〉 = |p, E
(f)
S 〉 = |p〉|E(f)

S 〉 , (6.138)

18If the Hamiltonian contains a term coupling to a magnetic field, the symmetry of the correlation
function is Aij (x, x′, ω,B) = −sisjAij (x, x′,−ω,−B) = sisjAji(x′,x, ω,−B).

19We thus exclude the possibility of any nuclear reaction taking place.
20However, it is precisely the magnetic moment of the neutron that makes it an ideal tool to

investigate the magnetic properties of matter. The subject of neutron scattering is thus vast, and
for a general reference we refer the reader to reference [21].
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where the initial and final energies are

Ef = E
(f)
S +

p2

2mn
, Ei = E

(i)
S +

p′2

2mn
(6.139)

and mn is the mass of the neutron. We introduce the energy transfer from the neutron
to the material

�ω =
p′2

2mn
− p2

2mn
= E

(f)
S − E

(i)
S (6.140)

and we have for the transition probability per unit time

Γfi =
2π

�
|〈p, E

(f)
S |a

∑
N

δ(r̂n − R̂N)|p′, E
(i)
S 〉|2 δ(E(f)

S − E
(i)
S − �ω) . (6.141)

Since the interaction is inelastic, the differential cross section of interest, d2σ/dp̂ dε,
is the fraction of incident neutrons with momentum p′ being scattered into a unit
solid angle dp̂ with energy in the range between ε and ε + dε. Noting that

∆p = p2 dp dp̂ = mn p dε dp̂ (6.142)

we obtain for the inelastic differential cross section for neutron scattering off the
substance

d2σ

dp̂ dε
=

m2
n L6

(2π�)3
p

p′
2π

�
|〈p, E

(f)
S |a

∑
N

δ(r̂n − R̂N )|p′, E
(i)
S 〉|2

× δ(E(f)
S − E

(i)
S − �ω) (6.143)

which we can express as

d2σ

dp̂ dε
=

m2
n a2

(2π�)3
p

p′
2π

�

∫
dx
∫

dx′ e−
i
�
(x−x′)·(p−p′)

∞∫
−∞

d(t− t′)
2π�

e−i(t−t′)ω

× 〈E(f)
S |n(x, t)|E(i)

S 〉〈E
(i)
S |n(x′, t′)|E(f)

S 〉 , (6.144)

where n(x, t) is the density operator for the nuclei of the material in the Heisenberg
picture with respect to the substance Hamiltonian ĤS.

Exercise 6.3. Show that, for scattering off a single heavy nucleus, M � mn, we
have for the total cross section

σ =
∫
4π

dp̂

∞∫
0

dε
d2σ

dp̂ dε
= 4π

(mn a

2π�2

)2

. (6.145)
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In the scattering experiment we know only the probability distribution for the
initial state of the material, which we shall assume to be the thermal equilibrium
state

ρS =
∑

λ

|ES(λ)〉P (ES(λ)) 〈ES(λ)| , (6.146)

where

P (ES(λ)) =
e−ES(λ)/kT

ZS
, HS |ES(λ)〉 = ES(λ) |ES(λ)〉 . (6.147)

For the transition rate weighted over the thermal mixture of initial states of the
substance we have

Γfp′ ≡
∑

λ

P (E(i)
S (λ)) Γfi

=
m2

n a2

(2π�)3
p

p′
2π

�

∑
λ

P (ES(λ))
∫

dx
∫

dx′
∞∫

−∞

d(t− t′)
2π�

e−i(t−t′)ω

× e−
i
�
(x−x′)·(p−p′)〈E(f)

S |n(x, t)|ES(λ)〉 〈ES(λ)|n(x′, t′)|E(f)
S 〉 (6.148)

and we obtain for the weighted differential cross section (we use the same notation)

d2σ

dp̂ dε
=

∑
λ

P (E(i)
S (λ))

d2σ

dp̂ dε

=
m2

n a2

(2π�)3
p

p′
2π

�

∑
λ

P (ES(λ))
∫

dx
∫

dx′
∞∫

−∞

d(t− t′)
2π�

e−i(t−t′)ω

× e−
i
�
(x−x′)·(p−p′)〈E(f)

S |n(x, t)|ES(λ)〉〈ES(λ)|n(x′, t′)|E(f)
S 〉 . (6.149)

Furthermore, in the experiment the final state of the substance is not measured,
and we must sum over all possible final states of the substance, and we obtain finally
for the observed differential cross section (we use the same notation)

d2σ

dp̂ dε
=

m2
n a2

(2π�)3
p

p′
2π

�

∫
dx
∫

dx′ e−
i
�
(x−x′)·(p′−p)

∞∫
−∞

d(t− t′)
2π�

ei(t−t′)ω

× 〈n(x, t)n(x′, t′)〉 , (6.150)

where the bracket denotes the weighted trace with respect to the state of the sub-
stance

〈n(x, t)n(x′, t′)〉 ≡ trS(ρS n(x, t)n(x′, t′)) . (6.151)
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We thus obtain the formula

d2σ

dp̂ dε
=

p

p′
m2

n a2

(2π�)3�2
V S(q, ω) (6.152)

where S(q, ω) is the Fourier transform of the space-time density correlation function
S(x, t;x′, t′) ≡ 〈n(x, t)n(x′, t′)〉, and �q ≡ p′ − p and �ω is the momentum and en-
ergy transfer from the neutron to the substance. We note that S(−q,−ω) = S(q, ω).
This correlation function is often referred to as the dynamic structure factor.21 The
dynamic structure factor gives the number of density excitations of the system with
a given energy and momentum. A scattering experiment is thus a measurement of
the density correlation function.

Exercise 6.4. Show that, for a target consisting of a single nucleus of mass M in
the thermal state, the dynamic structure factor is given by

S(q, ω) =
1
V

√
2πM

kTq2
e
− M

2kT q2

(
ω − �q2

2M

)
. (6.153)

For the differential cross section of a Boltzmann gas of N non-interacting nuclei
we have according to Eq. (6.153)

d2σ

dp̂ dε
= N

m2
n a2

(2π�)3
p

p′
2π

�
S(q, ω)

= N
m2

n a2

(2π�)3
p

p′
2π

�

∞∫
−∞

dt e−iωte−
q2

2M (t2kT−i�t) . (6.154)

Exercise 6.5. Show that the limiting behavior of the total cross section for a Boltz-
mann gas is

σ =
∫
4π

dp̂

∞∫
0

dε
d2σ

dp̂ dε

21We here follow the conventional notation, although in the standard notation of this chapter
we have S(x, x′, ω) = χ>(x, x′, ω). According to the fluctuation–dissipation theorem, the structure
function is related to the density response function according to S(x,x′, ω) = 2�n(ω)�m χ(x, x′, ω).
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=


4πN

(
mn a
2π�2

)2 2
√

π(1 + m n
M )2

√
M p ′2

2m 2
nkT

for Mp′2

2m2
nkT � 1

4πN
(

mn a
2π�2

)2 1

(1 + m n
M )2 for M p′2

2m2
nkT � 1 .

(6.155)

The divergent result for low energies is caused by the almost vanishing flux of in-
coming neutrons being scattered by the moving nuclei in the gas, and in the opposite
limit we recover the result for scattering off N free and non-interacting nuclei.

For a discussion of the liquid–gas transition, and the phenomenon of critical
opalescence we refer the reader to chapter 7 of reference [1].

6.8 Summary

The non-equilibrium states of a system which allows a description with sufficient
accuracy by taking into account only the linear response occupies an especially simple
regime. In fact, the non-equilibrium properties of such states could be completely
understood in terms of the fluctuations characterizing the equilibrium state. Since
the equilibrium state possesses universal properties, so does the dissipative regime of
ever so slight perturbations, a feature with many important practical consequences.
In Chapter 11 we shall return to study the linear response functions, the transport
coefficients or conductivities. In particular we shall study the electrical conductivity
of a disordered conductor in the quantum regime and take into account nonlinear
effects in an applied magnetic field. To discuss such intricacies we shall express
transport coefficients in terms of Green’s functions and thereby have the powerful
method of Feynman diagrams at our disposal. The density response function is
for a system of charged particles equivalent to the effective interaction as density
fluctuations are the source of the interaction. The effective interaction in a disordered
conductor is discussed in Chapter 11. In the next two chapters, we shall study general
non-equilibrium states, and universal properties are in general completely lost.
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Quantum kinetic equations

In this chapter, the quantum field theoretic method will be used to derive quantum
kinetic equations. The classical limit can be established, and quantum corrections
can be studied systematically. Of importance is the fact that the treatment allows
us to assess the validity regime of the kinetic equations by diagrammatic estimates.
The quasi-classical Green’s function technique is introduced. It will allow us to go
beyond classical kinetics and, for example, to discuss renormalization effects due to
interactions in a controlled approximation. Thermo-electric effects, being depending
on particle–hole asymmetry, are not tractable in the quasi-classical technique and
are dealt with on a separate basis.1

7.1 Left–right subtracted Dyson equation

In a non-equilibrium situation, the fluctuation–dissipation relation is no longer valid,
and the kinetic propagator, GK, is no longer specified by the spectral function and
the quantum statistics of the particles, as for example in Eq. (3.116). To derive
quantum kinetic equations the left and right matrix Dyson equation’s, Eq. (5.66)
and Eq. (5.69), are subtracted giving

[G−1
0 − Σ ⊗, G]− = 0 , (7.1)

the left–right subtracted Dyson equation. The reason behind this trick will soon
become clear. Here we have again used ⊗ to signify matrix multiplication in the spa-
tial and time variables, and introduced notation stressing the matrix multiplication
structure in these variables

[A ⊗, B]− = A⊗B −B ⊗A , [A ⊗, B]+ = A⊗B + B ⊗A , (7.2)

the latter anti-commutation notation to be employed immediately also. The general
quantum kinetic equation is obtained by taking the kinetic or Keldysh component,

1This chapter, as well and the following chapter, follows the exposition given in references [3]
and [9].
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the off-diagonal component, of equation Eq. (7.1) giving

[G−1
0 − �eΣ ⊗, GK]− − [ΣK ⊗, �eG]− =

i

2
[ΣK ⊗, A]+ − i

2
[Γ ⊗, GK]+ (7.3)

where we have introduced the spectral weight function

A(1, 1′) ≡ i(GR(1, 1′) − GA(1, 1′)) (7.4)

and2

�eG(1, 1′) ≡ 1
2
(GR(1, 1′) + GA(1, 1′)) (7.5)

and similarly for the self-energies

Γ(1, 1′) ≡ i(ΣR(1, 1′) − ΣA(1, 1′)) (7.6)

and
�eΣ(1, 1′) ≡ 1

2
(ΣR(1, 1′) + ΣA(1, 1′)) . (7.7)

The way we have grouped the self-energy combinations in Eq. (7.3) appears at the
moment rather arbitrary (compare this also with Section 5.7.4). Recall that A and Γ
can be expressed as A = i(G>−G<) and Γ = i(Σ>−Σ<) and appear on the right side,
whereas �eΣ and �eG are of a different nature. We shall later understand the physics
involved in this difference of appearance of the self-energies: those on the left describe
renormalization effects, i.e. effects of virtual processes, whereas those on the right
describe real dissipative collision processes. The presence of the self-energy entails
one having to deal with a complicated set of equations for an infinite hierarchy of
the correlation functions, the starting equation being the Dyson equation. Of course,
the general quantum kinetic equation is useless in practice unless an approximate
expression for the self-energy is available.

Notice that in equilibrium, say at temperature T , the exact quantum kinetic
equation is an empty statement since the Green’s functions are related according to
the fluctuation–dissipation relation, which for the case of fermions reads3

GK(E,p) =
(
GR(E,p) − GA(E,p)

)
tanh

E

2kT
(7.8)

and consequently

ΣK(E,p) =
(
ΣR(E,p) − ΣA(E,p)

)
tanh

E

2kT
. (7.9)

As a consequence, the two terms on the right in Eq. (7.3) cancel each other and the
terms on the left are trivially zero in an equilibrium state since the convolution ⊗ in
this case is commutative.

In a non-equilibrium situation, the fluctuation–dissipation relation is no longer
valid. Since a Green’s function is a traced quantity, a closed set of equations can

2The choice of notation reflects that in the Wigner or mixed coordinates, A and �eG will be
purely real functions as shown in Exercise 7.1 on page 182.

3Displayed for simplicity for the case of a translational invariant state.
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not be obtained, and one gets complicated equations for an infinite hierarchy of the
correlation functions. If one, preferably by some controlled approximation, can break
the hierarchy, usually at most at the two-particle correlation level, one obtains quan-
tum kinetic equations, i.e. equations having the form of kinetic equations, but which
contain quantum features which are not included in the classical Boltzmann equation
[22]. One of the earliest applications of the non-equilibrium Green’s function tech-
nique was to derive such kinetic equation [10] [14], though owing to their complicated
structure they leave in general little progress in their solution by analytical means.
However, as we shall see, combined with the diagrammatic estimation technique,
the enterprise has the virtue of giving access to quantitative criteria for the validity
of the so prevalently used Boltzmann equation, and thus not just the unquantified
statement of lowest-order perturbation theory.

We now embark on the manipulations leading to a form of the quantum kinetic
equation resembling classical kinetic equations. This is done by introducing Wigner
coordinates.

7.2 Wigner or mixed coordinates

To derive quantum kinetic equations resembling the form of classical kinetic equa-
tions, we introduce the mixed or Wigner coordinates

R =
x1 + x1′

2
, r = x1 − x1′ (7.10)

and time variables4

T =
t1 + t1′

2
, t = t1 − t1′ (7.11)

in order to separate the variables, (r, t), describing the microscopic properties, gov-
erned by the characteristics of the system, from the variables, (R, T ), describing the
macroscopic properties, governed by the non-equilibrium features of the state under
consideration, say as a result of the presence of an applied potential. To implement
this separation of variables, we Fourier transform all functions with respect to the
relative coordinates, say for a Green’s function

G(X, p) ≡
∫

dx e−ipx G(X + x/2, X − x/2) (7.12)

where the abbreviated notation has been introduced

X = (T,R) , x = (t, r) (7.13)

and
p = (E,p) , xp = −Et + p · r . (7.14)

We then express the current and density in terms of the mixed variables. The
average charge density, Eq. (3.54), becomes (the factor of two is from the spin of the

4No danger of confusion with the notation for the temperature should occur.
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particles, say electrons)

ρ(R, T ) = −2ie

∫
dp

(2π)3

∫ ∞

−∞
dE G<(E,p,R, T ) (7.15)

and the average electric current density in the presence of a vector potential A,
Eq. (3.57), becomes in terms of the mixed variables

j(R, T ) = − e

m

∫
dp

(2π)3

∫ ∞

−∞
dE (p− eA(R, T )) G<(E,p,R, T ) . (7.16)

Since

G< =
1
2
GK +

i

2
A (7.17)

the current and density can also be expressed in terms of the kinetic Green’s function

j(R, T ) = − e

m

∫
dp

(2π)3

∫ ∞

−∞
dE (p− eA(R, T )) GK(E,p,R, T ) (7.18)

and for the density (up to a state independent constant)

ρ(R, T ) = −2ie

∫
dp

(2π)3

∫ ∞

−∞
dE GK(E,p,R, T ) . (7.19)

Exercise 7.1. Show that, for an arbitrary non-equilibrium state, retarded and ad-
vanced Green’s functions in the mixed coordinates are related according to

(GR(R, T,p, E))∗ = GA(R, T,p, E) . (7.20)

As a consequence, the spectral function in the mixed coordinates is a real function,
and

(ΣR(R, T,p, E))∗ = ΣA(R, T,p, E) . (7.21)

Note that in the Wigner coordinates, the spectral function is twice the imaginary
part of the advanced Green’s function.

Exercise 7.2. Show for an arbitrary non-equilibrium state the spectral representa-
tion in the mixed coordinates, the Kramers–Kronig relations,

GR(A)(X, p) =
∫ ∞

−∞

dE′

−2πi

GR(X, p′)−GA(X, p′)
E − E′ +

(−) i0

=
∫ ∞

−∞

dE′

2π

A(X, p′)
E − E′ +

(−) i0
, p′ ≡ (p, E′) . (7.22)
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We now show that a convolution C = A⊗B in the mixed coordinates is given by

(A⊗B)(X, p) = e
i
2 (∂A

X ∂B
p −∂A

p ∂B
X ) A(X, p)B(X, p) , (7.23)

where
∂A

X = (−∂T ,∇R) , ∂A
p = (−∂E ,∇p) (7.24)

and

∂A
X ∂B

p ≡ − ∂A

∂T

∂B

∂E
+

∂A

∂R
· ∂B

∂p
(7.25)

and the upper index refers to the function operated on. Let us here for clarity
distinguish quantities in the mixed coordinates by a tilde

C̃(X, x) ≡ C(X + x/2, X − x/2) = C(x1, x1′) . (7.26)

Consider the convolution

C(x1, x1′) ≡
∫

dx2 A(x1, x2)B(x2, x1′) , (7.27)

which in mixed coordinates becomes

C̃(X, x) ≡
∫

dx2 A(X + x/2, x2)B(x2, X − x/2)

=
∫

dx2 Ã

(
1
2
(X + x/2 + x2), X + x/2− x2

)

B̃

(
1
2
(x2 + X − x/2), x2 − (X − x/2)

)
. (7.28)

Making the shift of variable

x2 → x2 − (X − x/2) (7.29)

eliminates the X-dependence in the variable at the relative coordinate place, giving

C̃(X, x) =
∫

dx2 Ã(X + x2/2, x− x2) B̃(X − x/2 + x2/2, x2) . (7.30)

In the mixed coordinates we have

C(X, p) =
∫

dx e−ixp

∫
dx2 Ã(X + x2/2, x− x2) B̃(X − x/2 + x2/2, x2)

=
∫

dx e−ixp

∫
dx2

∫
dp′

(2π)4
e−ip′(x−x2)A(X + x2/2, p′)

×
∫

dp′′

(2π)4
e−ip′′x2B(X − x/2 + x2/2, p′′) , (7.31)
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where in the last equality the integrand has been expressed in the mixed coordinates.
Performing a Taylor expansion and partial integrations then leads to Eq. (7.23).

In particular, for the case of interest of slowly varying perturbations, which cor-
responds to the lowest-order Taylor expansion, the convolution becomes

(A⊗B)(X, p) = A(X, p)B(X, p) +
i

2
(∂XA(X, p)) ∂pB(X, p)

− i

2
(∂pA(X, p)) ∂XB(X, p) . (7.32)

In the mixed coordinates, the operator part of the inverse Green’s function, G−1
0

of Eq. (3.68), becomes a simple multiplicative factor

G−1
0 (E,p,R, T ) = E − ξp − V (R, T ) , (7.33)

where V (R, T ) is an applied potential, and ξp = εp − µ is the single-particle energy
measured from the chemical potential, and for quadratic dispersion, such as the case
for the free electron model, εp = p2/2m.

7.3 Gradient approximation

To make progress towards an intelligible and tractable equation, one assumes that the
spatial and temporal inhomogeneity is weak, inducing only slow variations in Green’s
functions and self-energies.5 In the following we assume the non-equilibrium state is
induced by an applied potential, V (R, T ), which is a slowly varying function of its
variables compared to the characteristic scales of equilibrium Green’s functions and
self-energies.6 We shall, for example, have a degenerate Fermi system in mind, say
conduction electrons in a metal, where the characteristic scales are the Fermi energy
and momentum. This allows for the approximation where only lowest-order terms
in the variation is kept, the so-called gradient approximation. In this approximation
we thus have

[A ⊗, B]+ → 2A(X, p)B(X, p) (7.34)

and
−i[A ⊗, B]− → [A, B]p , (7.35)

where

[A, B]p = ∂A
XA∂B

p B − ∂A
p A∂B

XB

=
(
∂A

E ∂B
T − ∂A

T ∂B
E − ∇A

p · ∇B
R + ∇A

R · ∇B
p

)
A(X, p)B(X, p) ,

(7.36)
5If one is interested only in the linear response, such an assumption is not needed, but the gradient

approximation allows, in principle, inclusion of all the nonlinear effects of a slightly inhomogeneous
perturbation.

6The coupling to a vector potential will be handled in Section 7.6.
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and the subscript p on the bracket signifies its resemblance to the Poisson bracket of
classical mechanics.

In the gradient approximation, the quantum kinetic equation, Eq. (7.3), becomes

[G−1
0 − �eΣ, GK]p − [ΣK ⊗, �eG]p = iΣK A − iΓ GK . (7.37)

The first term on the left-hand side becomes, in the gradient approximation,

[G−1
0

⊗, GK]− → [G−1
0

⊗, GK]p

= ∂T GK(E,p,R, T ) + ∂E GK(E,p,R, T ) ∂T V (R, T )

+ ∇R GK(E,p,R, T ) · ∇p ξp −∇p GK(E,p,R, T ) · ∇R V (R, T ).
(7.38)

In fact, the first term is always exact, and so is the third term for the case of quadratic
dispersion.7 We note that they are identical in form to the driving terms in the
Boltzmann equation, whereas the last term on the right, which also appears in the
Boltzmann equation, here is valid only in the gradient approximation, i.e. the mag-
nitude of the characteristic wave vector of the potential, q, is small compared with
the characteristic wave vector of the system, which in the case of degenerate fermions
is the Fermi wave vector, q < kF (usually no restriction at all for transport situations
in degenerate Fermi systems). The second term on the right looks strange in the
Boltzmann context, but we shall soon integrate the equation over E, upon which
this term disappears.

Since in equilibrium a Poisson bracket vanishes, the kinetic equation reduces to

0 = ΣK(E,p) A(E,p) − Γ(E,p) GK(E,p) (7.39)

and this identity can be interpreted as the statement of determining the equilibrium
distribution function as the one for which the right-hand side, the collision integral,
vanishes.

7.3.1 Spectral weight function

To make further progress we study the spectral weight function. The equation of
motion for the spectral weight function is obtained by subtracting the diagonal com-
ponents of Eq. (7.1), giving

[G−1
0 − �eΣ ⊗, A]− − [Γ ⊗, �eG]− = 0 . (7.40)

In the gradient approximation, the non-equilibrium spectral function satisfies
(according to Eq. (7.40)) the equation

[E − ξp − V (R, T ) − �eΣR, A]p + [�eGR, Γ]p = 0 . (7.41)
7The first term is not dependent on the gradient approximation, but as usual is exact, simply

owing to the equation being first order in time, and similarly for the second term for the case of
quadratic dispersion.
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We note that

A(E,p,R, T ) =
Γ(E,p,R, T )(

E − ξp − V (R, T )−�eΣR(E,p,R, T )
)2

+
(

Γ(E,p,R,T )
2

)2 (7.42)

solves Eq. (7.41) since, because [A, B]p = −[B, A]p, and noting that

�e
(
GR(E,p,R, T )

)−1
= E − ξp − V (R, T ) − �eΣR(E,p,R, T ) , (7.43)

the left-hand side of equation Eq. (7.41) can then be rewritten in the form

−i

[
�e
(
GR
)−1 − i

2
Γ ,

(
�e
(
GR
)−1 − i

2
Γ
)−1

]
p

+ i

[
�e
(
GR
)−1

+
i

2
Γ ,

(
�e
(
GR
)−1

+
i

2
Γ
)−1

]
p

, (7.44)

which vanishes, since for any function F , we have [A, F (A)]p = 0. In the far past,
where the system is assumed undisturbed, i.e. V vanishes, the presented solution,
Eq. (7.42), reduces to the equilibrium spectral function

A(E,p) =
Γ(E,p)(

E − ξp −�eΣ(E,p)
)2

+ (Γ(E,p)/2)2
, (7.45)

which in this case can be obtained directly from Eq. (7.40). The solution Eq. (7.42)
is therefore the sought solution since it satisfies the correct initial condition.

Adding the left and right Dyson equations for the retarded non-equilibrium Green’s
function, and performing the expansion within the gradient approximation, Eq. (7.34),
we similarly obtain the result

GR(E,p,R, T ) =
1

G−1
0 (E,p,R, T ) − ΣR(E,p,R, T )

=
1

E − ξp − V (R, T ) − ΣR(E,p,R, T )
, (7.46)

and similarly for the advanced Green’s function.

7.3.2 Quasi-particle approximation

If the interaction is weak the self-energies are small, and the spectral weight function
is a peaked function in the variable E, in fact in the absence of interactions according
to Eq. (7.42)

A(E,p,R, T ) = 2π δ(E − ξp − V (R, T )) (7.47)
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and therefore is GK also a peaked function in the variable E. We first consider this
so-called quasi-particle approximation.8 In Section 7.5 we will consider the case of
strong electron–phonon interaction and the spectral weight can not be approximated
by a delta function, and a different approach to obtaining a kinetic equation must
be developed.

The reason for subtracting the left and right Dyson equations is that the term
linear in E in G−1

0 then disappears, thereby, in view of Eq. (7.47), allowing the
equation, Eq. (7.37), to be integrated with respect to this variable giving

(∂T + ∇p ξp · ∇R − ∇R V (R, T ) · ∇p) h(p,R, T )

= ΣK(E = ξp + V (R, T ),p,R, T )

− Γ(E = ξp + V (R, T ),p,R, T )h(p,R, T ) , (7.48)

where we have introduced the distribution function

h(p,R, T ) = −
∫ ∞

−∞

dE

2πi
GK(E,p,R, T ) . (7.49)

The two self-energy terms on the left in Eq. (7.37) must be neglected in this ap-
proximation since they are by assumption small and in addition multiplied by the
characteristic frequency, ω0, of the external potential which is small compared with
the characteristic frequency of the system, which in the case of degenerate fermions
is the Fermi energy, ω0 � εF. In the event that the left–right subtracted Dyson equa-
tion allows for integrating over E, equal time quantities appear, and the distribution
function is of the Wigner type, and is related similarly to densities and currents.9

In equilibrium the distribution function is for fermions given by

h0(p) = tanh
ξp

2kT
(7.50)

in which case the sum of the two terms on the right in Eq. (7.48) vanish. We shall
now focus on the terms on the right-hand side of equation Eq. (7.48), and realize
they describe collisions and dissipative effects.

Since the equation for the Green’s function is not closed we will eventually have
to make an approximation that cuts off the hierarchy of correlations. For states
not too far from equilibrium, this can be done at the level of self-energies if, for
example, vertex corrections can be shown to be small in some parameter, viz. the one
characterizing the equilibrium approximation. To this end we recall the usefulness
of the diagrammatic estimation technique.

8This is of course a most unfortunate choice of labeling used in the literature. The physical
implication of the approximation simply being that in between collisions, the particle motion is that
of a free particle.

9For a discussion of the Wigner function see chapter 4 of reference [1].
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7.4 Impurity scattering

We now start to consider interactions of relevance, and begin with the simplest
case; that of impurity scattering. In the clean limit where impurity scattering say of
electrons in a metal or semiconductor is weak, so that any tendency to localization in
a three-dimensional sample can be neglected, i.e. εF τ � �,10 diagrams with crossing
of impurity lines can be neglected, and the impurity self-energy is11

Σ(E,p,R, T ) ≡ pE
p′ERT

pE (7.51)

corresponding to the analytical expression for the real-time matrix self-energy

Σ(p, E,R, T ) = ni

∫
dp′

(2π�)3
|Vimp(p− p′)|2 G(p′, E,R, T ) . (7.52)

For the kinetic component of the self-energy we have

ΣK(p, E,R, T ) = ni

∫
dp′

(2π)3
|Vimp(p− p′)|2 GK(p′, E,R, T ) (7.53)

and

Γ(p, E,R, T ) = i(ΣR(p, E,R, T ) − ΣA(p, E,R, T ))

= ni

∫
dp′

(2π)3
|Vimp(p− p′)|2 A(p′, E,R, T ) . (7.54)

Since we work to lowest order in the impurity concentration, ni, the spectral weight
should be replaced by the delta function expression, and we obtain

(∂T +∇p ξp · ∇R − ∇R V (R, T ) · ∇p) h(p,R, T ) = I(1)[f ] (7.55)

where the right side, the electron-impurity collision integral, is

I(1)[f ] = −2πni

∫
dp′

(2π)3
|Vimp(p−p′)|2 δ(ξp−ξp′)(h(p,R, T )−h(p′,R, T )) . (7.56)

We have arrived at the classical kinetic equation describing the motion of a particle
in a weakly disordered system, the Boltzmann equation for a particle in a random

10In a strictly one-dimensional sample localization is typically dominant and in a two-dimensional
sample it is important at low enough temperatures. The first quantum correction to this classical
limit, the weak localization effect, is discussed in Chapter 11.

11For a detailed description of the standard impurity average Green’s function technique and
diagrammatic estimation, we refer the reader to reference [1], where also inclusion of multiple
impurity scattering is shown to be equivalent to the considered Born approximation by inclusion of
the t-matrix.
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potential. The derived equation is called a kinetic equation because the collision
integral is not a functional in time (or space), i.e. local in both the space and time
variables, and a functional only with respect to the momentum variable. The only
difference signaling we are considering the degenerate electron gas is the quantum
statistics, which dictates the distribution function to respect the Pauli principle, i.e
the equilibrium distribution is specified by Eq. (7.50).

The weak-disorder kinetic equation for a particle in a random potential is of course
immediately obtained from classical mechanics, granted a stochastic treatment of the
impurity scattering, giving the collision integral

I
(1)
t [f ] = −

∑
p′

{W (p′,p)f(p, t)−W (p,p′)f(p′, t)} , (7.57)

where W (p′,p) is the classical transition rate between momentum states, the classical
scattering cross section. In classical mechanics the distribution function concept is
unproblematic because we can simultaneously specify position and momentum, and
the terms on the left-hand side of Eq. (7.55) are simply the streaming terms in phase
space for the situation in question.

In the quantum case we have, in the Born approximation for the transition rate
between momentum states,

W (p′,p) =
2πni

�V
|Vimp(p− p′)|2 δ(εp′ − εp)

=
2π

�
niV |〈p|Vimp(x̂)|p′〉|2 δ(εp′ − εp) . (7.58)

We note that in the Born approximation we always have W (p′,p) = W (p,p′).12

We note that the expression W (p′,p) in Eq. (7.58) is Fermi’s Golden Rule ex-
pression for the transition probability per unit time from momentum state p to
momentum state p′ (or vice versa) caused by the scattering off an impurity, times
the number of impurities. The two terms in the collision integral thus have a sim-
ple interpretation because they describe the scattering in and out of a momentum
state. For example, the first term in the collision integral of the Boltzmann equation,
Eq. (7.56), is a loss term, and gives the rate of change of occupation of a phase space
volume due to the scattering of an electron from momentum p to momentum p′ by
the random potential. The probability per unit time of being scattered out of the
phase space volume around p, and into a volume around p′, is the product of three
probabilities: (the probability that an electron is in that phase space volume to be
available for scattering) × (the transition probability per unit time for the transition
from state p to p′) × (the probability that there is an impurity in the space volume
to scatter). Similarly we have the interpretation of the other term as a scattering-in
term.

The obtained equation is a quasi-classical equation because, in between collisions
with impurities, the electrons move along straight lines just as in classical mechan-

12In general, potential scattering is time-reversal invariant, and we always have W (p′,p) =
W (−p,−p′). If, in addition, the potential is invariant with respect to space inversion, we have
W (p′,p) = W (−p′,−p), and thereby W (p′,p) = W (p,p′).
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ics, but the scattering cross section is the quantum mechanical one.13 Besides the
inherent quantum statistics, this is the only quantum feature surviving in the weak
disorder limit, �/εFτ � 1, where τ is the characteristic time scale for the dynamics,
the momentum relaxation time, soon to be discussed. The presented diagrammatic
method for deriving transport equations is capable of going beyond the Markov pro-
cess described by the classical kinetic equation, to include quantum effects. One
can construct a kinetic equation determining the first quantum correction, the weak
localization effect, but it is easier to employ linear response theory as described in
Chapter 11.

Let us study the simplest non-equilibrium situation where the distribution is out
of momentum equilibrium for only a single momentum state on the Fermi surface

fp′(t) = f0(εp′) + δfp(t) δp,p′ (7.59)

and we assume no external fields. The Boltzmann equation then reduces to

∂δfp(t)
∂t

= −δfp

τp
(7.60)

whose solution describes the exponential relaxation to equilibrium

fp(t) = f0(εp) + δfp(t = 0) e−t/τp (7.61)

and the momentum relaxation time (which for the considered isotropic Fermi surface
does not depend on the direction of the momentum)

1
τ

=
∑

p′( �=p)

Wp′,p (7.62)

is seen to be identical to the imaginary part of the retarded self-energy for E = εF

1
τ

=
1

τ(εF)
= 2πni

∫
dp′

(2π)3
|Vimp(pF − p′)|2 δ(εp′ − εF) . (7.63)

We noted above that the collision integral rendered the kinetic equation a stochas-
tic equation for the momentum, Pauli’s master equation. In the case where τ(p) can
be considered independent of the momentum p, τ is the phenomenological parameter
of the Drude theory of conduction, and ∆t/τ(p) is, according to Eq. (7.61), the prob-
ability that an electron with momentum p in the time span ∆t will suffer a collision
with total loss of momentum direction memory. Such an assumption is not valid in
the quantum mechanical description as the scattering of a wave sets up correlations
that can not lead to a total memory loss in general, as we shall discuss in detail in
Chapter 11.

One might miss Pauli blocking factors in the expression for the collision integral,
Eq. (7.56), but they need not, as just shown, appear in the considered case of potential

13If we go beyond the considered Born approximation and include multiple scattering, we en-
counter the exact cross section for scattering off an impurity as expressed by the t-matrix. For a
discussion see chapter 3 in reference [1].
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scattering. If one uses the Kadanoff–Baym form of the kinetic equation, Eq. (5.136),
Pauli blocking factors would then appear in intermediate results. Another lesson to
learn is that the form of the appearance of the quantum statistics, here the Fermi–
Dirac distribution function or other forms, depends on the type of Green’s functions
one employs; a case in question is our choice leading to the distribution function in
Eq. (7.49) and Eq. (7.50).

For the sole purpose of obtaining the weak-disorder kinetic equation, the use of
quantum field theoretic methods and Feynman diagrams is hardly necessary. How-
ever, it allows us in a simple way to assess the validity criterion for the classical kinetic
description, and to go beyond the classical limit and study quantum corrections. In
view of the neglected diagrams, the validity of the Boltzmann equation requires
�/εFτ � 1, or equivalently pF � �/l, where l = vFτ is the mean free path.14 In
addition for the gradient approximation to be valid, the characteristic frequency and
wave vector of the perturbation must satisfy the weak restrictions �ω < εF, q < kF.
There can be some satisfaction in deriving the Boltzmann equation, in particular to
establish validity criteria, i.e. to establish the Landau criterion and not instead the
devastating for applications Peierls criterion, �ω < kT , which an argument based
on a simple quasi-particle picture would suggest. But for the sake of deriving clas-
sical kinetic equations, the venture into quantum field theory is over-kill. The more
so, that in practice it is difficult to go beyond the linear regime systematically and
study nonlinear effects. However, there exists a successful technique that leads to an
exception to this state of affairs, viz. the so-called quasi-classical Green’s function
technique. We consider this technique applied in the normal state in Section 7.5, and
its even more important application to superconductivity will be studied in Chapter
8.

Exercise 7.3. Show that the continuity equation is obtained by integrating the
kinetic equation, Eq. (7.55), with respect to the momentum variable.

For a discussion of the classical Boltzmann transport coefficients for a degenerate
Fermi system, electrical and thermal conductivities, we refer the reader to chapter 5 of
reference [1]. Here we just note that, for the case of a time-independent electric field,
the solution to the Boltzmann equation, Eq. (7.56), to linear order is immediately
obtained giving for the conductivity, σ0, the Boltzmann result

σ0 =
ne2τtr

m
(7.64)

where τtr ≡ τtr(εF) is the transport relaxation time in the Born approximation

�

τtr(εF)
= 2πniN0

∫
dp̂′

F

4π
|Vimp(pF − p′

F
)|2(1− p̂F · p̂′

F
) . (7.65)

The appearance of the transport time expresses the simple fact that small angle
scattering is not effective in degrading the current. For isotropic scattering the mo-
mentum and transport relaxation times are identical, as each scattering direction is

14 This so-called Landau criterion is not sufficient for the applicability of the Boltzmann equation
in low-dimensional systems, d ≤ 2. This is a subject we shall discuss in detail in Chapter 11.
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weighted equally. The transport relaxation time is the characteristic time a particle
can travel before the direction of its velocity is randomized.

Exercise 7.4. Show that the retarded impurity self-energy, Eq. (7.51), in equilibrium
and for |E − εF| � εF and |p− pF| � pF just becomes the constant

ΣR(E,p) = −i
�

2τ
(7.66)

where
�

τ
= 2πniN0

∫
dp̂′

F

4π
|Vimp(pF − p′

F
)|2 . (7.67)

For later use, we end this section on dynamics due to impurity scattering by
considering Boltzmannian motion and its large scale features, Brownian motion.

7.4.1 Boltzmannian motion in a random potential

In later chapters we shall discuss quantum corrections to classical transport. How-
ever, in many cases we often still need to know only the classical kinetics of the
particle motion. We therefore take this opportunity to discuss the Boltzmannian
motion of a particle scattered by impurities, although we shall not need these results
before we discuss destruction of phase coherence due to electron–phonon interaction
in Chapter 11. The Boltzmann theory is a stochastic description of the classical mo-
tion of a particle in a weakly disordered potential. At each instant the particle has
attributed a probability for a certain position and velocity (or momentum). In the
absence of external fields the Boltzmann equation for a particle in a random potential
has the form

∂f(x,p, t)
∂t

+ v·∂f(x,p, t)
∂x

= −
∫

dp′

(2π�)3
W (p,p′) [f(x,p, t)−f(x,p′, t)] , (7.68)

where we have introduced the notation v = vp = p/m for the particle velocity.
The Boltzmann equation is first order in time (the state of a particle is completely

determined in classical mechanics by specifying its position and momentum), and
the solution for such a Markov process can be expressed in terms of the conditional
probability F for the particle to have position x and momentum p at time t given it
had position x′ and momentum p′ at time t′

f(x,p, t) =
∫

dp̂′

4π

∫
dx′ F (x,p, t;x′,p′, t′) f(x′,p′, t′) . (7.69)

For elastic scattering only the direction of momentum can change, and consequently
we need only integrate over the direction of the momentum. In the absence of ex-
ternal fields the motion in between scattering events is along straight lines, and the
conditional probability describes how the particle by impurity scattering, is thrown
between different straight-line segments, i.e. a Boltzmannian path.
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We define the Boltzmann propagator as the conditional probability for the initial
condition that it vanishes for times t < t′, the retarded Green’s function for the
Boltzmann equation. The equation obeyed by the Boltzmann propagator is thus,
assuming isotropic scattering,(

∂

∂t
+ vp ·

∂

∂x
+

1
τ

)
F (p,x, t;p′,x′, t′) − 1

τ

∫
dp̂
4π

F (p,x, t;p′,x′, t′)

= δ̂(p̂− p̂′) δ(x − x′) δ(t− t′) , (7.70)

where δ̂ is the spherical delta function∫
dp̂′

4π
δ̂(p̂− p̂′) f(p′) = f(p) . (7.71)

The equation for the Boltzmann propagator is solved by Fourier transformation, and
we obtain

F (p,x, t;p′,x′, t′) =
∫

dq dω

(2π)4
eiq·(x−x′)−iω(t−t′) F (p,p′;q, ω) , (7.72)

where

F (p,p′;q, ω) =
1

−iω + p · q/m + 1/τ

(
1/τ

−iω + p′ · q/m + 1/τ
I(q, ω) + δ̂(p̂− p̂′)

)
(7.73)

and
I(q, ω) =

ql

ql− arctan ql/(1− iωτ)
, (7.74)

where l = vτ is the mean free path.
We note, by direct integration, the property

F (x,p, t;x′,p′, t′) =
∫

dp̂′′

4π

∫
dx′′ F (x,p, t;x′′,p′′, t′′)F (x′′,p′′, t′′;x′,p′, t′)

(7.75)
the signature of a Markov process.15 This property will be utilized in Section 11.3.1
in the calculation of the dephasing rate in weak localization due to electron–phonon
interaction.

7.4.2 Brownian motion

If we are interested only in the long-time and large-distance behavior of the particle
motion, |x − x′| � l, t − t′ � τ , the wave vectors and frequencies of importance in

15For a Markov process, the future is independent of the past when the present is known, i.e.
the causality principle of classical physics in the context of a stochastic dynamic system, here the
process in question is Boltzmannian motion.
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the Boltzmann propagator, Eq. (7.73), satisfy ql, ωτ � 1, and we obtain the diffusion
approximation

I(q, ω) � 1/τ

−iω + D0q2
, (7.76)

where D0 = vl/3 is the diffusion constant in the considered case of three dimensions
(and isotropic scattering). By Fourier transforming we find that, in the diffusion
approximation, the dependence on the magnitude of the momentum (velocity) in the
momentum directional averaged Boltzmann propagator appears only through the
diffusion constant, t > t′,

D(x, t;x, t′) ≡
∫

dp̂dp̂′

(4π)2
F (p,x, t;p′,x′, t′) =

∫
dqdω

(2π)4
eiq·(x−x′)−iω(t−t′)

−iω + D0q2

=
e−(x−x′)2/4D0(t−t′)

(4πD0(t− t′))d/2
. (7.77)

This diffusion propagator describes the diffusive or Brownian motion of the particle,
the conditional probability for the particle to diffuse from point x′ to x in time span
t − t′, described by the one parameter, the diffusion constant. The absence of the
explicit appearance of the magnitude of the velocity reflects the fact that the local
velocity is a meaningless quantity in Brownian motion.

Exercise 7.5. Show that

〈x2〉t,x′,t′ ≡
∫

dx x2 D(x, t;x′, t′) = x′2 + 2dD0(t− t′) , (7.78)

where the d on the right-hand side is the spatial dimension.

If we are interested only in the long-time and large-distance behavior of the Boltz-
mannian motion we can, as noted above, get a simplified description of the classical
motion of a particle in a random potential. We are thus not interested in the zigzag
Boltzmannian trajectories, but only in the smooth large-scale behavior. It is instruc-
tive to relate the large-scale behavior to the velocity (or momentum) moments of the
distribution function, and the corresponding physical quantities, density and current
density. Expanding the distribution function on spherical harmonics

f(x,p, t) = f0(εp,x, t) + p · f(εp,x, t) + · · · (7.79)

we have the particle current density given in terms of the first moment

j(x, t) =
1
m

∫
dp

(2π�)3
p p · f(εp,x, t) =

1
3m

∫
dp

(2π�)3
p2 f(εp,x, t) (7.80)

and the density given in terms of the zeroth moment

n(x, t) =
∫

dp
(2π�)3

f0(εp,x, t) . (7.81)
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Taking the spherical average

〈. . .〉 ≡
∫

dp̂
4π

. . . (7.82)

of the force-free Boltzmann equation, Eq. (7.68), we obtain the zeroth moment equa-
tion

∂f0(εp,x, t)
∂t

+
p2

3m
∇x · f(εp,x, t) = 0 . (7.83)

Integrating this equation with respect to momentum gives the continuity equation

∂n(x, t)
∂t

+ ∇x · j(x, t) = 0 . (7.84)

This result is of course independent of whether external fields are present or not.
This is seen directly from the Boltzmann equation by integrating with respect to
momentum as we have the identity∫

dp̂
4π

Ix,p,t[f ] = 0 (7.85)

simply reflecting that the collision integral respects particle conservation.
Taking the first moment of the Boltzmann equation, 〈p . . .〉,∫

dp̂
4π

p
(

∂f(x,p, t)
∂t

+ vp ·
∂f(x,p, t)

∂x
− Ix,p,t[f ]

)
= 0 (7.86)

we obtain the first moment equation

p2

3

(
∂

∂t
+

1
τ(εp)

)
f(x,p, t) +

p2

3m

∂f0(x,p, t)
∂x

= 0 , (7.87)

where we have repeatedly used the angular average formulas∫
dp̂
4π

pα pβ =
p2

3
δαβ ,

∫
dp̂
4π

pα pβ pγ = 0 . (7.88)

We have thus reduced the kinetic equation to a closed set of equations relating the
two lowest moments of the distribution function, f0 and f , and we get the equation
satisfied by the zeroth moment f0:(

∂

∂t
+

1
τ(εp)

)
∂f0(x,p, t)

∂t
− p2

3m2
xf0(x,p, t) = 0 . (7.89)

In a metal the derivatives of the zeroth harmonic of the distribution function for
the conduction electrons, ∂tf0(εp,x, t) and ∆xf0(εp,x, t), are peaked at the Fermi
energy, and we can use the approximations∫

dp
(2π�)3

p2∆xf0(εp,x, t) � p2
F

∫
dp

(2π�)3
∆xf0(εp,x, t) (7.90)
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and ∫
dp

(2π�)3

(
∂

∂t
+

1
τ(εp)

)
∂f0(εp,x, t)

∂t
�
(

∂

∂t
+

1
τ

)
∂n(x, t)

∂t
, (7.91)

where as usual τ ≡ τ(εpF
). Assuming only low-frequency oscillations in the density,

ωτ � 1, ∣∣∣∣∂2n

∂t2

∣∣∣∣ � 1
τ

∣∣∣∣∂n

∂t

∣∣∣∣ (7.92)

and we obtain from Eq. (7.89) the continuity equation on diffusive form(
∂

∂t
−D0x

)
n(x, t) = 0 . (7.93)

Since ∇xf0(εp,x, t) is peaked at the Fermi energy, we can use the approximation∫
dp

(2π�)3
p2∇xf0(εp,x, t) � p2

F

∫
dp

(2π�)3
∇xf0(εp,x, t) (7.94)

and assuming only low-frequency current oscillations∣∣∣∣∂j(x, t)
∂t

∣∣∣∣ � 1
τ
|j(x, t)| (7.95)

we obtain from the first moment equation, Eq. (7.87), the diffusion expression for
the current density

j(x, t) = −D0
∂n(x, t)

∂x
. (7.96)

If we assume that the particle is absent prior to time t′, at which time the particle
is created at point x′, the diffusion equation, Eq. (7.93), gets a source term, and we
obtain for the conditional probability or diffusion propagator D(x, t;x′, t′)

n(x, t) =
∫

dx′ D(x, t;x′, t′)n(x′, t′) (7.97)

the equation (
∂

∂t
−D0x

)
D(x, t;x′, t′) = δ(x− x′) δ(t− t′) (7.98)

with the initial condition

D(x, t;x′, t′) = 0 , for t < t′ . (7.99)

We can solve the equation for the diffusion propagator, the retarded Green’s function
for the diffusion equation, by referring to the solution of the free particle Schrödinger
Green’s function equation, Eq. (C.24), and letting it → t, and �/2m → D0, and we
obtain

D(x, t;x′, t′) = θ(t− t′)
e
− (x−x′)2

4D0(t−t′)

(4πD0(t− t′))d/2
. (7.100)
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Exercise 7.6. Show that the Diffuson or diffusion propagator has the path integral
representation

D(x, t;x′, t′) =

xt =x∫
xt′=x′

Dxt̄ e−SE [xt̄ ] =

xt =x∫
xt′=x′

Dxt̄ e−
∫ t

t′ dt̄ LE(ẋt̄ ) (7.101)

where the Euclidean action SE [xt̄] is specified by the Euclidean Lagrangian

LE(ẋt) =
ẋ2

t

4D0
. (7.102)

The probability density of diffusive paths is therefore given by

PD[xt̄] ≡ e−SE [xt̄ ] = e
−
∫

t
t′ dt̄

ẋ2
t̄

4D0 . (7.103)

Note that the velocity entering the above Wiener measure is not the local velocity
but the velocity averaged over Boltzmannian paths.16

Exercise 7.7. Show that, for a diffusing particle, we have the Gaussian property for
the characteristic function

< eiq·(x(t)−x(t′)) >D =

∫
Dxt̄ PD[xt̄] eiq·(x(t)−x(t′))∫

Dxt̄ PD[xt̄]
= e−D0q2|t−t′| . (7.104)

Exercise 7.8. Consider the Diffuson or diffusion propagator specified by the ladder
diagrams

DE(q, ω) = +

R

A

E+p′′
+

Ep′′
−

p+ p′
+

p−
′ p−

+

R

A

E+p′′
+

Ep′′
−

p−
′

p+
R

A

E+p′′′
+

Ep′′′
−

p−

p′
+

+ · · ·

= u2


1 +

R

A

E+p′′
+

Ep′′
−

p+

p−
′

16In terms of diagrams the Diffuson is given by the impurity ladder diagrams; see Exercise 7.8
and chapter 8 of reference [1].
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+

R

A

E+p′′
+

Ep′′
−

p−
′

p+
R

A

E+p′′′
+

Ep′′′
−

+ · · ·


. (7.105)

Show that for ql, ωτ � 1, E � εF, the Diffuson exhibits the diffusion pole

D(q, ω) ≡ τu−2 DE(q, ω) =
1

−iω + D0q2
, (7.106)

where D0 = v2
Fτ/d is the diffusion constant in d dimensions.

7.5 Quasi-classical Green’s function technique

When particles interact there can be strong dependence of the self-energy on the
energy variable E, as in the case of electron–phonon interaction in strong coupling
materials, say as in a metal such as lead, which is the type of system we for exam-
ple shall have in mind in this section. The employed quasi-particle approximation
Eq. (7.47) is not valid and the structure in the spectral weight, Eq. (7.45), must be
respected, leaving no chance of simplicity by integrating over the energy variable E,
i.e. of obtaining equations involving only equal-time Green’s functions.

There exists a consistent and self-contained approximation scheme for a degen-
erate Fermi system, valid for a wide range of phenomena, that does not employ the
restrictive quasi-particle approximation. It is called the quasi-classical approxima-
tion.17 The electron–phonon interaction can lead to an important structure in the
self-energy, i.e. in �eΣ and Γ, as a function of the variable E. In contrast, as noted
by Migdal, the momentum dependence is very weak as a consequence of the phonon
energy being small compared with the Fermi energy [25]. The spectral weight func-
tion thus becomes a peaked function of the momentum, and we shall exploit this
peaked character.

The left–right subtraction trick dismissed the strong linear E-dependence in the
inverse propagator G−1

0 , and similarly its strong momentum dependence, its ξp-
dependence, ξp = εp − µ. It therefore allows, when there is only weak momentum
dependence of the self-energy, i.e. short-range effective interaction, which is typi-
cally the case for electronic interactions, integration over the variable ξp, so-called
ξ-integration. The peaked character of the spectral weight in the variable ξ will, in
conjunction with multiplying other quantities, restrict their momentum dependence
to the Fermi surface. We shall therefore consider the ξ-integrated Green’s function

17This scheme was first applied by Prange and Kadanoff in their treatment of transport phenomena
in the electron–phonon system [23]. It was later extended to describe transport in superfluid systems
by Eilenberger [24], the topic of the next chapter.
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or quasi-classical Green’s function18

g(R, p̂, t1, t1′) =
i

π

∫
dξ G(R,p, t1, t1′) . (7.107)

We note that care should be exercised with respect to ξ-integration, since the in-
tegrand is not well behaved for large values of ξ, falling off only as 1/ξ. The ξ-
integration should be understood in the following sense of deforming the integration
contour as depicted in Figure 7.1: the ξ-integration is split into a low- and high-
energy contribution, and only the low-energy contribution is important in the kinetic
equation since high-energy contributions do not contribute.

= 1
2 +1

2

Figure 7.1 Splitting in high- and low-energy contributions.

The semicircles are specified by a cut-off energy Ec, which is chosen much larger than
the Fermi energy. The remaining high-energy contribution to the Green’s function
does not depend on the non-equilibrium state, i.e. it is a constant, and therefore
drops out of the left–right subtracted Dyson equation. We immediately return to
this point again when expressing physical quantities, such as average currents and
densities in terms of the quasi-classical Green’s function, and later in Section 8.3 to
provide a less formal and more physical understanding of the quasi-classical Green’s
function.

Let us first determine measurable quantities in terms of the quasi-classical Green’s
function, say density and currents, in the presence of an electromagnetic field (A, ϕ).
The charge density becomes, in terms of the quasi-classical Green’s function,

ρ(R, T ) = −1
2
eN0

∫
dp̂
4π

∫
dE gK(E, p̂,R, T ) − 2e2N0 ϕ(R, T ) , (7.108)

where N0 is the density of states at the Fermi energy, and the current density is given
by

j(R, T ) = −1
2
eN0

∫
dp̂
4π

∫
dE vF gK(E, p̂,R, T ) . (7.109)

18Here and in the following, we assume for simplicity a spherical Fermi surface. For a general
Fermi surface one decomposes according to

dp

(2π)3
=

dξp̂

vF

dsF

(2π)3
,

where dξp̂/vF is the length of the momentum increment measured from the Fermi surface in the
directions ±p̂, and dsF is the corresponding Fermi surface area element.
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The ξ-integration does not respect the proper order of integrations, momentum in-
tegration being last because of the convergence property of the Green’s function.
We thus encounter the high energy contribution to the density, the second term on
the right in Eq. (7.108), whereas in the current density the high-energy contribution
cancels the term proportional to the vector potential, the so-called diamagnetic term.
We observe, as discussed in Section 6.2, that as far as the high-energy contributions
are concerned, the analysis and their calculation is equivalent to their appearance
in linear response expressions.19 The high-energy contributions also follow from the
gauge transformation properties of the Green’s function.

7.5.1 Electron–phonon interaction

Here we apply the quasi-classical technique to the case of strong electron–phonon
interaction, thereby obtaining the kinetic equation for the electrons that includes the
renormalization effects.

Let us first make sure that the electron–phonon self-energy is susceptible to ξ-
integration, i.e. it can be expressed solely in terms of the ξ-integrated Green’s func-
tion or quasi-classical Green’s function. Migdal’s theorem states that the electron–
phonon self-energy diagrams for the electron Green’s function where phonon lines
cross are small in the parameter ωD/εF, where ωD is the typical phonon energy, i.e.
vertex corrections are negligible [25].20 In this approximation, which indeed is a good
one in metals, with an accuracy of order 1%, the electronic self-energy is represented
by a single skeleton diagram as depicted in Figure 7.2.

1 1′

Figure 7.2 Electron–phonon self-energy.

or analytically for the lowest order in ωD/εF contribution to the electron self-energy

Σ(e−ph)
ij (1, 1′) = ig2 γk

ii′ Gi′j′(1, 1′)Dkk′ (1, 1′) γ̃k′

j′j . (7.110)

In the mixed coordinates with respect to the spatial coordinates we get (suppressing

19A detailed discussion of this is given in chapters 7 and 8 of reference [1].
20The demonstration of Migdal’s theorem is quite analogous to that of crossing impurity diagrams

being small. Crossing lines result in propagators having restriction on the momentum range for which
they provide a large contribution. Contributions from such diagrams thus become small owing to
phase space restrictions. In the case of electron–phonon interaction, the range is set by the typical
phonon energy. For details on diagram estimation see chapter 3 of reference [1].
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the arguments on the left (R,p, t1, t1′))21

Σ(e−ph)
ij = ig2 γk

ii′

∫
dp′

(2π)3
Gi′j′(R,p′, t1, t1′)Dkk′ (R,p− p′, t1, t1′) γ̃k′

j′j . (7.111)

The momentum integration can be split into integrations over angular (or in general
Fermi surface) and length of the momentum measured from the Fermi surface∫

dp
(2π)3

=
∫

dξ N(ξ)
∫

dp̂
4π

= N0

∫
dξ

∫
dp̂
4π

(7.112)

and the last equality is valid when particle–hole symmetry applies.22 Using the fact
that the Debye energy is small compared with the Fermi energy,23 the various electron
Green’s function are tied to the Fermi surface, and we obtain the electron–phonon
matrix self-energy expressed in terms of the quasi-classical matrix electron Green’s
function

σ
(e−ph)
ij (R, p̂, t1, t1′) =

λ

4
γk

ii′

∫
dp̂′gi′j′ (R, p̂′, t1, t1′)Dkk′ (R, pF(p̂− p̂′), t1, t1′)γ̃k′

j′j ,

(7.113)

where λ = g2N0 is the dimensionless electron–phonon coupling constant. The matrix
components of the matrix self-energy are therefore

σ
R(A)
e−ph(R, p̂, t1, t1′) =

λ

8

∫
dp̂′
(
gK(R, p̂′, t1, t1′)DR(A)(R, pF(p̂− p̂′), t1, t1′)

+ gR(A)(R, p̂′, t1, t1′)DK(R, pF(p̂− p̂′), t1, t1′)
)

(7.114)

and

σK
e−ph(R, p̂, t1, t1′) =

λ

8

∫
dp̂′(gR(R, p̂′, t1, t1′)DR(R, pF(p̂− p̂′), t1, t1′)

+ gA(R, p̂′, t1, t1′)DA(R, pF(p̂− p̂′), t1, t1′)

+ gK(R, p̂′, t1, t1′)DK(R, pF(p̂− p̂′), t1, t1′)) (7.115)

or equivalently

σK
e−ph =

λ

8

∫
dp̂′ ((gR − gA)(DR − DA) + gKDK

)
(7.116)

21In the case of impurity scattering, the self-energy is expressed in terms of the quasi-classical
Green’s function according to

σimp(E, R, T ) = − i

2τ

∫
dp̂′

4π
g(p̂′, E,R, T ) ,

where the high-energy cut-off is provided by the momentum dependence of the impurity potential,
providing necessary convergence.

22Or rather, owing to this step the quasi-classical approximation is unable to account for effects
due to particle–hole asymmetry.

23Or equivalently, the sound velocity is small compared with the Fermi velocity.
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since

gR(t1, t1′)DA(t1, t1′) = 0 = gA(t1, t1′)DR(t1, t1′) . (7.117)

Utilizing the peaked character of the electron spectral weight function in the ξ-
variable, the momentum dependence of the self-energy can be neglected, and the
left–right subtracted Dyson equations, Eq. (7.1), can be integrated with respect to
ξ, giving the quantum kinetic equation[

g−1
0 + i�eσ ◦, gK

]
−

= 2iσK − i
[
(σR − σA) ◦, gK

]
+

, (7.118)

where
g−1
0 (R, p̂, t1, t1′) = g−1

0 (R, p̂, t1) δ(t1 − t1′) (7.119)

and

g−1
0 (R, p̂, t1) = ∂t1 + vF · (∇x1 − ieA(R, t1)) + ieφ(R, t1)−

e2

2m
A2(R, t1). (7.120)

Here vF = pF/m, the Fermi velocity, specifies the Fermi surface direction, and ◦
implies matrix multiplication in the time variable. We have considered the case
where, say, the electrons in a metal are subject to electromagnetic fields.

From the spectral representation

GR(A)(E,p,R, T ) =
∫ ∞

−∞

dE′

2π

A(E′,p,R, T )
E − E′ +

(−) i0
(7.121)

it follows that ξ-integrating �eG gives a state independent constant and the last
term on the left-hand side in Eq. (7.3) vanishes upon ξ-integration.

The form of g−1
0 follows from the following observation where for definiteness we

focus on the scalar potential term. First transform to the mixed spatial coordinates

ϕ(x1, t1)G(x1, t1,x1′ , t1′) = ϕ(R + r/2, t1)G(R, r, t1, t1′) . (7.122)

Since the Green’s function G(R, r) is a wildly oscillating function in the relative
coordinate r, the function is essentially zero when r � k−1

F , and since we shall
assume that the scalar potential is slowly varying on the atomic length scale we have

ϕ(x1, , t1)G(x1, t1,x1′ , t1′) � ϕ(R)G(R, r, t1, t1′). (7.123)

It can be instructive to perform the equivalent argument on the Fourier-transformed
product giving (being irrelevant for the manipulations, the time variables are sup-
pressed)

ϕ(R + r/2)G(R, r) =
∫

dkdPdp ei(R·P+r·p) ϕ(k)G(P − k,p− k/2) , (7.124)

where the shifts of variables, P + k → P and P + k/2 → p, have been performed.
The quasi-classical approximation consists of the weak assumption that the external
perturbation only has Fourier components for wave vectors small compared with the
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Fermi wave vector, k � kF, so that G(P−k,p−k/2) � G(P−k,p), again leading to
the stated result, Eq. (7.123). In the quasi-classical approximation the effect of the
Lorentz force is lost, and for a perturbing electric field we might as well transform
to a gauge where the vector potential is absent. This is the price paid for the quasi-
classical approximation, which is less severe in the superconducting state, and we will
return to effects of the Lorentz force in the normal state in Section 7.6. However, we
note that the influence on the phase of the Green’s function is fully incorpotated in
the quasi-classical approximation, a fact we shall exploit when considering the weak
localization effect in Chapter 11.

A simplification which arises in the normal state, and should be contrasted with
the more complicated situation in the superconducting state to be discussed in Sec-
tion 8.2.3, is the lack of structure in the ξ-integrated retarded and advanced Green’s
functions

gR(A)(R, p̂, t1, t1′) = +
(−) δ(t1 − t1′) , gR(A)(R, p̂, E, T ) = +

(−) 1 (7.125)

and they thus contain no information since particle–hole asymmetry effects are ne-
glected, i.e. the variation of the density of states through the Fermi surface is ne-
glected. This fact leaves the quantum kinetic equation, Eq. (7.118), together with
the self-energy expressions a closed set of equations for gK.

We emphasize again that in obtaining the quasi-classical equation of motion only
the degeneracy of the Fermi system is used, restricting the characteristic frequency
and wave vectors to modestly obey the restrictions

q � kF , ω � εF . (7.126)

These criteria are well satisfied for transport phenomena in degenerate Fermi systems.
In contrast to the performed approximation for the convolution in space due to

the degeneracy of the Fermi system, there is in general no simple approximation
for the convolution in the time variables. Two different approximation schemes are
immediately available: one consists of linearization with respect to a perturbation
such as an electric field, allowing frequencies restricted only by the Fermi energy,
ω < εF, to be considered, but of course restricted to weak fields. The other assumes
perturbations to be sufficiently slowly varying in time that a lowest-order expansion
in the time derivative is valid

[A ◦, B]− � ∂A
EA∂B

T B − ∂A
T A∂B

E B . (7.127)

For definiteness, we shall employ the second scheme here. In order to reduce the
general quantum kinetic equation, Eq. (7.118), to a simpler looking transport equa-
tion, we introduce the mixed coordinates with respect to the temporal coordinates
and perform the gradient expansion in these variables giving

((1− ∂e�eσ)∂T + ∂T�eσ ∂E + vF · ∇R + e∂T ϕ∂E) gK = Ie−ph , (7.128)

where the collision integral is

Ie−ph = 2iσK − γgK , (7.129)
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where

γ = i(σR − σA) . (7.130)

The two terms in the collision integral constitute the scattering-in and scattering-out
terms, respectively. According to Eq. (7.114) and Eq. (7.116) they are determined
by (space and time variables suppressed)

γ(E, p̂) = −π

∫
dp̂′

4π

∫
dE′ µ(pF(p̂− p̂′), E − E′)

(
coth

E′ − E

2T
− h(E′, p̂′)

)
(7.131)

and

iσK
e−ph(E, p̂) = −π

∫
dp̂′

4π

∫
dE′µ(pF(p̂− p̂′), E − E′)

(
h(E′, p̂′) coth

E′ − E

2T
− 1
)

,

(7.132)

where we have introduced the distribution function

h(E, p̂,R, T ) =
1
2

gK(E, p̂,R, T ) (7.133)

and

µ(q, E) =
iN0|gq|2

2π
(DR(E,q) − DA(E,q)) (7.134)

is the Eliashberg spectral weight function. Here we have allowed for a more gen-
eral longitudinal electron–phonon coupling than the jellium model. The coupling is
denoted gq, corresponding to momentum transfer q. The connection to the jellium
model is |gq| = g

√
ωq/2, where ωq = cq is the energy of a phonon with momentum

q, c being the sound velocity.
We have further assumed that the phonons are in thermal equilibrium at temper-

ature T ,24 and have therefore used the fluctuation–dissipation relation for bosons,
Eq. (5.103),

DK(E,p) =
(
DR(E,p) − DA(E,p)

)
coth

E

2kT
. (7.135)

We note that the variables in the distribution function are quite different from
that of the classical Boltzmann equation for electron–phonon interaction, which is
the Wigner coordinates (p,R, T ). Here an energy variable and a position on the
Fermi surface appear separately (besides space and time). This feature of the quasi-
classical equation reflects the fact that we do not rely on a definite relation between

24This is not necessary, but would otherwise lead to the requirement of considering the kinetic
equation for the phonons also. For typical transport situations in a metal, the approximation, viz.
considering the phonons a heat reservoir, is applicable.
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the energy and momentum variables as is the case in the quasi-particle approximation
of Section 7.3.2.

Introducing the Fermi and Bose type distribution functions

f(E, p̂,R, T ) =
1
2

(
1− h(E, p̂,R, T )

)
(7.136)

and
n(E) = −1

2

(
1− coth

E

2kT

)
(7.137)

the collision integral takes the more familiar form

Ie−ph = −2π

∫
dp̂′

4π

∫
dE′ µ(pF(p̂− p̂′), E − E′) REp̂

E′p̂′ , (7.138)

where

REp̂
E′p̂′ = (1 + n(E − E′))f(E, p̂)(1 − f(E′, p̂′))

− n(E − E′)(1− f(E, p̂))f(E′, p̂′) . (7.139)

Finally, introducing a gauge invariant distribution function by the substitution

f(E) → f(E − ϕ(R, T )) (7.140)

we obtain the quantum kinetic equation

((1− ∂E�eσ)∂T + ∂T�eσ ∂E + vF · (∇R + eE(R, T )) ∂E) f = Ie−ph[f ] ,

(7.141)

where E(R, T ) = −∇Rϕ(R, T ) is the perturbing electric field. We note that the
self-energy terms on the right-hand side in the kinetic equation describe collision
processes, and we now turn to show that the self-energies on the left describe renor-
malization effects, in particular mass renormalization due to the electron–phonon
interaction.

From the kinetic equation, Eq. (7.141), Prange and Kadanoff [23] drew the con-
clusion that many-body effects can be seen only in time-dependent transport prop-
erties and that static transport coefficients, such as d.c. conductivity and thermal
conductivity are correctly given by the usual Boltzmann results. However, there is a
restriction to the generality of this statement, viz. that in deriving the quasi-classical
equation of motion particle–hole symmetry was assumed. Within the quasi-classical
scheme, all thermoelectric coefficients therefore vanish, and no conclusion can be
drawn about many-body effects on the thermo-electric properties. In Section 7.6.1,
we shall by not employing the quasi-classical scheme consider how thermo-electric
properties do get renormalized by the electron–phonon interaction.
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7.5.2 Renormalization of the a.c. conductivity

As an example of electron–phonon renormalization of time-dependent transport co-
efficients we shall consider the a.c. conductivity in the frequency range ωτe−ph � 1,
where 1/τe−ph is the clean-limit electron–phonon scattering rate for an electron on
the Fermi surface

1
τ(εF, T )

=


7πζ(3)

2 λ (kT )3

�(pFc)2 kT � 2pFc

2πλkT
�

kT � 2pFc

(7.142)

ζ being Riemann’s zeta function.25 For definiteness we also consider the temperature
to be low compared to the Debye temperature θD. In this high-frequency limit the
collision integral can be neglected and the linearized kinetic equation takes the simple
form

(1 − ∂E�eσ)∂T h + ∂T�eσ ∂Eh0 + evF · E(T ) ∂Eh0 = 0 (7.143)

for a spatially homogeneous electric field. Except for a real constant, just renormal-
izing the chemical potential, we have according to the Feynman rules

�eσ =
1
2
N0

∫
dp̂′

4π

∫
dE′ |gpF−p′

F
|2 h(E′, p̂′,R, T )�eD(pF − p′

F, E − E′) , (7.144)

where gpF−p′
F

denotes the electron–phonon coupling, and

�eD =
1
2
(DR + DA) . (7.145)

For an applied monochromatic field, E(t) = E0 exp{−iωt}, the solution can be
sought in the form

h1 = aeE · vF∂E h0 , (7.146)

where the constant a remains to be determined. Inserting Eq. (7.146) into the kinetic
equation we obtain

a =
1

−iω(1 + λ∗)
, (7.147)

where

λ∗ = 2N0

∫
dp̂′

4π

∫
dE′ |gpF−p′

F|2

ωpF−p′
F

(1− p̂ · p̂′) . (7.148)

The current can now be evaluated and we obtain for the frequency dependence
of the conductivity

σ(ω) =
ne2

−iωmopt
(7.149)

25For a calculation of the collision rate see Exercise 8.8 on page 237 and Section 11.3.1, and, for
example, chapter 10 of reference [1].
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where the optical mass is renormalized according to

mopt = m(1 + λ∗) (7.150)

a result originally obtained by Holstein using a different approach, viz. linear response
theory [26]. We note that it is the non-equilibrium electron contribution to the real
part of the self-energy that makes the optical mass renormalization different from
the specific heat mass renormalization, m → (1+λ)m (see also the result of Exercise
8.8 on page 237).

As a consequence of electron–phonon interaction, the physically observed mass of
the electron is not the mass or band structure effective mass of the electron, but it has
been changed owing to the interaction.26 Furthermore, we note that the magnitude
of the mass renormalization depends on how the system is probed, the optical mass
being different from the specific heat mass.

7.5.3 Excitation representation

The quasi-classical theory leads to equations which are more general than the Boltz-
mann equation, and the kinetic equation looks quite different. We have shown that
the basic variables, besides space and time, are the energy variable and the momen-
tum position on the Fermi surface. Although the electron–phonon interaction does
not permit the quasi-particle approximation a priori, we recapitulate the deriva-
tion of reference [23] showing that it is still possible to cast the electron–phonon
transport theory into the standard Landau–Boltzmann form. We start by defining a
quasi-particle energy Ep, which is defined implicitly by (we suppress the space-time
variables and use the short notation Ep = E(p,R, T ))

Ep = ξp + �eσ(Ep + eϕ(R, T ), p̂,R, T ) (7.151)

thereby satisfying the equations

∇pEp = Zp∇pξp (7.152)

and
∇REp = Zp(e∇Rϕ∂E�eσ +∇R�eσ)

E=Ep+eϕ(R,T )

(7.153)

and
∂T Ep = Zp(e∂T ϕ∂E�eσ + ∂T�eσ)

E=Ep+eϕ(R,T )

(7.154)

where in Eq. (7.151), assuming for simplicity a spherical Fermi surface, any angular
dependence of the real part of the self-energy has been neglected, and the so-called

26Thus interaction causes renormalization of observable quantities. This point of view is the
rationale for avoiding the ubiquitous infinities occurring in quantum field theories such as QED,
and being taken to an extreme since there the unobservable bare mass (and the bare coupling
constant, the bare electron charge) is taken, it turns out, to be infinite in order to provide the finite
and accurate predictions of QED by phenomenologically introducing the observed mass and charge.
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wave-function renormalization constant

Zp = (1− ∂E�eσ)−1

E=Ep+eϕ(R,T )

(7.155)

has been introduced.
The energy variable E in the kinetic equation is now set equal to Ep + eϕ and

we introduce the distribution function (again suppressing the space-time variables)

np = f(E, p̂,R, T )

E=Ep+eϕ(R,T )

. (7.156)

Using the relations
∇pn = ∇pEp(∂Ef)

E=Ep+eϕ(R,T )

(7.157)

and
∇R n = (∇Rf +∇R(Ep + eϕ(R, T ))∂Ef)

E=Ep+eϕ(R,T )

(7.158)

and
∂T n = (∂T f + ∂T (Ep + eϕ(R, T ))∂Ef)

E=Ep+eϕ(R,T )

(7.159)

and Eqs. (7.152–7.154), we obtain the kinetic equation of the form

Z−1
p (∂T +∇pEp · ∇R −∇R(Ep + ϕ(R, T )) · ∇p)n(p,R, T ) = Ĩe−ph (7.160)

with the electron–phonon collision integral

Ĩe−ph = − 2π

N0

∫
dp′

(2π)3
Zp′ µ̃(p− p′)Rp̂

p̂′ , (7.161)

where

Rp̂
p̂′ = (1 + N(Ep − Ep′))np(1 − np′) − N(Ep − Ep′)(1 − np)np′ (7.162)

and

µ̃(p− p′) =
iN0|gp−p′|2

2π
(DR(p−p′, Ep −Ep′)−DA(p−p′, Ep −Ep′)) . (7.163)

In transforming the collision integral we have utilized the substitution

N0

∫
dp̂
4π

∫
dE → N0

∫
dp̂
4π

∫
dξp

dEp

dξp
→
∫

dp
(2π)3

Zp . (7.164)

Since the sound velocity is much smaller than the Fermi velocity, the phonon
damping is negligible, and the phonon spectral weight function has delta function
character

µ̃(p− p′) = N0|gp−p′|2(δ(Ep − Ep′ − ωp−p′) − δ(Ep − Ep′ + ωp−p′)) . (7.165)
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The kinetic equation can then be written in the final form

(∂T +∇pEp · ∇R −∇R(Ep + ϕ(R, T )) · ∇p)n(p,R, T ) = Ie−ph , (7.166)

where the electron–phonon collision integral is

Ie−ph = −2π

∫
dp′

(2π)3
Zp Zp′ |gp−p′ |2 Rp̂

p̂′ (δ(Ep − Ep′ − ωp−p′).

− δ(Ep − Ep′ + ωp−p′)) . (7.167)

This has the form of the familiar Landau–Boltzmann equation, except for the fact
that the transition matrix elements are renormalized.

We stress that only the quasi-classical approximation was used to derive the above
kinetic equation. In particular, we have not assumed any relation between the life-
time of a electron in a momentum state at the Fermi surface and the temperature.
This would have been necessary for invoking a quasi-particle description in order
to justify the existence of long-lived electronic momentum states. It has thus been
established from microscopic principles that the validity of the Landau–Boltzmann
description of the electron–phonon system is determined not by the Peierls criterion
(stating the upper bound is not the Fermi energy but the temperature), but by the
Landau criterion

�

τ(εF, T )
� εF . (7.168)

This is of importance for the validity of the Boltzmann description of transport in
semiconductors, for which the Peierls criterion would be detrimental.

7.5.4 Particle conservation

That an approximation for the quasi-classical Green’s function respects conservation
laws, say particle number conservation, is not in general as easily stated as for the
microscopic Green’s function. We therefore establish it here explicitly. The collision
integral, Eq. (7.167), has the invariant∫

dp
(2π)3

Ie−ph = 0 , (7.169)

which we shall see expresses the conservation of the number of particles, here the
electrons in question. Integrating the kinetic equation, Eq. (7.166), with respect to
momentum we obtain the continuity equation

∂T n + ∇R · j = 0 , (7.170)

where

n(R, T ) = 2
∫

dp
(2π)3

n(p,R, T ) (7.171)
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and

j(R, T ) = 2
∫

dp
(2π)3

∇pEp n(p,R, T ) (7.172)

are the Landau–Boltzmann expressions for the density and current density and the
factor of two accounts for the spin of the electron.

In order to establish that these are indeed the correctly identified densities (in
the excitation representation), we should connect one of them with the microscopic
expression. Assuming that |eϕ| � εF, the microscopic expression for the density,
Eq. (7.108), is (suppressing space-time variables in quantities, here in ϕ)

n(R, T ) = −2N0

∫
dp̂
4π

∫ ∞

−∞
dE f(E + eϕ,p) . (7.173)

In order to compare the density expression in the particle representation with the
excitation representation we transform Eq. (7.171) to the particle representation

n(R, T ) = 2
∫

dp
(2π)3

n(p,R, T ) = 2N0

∫
dp̂
4π

∫ ∞

−∞
dE (1 − ∂E�eσ) f(E, p̂). (7.174)

Since Eq. (7.173) and Eq. (7.174) appear to be different, Eq. (7.172) is also trans-
formed to the particle representation

2
∫

dp
(2π)3

∇pEp n(p,R, T ) = 2N0

∫
dp̂
4π

∫ ∞

−∞
dE vF f(E, p̂) . (7.175)

Comparing the expression in Eq. (7.175) to that of Eq. (7.109), we observe that it
is identical to the quasi-classical current-density expression. The only possibility for
the above-mentioned apparent discrepancy not to lead to a violation of the continuity
equation is the existence of the identity

∂T

∫
dp̂
∫ ∞

−∞
dE f(E, p̂) ∂E�eσ = 0 (7.176)

which we now prove. Inserting the expression from Eq. (7.144) into the left side of
Eq. (7.176) we are led to consider∫

dp̂
∫

dE

∫
dp̂′
∫

dE′ |gpF−p′
F
|2 (�eD(pF − p′

F
, E − E′)

∂T f(E, p̂) ∂E′f(E′, p̂′) − ∂Ef(E, p̂) ∂T f(E′, p̂′)) = 0 (7.177)

which by interchanging the variables E, p̂ and E′, p̂′ is seen to vanish, and the identity
Eq. (7.176) is thus established. We have thus established that the approximations
made do not violate particle conservation.
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7.5.5 Impurity scattering

For electrons interacting with impurities in a conductor, the self-energy is given by
the diagram in Eq. (7.51), εF τ � �, and we can immediately implement the quasi-
classical approximation. The equation for the kinetic component of the quasi-classical
Green’s function in the presence of an electric field becomes

(∂T + vF · ∇R + e∂T ϕ∂E) gK = −1
τ
gK(E, p̂,R, T ) +

∫
dp̂
4π

gK(E, p̂,R, T ) ,

(7.178)

where for simplicity we have assumed that the momentum dependence of the impurity
potential can be neglected.

In the diffusive limit the quasi-classical kinetic Green’s function will be almost
isotropic, and an expansion in spherical harmonics needs to keep only the s- and
p-wave parts

gK(E, p̂,R, T ) = gK
s (E,R, T ) + p̂ · gK

p (E,R, T ) (7.179)

and
|p̂ · gK

p | � |gK
s | . (7.180)

Inserting into the kinetic equation we get the relation

gK
p (E,R, T ) = −l∇R gK

s (E,R, T ) (7.181)

and using the expressions for the current and density, Eq. (7.108) and Eq. (7.109),
we obtain their relationship

j(R, T ) = −D0∇R ρ(R, T ) + σ0 E(R, T ) , (7.182)

where we have used the Einstein relation, σ0 = 2e2N0D0, relating conductivity and
the diffusion constant.

In the absence of the electric field, the kinetic equation becomes the diffusion
equation for the s-wave component

(∂T − D0∇2
R) gK

s (E,R, T ) = 0 . (7.183)

Exercise 7.9. Show that by introducing the distribution function

h(p,R, T ) =
1
2

gK(E = ξp + eϕ(R, T ), p̂,R, T ) (7.184)

the kinetic equation assumes the standard Boltzmann form, Eq. (7.55).

7.6 Beyond the quasi-classical approximation

The importance of the quasi-classical description is the very weak restrictions for its
applicability. However, it has two severe limitations. It relies on the assumption of
particle–hole symmetry and is thus unable to treat thermo-electric effects, and since
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momenta are tied to the Fermi surface the effect of the Lorentz force is lost and the
quasi-classical Green’s function technique is unable to describe magneto-transport.
In this section we shall show how these restrictions can be avoided following previous
works of Langreth [27] and Altshuler [28]. As an example, in Section 7.6.1 we consider
thermo-electric effects in a magnetic field, the Nernst–Ettingshausen effect.

A distribution function is introduced according to

GK = GR ⊗ h − h⊗GA , (7.185)

which upon insertion into the quantum kinetic equation, Eq. (7.3), and by use of
the equations of motion for the retarded and advanced Green’s functions, and the
property that the composition ⊗ is associative leads to the equation

GR ⊗B − B ⊗GA = 0 , (7.186)

where
B[h] = [G−1

0 − �eΣ ⊗, h]− +
1
2
[Γ ⊗, h]+ − i ΣK . (7.187)

In the gradient approximation we then have

(GR − GA)B + [B,�eG]p = 0 . (7.188)

Inserting the solution of the equation

(GR − GA)B = 0 (7.189)

into Eq. (7.188), we observe that the second term on the left in Eq. (7.187) has
the form of a double Poisson bracket and thus should be dropped in the gradient
approximation. The quantum kinetic equation therefore takes the form

B[h] = 0 (7.190)

and expressions in Eq. (7.187) should be evaluated in the gradient approximation.
Since the introduced distribution function is not gauge invariant, we shall not

succeed in obtaining an appropriate kinetic equation with the usual expression for
the Lorentz force unless the kinetic momentum is introduced instead of the canonical
one.27 Performing a gradient expansion of the term in Eq. (7.187) containing G−1

0 ,
we obtain in the mixed or Wigner coordinates

−i[G−1
0

⊗, h]p = [E − eϕ− ξp−eA, h]p , (7.191)

where (ϕ,A) are the potentials describing the electromagnetic field.
Within the gradient approximation a gauge-invariant distribution function h̃ can

thus be introduced
h̃(Ω,P,R, T ) = h(E,p,R, T ) (7.192)

defined by the change of variables

P = p− eA(R, T ) , Ω = E − eϕ(R, T ) . (7.193)
27Describing the kinetics in the momentum representation assumes that we are not in the quantum

limit where Landau level quantization is of importance, �ωc � kT .
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We observe the identity (now indicating the variables involved in the Poisson brackets
by subscripts)

[A, B]p,E = [Ã, B̃]P,Ω + eE · (∂ΩÃ∇PB̃ − ∂ΩB̃∇PÃ) + eB · (∇PÃ×∇PB̃) ,
(7.194)

where E = −∇ϕ− ∂T A and B = ∇×A are the electric and magnetic fields, respec-
tively, and Ã and B̃ are related to A and B by equations analogous to Eq. (7.192).
Using this identity, the following driving terms then appear in the gradient approxi-
mation

−i[G−1
0 −�eΣ, h]p,E = [Ω− ξP −�eΣ̃, h]P,Ω

+ eE · ((1 − ∂Ω�eΣ̃)∇Ph̃) + v∗∂Ωh̃) + ev∗ ×B · ∇Ph̃ , (7.195)

where we have introduced28

v∗ = ∇P(ξP + �eΣ̃(Ω,P,R, T )) . (7.196)

As a result of the transformation Eq. (7.193), the kinematic and not the canonical
momentum enters the kinetic equation, and a gauge invariant kinetic equation is
obtained as desired.

We could equally well have obtained the kinetic equation on gauge invariant form
by choosing to introduce the mixed representation according to

G(X, p) ≡
∫

dxe−ir·(p+eA(X))+it(E+eϕ(X)) G(X, x) (7.197)

whereupon, in accordance with Eq. (7.194), the Poisson bracket can be expressed as

[A, B]p,E = ∂EA {∂T + u · ∇R + (eE · u− (∂EA)−1∂T A)∂E

+ (eE + ev ×B + (∂EA)−1∇RA) · ∇p}B (7.198)

with
u = (∂EA)−1∇pA . (7.199)

The kinetic equation thus takes the form

{(1− ∂E�eΣ)∂T + ∂T�eΣ ∂E + v∗ · (∇R + eE ∂E)

+ (eE + ev∗ ×B) · ∇p} h = I[h] (7.200)

where the collision integral is given by

I[h] = iΣK − Γ h . (7.201)

28As long as inter-band transitions can be neglected, band structure effects can be included as
shown in reference [3].
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Exercise 7.10. Consider the case of an instantaneous two-particle interaction be-
tween fermions, V (x), such as Coulomb interaction between electrons,

UR(x, t,x′, t′) = V (x − x′) δ(t− t′) = UA(x, t,x′, t′) (7.202)

and UK(x, t,x′, t′) = 0. The Hartree–Fock self-energy skeleton diagrams, the dia-
grams in Figure 5.4, do not contribute to the collision integral owing to the instan-
taneous character of the interaction. The lowest-order self-energy skeleton diagrams
contributing to the collision integral are thus specified by the third and fourth dia-
grams in Figure 5.5.

Show that the corresponding electron–electron collision integral becomes

Ie−e[f ] = −2π

∫
dp1dp2dp3 (UR(p− p))2 δ(p + p2 − p1 − p3)

× δ(ξp + ξp2 − ξp1 − ξp3)

× (fp fp2 (1− fp1)(1− fp3) − (1− fp) (1− fp2)fp1 fp3)) , (7.203)

where fp is the electron distribution function which in equilibrium reduces to the
Fermi function. If one uses the the real-time formulation in terms of the Green’s
functions GRAK, the canceling terms fp fp1 fp2 fp3 do not appear explicitly but have
to be added and subtracted.

Show that the decay of a momentum or energy state for the above collision integral
is given by the following energy relaxation rate

1
τe−e(p)

= −2π

∫
dp1dp2dp3 (UR(p− p)2δ(p + p2 − p1 − p3)

× δ(ξp1 + ξp+p2−p1 − ξp − ξp2)

× (fp2 (1− fp1)(1 − fp3) + fp3 (1 − fp2) fp) , (7.204)

where the short notation has been introduced for the Fermi function, fp = f0(ξp).
Assume that the interaction is due to screened Coulomb interaction

(UR(p))2 =
∣∣∣∣V (p)
ε(p)

∣∣∣∣2 =

∣∣∣∣∣
e2

ε0

�−2p2 + κ2
s

∣∣∣∣∣
2

, (7.205)

where κ2
s = 2N0e

2/ε0 is the screening wave vector.
Show that the electron–electron collision rate for an electron on the Fermi surface

has the temperature dependence

1
τe−e(T )

=


π2e2

32ε0v2
Fκs�3 (kT )2 κs � kF

π3

16
(kT )2

�εF
κs � kF .

(7.206)
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The life time is seen to be determined by the phase-space restriction owing to Pauli’s
exclusion principle. The long lifetime of excitations near the Fermi surface due to
the exclusion principle is the basis of Landau’s phenomenological Fermi liquid theory
of strongly interacting degenerate fermions, and its microscopic Green’s function
foundation.

7.6.1 Thermo-electrics and magneto-transport

As an example of electron–phonon renormalization of a static transport coefficient, we
consider the Nernst–Ettingshausen effect, viz. the high-field Nernst–Ettingshausen
coefficient, which relates the current density to the vector product of the temperature
gradient and the magnetic field. For now, we shall neglect any momentum depen-
dence of the self-energy. The system is driven out of equilibrium by a temperature
gradient. The magnetic field is assumed to satisfy the condition

γ � ωc , (7.207)

where ωc = |e|B/m is the Larmor or cyclotron frequency and γ is the collision rate.
The collision integral can then be neglected, and the kinetic equation reduces to

(v · ∇R + e(v ×B) · ∇p) h = 0 . (7.208)

In the gradient approximation, the electric current density is according to Eq. (7.16)

j(R, T ) = −e

∫
dp

(2π)3

∫ ∞

−∞
dE v (Ah − [�eG, h]pE) . (7.209)

According to Eq. (7.207) and Eq. (7.208), the last term vanishes since

[�eG, h]pE = −∇p�eG · ∇Rh + eB · (∇p�eG×∇ph)

= −∂�eG

∂ξ
(v · ∇Rh + e(v ×B) · ∇ph) = 0 . (7.210)

Inserting the solution of Eq. (7.208)

h = h0 −
|∇T |
eBT

py E
∂h0

∂E
(7.211)

into the current expression and performing a Sommerfeld expansion gives

j =
(1 + λ)S0

B2
∇T ×B , λ = −∂�eΣ

∂E
E=0,p=pF

(7.212)

where S0 is the free electron entropy which in a degenerate electron gas is identical
to the specific heat. In the jellium model one has λ = g2N0. Thus the enhancement
of the high-field thermo-electric current is seen to be identical to the enhancement
of the equilibrium specific heat.
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Taking into account a possible momentum dependence of the self-energy leads
to non-equilibrium contributions to the spectral weight function which, however, are
difficult to calculate. A calculation within the context of Landau–Boltzmann Fermi-
liquid theory leads to the appearance of two ∇p�eΣ-dependent terms that exactly
cancel each other, thus suggesting the above result to be generally valid [9].

Thermopower measurements agree with the calculated mass enhancement accord-
ing to Eq. (7.212), see references [29, 30].

7.7 Summary

In this chapter the quantum kinetic equation approach to transport using the real-
time approach has been considered. The examples studied were condensed matter
systems, but the approach is useful in application to many physical systems, say in
nuclear physics in connection with nuclear reactions and heavy ion collisions, as dis-
cussed for example in reference [31]. We have also realized the difficulties involved in
describing general non-equilibrium states. Since no universality of much help is avail-
able in guiding approximations, cases must be dealt with on an individual basis. Here
the use of the skeleton diagrammatic representation of the self-energy, just as for equi-
librium states, can be a powerful tool to assess controlled approximations in nontrivial
expansion parameters as we demonstrated for the case of electron–phonon interac-
tion. This allowed establishing, for example, that the classical Landau–Boltzmann
equation has a much wider range of applicability than to be expected a priori. The
general problem is the vast amount of information encoded in the one-particle Green’s
functions, truncated objects with boundless information of correlations expressed by
higher-order Green’s functions. It is therefore necessary to eliminate the informa-
tion in the equations of motion which do not influence the studied properties, to
get rid of any excess information. The quasi-classical Green’s function technique
being such a successful scheme when it comes to understand the transport prop-
erties of metals, except for effects depending on particle–hole asymmetry such as
thermo-electric effects. The quasi-classical Green’s function technique allowed ana-
lytical calculation of mass renormalization effects typical of interactions in quantum
systems, and are in general susceptible to numerical treatment.29 The quasi-classical
Green’s function technique is the basic tool for studying non-equilibrium properties
of the low-temperature superconducting state, a topic we turn to in the next chapter.
In fact, the quasi-classical Green’s function technique is a corner stone for describing
many quantum phenomena in condensed matter, being the systematic starting point
for treating quantum corrections to classical kinetics, and we shall exploit this to our
advantage when discussing the weak localization effect in Chapter 11.

29Despite brave efforts, little progress has, to my knowledge, been made using numerics to extend
solutions of the general quantum kinetic equation to include higher than second-order correlations.
This field will undoubtedly be studied in the future using numerics.
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Non-equilibrium
superconductivity

Superconductivity was discovered in 1911 by H. Kamerlingh Onnes. Having suc-
ceeded in liquefying helium, transition temperature 4.2 K, this achievement in cryo-
genic technology was used to cool mercury to the man-made temperature that at
that time was closest to absolute zero. He reported the observation that mercury at
4.2 K abruptly entered a new state of matter where the electrical resistance becomes
vanishingly small. This extraordinary phenomenon, coined superconductivity, eluted
a microscopic understanding until the theory of Bardeen, Cooper and Schrieffer in
1957 (BCS-theory).1 The mechanism responsible for the phase transition from the
normal state to the superconducting state at a certain critical temperature is that
an effective attractive interaction between electrons makes the normal ground state
unstable. As far as conventional or low-temperature superconductors are concerned,
the attraction between electrons follows from the form of the phonon propagator,
Eq. (5.45), viz. that the electron–phonon interaction is attractive for frequencies less
than the Debye frequency, and in fact can overpower the screened Coulomb repulsion
between electrons, leading to an effective attractive interaction between electrons.2

The original BCS-theory was based on a bold ingenious guess of an approximate
ground state wave function and its low-energy excitations describing the essentials
of the superconducting state. Later the diagrammatic Green’s function technique
was shown to be useful to describe more generally the properties of superconduc-
tors, such as under conditions of spatially varying magnetic fields and especially for
general non-equilibrium conditions.

In terms of Green’s functions and the diagrammatic technique, the transition
from the normal state to the superconducting state shows up as a singularity in the

1For an important review of the attempts to understand the phenomena of superconductivity
and its truly defining state characteristic, the Meissner-effect, i.e. the expulsion of a magnetic field
from a piece of material in the superconducting state, we refer the reader to the article by Bardeen
[32], written on the brink of the monumental discovery of the theoretical understanding of the new
state of matter discovered almost half a century earlier.

2In high-temperature superconductors, the attractive interaction is not caused by the ionic back-
ground fluctuations but by spin fluctuations.
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effective interaction vertex. The effect of a particular class of scattering processes
in the normal state drives the singularity. In diagrammatic terms certain vertex
corrections, capturing the effect of the particular scattering process, corresponding
to re-summation of an infinite class of diagrams, become singular. In the case of
superconductivity, the particle–particle ladder self-energy vertex corrections, a typ-
ical member of which is depicted in Figure 8.1, where the wiggly line represents
the effective attractive electron-electron interactions (in the simplest model simply
the electron–phonon interaction) becomes divergent in the normal state, signalling a
phase transition at a critical temperature Tc.

Figure 8.1 Cooper instability diagram.

Although the set of diagrams according to Migdal’s theorem by diagrammatic
estimation is formally of the order of �ωD/εF, where �ωD is the Debye energy, which is
typically two orders of magnitude smaller than the Fermi energy, the particle–particle
ladder sums up a geometric series to produce a denominator which by vanishing
produces a singularity.3 In the simplest, longitudinal-only electron–phonon model,
the critical temperature is given by (see Exercise 8.3 on page 221)

kTc � �ωD e−1/λ , (8.1)

where λ = N0g
2 is the dimensionless electron–phonon coupling constant in the jellium

model (recall Section 7.5.1). We note that the critical temperature is non-analytic
in the coupling constant, precisely such non-perturbative effects are captured by
re-summation of an infinite class of diagrams. The singularity signals a transition
between two states, leading at zero temperature to a ground state that is very different
from the normal ground state, and in general at temperatures below the critical one
to properties astoundingly different from those of the normal state.

The signifying feature of the superconducting state is, as stressed by Yang [33],
that it possesses off-diagonal long-range order, i.e. for pair-wise far away separated

3The story goes that Landau delayed the publication of Migdal’s result for several years, be-
cause it is in blatant contradiction to the existence of superconductivity (mediated by phonons).
Nowadays we are familiar with the status of diagrammatic estimates such as Migdal’s theorem (as
discussed in Section 7.5.1). They are not immune to the existence of singularities in certain infinite
re-summations of a particular set of diagrams. The situation is formally quite analogous to the
singularity involved in Anderson’s metal–insulator transition. In revealing the physics in this case,
diagrammatic techniques are also useful, as we shall discuss in Chapter 11.
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spatial arguments, the two-particle correlation function is non-vanishing

lim
|x1,x2−x3,x4|→∞

〈ψ†
α(x4)ψ†

β(x3)ψγ(x2)ψδ(x1)〉 �= 0 , (8.2)

i.e. when the spatial arguments x1 and x2 are chosen arbitrarily far away from the
spatial arguments x3 and x4, the two-particle correlation function nevertheless stays
non-vanishing, contrary to the case of the normal state. An order parameter function,
∆γδ(x,x′), expressing this property, can therefore be introduced according to

lim
|x1,x2−x3,x4|→∞

〈ψ†
α(x4)ψ†

β(x3)ψγ(x2)ψδ(x1)〉 = ∆∗
αβ(x4,x3)∆γδ(x1,x2) (8.3)

and we speak of BCS-pairing.

8.1 BCS-theory

In this section we consider the BCS-theory, but shall not go into any details of
BCS-ology since instead we shall use the Green’s function technique to describe
and calculate properties of the superconducting state.4 The part of the interaction
responsible for the instability is captured by keeping in the Hamiltonian only the
so-called pairing interaction. In a conventional and clean superconductor, pairing
takes place between momentum and spin states (p, ↑) and (−p, ↓), each others time-
reversed states,5 and we encounter orbital s-wave and spin-singlet pairing and the
BCS-Hamiltonian becomes6

Hpairing =
∑
p,σ

εp c†pσ cpσ +
∑
pp′

Vpp′ c†p↑ c†−p↓ c−p′↓ cp′↑ , (8.4)

where the effective attractive interaction Vpp′ is only non-vanishing for momentum
states in the tiny region around the Fermi surface set by the Debye energy, ωD, for the
case where the attraction is caused by electron–phonon interaction. The parameters
specifying the boldly guessed BCS-ground state7

|BCS〉 =
∏
p

(up + vp c†p↑ c†−p↓) |0〉 (8.5)

4The properties of the BCS-state are described in numerous textbooks, e.g. reference [34].
5In a disordered superconductor, pairing takes place between an exact impurity eigenstate and

its time reversed eigenstate.
6Other types of pairing occur in Nature. In 3He p-wave pairing occurs, and high-temperature

superconductors have d-wave pairing.
7The BCS-ground state is seen to be a state that is not an eigenstate of the total number

operator, i.e. it does not describe a state with a definite number of electrons (recall Exercise 1.7
on page 20). For massless bosons, such as photons, a number-violating state is not an unphysical
state, but for an assembly of fermions having a finite chemical potential and interactions obeying
particle conservation it certainly is, and only the enormous explanatory power of the BCS-theory
makes it decent to use a formulation that violates the most sacred of conservation laws. In other
words, the superconducting state can also be described in terms that do not violate gauge invariance
such as when staying fully in the electron–phonon model, but the BCS-theory correctly describes
the off-diagonal long-range order, and is a very efficient way for incorporating and calculating the
order parameter, characterizing the superconducting state, and its consequences. Quantum field
theory is therefore also convenient, but the superconducting state can be described without its use
and instead formulated in terms of the one- and two-particle density matrices.
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are then obtained by the criterion of minimizing the average energy in the grand
canonical ensemble, i.e. the average value of 〈BCS|Hpairing − µN|BCS〉, the pairing
Hamiltonian with energies measured from the chemical potential, which at zero tem-
perature is the Fermi energy, ξp = εp − εF. This leads to a gap in the single-particle
spectrum close to the Fermi surface. We shall not dwell on BCS-ology as we soon
introduce the mean-field approximation at the level of Green’s functions, and instead
offer it as exercises.

Exercise 8.1. Assume up and vp real so that (recall Exercise 1.7 on page 20) the
angle φp parameterizes the amplitudes, up = sin φp and vp = cosφp. Show that

〈BCS|Hpairing − εFN|BCS〉 =
∑
p,σ

ξp (1 + cos 2φp) +
1
4

∑
pp′

Vpp′ sin 2φp sin 2φp′

(8.6)
resulting in the minimum condition of the average grand canonical energy to be

2ξp tan 2φp =
∑
p′

Vpp′ sin 2φp′ . (8.7)

Using simple geometric relations, 2upvp = sin 2φp and v2
p − u2

p = cos 2φp, and

introducing the quantities ∆p = −
∑

p′ Vpp′ up′vp′ and Ep =
√

ξ2
p + ∆2

p, show that
the minimum condition becomes the self-consistency condition

∆p = −1
2

∑
p′

Vpp′
∆p′

Ep′
(8.8)

for the BCS-energy gap in the excitation spectrum.

Exercise 8.2. Besides the normal state solution, ∆p = 0, for an attractive inter-
action the self-consistency condition, Eq. (8.8) has a nontrivial solution, ∆p �= 0.
Assuming, as dictated by electron–phonon interaction, that the interaction is at-
tractive only in a tiny region around the Fermi energy set by the Debye energy,
ωD, the interaction is modeled by a constant attraction in this region, Vpp′ =
−V θ(ωD − |ξp|) θ(ωD − |ξp′ |). Show that in this model the self-consistency equa-
tion has the solution ∆p = −∆ θ(ωD − |ξp|), where the constant ∆, the energy gap,
is determined by (the prime indicates that the summation is restricted)

1 =
V

2

∑
p

′ 1√
ξ2
p + ∆2

, (8.9)

which for weak coupling, N0V � 1 (N0 being the density of momentum states of the
electron gas at the Fermi energy), gives

∆ � 2�ωD e−1/N0V . (8.10)
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Show that in this model

〈BCS|Hpairing − εFN |BCS〉 = −∆2

V
+
∑
p

(
ξp −

ξ2
p

Ep

)
(8.11)

and thereby that the energy difference per unit volume between the state with ∆ �= 0
and the normal state, where states up to the Fermi surface are filled according to
Eq. (1.105), is given by −N0∆2/2.8 The state with ∆ �= 0 is thus favored as the
ground state by the pairing interaction.

Exercise 8.3. Introduce new operators by the Bogoliubov–Valatin transformation9

γ†
p↑ = up c†p↑ − v∗p c−p↓ , γ†

−p↓ = up c†−p↓ + v∗p cp↑ (8.12)

and their adjoints, leaving them canonical as the normalization condition, |up|2 +
|vp|2 = 1, is insisted, assuring the anti-commutation relations

{γp↑, γ
†
p′↑} = δpp′ = {γp↓, γ

†
p′↓} (8.13)

as well as

{γp↑, γ
†
p′↓} = 0 = {γp↓, γp′↓} , {γp↑, γp′↑} = 0 = {γp↑, γp′↓} . (8.14)

Show that Hpairing − εFN is diagonalized by the transformation to the Hamilto-
nian, up to an irrelevant constant term,

Hpairing − εFN =
∑
p

Ep (γ†
p↑γp↑ + γ̃†

p↓γ̃p↓) , (8.15)

provided 2ξpup vp + (v2
p − u2

p)∆p = 0, where ∆p satisfies the self-consistency equa-
tion Eq. (8.8) (assuming for simplicity real amplitudes). Equivalently, noting the
coefficients can be chosen real,

u2
p =

1
2

(
1 +

ξp
Ep

)
, v2

p =
1
2

(
1− ξp

Ep

)
, up vp =

∆p

2Ep
. (8.16)

This provides a general description of the BCS-Hamiltonian in terms of free fermionic
quasi-particles with energy dispersion Ep =

√
ξ2
p + ∆2

p, and an energy gap in the
spectrum has appeared.

Show the |BCS〉-state is the vacuum state for the γ-operators, γp|BCS〉 = 0.
At finite temperatures Pauli’s exclusion principle for the BCS-quasi-particles,

which is equivalent to the anti-commutation properties of the γ-operators, gives that
8This so-called condensation energy is typically seven orders of magnitude smaller than the

average Coulomb energy, and for the pairing Hamiltonian to make sense it is implicitly assumed
that the Coulomb energy for an electron is the same in the two states, which the success of the
BCS-theory then indicates.

9Recall the particle–hole symmetry of the BCS-state discussed in Exercise 2.8. on page 39.
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at temperature T the probability of occupation of energy state Ep is given by the
Fermi function

〈γ†
p↑γp↑〉 =

1
eEp/kT + 1

= 〈γ†
−p↓γ−p↓〉 . (8.17)

Show consequently that the energy gap is temperature dependent as determined
self-consistently by the gap equation

∆p = −1
2

∑
p′

Vpp′
∆p′

Ep′
tanh

(
Ep′

2kT

)
. (8.18)

Show in the simple model considered in the previous exercise, that the energy
gap vanishes at the critical temperature, Tc, given by

kTc � �ωD e−1/N(0)V . (8.19)

The BCS-theory is a mean field self-consistent theory with anomalous terms as
specified by the off-diagonal long-range order. The effective Hamiltonian of the su-
perconducting state can therefore also be arrived at by the following argument. The
effective two-body interaction is short ranged, of the order of the Fermi wavelength,
the inter-atomic distance, and can be approximated by the effective local two-body
interaction, a delta potential characterized by a coupling strength γ (in the electron–
phonon model γ is the square of the electron–phonon coupling constant, γ = g2).
The attractive two-body interaction term then becomes

V = −1
2
γ
∑
α,β

∫
dx ψ†

α(x)ψ†
β(x)ψβ(x)ψα(x) , (8.20)

assuming a spin-independent interaction. This is of course still a hopelessly com-
plicated many-body problem. The BCS-theory is a self-consistent theory where the
interaction term is substituted according to

V → −1
2
γ
∑
α,β

∫
dx (∆∗

αβ(x,x)ψβ(x)ψα(x) + ∆βα(x,x)ψ†
α(x)ψ†

β(x)) (8.21)

a manageable quadratic form, however with anomalous terms. The implicit assump-
tion for a self-consistent theory is thus that the fluctuations in the states of interest
of the difference between the two operators in Eq. (8.20) and Eq. (8.21) are small.
This is analogous to the Hartree–Fock treatment of the electron–electron interaction
in the normal state. These normal terms should also be considered, but in a con-
ventional superconductor such as a metal like tin, these effects lead to only a tiny
renormalization of the electron mass, and we can think of them as included through
the dispersion relation. In a strongly interacting degenerate Fermi system such as
3He, these interactions need to be taken into account and must be dealt with in terms
of Landau’s Fermi liquid theory, a quasi-particle description (for details see reference
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[35] and for the application of the quasi-classical Green’s function technique see ref-
erence [36]). One should be aware that the BCS-approximation is quite a bold move
since the BCS-Hamiltonian breaks a sacred conservation law, viz. particle number
conservation, or equivalently, gauge invariance is spontaneously broken.10

For conventional superconductors we encounter orbital s-wave and spin-singlet
pairing where the interaction part of the Hamiltonian is

VBCS = −γ

∫
dx (∆∗(x)ψ↑(x)ψ↓(x) + ∆(x)ψ†

↓(x)ψ†
↑(x)) (8.22)

as the superconducting order parameter is11

∆(x) = 〈ψ↑(x)ψ↓(x)〉 . (8.23)

Of importance is the feature of self-consistency, i.e. the bracket means average with
respect to the order-parameter dependent BCS-Hamiltonian

HBCS =
∑

α=↓,↑

∫
dx ψ†

α(x)

(
1

2m

(
�

i

∂

∂x
− eA(x, t)

)2

− µ

)
ψα(x)

− γ

∫
dx (∆∗(x)ψ↑(x)ψ↓(x) + ∆(x)ψ†

↓(x)ψ†
↑(x)) (8.24)

and Eq. (8.24) and Eq. (8.23) thus represent a complicated set of coupled equations.
We have placed the superconductor in an electromagnetic field represented by a
vector potential which, except for weak fields or for temperatures near the critical
temperature, through self-consistency leads to unquenchable analytic intractabilities.
Only for simple and highly symmetric situations can the order parameter be specified
a priori, thereby opening up for analytical tractability.

In the Heisenberg picture, the equation of motion governed by the BCS Hamilto-
nian is for the spin-up electron field component

i
∂ψ↑(x, t)

∂t
=
(

1
2m

(−i∇x − eA(x, t))2 − µ

)
ψ↑(x, t) + γ∆(x, t)ψ†

↓(x, t) (8.25)

and for the spin-down adjoint component

−i
∂ψ†

↓(x, t)
∂t

=
(

1
2m

(i∇x − eA(x, t))2 − µ

)
ψ†
↓(x, t) − γ∆∗(x, t)ψ↑(x, t). (8.26)

The BCS-Hamiltonian therefore leads to a set of coupled equations of motion for the
single-particle time-ordered Green’s function

G(x, t;x′, t′) = −i〈T (ψ↑(x, t)ψ†
↑(x

′, t′))〉 (8.27)

10In the electron–phonon model, the Hamiltonian is gauge invariant.
11In the case of p-wave or d-wave pairing, the order parameter has additional spin dependence.
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and the anomalous or Gorkov Green’s function

F (x, t;x′, t′) = −i〈T (ψ†
↓(x, t)ψ†

↑(x
′, t′))〉 , (8.28)

viz. the Gorkov equations12(
i
∂

∂t
− 1

2m
(−i∇x − eA(x, t))2 + µ

)
G(x, t,x′, t′) + γ∆(x, t)F (x, t,x′, t′)

= δ(x − x′)δ(t− t′) (8.29)

and(
−i

∂

∂t1
− 1

2m
(i∇x1 − eA(x1, t1))

2 + µ

)
F (1, 1′) + γ∆∗(1)G(1, 1′) = 0 , (8.30)

where in the latter equation we have introduced the usual condensed notation. The
spin labeling of the functions is irrelevant since no spin-dependent interactions, such
as spin flip interactions due to magnetic impurities, are presently included and spin
up and down are therefore equivalent, except for the singlet feature of the anomalous
Green’s function as we consider s-wave pairing. The order parameter is specified by
the equal space and time anomalous Green’s function

∆∗(x, t) = i F (x, t+;x, t) = 〈ψ†
↓(x, t)ψ†

↑(x, t)〉 . (8.31)

When the effect of pairing is taken into account, the Feynman diagrammatics in
the electron–phonon or BCS-model is modified by the presence of lines describing
the additional channel due to the non-vanishing of the anomalous Green’s function.
However, as the order parameter is small compared with the Fermi energy in a con-
ventional superconductor (as well as in superfluid He-3), this new scale is irrelevant
for diagram estimation, and Migdal’s theorem is then again valid (as first noted by
Eliashberg [37]). The peaked structure at the Fermi momentum of the Green’s func-
tions thus remains as in the normal state, and the argument for the validity of the
Migdal approximation now becomes identical for the superfluid case once it is based
on the correct ground state, i.e. the anomalous self-energy terms are included. A
theory of strong coupling superconductivity, Eliashberg’s theory, is thus available of
which the BCS-theory is the weak coupling limit, kTc � �ωD, in accordance with
Eq. (8.1). It is convenient to collect the equations of motion for the normal and
anomalous Green’s functions into a single matrix equation of motion, and this is
done by introducing the Nambu field, by which the BCS-Hamiltonian is turned into
a quadratic form. Furthermore, we shall introduce the contour ordered and not just
the time ordered Green’s functions in order to describe the non-equilibrium states of
a superconductor.

12Had we used the canonical ensemble, the chemical potential would be absent in Eq. (8.29), and
since

FN (x, t+;x′, t) = −i 〈N + 2|ψ†
↓(x, t) ψ†

↑(x′, t)|N〉 = e2 i
�

µtF µ(x, t;x′, t)

the term −2µ FN (x, t;x′, t′) would appear on the left in Eq. (8.30).
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8.1.1 Nambu or particle–hole space

In order to write the BCS-Hamiltonian, Eq. (8.24), in standard quadratic form of a
field, we introduce with Nambu the pseudo-spinor field

Ψ(1) ≡
(

ψ↑(1)
ψ†
↓(1)

)
≡
(

Ψ1(1)
Ψ2(1)

)
, (8.32)

where, introducing condensed notation, 1 ≡ (t1,x1) comprises the spatial variable
and in the Heisenberg picture also the time variable. The adjoint Nambu field is

Ψ†(1) ≡ (ψ†
↑(1), ψ↓(1)) ≡ (Ψ†

1(1), Ψ†
2(1)) , (8.33)

where in the last definition we have introduced the matrix notation for the Nambu
or particle–hole space.

The BCS-Hamiltonian is

HBCS =
∫
dx1

 ∑
σ=↑,↓

ψ†
σ(1)h(1)ψσ(1) + ∆(1)ψ†

↑(1)ψ†
↓(1) + ∆∗(1)ψ↓(1)ψ↑(1))

 ,

(8.34)
where

h(1) =
1

2m
(−i∇x1 − eA(x1, t1))

2 + eφ(x1, t1)− µ (8.35)

and the presence of coupling of the electrons to a classical electromagnetic field has
been included.

Consider the quadratic form in terms of the Nambu field

H =
∫

dx1 Ψ†(1)
(

h(1) ∆(1)
∆∗(1) −h∗(1)

)
Ψ(1) , (8.36)

where h∗(1) denotes complex conjugate of the single-particle Hamiltonian

h∗(1) =
1

2m
(i∇x1 − eA(x1, t1))

2 + eφ(x1, t1)− µ . (8.37)

The off-diagonal terms are identical to the ones in the BCS-Hamiltonian, but only
the first of the diagonal terms∫

dx1(ψ
†
↑(1)h(1)ψ↑(1)− ψ↓(1)h∗(1)ψ†

↓(1)) (8.38)

gives the corresponding kinetic energy term. In the second term partial integrations
are performed, giving∫

dx1 ψ↓(x1, t1)h∗(1)ψ†
↓(1) =

∫
dx1 h(x1′ , t1)ψ↓(1′)ψ

†
↓(1)

∣∣∣
x1′=x1

. (8.39)

Using the equal-time anti-commutation relations for the electron fields produces the
wanted order of the operators but an additional delta function∫

dx1 h(x1′ , t1)
(
δ(x1 − x1′)− ψ†

↓(1)ψ↓(1′)
)∣∣∣

x1′=x1

, (8.40)



226 8. Non-equilibrium superconductivity

which, however, is just a state independent (infinite) constant that has no influence
on the dynamics and can be dropped. We have thus shown that the BCS-Hamiltonian
can equivalently be written in terms of the Nambu field as

HBCS =
∫
dx1 Ψ†(1)

(
h(1) ∆(1)

∆∗(1) −h∗(1)

)
Ψ(1). (8.41)

Two by two (2× 2) matrices are introduced in Nambu space according to

Ψ(1)Ψ†(1′) ≡
(

ψ↑(1)
ψ†
↓(1)

)
(ψ†

↑(1
′), ψ↓(1′))

=

(
ψ↑(1)ψ†

↑(1
′) ψ↑(1)ψ↓(1′)

ψ†
↓(1)ψ†

↑(1
′) ψ†

↓(1)ψ↓(1′)

)
(8.42)

or, in Nambu index notation,

(Ψ(1)Ψ†(1′))ij ≡ Ψi(1)Ψ†
j(1

′) . (8.43)

For the opposite sequence we define the 2×2-matrix

(Ψ†(1)Ψ(1′))ij ≡ Ψ†
j(1)Ψi(1′)

=

(
ψ†
↑(1)ψ↑(1′) ψ↓(1)ψ↑(1′)

ψ†
↑(1)ψ†

↓(1
′) ψ↓(1)ψ†

↓(1
′)

)
. (8.44)

The Nambu field is seen to satisfy the canonical anti-commutation rules

[Ψ(x) �, Ψ†(x′))]+ = δ(x− x′) 1 (8.45)

and
[Ψ†(x) �, Ψ†(x′))]+ = 0 = [Ψ(x) �, Ψ(x′))]+ (8.46)

where 1 and 0 are the unit and zero matrices in Nambu space, respectively.
The contour-ordered Green’s function is defined in particle–hole or Nambu space

according to
G(1, 1′) = −i〈Tct (ΨH(1)Ψ†

H(1′))〉 , (8.47)

where the subscript indicates the field is in the Heisenberg picture. For t1
>
c t1′ the

contour-ordered Green’s function becomes

G>(1, 1′) = −i〈(ΨH(1)Ψ†
H(1′))〉

= −i

(
〈ψ↑(1)ψ†

↑(1
′)〉 〈ψ↑(1)ψ↓(1′)〉

〈ψ†
↓(1)ψ†

↑(1
′)〉 〈ψ†

↓(1)ψ↓(1′)〉

)
. (8.48)

In Nambu index notation the greater Green’s function simply becomes

G>

ij
(1, 1′) = −i〈Ψi(1)Ψ†

j(1
′)〉. (8.49)



8.1. BCS-theory 227

The lesser Green’s function is then

G<(1, 1′) = i〈(Ψ†
H(1′)ΨH(1))〉

= i

(
〈ψ†

↑(1
′)ψ↑(1)〉 〈ψ↓(1′)ψ↑(1)〉

〈ψ†
↑(1

′)ψ†
↓(1)〉 〈ψ↓(1′)ψ

†
↓(1)〉

)
(8.50)

and in matrix notation

G<

ij
(1, 1′) = −i〈Ψ†

i(1)Ψj(1′)〉 . (8.51)

To acquaint ourselves with Nambu space we consider the dynamics of the Nambu
field governed by the BCS-Hamiltonian. In the presence of classical electromagnetic
fields, the free one-particle Hamiltonian is

H0(t) =
∫
dx Ψ†

H0
(x, t)h(x, t)ΨH0(x, t) , (8.52)

where

h(1) =
(

h(1) 0
0 −h∗(1)

)
≡ hij(1) . (8.53)

From the equations of motion for the free Nambu field

i∂t1Ψi(1) = hij(1)Ψj(1) (8.54)

and
i∂t1Ψ

†
i (1) = −h∗

ij(1)Ψ†
j(1) , (8.55)

where the fields are in the Heisenberg picture with respect to H0(t), the equations of
motion for the free Nambu Green’s functions become

(i∂t1 − h(1))G>

0
(1, 1′) = 0 (8.56)

and
i∂t1′ G>

0
(1, 1′) = −G>

0
(1, 1′)

←
h
∗

(1′) , (8.57)

where the arrow indicates that the spatial differential operator operates to the left.
Identical equations of motion are obtained for G<

0
(1, 1′).

The presence of the pairing interaction then leads to the appearance of a self-
energy which is purely off-diagonal in Nambu space

Σ
BCS

=
(

0 ∆(1)
∆∗(1) 0

)
. (8.58)

In order to get more symmetric equations we perform the transformation

G(1, 1′)→ τ3 G(1, 1′) ≡ G , (8.59)
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where τ3 denotes the third Pauli matrix in Nambu space. The equations of motion
for the free Nambu Green’s functions then become

iτ3∂t1G
>
<
0 (1, 1′) = hN(1)G

>
<
0 (1, 1′) (8.60)

and
iτ3∂t1′ G

>
<
0 (1, 1′) = −G

>
<
0 (1, 1′)

←
h
∗
N (1′) , (8.61)

where
hN(1) = h(1)τ3 = − 1

2m

→
∂

2

(1) + eφ(1)− µ (8.62)

and →
∂ (1) = ∇x1 − ieτ3A(x1, t1) . (8.63)

The BCS-self-energy, describing the pairing interaction, then becomes

ΣBCS =
(

0 −∆(1)
∆∗(1) 0

)
. (8.64)

Introducing the Nambu field facilitates the description of the particle–hole coher-
ence in a superconductor. Next we introduce the real-time formalism for describing
non-equilibrium states as discussed in Chapter 5, here for the purpose of describing
non-equilibrium superconductivity. For a superconductor this means adding to the
Nambu-indices of Green’s functions the additional Schwinger–Keldysh or dynamical
indices.

Exercise 8.4. Show that, in equilibrium, the retarded Nambu Green’s function has
the form (unit matrices in Nambu space are suppressed)

GR(E,p) = (E τ3 − ξ(p) − ΣR(E,p))−1 . (8.65)

In a strong coupling superconductor the self-energy has, according to the electron–
phonon model, the form

ΣR(E) = (1 − ZR(E))E τ3 − iΦR(E) τ1 , (8.66)

and show as a consequence that the retarded Nambu Green’s function becomes

GR(E,p) =
−E ZR(E) τ3 − ξ(p) − iΦR(E) τ1

(ξ(p))2 − E2(ZR(E))2 + (ΦR(E))2
. (8.67)

8.1.2 Equations of motion in Nambu–Keldysh space

The contour-ordered Green’s function in Nambu space is defined according to

GC(1, 1′) = −iτ3〈Tct (ΨH(1)Ψ†
H(1′))〉 (8.68)

and is mapped into real-time dynamical or Schwinger–Keldysh space according to
the usual rule, Eq. (5.1),

GC(1, 1′) → G(1, 1′) ≡
(

G11(1, 1′) G12(1, 1′)
−G21(1, 1′) −G22(1, 1′)

)
, (8.69)
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where the Schwinger–Keldysh components now are Nambu matrices

G11(1, 1′) = −i τ3 〈T (ΨH(1)Ψ†
H(1′))〉 (8.70)

and G-lesser

G12(1, 1′) = G<(x1, t1,x1′ , t1′) = i τ3 〈ψ†
H(x1′ , t1′)ψH(x1, t1)〉 (8.71)

and G-greater

G21(1, 1′) = G>(x1, t1,x1′ , t1′) = −i τ3 〈ψH(x1, t1)ψ†
H(x1′ , t1′)〉 (8.72)

and

G22(1, 1′) = −i τ3 〈T̃ (ΨH(1)Ψ†
H(1′))〉 (8.73)

and the Pauli matrix appears because of the convention, Eq. (8.59).
The information contained in the various Schwinger–Keldysh components of the

matrix Green’s function is rather condensed and it can be useful to have explicit
expressions for two independent components, say G-lesser and G-greater, from which
all other relevant Green’s functions can be constructed.

Exercise 8.5. Show that, in terms of the electron field, we have

G>(1, 1′) = −iτ3

(
〈ψ↑(1)ψ†

↑(1
′)〉 〈ψ↑(1)ψ↓(1′)〉

〈ψ†
↓(1)ψ†

↑(1
′)〉 〈ψ†

↓(1)ψ↓(1′)〉

)
(8.74)

and

G<(1, 1′) = iτ3

(
〈ψ†

↑(1
′)ψ↑(1)〉 〈ψ↓(1′)ψ↑(1)〉

〈ψ†
↑(1

′)ψ†
↓(1)〉 〈ψ↓(1′)ψ†

↓(1)〉

)
. (8.75)

The matrix Green’s function on triagonal form

G =
(

GR GK

0 GA

)
(8.76)

has, according to the construction in Section 5.3, the retarded and advanced compo-
nents

GR(x, t,x′, t′) = −iθ(t− t′) τ3 〈[ψH(x, t) �, ψ†
H(x′, t′)]+〉

= θ(t− t′)
(
G>(x, t,x′, t′) − G<(x, t,x′, t′)

)
(8.77)

and

GA(x, t,x′, t′) = iθ(t′ − t) τ3 〈[ψH(x, t) �, ψ†
H(x′, t′)]+〉

= −θ(t′ − t)
(
G>(x, t,x′, t′) − G<(x, t,x′, t′)

)
(8.78)
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and the Keldysh or kinetic Green’s function

GK(x, t,x′, t′) = −iτ3 〈[ψH(x, t) �, ψ†
H(x′, t′)]−〉

= G>(x, t,x′, t′) + G<(x, t,x′, t′) . (8.79)

Exercise 8.6. Write down the retarded, advanced and kinetic components of the
Nambu Green’s function in terms of the electron field.

The equation of motion, the non-equilibrium Dyson equation, for the matrix
Green’s function becomes

(G−1
0 ⊗G)(1, 1′) = δ(1− 1′) + (Σ⊗G)(1, 1′) (8.80)

and for the conjugate equation

(G⊗G−1
0 )(1, 1′) = δ(1− 1′) + (G⊗ Σ)(1, 1′) , (8.81)

where the inverse free matrix Green’s function in Nambu–Keldysh space

G−1
0 (1, 1′) = G−1

0 (1) δ(1− 1′) (8.82)

is specified in the triagonal representation by

G−1
0 (1) = (iτ (3) ∂t1 − h(1)) , (8.83)

and

τ (3) =
(

τ3 0
0 τ3

)
(8.84)

is the 4×4-matrix, diagonal in Keldysh indices and τ3 the third Pauli matrix in
Nambu space. Here

h(1) = − 1
2m

∂2(1) + eφ(1)− µ , (8.85)

where
∂(1) = ∇x1 − ieτ (3)A(x1, t1) . (8.86)

Written out in components the matrix equation, Eq. (8.80), this gives

G−1
0 (1) GR(A)(1, 1′) = δ(1− 1′) + (ΣR(A) ⊗GR(A))(1, 1′) (8.87)

and

G−1
0 (1) GK(1, 1′) = (ΣR ⊗GK)(1, 1′) + (ΣK ⊗GA)(1, 1′) . (8.88)

Subtracting the left and right Dyson equations, Eq. (8.80) and Eq. (8.81), we
obtain an equation identical in form to that of the normal state, Eq. (7.1), an equation
for the spectral weight function and a quantum kinetic equation of the form Eq. (7.3).
However, they are additionally matrix equations in Nambu space. Generally they are
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too complicated to be analytically tractable. It is therefore of importance that the
quasi-classical approximation works for the superconducting state, at least excellently
in low temperature superconductors where the superconducting coherence length,
ξ0 = �vF/π∆, is much longer than the Fermi wavelength. In other words, the small
distance information in the above equations is irrelevant and should be removed.
After discussing the gauge transformation properties of the Nambu Green’s functions,
we turn to describe the quasi-classical theory of non-equilibrium superconductors
which precisely does that.13

8.1.3 Green’s functions and gauge transformations

The field operator representing a charged particle transforms according to

ψ(x, t) → ψ(x, t) eieΛ(x,t) ≡ ψ̃(x, t) (8.89)

under the gauge transformation

ϕ(x, t) → ϕ(x, t) +
∂Λ(x, t)

∂t
, A(x, t) → A(x, t) −∇xΛ(x, t) . (8.90)

The probability and current density of the particles will be invariant to this shift;
quantum mechanics is gauge invariant.

The matrix Green’s function therefore transforms according to

G̃<(1, 1′) = i

(
eie(Λ(1)−Λ(1′))〈ψ†

↑(1
′)ψ↑(1)〉 eie(Λ(1)+Λ(1′))〈ψ↓(1′)ψ↑(1)〉

−e−ie(Λ(1)+Λ(1′))〈ψ†
↑(1

′)ψ†
↓(1)〉 −e−ie(Λ(1)−Λ(1′))〈ψ↓(1′)ψ

†
↓(1)〉

)

= eieΛ(1)τ3 G<(1, 1′) e−ieΛ(1′)τ3 (8.91)

and similarly for

G̃>(1, 1′) = i

(
eie(Λ(1)−Λ(1′))〈ψ↑(1)ψ†

↑(1
′)〉 eie(Λ(1)+Λ(1′))〈ψ↑(1)ψ↓(1′)〉

−e−ie(Λ(1)+Λ(1′))〈ψ†
↓(1)ψ†

↑(1
′)〉 −e−ie(Λ(1)−Λ(1′))〈ψ†

↓(1)ψ↓(1′)〉

)

= eieΛ(1)τ3 G>(1, 1′) e−ieΛ(1′)τ3 . (8.92)

The other Green’s functions in Nambu space, GR,A,K, are linear combinations of

G
>
<, and therefore transform similarly. The gauge transformation then transforms

the matrix Green’s function in Keldysh space according to

G̃(1, 1′) = eieΛ(1) τ (3)
G(1, 1′) e−ieΛ(1′) τ (3)

. (8.93)

The flexibility of gauge transformations allows one to choose potentials that min-
imize the temporal variation of the order parameter, such as facilitating transfor-
mation to the gauge where the order parameter is real, the real ∆ gauge, where the

13The technique has also been used to derive kinetic equations for quasi-one-dimensional conduc-
tors with a charge-density wave resulting from the Peierls instability [38].
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phase of the order parameter vanishes, χ = 0. This is achieved by choosing the gauge
transformation

−eϕ → Φ =
1
2

χ̇ − eϕ (8.94)

and

− e

m
A → vs = − 1

2m
(∇χ + 2eA) (8.95)

introducing the gauge-invariant quantities, the superfluid velocity, vs, and the electro-
chemical potential, Φ, of the condensate or Cooper pairs.

8.2 Quasi-classical Green’s function theory

The superconducting state introduces the additional energy scale of the order pa-
rameter, which in the BCS-case equals the energy gap in the excitation spectrum.
In a conventional superconductor, as well as in superfluid He-3, this scale is small
compared with the Fermi energy. The peaked structure at the Fermi momentum of
the Green’s functions thus remains as in the normal state, and the arguments for the
superfluid case that brings us from the left and right Dyson equations, Eq. (8.80) and
Eq. (8.81), to the subtracted Dyson equation for the quasi-classical Green’s function
are thus identical to those of Section 7.5 for the normal state, and we obtain the
matrix equation, the Eilenberger equations,

[g−1
0 + iσ ◦, g]− = 0 , (8.96)

which gives the three coupled equations for gR(A) and gK where

g−1
0 (p̂,R, t1, t1′) = g−1

0 (p̂,R, t1) δ(t1 − t1′) (8.97)

and14

g−1
0 (p̂,R, t1) = τ (3)∂t1 + vF · (∇R − ieτ (3)A(R, t1)) + ieφ(R, t1) (8.98)

and the ξ-integrated or quasi-classical four by four (4× 4) matrix Green’s function

g(R, p̂, t1, t1′) =
i

π

∫
dξ G(R,p, t1, t1′) (8.99)

is defined in the same way as in Section 7.5, capturing the low-energy behavior of
the Green’s functions.15 The equations for gR(A) determines the spectral densities
and the equation for gK is the quantum kinetic equation.16

14The A2-term is smaller in the quasi-classical expansion parameter λF/ξ0 ∼ ∆/EF, the ratio of
the Fermi wavelength and the superconducting coherence length, e2A2/m ∼ evFAλF/ξ0.

15In Section 8.3, the quasi-classical Green’s functions will be introduced not by ξ-integration but
by considering the spatial behavior of the Green’s functions on the scale much larger than the
inter-atomic distance.

16We follow the exposition given in reference [3] and reference [9].
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Writing out for the components, we have for the spectral components

[g−1
0 + iσR(A) ◦, gR(A)]− = 0 (8.100)

and for the kinetic component the quantum kinetic equation

[g−1
0 + i�eσ ◦, gK]− = 2iσK − i [(σR − σA) ◦, gK]+ . (8.101)

The self-energy comprises the effective electron–electron interaction, impurity
scattering and electron spin-flip scattering due to magnetic impurities. The impurity
scattering is in the weak disorder limit described by the self-energy17

σimp(p̂,R, t1, t1′) = −iπniN0

∫
dp̂′

4π
|Vimp(p̂ · p̂′)|2 g(R, p̂′, t1, t1′) (8.102)

quite analogous to that of the normal state, Eq. (7.51), except that the Green’s
function in addition to the real-time dynamical index structure is a matrix in Nambu
space.

Even a small amount of magnetic impurities can, owing to their breaking of time
reversal symmetry and consequent disruption of the coherence of the superconduct-
ing state, have a drastic effect on the properties of a superconductor, leading to
the phenomena of gap-less superconductivity, and an amount of a few percent can
destroy superconductivity completely [39]. We therefore include spin-flip scattering
of electrons, which in contrast to normal impurities leads to pair-breaking and the
quite different physics just mentioned. We assume that the positions and spin-states
of the magnetic impurities are random, and owing to the latter assumption we can
limit the analysis to the last term in Eq. (2.25).18 In terms of the Nambu field the
scattering off the magnetic impurities then becomes

Vsf →
∑
a

∫
dx u(x− xa) Sz

a Ψ†(x)Ψ(x) , (8.103)

where as usual in the Nambu formalism, an infinite constant has been dropped. The
spin-flip self-energy has the additional feature, compared to the impurity scattering,
of averaging over the random spin orientations of Sz

aSz
a . Assuming that all impurities

have the same spin, Sa = S, the averaging gives the factor S(S+1)/3 and the spin-flip
self-energy then becomes

σsf(p̂,R, t1, t1′) = −iπnmagn.imp.N0S(S+1)
∫

dp̂′

4π
|u(p̂ ·p̂′)|2 τ (3) g(R, p̂′, t1, t1′) τ (3)

(8.104)
where nmagn.imp is the concentration of magnetic impurities. Since the exchange
interaction is weak, only s-wave scattering needs to be taken into consideration, and

17The weak disorder limit refers to �/εFτ � 1, and the neglect of localization effects, but we could
of course trivially include multiple scattering by introducing the t-matrix instead of the impurity
potential. For a discussion see for example chapter 3 of reference [1].

18Magnetic impurity scattering was discussed in Exercise 2.5 on page 37, and for example in
chapter 11 of reference [1].
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the spin-flip self-energy becomes

σsf(p̂,R, t1, t1′) = − i

2τs

∫
dp̂′

4π
τ (3) g(R, p̂′, t1, t1′) τ (3) , (8.105)

where the spin-flip scattering time is

1
τs

= 2πnmag.impN0S(S + 1)
∫

dp̂′

4π
|u(p̂ · p̂′)|2 . (8.106)

When inelastic effects are of interest, they are for example described by the
electron–phonon interaction through the self-energy whose matrix components of
the matrix self-energy are

σ
R(A)
e−ph(R, p̂, t1, t1′) =

λ

8

∫
dp̂′(gK(R, p̂′, t1, t1′)DR(A)(R, pF(p̂− p̂′), t1, t1′)

+ gR(A)(R, p̂′, t1, t1′)DK(R, pF(p̂− p̂′), t1, t1′)) (8.107)

and

σK
e−ph(R, p̂, t1, t1′) =

λ

8

∫
dp̂′(gR(R, p̂′, t1, t1′)DR(R, pF(p̂− p̂′), t1, t1′)

+ gA(R, p̂′, t1, t1′)DA(R, pF(p̂− p̂′), t1, t1′)

+ gK(R, p̂′, t1, t1′)DK(R, pF(p̂− p̂′), t1, t1′)) (8.108)

or

σK
e−ph =

λ

8

∫
dp̂′ ((gR − gA)(DR − DA) + gKDK) (8.109)

since

gR(t1, t1′)DA(t1, t1′) = 0 = gA(t1, t1′)DR(t1, t1′) . (8.110)

The difference of the self-energies in comparison with the normal state is that the
electron quasi-classical propagators are now matrices in Nambu space.

Currents and densities are in the quasi-classical description, just as in the normal
state, split into low- and high-energy contributions. The charge density becomes, in
terms of the quasi-classical Green’s function,

ρ(R, T ) = −2eN0

(
e ϕ(R, T ) +

1
8

∫
dp̂
4π

∫ ∞

−∞
dE Tr(gK(E, , p̂,R, T ))

)
, (8.111)

where N0 is the density of states at the Fermi energy, and Tr denotes the trace with
respect to Nambu or particle–hole space. The current density is given by

j(R, T ) = −eN0vF

4

∫
dp̂
4π

∫ ∞

−∞
dE p̂Tr(τ3 gK(E, , p̂,R, T )) . (8.112)
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The order parameter is specified in terms of the off-diagonal component of the
quasi-classical kinetic propagator according to (absorbing the coupling constant)

∆(R, T ) = − iλ

8

∫
dp̂
4π

∫
dE Tr((τ1 − iτ2) gK(E, p̂,R, T )) . (8.113)

Exercise 8.7. Show that the quasi-classical retarded Nambu Green’s function in the
thermal equilibrium state is

gR(E) =
E ZR(E) τ3 + iΦR(E) τ1√
E2(ZR(E))2 − (ΦR(E))2

. (8.114)

In the strong coupling case the order parameter is

∆ =
ΦR(E)
ZR(E)

. (8.115)

8.2.1 Normalization condition

In the superconducting state the retarded and advanced quasi-classical propagators
do not reduce to scalars (times the unit matrix in Nambu space) as in the normal
state, and the quantum kinetic matrix equation, Eq. (8.96), constitutes a compli-
cated coupled set of equations describing the states (as specified by gR(A)) and their
occupation (as described by gK). Since the quantum kinetic equation, Eq. (8.96),
is homogeneous and the time convolution associative, the whole hierarchy g ◦ g,
g ◦ g ◦ g,..., are solutions if g itself is a solution. A normalization condition
to cut off the hierarchy is therefore needed. For a translationally invariant state
in thermal equilibrium it follows from Exercise 8.7 (or see the explicit expressions
obtained in Section 8.2.3) that (gR(E))2 and (gA(E))2 equal the unit matrix in
Nambu space, (gR(E))2 = 1 = (gA(E))2, and the fluctuation–dissipation relation,
gK(E) = (gR(E)) − gA(E)) tanh(E/2T ), then guarantees that the 21-component in
Schwinger–Keldysh indices of g ◦ g vanishes, gR(E) gK(E) + gK(E) gA(E) = 0.
Since the quantum kinetic equation, Eq. (8.101), is first order in the spatial variable,
the solution is uniquely specified by boundary conditions. Since a non-equilibrium
state can spatially join up smoothly with the thermal equilibrium state we therefore
anticipate the general validity of the normalization condition

(g ◦ g)(t1 − t1′) = δ(t1 − t1′) . (8.116)

The function g ◦ g is thus a trivial solution to the kinetic equation, but contains the
important information of normalization. Section 8.3 provides a detailed proof of the
normalization condition.

The three coupled equations for the quasi-classical propagators gR,A,K in equa-
tions Eq. (8.101) and Eq. (8.100) constitute, together with the normalization con-
dition, the powerful quasi-classical theory of conventional superconductors. Writing
out the components in the normalization condition we have

gR(A) ◦ gR(A) = δ(t1 − t1′) (8.117)

and
gR ◦ gK + gK ◦ gA = 0 . (8.118)
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8.2.2 Kinetic equation

The normalization condition, Eq. (8.118), is solved by representing the kinetic Green’s
function in the form

gK = gR ◦ h − h ◦ gA , (8.119)

where h so far is an arbitrary matrix distribution function in particle–hole space.
The existence of such a representation is provided by the normalization condition,
Eq. (8.117) and Eq. (8.118), as the choice

h =
1
4

(gR ◦ gK − gK ◦ gA) (8.120)

solves Eq. (8.119). This choice is by no means unique, in fact the substitution

h → h + gR ◦ k + k ◦ gA (8.121)

leads to the same gK for arbitrary k.19

Using the equation of motion for gR(A), Eq. (8.201), and the fact that the time
convolution composition ◦ is associative, the kinetic equation, Eq. (8.101), is brought
to the form for the distribution matrix

gR ◦ B[h] − B[h] ◦ gA = 0 , (8.122)

where
B[h] = σK + h ◦ σA − σR ◦ h + [g−1

0
◦, h]− . (8.123)

The quasi-classical equations are integral equations with respect to the energy
variable, and only in special cases, such as at temperatures close to the critical tem-
perature, are they amenable to analytical treatment. However, they can be solved
numerically and provide a remarkably accurate description of non-equilibrium phe-
nomena in conventional superconductors. The quantum kinetic equation is thus a
powerful tool to obtain a quantitative description of non-equilibrium properties of
superconductors.

Before we unfold the information contained in the quantum kinetic equation we
consider the equation for the spectral densities or generalized densities of states,
Eq. (8.100), as they are input for solving the kinetic equation.

8.2.3 Spectral densities

The equation of motion for the retarded and advanced propagators in Eq. (8.96)
becomes

[g−1
0 + iσR(A) ◦, gR(A)]− = 0 . (8.124)

In the static case, we note in general that it follows from Eq. (8.124) that gR(A)

is traceless, so that

gR(A) = αR(A) τ3 + βR(A) τ1 + γR(A) τ2 . (8.125)

19A choice making the resemblance between the Boltzmann equation and Eq. (8.122) immediate
in the quasi-particle approximation has been introduced in reference [40].
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The quantities αR(A), βR(A) and γR(A) denote generalized densities of states.
We need to consider only one set of generalized densities of states since from the

equality

GR(A)(1, 1′) = τ3 (GR(A)(1, 1′))† τ3 (8.126)

it follows in general that

αA = −(αR)∗ , βA = (βR)∗ , γA = (γR)∗ . (8.127)

In a translationally invariant state of a superconductor in thermal equilibrium, the
spectral densities depend only on the energy variable, E, and the real and imaginary
parts of the spectral densities are even and odd functions, respectively. In general,
the equations for the spectral functions have to be solved numerically, for which they
are quite amenable, and they then serve as input information in the quantum kinetic
equation.

To elucidate the information contained in Eq. (8.124), we solve it in equilibrium
and take the BCS-limit, obtaining

gR(A) = αR(A) τ3 + βR(A) τ1 (8.128)

as

gR(E) =
E τ3 + i∆ τ1√

E2 − ∆2
. (8.129)

Splitting in real and imaginary parts

αR(A) = +
(−) N1(E) + i R1(E) , βR(A) = N2(E) +

(−) i R2(E) , (8.130)

where

N1(E) =
|E|√

E2 −∆2
Θ(E2 −∆2) (8.131)

is the density of states of BCS-quasi-particles, and

N2(E) =
∆√

∆2 − E2
Θ(∆2 − E2) (8.132)

and
R1(E) = −E

∆
N2(E) , R2 =

∆
E

N1(E) (8.133)

with ∆ being the BCS-energy gap.

Exercise 8.8. Show that in the weak coupling limit, the equilibrium electron–phonon
self-energy is specified by (recall the notation of Exercise 8.4 on page 228)

�eZR(E) = 1 + λ (8.134)

and

�m(E ZR(E)) =
1 + λ

2τ(E)
≡ 1

2τin
, (8.135)
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where λ = g2N0 is the dimensionless electron–phonon coupling constant and the
inelastic electron–phonon collision rate is given by

1
τ(E)

=
λπ

4(cpF)2

∫ ∞

−∞
dE′ N1(E′)

(E′ − E)|E′ − E| cosh E
2T

sinh (E′−E)
2T cosh E′

2T

. (8.136)

For temperatures close to the transition temperature, ∆ � T , the rate becomes equal
to that of the normal state and we obtain for the collision rate for an electron on the
Fermi surface

1
τ(E = 0)

=
λπ

(cpF)2

∫ ∞

0

dE
E2

sinh E
T

=
7π

2
ζ(3)

λT 3

(cpF)2
(8.137)

where ζ is Riemann’s zeta function.20

We note that, in the electron–phonon model, the superconductor is always gap-
less as the interaction leads to pair breaking and smearing of the spectral densities.
The inelastic collision rate is finite, the pair-breaking parameter, and N1 is nonzero
for all energies.

8.3 Trajectory Green’s functions

A physically transparent approach to the quasi-classical Green’s function theory of
superconductivity revealing the physical content of ξ-integration and providing a
general proof of the important normalization condition was given by Shelankov, and
we follow in this section the presentation of reference [40]. The quasi-classical theory
for a superconductor is based on the existence of a small parameter, viz. that all
relevant length scales of the system: the superconducting coherence length, ξ0 =
�vF/π∆, and the impurity mean free path, l = vFτ , are large compared with the
microscopic length scale of a degenerate Fermi system, the inverse of the Fermi
momentum, p−1

F , the inter-atomic distance, k−1
F /ξ0 � 1 (throughout we set � = 1).

In addition, the length scale for the variation of the external fields, λexternal, as well
as the order parameter are smoothly varying functions on this atomic length scale.

The 4 × 4 matrix Green’s function (matrix with respect to both Nambu and
Schwinger–Keldysh index) can be expressed through its Fourier transform

G(x1,x2, t1, t2) =
∫

dp
(2π)3

eip·r G(p,R, t1, t2) , (8.138)

where on the right-hand side the spatial Wigner coordinates, the relative, r = x1−x2,
and center of mass coordinates, R = (x1 + x2)/2, have been introduced. For a
degenerate Fermi system, we recall from Chapter 7 that the Green’s functions are
peaked at the Fermi surface, and for distances r � p−1

F the exponential is in general
rapidly oscillating and we can make use of the identity

eip·r

2πi
=

e−ip r

pr
δ(p̂ + r̂) − eip r

pr
δ(p̂− r̂) , (8.139)

20The electron–phonon collision rate can be modified owing to the presence of disorder, as we will
discuss in Section 11.3.1.
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where a hat on a vector denotes as usual the unit vector in the direction of the
vector. Thus for r � p−1

F the matrix Green’s function can be expressed in the form
(suppressing here the time coordinates since they are immaterial for the following)

G(x1,x2) = −m

2π

eipF|x1−x2|

|x1 − x2|
g+(x1,x2) +

m

2π

e−ipF|x1−x2|

|x1 − x2|
g−(x1,x2) , (8.140)

where, assuming |x1 − x2| � p−1
F ,

g±(x1,x2) =
i

2π

∫ ∞

−∞
vF d(p− pF) e±i(p−pF)|x1−x2| G(±pr̂,R) (8.141)

and the rapid convergence of the integrand limits the integration over the length of
the momentum to the region near the Fermi surface.

The equations of motion for the slowly varying functions, g±, are obtained by
substituting into the (left) Dyson equation, which gives

±ivFr̂ · ∇x1g±(x1,x2) + H(±r̂,x1) ◦ g±(x1,x2) = 0 , (8.142)

where (re-introducing briefly the time variables)

H(n,x, t1, t2) =
(

iτ3
∂

∂t1
− eφ(x, t1) + evFτ3n ·A(x, t1)

)
δ(t1 − t2)

− Σ(n,x, t1, t2) (8.143)

and we have used the fact that the components of the matrix self-energy are peaked
for small spatial separations, |x1 − x2| � p−1

F , i.e. slowly varying functions of the
momentum as discussed in Section 7.5, and

Σ(n,x, t1, t2) =
∫

dr eipFn·r Σ(x + r/2,x− r/2, t1, t2) . (8.144)

The circle in Eq. (8.142) denotes, besides integration with respect to the internal
time, an additional matrix multiplication with respect to Nambu and dynamical
indices. Since |x1 − x2| � p−1

F , the second spatial derivative is negligible because
the envelope functions, g±, are slowly varying, and consequently the differentiation
acts only along the straight line connecting the space points in question, the classical
trajectory connecting the points. Only the influence of the external fields on the phase
of the propagator is thus included and the effects of the Lorentz force are absent,
as expected in the quasi-classical Green’s function technique. Thermo-electric and
other particle–hole symmetry broken effects are also absent just as in the normal
state as discussed in Chapter 7.

Specifying a linear trajectory by a position, R, and its direction, n, the positions
on the linear trajectory, r, can be specified by the distance, y, from the position R

r = R + y n . (8.145)

For the propagator on the trajectory we then have

g±(n,R, y1, y2) = g±(R + y1n,R + y2) (8.146)
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and we introduce the matrix Green’s function on the trajectory

g(n,R, y1, y2) ≡


g+(R + y1n,R + y2n) y1 > y2

g−(R + y1n,R + y2n) y1 < y2.
(8.147)

Then, according to Eq. (8.141), and again with |y1 − y2| � p−1
F ,

g(n,R, y1, y2) =
i

2π

∫ ∞

−∞
vF d(p− pF) e±i(p−pF)(y1−y2) G(pn,R + (y1 + y2)n/2)

(8.148)
and we observe that the trajectory Green’s function describes the propagation of
particles with momentum value pF along the direction n, and satisfies according to
Eq. (8.142), for |y1 − y2| � p−1

F , the equation

ivF
∂

∂y1
g(y1, y2) + H(n, y1) ◦ g(y1, y2) = 0 , (8.149)

where the notation
g(y1, y2) ≡ g(n,R, y1, y2) (8.150)

has been introduced. Equation (8.149) is incomplete as we have no information at
the singular point, y1 = y2. Forming the quantity

g(y + δ, y) − g(y − δ, y) =
−vF

π

∫ ∞

−∞
d(p− pF) G(pn,R + n(y + δ/2)) sin((p− pF)δ)

(8.151)
and assuming ξ0 � δ � p−1

F , we can neglect the dependence in the center of mass
coordinate on δ, and as the contribution from the momentum integration comes from
the regions far from the Fermi surface in the limit of vanishing δ, we can insert the
normal state Green’s functions to obtain (recall Eq. (7.125))

g(y + δ, y) − g(y − δ, y) = δ(t1 − t2) , (8.152)

where the unit matrix in Nambu–Keldysh space has been suppressed on the right-
hand side, and δ � ξ0, λexternal. This result can be included in the equation of
motion, Eq. (8.149), as a source term, and we obtain the quasi-classical equation of
motion

ivF
∂

∂y1
g(y1, y2) + H(n, y1) ◦ g(y1, y2) = ivF δ(y1 − y2) . (8.153)

Together with the similarly obtained conjugate equation

−ivF
∂

∂y2
g(y1, y2) + g(y1, y2) ◦ H(n, y2) = ivF δ(y1 − y2) (8.154)

we have the equations determining the non-equilibrium properties of a low-temperature
superconductor.



8.3. Trajectory Green’s functions 241

Exercise 8.9. Show that the retarded, advanced and kinetic components of the
trajectory Green’s function satisfy the relations

gR(n,R, y1, t1, y2, t2) = −τ3 (gA(n,R, y2, t2, y1, t1))† τ3 (8.155)

and
gK(n,R, y1, t1, y2, t2) = τ3 (gK(n,R, y2, t2, y1, t1))† τ3 (8.156)

and for spin-independent dynamics

gR(n,R, y1, t1, y2, t2) = τ1 (gA(−n,R, y1, t2, y2, t1))T τ1 (8.157)

and
gK(n,R, y1, t1, y2, t2) = τ1 (gK(−n,R, y1, t2, y2, t1))T τ1 . (8.158)

From the quasi-classical equations of motion, Eq. (8.153) and Eq. (8.154), it
follows that for y1 �= y2

∂

∂y

(
g(y1, y) ◦ g(y, y2)

)
= 0 (8.159)

and the function g(y1, y) ◦ g(y, y2) jumps to constant values at the fixed positions
y1 and y2. Since we know the jumps of g we get

g(y1, y) ◦ g(y, y2) =


g(y1, y2) y1 > y > y2

0 y /∈ [y1, y2]

−g(y1, y2) y1 < y < y2

(8.160)

where the value zero follows from the decay of the Green’s function as a function of
the spatial variable as the positions in the quasi-classical Green’s function satisfy the
constraint |y1 − y| � l, and in a disordered conductor the Green’s function decays
according to g(y1, y) ∝ exp{|y1 − y|/2l}, where l is the impurity mean free path
(recall Exercise 7.4 on page 192).

Introducing the coinciding argument trajectory Green’s functions (suppressing
the time variables)

g±(n, r) ≡ lim
δ→0

g(±)(n,R, y ± δ, y) (8.161)

we observe that their left–right subtracted Dyson equations of motion according to
Eq. (8.153) and Eq. (8.154) are

±ivF · ∇r g± + H ◦ g± − g± ◦ H = 0 (8.162)

and according to Eq. (8.152) and Eq. (8.160) they satisfy the relations

g± ◦ g± = ± g± (8.163)
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and
g± ◦ g∓ = 0 = g∓ ◦ g± (8.164)

and
g+ − g− = 1 , (8.165)

where 1 is the unit matrix in Nambu–Keldysh space.
The quantity g(n, r) = g+(n, r) + g−(n, r) therefore satisfies the equation of mo-

tion
ivF · ∇r g + H ◦ g − g ◦ H = 0 (8.166)

and, according to Eq. (8.163), Eq. (8.164) and Eq. (8.165), the normalization condi-
tion

g ◦ g = 1 . (8.167)

The equation of motion is the same as that for the ξ-integrated Green’s function
and the above analysis provides an explicit procedure for the ξ-integration as

g(n, r) =
i

π
lim
δ→0

∫ ∞

−∞
vF d(p− pF) G(pn,R) cos((p− pF)δ) . (8.168)

The integral is convergent when δ is finite and independent of δ for δ � ξ0. The
dropping of the high-energy contributions in the ξ-integration procedure is in this
procedure made explicit by the small distance cut-off.

The quantum effects included in the quantum kinetic equation for gK is thus the
particle–hole coherence due to the pairing interaction whereas the kinetics is classical.

8.4 Kinetics in a dirty superconductor

A characteristic feature of a solid is that it contains imperfections, generally referred
to as impurities. Typically superconductors thus contain impurities, and of relevance
is a dirty superconductor. The kinetics in a disordered superconductor will be dif-
fusive. In the dirty limit where the mean free path is smaller than the coherence
length, or kTc < �/τ , the integral equation with respect to the ordinary impurity
scattering, i.e. the non-spin-flip impurity scattering, can then be reduced to a much
simpler differential equation of the diffusive type.21 We therefore return to the cou-
pled equations for the quasi-classical propagators gR,A,K, Eq. (8.96), supplemented
by the normalization condition, Eq. (8.116).

In the dirty limit, the Green’s function will be almost isotropic, and an expansion
in spherical harmonics needs only keep the s- and p-wave parts

g(p̂,R, t1, t1′) = gs(R, t1, t1′) + p̂ · gp(R, t1, t1′) (8.169)

and
|p̂ · gp(R, t1, t1′)| � |gs(R, t1, t1′)| . (8.170)

21Quite analogous to deriving the diffusion equation from the Boltzmann equation as discussed
in Sections 7.4.2 and 7.5.5.
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The self-energy is then

σ(p̂,R, t1, t1′) = σs(R, t1, t1′) + p̂ · σp(R, t1, t1′) , (8.171)

where

p̂ · σp(R, t1, t1′) = −iπniN0

∫
dp̂′

4π
|Vimp(p̂ · p̂′)|2 p̂′ · gp(R, t1, t1′) (8.172)

and
σs = − i

2τ
gs + σ′

s , (8.173)

where
σ′

s = − i

2τs
τ3 gs τ3 + σe−ph

s (8.174)

contains the effects of spin-flip and electron–phonon scattering.
Performing the angular integration gives

σp =
−i

2

(
1
τ
− 1

τtr

)
gp , (8.175)

where τtr is the impurity transport life time determining the normal state conduc-
tivity

1
τtr

= 2πniN0

∫
dp̂′

4π
|Vimp(p̂ · p̂′)|2 (1− p̂ · p̂′) . (8.176)

The inverse propagator has exactly the form

g−1
0 = g−1

0s
+ p̂ · g−1

0p
, (8.177)

where
g−1
0s

= (τ3 ∂t1 + ieφ(R, t1)) δ(t1 − t1′) (8.178)

and
g−1

0p
= vF ∂ , ∂ = (∇R − ieτ3A(R, t1)) δ(t1 − t1′) . (8.179)

The kinetic equation in the dirty limit can be split into even and odd parts with
respect to p̂

[g−1
0s

+ iσ′
s

◦, gs]− +
1
3
vF[∂ ◦, gp]− = 0 (8.180)

and
1

2τtr
[gs

◦, gp]− + vF [∂ ◦, gs]− = 0 . (8.181)

Using the s- and p-wave parts of the normalization condition gives

gs ◦ gs = δ(t1 − t1′) (8.182)

and
[gs

◦, gp]+ = 0 (8.183)
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and we get
gp = −l gs ◦ [∂ ◦, gs]− , (8.184)

where l = vFτtr is the impurity mean free path.
Upon inserting into Eq. (8.180), an equation for the isotropic part of the quasi-

classical Green’s function is obtained, the Usadel equation [41],

[g−1
0s + iσ′

s − D0 ∂ ◦ gs ◦ ∂ ◦, gs]− = 0 . (8.185)

We have obtained a kinetic equation which is local in space, an equation for the
quasi-classical Green’s function for coinciding spatial arguments. This equation is
the starting point for considering general non-equilibrium phenomena in a dirty su-
perconductor.

Exercise 8.10. Show that the current density in the dirty limit takes the form

j(R, T ) =
eN0D0

4

∫ ∞

−∞
dE Tr(τ3 (gR

s ◦ ∂ ◦ gK
s + gK

s ◦ ∂ ◦ gA
s )) , (8.186)

which by using the Einstein relation, σ0 = 2e2N0D0, can be expressed in terms of
the conductivity of the normal state.

8.4.1 Kinetic equation

In the dirty limit, the kinetic equation

gR ◦B[h] − B[h] ◦ gA = 0 (8.187)

is specified by

B[h] = (gR
0 )−1 ◦ h − h ◦ (gA

0 )−1 − iσK
e−ph

− D0 ∂ ◦ gR ◦ [∂ ◦, h]− − D0 [∂ ◦, h]− ◦ gA ◦ ∂ , (8.188)

where(
g
R(A)
0

)−1

= −iEτ3 + ieϕ(r, t) + ∆̂ + iσ
′R(A)
e−ph +

1
2τs

τ3 gR(A) τ3 . (8.189)

Inelastic effects are included through the electron–phonon interaction.
In the low frequency limit, the problem simplifies, and we discuss this case in

order to show how the matrix distribution function enters the collision integral. For
superconducting states close to the transition temperature, the Ginzburg–Landau
regime, the component γ is negligible, as discussed in the next section, and the
distribution matrix h can be chosen diagonal in Nambu space

h = h1 1 + h2 τ3 . (8.190)

We then perform a Taylor expansion in Eq. (8.187), and linearize the equation with
respect to h1−h0 and h2. To expose the kinetic equations satisfied by the distribution
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functions we multiply the kinetic equation with Pauli matrices and take the trace in
particle–hole space, in fact for the present case we take the trace of the equation and
the trace of the equation multiplied by τ3, and obtain the two coupled equations for
the distribution functions

N1 ḣ1 + R2�e∆̇∂Eh1 + 2R2�m∆ h2 − D0∇R ·M1(E, E)∇Rh1

+ D0∇R · (∇Rh2 + ṗs∂Eh0) − 4N2R2 ps · (∇Rh2 + ṗs∂Eh0)

= K1[h1] (8.191)

and

N1(ḣ2 + Φ̇ ∂Eh0) + 2N2�e∆ h2 − N2�m∆̇ ∂Eh0 − 4D0 N2R2 ps · ∇Rh1

− D0∇R ·M2(E, E) (∇Rh2 + ṗs∂Eh0) = K2[h2] , (8.192)

where the collision integrals are given by, i = 1, 2,

Ki[hi] = −π

∫ ∞

−∞
dE′ µ(E − E′)Mi(E, E′)

hi(E) cosh2
(

E
2T

)
− hi(E′) cosh2 E′

2T

sinh E−E′

2T cosh E
2T cosh E′

2T

,

(8.193)

where

Mi(E, E′) =
{

N1(E)N1(E′) + R2(E)R2(E′) i = 1
N1(E)N1(E′) + N2(E)N2(E′) i = 2 (8.194)

and µ is the Fermi surface average of the function in Eq. (7.134), the Eliashberg
function, α2F (E − E′) = µ(E − E′),

µ(E − E′) =
iλ

2π

∫
dp̂′

4π
(DR(p̂′ · p̂, E′ − E) − DA(p̂′ · p̂, E′ − E)) , (8.195)

or in general the Fermi surface weighted average of the phonon spectral weight func-
tion and the momentum-dependent coupling function (recall Eq. (7.134)).

Together with the expressions for charge and current density and Maxwell’s equa-
tions, the kinetic equations for the distribution functions supplemented with the
equations for the generalized densities of states and the order parameter equation,
constitute a complete description of a dirty conventional superconductor in the low-
frequency limit.

Exercise 8.11. Show that in the Debye model of lattice vibrations, the Eliashberg
function becomes

µ(E) =
λ

4(cpF)2
E|E| θ(ωD − |E|) . (8.196)
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8.4.2 Ginzburg–Landau regime

In this section we shall derive the time-dependent Ginzburg–Landau equation for the
order parameter.22 First we further reduce the equation determining the components
of the spectral part of the Usadel equation

[g−1
0 + iσ

′R(A) − D0 ∂ ◦ gR(A) ◦ ∂ ◦, gR(A)]− = 0 (8.197)

by considering the case where temporal non-equilibrium is slow.
We shall treat the pairing effect (contained in�e σ

R(A)
e−ph) in the BCS-approximation

and approximate the electronic damping by the equilibrium expression Eq. (8.136).
Then the retarded (advanced) electron–phonon self-energy reduces to

σ
R(A)
e−ph =

(
−λE −

(+)
i

2τin

)
τ3 − i∆̂ , (8.198)

where τin is the inelastic electron–phonon scattering time, and the gap matrix is

∆̂ =
(

0 ∆
∆∗ 0

)
, (8.199)

where (from now on we drop the s-wave index)

∆ = − iλ

8

ωD∫
−ωD

dE Tr
(
(τ1 − iτ2)gK

)
(8.200)

is the order parameter.
We assume that the characteristic non-equilibrium frequency, ω, satisfies ω <

∆, T, 1/τ . We can then make a temporal gradient expansion in Eq. (8.197) and
obtain to lowest order for the off-diagonal components

1
2
D0(αD2(β − iγ)− (β − iγ)∇2

Rα)R(A)

=
((
−iE +

(−)
i

2τin

)
(β − iγ)−∆α +

i

τs
α(β − iγ)− Φ̇ ∂E(β − iγ)

)R(A)

(8.201)

and

1
2
D0(αD∗2(β + iγ)− (β + iγ)∇2

Rα)R(A)

=
((
−iE +

(−)
i

2τin

)
(β + iγ)−∆∗α +

i

τs
α(β + iγ) + Φ̇ ∂E(β + iγ)

)R(A)

, (8.202)

where

D = ∇R − 2ieA (8.203)
22We essentially follow reference [42] and reference [43].
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is the gauge co-variant derivative. We note that all time-dependent terms cancel
except the one involving the electro-chemical potential of the condensate. Together
with the normalization condition

(αR)2 + (βR)2 + (γR)2 = 1 (8.204)

these equations determine the generalized densities of states. In view of Eq. (8.155),
say only the retarded components needs to be evaluated, and in the following we
therefore leave out the superscript.

Assuming the superconductor is in the Ginzburg–Landau regime where the tem-
perature is close to the critical temperature, ∆(T ) � T , we can iterate Eq. (8.202)
starting with the density of states for the normal state, i.e. α → 1, and neglect
spatial variations. We then obtain to a first approximation

β + iγ =
∆∗

−iE + 1/2τin + 1/τs
(8.205)

and similarly for β − iγ. Then using the normalization condition, Eq. (8.204), gives
the first order correction to α. In the next iteration we then obtain

β + iγ =
∆∗

−iE + 1/2τin + 1/τs

+
i

2

(
D0D∗ ∆∗

(−iE + 1/2τin + 1/τs)2
+

(−iE + 1/2τin)|∆|2∆∗

(−iE + 1/2τin + 1/τs)4

)
(8.206)

and similarly for β − iγ. It follows from these equations that γ is smaller than the
other components by the amount ∆/T , and can be neglected in the Ginzburg–Landau
regime.

The distribution matrix in Nambu space we assume to be of the form

h = h0 + h1 + h2 τ3 . (8.207)

Making the slow frequency gradient expansion of the kinetic propagator, Eq. (8.119),
and keeping only linear terms in the distribution functions h1 and h2 we obtain

gK = h0(gR − gA) − i

2
[h0, g

R + gA]p

+ h1(gR − gA) + h2(gR τ3 − τ3 gA) , (8.208)

where the Poisson bracket is with respect to time and energy variables. In the
expression for the order parameter, Eq. (8.113), we therefore obtain

∆(R, T ) = −λ

4

∞∫
−∞

dE (h0(β − β∗) − i

2
[h0, (β + β∗)]p

+ h1(β − β∗) − h2(β + β∗)) . (8.209)
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Using the known pole structure of h0 = tanhE/2T , terms involving this function can
be evaluated by the residue theorem, and we arrive at the time-dependent Ginzburg–
Landau equation for the order parameter(

A − B|∆|2 − C(∂T −D0D2) + χ
)

∆ = 0 , (8.210)

where

χ =
1
∆

∞∫
−∞

dE R2 h1 (8.211)

is Schmid’s control function, controlling the magnitude of the order parameter, and
the coefficients can be expressed in terms of the poly-gamma-functions (ψ being the
di-gamma-function)

A = ln
Tc

T
+ ψ(1/2 + ρT/Tc) − ψ(1/2 + ρ) (8.212)

and

B = − 1
(4πT )2

(
ψ(2)(1/2 + ρ) +

1
3
ρs ψ(3)(1/2 + ρ)

)
(8.213)

and
C = − 1

4πT

(
ψ(1)(1/2 + ρ)

)
, (8.214)

where ρ = ρs + ρin

ρs =
1

2πτsT
, ρin =

1
4πτinT

(8.215)

and we have used the relation for the transition temperatures in the presence and
absence of pair-breaking mechanisms

ln
Tc0

Tc
= ψ(1/2 + ρT/Tc) − ψ(1/2) . (8.216)

Evaluating the coefficients gives the time-dependent Ginzburg–Landau equation

π

8Tc
∆̇(x, t) = −

(
T − Tc

Tc
+

7ζ(3)
8π2

∆2

T 2
c

+ ξ2(0) (4m2v2
s − ∇2

x) + χ

)
∆(x, t) ,

(8.217)
where ξ2(0) = πD0/8Tc is the coherence length in the dirty limit.

In the normal state close to the transition temperature, there will be supercon-
ducting fluctuations in the order parameter. In that case, the first term in the
time-dependent Ginzburg–Landau equation, Eq. (8.217), dominates and the thermal
fluctuations of the order parameter decays with the relaxation time

τN
R =

π

8
1

|T − Tc|
. (8.218)

In the superconducting state the relaxation of the order parameter is, according
to Eq. (8.211), determined by the non-equilibrium distribution of the quasi-particles,
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which in turn is influenced by the time dependence of the order parameter. In the
spatially homogeneous situation where h2 vanishes, the kinetic equation, Eq. (8.191),
reduces to

N1 ḣ1 + R2 ∆̇∂Eh0 = −N1

τin
h1 . (8.219)

Calculating the control function gives

χ =
π

4Tc
τin ∆̇ (8.220)

and according to the time-dependent Ginzburg–Landau equation the relaxation time
for the order parameter, ∆ τin � 1, is

τR =
π3

7ζ(3)
Tc

∆
τin . (8.221)

Experimental observation of the relaxation of the magnitude of the order parameter
can been achieved by driving the superconductor out of thermal equilibrium by a
laser pulse [44].

8.5 Charge imbalance

Under non-equilibrium conditions in a superconductor a difference in the electro-
chemical potential between the condensate and the quasi-particles can exist, reflecting
the finite rate of conversion between supercurrent and normal current. For example,
charge imbalance occurs when charge from a normal metal is injected into a super-
conductor in a tunnel junction. As an application of the theory of non-equilibrium
superconductivity, we shall consider the phenomenon of charge imbalance generated
by the combined presence of a supercurrent and a temperature gradient. We shall
limit ourselves to the case of temperatures close to the critical temperature where
analytical results can be obtained.23

The charge density is in the real ∆-gauge, recall Section 8.1.3,

ρ = 2eN0

Φ +

∞∫
−∞

dE N1(E) f2(E)

 , (8.222)

where the condensate electro-chemical potential in general is Φ = χ̇/2− eϕ, χ being
the phase of the order parameter. We have introduced distribution functions related
to the original ones according to h1 = 1 − 2f1 and h2 = −2f2.24 We could insert
instead the full distribution function, f = f1 + f2, in Eq. (8.222) as f1 is an odd
function, and thereby observe that the charge of the quasi-particles described by the
distribution function is the elementary charge, the full electronic charge.

23We essentially follow the presentation of reference [45]. For general references to charge imbal-
ance in superconductors, as well as other non-equilibrium phenomena, we refer to the articles in
reference [42].

24In reference [46], they are referred to as the longitudinal and transverse distribution functions.
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The strong Coulomb force suppresses charge fluctuations, but it is possible to
have a charge imbalance between the charge carried by the condensate of correlated
electrons and the charge carried by quasi-particles

Q∗ = 2eN0

∞∫
−∞

dE N1(E) f2(E) . (8.223)

The presence of a temperature variation, T (r) = T + δT (r) creates a non-
equilibrium distribution in the thermal mode

δf = f1 − f0 = −E

T

∂f0

∂E
δT (8.224)

where f0 is the Fermi function. The presence of a supercurrent, ps = mvs = −(∇χ+
2eA)/2, couples via the kinetic equation for the charge mode the thermal and the
charge mode. For a stationary situation with f2 homogeneous in space we have
according to Eq. (8.192)

2N2∆f2 − 4D0N2R2 ps · ∇f1 = K2[f2] . (8.225)

The first term on the left gives rise to conversion between the supercurrent and the
current carried by quasi-particles, while the second term is a driving term propor-
tional to vs · ∇T . Close to the transition temperature, Tc, the collision integral is
dominated by energies in the region E′ � T . In this energy regime we have α � 1
and β̃, γ̃ � η where we have introduced the notation η = ∆(T )/T for the small
parameter of the problem. The collision integral then becomes proportional to the
inelastic collision rate

K2[f2] = − N1

τ(E)

f2 +
∂f0

∂E

∞∫
−∞

dE N1(E) f2(E)

 . (8.226)

The last term is proportional to the charge imbalance, and we get the following
kinetic equation

(2∆τ(E)N2 + N1) f2 + Q∗ N1

2N0

∂f0

∂E
= −4mD0

E

T

∂f0

∂E
τ(E)N2R2 vs · ∇T. (8.227)

Integrating with respect to the energy variable gives

Q∗

2N0
= −4mD0

T

A

1− B
vs · ∇T , (8.228)

where

A = −
∞∫

−∞

dE
∂f0

∂E

N1N2R2Eτ(E)
N1 + 2∆τ(E)N2

(8.229)



8.6. Summary 251

and

B = −
∞∫

−∞

dE
∂f0

∂E

N2
1

N1 + 2∆τ(E)N2
. (8.230)

Assuming weak pair-breaking the quantities can be evaluated. To zeroth order in η
we have B � 1 as N1 � 1 and N2 � 0. From the structure of the densities of states
it is apparent that the main correction contribution comes from the energy range ∆
up to a few ∆. We can therefore use the high-energy expansion

N2 =
∆Γ

E2 + Γ2
, (8.231)

where

Γ =
1

2τ(E)
+

1
τs

+
1
2
D0(p2

s − ∆−1∇2∆) (8.232)

is the pair-breaking parameter. In the limit of weak pair-breaking, Γ � ∆, and ∆
is small as we assume the temperature is close to the critical temperature, so that
∆(τ(E)Γ)1/2 � T , and we get

B = 1 − π∆
4T

(2τ(E)Γ)1/2 . (8.233)

In the BCS-limit, A is logarithmically divergent due to the singular behavior of
the density of states, but the pair-breaking smears out the singularity and gives a
logarithmic cut-off at ln(4∆/Γ), and we have

A =
∆
8T

(
ln

4∆
Γ

+ 2(2τ(E)Γ− 1)1/2 arctan((2τ(E)Γ − 1)1/2)
)

. (8.234)

In the limit where electron–phonon interaction provides the main pair breaking mech-
anism, Γ ∼ 1/2τE, the charge imbalance thus becomes

Q∗ =
2
3π

pF l

T
2N0(vs · ∇T ) ln(8∆τ(E)) . (8.235)

For a discussion of the experimental observation of charge imbalance we refer the
reader to reference [47].

8.6 Summary

In this chapter we have considered non-equilibrium superconductivity. By using the
quasi-classical Green’s technique, a theory with an accuracy in the 1% range was
constructed that were able to describe the non-equilibrium states of a conventional
superconductor. This is a rather impressive achievement bearing in mind that a su-
perconductor is a messy many-body system. In general one obtains coupled equations
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for spectral densities, non-equilibrium distribution functions and the order parame-
ter, which of course in general are inaccessible to analytic treatment, but which can
be handled by numerics. The versatility of the quasi-classical Green’s technique to
understand non-equilibrium phenomena in superfluids is testified by the wealth of
results obtained using it. For the reader interested in non-equilibrium superconduc-
tivity, we give the general references where further applications can be trailed [48]
[49].



9

Diagrammatics and
generating functionals

At present, the only general method available for gaining knowledge from the funda-
mental principles about the dynamics of a system is the perturbative study. Accord-
ing to Feynman, as described in Chapter 4, instead of formulating quantum theory in
terms of operators,1 the canonical formulation, for calculational purposes quantum
dynamics can conveniently be formulated in terms of a few simple stenographic rules,
the Feynman rules for propagators and interaction vertices.

In Chapters 4 and 5, we showed how to arrive at the Feynman rules of diagram-
matic perturbation theory for non-equilibrium states starting from the Hamiltonian
defining the theory. The feature of non-equilibrium states, originally carried by the
dynamical indices, could be expressed in terms of two simple universal vertex rules for
the RAK-components of the matrix Green’s functions. We are thus well acquainted
with diagrammatics even for the description of non-equilibrium situations. However,
for the situations studied using the quantum kinetic equations in Chapters 7 and
8, only the Dyson equation was needed, i.e. the self-energy, the 2-state one-particle
irreducible amputated Green’s function. No need for higher-order vertex functions
was required, and the full flourishing diagrammatics was not put into action. In
this chapter we shall proceed the other way around. We shall show that the dia-
grammatics of a physical theory, including the description of non-equilibrium states,
can be obtained by simply stating quantum dynamics, the superposition principle,
as the two exclusive options for a particle: to interact or not to interact! From this
simple Shakespearean approach we shall construct the Feynman diagrammatics of
non-equilibrium dynamics. Thus starting with bare propagators and vertices defin-
ing a physical theory, and constructing its dynamics in diagrammatic perturbation
theory, we then show how to capture all of the diagrammatics in terms of a single
functional differential equation. In this way we shall by simple topological arguments
for diagrams construct the generating functional approach to quantum field theory of
non-equilibrium states. The corresponding analytic generating functional technique

1Or equivalently for that matter in terms of path or functional integrals as we discuss in the next
chapter.

253
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is originally due to Schwinger [50]. In the next chapter, we shall then follow Feynman
and instead of describing the dynamics of a theory in terms of differential equations,
describe its corresponding representation in terms of path integrals. These analytical
condensed techniques shall prove very powerful when unraveling the content of a field
theory. The methods were originally developed to study equilibrium state proper-
ties, in fact strings of field operators evaluated in the vacuum state as relevant to
the Green’s function’s of QED, and later taken over to study equilibrium properties
of many-body systems. In the following we shall develop these methods for general
non-equilibrium states.

A point we wish to stipulate is that diagrammatics and the equivalent functional
methods are a universal language of physics with applications ranging from high to
low energies: from particle physics over solid state physics even to classical stochastic
physics and soft condensed matter physics, as we shall exemplify in the following
chapters. In the next chapter, we shall eventually use the effective action approach
to study Bose–Einstein condensation, viz. the properties of a trapped Bose gas.
In Chapter 12, we shall consider classical statistical dynamics, classical Langevin
dynamics, where the fluctuations are caused by the stochastic nature of the Langevin
force, a problem which, interestingly enough, mathematically is formally equivalent
to a quantum field theory.

9.1 Diagrammatics

According to the Feynman rules, the quantum theory of particle dynamics is defined
by its bare propagators and vertices, specifying the possible transmutations of parti-
cles and thereby describing how any given particle configuration can be propagated
into another one. In the standard model, the elementary particles consist of mat-
ter constituents: leptons (electron, electron neutrino and their heavier cousins) and
quarks (up and down and their heavier cousins, three families in all), all spin-1/2
particles and therefore fermions, and the force carriers which are bosons and medi-
ate interaction through their exchange between the matter constituents, or realize
transmutation of particles through decay. The electro-weak force is mediated by the
photon and the heavy vector bosons, and the strong force is mediated by gluons.
In condensed matter physics, electromagnetism or simply the Coulomb interaction is
the relevant interaction; typically the interactions of electrons with photons, phonons,
magnons and other electrons are of chief interest. In statistical physics, thermal as
well as quantum fluctuations are of interest but the diagrammatics are the same,
even for non-equilibrium states, the emphasis of this book. In equilibrium statisti-
cal mechanics, thermodynamics, thermal and not quantum fluctuations are often of
chief importance, and the use of diagrams are also of great efficiency, for example
in understanding phase transitions. In Chapter 12 we demonstrate the usefulness
of Feynman diagrams even in the context of classical physics, viz. in the context
of classical stochastic dynamics. At the level of diagrammatics there is no essen-
tial difference in the treatment of different physical systems and different types of
fluctuations, and all cases will here be dealt with in a unified description.

A generic particle physics experiment consists of colliding particles in certain
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states and at a later time detecting the resulting debris of particle content in their
respective states, or rather reconstructing these since typically the particle content
of interest has long ceased to exist once the detector signals are recorded.2 To
any possible outcome only a probability P can according to quantum mechanics be
attributed. To each possible process (a final configuration of particles given an initial
one) is thus associated a (conditional) probability P . The probability for a certain
process occurring, is according to the fundamental principle of quantum mechanics,
specified by a probability amplitude A, a complex number, giving the probability for
the process as the absolute square of the probability amplitude3

P = |A|2 . (9.1)

In order not to clutter diagrams and equations with indices, a compound label is
introduced

1 ≡ (s1,x1, t1, σ1, . . .) (9.2)

for a complete specification of a particle state and it thus includes: species type s,
space and time coordinates (x, t), internal (spin, flavor, color) degrees of freedom
σ, . . ., or say in discussing superconductivity a Nambu index. Most importantly,
since we also allow for non-equilibrium situations the index 1 includes a dynamical or
Schwinger–Keldysh index in addition, or equivalently we let the temporal coordinate
t become a contour time τ on the contour depicted in Figure 4.4 or Figure 4.5.
However, we shall for short refer to the labeling 1 as the state label. Instead of the
position, the complementary momentum representation is of course more often used
owing to calculational advantages or experimental relevance, say in connection with
particle scattering, but for the present exposition one might advantageously have the
more intuitive position representation in mind.

We now embark on constructing the dynamics of a non-equilibrium quantum field
theory in terms of diagrams, i.e. stating the laws of nature in terms of the propagators
of species and their vertices of interaction.

9.1.1 Propagators and vertices

Feynman has given us a lucid way of representing and calculating probability am-
plitudes in terms of diagrams. In this framework a theory is defined in terms of
the particles it describes, their propagators and their possible interactions. Each
particle is attributed a free or bare propagator, G

(0)
12 , the probability amplitude to

freely propagate between the states in question, say spin states and space-time points
(x1, σ1, t1) and (x2, σ2, t2). The corresponding free propagator or Green’s function,

2Indeed any dynamics of particles can be viewed as caused by collisions, i.e. interactions, and the
following diagrammatic discussion is valid for any in-put/out-put kind of machinery. The dynamics
need not be dictated by the laws of physics for diagrammatics to work, it can be the result of any
mechanism of choice, say a random walk. The diagrammatic approach can therefore also be used
to study statistical mechanics models, and for the brave perhaps models of evolution or climate, or
the stock market for the greedy.

3For almost 100 years, no mechanics beyond these probabilities has been found despite many
brave attempts. Furthermore, we stress the weird quantum feature that the probabilities have to be
calculated through the more fundamental amplitudes, which are the true carriers of the dynamics
of the theory.
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the amplitude for no interaction, is represented diagrammatically by a line as shown
in Figure 9.1, where a dot signifies a state label.

1 2
= G

(0)
12

Figure 9.1 Diagrammatic notation for bare propagators.

In the context of quantum theory, the propagator or Green’s function is the
conditional probability amplitude for the event 1 to take place given that event 2 has
taken place. All states have equal status and the bare propagators are symmetric
functions of the state labels, G

(0)
12 = G

(0)
21 . The free propagator is species specific

G
(0)
12 ∝ δs1s2 , (9.3)

a free particle can not change its identity.4

In the treatment of non-equilibrium states in the real-time technique, the real-time
forward and return contour matrix representation, Eq. (5.1), or better the economical
and more physical symmetric representation of the bare propagator, should thus be
used, the latter having the following additional matrix structure in the dynamical or
Schwinger–Keldysh indices:

G0 =
(

0 GA
0

GR
0 GK

0

)
. (9.4)

The bare vertices describe the possible interactions allowed to take place, and
generic examples, the three- and four-line attachment or connector vertices, are dis-
played in Figure 9.2.

= g1234

1
2

4 3
= g123

1
2

3

Figure 9.2 Diagrammatic notation for bare vertices.

4If, say, there is no spin dynamics then G
(0)
12 ∝ δσ1σ2 . Sometimes it is convenient to include in

the free propagator the change in the internal degrees of freedom of the particle; for example, if
the spin of the particle is coupled to an external magnetic field. The chosen notation is seen to be
capable of dealing with any kind of dynamics.
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Without risking confusion, we have in accordance with standard notation also
used a single dot in connection with vertices (and, say, not a triangle with three
attached dots or a box with four attached dots), and here the dot does not specify a
single state label but several, as specified by the protruding stubs to which propaga-
tors can be attached. The rationale for this is that quantum field theories are local
in time, so that at least all time labels of the propagators meeting at a vertex are
identical. In the 3-connector vertex, the single dot with its three protruding stubs
thus represents three state labels where propagators can be attached and they can
all be different. The form of the vertices, as specified by the indices, describes how
particle species are transmuted into other particle species or how a particle changes
its quantum numbers owing to interaction. The numerical value of the vertex, the
amplitude for the process specified by g, the coupling constant or charge, gives the
strength of the process.

The two ingredients, propagators and vertices, are the only building blocks for
constructing the Feynman diagrams. In condensed matter physics, the corresponding
amplitudes represented by the propagators and vertices are the only ones needed to
specify the theory. These numbers are taken from experiment, for example from
the measured values of the mass and charge of the electron. However, in relativistic
particle physics they are only bare parameters, i.e. rendered unobservable quantities
owing to the presence of interactions. For example, the value of the mass entering a
bare propagator is a quantity unreachable by experiment (i.e. has no manifestation in
the world of facts) since it corresponds to the non-existent situation where the particle
is not allowed to interact. The interaction causes the mass to change, and in order to
make contact with experiment the knowledge of the measured masses (and charges)
must be introduced into the theory through the scheme of renormalization.5 The
expressions for the bare propagators are known a priori, since they are specified by the
space-time symmetry, and the forms of the vertices are given by the symmetry of the
theory, but their numerical values must be taken from comparison with experiment.6

In elementary particle physics, only the two types of vertices displayed in Figure
9.2 occur, the 4-connector vertex being relevant only for the gluon–gluon coupling.
The 3-connector vertex is ubiquitous, for example describing electron–photon inter-
action or pair creation such as in QED. In fact, in QED, the theory restricted to
the multiplet of electron and its anti-particle, the positron, and the photon, the ver-
tex is nonzero for various species combinations, describing both electron or positron
emission or absorption of a photon, or pair creation or destruction. In condensed mat-
ter physics, the 3-connector could for example describe electron–phonon, electron–
electron or electron–magnon interactions, as discussed in Section 2.4. In statistical
physics, where the propagators describe both thermal and quantum fluctuations and

5Of course, the interactions encountered in condensed matter physics in the same manner lead
to renormalization of, say, the electron mass, as we have calculated in Section 7.5.2. However, this
is a finite amount on top of the infinitely renormalized bare mass. Usually this is an effect of only
a few percent of the electron mass, except in for example the case of heavy fermion systems.

6In relativistic quantum theory the forms of the propagators are specified by Lorentz invariance.
For a massive particle the propagator or Green’s function is specified by its bare mass and the type
of particle in question. Also the form of the interaction can be obtained from the symmetry and
Lorentz invariance of the theory, whereas the strength of the coupling constants are phenomenolog-
ical parameters, i.e. they are obtained by comparison of theory and experiment.
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for example effects of quenched disorder, vertices of arbitrary complexity can occur.7

In the theory of phase transitions, which is an equilibrium theory, the diagrams de-
scribe transitions, i.e. thermal fluctuations, between the possible states of the order
parameter relevant to the transition and critical phenomenon in question. However,
we shall frame the arguments in the appealing particle representation, but since ar-
guments are about the topological character of diagrams the formalism applies to
any representation and any type of fluctuations and thus to any kind of field theory.

9.1.2 Amplitudes and superposition

Consider an amplitude A1234...N specified by N external states, an N -state amplitude.
It could, for example, describe the transition probability amplitude for collision of two
particles in states 1 and 2, respectively, to end up in a particle configuration described
by the states 3, 4, . . . , N , or the decay of a particles in state 1 into particles in states
2, 3, . . . , N , etc. This general conditional probability amplitude is represented by the
N -state diagram shown in Figure 9.3.8

2

1

3

N

Figure 9.3 Diagrammatic notation for the N -external-state amplitude A1234...N .

Specifying any amplitude is done by following the laws of Nature, quantum dy-
namics, which at the diagrammatic level of bare propagators and vertices is the basic
rule that a particle has two options: to interact or not to interact!9 The probability
amplitude for a given process, characterized by the fixed initial and final state labels,
is then construed as represented by the multitude of topologically different diagrams
that can be constructed using the building blocks of the theory, viz. all the topolog-

7A case in question within the context of classical stochastic phenomena will be discussed in
Chapter 12. The simplest vertex, a two-line vertex, is of course also relevant, viz. describing a
particle interacting with an external classical field, but it is trivial to include, as will become clear
shortly and we leave it implicit in the discussion for the moment.

8In statistical mechanics the diagrams can represent probabilities directly, say transitions between
configurations of the order parameter.

9The former option is evident since otherwise the particle would live undetected, devoid of
influence. The latter option is required by the fact that not all particles can interact directly.
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ically different diagrams that the vertices and bare propagators allow. Examples of
diagrams for the 4-state amplitude are shown in Figure 9.4 for the theory defined by
having only a 4-connector vertex.

2

1

3

4
1

=

4

2 3

+ · · ·

3

41

2

+ + · · ·

1

2

+ + · · ·

4

3

Figure 9.4 Generic types of diagrams.

The numerical value represented by a diagram is obtained by multiplying together
the amplitudes for each component, propagators and vertices, constituting the dia-
gram,10 and in accordance with the superposition principle summation occurs over
all internal labels, adding up all the alternative ways the process can be effected,
for example summation over all the alternative space-time points where interaction
could take place is performed.11 The first diagram on the right in Figure 9.4 thus

10This rule is often left implicit, but represents the multiplication rule of quantum mechanics:
that amplitudes for events effected in a sequence should be multiplied in order to get the amplitude
for the sequence of events. The expression of causality in quantum mechanics.

11Only topologically different diagrams appear, interchanging the labeling of interaction points,
i.e. permutation of vertices, are not additionally counted. This is precisely how the diagrammatics
of (non-equilibrium) quantum field theory turned out as discussed in Chapter 4; the important
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represents the analytical expression as displayed in Figure 9.5, and we have intro-
duced the convention that repeated indices are summed over, or as we shall say state
labels appearing twice are contracted.

1 4

2 3

= G
(0)
11′ G

(0)
22′ g1′2′3′4′ G

(0)
3′3 G

(0)
4′4

Figure 9.5 Numerical and diagrammatic correspondence.

The basic principle of quantum mechanics, the superposition principle, entails
further the diagrammatic rule: the probability amplitude for a real process is rep-
resented by the sum of all diagrams allowed, i.e. constructable by the vertices and
propagators defining the theory. In accordance with the superposition principle,
the amplitudes obtained from each single diagram are then added, adding up the
contributions from all the different internal or virtual ways the initial state can be
connected to the final state in question. The sum gives the amplitude for the process
in question.

The diagrammatic representation of any amplitude consists of three topologi-
cally different classes of diagrams: connected diagrams, disconnected or unlinked
diagrams, and diagrams accompanied by vacuum fluctuations, the virtual processes
where particles pops out and back into the vacuum. For the amplitude with four
external states, the three classes for the theory defined by having only a 4-connector
vertex are exemplified in Figure 9.4.

The last diagram in Figure 9.4 represents the type of diagrams where a diagram
(here a connected one) appears together with a vacuum fluctuation diagram. Vacuum
diagrams close onto themselves, no propagator lines end up on the external states,
and they appear as unlinked diagrams. According to the multiplication rule, the
two amplitudes represented by the two sub-parts of the total diagram are multiplied
together to get the total amplitude represented by the diagram. The first and second
diagrams on the right in Figure 9.4 are of the connected and disconnected type,
respectively. These diagrams, according to the general rule of diagram construction,
can also be accompanied by any vacuum fluctuations constructable. The symbol + · · ·
in the figure summarizes envisioning all diagrams constructable with the vertices and
propagators defining the theory. The total class of diagrams is thus an infinite myriad
with infinite repetitions.

The totality of all diagrams can thus (with the help of our most developed sense)

feature that the factorial provided by the expansion of the exponential function is canceled by this
redundancy.
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be envisioned perturbatively. However, this is of little use unless only trivial lowest
order perturbation theory needs to be invoked. One approach to a more powerful
diagrammatic representation is by using topological arguments to partially re-sum
the diagrammatic perturbation expansion in terms of effective vertices and the full 2-
state propagators, i.e. in terms of so-called skeleton diagrams.12 In the next section,
we shall first pursue the hierarchal option on our way to this goal, expressing any
N -state amplitude in terms of amplitudes with different numbers of external states.

Before embarking on deriving the fundamental diagrammatic equation, we intro-
duce the inverse propagator. The inverse of the free or bare propagator is specified
by the (partial differential) equation satisfied by the free propagator

(G−1
0 )11̄ G(0)

1̄2
= δ12 (9.5)

or since the propagator is symmetric in its labels

(G−1
0 )11̄ G(0)

1̄2
= δ12 = G

(0)

11̄
(G−1

0 )1̄2 . (9.6)

We have written the equation satisfied by the free propagator in matrix notation,
in terms of an integral operator as summation over repeated indices is implied.13

For later use we introduce diagrammatic notation for the inverse free propagators as
depicted in Figure 9.6.

(G−1
0 )11′ =

1 1′

Figure 9.6 Diagrammatic notation for the inverse free propagator.

Using the basic diagrammatic rule: to interact or not, we shall start obtaining dia-
grammatic identities relating amplitudes, and eventually express these diagrammatic
relations in terms of differential equations.

9.1.3 Fundamental dynamic relation

To get started on a systematic categorization of the plethora of diagrams, let us first
consider the case where one particle is not allowed to interact and let us separate out
its state to appear on the left in the diagram specifying the amplitude in question as
depicted in Figure 9.7. Since not interacting is an option even for a particle capable of
interacting, this seemingly irrelevant case of a completely non-interacting particle is a
first step in the general deconstruction of an N -state amplitude into amplitudes with
less external states, and allows furthermore a comment on the quantum statistics of
identical particles.

12This was performed in Section 4.5.2, starting with the canonical formalism.
13The inverse free contour-ordered Green’s function encountered in Section 4.4.1, or the inverse

free matrix Green’s function of Section 5.2.1, stipulating the additional matrix structure in the
dynamical indices, had integral kernels typically consisting of differential operators operating on the
delta function.
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N

2

1

Figure 9.7 General N -state diagram.

Since the particle in state 1 is assumed not to interact, its only option is to
propagate directly to a final state, and the amplitude A1234...N can in this case be
expressed in terms of the amplitude which has two external states less according to
the basic rule: everything can happen on the way between the (N − 2) other final
states, and the diagrammatic equation displayed in Figure 9.8 is obtained.

N

1

2

+ · · ·+=

N

3

21 2

N

N − 1

1

Figure 9.8 Diagrams for the non-interacting particle labeled by 1.

The N -state amplitude is in this case represented by the amplitudes specified by
(N −2) external states, i.e. A23...N without the index M labeling the state where the
propagator starting in state 1 ends up. If sM �= s1, the process is not allowed since
a non-interacting particle can not propagate to a different species state, and this
feature is faithfully respected by the diagrammatics, since then the corresponding
propagator according to Eq. (9.3) vanishes, G

(0)
1M = 0, and the contribution from the

corresponding diagram vanishes since by the multiplication rule the bare propagator
amplitude multiplies the adjacent (N − 2)-state amplitude.

The quantum statistics of identical particles introduces minus signs when two
identical fermions interchange states and the amplitudes are symmetric upon inter-
change of bosons, say

A213...N = ±A123...N (9.7)

where the upper (lower) sign is for bosons (fermions), respectively.
For the case of non-interacting identical particles, only free propagation and effects

of the quantum statistics of the particles are involved as displayed in Figure 9.9.
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2 3
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1

3

4

= ±
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2 3

+

1 4

2 3

Figure 9.9 The 4-state diagrams for two non-interacting identical particles.

In the following we consider first bosons, in which case the amplitude functions
are symmetric upon interchange of pairs of external state labels. The features of
antisymmetry for fermions are then added.14 The symmetry property of amplitudes
forces the vertices to be symmetric in their indices, e.g. for the 3-vertex g213 = g123,
etc.

Returning to the diagram for the general N -state amplitude and respecting the
other option for the particle in state 1, to interact, gives the additional first two
diagrams as depicted on the right in Figure 9.10 for the case of a theory with three-
and four-line connector vertices. The equation relating amplitudes as depicted in
Figure 9.10 is the fundamental dynamic equation of motion in the diagrammatic
language (for the case of three- and four-line vertices but trivially generalized).

N

2

1
1

N

2

+ · · ·++

2

N

N − 1

N

3

21

1

= 1
2! + 1

3!

1

N

2

Figure 9.10 Fundamental dynamic equation for three- and four-vertex interactions.

The option of interaction through the 3-state vertex is for the N -external-state
amplitude expressed in terms of the amplitude A

(N+1)

2̄3̄3...N+1
with (N + 1) external

states, where two internal propagators are contracted at the vertex. This leads to
the first diagram on the right in Figure 9.10, representing according to the Feynman

14In diagrammatics the essential is the topology of a diagram, and the interpretation of diagrams
for the case of fermions is by the end of the day the same as for bosons except for the rule that a
relative minus sign must be assigned to a diagram for each closed loop of fermion propagators.
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rules the amplitude as specified in Figure 9.11.

1

2

N

= G
(0)

11̄
g1̄2̄3̄A2̄3̄2...N

Figure 9.11 Diagram and corresponding analytical expression.

Repeated state labels are summed over in accordance with the superposition
principle. Similarly for diagrams with higher-order vertices in Figure 9.10 displayed
for a theory with an additional 4-attachment vertex.

Although combinatorial prefactors are an abomination in diagrammatics we have
in accordance with custom introduced them in Figure 9.10 by hand, the convention
being: an N -line vertex carries an explicit prefactor 1/(N − 1)!, the reason being to
be relieved at a different junction as immediately to be revealed. Consider a theory
with only a 3-attachment vertex, and follow the further adventures of one of the
particles emanating from the interaction vertex according to its two options, interact
or not, as depicted in Figure 9.12.

2

3

+
1
2

1

2

3

1

2

3

= 2× + disconnected diagram

+ higher-order contributions.

+

1

2

3

1

+

1

2

3

1

3

2

=

Figure 9.12 Further adventures of a particle line emanating at a vertex.

The upper row of diagrams on the right in Figure 9.12 corresponds to the option
of not interacting. In lowest order in the interaction, the second and third diagrams
on the right give the same contribution. The inserted combinatorial factor in Figure
9.10 is thus the device to make the bare vertex diagram (here a 3-vertex) appear
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with no combinatorial factor. In a theory with only a 3-attachment vertex, the
inserted combinatorial factor appearing with the vertex in Figure 9.10, thus makes
the diagrammatic expansion of the 3-state amplitude start out with the lowest-order
connected diagram, the bare vertex 3-state amplitude, carrying no additional factor
as depicted in Figure 9.13.

1

=

1

2

3

+ · · ·

2

3

Figure 9.13 Lowest-order connected 3-state diagram for a 3-vertex theory.

A similar function has the combinatorial factor inserted in front of the 4-vertex
diagram in Figure 9.10.

9.1.4 Low order diagrams

Let us now familiarize ourselves with the Feynman rules and derive the expressions of
lowest-order diagrammatic perturbation theory. The reader not interested in entering
into this infinite forest of diagrams can skip the next few pages and go straight to
the next sections where more powerful methods are developed. These will allow us
systematically to generate the jungle of diagrams. However, for the adventurous
reader let us see what kind of diagrams will emerge when we apply the simple law
of dynamics, to interact or not to interact! A lesson to be learned from this is
that although the basic rule is as simple as it possibly can be, in this brute force
generation of diagrams one can easily miss a diagram, something history has proved
over and again. The functional methods we shall consider shortly are able to capture
the complete diagammatics in a simple way and in this way are able to help us in
ensuring against mistakes.

We can now in any diagram follow the further possible options of any particle
line emanating at a vertex, interact or not, and in this way unfold order by order
the infinite total canopy in the jungle of diagrams constituting perturbation theory.
For example, consider the 2-state amplitude (or two-point or 2-state propagator
or Green’s function) and a theory with the option of interaction only through the
3-attachment vertex. The two options for dynamics then generate the diagrams
depicted in Figure 9.14.

+ 1
2=

Figure 9.14 Interaction or not option for the 2-state amplitude.
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A new diagrammatic entity enters in the first diagram on the right in Figure
9.14, the sum of all vacuum diagrams. The first diagram on the right in Figure
9.14 represents the product of two quantities, the bare 2-state amplitude, the bare
propagator, times the amplitude resulting from the sum of all vacuum diagrams:
free propagation accompanied by vacuum fluctuations, and nothing further is to be
revealed diagrammatically in this part. The second diagram on the right corresponds
to the option of interaction (in QED it could represent photon absorption or emission
by electrons and positrons or pair creation). We note the general structure emerging
in this way for the 2-state amplitude: the appearance of the bare 2-state amplitude
and the appearance of a higher-order amplitude, here the 3-state amplitude.

Next we concentrate on the second diagram on the right in Figure 9.14, and
explore the options, interact or not, of one of the lines emanating from the vertex
and obtain the diagrams depicted in Figure 9.15.

+ 1
2

+ 1
2=

Figure 9.15 Diagrams generated by particle emanating at the vertex.

The first two diagrams on the right in Figure 9.15 correspond to the option of not
interacting, viz. either propagating freely back to the vertex or freely to the external
state. The last diagram encompasses the option of interacting, exposing one more
vertex in our 3-state vertex theory.

The 1-state amplitude appearing in the first and second diagram on the right
in Figure 9.15 (as a disconnected and connected piece, respectively), the tadpole
diagram, can in a 3-vertex theory be expressed in terms of the 2-state amplitude
contracted at the vertex as depicted in Figure 9.16, since the only option for the
line is to interact (the option of not interacting was already exhausted in the first
diagram in Figure 9.14).

=
1
2

Figure 9.16 Tadpole or 1-state amplitude in a 3-vertex theory is expressable in
terms of the vertex and the 2-state amplitude contracted at the vertex.

Inserting into the second diagram on the right in Figure 9.16 the expression for
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the 2-state amplitude specified by the expression in Figure 9.14 gives in a three-line-
vertex theory the diagrammatic equation for the tadpole depicted in Figure 9.17.

= + 1
4

1
2

Figure 9.17 Tadpole equation for a three-line-vertex theory.

The 1-state diagram, the tadpole, has thus been expressed in terms of the bare
tadpole times the amplitude representing the sum of all the vacuum diagrams plus
a higher correlation amplitude, here the 3-state amplitude contracted at vertices
according to the second diagram on the right in Figure 9.17.

Exercise 9.1. Obtain the diagrammatic equation for the tadpole if a 4-line vertex
is also included in the theory.

Let us now further expose interactions in the 2-state amplitude in Figure 9.14.
Insert the diagrammatic expansion of the tadpole in Figure 9.17 into the first diagram
on the right in Figure 9.15, and then substitute the resulting expression for the second
diagram on the right in Figure 9.14, and further explore the options for particle lines
emanating from vertices, interaction or not. This gives the diagrammatic expansion
of the 2-state amplitude depicted in Figure 9.18.

+ 1
8

= + 1
4

+ 1
8

+ 1
4

+ 1
4

+ 1
4

Figure 9.18 The 2-state amplitude equation for a 3-line-vertex theory exposed to
second order in the coupling.
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In this way an amplitude is expressed in terms of higher-order amplitudes ap-
pearing as the vertices launch propagator lines into states represented by amplitudes
of ever higher state numbers. We can in this fashion systematically develop the dia-
grammatic perturbation expansion order by order in the coupling constants. Let us
do it for the 2-state amplitude for a 3-line vertex theory up to second order in the
interaction. Using the diagrammatic expansion of the 2-state amplitude obtained
in Figure 9.18 for a 3-line vertex theory, the diagrammatic expansion of the 2-state
amplitude to second order in the 3-vertex can now explicitly be identified by neglect-
ing effects higher than second order. The 2-state amplitude to second order in the
coupling thus has the diagrammatic expansion depicted in Figure 9.19.

=

+ 1
2

+ 1
2

+ 1
4

Figure 9.19 The 2-state amplitude to second order for a 3-vertex theory.

We have noted the feature that the sum of vacuum diagrams will overall multiply
the zeroth and all second-order diagrams and can be separated off. Proceeding in
this fashion, the perturbative expansion of the 2-state amplitude (or in general any
N -state amplitude) to arbitrary order in the interaction can be generated.

Exercise 9.2. Consider a theory with both 3- and 4-vertex interaction and obtain the
diagrammatic expansion of the 2-state amplitude to second order in the interactions.

Another systematic characterization of the plethora of diagrams in perturbation
theory is exposing them according to the number of loops that appear in a diagram.
From the diagrammatic expansion of the 2-state amplitude in Figure 9.18 we obtain
that, to two-loop order, the 2-point amplitude in a 3-vertex theory is given by the
diagrams depicted in Figure 9.20.15

15This type of expansion, the loop expansion, will give rise to a powerful systematic approximation
scheme as discussed in Section 10.4. In quantum field theory it corresponds to a power series
expansion in �, the number of loops in a diagram corresponds to the power in �, and is thus a way
systematically to include quantum fluctuations.
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Figure 9.20 The 2-state amplitude to two-loop order for a 3-line-vertex theory.

In low order perturbation theory, we have noticed the feature that the sum of all
vacuum diagrams separates off, and we show in the Section 9.5 that all amplitudes
can be expressed in terms of their corresponding connected amplitude times, the
amplitude representing the sum of all the vacuum diagrams.16

Exercise 9.3. Consider a theory with both 3- and 4-vertex interaction and obtain
the diagrammatic expansion of the 2-state amplitude to one-loop order.

Exercise 9.4. Consider a theory with both 3- and 4-vertex interaction and obtain
the diagrammatic expansion of the 2-state amplitude to two-loop order.

In this section we have proceeded from simplicity, the simple rules of diagram-
matics, to complexity, the multitude of systematically generated diagrams by the
simple law of dynamics, to interact or not to interact. However, this scheme soon

16From the canonical version of non-equilibrium perturbation theory considered in Chapter 4, we
know that the sum of all the vacuum diagrams is an irrelevant number to the theory, in fact just one.
But in standard zero-temperature formulation and finite temperature imaginary-time formulation
of perturbation theory they appear, and to include these cases we include them in the diagrammatic
discussion. Vacuum diagrams can be of use in their own right as discussed and taken advantage of
in Chapters 10 and 12.
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gets messy; just try your luck in the previous exercise to muscle out all the diagrams
for a 3- plus 4-vertex theory. In order not to be blinded by all the trees in the forest
we shall now proceed to get a total view of the jungle, and in this way we return to
simplicity. We shall introduce an object that contains all the amplitudes of a theory
and the vehicle for extracting any desired amplitude of the theory. This object is
called the generating functional and the vehicle for revealing amplitudes will be dif-
ferentiation, and we shall obtain a formulation of the diagrammatic theory in terms
of differential equations.

9.2 Generating functional

We now embark on constructing the analytical theory describing efficiently the to-
tality of all the diagrams describing the amplitudes, the quantities containing the
information of the theory. The complete set of all amplitudes possible in a given
theory can conveniently be collected into a generating functional

Z[J ] =
∞∑

N=0

1
N !

A12...N J1 J2 · · ·JN , (9.8)

where summation over repeated indices is implied, or as we shall say state labels
appearing twice are contracted.17 The function of the possible particle states, J , is
called the source (or current).18 We have used a square bracket to remind us that we
are dealing not with a function but a functional.19 The expansion coefficients are the
amplitudes of the theory. Here the generating functional or generator is considered
to generate all the probability amplitudes of the quantum field theory in question.20

In the diagrammatic approach, the (N = 0) -term, the value of Z[J = 0], shall
by definition be taken to be the amplitude representing the sum of all the vacuum
diagrams of the theory in question.21

17For the continuous parts of the compound state label index the summation is actually integra-
tion, summation over small volumes. We shortly elaborate on this, but for simplicity we let this
feature be implicit using matrix contraction for convolution.

18The source functions not only as a source for particles, but also as a sink, i.e. particle lines not
only emanate from the source but can also terminate there, a feature we bury in the indices and
need not display explicitly in the diagrammatics.

19A functional maps a function, here J , into a number.
20Actually, quantum field theory requires the substitution J → iJ , but for convenience we leave

out at this stage the imaginary unit since it is irrelevant for the ensuing discussion. The imaginary
unit is fully installed in Chapter 10.

21In a T = 0 quantum field theory, the sum of all vacuum diagrams equals according to the Gell-
Mann–Low theorem, Eq. (4.20), a phase factor of modulus one. In the closed time path formulation,
which we shall always have in mind, the sum of all vacuum diagrams are by construction equal to
one. The (N = 0)-term can therefore be set equal to one, i.e. giving the normalization condition
Z[J = 0] = 1. Since our interest is the real-time treatment of non-equilibrium situations, the closed
time path guarantees the even stronger normalization condition of the generator, viz. Z[J ] = 1,
provided that the sources on the two parts of the closed time path are taken as identical. When
calculating physical quantities, the sum of all vacuum diagrams in fact drops out as an overall
factor, a feature we have already encountered in low order perturbation theory in the previous
section. However, vacuum diagrams can in themselves be a useful calculational device, a feature
we shall employ when employing the effective action approach in Chapter 10 and Chapter 12. In
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This way of collecting all the data of a theory into a single object, the genera-
tor of the theory, is indeed quite general. In equilibrium statistical mechanics the
generating functional will be the partition function in the presence of an external
field, the source (recall the general relation between quantum theory and thermody-
namics as discussed in Section 1.1 (there displayed explicitly only for the simplest
case of a single particle, the general case being obtained straightforwardly). The
construction of the generating functional is also analogous to how the probabilities
in a classical stochastic theory are collected into a generating function that generates
the probabilities of interest of the stochastic variable (in that case the (N = 0) -term
is one by normalization). In that context the generating function is usually reserved
to denote the generator of the moments of the probability distribution involving a
Fourier transformation of the probability distribution. This avenue we shall also take
advantage of in the context of quantum field theory of non-equilibrium states when
we introduce functional integration in Chapter 10.

Since the values of the source function J in different states are independent,
varying the magnitude of the source for a given state influences only the source for
the state in question and we have for such a variation (a formal discussion of the
involved functional differentiation is given in the next section)

δJM

δJ1
= δ1M , (9.9)

i.e. the Kronecker function which vanishes unless 1 = M . Differentiating the gener-
ating functional with respect to the source function J and subsequently setting J = 0
therefore generates the amplitudes of the theory of interest, for example

δNZ[J ]
δJ1δJ2 . . . δJN

J=0

= A12...N , (9.10)

where the factorial in Eq. (9.8) is canceled by the same number of equal terms
appearing due to the symmetry, Eq. (9.7), of the probability amplitude.22 In the
particle picture of quantum field theory the function J acts as a source for creating
or absorbing a particle in the state specified by its argument.

For continuous variables, such as space and (contour or for real forward and
return) time, the summation in Eq. (9.8) is actually short for integration, and we
encounter instead of the Kronecker function, Eq. (9.10), Dirac’s delta function,23 say
in the spatial variable

δJx

δJx′
= δ(x− x′). (9.11)

However, this feature will in our notation be kept implicit for continuous variables.
We have used the symbol δ to designate that the type of differentiation we have in

mind is functional differentiation, the strength of the source is varied for given state
label.
the present chapter, the starting point is diagramatics and for that reason the (N = 0)-term is by
definition taken to be the sum of all the vacuum diagrams.

22We first discuss the Bose case, the Fermi case needs the introduction of Grassmann numbers,
as discussed in Section 9.4.

23For a discussion of Dirac’s delta function we refer to appendix A of reference [1].
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Thus functional generation of the amplitudes is achieved by functional differen-
tiation. We therefore dwell for a moment on the mathematical rules of functional
differentiation. However, in the intuitive approach of this chapter, we could in view
of Eq. (9.9) simply define functional differentiation as the sorcery: cutting open the
contraction of the source and amplitude, thereby exposing the state.

9.2.1 Functional differentiation

Functional differentiation maps a functional, F [J ], into a function according to the
limiting procedure

δF [J ]
δJ(x)

= lim
ε→0

F [J(x′) + εδ(x− x′)]− F [J ]
ε

. (9.12)

More precisely, into a function of x and in general still a functional of J . Since we shall
be dealing with functionals which have Taylor expansions, i.e. have a perturbation
expansion in terms of the source, an equivalent definition is

F [J + δJ ]− F [J ] =
∫
dx

δF [J ]
δJ(x)

δJ(x) +O(δJ2) . (9.13)

The functional derivative measures the change in the functional due to an infinitesi-
mal change in the magnitude of the function at the argument in question.

The operational definition of Dirac’s delta function

J(x) =
∫
dx′ δ(x − x′) J(x′) (9.14)

is thus seen to be identical to the functional derivative specified in Eq. (9.11) if in
Eq. (9.12) or Eq. (9.13) we choose F to be the functional

F [J ] = J(x) (9.15)

for fixed x, or returning to our index notation F [J ] = Jx.
For the functional defined by the integral

F [J ] ≡
∫
dx f(x) J(x) (9.16)

we get for the functional derivative

δF [J ]
δJ(x)

= f(x) (9.17)

exposing the kernel.
As regards the discrete degrees of freedom we have instead of Eq. (9.13)

F [J + ∆J ] − F [J ] =
j∑

σ1=−j

∆F [J ]
∆Jσ1

∆Jσ1 (9.18)
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and if we choose F to be the functional

F [J ] = Jσ1 (9.19)

the functional derivative becomes

∆Jσ1

∆Jσ1′
= δσ1,σ1′ (9.20)

i.e. the Kronecker part in Eq. (9.9). The δ on the right-hand side in Eq. (9.9) is thus
a product of delta and Kronecker functions in the continuous respectively discrete
variables.

As usual in theoretical physics, to be in command of formal manipulations one
needs only to be in command of the exponential function. In the context of functional
differentiation, we note that the functional differential equation

δF [J ]
δJ(x)

=
δG[J ]
δJ(x)

F [J ] (9.21)

has the solution
F [J ] = eG[J] , (9.22)

which is proved directly using the expansion of the exponential function or follows
from the chain rule for functional differentiation

δ

δg(x)
f(G[g]) =

δG[g]
δg(x)

∂f(G)
∂G

(9.23)

for arbitrary functional G and function f .24

Of particular importance is the case

F [J ] ≡ e
∫
dx f(x) J(x) , (9.24)

where f is an arbitrary function, and in this case we get for the functional derivative

δF [J ]
δJ(x)

= f(x) F [J ] . (9.25)

Exercise 9.5. Standard rules for differentiation applies to functional differentiation.
Verify for example the rule

δ

δf(x)
(F [f ]G[f ]) =

(
δ

δf(x)
F [f ]

)
G[f ] + F [g]

(
δ

δf(x)
G[f ]

)
(9.26)

and the functional Taylor series expansion

F [f1 + f2] = e
∫
dx f2(x) δ

δf1(x) F [f1] . (9.27)

24In equations Eq. (9.12) and Eq. (9.13) we deviate from our general notation that capital letters
represent functionals whereas lower capital letters denote functions.
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9.2.2 From diagrammatics to differential equations

We shall now show how to capture the whole diagrammatics in a single functional
differential equation. We introduce the diagrammatic notation for the generating
functional, Z, displayed in Figure 9.21.

Z[J ] =

Figure 9.21 Diagrammatic notation for the generating functional.

According to the definition of the generating function in terms of amplitudes and
sources, Eq. (9.8), we have the relation as shown in Figure 9.22.

= + + 1
2! + 1

3! + · · ·

Figure 9.22 Diagrammatic representation of the generating functional.

The first term on the right of Figure 9.22 is the sum of all vacuum diagrams and
independent of the source, and we have introduced the diagrammatic notation that
a cross designates the source, the label of the source being that of the state indicated
by the corresponding dot as shown in Figure 9.23.

= J

Figure 9.23 Diagrammatic notation for the source in the state indicated by the dot.

We have thus introduced the new diagrammatic feature that a particle line, as
dictated by the generating functional, can end up on a source. The propagator dot
and the corresponding source dot are thus shared in accordance with the convention
that the corresponding state label are contracted, i.e. repeated indices are summed,
integrated, over in accordance with the definition in Eq. (9.8).25

If the source is not set to zero after differentiation

A12...N [J ] =
δNZ[J ]

δJ1δJ2 · · · δJN
(9.28)

25The dot was also used in connection with the vertices, and another reason for this is that in
fact a vertex is a generalization of a source, generating multi-particle states.
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we generate a new quantity, the amplitude in the presence the source. A source
dependent amplitude is a function of the state labels exposed by the labels of the
sources with respect to which the generating functional is differentiated as well as a
functional of the source.

For the non-interacting theory in the presence of the source, the amplitude A1[J ]
is represented by the diagram depicted in Figure 9.24.

2

= G
(0)
12 J2

1

Figure 9.24 Diagrammatic representation of the amplitude A1 for a free theory in
the presence of the source.

We now turn to show how to express in terms of functional differential equations,
all the diagrammatic equations relating amplitudes, as exemplified in Figure 9.10,
and derived by the simple diagrammatic rule: to interact or not. This is achieved by
first expressing the fundamental dynamic diagrammatic equation displayed in Figure
9.10, in terms of a differential equation for the generating functional.

The first derivative of the generating functional generates according to its defini-
tion the terms

δZ[J ]
δJ1

= A1 + A12̄ J2̄ +
1
2
A12̄3̄ J2̄ J3̄ +

1
3!

A12̄3̄4̄ J2̄ J3̄ J4̄ + . . . . (9.29)

Differentiating the generating functional with respect to the source of a certain la-
bel removes this source, corresponding diagrammatically to removing a cross, and
exposes this state in a bare propagator as each source dependent amplitude thus no
longer ends up on this source but in the corresponding particle state, a particle is
launched.26 An external state, no longer contracted with the source, is thus exposed
in each of the diagrams on the right-hand side in Figure 9.22 representing the gener-
ating functional, viz. the state with the label of the source with respect to which we
differentiate. We therefore introduce the diagrammatic notation for the first deriva-
tive of the generating functional, the 1-state amplitude in the presence of the source,
where a state on a free propagator line extrudes from the generating functional as
depicted in Figure 9.25.

1 ≡ δZ
δJ1

Figure 9.25 Diagram representing the first derivative.

The cross in the diagram in Figure 9.25 is there to remind us that the first
26Or terminated as kept track of for convenience by yet an index in the collective index, and not

as in Chapter 4 by an arrow.
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derivative, the source dependent 1-state amplitude function, is still a functional of
the source.

The equation for the first derivative of the generating function, Eq. (9.29), can
therefore be expressed diagrammatically as depicted in Figure 9.26.

+

+ · · ·

=

+ 1
2! + 1

3!

Figure 9.26 Diagrammatic expansion of the 1-state amplitude in the presence of
the source.

Let us consider a 3-vertex theory. The first diagram on the right in Figure 9.26,
the tadpole, is then given by the diagram in Figure 9.16, i.e. specified by the vertex
and the 2-state amplitude. The second diagram on the right in Figure 9.26 can
according to the two options of the external state line, interact or not, be split into
the two diagrams on the right-hand side depicted in Figure 9.27. For the latter option
the exposed state propagates directly to the source as depicted in the first diagram
on the right.

= + 1
2

Figure 9.27 Interaction or not options for the 1-source term.

The structure of the above equation is: free propagation to the source times the sum
of vacuum diagrams plus exposed vertex diagram.

Similarly for the 2-source diagram on the right in Figure 9.26 we get the options
as depicted in Figure 9.28. The factor of two appearing in front multiplying the first
term on the right is the result of the option that when non-interacting the external
state line can end up on either of the two sources and the two diagrams specify the
same number.
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= 1
2 · 2 +1

2 ·
1
2

1
2

Figure 9.28 Interaction or not options for the 2-source term.

The structure of the above equation is: free propagation to the source times the
1-state amplitude contracted on the source (one integer lower-state amplitude than
the one on the left) plus exposed vertex diagram.

Similarly for the 3-source diagram we have the options as depicted in Figure 9.29
(and we have equivalent for the further higher-numbered source diagrams in Figure
9.26).

= 1
3! · 3 + 1

3! ·
1
2

1
3!

Figure 9.29 Interaction or no interaction options for the 3-source term.

If we collect the resulting diagrams into their two different types: those with
the amplitude factor of free propagation to the source and those with an exposed
vertex, the diagrammatic equation for the first derivative of the generating functional
becomes the one depicted in Figure 9.30.

= 1
2



+ + 1
2

+

+ . . .

+ 1
3!

+ 1
2

+

 + . . .


Figure 9.30 First derivative equation for a 3-vertex theory.

The sum of the diagrams in the parenthesis in the last line of Figure 9.30 are seen
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to be exactly the diagrams constituted by the generating functional and we have the
diagrammatic identity depicted in Figure 9.31.

+ + 1
2

 + . . .

 =

Figure 9.31 Propagation to the source times generating functional part.

The systematics of the prefactors of the diagrams in the parenthesis in Figure 9.31
are easily identified through their generation: the term with N sources getting the
prefactor 1/N !.

The diagrams in the first parenthesis in Figure 9.30 can also be expressed in
terms of the generating functional. They all start out with the launched propagator
entering the 3-vertex whose two other stubs either exposes lines in the sum of vacuum
diagrams, or the 1-state amplitude contracted on the source, or the 2-state amplitude
contracted on the source, etc. These latter parts thus sum up diagrammatically to
the generating functional and we can therefore represent the diagrammatic equation
in Figure 9.30 in the form depicted in Figure 9.32, the fundamental diagrammatic
equation for the dynamics of a 3-vertex theory.

+= 1
2

Figure 9.32 Fundamental diagrammatic equation for the 1-state amplitude, in the
presence of the source, for a 3-vertex theory.

Next we wish to identify the analytical expression corresponding to the first di-
agram on the right in Figure 9.32, or equivalently, the analytical expression for the
diagrams in the first parenthesis in Figure 9.30. To this end we consider the second
derivative of the generating function which according to Eq. (9.29) becomes

δ2Z[J ]
δJ3δJ2

=
δ

δJ3

(
A2 + A22̄ J2̄ +

1
2
A22̄3̄ J2̄ J3̄ +

1
3!

A22̄3̄4̄ J2̄ J3̄ J4̄ + ...

)

= A23 + A233̄ J3̄ +
1
2
A233̄4̄ J3̄ J4̄ +

1
3!

A233̄4̄5̄ J3̄ J4̄ J5̄ + ... . (9.30)

Differentiating the generating functional exposes the corresponding state labels of
amplitudes, and if we contract these on the vertex function we get27

1
2
G

(0)

11̄
g1̄23

δ2Z[J ]
δJ3δJ2

=
1
2
G

(0)

11̄
g1̄23A23 +

1
2
G

(0)

11̄
g1̄23A233̄J3̄ +

1
2
G

(0)

11̄
g1̄23

1
2
A233̄4̄ J3̄ J4̄

27The vertices can thus be viewed as internal sources for creation and annihilation of particles, a
point we shall exploit later.
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+
1
2
G

(0)

11̄
g1̄23

1
3!

A233̄4̄5̄ J3̄ J4̄ J5̄ + ... (9.31)

i.e. exactly the analytical expression corresponding to the diagrams in the first paren-
thesis on the right in Figure 9.30. The correct factorial prefactors are generated term
by term, the term with N sources getting the prefactor 1/N !, and all terms have an
overall factor 1/2 since they were generated by a 3-line vertex theory. The diagrams
in the first parenthesis in Figure 9.30 are thus represented in terms of differentiating
the generating functional twice. We have thus derived diagrammatically the funda-
mental analytical equation, the Dyson–Schwinger equation, obeyed by the generating
functional for a 3-vertex theory28

δZ[J ]
δJ1

= G
(0)

11̄

(
1
2
g1̄23

δ2

δJ3δJ2
+ J1̄

)
Z[J ] . (9.32)

Just as in diagrammatics, the ingredients here are the bare propagators and vertices,
but now instead of the diagrammatic rule of dynamics, to interact or not, we have
instead free propagation to the source and differentiations with respect to the source.

The two lines protruding out of the generator in the first diagram on the right
in Figure 9.32 has thus the same operational meaning as in Figure 9.25: it signi-
fies differentiation with respect to the source, here where the labels with which the
differentiation takes place are contracted at the vertex.29

By introducing the generating functional, the diagrammatic equations for ampli-
tudes in the presence of a source can be represented by a differential equation, so
far we have achieved it for the 1-state amplitude, but the game can be continued by
taking further derivatives. The functional differential equation, Eq. (9.32), will thus
be the fundamental dynamic equation for a 3-vertex theory.

The power of the generating functional technique is that all the relations existing
between the amplitudes in a theory, as expressed by the diagrammatic equation
in Figure 9.10, are contained in the fundamental functional differential equation,
of the type Eq. (9.32) (or Eq. (9.34) the analogous equation for a theory with an
additional four-line vertex, or quite generally for a theory with an arbitrary number
of vertices). This is quite a compression of the information contained in the set
of diagrammatic relations between amplitudes that has been achieved here. From
the fundamental differential equation we can obtain all the diagrammatic equations
relating amplitudes by functional differentiation. All the diagrammatic equations are
thus equivalently representable by differential equations. For example, for the 2-state
amplitude or Green’s function in a 3-vertex theory we obtain by differentiating with
respect to the source on both sides in Eq. (9.32)

A11′ =
δ

δJ1′
G

(0)

11̄

(
1
2
g1̄23

δ2

δJ3δJ2
+ J1̄

)
Z[J ]

J=0

= G
(0)

11̄

(
1
2
g1̄23

δ3

δJ3δJ2δJ1′
+ δ1̄1′

)
Z[J ]

J=0

, (9.33)

28The generating functional approach to quantum field theory was championed by Schwinger [50].
29We note that the vertex in the equation in Figure 9.32 is acting like a 3-particle source .
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which is the functional representation of the diagrammatic equation depicted in Fig-
ure 9.14.

We now have two ways of interpreting the two lines entering the generating func-
tional in the first diagram on the right in Figure 9.32, either in the diagrammatic
language options of interact or not, or as two functional differentiations of the gen-
erating functional.

Exercise 9.6. Obtain by diagrammatic reasoning for a theory with both 3- and
4-vertex interaction the Dyson–Schwinger equation (letting δ/δJ → δ/iδJ for proper
quantum field theory notation, for details see Section 10.2.1)

δZ[J ]
δJ1

= G
(0)

11̄

(
J1̄ +

1
2
g1̄23

δ2Z[J ]
δJ3δJ2

+
1
3!

g1̄234

δ3Z[J ]
δJ4δJ3δJ2

)
Z[J ] (9.34)

satisfied by the generating functional.

For a non-interacting, free, quantum field theory we can solve Eq. (9.32) immedi-
ately (with δ/δJ → δ/iδJ for proper quantum field theory notation) and obtain for
the generator of the free theory

Z0[J ] = e
i
2 J1 G

(0)
11̄ J1̄ . (9.35)

The overall multiplying constant equals one in accordance with the normalization
Z0[J = 0] = 1, the sum of all the vacuum diagrams are equal to one. For the free
theory this follows trivially, the only vacuum diagram being the one where the free
propagator closes on itself, and since the equal time propagator by nature of being a
the conditional probability amplitude it satisfies G0(x, t;x′, t; ) = δ(x − x′), leaving
the vacuum diagram equal to one. Since our interest is the real-time description
of non-equilibrium situations, the closed time path formalism guarantees the even
stronger normalization condition of the generator, Z[J ] = 1, provided that the source
on the two parts of the closed time path are taken as identical. We note that the
free closed time path generator is unity, Z0[J ] = 1, if the sources on the two contour
parts are identical, J+ = J−, in view of the identity Eq. (5.39). We have

Z0[J ] = eiW0[J] , W0 =
1
2

J1 G
(0)

11̄
J1̄ (9.36)

and W0 vanishes, W0[J ] = 0, if the sources on the two contour parts are identical,
J+ = J−.

In the closed time path formalism, the free Green’s function entering Eq. (9.35) is
the free contour-ordered Green’s function. If we introduce the two parts of the closed
contour explicitly and the notation J± for the source on the forward and return parts,
respectively, the components of the matrix Green’s function of Eq. (5.1) appears
multiplied by the respective sources and integrations are over real time.

If we wish to express the generator in the physical or symmetric matrix Green’s
function representation, we should rotate the real-time sources by π/4 to give(

J1

J2

)
=

1√
2

(
1 −1
1 1

)(
J+

J−

)
(9.37)
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as well as the Green’s functions, and we obtain, suppressing variables other than the
time,

W0[J ] =

∞∫
−∞

dt

∞∫
−∞

dt′(J2(t)GR
0 (t, t′)J1(t′) + J1(t)GA

0 (t, t′)J2(t′) + J2(t)GK
0 (t, t′)J2(t′)).

(9.38)

By choosing properly the real-time dynamical indices of the sources, we can by dif-
ferentiation generate the various real-time propagators, GRAK

0 .

9.3 Connection to operator formalism

In Chapter 4 we showed how to derive the Feynman diagrammatics for non-equilibrium
situations starting from the canonical formulation in terms of quantum fields, i.e. we
started from the equations of motion for the contour or real-time Green’s functions,
describing the interactions in the system, and ended up with their diagrammatic
representation in terms of perturbation theory. In this chapter, we have started from
diagrammatics and have obtained the equation of motion for the contour or real-
time Green’s functions in terms of the generating functional. We can also make the
direct connection back to the quantum fields by expressing the contour or real-time
generating functional in terms of them according to30

Z[J ] =
〈
Tc ei

∫
c

dxdτ φ(x,τ) J(x,τ)
〉

= Tr(ρ(H)Tc ei
∫

c
dxdτ φ(x,τ)J(x,τ)) (9.39)

since for example the two-point Green’s function (modulo the imaginary unit) is then
specified in terms of the, for simplicity, scalar quantum field operator, φ(x, τ), on the
multi-particle space according to

〈Tc(φ(x, τ)φ(x′ , τ ′))〉 = − δZ[J ]
δJx′,τ ′ δJx,τ

J=0

. (9.40)

In Eq. (9.39) the contour is the closed time path depicted in Figure 4.5, as we have a
non-equilibrium situation in mind, and we have in Eq. (9.40) generated the contour
ordered 2-state Green’s function. Introducing the two parts of the closed contour, the
matrix Green’s function of Eq. (5.1) emerges. If we wish to generate the components
of the symmetric or physical matrix Green’s function, Eq. (5.41), we should rotate
the fields and sources according to Eq. (9.37) (recall Eq. (9.38)).

Exercise 9.7. Consider the case of a self-coupled bose field as described by the
potential V (φ). Show that the generating functional can be expressed in terms of
the free generator according to

Z[J ] = e−iV ( δ
iδJ (x,τ ) ) Z0[J ] . (9.41)

30For the case of zero temperature the generator is the vacuum-to-vacuum amplitude in the

presence of coupling to the source, Z[J ] = 〈0|Tc ei
∫
c dxdτ φ(x,τ ) J (x,τ )|0〉.
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We have considered, as above, the case of a real or hermitian bose field. If we con-
sidered spin-less bosons, say sodium atoms at low temperatures where their internal
degrees of freedom can be neglected, we would have for the generating functional

Z[η, η∗] =
〈
Tc ei

∫
c

dxdt ψ(x,t) η(x,t) + ψ†(x,t) η∗(x,t)
〉

, (9.42)

where now the source is not as above a real function, but a doublet of complex c-
number functions. We note the important feature of the closed time path formalism
that the generator equals one if the sources are identical on the upper and lower parts
of the contour.

9.4 Fermions and Grassmann variables

For the case of fermions, the sources must be anti-commuting numbers, so-called
Grassmann variables, in order to respect the antisymmetry property of Green’s func-
tions or amplitudes in general. In quantum field theory, we shall always be concerned
with a Grassmann algebra consisting of an even number of generators

{ηα, ηβ} = 0 , (9.43)

where α, β = 1, 2, . . . , 2n. All possible products (ordered by convention α < β,
etc.), the set {1, ηα, ηαηβ , . . . , ηα . . . ην}, constitute a basis for the Grassmann algebra,
which in addition is a vector space over the complex numbers of dimension 22n since
any generator can either be included or not in a product. Since we consider an
even number of generators, they can be grouped in pairs, so-called conjugates, and
renamed, ηα and η∗

α, i.e. now α = 1, . . . , n. The conjugation property is endowed
with the properties: (η∗

α)∗ = ηα, and (c ηα)∗ = c∗ηα and (ηα . . . ηβ)∗ = η∗
β . . . η∗

α.
Each of the variables satisfies its Grassmann or exterior algebra, and owing to

the anti-commutation relation, which implies η2 = 0, the highest polynomial to be
built is thus linear

f(η) = c0 + c1η , (9.44)

the monomial, where the coefficients c0 and c1 are arbitrary complex numbers. Sim-
ilarly for a pair η and η∗

f(η, η∗) = c0 + c1η + c2η
∗ + c3ηη∗ . (9.45)

The linear space of functions of conjugate variables being four-dimensional.
As a consequence of the anti-commutation relation,

eη+η∗
= 1 + η + η∗ . (9.46)

Exercise 9.8. Show that for pairs with different labels, say η1 η∗
1 and η2, η

∗
2 they

commute and powers vanish, i.e.

[η1 η∗
1 , η2, η

∗
2 ] = 0 , (η1 η∗

1)2 = 0 . (9.47)
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Show that

e

n∑
α=1

ηα η∗
α

=
n∏

α=1

eηα η∗
α =

n∏
α=1

(1 + ηα η∗
α) . (9.48)

Differentiation, symbolized by the operator ∂/∂η, is the linear operation defined
by first anti-commuting the variable next to the operation, giving for example

∂

∂η
(η∗ η) =

∂

∂η
(−η η∗) = −η∗ . (9.49)

For the function in Eq. (9.45) we thus get the derivatives

∂

∂η
f(η, η∗) = c1 + c2η

∗ ,
∂

∂η∗
f(η, η∗) = c2 − c3η (9.50)

and

∂

∂η∗
∂

∂η
f(η, η∗) = c3 = − ∂

∂η

∂

∂η∗
f(η, η∗) . (9.51)

Differentiations with respect to a pair of Grassmann variables thus anti-commute.
For the case of fermions, the sources we encounter must satisfy the algebra of

anti-commuting variables, say the anti-commutation relations

η(x, τ) η∗(x′, τ ′) = −η∗(x′, τ ′) η(x, τ) (9.52)

and we have the generating functional

Z[η, η∗] =
〈
Tc ei

∫
dx
∫

c
dτ (ψ(x,τ)η(x,τ) + ψ†(x,τ)η∗(x,τ))

〉
(9.53)

generating for example the two-point fermion contour ordered Green’s function, or
propagator, according to

G(x, τ ;x′, τ ′) = i
δ2Z[η, η∗]

δη∗(x′, τ ′) δη(x, τ)
= −i〈Tc(ψ(x, τ)ψ†(x′, τ ′))〉 (9.54)

the anti-commutation of the fields under the contour ordering being respected since
derivatives with respect to Grassmann variables anti-commute.

Instead of the equality[ δ

δJ(x, τ)
, J(x′, τ ′)

]
= δ(x− x′) δ(τ − τ ′) (9.55)

valid for bosonic sources, we thus have for fermions{ δ

δη(x, τ)
, η(x′, τ ′)

}
= δ(x− x′) δ(τ − τ ′) =

{ δ

δη∗(x, τ)
, η∗(x′, τ ′)

}
(9.56)

and the following combinations of differentiations anti-commuting{ δ

δη(x, τ)
,

δ

δη∗(x′, τ ′)

}
= 0 =

{ δ

δη(x, τ)
,

δ

δη(x′, τ ′)

}
. (9.57)
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The topological arguments of Section 9.2.2 are unchanged for the case of including
also fermions, and we obtain for example the fundamental dynamical equation for
the case of electrons interacting through Coulomb interaction, V ,

δZ[η, η∗]
δη1

= G
(0)

11̄

(
V1̄234

δ3

δη4δη∗
3δη∗

2

+ η∗
1̄

)
Z[η, η∗] (9.58)

or for coupled fermions and bosons for example

δZ[J, η, η∗]
δη1

= G
(0)

11̄

(
g1̄23

δ3

δJ3δη∗
2

+ η∗
1̄

)
Z[J, η, η∗] (9.59)

and similar for the other source derivatives. Here we have for once made the species
labeling of the sources explicit.31

For a non-interacting, free, quantum field theory we can immediately solve the
corresponding Eq. (9.32), and obtain the generator of the free theory for fermions,
recall Eq. (9.48),

Z0[η∗, η] = e
i
2 η∗

1 G
(0)
11̄ η1̄ . (9.60)

9.5 Generator of connected amplitudes

We now show how to express the generator of all amplitudes, connected and discon-
nected, in terms of a less redundant quantity, the generator of connected amplitudes.
Their relation is provided simply by the exponential function

Z[J ] = eW [J] , W [J ] = lnZ[J ] . (9.61)

We shall first provide an intuitive demonstration arguing only at the diagrammatic
level, and then give the general combinatorial proof.

9.5.1 Source derivative proof

The diagrams collected in the generating functional Z contain redundancy, viz. the
presence of disconnected diagrams.32 Say, for an 8-state amplitude there will a dia-
gram which is the product of the first diagram on the right in Figure 9.4 multiplied
by itself, describing processes which do not interfere. Furthermore, there is the re-
dundancy of disconnected vacuum diagrams, the blobs of particles in and out of the
vacuum. The disconnected diagrams, we now show, quite generally can be factored
out of any N -state diagram. By this procedure the generator will be expressed in
terms of the generator of only connected diagrams. It turns out that it is the ex-
ponential function which relates these two quantities. The presence of disconnected

31For any theory whose diagrammatics we derived in Chapter 4, we know the vertices and we
can now immediately write down the fundamental functional differential equation satisfied by the
generating functional.

32For the diagrammatics we encountered in Chapter 4, all physical quantities were ab initio
expressed in terms of connected diagrams owing to using the closed time path or contour formulation.
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diagrams is equivalent to processes that do not interfere with each other. The physi-
cal content of expressing the theory only in terms of connected diagrams is profound,
viz. it is possible to describe a subsystem without bothering about the rest of the
Universe with which it does not interact. This is in accordance with all experimental
experience: processes separated far enough in space do not influence each other. We
have in the diagrammatic approach stated the laws of Nature in terms of diagram-
matic rules and we now show that the feature of having to deal only with connected
diagrams is built in implicitly.33

Let us go back to the equation for the first derivative of the generator, the di-
agrammatic equation depicted in Figure 9.26. For the first diagram on the right,
the tadpole or 1-state amplitude, we have in general the diagrammatic relationship
depicted in Figure 9.33.
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Figure 9.33 Tadpole and connected tadpole relation.

In Figure 9.33, the hatched circle denotes the sum of all connected tadpole or
1-state amplitude diagrams. The diagrammatic argument for the validity of this
relation is that since the external particle line has no option of ending on an external
state it must enter into a vertex, thereby creating connected diagrams, and any such
can be accompanied by any vacuum side show.

The class of diagrams contained in the second term on the right in Figure 9.26
can be split topologically into the two distinct classes depicted in Figure 9.34.
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Figure 9.34 One-source road diagrams and disconnected diagrams.

Here the first diagram contains all the diagrams where we can follow at least one
set of connected lines from the external state to the source, there is a road from the
external state to the source. The second diagram is the sum of diagrams where there
is no road from the initial state to the source, the external state and the source are
disconnected. Then the two propagator lines must enter connected diagrams which

33In the canonical derivation of quantum field theory diagrammatics of chapter 4, the cancella-
tion of the disconnected diagrams follows from the same argument as given in this and the next
subsections, or the observation was superfluous in the close time path formulation as they occurred
in multiples with opposite signs.
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can be accompanied by any vacuum diagram. In the road diagram, disconnected
diagrams must be vacuum diagrams. In the road diagram the disconnected vacuum
bubbles can therefore be split off and the connected road diagram appears, as depicted
in the first diagram on the right in Figure 9.35.
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Figure 9.35 Splitting off the sum of vacuum diagrams in the road diagram.

To get the second set of diagrams on the right in Figure 9.35, we have used the
relation depicted in Figure 9.33, the sum of connected 1-state diagrams multiplied
by the sum of vacuum diagrams is the sum of 1-state diagrams.

Next we go on to the third diagram on the right in Figure 9.26. It can be split
uniquely into the topologically different classes specified on the right in Figure 9.36.
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Figure 9.36 Road diagram classification.

Here the first diagram on the right comprises all the diagrams with roads from
the external state to both sources, the second diagram all the diagrams with no roads
from the external state to the sources, and the last two diagrams comprise all the
diagrams with roads to only one of the sources. Clearly, this groups the diagrams
uniquely into topologically different classes. In the road diagram the vacuum part
splits off from the connected road diagram to both sources and we get the relation
depicted in Figure 9.37.
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Figure 9.37 Splitting off the vacuum diagrams in the road diagram in Figure 9.36.

Here the factor of two appears in front of the last diagram because the last two
diagrams in Figure 9.36 give identical contributions, and we have again used the
fact that the sum of connected 1-state diagrams multiplied by the sum of vacuum
diagrams is the sum of 1-state diagrams.

For the class of diagrams contained in the third term on the right in Figure 9.26 for
the 1-state amplitude in the presence of the source, we can again split them uniquely
into different topological classes: the set where the external state is connected to all
the three sources, or to two or only one or none, i.e. the external state is disconnected
from the sources, and we obtain the relation depicted in Figure 9.38.
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Figure 9.38 Road diagram classification.
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Similarly we can proceed for the diagrams in Figure 9.26 with four and more
sources: split them into classes where the external state is connected to 0, 1, 2, 3, 4,
etc., of the sources.

Collecting the results obtained so far, we can re-express the equation for the 1-
state amplitude in the presence of the source, the diagrammatic equation depicted in
Figure 9.26, in the form specified in Figure 9.39. The higher-order diagrams in the
parenthesis not displayed will all, according to the above construction, appear with
the factorial prefactor specified by the number of sources.
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Figure 9.39 The 1-state amplitude in terms of connected amplitudes.

We have thus been able by simple topological arguments to express the 1-state
amplitude in terms of 1-state connected amplitudes. In fact, the information in
the equation depicted in Figure 9.39 can be further compressed. We recognize that
the diagrams in any of the parenthesis all sum up to the diagrammatic expansion
for the generating functional Z[J ]. We have thus achieved expressing the 1-state
amplitude in the presence of the source in terms of the 1-state connected diagrams
in the presence of the source and the generator Z[J ] as depicted in Figure 9.40
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Figure 9.40 First derivative diagrammatic equation.

On the right we see the 1-state connected diagrams in the presence of the source.
We shall therefore introduce the generator of connected diagrams, and we introduce
a hatched circle with a cross as the diagrammatic notation for the generator of
connected diagrams as depicted in Figure 9.41.
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Figure 9.41 Generator of connected Green’s functions.

The first term on the right in Figure 9.41 comprises the sum of all connected
vacuum diagrams. Removing a cross in the connected generator specified in Figure
9.41 by functional differentiation exposes the sum of 1-state connected diagrams in
the presence of the source, etc.

The diagrammatically derived equation depicted in Figure 9.40 can then be rewrit-
ten in the form depicted in Figure 9.42.

��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������

=

Figure 9.42 Relation between the derivatives of the generator and connected gen-
erator.

We introduce the notation G12...N for the amplitude represented by the N -state
connected diagrams, the hatched circle with N external states, and have analytically
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for the generator of connected amplitudes

W [J ] =
∞∑

N=0

1
N !

G12...N J1J2 · · · JN , (9.62)

the equation that is represented diagrammatically in Figure 9.41.
Since removing a cross corresponds to differentiation with respect to the source,

the relation depicted in Figure 9.42 can then be written in the form

δZ[J ]
δJ1

= Z[J ]
δW [J ]
δJ1

. (9.63)

We immediately solve equation Eq. (9.63), by the above analysis up to an undeter-
mined multiplicative constant, and obtain

Z[J ] = eW [J] . (9.64)

The overall multiplicative factor will in the following subsection be determined to be
the sum of all connected vacuum diagrams in the absence of the source (the connected
vacuum diagrams of the theory). We have already introduced a diagrammatic nota-
tion for this quantity, the first diagram on the right in Figure 9.41, and the overall
constant is thus accounted for by definition of the N = 0-term in Eq. (9.62). In the
above analysis this term was a source-independent irrelevant constant, not captured
by the argument due to the derivative. The generator of all amplitudes, Z[J ], is thus
equal to the exponential of the generator of only connected amplitudes. The simple
structure of the combinatorial factors in the definition of the exponential function
is thus enough at the level of generators to express the relationship between the
connected diagrams and all the diagrams, including disconnected diagrams.

Inversely we have34

W [J ] = lnZ[J ] . (9.65)

9.5.2 Combinatorial proof

We now give the general combinatorial argument for the relation between the gen-
erator of connected amplitudes W [J ] and the generator Z[J ], again arguing at the
diagrammatic level, but now for amplitudes in the absence of sources. This will fix the
overall multiplicative factor missed in the above argument to be determined to be the
sum of all connected vacuum diagrams of the theory.35 This is achieved by the follow-
ing observation. Any N -state amplitude can be classified according to its connected
and disconnected sub-diagrammatic topological feature of its external attachments.

34In thermodynamics Z[J ] represents the partition function and W [J ] represents the free energy,
and we have the diagrammatics necessary for a field theoretic approach to critical phenomena, and
the renormalization group. In probability theory, Z[J ] is the characteristic function, the generator
of moments and W [J ] is the generator of cumulants. In a quantum field theory we should restore
the imaginary unit, iW [J ] = ln Z[J ].

35The argument also shows that for the time-ordered Green’s function defined in terms of the
field operators, Eq. (4.21) (or the contour-ordered Green’s function, Eq. (4.50)), the denominator
exactly cancels the separated off vacuum diagrams in the numerator.
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For example, for the 3-state amplitude we get the topological classification as de-
picted on the right in Figure 9.43 (skipping for clarity the overall factor representing
the sum of all vacuum diagrams in the absence of the source accompanying each of
the diagrams on the right in Figure 9.43).
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Figure 9.43 The 3-state diagrams in terms of connected diagrams.

The general combinatorial proof of the relationship between the generator of all
amplitudes, the A1...N s, and the generator of connected amplitudes, the G1...N s, now
proceeds. Any N -state amplitude A1...N is a sum over all the possible products of
connected sub-amplitudes (multiplied by the overall sum of vacuum in the absence of
the source which we keep implicit). Any N -state amplitude can thus be divided into
its 1-state connected sub-amplitude parts (say m1 in all, m1 ≥ 0), multiplying its 2-
state connected amplitudes (say m2 in all),. . . , and its n-state connected amplitudes
(say mn in all), and we have (suppressing on the right the overall multiplicative factor
representing the sum of vacuum diagrams)

A
(N)
1,2,...,N →

∑
{mn }

′
G

(1)
P1
· · · G

(1)
Pm 1

G
(2)
Pm 1+1,Pm 1+2

· · · G
(2)
Pm 1+m 2,m 1+m 2+1

· · ·

· · · G
(n)
Pm 1+···+(n−1)m n−1+1,...,Pm 1+. . .+m n−1+n

· · · G(n)
PN −n ,...,PN

, (9.66)

where G denotes a connected amplitude, and the arrow indicates that a particular
choice of external state labels has been chosen as indicated by the permutation P of
the N labels. By construction the numbers specifying the sub-amplitudes satisfy a
constraint, the relation m1 + 2m2 + · · · + nmn = N , since we consider the N -state
amplitude, the case of N external states. The prime on the summation indicates that
for each N the sum is over only sets of sub-amplitude labeling values that satisfy the
constrain. Some of these ms are by construction zero; for example for, say, the 4-state
amplitude there is the combination (m1 = 1, m2 = 0, m3 = 1, m4 = 0) describing
the diagram with one 1-state connected diagram multiplying a 3-state connected
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diagram. Clearly, mN+n = 0 for n ≥ 1. Introducing the notation mp = 0 to mean
that there is no connected sub-amplitude with p external states we can write the
constrain

∞∑
mp =0

p mp = N (9.67)

letting the sub-diagram number run freely from zero to infinity.
In Eq. (9.66), a particular choice of grouping of terms was made as indicated by

the presence of the permutation P . The number of ways the external states of an N -
state amplitude can be divided into the above topological specified set of connected
sub-amplitudes is

M ≡ N !
m1!(2m2)!(3m3)! · · · (nmn)!

(9.68)

or in the freely running-label notation

M ≡ N !
m1!(2m2)!(3m3)! · · · (∞m∞)!

, (9.69)

where ∞m∞ simply indicates that for high enough external state labeling number,
say beyond L, we have (L + n)mL+n = 0 for any n ≥ 1 owing to the constraint,
Eq. (9.67). In the generating functional where the N -state amplitude is contracted
with N external sources, all of these terms have identical value.

Within each subset of sub-amplitudes, for example the product of 2-state dia-
grams, the labels defining the external states could have been paired differently giv-
ing (2m2)!/((m2)!(2!)m2) differently chosen sub-amplitudes which when contracted
with the sources give the same value. For the set of 3-state sub-amplitudes there are
analogously (3m3)!/((m3)!(3!)m3) possible choices giving identical contribution, etc.

For the N -state amplitude contracted with the N sources, we then have

1
N !

A
(N)
1,...,NJ1· · ·JN =

∑
{mn }

′ 1
m1!

(G1J1)m1
1

m2!
(
1
2!

G12J1J2)m2 · · · 1
mL!

(
1
L!

G1...LJ1· · ·JL)mL .

(9.70)

The generator Z can therefore be expressed in terms of connected amplitudes
according to (the N = 0-term, the sum of all vacuum diagrams in the absence of the
source, will be dealt with shortly)

Z[J ] =
∞∑

N=0

1
N !

A
(N)
1,2,...,N J1J2 · · ·JN

=
∞∑

N=0

∑
{mn }

′ 1
m1!

(G1J1)m1
1

m2!
(
1
2!

G12J1J2)m2 · · · 1
mL!

(
1
L!

G12...LJ1J2 · · ·JL)mL .

(9.71)
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This can be rewritten

Z[J ] =
∞∑

N=0

∑
{mn }

′ 1
m1!

(G1J1)m1
1

m2!
(
1
2!

G12J1J2)m2 · · · 1
mL!

(
1
L!

G12...LJ1J2 · · ·JL)mL

=
∞∑

m1,m2,...=0

1
m1!

(G1J1)m1
1

m2!
(
1
2!

G12J1J2)m2 · · · 1
mn!

(
1
n!

G12...nJ1J2· · ·Jn)mn · · ·

(9.72)

where the last summation runs freely over all mls so clearly any term in the first sum
is present once in the second sum, and any term in the second sum is unique. Any
term in the double sum is also unique and contains any term in the sum on the right
with the freely running summation and we have argued for the validity of the last
equality sign in Eq. (9.72).

In the discussion we suppressed the multiplicative factor representing the sum of
all the vacuum diagrams. To get the correct formula for Z[J ], we should thus in
Eq. (9.72) interpret the term with all mps equal to zero, m1 = 0 = m2 = m3, as the
sum of all the vacuum diagrams or rather as unity since we should remember the
overall multiplicative factor we left out of the argument representing the sum of all
the vacuum diagrams, Z[J = 0], connected and disconnected. We shall now obtain
the expression for Z[J = 0] in terms of the sum of connected vacuum diagrams. The
combinatorial argument runs equivalent to the above. A vacuum diagram with dis-
connected parts classifies itself into connected vacuum parts characterized according
to the number of vertices in the connected diagrams: a product of products of con-
nected diagrams with one, two, etc., vertices. The constraint and the combinatorics
will then be the same as above, N now characterizing the total number of vertices
in the vacuum diagrams in question, and we end up with the terms on the right-
hand side of Eq. (9.72) except for the absence of the source and the Gs now having
the meaning of connected vacuum diagrams with the possible different numbers of
vertices. We have thus shown that the sum of all the vacuum diagrams is given by
the exponential of the sum of all connected vacuum diagrams. Note that the term
contributing the unit term to this exponential function is provided by the vacuum
contribution for the option of not interacting, the contribution of the free theory
as discussed at the end of Section 9.2.2. Diagrammatically we have thus identified
that the first diagram in Figure 9.41 represents the term W [J = 0], the sum of all
connected vacuum diagrams.

We therefore get

Z[J ] = eW [J=0] eG1J1 e
1
2! G12J1J2 · · · e

1
n !G12. . .n J1J2···Jn · · · , (9.73)

where W [J = 0] denotes the first term on the right in the definition of the generator
of connected diagrams in Figure 9.41, and thereby

Z[J ] = eW [J] , (9.74)

where W [J ] is given by the expression in Eq. (9.62), since the G-amplitudes above
were, by construction, the connected ones.
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9.5.3 Functional equation for the generator

By construction W [J ] is the generator of connected amplitudes or Green’s functions

G12...N =
δNW [J ]

δJ1δJ2 · · · δJN

J=0

. (9.75)

For the first derivative of the generator of connected Green’s functions we get
according to the defining equation, Eq. (9.62), the trivial equation

δW [J ]
δJ1̄

= G1̄ +
∞∑

N=1

1
N !

G1̄12...N J1J2 · · · JN , (9.76)

which has the diagrammatical form depicted in Figure 9.44.
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Figure 9.44 First derivative of the generator of connected amplitudes.

The equation Eq. (9.76), displayed diagrammatically in Figure 9.44, has no ref-
erence to the content of the theory in question, but expresses only the polynomial
structure of the generator (of connected amplitudes) in terms of the source. To get
the theory into play we shall use the fundamental dynamic equation, Eq. (9.32), and
the established relation, Eq. (9.74). Since Z is related to W by the exponential func-
tion, all equations for Z can be turned into equations for W (the exponential function
is the one which when differentiated brings back itself). Inserting Eq. (9.74) into the
fundamental equation, Eq. (9.32), or rather Eq. (9.34) for the 3- plus 4-vertex theory,
and using Eq. (9.22), we get

δW [J ]
δJ1

= G
(0)
12

(
J2 +

1
2
g234

(
δ2W [J ]
δJ4δJ3

+
δW [J ]
δJ3

δW [J ]
δJ4

)

+
1
3!

g2345

(
δ3W [J ]

δJ5δJ4δJ3
+ 3

δW [J ]
δJ3

δ2W [J ]
δJ5δJ4

+
δW [J ]
δJ3

δW [J ]
δJ4

δW [J ]
δJ5

))
(9.77)
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the fundamental functional differential equation for the generator of connected am-
plitudes (here for the case of a 3- plus 4-vertex theory).

In diagrammatic notation we therefore have the equation depicted in Figure 9.45.
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Figure 9.45 Fundamental equation for the generator of connected Green’s function
for a 3- plus 4-vertex theory.

In deriving the equation depicted diagrammatically in Figure 9.45 we reversed
our previous order of first deriving equations by the diagrammatic rule, to interact
or not, and instead used the fundamental functional differential equation, Eq. (9.32),
whereby the propagator lines emerging from vertices into connected Green’s functions
represents functional differentiations. We could of course also immediately arrive at
the equation in Figure 9.45 diagrammatically, the options for entering into connected
diagrams for say propagators emerging from the 4-vertex is either into a 3-state
diagram, or 2- and 1-state diagrams. The prefactor of the next to last diagram on
the right in Figure 9.45 is caused by the three identical diagrams with the appearance
of the 2-state diagram.

We have thus expressed the 1-state connected Green’s function, in the presence
of the source, in terms of higher-order connected Green’s function and the free prop-
agators and vertices of the theory. By taking further derivatives in Eq. (9.77) we
can obtain the differential equation satisfied by any connected Green’s function and
immediately write down its diagrammatic analog. We have thus made the full circle
back to the canonically derived non-equilibrium Feynman diagrammatics of Chap-
ters 4 and and 5, where the diagrams represented averages of the quantum fields, but
now we are armed in addition with the powerful tool of a functional formulation of
non-equilibrium quantum field theory.

The amplitudes which in this chapter were defined in terms of the diagrams
are thus for the case of quantum field theory the expectation values of products of
the quantum fields of the theory. For example, the 2-state connected amplitude is
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the 2-point Green’s function (normal or anomalous for the superconducting state as
dictated by the Nambu index), etc. The 1-state amplitude is the average value of
the quantum field. The 1-state amplitude, the tadpole, thus vanishes for a state with
a definite number of particles, but can be non-vanishing for, for example, photons
in a coherent state. However, even when treating a system with a definite number
of bosons, it can be convenient to introduce states where the average value of the
bose field is non-vanishing. This will be the case when we discuss the Bose–Einstein
condensate in Section 10.6.

Exercise 9.9. Show by taking one more source derivative of Eq. (9.77) that the
equation for the 2-state connected Green’s function in the presence of the source, for
a 3-vertex theory, has the diagrammatic form depicted in Figure 9.46.
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Figure 9.46 Equation for the 2-state connected Green’s function for a 3-vertex
theory.

Then argue instead diagrammatically from the equation in Figure 9.45 to obtain the
above equation. One then learns to appreciate the skill of differentiation.

9.6 One-particle irreducible vertices

In order to get a handle of the totality of connected diagrams we shall further exploit
their topology for classification. We introduce the concept of one-particle irreducible
diagrams (1PI-diagrams). All diagrams can then be classified uniquely by the topo-
logical property: they can be cut in two by cutting zero (1PI), one, two, etc., internal
bare lines. This will lead to the appearance of the one-particle irreducible vertices,
and to the important formulation of the theory in terms of the effective action.

Consider the 1-state connected Green’s function in the presence of the source, i.e.
the derivative of the generator of connected Green’s functions

ϕ1 =
δW [J ]
δJ1

. (9.78)
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We shall refer to this function as the field.36 Besides being a function of the state
exposed by differentiation, the field is also a functional of the source, ϕ1 = ϕ1[J ]. We
shall leave this feature implicit. However, in the diagrammatic notation we shall keep
the source dependence explicit, through the cross, as we introduce the diagrammatic
notation depicted in Figure 9.47 for the field.
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Figure 9.47 Diagrammatic representation of the 1-state connected Green’s function
or average field, the tadpole.

The state label of the field, exposed by differentiating the generator of connected
Green’s functions, launches a free propagator which in its further propagation has two
options. The trivial one is where it propagates directly to the source in accordance
with the first diagram on the right in Figure 9.45, this option being represented
by the first diagram on the right in Figure 9.48. The other option corresponds to
interaction and the corresponding diagrams can be uniquely classified topologically
into distinct classes as follows: the exposed state where a propagator is launched can
enter into a connected diagrammatic structure which has the property that it can
not be cut in two by cutting only one internal bare propagator line, i.e. excepting
the launched propagator. By definition such diagrams must not end on the source,
and these diagrams are thus a subset of the set of diagrams described by the first
diagram on the right in Figure 9.44, and are referred to as one-particle irreducible
diagrams, 1PI-diagrams. Diagrammatically this set of diagrams is represented by the
second diagram on the right in Figure 9.48. The next option is that the launched
propagator enters into a one-particle irreducible diagrammatic part and emerges into
a diagrammatic part such that the total diagram can be cut into two parts by cutting
one internal line at exactly one or two or three, etc., places, all of these lines therefore
emerging into the 1-state connected Green’s function in the presence of the source,
the field.37 Diagrammatically these sets of diagrams are therefore represented by the
third, etc., diagrams on the right in Figure 9.48 (combinatorial factors are inherited
from our convention, here expressed in the starting equation depicted in Figure 9.44).
The 1-state connected Green’s function, the tadpole, is thus represented in terms of
the one-particle irreducible vertices with attached tadpoles as depicted in Figure 9.48.

36Or average field or classical field. The reason for this terminology will become clear in the
next chapter (or by comparison with the diagrammatic representation of the canonical operator
formalism). The diagrammatic structure of the theories considered are identical to those of the
quantum field theories we studied in Chapter 4. Therefore, interpreting the diagrammatic theory
as a quantum field theory, the 1-state amplitude is the average value of the quantum field (in
the presence of the source). For photons in a coherent state it describes the classical state of the
electromagnetic field.

37Two (or more) lines can not enter into the same connected diagram, since then it is part of the
one-particle irreducible part.
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Figure 9.48 The 1P-irreducible vertex representation of the 1-state connected
Green’s function in the presence of the source.

We could continue and construct the one-particle irreducible vertex representation
for any N -state amplitude, but we do not pause for that and relegate it to Section
9.6.2.

The 1-state connected amplitude in the presence of the source which by definition
had the diagrammatic expansion depicted in Figure 9.44 and for a 3- plus 4-vertex
theory was shown to satisfy the diagrammatic equation depicted in Figure 9.45 has
now been organized into a different diagrammatic classification by introducing the
one-particle irreducible vertex functions, Γ1,2,...,N , which diagrammatically are rep-
resented by cross-hatched circles with amputated lines protruding and the dots as
usual represent the states where lines can end up or emerge from, as shown in Figure
9.49.
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Figure 9.49 One-particle irreducible N -vertex function.

The diagrams on the right in Figure 9.48 correspond to a different re-grouping
of the diagrams compared to those on the right-hand side in Figure 9.45, the re-
grouping being based on a topological feature easily visually recognizable for any
diagram: its 0, 1, 2, etc., irreducibility with respect to internal cutting. According
to the topological construction, the one-particle irreducible vertices do not depend
on the source J . They are uniquely specified in diagrammatic perturbation theory
in terms of the bare vertices and bare propagators (and their topological property
of one-particle irreducibility). As we shall see in the next section, they provide yet
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another way of capturing the content of the diagrammatic perturbation theory. The
virtue of the diagrammatic relationship expressed in Figure 9.48 is that no loops
appear explicitly, they are all buried in the one-particle irreducible vertices.

The diagrammatic structure of the equation expressed in Figure 9.48 should be
stressed: the tadpole in the presence of the source is expressed in terms of tad-
poles in the presence of the source attached to 1PI-irreducible vertices, i.e. in terms
of so-called tree diagrams, diagrams that become disconnected by cutting just one
propagator line. This observation shall be further developed in Section 10.3.

Analytically, the diagrammatic equation in Figure 9.48 reads

ϕ1 = G
(0)
12

(
J2 + Γ2 + Γ23 ϕ3 +

1
2
Γ234 ϕ3 ϕ4 +

1
3!

Γ2345 ϕ3 ϕ4 ϕ5 + ...
)

. (9.79)

To write Eq. (9.79) in a compact form, we collect the one-particle irreducible vertices
into a generator, the generator of the one-particle irreducible vertex functions, the
effective action38

Γ[ϕ] ≡
∞∑
N

1
N !

Γ12...N ϕ1 ϕ2 · · ·ϕN (9.80)

so that the one-particle irreducible vertices, or one-particle irreducible amputated
Green’s functions, are obtained by functional differentiation

Γ12...N =
δNΓ[ϕ]

δϕ1δϕ2 · · · δϕN

ϕ=0

. (9.81)

Recall that the one-particle irreducible vertices, Γ12...N , by construction do not de-
pend on the source, and the field is a function we can vary as it is a functional of the
source which is at our disposal to vary.

We can then rewrite Eq. (9.79) as

ϕ1 = G
(0)
12

(
J2 +

δΓ[ϕ]
δϕ2

)
. (9.82)

We introduce the diagrammatic notation depicted in Figure 9.50 for the effective
action, the generator of 1PI-vertices.

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������

ϕΓ[ϕ] =

Figure 9.50 Diagrammatic notation for the effective action.

We introduce the diagrammatic notation for the functional derivative of the ef-
fective action depicted in Figure 9.51.

38The effective action is also referred to as the effective potential for the theory. We shall return
to the reason for the terminology in Section 9.8. In the next chapter we develop the effective action
approach, developing functional integral expressions for the effective action.
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Figure 9.51 Diagrammatic notation for the first derivative of the effective action.

The dot in Figure 9.51 signifies as usual a state label and the functional depen-
dence on the field is made explicit. Similarly, diagrams containing additional dots
represent additional functional derivatives with respect to the field, and give, upon
setting the field equal to zero, ϕ = 0, the one-particle irreducible vertices depicted
diagrammatically in Figure 9.49.

Operating on both sides of Eq. (9.79) with the inverse free propagator according
to Eq. (9.5) thus gives

0 = J1 + Γ1 + (−G−1
0 + Γ)12 ϕ2 +

1
2
Γ123 ϕ2 ϕ3 +

1
3!

Γ1234 ϕ2 ϕ3 ϕ4 + ... (9.83)

and we can rewrite Eq. (9.83) in the form (upon absorbing the inverse free propagator
in the definition of the 2-state irreducible vertex (−G−1

0 + Γ)12 → Γ12):

0 = J1 +
δΓ[ϕ]
δϕ1

. (9.84)

Diagrammatically, Eq. (9.84) is represented as depicted in Figure 9.52.
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Figure 9.52 Source and effective action relationship.

The content of Eq. (9.78) and Eq. (9.84) is that up to an overall constant, the
effective action is the functional Legendre transform of the generator of connected
Green’s functions39

Γ[ϕ] = W [J ] − J ϕ (9.85)

and the Legendre transformation thus determines the overall value, Γ[ϕ = 0].
We note that in the absence of the source, J = 0, Eq. (9.84) becomes40

δΓ[ϕ]
δϕ1

= 0 , (9.86)

the effective action is stationary with respect to the field. This is an equation stating
that the possible values of the field can be sought among the ones which make the
effective action stationary.

39In equilibrium statistical mechanics, the effective action Γ is thus Gibbs potential or free energy,
i.e. the (Helmholtz) potential or free energy in the presence of coupling to an external source, a
J-reservoir.

40In the applications to non-equilibrium situations we consider in Chapter 12, this option is not
available as part of the source is an external classical force, the classical force that drives the system
out of equilibrium, and we shall employ Eq. (9.84).
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9.6.1 Symmetry broken states

Having introduced the effective action according to Eq. (9.80) we are considering the
normal state, i.e. we assume that the field vanishes in the absence of the source

ϕ1 =
δW [J ]
δJ1

J=0

= 0 . (9.87)

These, however, are not the only type of states existing in nature, there exist states
with spontaneously broken symmetry, i.e. states for which41

ϕ1 =
δW [J ]
δJ1

J=0

≡ ϕcl
1 �= 0 . (9.88)

We shall consider precisely such a situation and use the formalism presented in this
chapter when we discuss Bose–Einstein condensation in Section 10.6. In Chapter
8 we already encountered the generic symmetry broken state, the superconducting
state. It can be discussed as well in the present formalism by just allowing the field
or order parameter to be a composite object. We discuss this case in Section 10.5
where we in addition to a one-particle source include a two-particle source.

For a symmetry broken state we shall define the effective action according to

Γ[ϕ] ≡
∞∑
N

1
N !

Γ12...N [ϕcl
1 ] (ϕ1 − ϕcl

1 )(ϕ2 − ϕcl
2 ) · · · (ϕN − ϕcl

N ) . (9.89)

This means that according to Eq. (9.84) we again have

δΓ[ϕ]
δϕ1

ϕ =ϕcl

= −J1 . (9.90)

The effective action vanishes for vanishing source.
By a shift of variables, ϕ − ϕcl → ϕ, we can of course rewrite Eq. (9.89) as

Γ[ϕ] =
∞∑
N

1
N !

Γ12...N ϕ1 ϕ2 · · ·ϕN , (9.91)

where now the vertices Γ12...N = Γ12...N [ϕcl
1 = 0] are evaluated in the normal or

so-called disordered or symmetric state where the classical field vanishes, ϕcl
1 = 0.

We thus realize the fundamental importance of the effective action: it allows us to
41Such states are well-known in equilibrium statistical mechanics, for example from the existence

of ferro-magnetism, the appearance below a definite critical temperature of an ordered state with
a magnetization in a definite direction despite the rotational invariance of the Hamiltonian. These
spontaneously broken symmetry states were first studied in the mean field approximation, the
Landau theory, and the full theory of phase transitions, critical phenomena, were obtained by
Wilson using field theoretic methods. Superfluid phases are broken symmetry states, and even more
fundamentally, the masses of quarks are the result of the Higgs field having a nonzero value.
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explore the existence of symmetry broken states by searching for extrema of the
effective action, i.e. solutions of

δΓ[ϕ]
δϕ1

= 0 (9.92)

for which the field is different from zero, ϕ �= 0.
We shall also encounter symmetry broken states created by a simpler mechanism,

viz. owing to the presence of an external classical field, but again the effective
action approach shall prove useful for such non-equilibrium states, as we elaborate
in Chapter 12.

9.6.2 Green’s functions and one-particle irreducible vertices

In this section we shall show that since the generator of connected Green’s functions
and the effective action are related by a Legendre transform we can, by using the
functional methods, easily obtain the systematic functional differential equations
expressing connected Green’s functions in terms of the one-particle irreducible vertex
functions. But first let us argue for such equations at the purely diagrammatic level.

The connected 2-state amplitude or Green’s function is expressed solely in terms
of the 2-state one-particle irreducible vertex according to the diagrammatic expansion
as depicted in Figure 9.53.
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Figure 9.53 Self-energy representation of 2-state propagator.

The reason for this is, that any 2-state diagram is uniquely classified topologically
according to whether it can not be cut in two or can be cut in two by cutting an
internal particle line at only one place, or at two, three, etc., places. By construction
we thus uniquely exhaust all the possible diagrams for the 2-state propagator. The
2-state one-particle irreducible vertex is also called the self-energy.

The diagrammatic equation in Figure 9.53 can be expressed in the form depicted
in Figure 9.54, which is seen by iterating the equation in Figure 9.54.
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Figure 9.54 Dyson equation for the 2-state Green’s function.

The diagrammatic equation depicted in Figure 9.54 corresponds analytically to
the equation for the 2-state Green’s function expressed in term of the 2-state irre-
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ducible vertex, the self-energy (recall we absorbed the inverse free propagator in Γ12 ,
(−G−1

0 + Γ)12 → Γ12 , i.e. Σ12 denotes the one-particle irreducible 2-state vertex)

G12 = G
(0)
12 + G

(0)
13 Σ34 G42 (9.93)

or equivalently the equation

G12 = G
(0)
12 + G13 Σ34 G

(0)
42 (9.94)

by iterating from the other side. We have obtained the non-equilibrium Dyson equa-
tions.42

We now show how the Dyson equation can be obtained by using the effective
action. More importantly, we show that we can use Eq. (9.84) to obtain the equation
for the connected 2-state amplitude in the presence of the source where it is expressed
in terms of the derivative of the effective action. This will lead to a simple method
whereby all amplitudes can be expressed in terms of the 2-state connected amplitude,
the full propagator, and one-particle irreducible vertices.

The Legendre transformation, according to Eq. (9.78), gives rise to the relation

δ

δJ1
=

δϕ2

δJ1

δ

δϕ2
=

δ2W [J ]
δJ1δJ2

δ

δϕ2
= G12

δ

δϕ2
. (9.95)

Taking the derivative of Eq. (9.84) with respect to the source then gives

−δ2W [J ]
δJ2δJ3

δ2Γ[ϕ]
δϕ3δϕ1

= δ12 . (9.96)

Adding and subtracting in the effective action the so-called free term, Γ[ϕ] ≡
− 1

2ϕ1(G(0))−1
12 ϕ2+Γi[ϕ], i.e. splitting off again the inverse propagator term we previ-

ously included in Γ12, so that Γi now denotes the original effective action introduced
in Eq. (9.80), provides the self-energy

Σ12 =
δ2Γi[ϕ]
δϕ1δϕ2

(9.97)

in the presence of the source, as expressed through the field. Inserting into Eq. (9.96)
gives

δ2Γ[ϕ]
δϕ1δϕ2

= −(G(0))−1
12 +

δ2Γi[ϕ]
δϕ1δϕ2

(9.98)

and inserting into Eq. (9.96) gives

−δ2W [J ]
δJ2δJ1

(
−(G(0))−1

21 +
δ2Γi[ϕ]
δϕ2δϕ1

)
= δ12 . (9.99)

42Recovering the non-equilibrium Dyson equations thus makes contact with quantum field theory
studied by canonical means in the previous chapters. For the non-equilibrium states we studied in
the previous chapters, we had valid approximate expressions for the self-energy, and did not need
to go further into the diagrammatic structure of higher-order vertices.



304 9. Diagrammatics and generating functionals

Matrix multiplying by the bare propagator from the right gives43

δ2W [J ]
δJ1δJ2

= G
(0)
12 +

δ2W [J ]
δJ1δJ3

δ2Γi[ϕ]
δϕ3δϕ4

G
(0)
42 , (9.100)

which in terms of diagrams has the form depicted in Figure 9.55.
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Figure 9.55 Dyson equation for the 2-state Green’s function in the presence of the
source.

Iterating the equation gives the full propagator

δ2W [J ]
δJ1δJ1′

= G
(0)
11′ + G

(0)
12

δ2Γi[ϕ]
δϕ2δϕ3

G
(0)
31′ + G

(0)
12

δ2Γi[ϕ]
δϕ2δϕ3

G
(0)
34

δ2Γi[ϕ]
δϕ4δϕ5

G
(0)
51′ + ...

(9.101)
the analog of the Dyson equation depicted in Figure 9.53, but now for the case where
the source is present. The second derivative relationship between the generator of
connected Green’s functions and the effective action can compactly be rewritten
suppressing the matrix indices, i.e. the two state labels occurring upon differentiation
are now only indicated by the primes, in the form

W
′′
[J ] =

1
G−1

0 − Γ′′
i [ϕ]

(9.102)

as we recall the formula for a matrix X

1
1 − X

= 1 + X + X2 + X3 + ... . (9.103)

This is the relationship between the full propagator and the self-energy we arrived
at earlier by topological classification of diagrams, expressing the connected 2-point
Green’s function in terms of the self-energy. Here we have constructed the functional
analog in terms of a functional differential equation.

By taking further source derivatives of Eq. (9.96), we express the higher-order
connected Green’s functions in terms of the full propagator and the higher-order
one-particle irreducible vertices.

Taking the derivative of Eq. (9.96) with respect to the source and using Eq. (9.84)
gives

δ3W [J ]
δJ1δJ2δJ3

=
δ2W [J ]
δJ1δJ1′

δ2W [J ]
δJ2δJ2′

δ2W [J ]
δJ3δJ3′

δ3Γ[ϕ]
δϕ1′δϕ2′δϕ3′

. (9.104)

In terms of diagrams we have for Eq. (9.104) the relation depicted in Figure 9.56.

43This equation is of course immediately recognized as the Dyson equation, Eq. (4.141), G12 =

G
(0)
12 + G13Σ34G

(0)
42 .
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Figure 9.56 Connected 3-state diagram expressed by the 1P-irreducible 3-vertex.

Exercise 9.10. Show by taking further source derivatives of Eq. (9.96) that the
equation obtained for the 4-state connected Green’s function has the diagrammatic
form (for a theory with 3- and 4-connector vertices) depicted in Figure 9.57.
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Figure 9.57 Connected 4-state diagram expressed by 1P-irreducible vertices.

If in the above equation we set the source to zero, and thereby the field to zero,
instead of encountering quantities depending on the source and field, we will obtain
expressions for the connected Green’s functions in term of the full 2-point Green’s
function and the irreducible vertex functions. Since the full 2-point Green’s function
is the one into which we can feed our phenomenological knowledge of the mass of
a particle, these equations are basic for the renormalization procedure. The bare
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Green’s function with its bare mass, and the bare vertices have thus left the theory
explicitly, leaving room for the trick of renormalization.

In Section 9.8, we shall use the equations, Eq. (9.78) and Eq. (9.84), the Legendre
transformation between source and field variables, to replace source-derivatives by
field-derivatives and thereby obtain the equations satisfied by the effective action
and the diagrammatics of the one-particle irreducible vertices. But first we turn to
show how equations very efficiently relating the connected Green’s function can be
generated.

9.7 Diagrammatics and action

In this section we show how the fundamental differential equation for the dynamics,
Eq. (9.32), can be turned into an equation from which the relationships between the
connected Green’s functions can easily be obtained. This is done by introducing the
action, which is defined in terms of the inverse propagator and the bare vertices of
the theory according to44

S[φ] ≡ −1
2
φ1(G−1

0 )12φ2 +
∑
N

1
N !

g12...N φ1φ2 · · ·φN , (9.105)

here for a theory with vertices of arbitrary high connectivity. The fundamental
equation, Eq. (9.32), expressing the dynamics of a theory can then be written in the
form (for an arbitrary theory specified by the above action)

0 =

(
δS[�

i
δ

δJ ]
δφ1

+ J1

)
Z[J ] , (9.106)

where by definition
δS[�

i
δ

δJ ]
δφ1

=
δS[φ]
δφ1

φ→�

i
δ

δJ

(9.107)

i.e. the action is differentiated and then the source derivative is substituted for the
field. We have written the equation in a form having a quantum field theory in
mind but shall immediately shift to the Euclidean version, or simply suppressing the
appearance of �/i by absorbing the factor in the source derivative.

44At this junction in the generating functional formulation of a quantum field theory the solemnity
of the action is scarcely noticed, but as just another formal construction. In the next chapter we
show how the action in the functional integral formulation of a quantum field theory naturally
appears as the fundamental quantity describing the dynamics. The action can also be given a
fundamental status in the operator formulation of the generating functional technique (recall Section
3.3), if the dynamics is based on Schwinger’s quantum action principle [50]. However, the point of
the presentation in this chapter is to base the dynamics directly on diagrams and then by simple
topological arguments construct the generating functional technique.
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Since the generator of connected diagrams, W , is the logarithm of Z, we have the
relation valid for an arbitrary functional F

1
Z[J ]

δ

δJ1
(Z[J ] F [J ]) =

(
δW [J ]
δJ1

+
δ

δJ1

)
F [J ] (9.108)

and by repetition

δN

δJ1 · · · δJN
Z[J ] = Z[J ]

(
δW [J ]
δJ1

+
δ

δJ1

)
· · ·
(

δW [J ]
δJN

+
δ

δJN

)
, (9.109)

where operator notation has been used, i.e. the operations are supposed to operate
on a functional F .

Since the action is a sum of polynomials we have according to Eq. (9.109)

δS[ δ
δJ ]

δφ1
Z[J ] = Z[J ]

δS[ δW
δJ + δ

δJ ]
δφ1

. (9.110)

The fundamental equation, Eq. (9.106), can thus be written in the form

0 =
δS[ δW

δJ + δ
δJ ]

δφ1
+ J1 . (9.111)

Using the explicit form of the action for an arbitrary theory we have

δS[ δW
δJ + δ

δJ ]
δφ1

= −(G(0))−1
12

(
δW

δJ2
+

δ

δJ2

)

+
∑
N

1
(N − 1)!

g12...N

(
δW

δJ2
+

δ

δJ2

)
· · ·
(

δW

δJN
+

δ

δJN

)

(9.112)

and using Eq. (9.111) and performing the differentiations and lastly multiply by the
bare propagator we immediately recover Eq. (9.77) (for the 3- plus 4-vertex theory).

Having the fundamental equation on the form specified in Eq. (9.111) turns out
in practice to be very useful for generating the relations between the connected full
Green’s functions, and exemplifies the expediency and powerfulness of the generating
functional formalism.

9.8 Effective action and skeleton diagrams

In this section, we shall use the equations, Eq. (9.78) and Eq. (9.84), the Legen-
dre transformation between source and field variables, to replace source-derivatives
by field-derivatives and thereby obtain the equations obeyed by the effective action.
Upon setting the field to zero, ϕ = 0, we then obtain the skeleton diagrammatic
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equations satisfied by the one-particle irreducible vertices. Instead of using topolog-
ical diagrammatic arguments to obtain the skeleton diagrammatics, we turn to use
the generating functional method to achieve the same goal.

On the right side in Eq. (9.112) we can introduce the average field and obtain

δS[ δW
δJ + δ

δJ ]
δφ1

= −(G(0))−1
12

(
ϕ2 +

δ2W

δJ2δJ2′

δ

δϕ2′

)

+
∑
N

1
(N − 1)!

g12...N

(
ϕ2 +

δ2W

δJ2δJ2′

δ

δϕ2′

)
· · ·
(

ϕN +
δ2W

δJNδJN ′

δ

δϕN ′

)
,

(9.113)

where we in addition have used Eq. (9.95) to substitute the field derivative for the
source derivative.

Inserting Eq. (9.111) into Eq. (9.84) and using Eq. (9.78) thus gives the relation
between the action and the effective action

δΓ[ϕ]
δϕ1

= −
δS
[
ϕ + W

′′
[J ] δ

δϕ

]
δϕ1

, (9.114)

where the right-hand side is short for the right-hand side in Eq. (9.113).
For a 3- plus 4-vertex theory we obtain

δΓ[ϕ]
δϕ1

= −(G−1
0 )12 ϕ2 +

1
2
g123 ϕ2 ϕ3 +

1
2
g123

δ2W [J ]
δJ2δJ3

+
1
3!

g1234 ϕ2 ϕ3 ϕ4 +
3
3!

g1234 ϕ4
δ2W [J ]
δJ2δJ3

+
1
3!

g1234
δ2W [J ]
δJ2δJ5

δ2W [J ]
δJ3δJ6

δ2W [J ]
δJ4δJ7

δ3Γ[ϕ]
δϕ5δϕ6δϕ7

(9.115)

as the last term emerges upon noting

δ

δϕ2′

δ2W [J ]
δJ3δJ4

=
δJ2′′

δϕ2′

δ3W [J ]
δJ2′′δJ3δJ4

=
δ2Γ[ϕ]
ϕ2′ϕ2′′

δ3W [J ]
δJ2′′δJ3δJ4

=
δ2W [J ]
δJ3δJ5

δ2W [J ]
δJ4δJ6

δ3Γ[ϕ]
δϕ2′′δϕ5δϕ6

, (9.116)

where in obtaining the last equality we have used Eq. (9.96) and Eq. (9.104). The
relationship expressed in Eq. (9.116) has the diagrammatic representation depicted
in Figure 9.58.
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Figure 9.58 Average field dependence of the propagator.

The implicit dependence of the propagator on the average field, through the source,
is thus such that taking the derivative inserts a one-particle irreducible vertex in
accordance with the relation depicted in Figure 9.58.

The equation for the first derivative of the effective action, Eq. (9.115), has for a
3- plus 4-vertex theory the diagrammatic representation depicted in Figure 9.59.
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Figure 9.59 Diagrammatic relation for the first derivative of the effective action for
a 3- plus 4-vertex theory.
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The stubs on the bare vertices in Figure 9.59 indicates the uncontracted state label
identical to the state label on the left.

Here we find the origin for calling Γ[ϕ] the effective action: if thermal or quantum
fluctuations are neglected, leaving only the first three terms on the right in Figure
9.59, the (derivative of the) effective action reduces to the (derivative of the) action.
This corresponds to dropping the W ′′-terms in Eq. (9.114). In other words, the
exact equation of motion for the field, Eq. (9.84), can be obtained from the equation
determining the classical field (where S is the action given in Eq. (10.37))

0 = J1 +
δS[φ]
δφ1

(9.117)

by substituting the one-particle irreducible vertices for the bare vertices in the action
S. We recall that in the absence of the source, J = 0, the field makes the effective
action stationary, Eq. (9.86). The classical theory is given by the field specified by
making the action stationary

δS[ϕ]
δϕ1

= 0 (9.118)

the classical equation of motion.

We note that the terms containing loops in Figure 9.59 are the quantum correc-
tions to the classical action.

Exercise 9.11. In this exercise we elaborate the statement that the classical ap-
proximation corresponds to neglecting all loop diagrams. Consider a theory with 3-
and 4-connector vertices. Obtain the classical equation of motion for the field. In-
terpret the equation diagrammatically, and note that no loop diagrams appear, only
so-called tree diagrams.

At this point we appreciate the efficiency of the generating functional method:
it provides us immediately with equations containing only full propagators and ver-
tices, i.e. the derived equations correspond to skeleton diagram equations, and infi-
nite partial summations of the diagrams of naive perturbation theory are obtained
automatically.

To obtain the equation satisfied by the second derivative of the effective action, we
can now take one more derivative of Eq. (9.116) with respect to the field. However,
this is done automatically at the diagrammatic level of Figure 9.59. A tadpole is
the field and the ϕ-derivative removes it; the derivative thus reduces the number
of tadpoles present by one. For the field dependence of the propagator we use the
relation depicted in Figure 9.58. For the second derivative of the effective action, we
thus find that it satisfies the equation depicted in Figure 9.60.
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Figure 9.60 Diagrammatic relation for the second derivative of the effective action.

Taking further derivatives, we obtain the equations satisfied by the higher deriva-
tives of the effective action, and upon setting the field to zero, ϕ = 0, we obtain the
skeleton diagrammatics for the one-particle irreducible vertices.

In the next chapter we shall study the effective action formalism in detail, and
give a functional integral evaluation which gives an interpretation of the effective
action in terms of vacuum diagrams.
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9.9 Summary

In this chapter we have taken the diagrammatic description of quantum dynamics as
a basis, representing the amplitudes of quantum field theory by diagrams, and stating
the laws of nature in terms of the propagators of species and their vertices of interac-
tion. The quantum dynamics then follows in this description from the superposition
principle and the two exclusive options: to interact or not. The fundamental dia-
grammatic dynamic equation of motion, relating the amplitudes of a theory, is then
trivial to state. The diagrammatic structure of a theory was organized by intro-
ducing generators, encrypting the total information of the theory which is assessed
by functional differentiation of the generator. Simple and easy visually understood
topological arguments for diagrammatics were used to turn the fundamental dynamic
equation of motion into nontrivial functional differential equation for the generator.
Generators of connected Green’s functions and one-particle irreducible vertices were
introduced by diagrammatic arguments, and shown to be exceedingly efficient tools
to generate the equations on the form corresponding to the skeleton diagrammatic
representation. We shall now take the use of the effective action a level further, and
although the content of the next chapter can be obtained staying within the for-
malism of functional differential equations, the introduction of functional integrals
will ease derivations. The intuition of path integrals as usual strengthens the use of
diagrammatics.



10

Effective action

In the previous chapter we introduced the one-particle irreducible effective action
by collecting the one-particle irreducible vertex functions into a generator whose
argument is the field, the one-state amplitude in the presence of the source. The
effective action thus generates the one-particle irreducible amputated Green’s func-
tions. We shall now enhance the usability of the non-equilibrium effective action by
establishing its relationship to the sum of all one-particle irreducible vacuum dia-
grams. To facilitate this it is convenient to add the final mathematical tool to the
arsenal of functional methods, viz. functional integration or path integrals over field
configurations. We are then following Feynman and instead of describing the field
theory in terms of differential equations, we get its corresponding representation in
terms of functional or path integrals. This analytical condensed technique shall prove
powerful when unraveling the content of a field theory. The loop expansion of the
non-equilibrium effective action is developed, and taken one step further as we intro-
duce the two-particle irreducible effective action valid for non-equilibrium states. As
an application of the effective action approach, we consider a dilute Bose gas and a
trapped Bose–Einstein condensate.

10.1 Functional integration

Functional differentiation has its integral counterpart in functional integration. We
shall construct an integration over functions and not just numbers as in elementary
integration of a function. We approach this infinite-dimensional kind of integration
with care (or, from a mathematical point of view, carelessly), i.e. we base it on
our usual integration with respect to a single variable and take it to a limit. To
deal with any function, ϕ(x, t), of continuous variables such as space-time, (x, t), the
continuous variables must be discretized, i.e. space-time is divided into a set of small
volumes of size ∆ covering all or the relevant part of space-time, and the value of the
function ϕ is specified in each such small volume or equivalently on the corresponding
mesh of N lattice sites, ϕM , M = 1, 2, . . . , N . This is immediately incorporated into

313
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our condensed state label notation

1 ≡ (s1,x1, t1, σ1, . . .) (10.1)

if the space and time variables are now interpreted as discrete. To treat arbitrary
non-equilibrium states, a real-time dynamical or Schwinger–Keldysh index is included
or the time variable is replaced by the contour time variable for treating general non-
equilibrium situations. We shall first consider a real scalar field, and in each cell the
field can then take on any real value.

The functional integral of a functional, F [ϕ], of a real function ϕ, is then defined
as the limit1 ∫

Dϕ F [ϕ] ≡ lim
N→∞

∞∫
−∞

N∏
M=1

dϕM F (ϕ1, . . . , ϕN ) . (10.2)

The functional integral is a sum over all field configurations.
Shifting each of the integration variables a constant amount, ϕM → ϕM + ϕ

(0)
M ,

leaves the integrations invariant, and we have the property of a functional integral∫
Dϕ F [ϕ] ≡

∫
Dϕ F [ϕ + ϕ0] . (10.3)

Quantum field theory describes a system with infinitely many degrees of freedom
and the functional integral is the infinite dimensional version of the path integral
formulation of quantum mechanics, the zero-dimensional quantum field theory, which
is discussed in Appendix A.

10.1.1 Functional Fourier transformation

The main functional integral tool will be that of functional Fourier transformation,
and to obtain that we recall that usual Fourier transformation of functions is equiva-
lent to the integral representation of Dirac’s delta function in terms of the exponential
function.2

The delta functional, i.e. the functional δ satisfying for any functional F

F [J (1)] =
∫
DJ (2) F [J (2)] δ[J (1) − J (2)] , (10.4)

is construed as a product of delta functions over all the cells, and is constructed as
the limit of a product of delta functions, each of which can be represented in terms
of its usual integral expression(

2π

∆

)N N∏
M=1

δ(J (1)
M − J

(2)
M ) =

∞∫
−∞

N∏
M=1

dϕM ei∆ ϕM (J
(1)
M −J

(2)
M ) . (10.5)

1The functional integral over a complex function, a complex field, is defined analogously, involving
integration over the real and imaginary parts of the field.

2For a discussion of Dirac’s delta function and Fourier transformation we refer to Appendix A
of reference [1].



10.1. Functional integration 315

For the integration over space and contour time we introduce the notation

ϕJ ≡
∫
dxdt ϕ(x, t)J(x, t) = lim

N→∞

N∑
M=1

∆ ϕM JM . (10.6)

We thus obtain the following functional integral representation of the delta functional

δ[J (1) − J (2)] =
∫
Dϕ eiϕ(J(1)−J(2)) , (10.7)

where the normalization factor limN→∞(2π/∆)N has been incorporated into the def-
inition of the functional integral. The delta functional expresses according Eq. (10.4)
the identity of two functions, i.e. the equality of the two for any value of their
argument.

Having the integral representation of the delta functional at hand, Eq. (10.7), we
immediately have for the functional Fourier transformation

F [ϕ] =
∫
DJ e−iϕ JF [J ] (10.8)

the inverse relation

F [J ] =
∫
Dϕ eiJ ϕF [ϕ] . (10.9)

Functional Fourier transformation is thus the product of ordinary Fourier transforms
over each cell.

The mathematical job performed by functional Fourier transformation is, just as
in usual Fourier transformation, to change, now functional, differential equations
into algebraic equations. As far as physics is concerned, the functional integral
provides an explicit interpretation, in terms of the superposition principle, of the
dynamics of quantum fields, the propagation of quantum fields, viz. as a sum over all
intermediate field configurations leading from an initial to a final state of the field,
quite analogous to the path integral in quantum mechanics, the zero-dimensional
quantum field theory, as discussed in Appendix A.

10.1.2 Gaussian integrals

The mathematics of quantum mechanics of a single particle resides in the one-
dimensional Gaussian integral

I(a) =

∞∫
−∞

dx e−
1
2 ax2

=

√
2π

a
(10.10)

or by completing the square
∞∫

−∞

dx e−
1
2 ax2±bx =

√
2π

a
e

b2
2a , (10.11)
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where the integral is convergent whenever a is not a negative real number, i.e. I(a)
is analytic in the complex a-plane except at the branch cut specified by that of the
square root. This message holds true for the functional integrals of quantum field
theory.

The functional integral is treated as the limit of a multi-dimensional integral and
we consider the N -dimensional Gaussian integral

I(A; b) =

∞∫
−∞

dx1 . . . dxN e−C(x1,...,xN ) (10.12)

specified by the quadratic form

C(x) =
1
2

N∑
M,M ′=1

xMAM,M ′xM ′ ±
N∑
M

bM xM =
1
2
xT Ax± bT x . (10.13)

Here xT denotes the row tuple xT = (x1, . . . , xN ), and x the corresponding column
tuple, and similar notation for the N -tuple b. We assume that the matrix A is real,
symmetric, AT = A, and positive, so that it can be diagonalized by an orthogonal
matrix S, S−1 = ST , and D = ST AS has then only positive diagonal entries dM .
The Jacobian, | detS|, for the transformation x = Sy is thus one, and the integral
becomes the elementary integral, Eq. (10.11), occurring N -fold times,

I(A; b) =
N∏

M=1

∞∫
−∞

dyM e−
1
2 dM y2

M ± yM (ST b)M =
N∏

M=1

√
2π

dM
e

1
2dM

(ST b)2M

=
√

det(2πD−1) e

N∑
M =1

1
2dM

(ST b)2M
. (10.14)

Using (ST AS)−1 = D−1 to express A−1 = SD−1ST , or in terms of matrix elements
(A−1)MM ′ =

∑
M1

SMM1
1

dM1
(ST )M1M ′ , and using that detA = detD, we arrive at

the expression for the multi-dimensional Gaussian integral

I(A; b) =
(

det
(

A

2π

))−1/2

e
1
2 bT A−1b . (10.15)

Again the result can be generalized by analytical continuation to the case of a com-
plex symmetric matrix, A, with a positive real part, the branch cut in the complex
parameter space being specified by the square root of the determinant.

The Gaussian functional integral is then perceived in the limiting sense of Eq. (10.2)
and we have3 ∫

Dϕ e
i
2 ϕ A ϕ =

1√
DetA

, (10.16)

3Here we have included extra factors in the definition of the path integral, viz. a factor 1/
√

2πi
for each integration dϕM , explaining the absence of −i and 2π in front of A on the right-hand side.
The imaginary unit and 2π can thus be shuffled around.
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where the limiting procedure introduces the meaning of the functional determinant
distinguished by a capital D in Det. Using the identity ln det A = Tr lnA we have4

∫
Dϕ e

i
2 ϕ A ϕ = e−

1
2Tr lnA . (10.17)

Similarly, we obtain from the above analysis∫
Dϕ e

i
2 ϕ A ϕ + iϕ J = e−

1
2Tr ln A e−

i
2 J A−1 J (10.18)

or by in the Gaussian integral, Eq. (10.16), shifting the variable, ϕ → ϕ + A−1 J .
The generating functional for the free theory, Eq. (9.35), can thus be expressed

in terms of a functional integral

Z0[J ] = = e
1
2 Tr ln G−1

0

∫
Dϕ e−

i
2 ϕ G−1

0 ϕ + iϕ J . (10.19)

We have thus made the first connection between functional integrals and the gener-
ating functional and thereby to diagrammatics. In the treatment of non-equilibrium
states in the real-time technique, the real-time representation in the form Eq. (5.1)
or the more economical symmetric representation of the bare propagator should thus
be used

G0 =
(

0 GA
0

GR
0 GK

0

)
. (10.20)

in order to have a symmetric inverse propagator as demanded for the functional
integral to be well-defined.

The functional

S0[ϕ] = −1
2
ϕG−1

0 ϕ (10.21)

is called the free action, or action for the free theory.5

The normalization constant, guaranteeing the normalization of the generator
Z0[J = 0] = 1, is often left implicit as overall constants of functional integrals have

4The identity is obvious for a diagonal matrix, and therefore for a diagonalizable matrix
which is the case of interest here. The identity follows generally from the product expansion
of the exponential function, det eA = det limn→∞(I + A/n)n = limn→∞(det(I + A/n))n =
limn→∞(1+TrA/n)+O(1/n2))n = eTrA . Or, by changing the parameters in a matrix gives for the
variation lndet(A +∆A)− ln det A = lndet(I + A−1∆A) = ln(1+ Tr(A−1∆A)+O((A−1∆A)2)) =
ln(Tr(A−1∆A))+O((A−1∆A)2), and thereby the sought relation as the overall constant not deter-
mined by the variation of the function is fixed by considering the identity matrix as det I = 1 and
ln I = (ln(I − (I − I)) = −

∑∞
n=1(I − I)n/n = 0I. In connection with functional integrals we thus

encounter infinite products, the functional determinant, a highly divergent object, but happily such
overall constants have no physical significance.

5A convergence factor in the exponent, −εφ2, for security, can be assumed absorbed in the inverse
free propagator.
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no bearing on the physics they describe, resulting in6

Z0[J ] = =
∫
Dϕ eiS0[ϕ] + iϕ J . (10.22)

Since our interest is the real-time treatment of non-equilibrium situations, the closed
time path guarantees the even stronger normalization condition of the generator,
Z0[J ] = 1, provided that the sources on the two parts of the closed time path are
taken to be identical, such as for example is the case for coupling to an external
classical field.

To treat functional integration over a complex function, we first consider integra-
tion over the real and imaginary parts of an N -tuple with complex entries and have,
for the multiple Gaussian integral,∫

dz†dz e−
1
2 z†Az =

(
det
(

A

2π

))−1

, (10.23)

where † denotes in addition to transposition complex conjugates, i.e. hermitian con-
jugation. We note the additional square root power of the determinant in comparison
with the Gaussian integral over real variables, Eq. (10.15).

For the case of a complex function ψ(x, t), the functional integral becomes

∫
Dψ∗(x, t)Dψ(x, t)F [ψ∗(x, t), ψ(x, t)] = lim

N,N ′→∞

∞∫
−∞

N,N ′∏
M,M ′=1

dψ∗
MdψM ′ F [ψ∗

1 , . . . , ψN ]

(10.24)
and for the Gaussian integral (shuffling again irrelevant constants)∫

Dψ∗(x, t)Dψ(x, t) e−
i
2 ψ∗A−1ψ =

1
DetA

(10.25)

where A is a hermitian and positive definite matrix.
Just as for zero-dimensional quantum field theory, i.e. quantum mechanics, where

path integrals allow us to write down the solution of the Schrödinger equation in
explicit form, so functional integration allows us to write down explicitly the solution
of the functional differential equation specifying a quantum field theory as considered
in Section 9.2.2. In Section 10.2, we show how this is done by introducing the
concept of action and show how it can be used to get a useful functional integral
representation of the full theory. But first functional integration over Grassmann
variables is introduced in order to cope with fermions.

6The normalization of the free generator is in the canonical or operator formalism of equilibrium
zero temperature quantum field theory the statement that for a quadratic action the addition of the
coupling to the source does not produce a transition from the vacuum state.
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10.1.3 Fermionic path integrals

To treat a fermionic field theory in terms of path integrals, we shall need to introduce
integration over anti-commuting objects. The most general function of a Grassmann
variable, η, is (recall Section 9.4) the monomial

f(η) = c0 + c1η (10.26)

and integration with respect to a Grassmann variable is defined as the linear operation∫
dη f(η) = c1 (10.27)

or ∫
dη 1 = 0 (10.28)

and ∫
dη η = 1 . (10.29)

Integration with respect to a Grassmann variable, Berezin integration, is thus iden-
tical to differentiation.

We note that the basic formula of integration, that the integral of a total differ-
ential vanishes, ∫

dη
df(η)
dη

= 0 , (10.30)

also holds for Berezin integration as dη/dη = 1. The equivalent is true for the
conjugate Grassmann variable η∗ (recall Section 9.4).

For a general function of two conjugate Grassmann variables, Eq. (9.45), we then
have according to the definitions of integration over Grassmann variables

−
∫

dη dη∗ f(η, η∗) =
∫

dη∗dη f(η, η∗) = c3 . (10.31)

For the basic Gaussian integral for Grassmann fields we have∫
dη∗dη eiη∗Aη = (DetiA) (10.32)

as after transforming to diagonal form∫ ∏
M

dη∗
M dηM e

i
∑
M

η∗
M AM M ηM

=
∫∏

M

dη∗
M dηM

(
1 + i

∑
M

η∗
MAMMηM

)

=
∏
M

iAMM = Det(iA) , (10.33)
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where the first equality sign follows from the property (η∗η)2 = 0 for anti-commuting
numbers (recall Section 9.4), and the second equality sign follows from the definition
of integration with respect to Grassmann variables. Thus the Gaussian integral over
Grassmann variables gives the inverse determinant in comparison with the case of
complex functions.7

10.2 Generators as functional integrals

In the previous chapter we showed how all the diagrammatics of a theory, non-
equilibrium situations included, could be captured in a generating functional, ex-
pressing the whole theory in terms of a single differential equation. The Green’s
functions were obtained by differentiating the generating function, thereby obtain-
ing the equations of motion for all the Green’s functions. We now introduce the
functional integral expression for the generating functional, thereby obtaining ex-
plicit integral representations for the Green’s functions, i.e. explicit solutions of the
functional differential equations. Needless to say, only the Gaussian integral can be
evaluated, and in practice we are back to perturbation theory and diagrams. But
the path integral has its particular benefits as we shall explore in this chapter, and
is very useful when it comes to exploit the symmetry of a theory.

We now turn to obtain the functional integral expression for the generating func-
tional for the case where interactions are present. Operating with the inverse bare
propagator on the fundamental equation for the dynamics, Eq. (9.32), we get accord-
ing to Eq. (9.5) the functional differential equation

(G−1
0 )12

1
i

δZ[J ]
δJ2

=

(∑
N

1
(N − 1)!

g12...N

(
1
i

)N−1
δN−1

δJN · · · δJ3δJ2
+ J1

)
Z[J ]

(10.34)

where we consider a theory with an arbitrary number of vertices.8

We introduce the Fourier functional integral representation of the generating func-
tional

Z[J ] =
∫
Dφ Z[φ] eiφ J , (10.35)

where for the dummy functional integration variable we use the notation φ to distin-
guish it from the average field considered in the previous chapter for which we used
the notation ϕ.

7This is the trick behind the use of supersymmetry methods to avoid the denominator problem
in the study of quenched disorder [51]. However, the supersymmetry trick has the disadvantage of
not being able to cope with the case of interactions. Anyway, we have confessed our preference to
avoid the denominator problem by using the real-time technique.

8In Eq. (10.34) we performed the shift δ/δJ → δ/iδJ for proper quantum field theory notation
as dictated by the functional Fourier transform. Details of the transition between Euclidean and
Minkowski (contour-time) field theories are stated in the next section.
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The functional Fourier transformation turns the fundamental dynamic equation
into the form9

−i
δZ[φ]
δφ1

=

(
−(G−1

0 )12 φ2 +
∑
N

1
(N − 1)!

g12...N φ2 · · ·φN

)
Z[φ] . (10.36)

The term on the left originates from the term J1 Z[J ], and results from a functional
partial integration.

We refer to φ also as the field, and it starts out as just a dummy functional
integration variable as introduced in Eq. (10.35), but immediately got a life to itself,
Eq. (10.36), through the dynamics of the theory.

We then introduce the action (this at a proper place, but recall also Section 9.7)

S[φ] ≡ −1
2
φ1(G−1

0 )12φ2 +
∑
N

1
N !

g12...N φ1φ2 · · ·φN (10.37)

for a theory with vertices of arbitrary high connectivity. The compact matrix notation
covers the action being an integral with respect to space-time (or for non-equilibrium
situations contour time) and a summation with respect to internal degrees of freedom
(and with respect to the real-time dynamical or Schwinger–Keldysh indices if traded
for the contour time). We can therefore introduce the Lagrange density

S[φ] =
∫
d1 L(φ, φ′) . (10.38)

We note that the effective action, Eq. (9.80), has the same functional form as the
action except that one-particle irreducible vertex functions appear instead of the bare
vertices and in the effective action appears the average field.

Since the bare propagator is chosen symmetric in all its variables, i.e. in particular
with respect to the dynamical indices as we are treating non-equilibrium states, so
is its inverse, and Eq. (10.36) can be written on the form

δZ[φ]
δφ1

= i
δS[φ]
δφ1

Z[φ] (10.39)

and immediately solved (up to an overall constant which can be fixed by comparing
with the free theory) as

Z[φ] = eiS[φ] , (10.40)

and we have the path integral representation of the generating functional (up to a
source independent normalization factor)10

Z[J ] =
∫
Dφ eiS[φ]+iφ J . (10.41)

9We effortlessly interchange functional integration and differentiation, amounting here to func-
tional integration being a linear operation.

10A virtue of the path integral formulation is the ease with which symmetries of the action leads
to important relations between Green’s functions as discussed in Appendix B.
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We note that in the path integral formulation of a quantum field theory, the
fundamental dynamic equation, Eq. (10.34), can be stated in terms of the basic
theorem of integration, the integral of a derivative vanishes

0 =
∫
Dφ

δ

δφ
eiS[φ]+iφ J . (10.42)

In the treatment of non-equilibrium states in the real-time technique, a symmetric
representation of the bare propagator should thus be used, say

G0 =
(

0 GA
0

GR
0 GK

0

)
, (10.43)

in order for the path integral to be well-defined. Since our interest is the real-
time treatment of non-equilibrium situations, the closed time path guarantees the
normalization condition of the generator, Z[J ] = 1, provided that the sources on the
two parts of the closed time path are taken as identical.

The action is specified solely in terms of the (inverse) bare propagators and the
bare vertices and captures, according to Eq. (10.37), all the information of the theory,
just like the diagrammatics and the generating functional technique, but now in a
different way through Eq. (10.41). For a scalar boson field theory we thus have a
new formulation not in terms of the quantum field, an operator, but in terms of a
scalar field φ, a real function of space-time. The price paid for having this simpler
object appear as the basic quantity is that to calculate the amplitudes of the theory
we must perform a functional integral. In this formalism, the superposition principle
manifests itself most explicitly as a summation over all intermediate alternative field
configurations. For the case of fermions, the role of the real field is taken over by
conjugate pairs of Grassmann fields in order to respect the anti-symmetric property
of amplitudes for fermions.

The amplitudes of the theory are obtained by differentiating the generating func-
tional with respect to the source, and they now appear in terms of functional integral
expressions11

A12...N =
∫
Dφ φ1 φ2 · · ·φN eiS[φ] . (10.44)

In the functional integral representation of a quantum field theory, the amplitudes
are thus moments of the field weighted with respect to the action. We note that in
the functional integral representation, the amplitudes are automatically the contour
time-ordered amplitudes (or in zero temperature quantum field theory, the time-
ordered amplitudes), because of the time slicing involved in the definition of the
functional integral, as we also recall from Eq. (A.16) of Appendix A.12

For the generator of connected Green’s functions

i W [J ] = lnZ[J ] (10.45)
11The appearance of the imaginary unit for one’s favorite choice of defining Green’s functions are

suppressed. As usual they are part of one’s private set of Feynman rules.
12Normal ordering of interactions on the other hand, has to be enforced by hand.
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we then have

eiW [J] = N−1

∫
Dφ eiS[φ] eiφ J , (10.46)

where N denotes the normalization factor guaranteeing that W [J ] vanishes for van-
ishing source, W [J = 0] = 0. Or in the real-time non-equilibrium technique, the
generator of connected Green’s functions vanishes, W [J ] = 0 if the source is taken
to be equal on the two parts of the contour, J− = J+.

From the Legendre transform relating the generator of connected Green’s func-
tions to the effective action, Eq. (9.85), and the functional integral representation
of the generating functional, Eq. (10.41), a functional integral representation of the
effective action, the generator of one-particle irreducible vertices, is obtained (rein-
stating for once �)

e
i
�
Γ[ϕ] =

∫
Dφ e

i
�
(S[φ]+(φ−ϕ)J) , (10.47)

where the normalization factor has been absorbed in the definition of the functional
integral.

By inspecting the path integral expression of the generating functional for the
theory in question

Z[J ] =
∫
Dφ e−

i
2 ϕ G−1

0 ϕ eiSi [φ] eiφ J (10.48)

one can envisage the perturbation theory diagrams: expand all exponentials except
the one containing the inverse free propagator, and perform the Gaussian integrals.
We shall do this in Section 10.2.2, but before that we discuss the relationship between
the Euclidean and Minkowski versions of field theories.

10.2.1 Euclid versus Minkowski

The exposition in the previous chapter was mostly explicitly for the Euclidean field
theory or thermodynamics. We left out the annoying imaginary unit irrelevant to
the functioning of the generating functional technique. In that case, the Green’s
functions are given by

A12...N =
∫
Dφ φ1 φ2 · · ·φN eS[φ] , (10.49)

where the action is a real functional specifying in equilibrium statistical mechanics
the probability for a given configuration of the field, the Boltzmann factor.

In a quantum field theory, the transformation between source and field is Fourier
transformation involving the imaginary unit.13 Anyone is entitled to deal with this
through one’s favorite choice of Feynman rules. We followed the standard choice in
Section 4.3.2 where we included the imaginary unit in the definition of the Green’s

13For a quantum field theory expressed in the operator formalism, the imaginary unit will also
appear through the time evolution operator, recall Section 4.3.2.
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functions, recall for example Eq. (4.39) or Eq. (3.61), and we have for the transition
between Euclidean, i.e. imaginary-time field theory and real-time quantum field
theory the connections

G0 ↔ −iG0 , g ↔ ig , J ↔ iJ

S[φ] ↔ i

�
S[φ] . (10.50)

Equation (9.32) thus transforms into Eq. (10.34).14

For a quantum field theory we have for the generating functional (� is later often
discarded)

Z[J ] =
∫
Dφ Z[φ] e

i
�

φ J =
∫
Dφ e

i
�

S[φ] + i
�

φ J (10.51)

and Green’s functions are generated according to our choice

(−i)N−1

(
�

i

)N
δZ[J ]

δJ1δJ2 · · · δJN

J=0

= A12...N . (10.52)

We can swing freely between using real-time and imaginary-time formulation, all
formal manipulations being analogous.

In the real-time or closed time path technique there is no denominator problem,
but otherwise in order to have proper normalization we should write

Z[J ] =

∫
Dφ e

i
�

S[φ] e
i
�

φ J

∫
Dφ e

i
�

S[φ]
(10.53)

but often such an overall constant are incorporated in the definition of the functional
integral.

10.2.2 Wick’s theorem and functionals

We now show how perturbation theory falls out very easily from the functional for-
mulation, viz. Wick’s theorem becomes a simple matter of differentiation.

We note the relationship

eiS[φ] eiφ J = eiS[−i δ
δJ ] eiφ J , (10.54)

which is immediately obtained by expanding the exponential of the action on the
right-hand side and noting that differentiating with respect to the source substitutes
the φ-variable, and re-exponentiating gives the exponential of the action as on the
left-hand side.

14The form of the propagator also changes when Wick rotating from real to imaginary time,
changing the analytical properties of the propagator.
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Let us in the action split off the trivial quadratic term

S0[φ] = −1
2
φ(G(0))−1φ (10.55)

the free part, and the interaction part of the action, S = S0 + Si, is in general

Si[φ] =
∑
N

1
N !

g12...Nφ1 φ2 · · ·φN . (10.56)

The functional integral expression for the generating functional

Z[J ] =
∫
Dφ eiSi [φ]− i

2 φ(G(0))−1φ + iφ J (10.57)

then, in accordance with Eq. (10.54), becomes

Z[J ] = eiSi [−i δ
δJ ] Z0[J ] , (10.58)

where Z0[J ] is the generating function for the free theory

Z0[J ] = e
i
2 JG(0)J . (10.59)

We have thus achieved expressing the generating functional in terms of the generator
of the free theory. Formula Eq. (10.58) expresses the perturbation theory of the
theory in a compact form, and in a very different form compared to how in the
operator formulation the full theory was expressed in terms of the free theory as we
recall from Section 4.3.2. We now unfold this formula and show that it leads to the
diagrammatic perturbation theory from which we started out in this chapter, and
of course expressions equivalent to the non-equilibrium diagrammatic perturbation
theory we derived in the canonical operator formalism in Chapters 4 and 5 by use of
Wick’s theorem on operator form.

The exponential containing the interaction is then expanded, for example consider
a 3-vertex theory for which we get

Z[J ] =
(

1 +
1
3!

g123
(−i)3δ3

δJ1δJ2δJ3
+

1
2!

1
3!

g123
(−i)3δ3

δJ1δJ2δJ3

1
3!

g1′2′3′
(−i)3δ3

δJ1′δJ2′δJ3′
+ · · ·

)

× e
i
2 JG(0)J . (10.60)

A derivative brings down from the exponential a source contracted with a free prop-
agator and another derivative must eliminate this source if the terms are to survive
when at the end the source is set to zero. An odd number of differentiations will thus
lead to a vanishing expression, and the derivatives must thus group in pairs, and this
can be done in all possible ways.

Before arriving at Wick’s theorem, we note that the generator can be related to
vacuum diagrams. We expand both exponentials multiplied in Eq. (10.58), again
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considering a 3-vertex theory,

Z[J ] =
(

1 +
1
3!

g123
(−i)3δ3

δJ1δJ2δJ3
+

1
2!

1
3!

g123
(−i)3δ3

δJ1δJ2δJ3

1
3!

g1′2′3′
(−i)3δ3

δJ1′δJ2′δJ3′
+ · · ·

)

×
(

1 +
i

2
JG(0)J +

1
2!

(
i

2
JG(0)J

)2

+ ....

)
. (10.61)

Now operating with the terms, we get strings of differentiations which will attach
free propagators to vertices. Setting the source to zero in the end, J = 0, we obtain
that Z[J = 0] is the sum of all vacuum diagrams constructable from the vertices and
propagators of the theory.

Exercise 10.1. Obtain the perturbative expansion of the generating functional at
zero source value, Z[J = 0], to fourth order in the coupling constant for a 3-vertex
theory and draw the corresponding vacuum diagrams.

The amplitudes of the theory are generated by taking derivatives of the generating
functional, for example for the 2-state amplitude we encounter the further derivatives

A12[J ] = i
δ2Z[J ]
δJ1δJ2

= i
δ2

δJ1δJ2

(
1 +

g123

3!
(−i)3δ3

δJ1δJ2δJ3
+

1
2!

g123

3!
(−i)3δ3

δJ1δJ2δJ3

g1′2′3′

3!
(−i)3δ3

δJ1′δJ2′δJ3′
+ · · ·

)

×
(

1 +
i

2
JG(0)J +

1
2!

(
i

2
JG(0)J

)2

+ · · ·
)

. (10.62)

The resulting perturbative expressions for the amplitude upon setting the source to
zero are precisely the ones which corresponds to the original diagrammatic definition
of the 2-state Green’s function, correct factorials and all. This is Wick’s theorem
expressed in terms of functional differentiation and obtained by using the functional
integral representation of the generating functional. The above scheme gives us
back by brute force the diagrammatics in terms of free propagators and vertices we
started out with. However, as a calculational tool, the procedure becomes quickly
quite laborious. Using the generating functional equations of the previous chapter is
more efficient, as we demonstrated in Section 9.7.

Exercise 10.2. Obtain the perturbative expansion of the 2-state Green’s function,
A12, to lowest order in the coupling constants for a 3- plus 4-vertex theory and draw
the corresponding diagrams.

Exercise 10.3. Obtain the perturbative expansion of the 2-state Green’s function,
A12, to fourth order in the coupling constant for a 3-vertex theory and draw the
corresponding diagrams.
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We now turn to show how Wick’s theorem can be formulated in the functional
integral approach. The amplitudes or Green’s functions of a quantum field theory
are in the functional integral representation of the Green’s functions specified by av-
erages over the field, such as in Eq. (10.44). Also, in an expansion of the exponential
containing the interaction term in Eq. (10.57), such averages will appear, and we en-
counter arbitrary correlations with a Gaussian weight. Let us therefore first consider
the N -dimensional integral

I(p1, . . . , p2N) =

∞∫
−∞

dx1 . . .

∞∫
−∞

dxN xp1 · · ·xp2N e−
1
2 xTA x (10.63)

where A denotes the symmetric matrix of Section 10.1.2, and xpM denotes any vari-
able picked from the N -tuple (x1, . . . , xN ) and allowed to appear any number of the
possible 2N times. We have chosen a string of even factors, since the integral vanishes
if an odd number of xs occurred, as seen immediately by diagonalizing the quadratic
form. The correlation function to be evaluated can be rewritten

I(p1, . . . , p2N ) = i
∂

∂bp1

· · · i
∂

∂bp2N

∞∫
−∞

N∏
M=1

dxM e−
1
2 xTA x e−ibTx

b=0

= i
∂

∂bp1

· · · i
∂

∂bp2N

I(A; b)

b=0

(10.64)

and according to Eq. (10.15)

I(p1, . . . , p2N) =
(

det
(

A

2π

))−1/2

i
∂

∂bp1

· · · i
∂

∂bp2N

e−
1
2 bTA−1b

b=0

. (10.65)

The expression on the right can be evaluated by use of the formula, valid for arbitrary
functions f and g,

f

(
i

∂

∂b

)
g(b) = g

(
i

∂

∂c

)
f(c) e−ibTc

c=0

, (10.66)

which is immediately proved by the help of Fourier transformation, i.e. by showing
the formula for plane wave functions. Employing Eq. (10.66) we obtain

I(p1, . . . , p2N ) =
(

det
(

A

2π

))−1/2

e
1
2 ∂T

c A−1∂c cp1 · · · cp2N e−ibTc

c=0 b=0

=
(

det
(

A

2π

))−1/2

e
1
2 ∂T

c A−1∂c cp1 · · · cp2N

c=0

, (10.67)
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where the last equality is obtained as the terms originating from differentiating the
exponential eventually vanish when b is set equal to zero. The only surviving term
on the right comes from the term in the expansion of the exponential containing 2N
differentiations giving

I(p1, . . . , p2N ) =
(

det
(

A

2π

))−1/2 1
N !2N

(∂T
c A−1∂c)N cp1 · · · cp2N

c=0

. (10.68)

In each of the N double differentiation operators, we must choose pairs in the pick
of the factors on the right thereby uniquely exhausting the pick in order to get
a non-vanishing result upon setting c = 0. Then upon differentiating and setting
c = 0, a product of N terms of the form (A−1)pi ,pj occurs with the chosen pairings
as indices. Permuting which pair is related to which double differentiation operator
gives N ! identical products. Furthermore, since A is a symmetric matrix so is A−1

(transposition and inverting of a matrix are commuting operations) and we obtain

I(p1, ..., p2N ) =
(

det
(

A

2π

))−1/2 ∑
a.p.p.

∏
(A−1)pi ,pj , (10.69)

where the sum is over all possible pairings of the indices in the pick p1, . . . , p2N ,
without distinction of the ordering within a pair, explaining in addition the canceling
of the factor 1/2N . The above observation is the equivalent of Wick’s theorem.

With the usual convention of absorbing the functional determinant in the defini-
tion of the functional integral we get, in accordance with Eq. (10.63) and Eq. (10.69),
that the amplitudes of the free theory are obtained according to

A12...2N =
∫
Dφ φ1 φ2 · · ·φ2N e−

i
2 ϕ G−1

0 ϕ

=
∑

a.p.p.

(iG−1
0 )p1p2 (iG−1

0 )p3p4 · · · (iG−1
0 )p2N −1p2N . (10.70)

By inspecting the path integral expression for the generating functional

Z[J ] =
∫
Dφ e−

i
2 ϕ G−1

0 ϕ eiSi [φ] eiφ J (10.71)

one can envisage its perturbation expansion and corresponding Feynman diagrams by
this recipe: expand all exponentials except the one containing the inverse free propa-
gator, the Gaussian term, and evaluate the averages according to the above formula,
Eq. (10.70). This recipe for functional integration of products of fields weighted by
their Gaussian form provides Wick’s theorem, but now in the functional or path
integral formulation of the field theory. From this observation we can immediately
recover the non-equilibrium Feynman diagrammatics of a quantum field theory by
expanding the exponential containing the interaction in Eq. (10.41).
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The limiting procedure used in Section 10.1 to define functional integration can
be made rigorous only for the Euclidean case. For the quantum field theory case, an
alternative now offers itself, viz. to define the functional integrals in terms of their,
as above, perturbative expansions in the non-Gaussian interaction part.

Exercise 10.4. If the Gaussian part of the integrand in Eq. (10.63) is interpreted as
a probability distribution for the random or stochastic variable x, then Eq. (10.69)
is the statement that any correlation function of a Gaussian random variable, with
zero mean, is expressed in terms of all possible products of the two-point correlation
function.

Show that the generating function, i.e. the Fourier transform of the normalized
probability distribution

P (x) =
(

det
(

A

2π

))−1/2

e−
1
2 xTA x , (10.72)

is
P (k) = e−

1
2 kTA−1 k . (10.73)

Exercise 10.5. Consider a set of independent stochastic variables {xn}n=1,...,N ,
each with arbitrary probability distributions except for zero mean and same finite
variance, say σ. Show that the stochastic variable X = (x1 + · · ·+xN )/

√
N will then

obey the central limit theorem, i.e. in the limit N → ∞, the stochastic variable X
will be Gaussian distributed with variance σ.

Another application of the formula Eq. (10.66), allows us to rewrite Eq. (10.58)

Z[J ] = eiSi [−i δ
δJ ] e

i
2 JG(0)J = e

1
2

δ
δφ G0

δ
δφ eiSi [φ] + iϕ J (10.74)

thereby giving the following functional integral expression

Z[J ] = e
1
2Tr ln G−1

0

∫
Dφ e

1
2

δ
δφ G0

δ
δφ eiSi [φ] + iϕ J

φ=0

. (10.75)

From here we see directly that Z[J ] is the sum of all the vacuum diagrams for the
theory in question in the presence of the source J . This observation is again the
equivalent of Wick’s theorem, but here at its most expedient form involving both
functional integration and differentiation.

Introducing the generator of connected Green’s functions

Z[J ] = eiW [J] (10.76)

and recalling the combinatorial argument of Section 9.5, the above important ob-
servation gives that iW [J ] is the sum of all the connected vacuum diagrams in the
presence of the source J .

For the connected Green’s functions we then obtain the functional integral ex-
pression

G12...N =

∫
Dφ φ1 φ2 · · ·φN eiS[φ]∫

Dφ eiS[φ]
≡ 〈φ1 φ2 · · ·φN 〉 . (10.77)
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Often the denominator, which cancels all the disconnected contributions in the nu-
merator, is left implicit as a normalization factor in the definition of the functional
integral.

For the average or classical field, ϕ1, considered in Section 9.6, we thus have the
functional integral expression for the Euclidean case

ϕ1 =

∫
Dφ φ1 eS[φ]∫
Dφ eS[φ]

≡ 〈φ1〉 ≡ φ1 , (10.78)

the reason for calling ϕ1 ≡ G1 the average field now being obvious.
The diagrammatics obtained by the above procedures are of course naive per-

turbation theory, expressed in terms of the bare propagators and vertices. A rep-
resentation which contains the full propagators and the effective vertices is a better
representation since it expresses the physics of a particular situation, viz. the state
under consideration. This representation can be obtained at the diagrammatic level
by topological arguments, leading to the so-called skeleton diagrams as discussed in
Section 4.5.2. In Section 9.8, we followed another way and employed the effective
action to show how easily the skeleton diagrammatics is obtained from the analytical
functional differentiation formalism. In the next section, we show how the partially
re-summed perturbation expansion of Green’s functions, the skeleton diagrammatic
representation, is expressed in the functional integral formalism.

10.3 Generators and 1PI vacuum diagrams

In the previous section we showed that the generating functionals had perturbative
expansions corresponding diagrammatically to the sum of all vacuum diagrams ex-
pressed in naive perturbation theory. In this section we shall exploit the functional
integral representation of a quantum field theory to relate the various generators to
classes of one-particle irreducible vacuum diagrams.

We therefore turn to show that the generator of connected Green’s functions
can be expressed in terms of the effective action and a restricted functional integral.
A restricted functional integral is a functional integral interpreted in terms of its
perturbative expansion or equivalently the corresponding Feynman diagrams, and
where only certain topological classes of diagrams are retained. First, we recall
the result derived diagrammatically, the relationship displayed in Figure 9.48: that
the tadpole, the first derivative of the generator of connected amplitudes, has a
diagrammatic expansion in terms of only tree diagrams, tadpoles attached to one-
particle irreducible vertices. This means that the generator of connected amplitudes,
W [J ], itself is given by the irreducible vertices attached to tadpoles. This suggests
that the generator of connected amplitudes, W [J ], can be specified in terms of the
effective action, Γ[φ]. We now turn to show that it is indeed the case and this in
terms of a functional integral where the effective action appears instead of the action
and the functional integral is restricted:

i W [J ] =
∫

CTD

Dφ eiΓ[φ] +iφ J , (10.79)
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where CTD indicates that only the Connected Tree Diagrams should be kept of all the
vacuum diagrams generated by the perturbative expansion of the functional integral.
Tree diagrams contain no loops, they are contained within the 1PI vertices, and tree
diagrams can be cut in two by cutting a single line of a tadpole.

To keep track of the number of loops in the diagrams generated by the unrestricted
functional integral in Eq. (10.79), we introduce the parameter a

eiW̃a [J] =
∫
Dφ eia−1(Γ[φ] +φ J) . (10.80)

The vacuum diagrams generated by this functional integral can be characterized as
follows. Separate out in the effective action the quadratic term, which according
to Eq. (9.83) is the inverse of the full Green’s function of the theory multiplied by
a−1. Then expand the rest of the exponential and use Wick’s theorem according to
the previous section, or rather the just derived procedure for Gaussian averaging of
products of fields to obtain the perturbative expansion of the functional integral in
Eq. (10.80), and its corresponding Feynman diagrams. A Green’s function has thus
associated a factor a and each of the one-particle irreducible vertices in the rest of the
effective action has associated a factor a−1 as has the source, which in this context we
also refer to as a vertex (on a par with Γ1). A diagram with V vertices (of either kind)
and P propagator lines is thus proportional to aP−V . Since the diagrams generated
by the path integral in Eq. (10.80) are vacuum diagrams they are loop diagrams, the
tree diagrams being those with zero number of loops. Since it takes two times two
protruding lines from vertices (or one vertex) to form one loop, the number of loops
L is specified by L = P − V + 1, and an L-loop diagram carries an overall factor
proportional to aL−1.15 The theory defined by the functional integral in Eq. (10.80)
can thus be described at the diagrammatic level in terms of the diagrams for the
theory where a is unity, a = 1, according to

W̃a[J ] =
∑
L=0

aL−1 W̃ (L)[J ] , (10.81)

where W̃ (L)[J ] comprises the sum of connected vacuum diagrams with L loops for
the theory defined by the action Γ[ϕ], i.e. the theory specified by Eq. (10.80) for the
case a = 1. We note that the tree diagrams singled out in Eq. (10.79) correspond to
the zero loop term W̃ (0)[J ].

In the limit of vanishing a, the value of the functional integral, Eq. (10.80), is
determined by the field at which the exponent is stationary, denote it ϕ, according
to

eiW̃a [J] ∝ eia−1(Γ[ϕ] +ϕ J) , (10.82)

where the prefactor (a horrendous determinant term) involves the square root of
a(G−1

0 − Σ) and therefore its lowest power is a0 and will therefore turn out to be

15This observation gives, for the effective action, a characterization of its diagrammatic structure,
and a controlled approximation scheme, the loop expansion. Say for a quantum field theory, the
diagrammatic representation of the effective action corresponds to an expansion in �L , where L is
the number of loops in a diagram.
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harmless when a eventually is set to zero. The stationary field, ϕ, is determined as
the solution of the equation

δΓ[ϕ]
δϕ1

+ J1 = 0 (10.83)

thus making contact with the original theory, since this is the equation satisfied by
the effective action, Eq. (9.84). According to Eq. (10.81), in the limit of vanishing
a we have W̃a[J ] � a−1 W̃ (0)[J ], and by taking the logarithm of Eq. (10.82) we get
(noting that in this limit, the constant prefactor in Eq. (10.82) gives no contribution)

W̃ (0)[J ] = Γ[ϕ] + ϕJ . (10.84)

But according to the Legendre transformation, Eq. (9.85), this implies

W̃ (0)[J ] = W [J ] (10.85)

and we have shown the validity of Eq. (10.79). That is, we have shown that the gener-
ator of connected Green’s functions can be expressed as the sum of all connected tree
diagrams where the vertices are one-particle irreducible.16 In diagrammatic terms,
the generator of connected Green’s functions, Eq. (10.79), can thus be displayed as
depicted in Figure 10.1.
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Figure 10.1 The tree diagram expansion of the generator of connected amplitudes
in terms of the one-particle irreducible vertices.

The sum of all connected vacuum diagrams in the presence of the source is thus
captured by keeping only the tree diagrams if at the same time the bare vertices are
exchanged by the one-particle irreducible vertices.

The effective action Γ[φa], Eq. (9.80), taken for an arbitrary field value φa can
also be expressed in terms of a restricted functional integral, viz.

Γ[φa] =
∫

1PICVD

Dφ eiS[φ+φa] , (10.86)

16This provides a proof in terms of the functional integral method, that iΓ consists of the one-
particle irreducible vertices. We already knew this because of its diagrammatic construction accord-
ing to Section 9.6.
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where 1PICVD indicates that in the perturbation expansion, only the connected
one-particle irreducible vacuum diagrams should be kept of the connected diagrams
generated by the perturbative expansion of the path integral, since upon expanding
in φa the prescription on the restricted functional integral generates Γ[φa] according
to Eq. (9.80). In particular we have shown that Γ[0] is the quantity represented by
the sum of all connected one-particle irreducible vacuum diagrams for the theory (in
the absence of the source).

Since W [J ] is related to Γ[ϕ] by a Legendre transformation, the above observation
for Γ[0] corresponds to the statement that Γ[0] equals W [J ] for the value of the
source for which the field δW [J ]/δJ1 vanishes. Since the vanishing of δW [J ]/δJ1 is
equivalently to δZ[J ]/δJ1 vanishing, we can state the observation as

W [J ]
δZ [J ]
δJ1

=0

= sum of one-particle irreducible connected
vacuum diagrams (1PICVD).

(10.87)

We shall make use of this observation when we consider the loop expansion of the
effective action.

10.4 1PI loop expansion of the effective action

In this section we shall use the path integral representation of the generators to
get a useful path integral expression for the effective action which has an explicit
diagrammatic expansion. We follow Jackiw, and show how to express the effective
action in terms of the one-particle irreducible connected vacuum diagrams for a
theory with a shifted action [52].

Consider a field theory specified by the action S[φ] and the corresponding path
integral expression for the generating functional

Z[f ] =
∫
Dφ eiS[φ]+ifφ , (10.88)

where we have used the notation f for the one-particle source. In fact, in the next
chapter, when we consider non-equilibrium phenomena in classical statistical dynam-
ics the source will not be set equal to zero by the end of the day as it will contain
the classical force coupled to the classical degree of freedom of interest.

The path integral is invariant with respect to an arbitrary shift of the field, recall
Eq. (10.3),

φ �→ φ + φ0 (10.89)

giving for the generating functional

Z[f ] =
∫
Dφ eiS[φ+φ0]+if(φ+φ0) = eiS[φ0]+ifφ0 Z1[f ] , (10.90)
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where

Z1[f ] =
∫
Dφ ei(S[φ+φ0]−S[φ0])+ifφ. (10.91)

The subscript on Z1[f ] is not a state label but just discriminates the generator from
the original generating functional Z[f ]. State labels in the functional differentiations
are in the following suppressed throughout, and matrix multiplication is implied.

The generator of connected Green’s functions then becomes

W [f ] = −i lnZ = S[φ0] + fφ0 − i ln Z1[f ]

= S[φ0] + fφ0 + W1[f ] , (10.92)

where

iW1[f ] = ln
∫
Dφ ei(S[φ+φ0]−S[φ0])+ifφ. (10.93)

To make the so-far arbitrary function φ0 a functional of f , we choose φ0 to be the
average field which effects the Legendre transformation to the effective action, Γ[φ],
i.e.

φ0 ≡ φ =
δW [f ]

δf
, (10.94)

where a bar now specifies the average field, φ = ϕ, for visual clarity in the following
equations. Recalling that this vice versa gives f implicitly as a functional of φ,
f = f [φ], we have according to Eq. (10.94) and Eq. (10.92)(

δS[φ]
δφ

+ f +
δW1

δφ

)
δφ

δf
= 0 (10.95)

and thereby, since the second factor on the left is the full Green’s function,

δS[φ]
δφ

+ f +
δW1

δφ
= 0. (10.96)

The effective action can, according to Eq. (10.92) and Eq. (10.94), be expressed
as

Γ[φ] = W [f ]− φf = S[φ] + W1[f ] = S[φ] + W1[φ] , (10.97)

where in the last equality we have been sloppy, using the same notation for W1 as
a functional of the implicit function of φ as that of f , W1[f ]. But by employing
Eq. (10.96) in Eq. (10.93) we can in fact eliminate the explicit dependence on f , and
get the expression for W1 as a functional of the average field, φ, as specified by the
functional integral

iW1[φ] = ln
∫
Dφ exp

{
i(S[φ + φ]− S[φ])− iφ

(
δS[φ]
δφ

+
δW1

δφ

)}
. (10.98)
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The aim is now to evaluate W1[φ], or rather to show that it can be expressed in
terms of one-particle irreducible connected vacuum graphs. We therefore introduce
the generating functional

Z̃[φ; J ] =
∫
Dφ exp

{
i(S[φ + φ]− S[φ])− iφ

δS[φ]
δφ

+ iJφ

}
(10.99)

for the theory governed by the action

S̃[φ, φ] = S[φ + φ]− S[φ]− φ
δS[φ]
δφ

, (10.100)

i.e. the action for the original theory expanded around the average field but keeping
only second- and higher-order terms. Correspondingly for the generator of connected
Green’s functions in this theory we have

iW̃ [φ; J ] = ln Z̃[φ; J ] (10.101)

and evidently by comparing Eq. (10.99) and Eq. (10.98)

W1[φ] = W̃ [φ; J ]
∣∣∣
J=−δW1/δφ

. (10.102)

We shortly turn to show that for this particular choice of the source as specified
in Eq. (10.102), J = −δW1/δφ, the generator Z̃ vanishes

δZ̃[φ; J ]
δJ

∣∣∣∣∣
J=−δW1/δφ

= 0 (10.103)

or equivalently for the generator of connected Green’s functions

δW̃ [φ; J ]
δJ

∣∣∣∣∣
J=−δW1/δφ

= 0 , (10.104)

i.e. the average field

ϕ =
δW̃ [φ; J ]

δJ
(10.105)

vanishes for the theory governed by the action S̃ for the value of the source J =
−δW1/δφ. The statement in Eq. (10.102) thus becomes equivalent to the statement
that W1[φ] is identical to the effective action for the theory governed by S̃[φ, φ]
for vanishing average field, Γ̃[φ; ϕ = 0]. We then use the result of Section 10.3,
that in general Γ[ϕ = 0] is given by the one-particle irreducible connected vacuum
diagrams, or equivalently for the generator of connected Green’s functions the ex-
pression Eq. (10.87), viz. that W [f ]δW/δf=0 consists of the sum of all the one-particle
irreducible vacuum diagrams. The functional W1 thus in diagrammatic terms only
consists of the sum of all the one-particle irreducible vacuum diagrams for the theory
governed by S̃[φ, φ]. These diagrammatic identifications will be exploited shortly.
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To establish the validity of Eq. (10.102) we differentiate Eq. (10.98) with respect
to the average field φ

δW1

δφ
=

1
Z1

∫
Dφ

(
δS[φ + φ]

δφ
− δS[φ]

δφ
− φ

δ2

δφ δφ
(S[φ] + W1[φ])

)

× exp
{

i

(
S[φ + φ]− S[φ]− φ

δS[φ]
δφ

− φ
δW1

δφ

)}
. (10.106)

The term originating from the first term in the parenthesis on the right-hand side
can be rewritten as∫

Dφ
δS[φ + φ]

δφ
exp

{
i

(
S[φ + φ]− S[φ]− φ

δS[φ]
δφ

− φ
δW1

δφ

)}

= −i

∫
Dφ

δ

δφ
exp

{
i

(
S[φ + φ]− S[φ]− φ

δS[φ]
δφ

− φ
δW1

δφ

)}

+
∫
Dφ

(
δS[φ]
δφ

+
δW1

δφ

)
exp

{
i

(
S[φ + φ]− S[φ]− φ

δS[φ]
δφ

− φ
δW1

δφ

)}
(10.107)

and since the first term on the right is an integral of a total derivative it vanishes,
giving

δW1

δφ
=

1
Z1

∫
Dφ

{
δW1

δφ
− φ

δ2

δφδφ
(S[φ] + W1[φ])

}

× exp
{

i

(
S[φ + φ]− S[φ]− φ

δS[φ]
δφ

− φ
δW1

δφ

)}
. (10.108)

The first term on the right in Eq. (10.108) is equal to the term on the left, giving the
equation(

δ2(S[φ] + W1[φ])
δφ δφ

)∫
Dφφ exp

{
i

(
S[φ + φ]− S[φ]− φ

δS[φ]
δφ

− φ
δW1

δφ

)}
= 0.

(10.109)

The first factor
δ2

δφ δφ

(
S[φ] + W1[φ]

)
=

δ2Γ[φ]
δφ δφ

(10.110)

is according to Eq. (9.95) the inverse Green’s function and therefore nonzero, and we
have the sought after statement of Eq. (10.103)∫

Dφ φ exp
{

i

(
S[φ + φ]− S[φ]− φ

δS[φ]
δφ

− φ
δW1

δφ

)}
= 0 . (10.111)



10.4. 1PI loop expansion of the effective action 337

We have thus according to Eq. (10.102) shown that

W1[φ] = sum of all one-particle irreducible connected vacuum
diagrams (1PICVD) for the theory defined by the
action S̃[φ, φ].

(10.112)

Dividing the action S̃[φ, φ] into its quadratic part and the interaction part

S̃[φ; φ] = S̃0[φ; φ] + S̃int[φ; φ] (10.113)

we have

S̃0[φ; φ] =
1
2
φ

δ2S[φ]
δφδφ

φ ≡ 1
2
φD−1[φ] φ (10.114)

and

S̃int[φ; φ] =
∞∑

N=3

1
N !

δNS[φ]
δφ1 · · · δφN

φ1 · · ·φN . (10.115)

In the path integral expression for the generator Z̃, Eq. (10.99), the normalization
factor ∫

Dφ e
i
2 φD−1φ =

√
i detD (10.116)

was kept implicit, but by exposing it the expression for the effective action, Eq. (10.98),
can finally be written as

Γ[φ] = S[φ]− i

2
Tr ln iD−1[φ]− i ln〈eiS̃int[φ;φ]〉1PICVD , (10.117)

where the last term should be interpreted as

〈eiS̃int[φ;φ]〉 =
∫

1PICVD

Dφ eiS̃0[φ;φ] eiS̃int[φ;φ] (10.118)

and the subscript “1PICVD” indicates the restriction to the one-particle irreducible
connected vacuum diagrams resulting from the functional integral. We have explicitly
displayed the one-loop contribution, the second term on the right in Eq. (10.117),
and consequently we have the normalization

〈1〉1PICVD = 1. (10.119)

The first term on the right in Eq. (10.117), the zero loop or tree approximation,
specifies the classical limit, determined by the stationarity of the action, and the
second term gives the contribution from the Gaussian fluctuations. The last term,
the higher loop contributions, gives the quantum corrections due to interactions,
radiative corrections. Reinstating � gives the result that the contribution for a given
loop order is proportional to � raised to that power.

For a 3- plus 4-vertex theory, the effective action has the series expansion in
terms of one-particle irreducible vacuum diagrams as depicted (explicitly to three
loop order) in Figure 10.2, where we have reinstated the notation ϕ = φ.
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+

+

+

+

+

+

+

+

+

+ · · ·

Γ[ϕ] =

Figure 10.2 The 1PI vacuum diagram expansion of the effective action.

We note that the one-particle reducible diagram depicted in Figure 10.3, which
contributes in the sum of vacuum diagrams to W [J = 0], is absent in the series
expansion of the effective action.

Figure 10.3 One-particle reducible diagram contributing to W [J = 0].

The above functional evaluation of the effective action generates the one-particle
irreducible loop expansion in terms of skeleton diagrams, and infinite partial sum-
mation of naive perturbation theory diagrams is thus already done. A virtue of the
above expansion is that at each loop level for the effective action it contains far fewer
diagrams than the naive perturbation expansion.

In Section 10.6, where the effective action approach is applied to a Bose gas,
and in Chapter 12, where the theory of classical statistical dynamics is applied to
vortex dynamics in a superconductor, we shall need to take the loop expansion to
the next level where only two-particle irreducible vacuum diagrams will appear. We
therefore first go back to the generating functional technique, but now we will include
a two-particle source.
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10.5 Two-particle irreducible effective action

The effective action can be taken to the next level in irreducibility in which only two-
particle irreducible vertices appear. To construct such a description, we introduce
a two-particle source K12 in addition to the one-particle source J1, and a generator
of Green’s functions where the connected Green’s functions of the theory now are
contracted on both types of sources, i.e. defined according to the diagrammatic
expansion in terms of the two sources as depicted in Figure 10.4.
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Figure 10.4 Diagrammatic expansion of the generator, W [J, K], in the presence of
one- and two-particle sources.

The diagrammatic notation for the two-particle source is thus as displayed in
Figure 10.5.

1 2K12 =

Figure 10.5 Diagrammatic notation for the two-particle source.
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The diagrammatic notation for the generator makes explicit the feature that it
depends on both a one- and a two-particle source as stipulated in Figure 10.6.
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Figure 10.6 Diagrammatic notation for the generator in the presence of one- and
two-particle sources.

The generator consists of the same one-particle source terms as the previous
generator of Section 9.5, and therefore generates the connected amplitudes or Green’s
functions of the theory according to

G12...N =
δNW [J, K]

δJ1δJ2 · · · δJN

J=0,K=0

. (10.120)

In addition the generator contains two-particle source terms and mixed terms.
We notice the new feature of the presence of the two-particle source, that dif-

ferentiating with respect to the two-particle source can lead to the appearance of
disconnected diagrams; for example, see Figure 10.7.
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Figure 10.7 Removing a two-particle source can create disconnected diagrams.

Taking the derivative with respect to the one-particle source

ϕ1 =
δW [J, K]

δJ1
(10.121)
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we can, analogous to the procedure of Section 9.6, exploit the topological features
of diagrams to construct the diagrammatic expansion in terms of two-particle irre-
ducible vertices, as depicted in Figure 10.8. In the following we leave out in the
diagrammatic notation the implicit source dependences of quantities.
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Figure 10.8 Two-particle irreducible expansion of the 1-state Green’s function.

The topological arguments for the diagrammatic equation displayed in Figure 10.8
is: the particle state exposed can propagate directly to either a one-particle source
or a two-particle source. In the latter case its other state can end up in anything
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connected, and these two classes of diagrams are depicted as the two first diagrams
on the right in Figure 10.8. Or the exposed state can enter into a two-particle
irreducible diagram, giving the class of diagrams represented by the third diagram
on the right, or into a two-particle reducible diagram. A two-particle irreducible
vertex is by definition a vertex diagram which can not be cut in two by cutting only
two lines, otherwise it is two-particle reducible. In the case of entering into a two-
particle reducible diagram, the exposed state can enter into a two-particle irreducible
vertex which emerges by one line into anything connected, accounting for the fourth
diagram on the right containing the self-energy in the skeleton representation where
it is two-particle irreducible (recall the topological discussion of diagrams in Section
4.5.2). Or it can enter into a two-particle irreducible vertex which emerges by two
lines into anything connected, which can be done in the two ways as depicted in the
fifth and sixth displayed diagrams on the right, or three or four, etc., lines as depicted
in Figure 10.8. We note that, from a two-particle irreducible vertex, three lines can
not emerge into a connected 3-state diagram since such a part is already included in
the vertex owing to its two-particle irreducibility.

Analytically we have, according to the diagrammatic equation depicted in Figure
10.8, the equation

ϕ1 = G
(0)
12

(
J2 + K23 ϕ3 + Γ2 + Σ23 ϕ3 + Γ2(34) G34 +

1
2
Γ234 ϕ3 ϕ4

+
1
3!

Γ2345 ϕ3 ϕ4 ϕ5 + Γ23(45) ϕ3 G
(0)
45 + Γ2(34)(56) G34 G56 + ...

)
.

(10.122)

Operating on both sides of Eq. (9.79) with the inverse free propagator gives

0 =
(

J1 + K12 ϕ2 + Γ1 + (−G−1
0 + Σ)12 ϕ2 + Γ1(23) G23 +

1
2
Γ123 ϕ2 ϕ3

+
1
3!

Γ1234 ϕ2 ϕ3 ϕ4 + Γ12(34) ϕ2 G34 + Γ1(23)(45) G23 G45 + · · ·
)

,

(10.123)

which corresponds to the diagrammatic equation depicted in Figure 10.9.



10.5. Two-particle irreducible effective action 343

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������

+ +0 =

+ +

++1
2

+ + · · ·

+
1 1

+ δΓ[φ,G]
δφ1

≡

Figure 10.9 Two-particle irreducible vertices and source relation.

The last equality defines the field-derivative of the two-particle irreducible effective
action, i.e, just as the diagrams in Figure 9.48 lead to the introduction of the one-
particle irreducible effective action, we collect the two-particle irreducible vertex
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functions into the two-particle irreducible effective action

Γ[ϕ, G] ≡
∞∑
N

1
N !

Γ12...N ϕ1 ϕ2 · · ·ϕN

+ Γ1(23) ϕ1 G23 + Γ1(23)(45) ϕ1 G23 G45 + · · · , (10.124)

which in addition to the field is a functional of the full propagators.
In the two-particle irreducible action, we encounter two different types of vertices,

viz. only field attachment vertices

Γ12...N =
δNΓ[ϕ, G]

δϕ1 · · · δϕN

φ=0,G=0

(10.125)

which are two-particle irreducible and for which we introduce the diagrammatic no-
tation depicted in Figure 10.10.

2

N

1
Γ12...N =

Figure 10.10 The 2PI vertex with only field attachments.

In addition we encounter vertices with also propagator attachments, for example

Γ1(23)4(56) =
δ

δϕ1

δ

δG23

δ

δϕ4

δ

δG56
Γ[ϕ, G]

φ=0,G=0

(10.126)

for which we introduce the diagrammatic notation depicted in Figure 10.11.

1

3

2

4

5

6
Γ1(23)4(56) =

Figure 10.11 Vertex with both field and propagator attachments.

In terms of the two-particle irreducible effective action, we can diagrammatically
represent the equation depicted in Figure 10.9 as depicted in Figure 10.12 (redefining
Γ12 ≡ (−G−1

0 + Σ)12).



10.5. Two-particle irreducible effective action 345

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������

+0 = +

Figure 10.12 Sources and 2PI effective action relation.

Analytically, the diagrammatic relationship depicted in Figure 10.12 is

δΓ[ϕ, G]
δϕ1

= −J1 − K12 ϕ2 . (10.127)

By diagrammatic construction we have analogously to the one-particle irreducible
case, G1 ≡ ϕ1,

G1 =
δW [J, K]

δJ1
(10.128)

but now in addition
δW [J, K]

K12
=

1
2
(G12 + ϕ1 ϕ2) (10.129)

and these two relationships give implicitly the sources as functions of the field and
the full Green’s function

J = J [ϕ, G] (10.130)

and
K = K[ϕ, G] . (10.131)

Since the sources are independent, so are ϕ and G. We then have the two generators
being related by the double Legendre transformation, i.e. with respect to two sources,

Γ[ϕ, G] =
(

W [J, K] − ϕJ − 1
2
ϕK ϕ − 1

2
GK

)
J=J[ϕ,G],K=K[ϕ,G]

(10.132)

and we obtain the second relation for the two-particle irreducible effective action and
the sources

δΓ[ϕ, G]
δG12

= − 1
2
K12 . (10.133)

For K = 0 we encounter the usual Legendre transformation and effective action,
i.e. Γ[ϕ] = Γ[ϕ, G(0)] for the value of the Green’s function for which

δΓ[ϕ, G(0)]

δG
(0)
12

= 0 . (10.134)

By construction Γ[ϕ, G] is the generator, in the field variable ϕ, of the two-
particle irreducible vertices with lines representing the full Green’s function, G, and
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Γ[ϕ = 0, G] is thus the sum of all two-particle irreducible connected vacuum diagrams.
Using Eq. (10.132) and Eq. (10.133) we have

Γ[0, G] = TrG
δΓ[0, G]

δG
− i ln

∫
Dφ φ exp

{
i

(
S[φ] + φJ (0) − φ

δΓ[0, G]
δG

φ

)}

+ i ln
∫
Dφ φ exp {iS0[φ]} , (10.135)

where J (0) is the value of the source for which δW [J, K]/δJ vanishes, i.e. tadpoles
vanish.

By construction Γ[ϕ, G] is the generator with respect to the field, ϕ, of two-particle
irreducible vertex functions. For example, δ2Γ[ϕ, G]/δϕ1δϕ2 evaluated at vanishing
field, ϕ = 0, is the diagrammatic expansion for the inverse two-state Green’s function
with two-particle reducible diagrams absent and lines representing the full Green’s
function, i.e.

δ2Γ[ϕ, G]
δϕ1δϕ2

ϕ=0

= G−1
12 = (G(0) − Σ[G])−1

12 . (10.136)

10.5.1 The 2PI loop expansion of the effective action

In this section we shall take the discussion of Section 10.4 to the next level, the two-
particle irreducible (2PI) level and following Cornwall, Jackiw and Tomboulis obtain
the expression for the effective action in terms of two-particle irreducible vacuum
diagrams [53]. We shall use the path integral representations of the generators to
first get a useful path integral expression for the two-particle irreducible effective
action which has an explicit diagrammatic expansion. In the two-particle irreducible
description of the previous section, physical quantities are expressed in terms of the
average field and the full Green’s functions. The generating functional with one-
and two-particle sources, f and K, corresponding to the diagrammatic expansion in
Figure 10.4 is

Z[f, K] =
∫
Dφ exp

{
iS[φ] + iφf +

i

2
φKφ

}
= eiW [f,K] . (10.137)

The normalization constant is chosen so that Z[f = 0, K = 0] = 1.
The derivatives of the generating functional generate the average field

δW

δf1
= φ̄1 (10.138)

and the 2-state Green’s function according to

δW

δK12
=

1
2
(
φ1 φ̄2 + iG12

)
, (10.139)

where
iG12 = φ1 φ2 − φ1φ2 (10.140)
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and we use for short

φ1 φ2 =
∫
Dφφ1 φ2 exp

{
iS[φ] + iφf +

i

2
φKφ

}
(10.141)

for the amplitude A12.
The two-particle irreducible effective action, the double Legendre transform of

the generating functional of connected Green’s functions, Eq. (10.132)

Γ[φ, G] = W [f, K]− fφ− 1
2
φKφ− i

2
GK (10.142)

fulfills

δΓ
δφ

= −f −Kφ (10.143)

and

δΓ
δG

= − i

2
K . (10.144)

The double Legendre transformation can be performed sequentially, i.e. we first
define for fixed K

ΓK [φ] = (W [f, K]− φf)
∣∣
δW [f,K]/δf=φ

(10.145)

and then define G according to

δΓK [φ]
δK

=
1
2
(φ φ + iG) (10.146)

and the effective action according to

Γ[φ, G] = ΓK [φ]− 1
2
φKφ− i

2
GK . (10.147)

That the two definitions of the Green’s function and the effective action are identical
follows from the identity

δΓK [φ]
δK

=
(

δW [f, K]
δf

δf

δK
+

δW [f, K]
δK

− φ
δf

δK

)∣∣∣∣
δW [f,K]/δf=φ

=
δW [f, K]

δK

∣∣∣∣
δW [f,K]/δf=φ

. (10.148)

Considering K as fixed, ΓK [φ] is the effective action for the theory governed by
the action

SK [φ] = S[φ] +
1
2
φKφ. (10.149)

We therefore consider the generating functional

ZK [f ] =
∫
Dφ eiSK [φ]+iφf (10.150)
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and observe
ZK [f ] = Z[f, K] . (10.151)

The generating functional of connected Green’s functions, for fixed K, is

WK [f ] = −i lnZK [f ] (10.152)

with the corresponding effective action

ΓK [φ] = WK [f ] − φf . (10.153)

We can now use the method of functional evaluation of the effective action of Section
10.4 and obtain

ΓK [φ] = SK [φ] + WK
1 [φ] , (10.154)

where

WK
1 = −i ln

∫
Dφ exp

{
i

(
SK [φ + φ]− SK [φ]− φ

δSK [φ]
δφ

− φ
δWK

1 [φ]
δφ

)}
.

(10.155)
Introducing the functional Γ2 according to the equation

Γ[φ, G] = S[φ] +
i

2
Tr ln G−1 +

i

2
TrD−1[φ]G + Γ2[φ, G]− i

2
Tr1 (10.156)

with the inverse of the propagator D defined as

D−1[φ] ≡ δ2S[φ]
δφ δφ

(10.157)

and using Eqs. (10.147) and (10.154) we have

Γ2[φ, G] = −1
2
Tr
(
iD−1[φ] + K

)
G− i

2
Tr ln G−1 + WK

1 [φ] +
i

2
Tr1 . (10.158)

Lastly, we want to show that Γ2 is the sum of all the two-particle irreducible
vacuum graphs in a theory with vertices determined by the action

Sint[φ; φ] =
∞∑

N=3

1
N !

δNS[φ]
δφ1 · · · δφN

φ1 · · · φN , (10.159)

and propagator lines by the full Green’s function G. In order to do so we first
eliminate the two-particle source K

K = 2i
δΓ[φ, G]

δG
= G−1 −D−1[φ] + 2i

δΓ2[φ, G]
δG

. (10.160)

Using Eqs. (10.147), (10.154) and (10.155), the effective action, Γ[φ, G], can be
rewritten as a functional integral

eiΓ[φ,G] =
∫
Dφ exp

{
i

(
SK [φ + φ]− SK [φ]− φ

δSK [φ]
δφ

− φ
δWK

1 [φ]
δφ

)}

× ei(SK [φ]− 1
2 φKφ− i

2 GK) ≡ ei(SK [φ]− 1
2 φKφ− i

2 GK) ZK
1 [φ] . (10.161)
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Introducing the generator

Z̃K [φ, J ] =
∫
Dφ exp

{
i

(
(SK [φ + φ]− SK [φ]− φ

δSK [φ]
δφ

+ φJ

)}
(10.162)

a calculation similar to the one of Section 10.4 gives

δZ̃K [φ, J ]
δJ

∣∣∣∣∣
J=−δW K

1 /δφ

= 0 . (10.163)

The average value of φ has thus been shown to vanish in the theory governed by the
action

SK [φ, φ] = SK [φ + φ] − SK [φ] − φ
δSK

δφ
(10.164)

when the source takes the value J = −δWK
1 /δφ. If the generating functional Z̃K [φ, J ]

is multiplied by a factor depending on G and φ the average value of φ is still zero.
Using Eqs. (10.143), (10.147) and (10.154) we therefore have

f +
δSK [φ]

δφ
+

δWK
1 [φ]
δφ

= 0 (10.165)

and obtain the following functional integral expression for the two-particle irreducible
effective action

eiΓ[φ,G] = e−
i
2 φKφ+ 1

2 GK

∫
Dφ ei(SK [φ+φ]+fφ) . (10.166)

Using Eqs. (10.143) and (10.144) to eliminate the source f

f = −δΓ
δφ

− 2i
δΓ
δG

φ (10.167)

we obtain

Γ[φ, G]−G
δΓ[φ, G]

δG
= −i ln

∫
Dφ eiS[φ,G;φ] (10.168)

where

S[φ, G; φ] = S[φ + φ]− φ
δΓ[φ, G]

δφ
+ iφ

δΓ[φ, G]
δG

φ . (10.169)

Differentiating Eq. (10.168) with respect to G we obtain

0 =
δ2Γ[φ, G]
δG δG

G− δ2Γ[φ, G]
δG δφ

〈φ〉 − δ2Γ[φ, G]
δG δG

i〈φφ〉 , (10.170)

where the angle brackets denote the average with respect to the action S[φ, G; φ].
The action in Eq. (10.164) with the source term −δWK

1 /δφ added and the action
appearing in Eq. (10.169) differ only by an irrelevant constant, −S[φ], and we can
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conclude that the average value of the field is zero for the action S[φ, G; φ], i.e.
〈φ〉 = 0, and we obtain that

G = −i〈φφ〉 (10.171)

i.e. G is the full Green’s function for the theory governed by the action S[φ, G; φ].
Finally we rewrite Eq. (10.160)

G−1 = D−1[φ] + K − Σ[φ, G] , (10.172)

where

Σ[φ, G] = 2i
δΓ2[φ, G]

δG
. (10.173)

Since D−1[φ] + K is the free inverse Green’s function and G−1 is the inverse full
Green’s function for the theory governed by the action in Eq. (10.169), we conclude
that Σ is the self-energy, and Eq. (10.172) thereby the Dyson equation. Since the
self-energy, Σ, is the sum of one-particle irreducible connected vacuum diagrams,
we therefore finally conclude that Γ2 is given by the sum of two-particle irreducible
connected vacuum diagrams.

We have thus shown that the effective action can be written in the form

Γ[φ, G] = S[φ] +
i

2
Tr ln G−1 +

i

2
TrD−1[φ] G + Γ2[φ, G]− i

2
Tr1, (10.174)

where Γ2[φ, G] is the sum of all two-particle irreducible connected vacuum diagrams
in the theory with action φG−1φ/2 + Sint[φ : φ], i.e.

Γ2[φ, G] = −i ln〈eiSint[φ;φ]〉2PI
G , (10.175)

where the superscript and subscript on the angle bracket indicate that the func-
tional integral is restricted to the two-particle irreducible vacuum diagrams and the
propagator lines are the full Green’s function.

In general amplitudes or physical quantities can not be calculated exactly, and
an approximation scheme must be invoked. If no small dimensionless expansion
parameter is available we are at a loss. Furthermore, if non-perturbative effects
are prevalent we are left without a general tool to obtain information. To cope
with such situations, approximate self-consistent or mean field theories have been
useful, although they are uncontrollable as not easily analytically characterized by a
small parameter. The effective action approach can be used to systematically study
correlations order by order in the loop expansion. It is thus the general starting
point for constructing self-consistent approximations. An important feature of the
loop expansion is that it is capable of capturing important nonlinearities of a theory.
In practice one must at a certain order break the chain of correlations described by the
effective action by brute force, a felony we are quite used to in kinetic theory. The
rationale behind this scheme working quite well for calculating average properties
such as densities and currents is that higher-order correlations average out when
interest is in such low-correlation probes. We shall use the effective action approach
to study classical statistical dynamics in Chapter 12, but first we apply it in the
quantum context, viz. for the study of Bose gases.
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10.6 Effective action approach to Bose gases

In this section, the effective action formalism is applied to a gas of bosons.17 The
equations describing the condensate and the excitations are obtained by using the
loop expansion for the effective action. For a homogeneous gas, the expansion in
terms of the diluteness parameter is identified in terms of the loop expansion. The
loop expansion and the limits of validity of the well-known Bogoliubov and Popov
equations are examined analytically for a homogeneous dilute Bose gas and numeri-
cally for a gas trapped in a harmonic-oscillator potential. The expansion to one-loop
order, and hence the Bogoliubov equation, we shall show to be valid for the zero-
temperature trapped gas as long as the characteristic length of the trapping potential
exceeds the s-wave scattering length.

10.6.1 Dilute Bose gases

The dilute Bose gas has been subject to extensive study for more than half a century,
originally in an attempt to understand liquid Helium II, but also as an interesting
many-body system in its own right. In 1947, Bogoliubov showed how to describe
Bose–Einstein condensation as a state of broken symmetry, in which the expecta-
tion values of the field operators are non-vanishing due to the single-particle state
of lowest energy being macroscopically occupied, i.e. the annihilation and creation
operators for the lowest-energy mode can be treated as c-numbers [55]. In modern
terminology, the expectation value of the field operator is the order parameter and
describes the density of the condensed bosons. In Bogoliubov’s treatment, the phys-
ical quantities were expanded in the diluteness parameter

√
n0a3, where n0 denotes

the density of bosons occupying the lowest single-particle energy state, and a is the
s-wave scattering length, and Bogoliubov’s theory is therefore valid only for homo-
geneous dilute Bose gases. The inhomogeneous Bose gas was studied by Gross and
Pitaevskii, who independently derived a nonlinear equation determining the conden-
sate density [56] [57]. A field-theoretic diagrammatic treatment was applied by Beli-
aev to the zero-temperature homogeneous dilute Bose gas, showing how to go beyond
Bogoliubov’s approximation in a systematic expansion in the diluteness parameter√

n0a3; and also showing how repeated scattering leads to a renormalization of the
interaction between the bosons [58, 59]. This renormalization in Beliaev’s treatment
was a cumbersome issue, where diagrams expressed in terms of the propagator for
the non-interacting particles are intermixed with diagrams where the propagator con-
tains the interaction potential. Beliaev’s diagrammatic scheme was extended to finite
temperatures by Popov and Faddeev [60], and was subsequently employed to extend
the Bogoliubov theory to finite temperatures by incorporating terms containing the
excited-state operators to lowest order in the interaction potential [61, 62].

A surge of interest in the dilute Bose gas due to the experimental creation of
gaseous Bose–Einstein condensates occurred in the mid-1990s [63]. The atomic con-
densates in the experiments are confined in external potentials, which poses new
theoretical challenges; especially, the Beliaev expansion in the diluteness parameter√

n0a3 is questionable when the density is inhomogeneous. Experiments on trapped
17In this section we essentially follow reference [54].
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Bose gases employ Feshbach resonances to probe the regime of large scattering length,
and hence large values of the diluteness parameter. It is therefore of importance to
understand the low-density approximations to the exact equations of motion and the
corrections thereto. In the following, we shall employ the two-particle irreducible ef-
fective action approach, and show that it provides an efficient systematic scheme for
dealing with both homogeneous Bose gases and trapped Bose gases. We demonstrate
how the effective action formalism can be used to derive the equations of motion for
the dilute Bose gas, and more importantly, that the loop expansion can be used to
determine the limits of validity of approximations to the exact equations of motion
in the trapped case.

10.6.2 Effective action formalism for bosons

A system of spinless non-relativistic bosons is according to Eq. (3.68) and Eq. (10.37)
described by the action

S[ψ, ψ†] =
∫

drdt ψ†(r, t) [i∂t − h(r) + µ] ψ(r, t)

− 1
2

∫
drdr′dt ψ†(r, t)ψ†(r′, t)U(r− r′)ψ(r′, t)ψ(r, t) , (10.176)

where ψ is the scalar field describing the bosons, and µ the chemical potential. The
one-particle Hamiltonian, h = p2/2m + V (r), consists of the kinetic term and an
external potential, and U(r) is the potential describing the interaction between the
bosons. As usual we introduce a matrix notation whereby the field and its complex
conjugate are combined into a two-component field φ = (ψ, ψ†) = (φ1, φ2).

The correlation functions of the bose field are obtained from the generating func-
tional

Z[η, K] =
∫
Dφ exp

(
iS[φ] + iη†φ +

i

2
φ†Kφ

)
(10.177)

by differentiating with respect to the source η† = (η, η∗) = (η1, η2). Here η(r, t)
denotes a complex scalar field, not a Grassmannn variable, as we are considering
bosons. A two-particle source term, K, has been added to the action in the generating
functional in order to obtain equations involving the two-point Green’s function in a
two-particle irreducible fashion as discussed in Section 10.5.1.

The generator of the connected Green’s functions is

W [η, K] = −i lnZ[η, K], (10.178)

and the derivative
δW

δηi(r, t)
= φ̄i(r, t) (10.179)

gives the average field, φ̄, with respect to the action S[φ] + η†φ + φ†Kφ/2,

φ̄(r, t) =
(

Φ(r, t)
Φ∗(r, t)

)
=
∫
Dφφ(r, t) exp

(
iS[φ] + iη†φ +

i

2
φ†Kφ

)
= 〈φ(r, t)〉.

(10.180)
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The average field Φ is seen to specify the condensate density and is referred to as the
condensate wave function.18

The derivative of W with respect to the two-particle source is (recall Figure 10.7)

δW

δKij(r, t; r′, t′)
=

1
2
φ̄i(r, t) φ̄j(r′, t′) +

i

2
Gij(r, t, r′, t′) , (10.181)

where G is the full connected two-point matrix Green’s function describing the bosons
not in the condensate

Gij(r, t, r′, t′) = − δ2W

δηi(r, t) δηj(r′, t′)

= −i

(
〈δψ(r, t)δψ†(r′, t′)〉 〈δψ(r, t)δψ(r′, t′)〉
〈δψ†(r, t)δψ†(r′, t′)〉 〈δψ†(r, t)δψ(r′, t′)〉

)
, (10.182)

where δψ(r, t) is the deviation of the field from its mean value, δψ = ψ−Φ. Likewise,
we shall write φ = φ̄ + δφ for the two-component field. We recall that in the path
integral representation, averages over fields, such as in Eq. (10.182), are automatically
time ordered.

We then introduce the effective action for the bosons, Γ, the generator of the two-
particle irreducible vertex functions, through the Legendre transform of the generator
of connected Green’s functions, W ,

Γ[φ̄, G] = W [η, K]− η†φ̄− 1
2
φ̄†Kφ̄− i

2
TrGK. (10.183)

The effective action satisfies according to section 10.5.1 the equations

δΓ
δφ̄

= −η −Kφ̄ ,
δΓ
δG

= − i

2
K . (10.184)

In a physical state where the external sources vanish, η = 0 = K, the variations of
the effective action with respect to the field averages φ̄ and G vanish, yielding the
equations of motion

δΓ
δφ̄

= 0 (10.185)

and

δΓ
δG

= 0 . (10.186)

18Indeed, as pointed out by Penrose and Onsager, Bose–Einstein condensation is associated
with off-diagonal long-range order in the two-point correlation function limr→∞〈ψ†(r) ψ(0)〉 =
〈ψ†(r)〉 〈ψ(0)〉 �= 0 [64]. For a conventional description of bosons in terms of field operators we refer
to reference [15]. We note that, in the presented effective-action approach, the inherent additional
necessary considerations associated with the macroscopic occupation of the ground state in the
conventional description is conveniently absent.



354 10. Effective action

According to Section 10.5.1, the effective action can be written in the form

Γ[φ̄, G] = S[φ̄] +
i

2
Tr ln G0G

−1 +
i

2
Tr(G−1

0 − Σ(1))G− i

2
Tr1 + Γ2[φ̄, G] , (10.187)

where G0 is the non-interacting matrix Green’s function,

G−1
0 (r, t, r′, t′) = −

(
i∂t − h + µ 0
0 −i∂t − h + µ

)
δ(r− r′)δ(t− t′) (10.188)

and the matrix

Σ(1)(r, t, r′, t′) = − δ2S

δφ†(r, t)δφ(r′, t′)

∣∣∣∣
φ=φ̄

+ G−1
0 (r, t, r′, t′) (10.189)

will turn out to be the self-energy to one-loop order (see Eq. (10.204)). Using the
action describing the bosons, Eq. (10.176), we obtain for the components

Σ(1)
ij (r, t, r′, t′) = δ(t− t′)Σ(1)

ij (r, r′) (10.190)

where

Σ(1)
11 (r, r′) = δ(r′ − r)

∫
dr′′U(r− r′′)|Φ(r′′, t)|2 + U(r− r′)Φ∗(r′, t)Φ(r, t)

(10.191)

and

Σ(1)
12 (r, r′) = U(r− r′)Φ(r, t)Φ(r′, t) (10.192)

and

Σ(1)
21 (r, r′) = U(r− r′)Φ∗(r, t)Φ∗(r′, t) (10.193)

and

Σ(1)
22 (r, r′) = δ(r′ − r)

∫
dr′′U(r− r′′)|Φ(r′′, t)|2 + U(r− r′)Φ∗(r, t)Φ(r′, t) .

(10.194)

The delta function in the time coordinates reflects the fact that the interaction is
instantaneous. Finally, the quantity Γ2 in Eq. (10.187) is

Γ2 = −i ln〈eiSint[φ̄,δφ]〉2PI
G , (10.195)

where Sint[φ̄, δφ] denotes the part of the action S[φ̄+ δφ] which is higher than second
order in δφ in an expansion around the average field. The quantity Γ2 is conveniently
described in terms of the diagrams generated by the action Sint[φ̄, δφ], and consists
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of all the two-particle irreducible vacuum diagrams as indicated by the superscript
“2PI”, and the diagrams will therefore contain two or more loops. The subscript
indicates that propagator lines represent the full Green’s function G, i.e. the brackets
with subscript G denote the average

〈eiSint[φ̄,δφ]〉G = (det iG)−1/2

∫
D(δφ) e

i
2 δφ†G−1δφ eiSint[φ̄,δφ] . (10.196)

The diagrammatic expansion of Γ2 corresponding to the action for the bosons,
Eq. (10.176), is illustrated in Figure 10.13 where the two- and three-loop vacuum
diagrams are shown.

++

Figure 10.13 Two-loop (upper row) and three-loop vacuum diagrams (lower row)
contributing to the effective action.

Since matrix indices are suppressed, the diagrams in Figure 10.13 are to be un-
derstood as follows. Full lines represent full boson Green’s functions and in the cases
where we display the different components explicitly, G11 will carry one arrow (ac-
cording to Eq. (10.182) G22 can be expressed in terms of G11 and thus needs no
special symbol), G12 has two arrows pointing inward and G21 carries two arrows
pointing outward. Dashed lines represent the condensate wave function and can also
be decorated with arrows, directed out from the vertex to represent Φ, or directed
towards the vertex representing Φ∗. The dots where four lines meet are interaction
vertices, i.e. they represent the interaction potential U (which in other contexts will
be represented by a wiggly line). When all possibilities for the indices are exhausted,
subject to the condition that each vertex has two in-going and two out-going par-
ticle lines, we have represented all the terms of Γ2 to a given loop order. Finally,
the expression corresponding to each vacuum diagram should be multiplied by the
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factor is−2, where s is the number of loops the diagram contains. In the effective
action approach, the appearance of the condensate wave function in the diagrams
is automatic, and as noted generally in Section 9.6.1, the approach is well suited to
describe broken-symmetry states.

The expansion of the effective action in loop orders was shown in Section 10.3
to be an expansion in Planck’s constant. The first term on the right-hand side of
Eq. (10.187), S[φ̄], the zero-loop term, is proportional to �

0, and the terms where
the trace is written explicitly, the one-loop terms, are proportional to �

1. We stress
that the effective action approach presented in this chapter is capable of describ-
ing arbitrary states, including non-equilibrium situations where the external poten-
tial depends on time. Although we in the following in explicit calculations shall
limit ourselves to study a Bose gas at zero temperature the theory is straightfor-
wardly generalized to finite temperatures. The equations of motion, Eq. (10.185)
and Eq. (10.186), together with the expression for the effective action, Eq. (10.187),
form the basis for the subsequent calculations.

10.6.3 Homogeneous Bose gas

In this section we consider the case of a homogeneous Bose gas in equilibrium. The
equilibrium theory of a dilute Bose gas is of course well known, but the effective action
formalism will prove to be a simple and efficient tool which permits one to derive
the equations of motion with particular ease, and to establish the limits of validity
for the approximate descriptions often used. For the case of a homogeneous Bose
gas in equilibrium, the general theory presented in the previous section simplifies
considerably. The single-particle Hamiltonian, h, is then simply equal to the kinetic
term, h(p) = p2/2m ≡ εp, and the condensate wave function Φ(r, t) is a time- and
coordinate-independent constant whose value is denoted by

√
n0, so that n0 denotes

the condensate density. The first term in the effective action, Eq. (10.187), is then

S[Φ] = (µn0 −
1
2
U0n

2
0)
∫

drdt 1 (10.197)

where
U0 =

∫
dr U(r) (10.198)

is the zero-momentum component of the interaction potential. For a constant value
of the condensate wave function, Φ(r, t) =

√
n0, Eq. (10.194) yields

Σ(1)(p) =
(

n0(U0 + Up) n0Up

n0Up n0(U0 + Up)

)
. (10.199)

Varying, in accordance with Eq. (10.185), the effective action, Eq. (10.187), with
respect to n0 yields the equation for the chemical potential

µ = n0U0 +
i

2

∫
d4p

(2π)4
[(U0 + Up)(G11(p) + G22(p)) + Up(G12(p) + G21(p))]

− δΓ2

δn0
(10.200)
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where the notation for the four-momentum, p = (p, ω), has been introduced. The
first term on the right-hand side is the zero-loop result, which depends only on the
condensate fraction of the bosons. The second term on the right-hand side is the one-
loop term which takes the noncondensate fraction of the bosons into account. The
term involving the anomalous Green’s functions G12 and G21 will shortly, in Section
10.6.4, be absorbed by the renormalization of the interaction potential. From the
last term originate the higher-loop terms, which will be dealt with at the end of this
section.

The equation determining the Green’s function is obtained by varying the effec-
tive action with respect to the matrix Green’s function G(p), in accordance with
Eq. (10.186), yielding

0 =
δΓ
δG

= − i

2

(
−G−1 + G−1

0 + Σ(1) + Σ′
)

, (10.201)

where
Σ′

ij = 2i
δΓ2

δGji
. (10.202)

Introducing the notation for the matrix self-energy

Σ = Σ(1) + Σ′ (10.203)

Eq. (10.201) is seen to be the Dyson equation

G−1 = G−1
0 − Σ . (10.204)

In the context of the dilute Bose gas, this equation is referred to as the Dyson–Beliaev
equation.

The Green’s function in momentum space is obtained by simply inverting the 2×2
matrix G−1

0 (p)− Σ(p) resulting in the following components

G11(p) =
ω + εp − µ + Σ22(p)

Dp
, G12(p) =

−Σ12(p)
Dp

(10.205)

and

G21(p) =
−Σ21(p)

Dp
, G22(p) =

−ω + εp − µ + Σ11(p)
Dp

(10.206)

all having the common denominator

Dp = (ω + εp − µ + Σ22(p))(ω − εp + µ− Σ11(p)) + Σ12(p)Σ21(p). (10.207)

From the expression for the matrix Green’s function, Eq. (10.182), it follows that in
the homogeneous case its components obey the relationships

G22(p) = G11(−p) , G12(−p) = G12(p) = G21(p) . (10.208)

The corresponding relations hold for the self-energy components. We note that the
results found for µ and G to zero- and one-loop order coincide with those found
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in reference [58] to zeroth and first order in the diluteness parameter
√

n0a3. For
example, according to Eq. (10.199) we obtain for the components of the matrix
Green’s function to one loop-order

G
(1)
11 (p) =

ω + εp + n0Up

ω2 − ε2
p − 2n0Upεp

, G
(1)
12 (p) =

−n0Up

ω2 − ε2
p − 2n0Upεp

, (10.209)

which are the same expressions as the ones in reference [58]. As we shortly demon-
strate, the loop expansion for the case of a homogeneous Bose gas is in fact equivalent
to an expansion in the diluteness parameter. From Eq. (10.209) we obtain for the
single-particle excitation energies to one-loop order

Ep =
√

ε2
p + 2n0Upεp (10.210)

which are the well-known Bogoliubov energies [55].
Differentiating with respect to n0 the terms in Γ2 corresponding to the two-

loop vacuum diagrams gives the two-loop contribution to the chemical potential.
Functionally differentiating the same terms with respect to Gji gives the two-loop
contributions to the self-energies Σij . The diagrams we thus obtain for the chemical
potential µ and the self-energy Σ are topologically identical to those found originally
by Beliaev [59]; however, the interpretation differs in that the propagator in the
vacuum diagrams of Figure 10.13 is the exact propagator, whereas in reference [59]
the propagator to one-loop order appears.

In order to establish that the loop expansion for a homogeneous Bose gas is an
expansion in the diluteness parameter

√
n0a3, we examine the general structure of the

vacuum diagrams comprised by Γ2. Any diagram of a given loop order differs from
any diagram in the preceding loop order by an extra four-momentum integration,
the condensate density n0 to some power k, the interaction potential U to the power
k + 1, and k + 2 additional Green’s functions in the integrand. We can estimate the
contribution from these terms as follows. The Green’s functions are approximated
by the one-loop result Eq. (10.209). The additional frequency integration over a
product of k + 2 Green’s functions yields k + 2 factors of n0U (where U denotes the
typical magnitude of the Fourier transform of the interaction potential), divided by
2k + 3 factors of the Bogoliubov energy E. The range of the momentum integration
provided by the Green’s functions is (mn0U)1/2. The remaining three-momentum
integration therefore gives a factor of order n

−k+1/2
0 m3/2U−k+1/2, and provided the

Green’s functions make the integral converge, the contribution from an additional
loop is of the order (n0m

3U3)1/2. This is the case except for the ladder diagrams,
in which case the convergence need to be provided by the momentum dependence of
the potential. The ladder diagrams will be dealt with separately in the next section
where we show that they, through a renormalization of the interaction potential,
lead to the appearance of the t-matrix which in the dilute limit is proportional to
the s-wave scattering length a and inversely proportional to the boson mass. The
renormalization of the interaction potential will therefore not change the estimates
performed above, but change only the expansion parameter. Anticipating this change
we conclude that the expansion parameter governing the loop expansion is for a
homogeneous Bose gas indeed identical to Bogoliubov’s diluteness parameter

√
n0a3.
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10.6.4 Renormalization of the interaction

Instead of having the interaction potential appear explicitly in diagrams, one should
work in the skeleton diagram representation where diagrams are partially summed
so that the four-point vertex appears instead of the interaction potential, thus ac-
counting for the repeated scattering of the bosons. In the dilute limit, where the
inter-particle distance is large compared to the s-wave scattering length, the ladder
diagrams give as usual the largest contribution to the four-point vertex function. The
ladder diagrams are depicted in Figure 10.14.

Figure 10.14 Summing all diagrams of the ladder type results in the t-matrix, which
to lowest order in the diluteness parameter is a momentum-independent constant g,
diagrammatically represented by a circle.

On calculating the corresponding integrals, it is found that an extra rung in
a ladder contributes with a factor proportional not to

√
n0m3U3, as was the case

for the type of extra loops considered in the previous section, but to k0mU , where
k0 is the upper momentum cut-off (or inverse spatial range) of the potential, as
first noted by Beliaev [59]. The quantity k0mU is not necessarily small for the
atomic gases under consideration here. Hence, all vacuum diagrams which differ
only in the number of ladder rungs that they contain are of the same order in the
diluteness parameter, and we have to perform a summation over this infinite class
of diagrams. The ladder resummation results in an effective potential T (p, p′, q),
referred to as the t-matrix and is a function of the two ingoing momenta and the
four-momentum transfer. Owing to the instantaneous nature of the interactions, the
t-matrix does not depend on the frequency components of the in-going four-momenta,
but for notational convenience we display the dependence as T (p, p′, q). To lowest
order in the diluteness parameter, the t-matrix is independent of four-momenta and
proportional to the constant scattering amplitude, T (0, 0, 0) = 4π�

2a/m = g. This
is illustrated in Figure 10.14, where we have chosen an open circle to represent g.
Iterating the equation for the ladder diagrams we obtain the t-matrix equation

T (p, p′, q) = Uq + i

∫
d4q′ Uq′ G11(p+q′)G11(p−q′) T (p+q′, p−q′, q−q′). (10.211)

At finite temperatures, the t-matrix takes into account the effects of thermal popu-
lation of the excited states.
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We shall now show how the ladder resummation alters the diagrammatic repre-
sentation of the chemical potential and the self-energy. In Figure 10.15 are displayed
some of the terms up to two-loop order contributing to the chemical potential µ.

Figure 10.15 Diagrams up to two-loop order contributing to the chemical potential.
Only the two-loop diagrams relevant to the resummation of the ladder diagrams are
displayed. The two-loop diagrams not displayed are topologically identical to those
shown, but differ in the direction of arrows or the presence of anomalous instead of
normal propagators.

The first two terms in Eq. (10.200) is represented by diagrams (a)–(d), and the
two-loop diagrams (e)–(f) originate from Γ2. The diagrams labeled (e) and (f) are
formally one loop order higher than (c) and (d), but they differ only by containing
one additional ladder rung. Hence, the diagrams (c), (d), (e), and (f), and all the
diagrams that can be constructed from these by adding ladder rungs, are of the same
order in the diluteness parameter

√
n0a3 as just shown above. They are therefore

resummed, and as discussed this leads to the replacement of the interaction potential
U by the t-matrix.

We note that no ladder counterparts to the diagrams (a) and (b) in Figure 10.15
appear explicitly in the expansion of the chemical potential, since such diagrams are
two-particle reducible and are by construction excluded from the effective action Γ2.
However, diagram (b) contains implicitly the ladder contribution to diagram (a). In
order to establish this we first simplify the notation by denoting by Np the numerator
of the exact normal Green’s function G11(p), which according to Eq. (10.205) is

Np = ω + εp − µ + Σ11(−p) . (10.212)

We then have

Dp = NpN−p − Σ12(p)Σ21(p) = D−p (10.213)

and the contribution from diagram (b) can be rewritten in the form∫
d4p Up G12(p) =

∫
d4p Up

Σ12(p)
NpN−p − Σ12(p)Σ21(p)
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=
∫

d4p Up

(
Σ12(p)NpN−p

D2
p

− Σ12(p)Σ21(p)Σ12(p)
D2

p

)

=
∫

d4p Up

(
Σ12(p)G11(p)G11(−p)− Σ21(p)G12(p)2

)
=

∫
d4p Up (n0UpG11(p)G11(−p) + [Σ12(p)− n0Up]

× G11(p)G11(−p)− Σ21(p)G12(p)2
)
. (10.214)

In Figure 10.16 the last two rewritings are depicted diagrammatically.

Figure 10.16 Diagrammatic representation of the last two rewritings in Eq. (10.214)
which lead to the conclusion that the diagram (b) of Figure 10.15 implicitly contains
the ladder contribution to diagram (a). The anomalous self-energy Σ12 is represented
by an oval with two in-going lines, Σ21 is represented by an oval with two outgoing
lines, and the sum of the second- and higher-order contributions to Σ12 is represented
by an oval with the label “2.”

We see immediately that the first term on the right-hand side corresponds to the
first ladder contribution to diagram (a), and since to one-loop order, Σ12(p) = n0Up,
the other terms in Eq. (10.214) are of two- and higher-loop order. The self-energy in
the second term on the right-hand side can be expanded to second loop order, and
by iteration this yields all the ladder terms, and the remainder can be kept track
of analogously to the way in which it is done in Eq. (10.214). The resulting ladder
resummed diagrammatic expression for the chemical potential is displayed in Figure
10.17.
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Figure 10.17 The chemical potential to one-loop order after the ladder summation
has been performed and the resulting t-matrix been replaced by its expression in the
dilute limit, the constant g.

In the same manner, the self-energies are resummed. For Σ11, a straightforward
ladder resummation of all terms is possible, while for Σ12, the same procedure as the
one used for diagrams (a) and (b) in Figure 10.15 for the chemical potential has to be
performed. In Figure 10.18, we show the resulting ladder resummed diagrams for the
self-energies Σ11 and Σ12 to two-loop order in the dilute limit where T (p, p′, q) ≈ g.

 

 

  

Figure 10.18 Normal Σ11 and anomalous Σ12 self-energies to two-loop order after
the ladder summation has been performed and the resulting t-matrix been replaced
by its expression in the dilute limit, the constant g.

In reference [61] a diagrammatic expansion in the potential was performed, which
yields to first order the diagram Σ(2a)

11 in Figure 10.18, but not the other two-loop
diagrams. This approximation, where the normal self-energy is taken to be Σ11 =
Σ(1a)

11 + Σ(2a)
11 , the anomalous self-energy to Σ12 = Σ(1a)

12 , and the diagrams displayed
in Figure 10.17 are kept in the expansion of the chemical potential, is referred to
as the Popov approximation. Although we showed at the end of Section 10.6.3 that
all the two-loop diagrams of Figure 10.18 are of the same order of magnitude in the
diluteness parameter

√
n0a3 at zero temperature, the Popov approximation applied

at finite temperatures is justified, when the temperature is high enough, kT � gn0.
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Below, we shall investigate the limits of validity at zero temperature of the Popov
approximation in the trapped case.

In this and the preceding section we have shown how the expressions for the self-
energies and chemical potential for a homogeneous dilute Bose gas are conveniently
obtained by using the effective action formalism, where they simply correspond to
working to a particular order in the loop expansion of the effective action. We
have established that an expansion in the diluteness parameter is equivalent to an
expansion of the effective action in the number of loops. Furthermore, the method
provided a way of performing a systematic expansion, and the results are easily
generalized to finite temperatures. We now turn to show that the effective action
approach provides a way of performing a systematic expansion even in the case of an
inhomogeneous Bose gas.

10.6.5 Inhomogeneous Bose gas

We now consider the experimentally relevant case of a Bose gas trapped in an exter-
nal static potential, thereby setting the stage for the numerical calculations in the
next section. In this case, the Bose gas will be spatially inhomogeneous. The effective
action formalism is equally capable of dealing with the inhomogeneous gas, in which
case all quantities are conveniently expressed in configuration space, as presented
in Section 10.6.2. We show that the Bogoliubov and Gross–Pitaevskii theory corre-
sponds to the one-loop approximation to the effective action. The one-loop equations
will be exploited further in the next section.

Varying, in accordance with Eq. (10.185), the effective action Γ, Eq. (10.187),
with respect to Φ∗(r, t), we obtain the equation of motion for the condensate wave
function

(i�∂t − h + µ)Φ(r, t) = g |Φ(r, t)|2 Φ(r, t) + 2igG11(r, t, r, t)Φ(r, t) − δΓ̄2

δΦ∗(r, t)
.

(10.215)

To zero-loop order, where only the first term on the right-hand side appears, the equa-
tion is the time-dependent Gross–Pitaevskii equation. We have already, as elaborated
in the previous section, performed the ladder summation by which the potential is
renormalized and the t-matrix appears and substituted its lowest-order approxima-
tion in the diluteness parameter, the constant g. Since the t-matrix in the momentum
variables is a constant in the dilute limit, it becomes in configuration space a product
of three delta functions,

T (r1, r2, r3, r4) = g δ(r1 − r4) δ(r2 − r4) δ(r3 − r4) . (10.216)

The quantity Γ̄2 is defined as the effective action obtained from Γ2 by summing the
ladder terms whereby U is replaced by the t-matrix, and its diagrammatic expansion
is topologically of two-loop and higher order.

The Dyson–Beliaev equation, Eq. (10.204), and the equation determining the
condensate wave function, Eq. (10.215), form a set of coupled integro-differential self-
consistency equations for the condensate wave function and the Green’s function, with
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the self-energy specified in terms of the Green’s function through the effective action
according to Eq. (10.202). The Green’s function can be conveniently expanded in
the amplitudes of the elementary excitations. We write the Dyson–Beliaev equation,
Eq. (10.204), in the form∫

dr′′dt′′ [i�σ3∂tδ(r− r′′)δ(t− t′′) + σ3L(r, t, r′′, t′′)] G(r′′, t′′, r′, t′)

= �1δ(r− r′)δ(t− t′) , (10.217)

where we have introduced the matrix operator

L(r, t, r′, t′) = σ3 h δ(r− r′)δ(t− t′) + σ3Σ(r, t, r′, t′) (10.218)

and σ3 is the third Pauli matrix. Up to one-loop order, the matrix Σ is diagonal in
the time and space coordinates and we can factor out the delta functions and write
L(r, t, r′, t′) = δ(t− t′) δ(r − r′) L(r), where

L(r) =
(

h− µ + 2g|Φ(r)|2 gΦ(r)2

−gΦ∗(r)2 −h + µ− 2g|Φ(r)|2
)

. (10.219)

The eigenvalue equation for L are the Bogoliubov equations. The Bogoliubov op-
erator L is not hermitian, but the operator σ3L is, which renders the eigenvectors
of L the following properties. For each eigenvector ϕj(r) = (uj(r), vj(r)) of L with
eigenvalue Ej , there exists an eigenvector ϕ̃j(r) = (v∗j (r), u∗

j (r)) with eigenvalue
−Ej . Assuming the Bose gas is in its ground state, the normalization of the positive-
eigenvalue eigenvectors can be chosen to be 〈ϕj , ϕk〉 = δjk, where we have introduced
the inner product

〈ϕj , ϕk〉 =
∫

dr ϕ†
j(r)σ3ϕk(r) =

∫
dr (u∗

j (r)uk(r) − v∗j (r)vk(r)). (10.220)

It follows that the inner product of the negative-eigenvalue eigenvectors ϕ̃ are

〈ϕ̃j , ϕ̃k〉 =
∫
dr ϕ̃†

j(r)σ3ϕ̃k(r) =
∫
dr (vj(r)v∗k(r)− uj(r)u∗

k(r)) = −δjk (10.221)

and the eigenvectors ϕ and ϕ̃ are mutually orthogonal, 〈ϕj , ϕ̃k〉 = 0. By virtue of
the Gross–Pitaevskii equation, the vector ϕ0(r) = (Φ(r),−Φ∗(r)) is an eigenvector
of the Bogoliubov operator L with zero eigenvalue and zero norm. In order to obtain
a completeness relation, we must also introduce the vector ϕa(r) = (Φa(r),−Φ∗

a(r))
satisfying the relation Lϕa = αϕ0, where α is a constant determined by normaliza-
tion, 〈ϕ0, ϕa〉 = 1. The resolution of the identity then becomes∑

j

′ (
ϕj(r)ϕ

†
j(r

′)− ϕ̃j(r)ϕ̃
†
j(r

′)
)

σ3 +
(
ϕa(r)ϕ†

0(r
′) + ϕ0(r)ϕ†

a(r′)
)

σ3 = 1δ(r− r′)

(10.222)
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where the prime on the summation sign indicates that the zero-eigenvalue mode ϕ0

is excluded from the sum. Using the resolution of the identity, Eq. (10.222), allows us
to invert Eq. (10.217) to obtain the Bogoliubov spectral representation of the Green’s
function

G(r, r′, ω) = �

∑
j

′
(

1
−�ω + Ej

ϕj(r)ϕ
†
j(r

′)− 1
−�ω − Ej

ϕ̃j(r)ϕ̃
†
j(r

′)
)

. (10.223)

It follows from the spectral representation of the Green’s function that the eigenvalues
Ej are the elementary excitation energies of the condensed gas (here constructed
explicitly to one-loop order). Using Eq. (10.223), we can at zero temperature express
the non-condensate density or the depletion of the condensate, nnc = n−n0, in terms
of the Bogoliubov amplitudes

nnc(r) = i

∫
dω

2π
G11(r, r, ω) =

∑
j

′
|vj(r)|2. (10.224)

The results obtained in this section form the basis for the numerical calculations
presented in the next section.

10.6.6 Loop expansion for a trapped Bose gas

We now turn to determine the validity criteria for the equations obtained to various
orders in the loop expansion for the ground state of a Bose gas trapped in an isotropic
harmonic potential V (r) = 1

2mω2
t r

2. To this end, we shall numerically compute the
self-energy diagrams to different orders in the loop expansion.

Working consistently to one-loop order, we need only employ Eq. (10.215) to
zero-loop order, providing the condensate wave function, which upon insertion into
Eq. (10.219) yields the Bogoliubov operator L to one-loop order, from which the
Green’s function to one-loop order is obtained from Eq. (10.223). The resulting
Green’s function is then used to calculate the various self-energy terms numerically.
In order to do so, we make the equations dimensionless with the transformations
r = aoscr̃, Φ =

√
N0/a3

oscΦ̃, uj = a
−3/2
osc ũj , Ej = �ωtẼj , and g = (�ωta

3
osc/N0)g̃,

where aosc =
√

�/mωt is the characteristic oscillator length of the harmonic trap,
and N0 is the number of bosons in the condensate.

To zero-loop order, the time-independent Gross–Pitaevskii equation on dimen-
sionless form reads

−1
2
∇2

r̃Φ̃ +
1
2
r̃2Φ̃ + g̃|Φ̃|2Φ̃ = µ̃Φ̃. (10.225)

We solve Eq. (10.225) numerically with the steepest-descent method, which has
proven to be sufficient for solving the present equation [65]. The result thus ob-
tained for Φ̃ is inserted into the one-loop expression for the Bogoliubov operator
L, Eq. (10.219), in order to calculate the Bogoliubov amplitudes ũj and ṽj and
the eigenenergies Ẽj . Since the condensate wave function for the ground state, Φ̃,
is real and rotationally symmetric, the amplitudes ũj , ṽj in the Bogoliubov equa-
tions can be labeled by the two angular momentum quantum numbers l and m,
and a radial quantum number n, and we write ũnlm(r̃, θ, φ) = ũnl(r̃)Ylm(θ, φ),
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ṽnlm(r̃, θ, φ) = ṽnl(r̃)Ylm(θ, φ). The resulting Bogoliubov equations are linear and
one-dimensional

L̃ ũnl(r̃) + g̃Φ̃2(r̃)ṽnl(r̃) = Ẽnlũnl(r̃) (10.226)

and

L̃ ṽnl(r̃) + g̃Φ̃2(r̃)ũnl(r̃) = − Ẽnlṽnl(r̃) (10.227)

where

L̃ =
(
−1

2
1
r̃

∂2

∂r̃2
r̃ +

1
2

l(l + 1)
r̃2

+
1
2
r̃2 − µ̃ + 2g̃Φ̃2(r̃)

)
. (10.228)

We note that the only parameter in the problem is the dimensionless coupling pa-
rameter g̃ = 4πN0a/aosc. Solving the Bogoliubov equations reduces to diagonalizing
the band diagonal 2M × 2M matrix L, where M is the size of the numerical grid.
The value of M in the computations was varied between 180 and 240, higher values
for stronger coupling, and the grid constant has been chosen to 0.05 aosc giving a
maximum system size of 18 aosc.

In the following, we shall estimate the orders of magnitude and the parameter
dependence of the different two- and three-loop self-energy diagrams, and to this
end we shall use the one-loop results for the amplitudes ũ, ṽ and the eigenenergies
Ẽ obtained numerically. When working to two- and three-loop order, one must
also consider the corresponding corrections to the approximate t-matrix g. These
contributions have been studied in reference [66], and their inclusion will not lead to
any qualitative changes of the results.

Let us first compare the one-loop and two-loop contributions to the normal self-
energy. The only one-loop term is

Σ(1a)
11 (r, r′, ω) = 2g|Φ(r)|2δ(r− r′) = 2gn0(r) δ(r − r′). (10.229)

We first compare Σ(1a)
11 with the two-loop term which is proportional to a delta

function, i.e. the diagram (2a) in Figure 10.18. We shall shortly compare this
diagram to the other two-loop diagrams. For diagram (2a) we have

Σ(2a)
11 (r, r′, ω) = 2igδ(r− r′)

∫
dω′

2π
G(r, r, ω′) = 2gnnc(r) δ(r − r′). (10.230)

The ratio of the two-loop to one-loop self-energy contributions at the point r is thus
equal to the fractional depletion of the condensate at that point. In Figure 10.19
we show the numerically computed dimensionless fractional depletion at the origin,
ñnc(0)/ñ0(0), where we have introduced the dimensionless notation

ñ0(r̃) = |Φ̃(r̃)|2 , ñnc(r̃) =
∑

j

′
|ṽj(r̃)|2. (10.231)

We have chosen to evaluate the densities at the origin, r = 0, in order to avoid a
prohibitively large summation over the l �= 0 eigenvectors.
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Figure 10.19 Fractional depletion of the condensate N0nnc/n0 at the trap center
as a function of the dimensionless coupling strength g̃ = 4πN0a/aosc. Asterisks
represent the numerical results, circles represent the local-density approximation with
the numerically computed condensate density inserted, and the line is the local-
density approximation using the Thomas–Fermi approximation for the condensate
density.

As apparent from Figure 10.19, the log–log curve has a slight bend initially, but
becomes almost straight for coupling strengths g̃ � 100. A logarithmic fit to the
straight portion of the curve gives the relation

ñnc(0)
ñ0(0)

� 0.0019 g̃1.2. (10.232)

When we reintroduce dimensions, the power-law relationship Eq. (10.232) is multi-
plied by the reciprocal of the number of bosons in the condensate N−1

0 because the
actual and dimensionless self-energies are related according to

Σ(s) =
�ωta

3
osc

Ns−1
0

Σ̃(s) , (10.233)

where s denotes the loop order in question. The ratio between different loop orders of
the self-energy is thus not determined solely by the dimensionless coupling parameter
g̃ = 4πN0a/aosc, but by N0 and a/aosc separately. We thus obtain for the fractional
depletion in the strong-coupling limit, g̃ � 100,

nnc(0)
n0(0)

=
1

N0

ñnc(0)
ñ0(0)

≈ 0.041N0.2
0

(
a

aosc

)1.2

. (10.234)

It is of interest to compare our numerical results with approximate analytical
results such as those obtained by using the local density approximation (LDA). The
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LDA amounts to substituting a coordinate-dependent condensate density in the ex-
pressions valid for the homogeneous gas. The homogeneous-gas result for the frac-
tional depletion is [55]

nnc

n0
=

8
3
√

π

√
n0a3. (10.235)

In the strong-coupling limit we can use the Thomas–Fermi approximation for the
condensate density

n0(r) =
1

8πa2
osca

(
15N0a

aosc

)2/5
[
1−

(
aosc

15N0a

)2/5
r2

a2
osc

]
, (10.236)

which is obtained by neglecting the kinetic term in the Gross–Pitaevskii equation
[67]. For the fractional depletion at the origin there results in the local density
approximation

nnc(0)
n0(0)

=
(15N0)1/5

3π2
√

2

(
a

aosc

)6/5

(10.237)

as first obtained in reference [68]. The LDA is a valid approximation when the gas
locally resembles that of a homogeneous system, i.e. when the condensate wave
function changes little on the scale of the coherence length ξ, which according to the
Gross–Pitaevskii equation is ξ = (8πn0(0)a)−1/2. For a trapped cloud of bosons in the
ground state, its radius R determines the rate of change of the density profile. Since
R is a factor g̃2/5 larger than ξ [67], we expect the agreement between the LDA and
the exact results to be best in the strong-coupling regime. The fractional depletion of
the condensate at the trap center as a function of the dimensionless coupling strength
g̃ = 4πN0a/aosc is shown in Figure 10.19. In Figure 10.19 are displayed both the
local-density result Eq. (10.235) with the numerically computed condensate density
inserted, and the Thomas–Fermi approximation Eq. (10.237), showing that the LDA
indeed is valid when the coupling is strong. Furthermore, inspection of Eq. (10.237)
reveals that the LDA coefficient and exponent agree with the numerically found
result of Eq. (10.234), which is valid for strong coupling. However, when g̃ � 10,
the LDA prediction for the depletion deviates significantly from the numerically
computed depletion. Inserting the numerically obtained condensate density into the
LDA instead of the Thomas–Fermi approximation is seen not to substantially improve
the result, as seen in Figure 10.19.

The relation for the fractional depletion, Eq. (10.234), is in agreement with the
results of reference [69], where the leading-order corrections to the Gross–Pitaevskii
equation were considered in the one-particle irreducible effective action formalism,
employing physical assumptions about the relevant length scales in the problem.
These leading-order corrections were found to have the same power-law dependence
on N0 and a/aosc. A direct comparison of the prefactors cannot be made, because
the objective of reference [69] was to estimate the higher-loop correction terms to the
Gross–Pitaevskii equation and not to the self-energy.

The two-loop term Σ(2a)
11 can, at zero temperature, according to Eq. (10.232) be

ignored as long as ñnc � ñ0, which is true in a wide, experimentally relevant param-
eter regime. The one-loop result for the fractional depletion Eq. (10.234) depends
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very weakly on N0, so as long as N0 does not exceed 109, which is usually fulfilled
in experiments, we can restate the criterion for the validity of Eq. (10.234) into the
condition a � aosc. In experiments on atomic rubidium and sodium condensates,
this condition is fulfilled, except in the instances where Feshbach resonances are used
to enhance the scattering length [70].

In Section 10.6.3 we showed that for a homogeneous gas all two-loop diagrams are
equally important in the sense that they are all of the same order in the diluteness
parameter

√
n0a3. The situation in a trapped system is not so clear, since the den-

sity is not constant. We shall therefore compare the five normal self-energy diagrams
Σ(2a−e)

11 in Figure 10.18, to see whether they display the same parameter dependence
and whether any of the terms can be neglected. In particular, the Popov approx-
imation corresponds to keeping the diagram Σ(2a)

11 but neglects all other two-loop
diagrams, and we will now determine its limits of validity at zero temperature. Since
diagram (2a) contains a delta function, we shall integrate over one of the spatial
arguments of the self-energy terms and keep the other one fixed at the origin, r = 0.
We denote by R(j) the ratio between the integrated self-energy terms (j) and (2a),

R(j) =
∫
dr Σ(j)

11 (0, r, ω = 0)∫
dr Σ(2a)

11 (0, r, ω = 0)
. (10.238)

In Figure 10.20, we display the ratios R(j) for the different integrated self-energy
contributions corresponding to the diagrams where (j) represents (2b) and (2c).

Figure 10.20 Ratio between different two-loop self-energy terms as functions of the
dimensionless coupling strength g̃ = 4πN0a/aosc. Asterisks denote the ratio R(2b) as
defined in Eq. (10.238) and circles denote the ratio R(2c). The terms R(2d) and R(2e)

are equal and turn out to be equal in magnitude to R(2b), and are not displayed.

The contributions from the diagrams (2d) and (2e) are equal and within our
numerical precision turn out to be equal to the contribution from diagram (2c).
Furthermore, inspection of the diagrams in Figure 10.18 reveals that when the con-
densate wave function is real, the anomalous contribution Σ(2a)

12 is equal to Σ(2d)
11 , the
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diagrams Σ(2b)
12 and Σ(2c)

12 are equal to Σ(2c)
11 , and Σ(2d)

12 is equal to Σ(2b)
11 .

In the parameter regime displayed in Figure 10.20, the contribution from diagram
(2a) is larger than the others by approximately a factor of ten, and displays only a
weak dependence on the coupling strength. In the weak-coupling limit, g̃ � 1, it is
seen that the terms corresponding to diagrams (2b)–(2e) can be neglected as in the
Popov approximation, with an error in the self-energy of a few per cent. When the
coupling gets stronger, this correction becomes more important. A power-law fit to
the ratio R(2c) in the regime where the log–log curve is straight yields the dependence

R(2c) ≈ 0.065 g̃0.14 , (10.239)

which is equal to 0.5 when g̃ ≈ 106; for g̃ greater than this value, the Popov ap-
proximation is seen not to be valid. If the ratio between the oscillator length and
the scattering length is equal to one hundred, aosc = 100a, the Popov approximation
deviates markedly from the two-loop result when N0 exceeds 107, which is often the
case experimentally.

In order to investigate the importance of higher-order terms in the loop expansion,
we proceed to study the three-loop self-energy diagrams. We have found the number
of summations over Bogoliubov levels to be prohibitively large for most three-loop
terms; however, we have been able to compute the two diagrams Σ(3a)

11 and Σ(3a)
12 ,

displayed in Figure 10.21, for the case where one of the spatial arguments is placed
at the origin thereby avoiding a summation over l �= 0 components.

Figure 10.21 Self-energy diagrams to three-loop order which are evaluated numer-
ically.

We compare the diagrams Σ(3a)
11 and Σ(3a)

12 to the two-loop diagrams. As we have
seen, diagrams Σ(2b)

11 , Σ(2c)
11 , and Σ(2d)

11 in Figure 10.18 are similar in magnitude and
dependence on g̃, as are of the same order of magnitude and have similar depen-
dence on g̃, and equivalently for the anomalous two-loop diagrams Σ(2a−2d)

12 ; we have
therefore chosen to evaluate only diagrams Σ(2b)

11 and Σ(2a)
12 . The results for the ra-
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tios Σ̃(3a)
11 (0, r, ω = 0)/Σ̃(2b)

11 (0, r, ω = 0) and Σ̃(3a)
12 (0, r, ω = 0)/Σ̃(2a)

12 (0, r, ω = 0),
evaluated for different choices of r, are shown in Figure 10.22.

Figure 10.22 Ratio of three-loop to two-loop self-energy diagrams as a function of
the dimensionless coupling strength g̃ = 4πN0a/aosc. Asterisks denote the ratio of
the normal self-energy terms N0Σ

(3a)
11 /Σ(2b)

11 evaluated at the point (0, aosc, ω = 0),
open circles denote the same ratio evaluated at (0, 0.5aosc, ω = 0), and diamonds
denote the same ratio evaluated at (0, 1.5aosc, ω = 0). Crosses denote the ratio of
anomalous self-energy terms N0Σ

(3a)
12 /Σ(2a)

12 at (0, aosc, ω = 0).

A linear fit to the log–log plot gives, for the normal terms, the coefficient 0.016 and
the exponent 0.76 when r = 0.5aosc and the coefficient 0.0029 and the exponent 0.78
when r = aosc, and for the anomalous terms with the choice r = aosc the coefficient
is 0.0015 and the exponent 0.82. Restoring dimensions according to Eq. (10.233) we
obtain

Σ(3a)
11 (0, aosc, ω = 0)

Σ(2b)
11 (0, aosc, ω = 0)

≈ 0.15N−0.2
0

(
a

aosc

)0.8

. (10.240)

The ratio between three- and two-loop self-energy terms in the homogeneous case was
in Section 10.6.3 found to be proportional to

√
n0a3. A straightforward application

of the LDA, substituting the central density n0(0) for n0, yields the dependence
Σ(3a)

11 /Σ(2b)
11 ∝ N0.2

0 (a/aosc)1.2. This is not in accordance with the numerical result
Eq. (10.240) although the self-energies were evaluated at spatial points close to the
trap center. The discrepancy between the LDA and the numerical three-loop result
is attributed to the fact that we fixed the spatial points in units of aosc while varying
the coupling g̃, although the physical situation at the point r = aosc (and r = 1

2aosc

and r = 3
2aosc respectively) varies when g̃ is varied. It is possible that the agreement

with the LDA had been better if the length scales had been fixed in units of the
actual cloud radius (as given by the Thomas–Fermi approximation) rather than the
oscillator length. However, the present calculation agrees fairly well with the LDA as
long as the number of atoms in the condensate lies within reasonable bounds. Since
N0 > 1 in the condensed state, Eq. (10.240) yields that Σ(3a)

11 � Σ(2b)
11 whenever
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the s-wave scattering length is much smaller than the trap length. We conclude that
only when this condition is not fulfilled is it necessary to study diagrams of three-loop
order and beyond.

We have shown that by employing the two-particle irreducible effective action
approach to a condensed Bose gas, Beliaev’s diagrammatic expansion in the dilute-
ness parameter and the t-matrix equations are expediently arrived at with the aid of
the effective action formalism. The parameter characterizing the loop expansion for
a homogeneous Bose gas turned out to equal the diluteness parameter, the ratio of
the s-wave scattering length and the inter-particle spacing. For a Bose gas contained
in an isotropic, three-dimensional harmonic-oscillator trap at zero temperature, the
small parameter governing the loop expansion was found to be almost proportional
to the ratio between the s-wave scattering length and the oscillator length of the
trapping potential, and to have a weak dependence on the number of particles in the
condensate. The expansion to one-loop order, and hence the Bogoliubov equation,
is found to provide a valid description for the trapped gas when the oscillator length
exceeds the s-wave scattering length. We compared the numerical results with the
local-density approximation, which was found to be valid when the number of par-
ticles in the condensate is large compared to the ratio between the oscillator length
and the s-wave scattering length. The physical consequences of the self-energy cor-
rections considered are indeed possible to study experimentally by using Feshbach
resonances to vary the scattering length. Furthermore, we found that all the self-
energy terms of two-loop order are not equally large for the case of a trapped system:
in the limit when the number of particles in the condensate is not large compared
with the ratio between the oscillator length and the s-wave scattering length, the
Popov approximation was shown to be a valid approximation.

10.7 Summary

In this chapter we have considered the effective action. To study its properties and di-
agrammatic expansions, we introduced the functional integral representations of the
generators. We showed how to express the effective action in terms of one-particle
and two-particle irreducible loop vacuum diagram expansions. As an application, we
applied the two-particle irreducible effective action approach to a condensed Bose
gas, and showed that it allows for a convenient and systematic derivation of the
equations of motion both in the homogeneous and trapped case. We chose in ex-
plicit calculations to apply the formalism to the situation where the temperature was
zero, but the formalism is with equal ease capable of dealing with systems at finite
temperatures and general non-equilibrium states.
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Disordered conductors

Quantum corrections to the classical Boltzmann results for transport coefficients
in disordered conductors can be systematically studied in the expansion parameter
�/pFl, the ratio of the Fermi wavelength and the impurity mean free path, which
typically is small in metals and semiconductors. The quantum corrections due to
disorder are of two kinds, one being the change in interactions effects due to disorder,
and the other having its origin in the tendency to localization. When it comes to
an indiscriminate probing of a system, such as the temperature dependence of its
resistivity, both mechanisms are effective, whereas when it comes to the low-field
magneto-resistance only the weak localization effect is operative, and it has therefore
become an important diagnostic tool in material science. We start by discussing the
phenomena of localization and (especially weak localization) before turning to study
the influence of disorder on interaction effects.

11.1 Localization

In this section the quantum mechanical motion of a particle at zero temperature in a
random potential is addressed. In a seminal paper of 1958, P. W. Anderson showed
that a particle’s motion in a sufficiently disordered three-dimensional system behaves
quite differently from that predicted by classical physics according to the Boltzmann
theory [71]. In fact, at zero temperature diffusion will be absent, as particle states are
localized in space because of the random potential. A sufficiently disordered system
therefore behaves as an insulator and not as a conductor. By changing the impurity
concentration, a transition from metallic to insulating behavior occurs, the Anderson
metal–insulator transition.

In a pure metal, the Bloch or plane wave eigenstates of the Hamiltonian are
extended states and current carrying

〈 ĵ〉ext =
∫

dx 〈p| ĵ(x)|p〉 = evp . (11.1)

In a sufficiently disordered system, a typical energy eigenstate has a finite extension,
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and does not carry any average current

〈 ĵ〉loc = 0 . (11.2)

The last statement is not easily made rigorous, and the phenomenon of localization
is quite subtle, a quantum phase transition at zero temperature in a non-equilibrium
state.1

Astonishing progress in the understanding of transport in disordered systems
has taken place since the introduction of the scaling theory of localization [72]. A
key ingredient in the subsequent development of the understanding of the transport
properties of disordered systems was the intuition provided by diagrammatic pertur-
bation theory. We shall benefit from the physical intuition provided by the developed
real-time diagrammatic technique in the present chapter, where it will provide the
physical interpretation of the weak localization effect and the diffusion enhancement
of interactions. We start by considering the scaling theory of localization.2

11.1.1 Scaling theory of localization

We shall consider a macroscopically homogeneous conductor, i.e. one with a spatially
uniform impurity concentration, at zero temperature. By macroscopically homoge-
neous we mean that the impurity concentration on the macroscopic scale, i.e. much
larger than the mean free path, is homogeneous. The conductance of a d-dimensional
hypercube of linear dimension L is, according to Eq. (6.57), proportional to the con-
ductivity

G(L) = Ld−2 σ(L) . (11.3)

The central idea of the scaling theory of localization is that the conductance rather
than the conductivity is the quantity of importance for determining the transport
properties of a macroscopic sample. The conductance has dimension of e2/�, inde-
pendent of the spatial dimension of the sample, and we introduce the dimensionless
conductance of a hypercube

g(L) ≡ G(L)
e2

�

. (11.4)

The one-parameter scaling theory of localization is based on the assumption that
the dimensionless conductance solely determines the conductivity behavior of a dis-
ordered system. Consider fitting nd identical blocks of length L, i.e. having the same
impurity concentration and mean free path (assumed smaller than the size of the
system, l < L) into a hypercube of linear dimension nL. The d.c. conductance of
the hypercube g(nL) is then related to the conductance of each block, g(L), by

1For a discussion of wave function localization we refer the reader to chapter 9 of reference [1].
2The scaling theory of localization has its inspiration in the original work of Wegner [73] and

Thouless [74].
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g(nL) = f(n, g(L)) . (11.5)

This is the one-parameter scaling assumption, the conductance of each block solely
determines the conductance of the larger block; there is no extra dependence on L
or microscopic parameters such as l or λF.

For a continuous variation of the linear dimension of a system, the one-parameter
scaling assumption results in the logarithmic derivative being solely a function of the
dimensionless conductance

d ln g

d ln L
= β(g) . (11.6)

This can be seen by differentiating Eq. (11.5) to get

d ln g(L)
d ln L

=
L

g

dg(L)
dL

=
L

g

dg(nL)
dL

∣∣∣∣
n=1

=
1
g

dg(nL)
dn

∣∣∣∣
n=1

=
1
g

df(n, g)
dn

∣∣∣∣
n=1

≡ β(g(L)) .

(11.7)
The physical significance of the scaling function, β, is as follows. If we start out with
a block of size L, with a value of the conductance g(L) for which β(g) is positive, then
the conductance according to Eq. (11.6) will increase upon enlarging the system, and
vice versa for β(g) negative. The β-function thus specifies the transport properties
at that degree of disorder for a system in the infinite volume limit.

In the limit of weak disorder, large conductance g � 1, we expect metallic con-
duction to prevail. The conductance is thus described by classical transport theory,
i.e. Ohm’s law prevails G(L) = Ld−2 σ0, and the conductivity is independent of the
linear size of the system, and we obtain according to Eq. (11.6) the limiting behavior
for the scaling function

β(g) = d− 2 , g � 1 , (11.8)

the scaling function having an asymptotic limit depending only on the dimensionality
of the system.

In the limit of strong disorder, small conductance g � 1, we expect with Anderson
[71] that localization prevails, so that the conductance assumes the form g(L) ∝
e−L/ξ, where ξ is called the localization length, the length scale beyond which the
resistance grows exponentially with length.3 In the low-conductance, so-called strong
localization, regime we thus obtain for the scaling function, c being a constant,

β(g) = ln g + c , g � 1 , (11.9)

a logarithmic dependence in any dimension.
Since there is no intrinsic length scale to tell us otherwise, it is physically reason-

able in this consideration to draw the scaling function as a monotonic non-singular
function connecting the two asymptotes. We therefore obtain the behavior of the
scaling function depicted in Figure 11.1.

3At this point we just argue that if the envelope function for a typical electronic wave function
is exponentially localized, the conductance will have the stated length dependence, where ξ is the
localization length of a typical wave function in the random potential, as it is proportional to the
probability for the electron to be at the edge of the sample. For a justification of these statements
within the self-consistent theory of localization we refer the reader to chapter 9 of reference [1].
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Figure 11.1 The scaling function as function of ln g. Reprinted with permission
from E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan,
Phys. Rev. Lett., 42, 673 (1979). Copyright 1979 by the American Physical Society.

This is precisely the picture expected in three and one dimensions. In three
dimensions the unstable fix-point signals the metal–insulator transition predicted by
Anderson. The transition occurs at a critical value of the disorder where the scaling
function vanishes, β(gc) = 0. If we start with a sample with conductance larger
than the critical value, g > gc, then upon increasing the size of the sample the
conductance increases since the scaling function is positive. In the thermodynamic
limit, the system becomes a metal with conductivity σ0. Conversely, starting with a
more disordered sample with conductance less than the critical value, g < gc, upon
increasing the size of the system, the conductance will flow to the insulating regime,
since the scaling function is negative. In the thermodynamic limit the system will be
an insulator with zero conductance. This is the localized state. In one dimension it
can be shown exactly, that all states are exponentially localized for arbitrarily small
amount of disorder [75, 76, 77, 78], and the metallic state is absent, in accordance
with the scaling function being negative. An astonishing prediction follows from the
scaling theory in the two-dimensional case where the one-parameter scaling function
is also negative. There is no true metallic state in two dimensions.4

The prediction of the scaling theory of the absence of a true metallic state in
4In this day and age, low-dimensional electron systems are routinely manufactured. For example,

a two-dimensional electron gas can be created in the inversion layer of an MBE grown GaAs–AlGaAs
heterostructure. Two-dimensional localization effects provide a useful tool for probing material
characteristics, as we discuss in Section 11.2.
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two dimensions was at variance with the previously conjectured theory of minimal
metallic conductivity. The classical conductivity obtained from the Boltzmann theory
has the form, in two and three dimensions (d = 2, 3),5

σ0 =
e2

�

kFl

dπd−1
kd−2
F . (11.10)

According to Mott [79], the conductivity in three (and two) spatial dimensions should
decrease as the disorder increases, until the mean free path becomes of the order of the
Fermi wavelength of the electron, l ∼ λF. The minimum metallic conductivity should
thus occur for the amount of disorder for which kFl ∼ 2π, and in two dimensions
should have the universal value e2/�. Upon further increasing the disorder, the
conductivity should discontinuously drop to zero.6 This is in contrast to the scaling
theory, which predicts the conductivity to be a continuous function of disorder. The
metal–insulator transition thus resembles a second-order phase transition, a quantum
phase transition at zero temperature, in contrast to Mott’s first-order conjecture
(corresponding to a scaling function represented by the dashed line in Figure 11.1).7

The phenomenological scaling theory offers a comprehensive picture of the con-
ductance of disordered systems, and predicts that all states in two dimensions are
localized irrespective of the amount of disorder. To gain confidence in this surprising
result, one should check the first correction to the metallic limit. We therefore calcu-
late the first quantum correction to the scaling function and verify that it is indeed
negative.

11.1.2 Coherent backscattering

In this section we apply the standard diagrammatic impurity Green’s function tech-
nique to calculate the influence of quenched disorder on the conductivity.8 In dia-
grammatic terms, the quantum corrections to the classical conductivity are described
by conductivity diagrams, as discussed in Section 6.1.3, where impurity lines connect-
ing the retarded and advanced propagator lines cross. Such diagrams are nominally
smaller, determined by the quantum parameter �/pFl, than the classical contribu-
tion. The subclass of diagrams, where the impurity lines cross a maximal number
of times, is of special importance since their sum exhibits singular behavior. Such a
type of diagram is illustrated in Eq. (11.11).

5In one dimension, the Boltzmann conductivity is σ0 = 2e2l/π�. However, the conclusion to
be drawn from the scaling theory is that even the slightest amount of disorder invalidates the
Boltzmann theory in one and two dimensions.

6In three dimensions in the infinite volume limit, the conductance drops to zero at the critical
value according to the scaling theory.

7The impressive experimental support for the existence of a minimal metallic conductivity in
two dimensions is now believed either to reflect the cautiousness one must exercise when attempting
to extrapolate measurements at finite temperature to zero temperature, or to invoke a crucial
importance of electron–electron interaction in dirty metals even at very low temperatures.

8For a detailed description of the standard impurity average Green’s function technique we refer
the reader to reference [1].
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R

A

(11.11)

The maximally crossed diagrams describe the first quantum correction to the classical
conductivity, the weak-localization or coherent backscattering effect, a subject we
discuss in detail in Section 11.2.

In the frequency and wave vector region of interest, each insertion in a maximally
crossed diagram is of order one.9 Diagrams with maximally crossing impurity lines
are therefore all of the same order of magnitude and must accordingly all be summed
(�Q ≡ p + p′):

qω

p−
�Q−p′′

+

p′
−

p+
p′′

+
p′

+

qω
+

qω
p−

�Q−p′′
+ �Q−p′′′

+

p′
−

p+

p′′′
+ p′′

+

p′
+

qω
+ ... .

(11.12)

From the maximally crossed diagrams, we obtain analytically, by applying the Feyn-
man rules for conductivity diagrams, the correction to the conductivity of a degen-
erate Fermi gas, �ω, kT � εF,10

δσα,β(q, ω) =
( e

m

)2 �

π

∫
dp

(2π�)d

∫
dp′

(2π�)d
pα p′β C̃p,p′(εF,q, ω)GR(p+, εF + �ω)

× GR(p′
+, εF + �ω)GA(p′

−, εF)GA(p−, εF) . (11.13)

To describe the sum of the maximally crossed diagrams, we have introduced the
9This is quite analogous to the case of the ladder diagrams important for the classical conduc-

tivity, recall Exercise 6.1 on page 163, and for details see chapter 8 of reference [1].
10In fact we shall in this section assume zero temperature as we shall neglect any influence on the

maximally crossed diagrams from inelastic scattering. Interaction effects will be the main topic of
Section 11.3.
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so-called Cooperon C̃,11 corresponding to the diagrams (ε+F ≡ εF + �ω):

C̃p,p′(εF,q, ω) ≡

p+

p−

p′
+

p′
−

C̃

≡

R

A

ε+Fp′′
+

εF�Q−p′′
+

p+ p′
+

p− p′
−

+

R

A

ε+Fp′′
+

εF�Q−p′′′
+

p−

p+
R

A

ε+Fp′′′
+

εF�Q−p′′
+

p′
−

p′
+

+ ...

=

R

A

ε+Fp′′
+

εF�Q−p′′
+

p+ p′
+

p−
′ p−

+

R

A

ε+Fp′′
+

εF�Q−p′′
+

p−
′

p+
R

A

ε+Fp′′′
+

εF�Q−p′′′
+

p−

p′
+

+ ... . (11.14)

In the last equality we have twisted the A-line around in each of the diagrams, and
by doing so, we of course do not change the numbers being multiplied together.

Let us consider the case where the random potential is delta correlated12

〈V (x)V (x′)〉 = u2 δ(x− x′) . (11.15)
11The nickname refers to the singularity in its momentum dependence being for zero total momen-

tum, as is the case for the Cooper pairing correlations resulting in the superconductivity instability
as discussed in Chapter 8.

12For the case of a short-range potential, the only change being the appearance of the transport
time instead of the momentum relaxation time. For details we refer the reader to reference [1].
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Since the impurity correlator in the momentum representation then is a constant,
u2, all internal momentum integrations become independent. As a consequence, the
dependence of the Cooperon on the external momenta will only be in the combination
p+p′, for which we have introduced the notation �Q ≡ p+p′, as well as C̃ω(p+p′) ≡
C̃p,p′(εF,0, ω) ≡ C̃ω(Q), and we have

C̃ω(Q) =

R

A

ε+Fp′′
+

εF�Q−p′′
+

p+ p′
+

p−
′

p−

+

R

A

ε+Fp′′
+

εF�Q−p′′
+

p−
′

p+
R

A

ε+Fp′′′
+

εF�Q−p′′′
+

p−

p′
+

+ ...

=

R

A

ε+Fp′′
+

εF�Q−p′′
+


1 +

R

A

ε+Fp′′
+

εF�Q−p′′
+

+

R

A

ε+Fp′′
+

εF�Q−p′′
+

R

A

ε+Fp′′′
+

εF�Q−p′′′
+

+ ...



≡

R

A

ε+Fp′′
+

εF�Q−p′′
+

p+

p′
−

p′
+

p−

C . (11.16)

For convenience we have extracted a factor from the maximally crossed diagrams
which we shortly demonstrate, Eq. (11.24), is simply the constant u2 in the relevant
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parameter regime. We shall therefore also refer to the quantity C as the Cooperon.
Diagrammatically we obtain according to Eq. (11.16)

C = 1 +

R

A

p′′
+

�Q−p′′
+

C . (11.17)

Analytically the Cooperon satisfies the equation

Cω(Q) = 1 + u2

∫
dp′′

(2π�)d
GR(p′′

+, εF + �ω)GA(p′′
+ − �Q, εF ) Cω(Q) . (11.18)

It is obvious that a change in the wave vector of the external field can be compensated
by a shift in the momentum integration variable, leaving the Cooperon independent
of any spatial inhomogeneity in the electric field, which is smooth on the atomic
scale.

The Cooperon equation is a simple geometric series that we can immediately sum

Cω(Q) = (1 + ζ(Q, ω) + ζ2(Q, ω) + ζ3(Q, ω) + ... )

= 1 + ζ(Q, ω) Cω(Q)

=
1

1− ζ(Q, ω)
, (11.19)

where we have for the insertion

ζ(Q, ω) = u2

∫
dp′′

(2π�)d
GR(p′′, εF + �ω)GA(p′′ − �Q, εF) . (11.20)

Diagrammatically we can express the result

Cω(Q) =
1

1 −

R

A

ε+Fp′′
+

εF�Q−p′′
+

. (11.21)

The insertion ζ(Q, ω), Eq. (11.20), is immediately calculated for the region of
interest, ωτ, Ql � 1, and we have13

ζ(Q, ω) = 1 + iωτ −D0τQ2 (11.22)
13For details we refer the reader to [1], where the relation between the Diffuson and its twisted

diagrams, the Cooperon, in the case of time-reversal invariance, is also established.
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and for the Cooperon

Cω(Q) =
1
τ

−iω + D0Q2
. (11.23)

The Cooperon exhibits singular infrared behavior.14

In the singular region the prefactor in Eq. (11.16) equals the constant u2 as

R

A

ε+Fp′′
+

εF�Q−p′′
+

= u2 ζ(Q, ω) � u2 (11.24)

i.e. in the region of interest we thus have C̃ = u2C. As far as regards the singular
behavior we could equally well have defined the Cooperon by the set of diagrams

C̃ω(Q) = +

R

A

ε+Fp′′
+

εF�Q−p′′
+

p+ p′
+

p−
′

p−

+

R

A

ε+Fp′′
+

εF�Q−p′′
+

p−
′

p+
R

A

ε+Fp′′′
+

εF�Q−p′′′
+

p−

p′
+

+ ... (11.25)

as adding a constant to a singular function does not change the singular behavior,
and immediately the result of Eq. (11.23) is obtained.

14The Diffuson, the impurity particle–hole ladder diagrams, also exhibits this singular infrared
behavior, which leads to diffusion enhancement of interactions in a disordered conductor as discussed
in Section 11.5.
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Changing in the conductivity expression, Eq. (11.13), one of the integration vari-
ables, p′ = −p + �Q, we get for the contribution of the maximally crossed diagrams

δσαβ(q, ω) =
( e

m

)2 �

π

∫
dp

(2π�)d

∫ ′ dQ
(2π)d

pα (−pβ + �Qβ)
u2/τ

−iω + D0Q2

× GR
ε+F

(p+)GR
ε+F

(−p+ + �Q)GA
εF(−p− + �Q)GA

εF(p−) , (11.26)

where the prime on the Q-integration signifies that we need only to integrate over
the region Ql < 1 from which the large contribution is obtained. Everywhere except
in the Cooperon we can therefore neglect Q as |p − �Q| ∼ p ∼ pF. Assuming a
smoothly varying external field on the atomic scale, q � kF,15 we can perform the
momentum integration, and obtain to leading order in �/pFl∫

dp
(2π�)d

pαpβ GR
εF(p+)GR

εF(−p+) GA
εF(−p−)GA

εF(p−) =
4πτ3Nd(εF)p2

F

�3d
δαβ ,

(11.27)
where we have also safely neglected the ω dependence in the propagators as for the
integration region giving the large contribution, we have ω < 1/τ � εF/�.

At zero frequency we have for the first quantum correction to the conductivity of
an electron gas

δσ(L) = −2e2D0

π�

∫ ′ dQ
(2π)d

1
D0Q2

. (11.28)

In the one- and two-dimensional case the integral diverges for small Q, and we need
to assess the lower cut-off.16 In order to understand the lower cut-off we note that
the maximally crossed diagrams lend themselves to a simple physical interpretation.
The R-line in the Cooperon describes the amplitude for the scattering sequence of an
electron (all momenta being near the Fermi surface as the contribution is otherwise
small)

p′ → p1 → · · · → pN → p � −p′ (11.29)

whereas the A-line describes the complex conjugate amplitude for the opposite, i.e.
time-reversed, scattering sequence

p′ → −pN → · · · → −p1 → p � −p′ (11.30)

i.e. the Cooperon describes a quantum interference process: the quantum interference
between time-reversed scattering sequences. The physical process responsible for the

15In a conductor a spatially varying electric field will, owing to the mobile charges, be screened.
In a metal, say, an applied electric field is smoothly varying on the atomic scale, q � kF, and we can
set q equal to zero as it appears in combination with large momenta, p, p′ ∼ pF. For a discussion of
the phenomena of screening, we refer the reader to Section 11.5 and chapter 10 of reference [1].

16Langer and Neal [80] were the first to study the maximally crossed diagrams, and noted that
they give a divergent result at zero temperature. However, in their analysis they did not assess the
lower cut-off correctly.
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quantum correction is thus coherent backscattering.17 The random potential acts as
sets of mirrors such that an electron in momentum state p ends up backscattered into
momentum state −p. The quantum correction to the conductivity is thus negative
as the conductivity is a measure of the initial and final correlation of the velocities
as reflected in the factor p · p′ in the conductivity expression.

The quantum interference process described by the above scattering sequences
corresponds in real space to the quantum interference between the two alternatives for
a particle to traverse a closed loop in opposite (time-reversed) directions as depicted
in Figure 11.2.18

Figure 11.2 Coherent backscattering process.

We are considering the phenomenon of conductivity, where currents through con-
necting leads are taken in and out of a sample, say, at opposing faces of a hypercube.
The maximal size of a loop allowed to contribute to the coherent backscattering pro-
cess is thus the linear size of the system, as we assume that an electron reaching the
end of the sample is irreversibly lost to the environment (leads and battery).19 For a
system of linear size L we then have for the quantum correction to the conductivity

δσ(L) = −2e2D0

π�

∫ 1/l

1/L

dQ
(2π)d

1
D0Q2

. (11.31)

17The coherent backscattering effect was considered for light waves in 1968 [81]. It is amusing
that a quantitative handling of the phenomena had to await the study of the analogous effect in
solid-state physics, and the diagrammatic treatment of electronic transport in metals a decade later.
Here we reap the benefits of employing the proper physical representation of Green’s functions in
the diagrammatic non-equilibrium perturbation theory, leading directly to a physical interpretation
of the summed sub-class of diagrams.

18We will take advantage of this all-important observation of the physical origin of the quantum
correction to the conductivity (originally expressed in references [82, 83]) in Section 11.2, where the
real space treatment of weak localization is done in detail.

19An electron is assumed never to reenter from the leads phase coherently, and the Cooperon
equation should be solved with the boundary condition that the Cooperon vanishes on the lead
boundaries, thereby cutting off the singularity. For details we refer the reader to chapter 11 of
reference [1].
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Performing the integral in the two-dimensional case gives for the first quantum
correction to the dimensionless conductance20

δg(L) = − 1
π2

ln
L

l
. (11.32)

We note that the first quantum correction to the conductivity indeed is negative,
describing the precursor effect of localization. For the asymptotic scaling function
we then obtain

β(g) = − 1
π2g

, g � 1 , (11.33)

and the first quantum correction to the scaling function is thus seen to be negative
in concordance with the scaling picture.

Exercise 11.1. Show that, in dimensions one and three, the first quantum correction
to the dimensionless conductance is

δg(L) =


− 1

π2 (1 − l
L) d = 1

− 1
π3 (L

l − 1) d = 3
(11.34)

and thereby for the scaling function to lowest order in 1/g

β(g) = (d− 2)− a

g
, (11.35)

where

a =


2

π2 d = 1

1
π3 d = 3 .

(11.36)

We can introduce the length scale characterizing localization, the localization
length, qualitatively as follows: for a sample much larger than the localization
length, L � ξ, the sample is in the localized regime and we have g(L) � 0. To
estimate the localization length, we equate it to the length for which g(ξ) � g0, i.e.
the length scale, where the scale-dependent part of the conductance is comparable
to the Boltzmann conductance. The lowest-order perturbative estimate based on
Eq. (11.32) and Eq. (11.34) gives in two and one dimensions the localization lengths
ξ(2) � l expπkFl/2 and ξ(1) � l, respectively.

The one-parameter scaling hypothesis has been shown to be valid for the aver-
age conductance in the model considered above [73]. Whether the one-parameter
scaling picture for the disorder model studied is true for higher-order cumulants of

20The precise magnitudes of the cut-offs are irrelevant for the scaling function in the two-
dimensional case, as a change can produce only the logarithm of a constant in the dimensionless
conductance.
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the conductance, 〈gn〉, is a difficult question that seems to have been answered in
the negative in reference [84]. However, a different question is whether deviations
from one-parameter scaling are observable, in the sense that a sample has to be so
close to the metal–insulator transition that real systems cannot be made homoge-
neous enough. Furthermore, electron–electron interaction can play a profound role in
real materials invalidating the model studied, and leaving room for a metal–insulator
transition in low-dimensional systems.21

We can also calculate the zero-temperature frequency dependence of the first
quantum correction to the conductivity for a sample of large size, L�

√
D0/ω ≡ Lω.

From Eq. (11.26) we have

δσαβ(ω) = δσ(ω) δαβ , (11.37)

where

δσ(ω) = −2e2D0

�π

1/l∫
0

dQ
(2π)d

1
−iω + D0Q2

. (11.38)

Calculating the integral, we get for the frequency dependence of the quantum cor-
rection to the conductivity in, say, two dimensions [86]

δσ(ω)
σ0

= − 1
πkFl

ln
1

ωτ
. (11.39)

We note that for the perturbation theory to remain valid the frequency can not be
too small, ωτ � 1.

The quantum correction to the conductivity in two dimensions is seen to be
universal

δσ(ω) = − 1
2π2

e2

�
ln

1
ωτ

. (11.40)

Let us calculate the first quantum correction to the current density response to a
spatially homogeneous electric pulse

δj(t) = δσ(t)E0 , (11.41)

where

δσ(t) = −2e2D0

�π

∞∫
−∞

dω

2π
e−iωt

1/l∫
1/L

dQ
(2π)d

1
−iω + D0Q2

= −2e2D0

�π

1/l∫
1/L

dQ
(2π)d

e−iD0Q2t

(11.42)
which in the two-dimensional case becomes

δσ(t) =
e2

2π2�t

(
e−

t
2τ − e−

D0t

L2

)
. (11.43)

21For a review on interaction effects, see for example [85].
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After the short time τ the classical contribution and the above quantum contribution
in the direction of the force on the electron dies out, and an echo in the current due
to coherent backscattering occurs

j(t) = − e2

2π2�t
e−t/τD E0 . (11.44)

on the large time scale τD ≡ L2/D0, the time it takes an electron to diffuse across the
sample (for even larger times t� τD quantum corrections beyond the first dominates
the current).

Exercise 11.2. Show that, in dimensions one and three, the frequency dependence
of the first quantum correction to the conductivity is

δσ(ω)
σ0

=


− 1+i

2
√

2
1√
ωτ

d = 1

(1− i)3
√

3
2
√

2

√
ωτ

(kFl)2 d = 3 .

(11.45)

In dimension d the quantum correction to the conductivity is thus of relative order
1/(kFl)d−1. In strictly one dimension the weak localization regime is thus absent;
i.e. there is no regime where the first quantum correction is small compared with the
Boltzmann result, we are always in the strong localization regime.

From the formulas, Eq. (6.57) and Eq. (11.40), we find that in a quasi-two-
dimensional system, where the thickness of the film is much smaller than the length
scale introduced by the frequency of the time-dependent external field, Lω =

√
D0/ω,

the quantum correction to the conductance exhibits the singular frequency behavior

δ〈Gαβ(ω)〉 = − e2

2π2�
δαβ ln

1
ωτ

. (11.46)

The quantum correction to the conductance is in the limit of a large two-dimensional
system only finite because we consider a time-dependent external field, and the con-
ductance increases with the frequency. This feature can be understood in terms of
the coherent backscattering picture. In the presence of the time-dependent electric
field the electron can at arbitrary times exchange a quantum of energy �ω with the
field, and the coherence between two otherwise coherent alternatives will be partially
disrupted. The more ω increases, the more the coherence of the backscattering pro-
cess is suppressed, and consequently the tendency to localization, as a result of which
the conductivity increases.

The first quantum correction plays a role even at finite temperatures, and in
Section 11.2 we show that from an experimental point of view there are important
quantum corrections to the Boltzmann conductivity even at weak disorder. We
have realized that if the time-reversal invariance for the electron dynamics can be
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broken, the coherence in the backscattering process is disrupted, and localization is
suppressed. The interaction of an electron with its environment invariably breaks
the coherence, and we discuss the effects of electron–phonon and electron–electron
interaction in Section 11.3. A more distinct probe for influencing localization is to
apply a magnetic field, which we discuss in Section 11.4.

We have realized that the precursor effect of localization, weak localization, is
caused by coherent backscattering. The constructive interference between propaga-
tion along time-reversed loops increases the probability for a particle to return to its
starting position. The phenomenon of localization can be understood qualitatively
as follows. The main amplitude of the electronic wave function incipient on the first
impurity in Figure 11.2 is not scattered into the loop depicted, but continues in its
forward direction. However, this part of the wave also encounters coherent backscat-
tering along another closed loop feeding constructively back into the original loop,
and thereby increasing the probability of return. This process repeats at any impu-
rity, and the random potential acts as a mirror, making it impossible for a particle to
diffuse away from its starting point. This is the physics behind how the singularity
in the Cooperon drives the Anderson metal–insulator transition.22

11.2 Weak localization

We start this section by discussing the weak-localization contribution to the con-
ductivity in the position representation, before turning to discuss the effects of in-
teractions on the weak-localization effect, the destruction of the phase coherence of
the wave function due to electron–phonon and electron–electron interaction. Then
anomalous magneto-resistance is considered; this is an important diagnostic tool in
material science. Finally we discuss mesoscopic fluctuations.

The theory of weak localization dates back to the seminal work on the scaling
theory of localization [72], and developed rapidly into a comprehensive understand-
ing of the quantum corrections to the Boltzmann conductivity. Based on the insight
provided by the diagrammatic technique, the first quantum correction, the weak-
localization effect, was soon realized to be the result of a simple type of quantum
mechanical interference (as already noted in Section 11.1.2), and the resulting phys-
ical insight eventually led to a quantitative understanding of mesoscopic phenomena
in disordered conductors. In order to develop physical intuition of the phenomena,
we shall use the quantum interference picture in parallel with the quantitative dia-
grammatic technique, to discuss the weak-localization phenomenon.

11.2.1 Quantum correction to conductivity

In Section 7.4 we derived the Boltzmann expression for the classical conductivity
as the weak-disorder limiting case where the quantum mechanical wave nature of
the motion of an electron is neglected. In terms of diagrams this corresponded
to neglecting conductivity diagrams where impurity correlators cross, because such

22For a quantitative discussion of strong localization we refer the reader to chapter 9 of reference
[1].
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contributions are smaller by the factor λF/l, and thus constitute quantum corrections
to the classical conductivity.

A special class of diagrams where impurity correlators crossed a maximal number
of times was seen, in Section 11.1.2, in the time-reversal invariant situation, to exhibit
singular behavior although the diagrams nominally are of order �/pFl.23

qω

p−
�Q−p′′

+

p′
−

p+
p′′

+
p′

+

qω
+

qω

A

R

qω
+ ...

(11.47)

We shall consider the explicitly time-dependent situation where the frequency ω of the
external field is not equal to zero, in order to cut off the singular behavior. In this case
(and others to be studied shortly) the first quantum correction to the conductivity
in the parameter λF/l is a small correction to the Boltzmann conductivity (recall
Eq. (11.39)), and we speak of the weak-localization effect.

In the discussion of interaction effects and magneto-resistance it will be convenient
to use the spatial representation for the conductivity. The free-electron model and a
delta-correlated random potential, Eq. (11.15), will be used for convenience.

In the position representation the impurity-averaged current density

jα(x, ω) ≡ 〈jα(x, ω)〉 =
∑

β

∫
dx′ 〈σαβ(x,x′, ω)〉Eβ(x′, ω) (11.48)

is, besides regular corrections of order O(�/pFl), specified by the conductivity tensor

σαβ(x− x′, ω) ≡ 〈σαβ(x,x′, ω)〉 =
1
π

(
e�

m

)2 ∫ ∞

−∞
dE

f0(E)− f0(E + �ω)
ω

× 〈GR(x,x′; E + �ω)
↔
∇xα

↔
∇x′

β
GA(x′,x; E)〉 . (11.49)

The contribution to the conductivity from the maximally crossed diagrams is conve-
niently exhibited in twisted form where they become ladder-type diagrams.

23In addition to these maximally crossed diagrams, there are additional diagrams of the same
order of magnitude (also coming from the regular terms). However, they give contributions to the
conductivity which are insensitive to low magnetic fields and temperatures in comparison to the
contribution from the maximally crossed diagrams.
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βα

x′x

R

A

r′r

+
α

x′

r′

β

x

r

+ . . .

=
x′

r′

β

x

α

r

C̃

. (11.50)

The sum of the maximally crossed diagrams, the Cooperon C̃ω(r, r′; E), is in the
position representation specified by the diagrams

r

A

R

r′

+

r r′

+ . . . = C̃r r′. (11.51)

The analytical expression for the quantum correction to the conductivity is therefore
(E+ ≡ E + �ω)

δσαβ(x− x′, ω) =
1
π

(
e�

m

)2 ∫
dr
∫

dr′
∫ ∞

−∞
dE

f0(E)− f0(E + �ω)
ω

C̃ω(r, r′; E)

× GR
E+

(x− r)GR
E+

(r′ − x′)
↔
∇xα

↔
∇x′

β
GA

E(x′ − r)GA
E(r′ − x) . (11.52)
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The impurity-averaged propagator decays exponentially as a function of its spatial
variable with the scale set by the impurity mean free path. The spatial scale of
variation of the sum of the maximally crossed diagrams is typically much larger.
For the present case where we neglect effects of inelastic interactions, we recall from
Eq. (11.23) that the spatial range of the Cooperon is Lω =

√
D0/ω, which for ω τ � 1

is much larger than the mean free path, since D0 = vFl/d is the diffusion constant
in d dimensions.24 The impurity-averaged propagators attached to the maximally
crossed diagrams will therefore require the starting and end points of C̃ω(r, r′, E) to
be within the distance of a mean free path, in order for a non-vanishing contribution
to the integral. On the scale of variation of the Cooperon this amounts to setting its
arguments equal, and we can therefore substitute r→ x, r′ → x, and obtain

δσαβ(x− x′, ω) =
1
π

(
e�

m

)2 ∫ ∞

−∞
dE

f0(E−)− f0(E+)
ω

C̃ω(x,x; E)
∫

dr
∫

dr′

× GR
E+

(x− r)GR
E+

(r′ − x′)
↔
∇xα

↔
∇x′

β
GA

E−(x′ − r)GA
E−(r′ − x) .(11.53)

The gate combination of the Fermi functions renders for the degenerate case, �ω, kT �
εF, the energy variable in the thermal layer around the Fermi surface, and we have
for the first quantum correction to the conductivity of a degenerate electron gas

δσαβ(x− x′, ω) =
�

π

( e

m

)2

C̃ω(x,x; εF) Φ
α ,β

(x− x′) , (11.54)

where

Φ
α ,β

(x− x′) ≡
∫

dr
∫

dr′GR
εF(x−r)GR

εF(r′−x′)
↔
∇xα

↔
∇x′

β
GA

εF(x′−r)GA
εF(r′−x). (11.55)

Clearly this function is local with the scale of the mean free path, and to lowest order
in �/pFl we have25

Φα,β(x − x′) = − (2πN0τ)2

2�2

(x− x′)α(x− x′)β

|x− x′|4 e−|x−x′|/l cos2 kF|x− x′| . (11.56)

Since the function Φα,β(x−x′) decays on the scale of the mean free path, and appears
in connection with the Cooperon, which is a smooth function on this scale, it acts
effectively as a delta function

Φα,β(x − x′) = − (2πN0τ)2l
3�2

δαβ δ(x− x′) . (11.57)

We therefore obtain the fact that the first quantum correction, the weak-localization
contribution, to the conductivity is local

δσαβ(x− x′, ω) = δσ(x, ω) δαβ δ(x− x′) (11.58)
24For samples of size larger than the mean free path, L > l, the diffusion process is effectively

three-dimensional, so that one should use the value d = 3 in the expression for the diffusion con-
stant. In strictly two-dimensional systems, such as for the electron gas in the inversion layer in a
heterostructure at low temperatures, the value d = 2 should be used.

25For details we refer the reader to chapter 11 of reference [1].
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and specified by26

δσ(x, ω) = −2e2D0τ

π�
Cω(x,x) . (11.59)

As we already noted in Section 11.1.2 the Cooperon is independent of the energy
of the electron (here the Fermi energy since only electrons at the Fermi surface
contribute to the conductivity) Cω(x,x′) ≡ Cω(x,x′, εF), and we have introduced
Cω(x,x′) ≡ u−2C̃ω(x,x′).

The quantum correction to the conductance of a disordered degenerate electron
gas is

δGαβ(ω) ≡ 〈δGαβ(ω)〉 = L−2

∫
dx
∫

dx′ 〈δσαβ(x,x′, ω)〉

= −2e2D0τ

π�
L−2δαβ

∫
dxCω(x,x) . (11.60)

11.2.2 Cooperon equation

Many important results in the theory of weak localization can be obtained once the ef-
fect on the Cooperon of a time-dependent external field is obtained. Later we present
the derivation of the Cooperon equation in the presence of a time-dependent elec-
tromagnetic field based on the quantum interference picture of the weak-localization
effect. But first we provide the quantitative derivation of this result by employing the
equation obeyed by the quasi-classical Green’s function in Nambu or particle–hole
space in the dirty, i.e. diffusive limit, Eq. (8.197). This will, in addition, extend
our awareness of the information contained in the various components of the matrix
Green’s function in Nambu or particle–hole space.27

The goal is to generate the equation for the Cooperon by functional differentiation
of the quasi-classical Green’s function, and we therefore add a two-particle source to
the Nambu space Hamiltonian, Ψ denoting the Nambu field, Eq. (8.32),

V (t1, t1′) =
∫

dx1 Ψ†(x1, t1)V (x1, t1, t1′)Ψ(x1, t1′) , (11.61)

which therefore, according to Section 8.1.1, needs only off-diagonal Nambu matrix
elements

V (x1, t1, t1′) =
(

0 V12(x1, t1, t1′)
V21(x1, t1, t1′) 0

)
. (11.62)

In linear response to the two-particle source we thus encounter the two-particle
Green’s function in the form of the particle–particle impurity ladder, and the Cooperon
can be obtained by differentiation with respect to the source, which therefore is taken
local in the space variable.

26We could also have evaluated the conductivity, Eq. (11.52), directly by Fourier-transforming
the propagators, and recalling Eq. (11.27).

27This provides an alternative derivation to the ones in the literature. We follow the derivation
in reference [9].
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For the retarded component of Eq. (8.197) we have (we leave out the subscript
indicating it is the s-wave, local in space part of the quasi-classical Green’s function,
gs)

[g−1
0 + iV R − D0 ∂ ◦ gR ◦ ∂ ◦, gR]− = 0 , (11.63)

where the scalar potential enters in

g−1
0 (x1, t1, t1′) = (τ3∂t1 + ieφ(x1, t1))δ(t1 − t1′) (11.64)

and the vector potential through the diffusive term according to

∂ = (∇x1 − ieτ3A(x1, t1)) . (11.65)

The equation of motion, which is homogeneous, is supplemented by the normalization
condition, Eq. (8.182),

gR ◦ gR = δ(t1 − t1′) . (11.66)

The self-energy term associated with superconductivity has been expelled from Eq.
(8.185) since for our case of interest the conductor is assumed in the normal state.
Instead a source-term, V R, has been introduced, a matrix in Nambu-space. Taking
the functional derivative of the 12-component of gR with respect to the Nambu
component V R

12 is seen to generate the Cooperon

C(R,R′, t1, t1′ , t2, t2′) =
1

2iτ

δgR
12(R, t1, t1′)

δV R
12(R′, t2, t2′)

(11.67)

since the off-diagonal Nambu components of the source term add or subtract pairs
of particles, and in the diffusive limit only ladder diagrams are considered. By con-
struction, the functional derivative on the right in Eq. (11.67) is the ξ-integrated
particle–particle ladder (including external legs) with the influence of the electro-
magnetic field fully included in the quasi-classical approximation.28 The result of
the functional derivative operation involved in Eq. (11.67) is depicted diagrammati-
cally in Figure 11.3.

R

A

t2 = T ′ + t′
2

t2′ = T ′ − t′
2

t1 = T + t
2

t1′ = T − t
2

R R′

Figure 11.3 Cooperon obtained as derivative with respect to the two-particle source.

In order to obtain the equation satisfied by the functional derivative, the equation
of motion is linearized with respect to the solution in the absence of the source term,
gR
0 . We thus write

gR = gR
0 + δgR (11.68)

28This is usually no restriction since interest is in weak fields.
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and use our knowledge that the normal state solution in the absence of the source
term is

gR
0 = τ3 δ(t1 − t1′) . (11.69)

Inserting into Eq. (11.63) and linearizing the equation with respect to the source
gives

[g−1
0 − D0

→
∂ ◦ gR

0 ◦
→
∂ ◦, δgR]− + i[V R ◦, gR

0 ]− − D0[
→
∂ ◦ δgR◦

→
∂ ◦, gR

0 ]− = 0 .
(11.70)

Taking the 12-Nambu component gives(
∂t1 − ∂t1′ + ie(φt1 − φt1′ )−D0(∇x − ie(At1 + At1′ ))

2
)
δgR(x, t1, t1′)

= 2iV R
12(x, t1, t1′) , (11.71)

where the spatial dependence x of the fields has been suppressed. Taking the func-
tional derivative with respect to the 12-Nambu component of the source we get(

∂t1 − ∂t1′ + ie(φt1 − φt1′ )−D0(∇x − ie(At1 + At1′ ))
2
) δgR

12(x, t1, t1′)
δV R

12(x′, t2, t2′)

= 2i δ(x− x′) δ(t1 − t2) δ(t1′ − t2′) . (11.72)

Because of the double time dependence of the external field, the functional deriva-
tive and the Cooperon have the time labeling depicted in Figure 11.3 and the following
diagram

x t1′=T− t
2

x t1=T+ t
2

C

t̃1

t̃2′

t̃1′

t̃2
x′ t2′=T ′− t′

2

x′ t2=T ′+ t′
2

=

+ + · · · .

(11.73)

Introducing new time variables

T =
1
2
(t1+t1′) , T ′ =

1
2
(t2+t2′) , t = t1−t1′ , t′ = t2−t2′ , (11.74)
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we get{
2

∂

∂t
+ ieφT (x, t)−D0

(
∇x −

ie

�
AT (x, t)

)2
}

δgR
12(x, T, t)

δV R
12(x′, T ′, t′)

=
1
τ

δ(x− x′) δ(t− t′) δ(T − T ′) , (11.75)

where we have introduced the abbreviations

φT (x, t) = φ(x, T + t/2) − φ(x, T − t/2) (11.76)

and
AT (x, t) = A(x, T + t/2) + A(x, T − t/2) . (11.77)

Accordingly for the Cooperon we get the equation{
2

∂

∂t
+ ieφT (x, t) −D0

(
∇x −

ie

�
AT (x, t)

)2
}

CT,T ′

t,t′ (x,x′)

=
1
τ

δ(x− x′) δ(t− t′) δ(T − T ′) , (11.78)

where we have introduced

CT,T ′

t,t′ (x,x′) ≡ C(x,x′; t1, t1′ , t2, t2′) . (11.79)

Since there is no differentiation with respect to the variable T in Eq. (11.78), it is
only a parameter in the Cooperon equation, and we have

CT,T ′

t,t′ (x,x) = CT
t,t′(x,x′) δ(T − T ′) , (11.80)

where CT
t,t′(x,x′) satisfies the equation{

2
∂

∂t
−D0

(
∇x −

ie

�
AT (x, t)

)2
}

CT
t′t′(x,x′) =

1
τ

δ(x− x′) δ(t− t′) . (11.81)

Here we have left out the effect of a time-dependent scalar potential on the Cooperon
since in the following we represent the electromagnetic field solely by the vector
potential. We note that it can be restored by invoking the gauge co-variance property
of the Cooperon.

We now derive the conductivity formula relevant for the case in question. We
are here beyond linear response since we are taking into account to all orders how
the Cooperon is influenced by the electromagnetic field. In the case of an external
electromagnetic field represented by a vector potential influencing the Cooperon as
well we consider the quantum correction to the kinetic propagator which is given by
the contributions specified in the following diagram
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δGK(x1, t1,x1′ , t1′) =
∑

x1t1

x1′ t1′

(11.82)

where the summation sign indicates the summation of all maximally crossed dia-
grams. For the quantum correction to the current we then have

δj(x, t) =
e�

2im

(
∂

∂x
− ∂

∂x′

)
δGK(x, t,x′, t)

x′=x

. (11.83)

The structure of the general maximally crossed diagram with n impurity correlators
is

δGK =
2n+1∑
j=0

(GR)j GK (GA)2n−j . (11.84)

If the equilibrium kinetic propagator GK
0 occurs in the above diagram at a place

different from the ones indicated by circles, the contribution vanishes to the order
of accuracy. In that case, viz. we encounter the product of two retarded or two
advanced propagators sharing the same momentum integration variable, and since
the impurity correlator effectively decouples the momentum integrations, such terms
are smaller by the factor �/εFτ .

Displaying a maximally crossed kinetic propagator diagram on twisted form we
have (we use the notation 1 ≡ (x1, t1) etc.); the diagram in depicted in Figure 11.4.

2 1′

6

1 t10 t9 t8 t7

4 35

Figure 11.4 Twisted maximally crossed kinetic propagator diagram.

Because of the four different places where the kinetic propagator can occur we
explicitly keep the four outermost impurity correlators, and obtain for the quantum
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correction to the kinetic propagator

δGK(x1, t1,x1′ , t1′) =
eu8

2im

∫
dΓ GR(x1, t1;x5, t10)GR(x5, t10;x4, t9)G0(x3, t8;x2, t7)

× A(x6, t6) · G0(x2, t7;x6, t6)
↔
∇x6 G0(x6, t6;x5, t5)

× G0(x5, t5;x4, t4)
δgR

12(x4, t9, t4)
δV R

12(x3, t8, t3)

× GA(x3, t3;x2, t2)GA(x2, t2;x1′ , t1′) , (11.85)

where the propagators labeled by a zero as the superscript index indicate where the
kinetic propagator can appear (i.e. we have a sum of four terms, and the kinetic
propagator is always sandwiched in between retarded propagators to the left and
advanced propagators to the right), and we have introduced the abbreviation

dΓ = dt7dt8dt9dt10

6∏
i=1

dxidti . (11.86)

Since the propagators carry the large momentum pF, we can take for the explicitly
appearing linear response vector potential

A(t) = Aω1 e−iω1t . (11.87)

The eight exhibited propagators in Eq. (11.85) can be taken to be the equilibrium
ones, and by Fourier transforming the propagators, and performing the integration
over the momenta, we obtain for the quantum correction to the current density at
frequency ω2, E±

1 = E1 ± �ω1/2,

δj(x, ω2) =
4e2D0τ

iπ
A(ω1)

∞∫
−∞

dE1

2π�

(
f0(E−

1 )− f0(E+
1 )
)∫

dt1dt1′dt2dt2′ δ(t2′ − t1′)

× e
i
�
(E−

1 t1′−E+
1 t2−�ω2t1) C(x,x; t1, t1′ , t2, t2′) (11.88)

or equivalently

δj(x, ω2) =
4e2D0τ

iπ
A(ω1)

∞∫
−∞

dE1

2π�

(
f0(E−

1 )− f0(E+
1 )
)

×
∞∫

−∞

dt

∞∫
−∞

dT CT
t,−t(x,x) eiT (ω1−ω2)+i t

2 (ω1+ω2) . (11.89)
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For the quantum correction to the conductivity in the presence of a time-dependent
electromagnetic field

δj(x, ω2) = δσ(x, ω2, ω1) E(ω1) (11.90)

we therefore obtain29

δσ(x, ω2, ω1) = −4e2D0τ

πω

∞∫
−∞

dE1

2π�

(
f0(E−

1 )− f0(E+
1 )
)

×
∞∫

−∞

dt

∞∫
−∞

dT eiT (ω2−ω1)+
i
2 t(ω1+ω2)CT

t,−t(x,x) . (11.91)

In the degenerate case we have

δσ(x, ω2, ω1) = −4e2D0τ

π�

∞∫
−∞

dt

∞∫
−∞

dT CT
t,−t(x,x) eiT (ω1−ω2)+i t

2 (ω1+ω2) . (11.92)

In the event that the included effect of an electromagnetic field on the Cooperon is
caused by a time-independent magnetic field, we recover the expression Eq. (11.59)
for the quantum correction to the conductivity.

We shall exploit the derived formula when we consider the influence of electron–
electron interaction on the quantum correction to the conductivity.

11.2.3 Quantum interference and the Cooperon

In this section, we shall elucidate in more detail than in Section 11.1.2 the physical
process in real space described by the maximally crossed diagrams, and in addition
consider the influence of external fields. The weak-localization effect can be under-
stood in terms of a simple kind of quantum mechanical interference. By following the
scattering sequences appearing in the diagrammatic representation of the Cooperon
contribution to the conductivity, see Eq. (11.47), we realize that the quantum cor-
rection to the conductivity consists of products of the form “amplitude for scattering
sequence of an electron off impurities in real space times the complex conjugate of the
amplitude for the opposite scattering sequence.” The quantum correction to the con-
ductivity is thus the result of quantum mechanical interference between amplitudes
for an electron traversing a loop in opposite directions. To lowest order in λF/l we
need to include only the stationary, i.e. classical, paths determined by the electron
bumping into impurities, as illustrated in Figure 11.2 where the trajectories involved
in the weak-localization quantum interference process are depicted. The solid line,
say, in Figure 11.2 corresponds to the propagation of the electron represented by

29For an electron gas in thermal equilibrium f0 is the Fermi function, but in principle we could
at this stage have any distribution not violating Pauli’s exclusion principle. However, that would
then necessitate a discussion of energy relaxation processes tending to drive the system toward the
equilibrium distribution.



11.2. Weak localization 399

the retarded propagator in the conductivity diagram, and the dashed line to the
propagation represented by the advanced propagator, the complex conjugate of the
amplitude for scattering off impurities in the opposite sequence. The starting and
end points refer to the points x and x′ in Eq. (11.52), respectively.30 According to
the formula, Eq. (11.59), for the quantum correction to the conductivity, we need to
consider only scattering sequences which start and end at the same point on the scale
of the mean free path, as demanded by the impurity-averaged propagators attached
to the maximally crossed diagrams in Eq. (11.52).

In the time-reversal invariant situation, the contribution to the return probabil-
ity from the maximally crossed diagrams equals the contribution from the ladder
diagrams, and the return probability including the weak-localization contribution is
thus twice the classical result31

Pcl+wl(x, t;x, t′) = 2 Pcl(x, t;x, t′) = 2
(

1
4πD0(t− t′)

)d/2

, (11.93)

where the last expression is valid in the diffusive limit. To see how this comes about
in the interference picture, let us consider the return probability in general. The
quantity of interest is therefore the amplitude K for an electron to arrive at a given
space point x at time t/2 when initially it started at the same space point at time
−t/2. According to Feynman, this amplitude is given by the path integral expression

K(x, t/2;x,−t/2) =

xt/2=x∫
x−t/2=x

Dxt e
i
�

S[xt ] ≡
∑

c

Ac (11.94)

where the path integral includes all paths which start and end at the same point.
For the return probability we have

P = |K|2 = |
∑

c

Ac|2 =
∑

c

|Ac|2 +
∑
c �=c′

Ac A∗
c′ (11.95)

where Ac is the amplitude for the path c. In the sum over paths we only need to
include to order λF/l the stationary, i.e. classical, paths determined by the electron
bumping into impurities. The sum of the absolute squares is then the classical con-
tribution to the return probability, and the other terms are quantum interference
terms. In the event that the particle only experiences the impurity potential, we
have for the amplitude for the particle to traverse the path c,

Ac = e
i
�

∫ t
2

− t
2
dt̄ { 1

2 mẋ2
c (t̄) − V (xc (t̄))}

. (11.96)
30The angle between initial and final velocities is exaggerated since we recall that in order for the

Cooperon to give a large contribution the angle must be less than 1/kFl.
31The fact that impurity lines cross, does not per se make a diagram of order 1/kFl relative to a

non-crossed diagram. In case of the conductivity diagrams this is indeed the case for the maximally
crossed diagrams because the circumstances needed for a large contribution set a constrain on the
correlation of the initial and final velocity, p′ � −p + �Q (recall also when estimating self-energy
diagrams the importance of the incoming and outgoing momenta being equal, see reference [1]).
However, in the quantity of interest here the position is fixed.
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Owing to the impurity potential, the amplitude has a random phase. A first con-
jecture would be to expect that, upon impurity averaging, the interference terms in
general average to an insignificant small value, and we would be left with the clas-
sical contribution to the conductivity. However, there are certain interference terms
which are resilient to the impurity average. It is clear that impurity averaging can
not destroy the interference between time-reversed trajectories since we have for the
amplitude for traversing the time-reversed trajectory, xc̄(t) = xc(−t),

Ac̄ = e
i
�

∫ t
2

− t
2
dt̄ { 1

2 mẋ2
c̄ (t̄) − V (xc̄ (t̄))}

= e
i
�

∫ t
2

− t
2
dt̄ { 1

2 m[−ẋc (−t̄)]2 − V (xc (−t̄))}
= Ac.(11.97)

In this time-reversal invariant situation the amplitudes for traversing a closed loop in
opposite directions are identical, Ac̄ = Ac, and the corresponding interference term
contribution to the return probability is independent of the disorder, Ac A∗

c̄ = 1!
The two amplitudes for the time-reversed electronic trajectories which return to the
starting point thus interfere constructively in case of time-reversal invariance. In
correspondence to this enhanced localization, there is a decrease in conductivity
which can be calculated according to Eq. (11.59).

The foregoing discussion based on the physical understanding of the weak lo-
calization effect will now be substantiated by deriving the equation satisfied by the
Cooperon. The Cooperon Cω(x,x′) is generated by the iterative equation

Cωx x′ =

x

x′

+

x R

A x′

+

x x′

+ . . .

=

x

x′

+

x

Cωx′′ x′ (11.98)

where we have introduced the diagrammatic notation

x

x′
≡ δ(x− x′) . (11.99)

The Cooperon equation, Eq. (11.98), is most easily obtained by adding the term
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x

x′
= u2 δ(x− x′) (11.100)

to the infinite sum of terms represented by the function C̃, Eq. (11.51). Alterna-
tively, one can proceed as in Section 11.1.2, now exploiting the local character of the
propagators. In any event, we have in the singular region C̃ � u2C.

The Cooperon equation in the spatial representation is

Cω(x,x′) = δ(x− x′) +
∫

dx′′ J̃C
ω (x,x′′)Cω(x′′,x′) , (11.101)

where according to the Feynman rules the insertion is given by

J̃C
ω (x,x′) = u2 GR

εF+�ω(x,x′)GA
εF(x,x′) . (11.102)

The Cooperon is slowly varying on the scale of the mean free path, the spatial range
of the function J̃C

ω (x,x′), and a low-order Taylor-expansion of the Cooperon on the
right-hand side of Eq. (11.101) is therefore sufficient. Upon partial integration, the
integral equation then becomes, for a second-order Taylor expansion, a differential
equation for the Cooperon{

− iω −D0∇2
x

}
Cω(x,x′) =

1
τ

δ(x− x′) . (11.103)

This equation is of course simply the position representation of the equation for the
Cooperon already derived in the momentum representation, Eq. (11.23). Indeed we
recover, that the Cooperon only varies on the large length scale Lω = (D0/ω)1/2.
The typical size of an interference loop is much larger than the mean free path, and
we only need the large-scale behavior of the Boltzmannian paths of Figure 11.2, the
smooth diffusive loops of Figure 11.5.

The fact that in the time-reversal invariant case we have obtained that the
Cooperon satisfies the same diffusion-type equation as the Diffuson is not surprising.
The Diffuson is determined by a similar integral equation as the Cooperon, however,
with the important difference that one of the particle lines, say the advanced one, is
reversed (recall Exercise 7.8 on page 197). The Diffuson will therefore be determined
by the same integral equation as the Cooperon, except for J̃C

ω now being substituted
by the diffusion insertion J̃D

ω , given by

J̃D
ω (x,x′) = u2 GR

εF+�ω(x,x′)GA
εF(x′,x) . (11.104)

In a time-reversal invariant situation the two insertions are equal, J̃C
ω = J̃D

ω , and we
recover that the Diffuson and the Cooperon satisfy the same equation (and we have
hereby re-derived the result, Eq. (11.93)).
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R∗

R

Figure 11.5 Diffusive loops.

In the time-reversal invariant situation the amplitudes for traversing a closed loop
in opposite directions are identical, and in such a coherent situation one must trace
the complete interference pattern of wave reflection in a random medium, and one
encounters the phenomenon of localization discussed earlier. However, we also realize
that the interference effect is sensitive to the breaking of time-reversal invariance. By
breaking the coherence between the amplitudes for traversing time-reversed loops the
tendency to localization of an electron can be suppressed.32 In moderately disordered
conductors we can therefore arrange for conditions so that the tendency to localiza-
tion of the electronic wave function has only a weak though measurable influence on
the conductivity. The first quantum correction then gives the dominating contribu-
tion in the parameter λF/l, and we speak of the so-called weak-localization regime.
The destruction of phase coherence is the result of the interaction of the electron with
its environment, such as electron–electron interaction, electron–phonon interaction,
interaction with magnetic impurities, or interaction with an external magnetic field.
From an experimental point of view the breaking of coherence between time-reversed
trajectories by an external magnetic field is of special importance, and we start by
discussing this case.

11.2.4 Quantum interference in a magnetic field

The influence of a magnetic field on the quantum interference process described by
the Cooperon is readily established in view of the already presented formulas. In the
weak magnetic field limit, l2 < l2B, where lB = (�/2eB)1/2 is the magnetic length, or
equivalently ωcτ < �/εFτ , the bending of a classical trajectory with energy εF can be

32By disturbance, the coherence can be disrupted, and the tendency to localization can be sup-
pressed, thereby decreasing the resistance. Normally, disturbances increase the resistance.
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neglected on the scale of the mean free path. Classical magneto-resistance effects are
then negligible, because they are of importance only when ωcτ ≥ 1. The amplitude
for propagation along a straight-line classical path determined by the impurities is
then changed only because of the presence of the magnetic field by the additional
phase picked up along the straight line, the line integral along the path of the vector
potential A describing the magnetic field. In the presence of such a weak static
magnetic field the propagator is thus changed according to

GR
E(x,x′) → GR

E(x,x′) exp
{

ie

�

∫ x

x′
dx̄ ·A(x̄)

}
. (11.105)

The resulting change in the Cooperon insertion is then

J̃C
ω (x,x′) → J̃C

ω (x,x′) exp
{

2ie

�

∫ x

x′
dx̄ ·A(x̄)

}

= J̃C
ω (x,x′) exp

{
2ie

�
(x− x′) ·A(x)

}
. (11.106)

The factor of 2 reflects the fact that in weak-localization interference terms between
time-reversed trajectories, the additional phases due to the magnetic field add.

Repeating the Taylor-expansion leading to Eq. (11.103), we now obtain in the
Cooperon equation additional terms due to the presence of the magnetic field{

−iω −D0

(
∇x −

2ie

�
A(x)

)2
}

Cω(x,x′) =
1
τ

δ(x− x′) . (11.107)

Introducing the Fourier transform

Ct,t′(x,x′) =
∫

dω

2π
e−iω(t−t′) Cω(x,x′) (11.108)

we obtain in the space-time representation the Cooperon equation33{
∂

∂t
−D0

(
∇x −

2ie

�
A(x)

)2
}

Ct,t′(x,x′) =
1
τ

δ(x− x′) δ(t− t′) . (11.109)

We note that this equation is formally identical to the imaginary-time Green’s func-
tion equation for a particle of mass �/2D0 and charge 2e moving in the magnetic field
described by the vector potential A. The solution of this equation can be expressed
as the path integral

Ct,t′(x,x′) =
1
τ

xt =x∫
xt′=x′

Dxt e
−

t∫
t′

dt̄

(
ẋ2

t̄
4D0

+ ie
�

ẋt̄ ·A(xt̄ )

)
. (11.110)

33This is of course just a special case of the general equation, Eq. (11.81), the case of a time-
independent magnetic field
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11.2.5 Quantum interference in a time-dependent field

Let us now obtain the equation satisfied by the Cooperon when the particle interacts
with an environment as described by the Lagrangian L1. The total Lagrangian is
then L = L0 + L1, where34

L0(x, ẋ) =
1
2
mẋ2 − V (x) (11.111)

describes the particle in the impurity potential. We first present a derivation of the
Cooperon equation based on the interference picture of the weak-localization effect,
before presenting the diagrammatic derivation.35

The conditional probability density for an electron to arrive at position x at time t
given it was at position x′ at time t′ is given by the absolute square of the propagator

P (x, t;x′, t′) = |K(x, t;x′, t′)|2 . (11.112)

In the quasi-classical limit, which is the one of interest, λF � l, we can, in the path
integral expression for the propagator, replace the path integral by the sum over
classical paths

K(x, t;x, t′) =

xt =x∫
xt′=x

Dxt e
i
�

S[xt ] �
∑
xcl

t

A[xcl
t ] e

i
�

S[xcl
t ] (11.113)

where the prefactor takes into account the Gaussian fluctuations around the classical
path. We assume that we may neglect the influence of L1 on the motion of the
electrons, and the classical paths are determined by L0, i.e. by the large kinetic
energy and the strong impurity scattering. The paths in the summation are therefore
solutions of the classical equation of motion

mẍcl
t = −∇V (xcl

t ) . (11.114)

The quantum interference contribution to the return probability in time span t from
the time-reversed loops is in the quasi-classical limit

P
(
x,

t

2
;x,− t

2

)
=

∑
xcl

t

|A[xcl
t ] |2 e

i
�
(S[xcl

t ]−S[xcl
−t ]) , (11.115)

where xcl
−t/2 = x = xcl

t/2. We are interested in the return probability for an electron
constrained to move on the Fermi surface, i.e. its energy is equal to the Fermi
energy εF. For the weak-localization quantum interference contribution to the return
probability we therefore obtain

C(t) =
1

N0

∑
xcl

t

∣∣A[xcl
t ]
∣∣2 eiϕ[xcl

t ] δ(ε[xcl
t ]− εF) , (11.116)

34A possible dynamics of the environment plays no role for the present discussion, and its La-
grangian is suppressed.

35We follow the presentation of reference [87].
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where the sum is over classical trajectories of duration t that start and end at the
same point, and

ε[xcl
t ] =

1
2
m [ẋcl

t ]2 + V (xcl
t ) (11.117)

is the energy of the electron on a classical trajectory. The normalization factor
follows from the fact that the density of classical paths in the quasi-classical limit
equals the density of states.36 We have introduced the phase difference between a
pair of time-reversed paths

ϕ[xcl
t ] =

1
�

(
S[xcl

t ]− S[xcl
−t]
)

. (11.118)

As noted previously in Section 11.2.4, a substantial cancellation occurs in the phase
difference since L0 is an even function of the velocity and the quenched disorder
potential is independent of time. Hence, the phase difference is a small quantity
given by

ϕ[xcl
t ] =

1
�

t/2∫
−t/2

dt̄ {L1(xcl
t̄ , ẋcl

t̄ , t̄)− L1(xcl
−t̄,−ẋcl

−t̄, t̄)}

=
1
�

t/2∫
−t/2

dt̄ {L1(xcl
t̄ , ẋcl

t̄ , t̄)− L1(xcl
t̄ ,−ẋcl

t̄ ,−t̄)}

≡
t/2∫

−t/2

dt̄ ϕ̃(xcl
t ) , (11.119)

where in the last term in the second equality we have replaced the integration variable
t̄ by −t̄. We recognize that L1 though small, plays an important role here since it
destroys the phase coherence between the time-reversed trajectories.

We must now average the quantum interference term with respect to the impurity
potential. Since the dependence on the impurity potential in Eq. (11.116) is only
implicit through its determination of the classical paths, averaging with respect to
the random impurity potential is identical to averaging with respect to the probability
functional for the classical paths in the random potential. In view of the expression
appearing in Eq. (11.116), we thus encounter the probability of finding a classical
path xt of duration t which start and end at the same point, and for which the
particle has the energy εF

Pt[xt] =
1

N0

〈∑
xcl

t

∣∣A[xcl
t ]
∣∣2 δ(ε[xcl

t ]− εF) δ[xcl
t − xt]

〉
imp

= 〈C(t)〉ϕ=0
imp .

(11.120)
36The Bohr–Sommerfeld quantization rule.
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The second delta function, as indicated, in the functional sense, allows only the
classical path in question to contribute to the path integral. The classical probability
of return in time t of a particle with energy εF is given by

P
(cl)
R (t) =

xt/2=x∫
x−t/2=x

Dxt Pt[xt] . (11.121)

We therefore get, according to Eq. (11.116), for the impurity average of the weak-
localization quantum interference term, the Cooperon,

C t
2 ,− t

2
(x,x) = 〈C(t)〉imp =

xt/2=x∫
x−t/2=x

Dxt Pt[xt] eiϕ[xcl
t ] . (11.122)

In many situations of interest, an adequate expression for the probability density
of classical paths in a random potential, Pt[xt], is obtained by considering the classical
paths as realizations of Brownian motion;37 i.e. the classical motion is assumed a
diffusion process, and the probability distribution of paths is given by Eq. (7.103).
Performing the impurity average gives in the diffusive limit for the weak-localization
interference term38

C t
2 ,−t

2
(x,x) =

xt/2=x∫
x−t/2=x

Dxt e
−

t/2∫
−t/2

dt (
ẋ2

t
4D0

− iϕ̃(xcl
t ))

, (11.123)

where D0 is the diffusion constant for a particle with energy εF, D0 = v2
Fτ/d.

Let us now obtain the equation satisfied by the Cooperon in the presence of a
time-dependent electromagnetic field. In that case we have for the interaction the
Lagrangian

L1(xt, ẋt, t) = eẋt ·A(xt, t)− eφ(xt, t) . (11.124)

Since the coherence between time-reversed trajectories is partially upset, it is con-
venient to introduce arbitrary initial and final times, and we have for the phase
difference between a pair of time-reversed paths

ϕ[xcl
t ] =

1
�
{S[xcl

t ]− S[xcl
ti+tf−t]}

=

tf∫
ti

dt
(
L1(xcl

t , ẋcl
t , t)− L1(xcl

ti+tf−t, ẋ
cl
ti+tf−t, t)

)
(11.125)

37An exception to this is discussed in Section 11.3.1.
38In case the classical motion in the random potential is adequately described as the diffusion

process, we immediately recover the result Eq. (11.93) for the return probability.
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as the contributions to the phase difference from L0 cancels, and we are left with

ϕ[xcl
t ] =

e

�

tf∫
ti

dt
{
ẋcl(t)·A(xcl(t), t) + φ(xcl(ti + tf−t), ti + tf−t) − φ(xcl(t), t)

− ẋcl(ti + tf − t) ·A(xcl(ti + tf − t), ti + tf − t)
}

. (11.126)

Introducing the shift in the time variable

t′ ≡ t− T , T ≡ 1
2
(tf + ti) (11.127)

we get

ϕ[xcl
t ] =

e

�

tf−t i
2∫

t i−tf
2

dt′
{
ẋcl(t′ + T ) ·A(xcl(t′ + T ), t′ + T )

− ẋcl(T − t′) ·A(xcl(T − t′), T − t′)

− φ(xcl(t′ + T ), t′ + t) + φ(xcl(T − t′), T − t′)
}

. (11.128)

The electromagnetic field is assumed to have a negligible effect on determining the
classical paths, and we can shift the time argument specifying the position on the
path to be symmetric about the moment in time T , and thereby rewrite the phase
difference, t ≡ tf − ti,

ϕ[xcl
t ] =

e

�

t
2∫

− t
2

dt̄
{
ẋcl

t̄ ·AT (xcl
t̄ , t̄) − φ(xcl

t̄ , t̄)
}

, (11.129)

where
φT (x, t) = φ(x, T + t) − φ(x, T − t) (11.130)

and
AT (x, t) = A(x, T + t) + A(x, T − t) . (11.131)

An electric field can be represented solely by a scalar potential, and we imme-
diately conclude that only if the field is different on time-reversed trajectories can
it lead to destruction of phase coherence. In particular, an electric field constant in
time does not affect the phase coherence, and thereby does not influence the weak-
localization effect.

The differential equation corresponding to the path integral, Eq. (11.123), there-
fore gives for the Cooperon equation for the case of a time-dependent electromagnetic
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field{
∂

∂t
+

e

�
φT (xt, t)−D0

(
∇x −

ie

�
AT (x, t)

)2
}

CT
t,t′(x,x′) = δ(x− x′) δ(t− t′) .

(11.132)
When the sample is exposed to a time-independent magnetic field, we recover the
static Cooperon equation, Eq. (11.107).

11.3 Phase breaking in weak localization

The phase coherence between the amplitudes for pairs of time-reversed trajectories
is interrupted when the environment of the electron, besides the dominating random
potential, is taken into account. At nonzero temperatures, energy exchange due
to the interaction with the environment will partially upset the coherence between
time-reversed paths involved in the weak-localization phenomenon. The constructive
interference is then partially destroyed.

Quantitatively the effect on weak localization by inelastic interactions with energy
transfers ∆E of the order of the temperature, ∆E ∼ kT , strongly inelastic processes,
can be understood by the observation that the single-particle Green’s function will
be additionally damped owing to interactions. If in addition to disorder we have an
interaction, say with phonons, the self-energy will in lowest order in the interaction
be changed according to

pE
p′E

R
pE

→ pE
p′E′

R
pE + pE

p′E

R
pE

(11.133)

and we will get an additional contribution to the imaginary part of the self-energy

�mΣR = − �

2τ
− �

2τin
. (11.134)
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Upon redoing the calculation leading to Eq. (11.22) for the case in question, we obtain
in the limit τin � τ

ζ(Q, ω) = 1− τ

τin
+ iωτ + D0τQ2 . (11.135)

This will in turn lead to the change in the Cooperon equation, ω → ω + i/τin, and
we get the real space Cooperon equation39

{
− iω −D0∇2

x +
1
τin

}
Cω(x,x′) =

1
τ

δ(x− x′) . (11.136)

The effect on weak localization of electron–electron interaction and electron–
phonon interaction have been studied in detail experimentally [88, 89], and can phe-
nomenologically be accounted for adequately by introducing a temperature-dependent
phase-breaking rate 1/τϕ in the Cooperon equation, describing the temporal expo-
nential decay C(t) → C(t) exp{−t/τϕ} of phase coherence. In many cases the in-
elastic scattering rate, 1/τin, is identical to the phase-breaking rate, 1/τϕ. This is
for example the case for electron–phonon interaction, as we shortly demonstrate.
However, one should keep in mind that the inelastic scattering rate is defined as the
damping of an energy state for the case where all scattering processes are weighted
equally, irrespective of the amount of energy transfer. In a clean metal the energy
relaxation rate due to electron–phonon or electron–electron interaction is determined
by energy transfers of the order of the temperature as a consequence of the exclu-
sion principle (at temperatures below the Debye temperature).40 In Section 11.5
we shall soon learn that in a three-dimensional sample the energy relaxation rate
in a dirty metal is larger than in a clean metal owing to a strong enhancement of
the electron–electron interaction with small energy transfer. When calculating the
weak localization phase-breaking rate we must therefore pay special attention to the
low-energy electron–electron interaction. In a thin film or in the two-dimensional
case the energy relaxation rate even diverges in perturbation theory, owing to the
abundance of collisions with small energy transfer. However, the physically measur-
able phase-breaking rate does of course not suffer such a divergence since the phase
change caused by an inelastic collision is given by the energy transfer times the re-
maining time to elapse on the trajectory. Collisions with energy transfer of the order
of (the phase-breaking rate) �ω ∼ �/τϕ or less are therefore inefficient for destroy-
ing the phase coherence between the amplitudes for traversing typical time-reversed
trajectories of duration the phase coherence time τϕ.41 In terms of diagrams this is
reflected by the fact that interaction lines can connect the upper and lower particle
lines in the Cooperon, whereas there are no such processes for the diagrammatic
representation of the inelastic scattering rate, as discussed in Section 11.5. This dis-
tinction is of importance in the case of a thin metallic film, the quasi two-dimensional

39In the Cooperon, contributions from diagrams where besides impurity correlator lines interac-
tion lines connecting the retarded and advanced particle line also appear should be included for
consistency. However, for strongly inelastic processes these contributions are small.

40For details see, for example, chapter 10 of reference [1].
41A similar situation is the difference between the transport and momentum relaxation time.

The transport relaxation time is the one appearing in the conductivity, reflecting that small angle
scattering is ineffective in degrading the current.
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case, where there is an abundance of scatterings with small energy transfer due to
diffusion-enhanced electron–electron interaction.

In the time-reversal invariant situation, the Cooperon is equal to the classical
probability that an electron at the Fermi level in time t returns to its starting point.
If coherence is disrupted by interactions, the constructive interference is partially de-
stroyed. This destruction of phase coherence results in the decay in time of coherence,
described by the factor exp{−t/τϕ} in the expression for the Cooperon, the probabil-
ity of not suffering a phase-breaking collision, described by the phase-breaking rate
1/τϕ. In view of the quantum interference picture of the weak localization effect, we
shall also refer to τϕ as the wave function phase relaxation time.

A comprehensive understanding of the phase coherence length in weak local-
ization, the length scale Lϕ ≡

√
D0τϕ over which the electron diffuses quantum

mechanically coherently, has been established, and this has given valuable informa-
tion about inelastic scattering processes. The phase coherence length Lϕ is, at low
temperatures, much larger than the impurity mean free path l, explaining the slow
spatial variation of the Cooperon on the scale of the mean free path, which we have
repeatedly exploited.

11.3.1 Electron–phonon interaction

In this section we calculate the phase-breaking rate due to electron–phonon inter-
action using the simple interference picture described in the previous section.42 We
start from the one-electron Lagrangian, which is given by

L(x, ẋ) =
1
2
mẋ2 − V (x)− eφ(x, t) , (11.137)

where V is the impurity potential, and the deformation potential is specified in terms
of the lattice displacement field, Eq. (2.72),

eφ(x, t) =
n

2N0
∇x · u(x, t) . (11.138)

It is important to note that the impurities move in phase with the distorted
lattice; hence the impurity potential has the form

V (x) =
∑

i

Vimp(x− (Ri + u(x, t)) , (11.139)

where Ri is the equilibrium position of the ith ion. The impurity scattering is thus
only elastic in the frame of reference that locally moves along with the lattice. We
therefore shift to this moving frame of reference by changing the electronic coordinate
according to x→ x + u. The impurity scattering then becomes static on account of
generating additional terms of interaction. Expanding the Lagrangian Eq. (11.137)
in terms of the displacement, and neglecting terms of relative order m/M , such as
the term mu̇ ·v/2, the transformed Lagrangian can be written as L = L0 +L1, where

42We follow references [87] and [90].
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L0 is given in Eq. (11.111), and43

L1(xt, ẋt) = mẋt · (ẋt · ∇)u(xt, t) −
1
3
ẋ2

t ∇ · u(xt, t) . (11.140)

In the last line we have used the relation n/2N0 = mv2
F/3, and the fact that the

magnitude of the velocity is conserved in elastic scattering. We therefore obtain for
the phase difference44

ϕ[xcl
t ] =

1
�

t/2∫
−t/2

dt {∇β uα(xcl
t , t)−∇β uα(xcl

t ,−t)}
[
ẋα

t ẋβ
t −

1
3

δαβ ẋ2
t

]
, (11.141)

where summation over repeated Cartesian indices is implied, and we have chosen the
classical paths to satisfy the boundary condition, xcl

−t/2 = 0 = xcl
t/2.

We must now average the quantum interference term as given in Eq. (11.116)
with respect to the lattice vibrations, and with respect to the random positions of
the impurities. Since the Lagrangian for the lattice vibrations is a quadratic form
in the displacement u, and the phase difference ϕ[xcl

t ] is linear in the displacement,
the phonon average can be computed by Wick’s theorem according to (see Exercise
4.108 on page 103)45

〈eiϕ[xcl
t ]〉ph = e−

1
2 〈ϕ[xcl

t ]2〉ph . (11.142)

For the argument of the exponential we obtain (vt ≡ ẋcl
t )

〈ϕ[xcl
t ]2〉ph =

m2

�2

t/2∫
−t/2

dt1

t/2∫
−t/2

dt2

[∑
±

(±)Dαβγδ(xcl
t1 − xcl

t2 , t1 ∓ t2)

]

×
[
vα

t1 vβ
t1 −

1
3

δαβ v2
t1

] [
vγ

t2 vδ
t2 −

1
3

δγδ v2
t2

]
, (11.143)

where the phonon correlator

Dαβγδ(x, t) = 〈∇β uα(x, t)∇δ uγ(0, 0)〉 (11.144)

is an even function of the time difference t.
Concerning the average with respect to impurity positions, we will resort to an

approximation which, since the exponential function is a convex function, can be
expressed as the inequality

〈C(t)〉imp ≥ 〈C(t)〉ϕ=0
imp e−

1
2 〈〈ϕ[xcl

t ]2〉ph〉imp , (11.145)

43This result can also be obtained without introducing the moving frame of reference. By simply
Taylor-expanding Eq. (11.139) and using Newton’s equation we obtain a Lagrangian which differs
from the one in Eq. (11.140) by only a total time derivative, and therefore generates the same
dynamics.

44In neglecting the Jacobian of the nonlinear transformation to the moving frame, we neglect the
influence of the lattice motion on the paths.

45We have suppressed the hat on u indicating that the displacement is an operator with respect
to the lattice degrees of freedom (or we have envisaged treating the lattice vibrations in the path
integral formulation).
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where we have introduced the notation for the impurity average

〈〈(ϕ[xcl
t ])2〉ph〉imp =

xt/2=x∫
x−t/2=x

Dxt Pt[xt] 〈(ϕ[xcl
t ])2〉ph

xt/2=x∫
x−t/2=x

Dxt Pt[xt]
. (11.146)

The phase difference Eq. (11.141) depends on the local velocity of the electron,
which is a meaningless quantity in Brownian motion.46 It is therefore necessary
when considering phase breaking due to electron–phonon interaction to consider the
time-reversed paths involved in the weak-localization quantum interference process
as realizations of Boltzmannian motion. At a given time, a Boltzmannian path is
completely specified by its position and by the direction of its velocity as discussed in
Section 7.4.1. We are dealing with the Markovian process described by the Boltzmann
propagator F (v,x, t;v′,x′, t′), where we now use the velocity as variable instead of
the momentum as used in Section 7.4.1. On account of the Markovian property, the
four-point correlation function required in Eq. (11.146) (the start and (identical) end
point and two intermediate points according to Eq. (11.143)) may be expressed as a
product of three conditional probabilities of the type Eq. (7.70), and we obtain

〈〈ϕ[xcl
t ]2〉ph〉imp =

4m2

�2

t/2∫
−t/2

dt1

t/2∫
−t/2

dt2

∫
dx1

∫
dx2

∫
dv̂1dv̂2

(4π)2

× F (0,
t

2
;x1,v1, t1)F (x1,v1, t1;x2,v2, t2) F (x2,v2, t2;0,− t

2
)

×
[∑

±
(±)Dαβγδ(xcl

t1 − xcl
t2 , t1 ∓ t2)

][
vα

t1v
β
t1 −

1
3

δαβ v2
t1

][
vγ

t2v
δ
t2 −

1
3

δγδ v2
t2

]
.

(11.147)

We use the notation that an angular average of the Boltzmann propagator F with
respect to one of its velocities is indicated by a bar. For example, we have for the
return probability

〈C(t)〉(ϕ=0)
imp = F (x, t;x′, 0) ≡

∫
dv̂′

4π
F (x, t;v′,x′, t′) . (11.148)

The space-dependent quantities may be expressed by Fourier integrals according to
Eq. (7.72). Since the Boltzmann propagator is retarded, F (v,x, t;v′,x′, t′) vanishes
for t earlier than t′, we can expand the upper t1-integration to infinity and the

46The velocity entering in the Wiener measure, Eq. (7.103), is not the local velocity, but an
average of the velocity on a Boltzmannian path; recall Exercise 7.6 on page 197.
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lower t2-integration to minus infinity. Only thermally excited phonons contribute to
the destruction of phase coherence, and we conclude that Dαβγδ(xcl

t1 − xcl
t2 , t1 ∓ t2)

is essentially zero for |t1 ± t2| ≥ �/kT . We can therefore extend the domain of
integration to infinity with respect to |t1 ± t2| provided that |t| � �/kT , and obtain
in the convex approximation

〈C(t)〉imp = 〈C(t)〉(ϕ=0)
imp exp

{
− 2m2

�2〈C(t)〉(ϕ=0)
imp

∫
dkdk′dωdω′

(2π)8

∫
dv̂1dv̂2

(4π)2

× F (v1;k, ω)F (v1,v2,k + k′, ω + ω′)Dαβγδ(−k′,−ω′)

×
[
F (v2,k, ω) e−iωt − F (v2,k, ω + 2ω′) e−i(ω+ω′)t

]

×
[
vα

t1v
β
t1 −

1
3

δαβ v2
t1

] [
vγ

t2v
δ
t2 −

1
3

δγδ v2
t2

]}
. (11.149)

We expect that the argument of the exponential above increases linearly in t for
large times. Since the classical return probability in three dimensions has the time
dependence 〈C(t)〉(ϕ=0)

imp ∝ t−3/2 (recall the form of the diffusion propagator), the
integral above should not decrease faster than t−1/2. Such a slow decrease is obtained
from the (k, ω)-integration only from the combination F (v1;k, ω)F (v2;k, ω), which
according to Eq. (7.76) features an infrared singular behavior (−iω + D0k

2)−2 for
small k and ω. In fact, it is just this combination that leads to a time-dependence
proportional to t−1/2 and, compared with that, all other contributions may be ne-
glected. For the important region of integration we thus have ω � ω′, since ω′

is determined by the phonon correlator, which gives the large contribution to the
integral for the typical value �ω′ � kT . We are therefore allowed to approximate
F (v1,v2;k + k′, ω + ω′) by F (v1,v2;k′, ω′). In addition, the same arguments show
that the second term in the square bracket may be omitted. We thus obtain

〈C(t)〉imp = 〈C(t)〉(ϕ=0)
imp e−t/τϕ , (11.150)

where the phase-breaking rate due to electron–phonon interaction is given by

1
τϕ

=
2m2

�2

∫
dk′dω′

(2π)4

∫
dv̂1dv̂2

(4π)2
F (v1,v2;k′, ω′)Dαβγδ(k′, ω′)

[
vα
1 vβ

1 −
1
3
δαβ v2

1

]

×
[
vα
2 vβ

2 −
1
3
δαβ v2

2

]
. (11.151)

For simplicity we consider the Debye model where the lattice vibrations are spec-
ified by the density ni and the mass M of the ions, and by the longitudinal cl and the
transverse ct sound velocities.47 We assume the phonons to have three-dimensional

47The jellium model does not allow inclusion of Umklapp processes in the electron–phonon scat-
tering.
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character. In case of longitudinal vibrations, we have the normal mode expansion of
the displacement field

u(r, t) =
i√
N

∑
k

k̂Qk(t) eik·r , (11.152)

where N is the number of ions in the normalization volume. For the phonon average
we have

〈Qk(t)Qk′(t′)〉 = δk,−k′
�

2Mωk
H(ωk) cosωk(t− t′) , (11.153)

where ωk = clk, provided that k is less than the cut-off wave vector kD, and we
obtain for the Fourier transform of the longitudinal phonon correlator

Dαβγδ
L (k, ω)] =

1
2

kαkβkγkδ H(ωk) [δ(ω − ωk) + δ(ω + ωk)] . (11.154)

Strictly speaking, we encounter in the above derivation H(ω) = 2n(ω) + 1, where
n is the Bose distribution function. However, the present single electron theory
does not take into account that the fermionic exclusion principle forbids scattering
of an electron into occupied states. Obedience of the Pauli exclusion principle is
incorporated by the replacement48

1
2
H(ω) → coth

�ω

2kT
− tanh

�ω

2kT
=

2
sinh �ω

kT

. (11.155)

Upon inserting Eq. (11.154) in the expression Eq. (11.151) for the phase-breaking
rate, we encounter the directional average of expressions of the type

k̂αk̂β

[
vαvβ − δαβ

v2

3

]
= k−2

[
(k · v)2 − k2 v2

3

]
. (11.156)

Altogether the angular averages appear in the combination

ΦL(kl) =
18

πv3
Fk3

I(k, ω)

∫ dv̂
4π

(k · v)2 − k2 v2

3

−iω + iv · k + 1τ

2

+
∫

dv̂
4π

[(k · v)2 − k2 v2

3 ]2

−iω + iv · k + 1/τ


=

2
π

(
kl arctankl

kl − arctankl
− 3

kl

)
, (11.157)

48The argument is identical to the similar feature for the inelastic scattering rate or imaginary part
of the self-energy. In terms of diagrams, we recall that, in the above discussion, we have included
only the effect of the kinetic or Keldysh component of the phonon propagator. Including the
retarded and advanced components makes the electron experience its fermionic nature introducing
the electron kinetic component which carries the tangent hyperbolic factor. As a consequence, a
point also elaborated in reference [91], the zero-point fluctuations of the lattice can not disrupt the
weak-localization phase coherence. A detailed discussion of the Pauli principle and the inelastic
scattering rate is given in Section 11.5 in connection with the electron–electron interaction.
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where the result in the last line is obtained since ω = clk � vF k. For the phase-
breaking rate due to longitudinal phonons we thus obtain

1
τϕ,l

=
π�

2

6mMcl

kD∫
0

dk k2 ΦL(kl)
1

sinh �clk/kT
. (11.158)

We note the limiting behaviors

1
τϕ,l

=


7πζ(3)

12
(kT )3

�nMc4
l

�cl/l � kT � �clkD

π4

30 l (kT )4

�nMc5
l

kT � �cl/l .

(11.159)

The expression Eq. (11.157) for the function ΦL demonstrates in a direct way
the important compensation that takes place in the case of longitudinal phonons
between the two mechanisms contained in L1. First, the term (k ·v)2 corresponds to
mv · (v ·∇)u and represents the coupling of the electrons to the vibrating impurities.
Second, the term −k2 v2/3 is connected with −mv2∇ · u/3, and originates from the
interaction of the electrons with the lattice vibrations. Without this compensation,
each of the mechanisms would appear to be enhanced in an impure metal, and would
lead to an enhanced phase-breaking rate proportional to (kT )2/(nMc3

l l).
For the case of transverse vibrations, we note that Dαβγδ

T is of similar form as
Eq. (11.154) where, however, k̂αk̂γ has to be replaced by (δαγ − k̂αk̂γ) and an addi-
tional factor of 2, which accounts for the multiplicity of transverse modes. We then
obtain a phase-breaking rate due to interaction with transverse phonons, τϕ,t, which
is similar to the expression in Eq. (11.158) with cl and φL replaced by ct and

ΦT(kl) =
3
π

2k3l3 + 3kl− 3(k2l2 + 1) arctankl

k4l4
(11.160)

respectively. In particular, we obtain the limiting behaviors for the phase-breaking
rate due to transverse phonons

1
τϕ,t

=


π2

2
(kT )2

mMc3
t l

�ct/l � kT � �ctkD

π4

20 l (kT )4

�2mMc5
t

kT � �ct/l .

(11.161)

We note that in the high-temperature region, �ct/l � kT � �ctkD, the transverse
contribution is negligible in comparison with the longitudinal one if ct � cl. But the
transverse rate dominates in the case where the transverse sound velocity is much
smaller than the longitudinal one. Such a situation may quite well be realized in
some amorphous metals; then, it is possible to observe a phase-breaking rate of the
form τ−1

ϕ ∝ T 2/l at higher, but not too high, temperatures.49 The predictions of the
theory are in good agreement with magneto-resistance measurements and carefully
conducted experiments of the temperature dependence of the resistance [92].

49A quadratic temperature dependence of the phase-breaking rate is often observed experimen-
tally.
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The physical meaning of the second term in Eq. (11.149) is as follows. It is
appreciable only if the lattice deformation stays approximately constant during the
time the electron spends on its path and leads, in this case, to a cancellation of the
first term. Equivalently, electron–phonon interactions with small energy transfers do
not lead to destruction of phase coherence. The effect of this term is thus effectively
to introduce a lower cut-off in the integral of Eq. (11.158) at wave vector k0 = 1/clτϕ,l.
However, there are no realistic models of phonon spectra where this effect is of
importance. We therefore have the relationships ω′ � kT/� � ω � 1/τϕ. It is
therefore no surprise that the calculated phase-breaking rates are identical to the
inelastic electron–phonon collision rates in a dirty metal [93]. When considering
phase breaking due to electron–electron interaction, which we now turn to, the small
energy transfer interactions are of importance.

11.3.2 Electron–electron interaction

In this section we consider the temperature dependence of the phase-breaking rate
due to electron–electron interaction.50 As already discussed at the beginning of this
section, special attention to electron–electron interaction with small energy transfer
must be exercised due to the diffusion enhancement. In diagrammatic terms we
therefore need to take into account diagrams where the electron–electron interaction
connects also the upper and lower particle lines in the Cooperon.

In Section 11.5 we shall show that the effective electron–electron interaction at low
energies can be represented by a fluctuating field. Its correlation function in a dirty
metal will be given by the expression in Eq. (11.269), which we henceforth employ.
We can therefore obtain the effect on the Cooperon of the quasi-elastic electron–
electron interaction by averaging the Cooperon with respect to a time-dependent
electromagnetic field using the proper correlator. We therefore consider the equation
for the Cooperon in the presence of an electromagnetic field, Eq. (11.81),{

2
∂

∂t
−D0

(
∇x −

ie

�
AT (x, t)

)2

+
1

τe−e

}
CT

t,t′(x,x′) =
1
τ

δ(x− x′) δ(t− t′) ,

(11.162)
where we have chosen a gauge in which the scalar potential vanishes, and 1/τe−e is
the energy relaxation rate due to high-energy electron–electron interaction processes,
i.e. processes with energy transfers ∼ kT .51

To account for the electron–electron interaction with small energy transfers, we
must perform the Gaussian average of the Cooperon with respect to the fluctuating
field. This is facilitated by writing the solution of the Cooperon equation as the path
integral

CT
t,t′(R,R′) =

1
2τ

xt =x∫
xt′=x′

Dxt e−S[xt ] , (11.163)

50We follow reference [94].
51As will become clear in the following, the separation in high- and low-energy transfers takes

place at energies of the order of the temperature. However, in the following we shall not need to
specify the separation explicitly.
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where the Euclidean action consists of two terms

S = S0 + SA , (11.164)

where

S0[xt] =

t′∫
t

dt1

(
ẋ2

t1

4D0
+

1
τe−e

)
(11.165)

and

SA[xt] =
ie

�

t′∫
t

dt1 ẋt1 ·AT (xt1 , t1) . (11.166)

In terms of diagrams, the Gaussian average corresponds to connecting the external
field lines pairwise in all possible ways by the correlator of the field fluctuations,
thereby producing the effect of the low-energy electron–electron interaction. Since the
fluctuating vector potential appears linearly in the exponential Cooperon expression,
the Gaussian average with respect to the fluctuating field is readily done

CT
t,t′(R,R′) =

1
2τ

rt =R∫
r′t =R′

Drt e−( S0[xt ] + 〈SA〉[xt ] ) (11.167)

where the averaged action 〈SA〉 is expressed in terms of the correlator of the vector
potential

〈SA〉[xt] =
e2

2�2

t∫
t′

dt1

t∫
t′

dt2 ẋµ(t1) ẋν(t2) 〈AT
µ (xt2 , t1)A

T
ν (xt2 , t2)〉 . (11.168)

If we recall the definition of AT (xt, t), Eq. (11.77), we have

〈AT
µ (xt2 , t1)A

T
ν (xt2 , t2)〉 = 2

∫
dq

(2π)d

∫
dω

2π
eiq·(xt1−xt2)〈AµAν〉qω

×
(

cosω
t1 + t2

2
+ cosω

t1 − t2
2

)
, (11.169)

where we have introduced the notation

〈AµAν〉qω ≡ 〈Aµ(q, ω)Aν (−q,−ω)〉 . (11.170)

The electric field fluctuations could equally well have been represented by a scalar
potential

〈Aµ(q, ω)Aν(−q,−ω)〉 =
1
ω2
〈Eµ(q, ω)Eν(−q,−ω)〉

=
qµqν

ω2
〈φ(q, ω)φ(−q,−ω)〉 . (11.171)
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In Section 11.5 we show that the electron–electron interaction with small energy
transfers, �ω � kT , is determined by the temperature, T , and the conductivity of
the sample, σ0, according to52

〈AµAν〉qω =
2kT

ω2σ0

qµqν

q2
. (11.172)

Upon partial integration we notice the identity (the boundary terms are seen to
vanish as x−t = xt)

t∫
t′

dt1

t∫
t′

dt2 qµ qν ẋµ(t1) ẋν(t2)eiq·(xt1−xt2 )

(
cos

ω(t1 + t2)
2

+ cos
ω(t1 − t2)

2

)

= −
t∫

t′

dt1

t∫
t′

dt2 eiq·(xt1−xt2) ω
2

4

(
cos

ω(t1 + t2)
2

− cos
ω(t1 − t2)

2

)
(11.173)

and obtain

〈SA〉[xt] = −e2kT

2σ0

′∫
dq

(2π)d

∫
dω

2π

t∫
t′

dt1

t∫
t′

dt2
eiq·(xt1−xt2 )

q2

(
cos

ω(t1 + t2)
2

− cos
ω(t1 − t2)

2

)
.

(11.174)
Performing the integration over ω and t2, the expression for the Cooperon becomes

CT
t,−t(x,x′) =

1
2τ

xt =x∫
x−t =x′

Dxt e
−

t∫
−t

dt1

{
ẋt1
4D0

+ 1
τ e−e + 2e2kT

σ0

′∫ dq

(2π )2
q−2(1−cos(q·(xt1−x−t1)))

}
.

(11.175)
The singular term is regularized by remembering that in Eq. (11.174) the ω-integra-
tion actually should have been terminated, in the present context, at the large fre-
quency kT/�. The factor exp{iq · (xt1 − xt2)} does therefore not reduce strictly to
1 for the first term in the parenthesis in Eq. (11.174) as |xt1 − xt2 | ≥ (D0�/kT )1/2,
and this oscillating phase factor provides the convergence of the integral. We should
therefore cut off the q-integral at the wave vector satisfying q = (kT/�D0)1/2 ≡ L−1

T ,
as indicated by the prime on the q-integration in the two previous equations.

Introducing new variables

Rt =
xt + x−t√

2
, rt =

xt − x−t√
2

(11.176)

52Since the time label T now has disappeared, no confusion should arise in the following where T
denotes the temperature. We recall Section 6.5, and note that the relation Eq. (11.172) is equivalent
to the statement that the low-frequency electron–electron interaction in a disordered conductor is
identical to the Nyquist noise in the electromagnetic field fluctuations.
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the path integral separates in two parts53

Ct,−t(R,R) =
1

2
√

2τ

∞∫
−∞

dR0

Rt =
√

2R∫
Rt=0=R0

DRt e
−

t∫
0
dt′

Ṙ2
t′

2D0

×
rt =0∫

r0=0

Drt e
−

t∫
0
dt′
{

ṙ2
t′

4D0
+ 2

τ e−e + 2e2kT
σ0

′∫ dq

(2π )2
q−2(1−cos(

√
2q·rt′))

}
(11.177)

The path integral with respect to Rt gives the probability that a particle started at
position R0 at time t = 0 by diffusion reaches the point

√
2R (recall Eq. (7.103)).

Integrating this probability over all possible starting points is identical to integrating
over all final points and by normalization gives unity. We are thus left with the
expression for the Cooperon

Ct,−t =
1

2
√

2τ

ρt =0∫
ρ0=0

Drt̄ e
−

t∫
0
dt̄

(
ṙt̄

2

4D0
+ V (rt̄ )

)
, (11.178)

where we have introduced the notation

V (r) =
2

τe−e
+

2e2kT

σ0

′∫
dq

(2π)d
q−2

(
1− cos(

√
2q · r)

)
. (11.179)

As expected from translational invariance, the Cooperon is independent of position.
We have thus reduced the problem of calculating the quantum correction to the

conductivity,

δσ(ω) = −4e2D0τ

π�

∞∫
−∞

dt eiωt Ct,−t(r, r) , (11.180)

in the presence of electron–electron interaction, to solving for the Green’s function
the imaginary time Schrödinger problem

{∂t −D0r + V (r)}Ct,t′(r, r′) =
1

2
√

2 τ
δ(r− r′) δ(t− t′) . (11.181)

In the three-dimensional case the first term in the integrand of Eq. (11.179) gives
rise to a temperature dependence of the form T 3/2. This is the same form as the one
we shall find in Section 11.5 for the inelastic scattering rate due to electron–electron
interaction in a dirty metal. This term can thus be joined with the first term of
Eq. (11.179). We note that the description of the low-energy behavior thus joins up
smoothly with the description of the high-energy behavior, as it should.

53This is immediately obtained by using the standard discretized representation of a path integral.



420 11. Disordered conductors

We thus have for the potential in the three-dimensional case

V3(r) =
2

τe−e
+ Ṽ3(r) (11.182)

where

Ṽ3(r) =
−e2kT√
2π�2σ0


1
r r � LT

2
√

2
π L−1

T r � LT .

(11.183)

Fourier-transforming Eq. (11.181) with respect to time and taking the static limit we
obtain

{−D0r + V3(r)}Cω=0(r, r′) =
1

2
√

2τ
δ(r− r′) . (11.184)

Solving this equation to first order in the potential Ṽ3 gives

C1(0,0, ω = 0) = − e2kT

4π�2τD2
0σ0

{
Lε

πLT

(
e
−2

√
2 L ε

L T − 1
)

+ Ei

(
−2
√

2
Lε

LT

)}
(11.185)

where Ei is the exponential integral54 and

Lε =
√

D0τe−e . (11.186)

In accordance with the calculation of the inelastic lifetime in section 11.5 we have

LT

Lε
∼

(kTτ
�

)1/4

kFl
. (11.187)

We can therefore expand the expression in Eq. (11.185), and obtain for the quantum
correction to the conductivity

δσ =
e2

2π2�Lε

(
1 +

4πe2kTLε

�2D0σ0
ln

LT

Lε

)
, (11.188)

where the second term is the correction due to collisions with small energy transfer,
proportional to T 1/4 ln T . In the two-dimensional case we obtain from Eq. (11.179)
for the potential

V2(r) =
2

τe−e
+

e2kT

π�2σ0

L−1
T∫

0

dq
1− J0(

√
2 qr)

q
, (11.189)

where J0 denotes the Bessel function. We observe the limiting behavior of the po-
tential

V2(r) =
2

τe−e
+

e2kT

π�2σ0


1
4

(
r

LT

)2

r � LT

(
1− J0(

√
2 r

LT
)
)

ln
√

2 r
LT

− C + ln 2 r � LT ,

(11.190)

54Ei(x) =
∫ x
−∞ dt et

t
for x < 0.
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where C is the Euler constant.
We then get the following equation for the Cooperon in the region of large values

of r{
−D0r +

2
τe−e

+
e2kT

π�2σ0
ln
√

2 r

LT

}
Cω=0(r, r′) =

1
2
√

2τ
δ(r− r′) . (11.191)

The electron typically diffuses coherently the distance
√

D0τe−e. According to Sec-
tion 11.5, for the relaxation time in two dimensions for processes with large energy
transfers, we have

√
D0τe−e ∼

√
D2

0N2(0)�2

kT
∼ (kFl)1/2LT , (11.192)

where N2(0) denotes the density of states at the Fermi energy in two dimensions. The
electron thus diffuses coherently far into the region where the potential is logarithmic,
and the slow change of the potential allows the substitution

2
τe−e

+
e2kT

π�2σ0
ln
√

2 r

LT
→ e2kT

π�2σ0
ln
√

2τe−eD0

LT
. (11.193)

Inserting into Eq. (11.191), we can read off the phase-breaking rate due to electron–
electron interaction in a dirty conductor in two dimensions55

1
τϕ

=
kT

4π�2D0N2(0)
ln 2π�D0N2(0) . (11.194)

The phase-breaking rate due to diffusion-enhanced electron–electron interaction thus
depends in two dimensions linearly on the temperature at low temperatures, kT <
�/τ .

The above result for the phase-breaking rate can be understood as a consequence
of the phase-breaking rate setting the lower energy cut-off, �/τϕ, for the efficiency of
inelastic scattering events in destroying phase coherence. To show this we note that
the path integral expression for the Cooperon, Eq. (11.167), is the weighted average
with respect to diffusive paths. Since this weight is convex, we have

Ct ≥ C
(0)
t e−〈〈(ϕ[xc l

t ])2〉ee〉imp , (11.195)

where the second bracket signifies the average with respect to diffusive paths of the
phase difference between the two interfering alternatives, Eq. (11.129),

〈〈(ϕ[xcl
t ])2〉ee〉imp =

xt/2=x∫
x−t/2=x

Dxt Pt[xt] 〈(ϕ[xcl
t ])2〉ee

xt/2=x∫
x−t/2=x

Dxt Pt[xt]
(11.196)

55Many experiments are performed on thin metallic films. For such a quasi-two-dimensional case
we can express the result for the phase breaking due to electron–electron interaction in a film of

thickness a as 1
τϕ

= e2kT
2πaσ0�2 ln πaσ0�

e2 .
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and C
(0)
t is the return probability in the absence of the fluctuating field, i.e. the

denominator in the above equation. The first bracket signifies the Gaussian average
over the fluctuating field, i.e. the low-energy electron–electron interaction,

〈(ϕ[xcl
t ])2〉ee =

e2

�2

t/2∫
−t/2

dt1

t/2∫
−t/2

dt2
(
〈φ(xcl

t1 − xcl
t2 , t1 − t2) φ(0, 0)〉ee

− 〈φ(xcl
t1 − xcl

t2 , t1 + t2) φ(0, 0)〉ee
)

, (11.197)

where we now choose to let the scalar potential represent the fluctuating field.
Fourier-transforming we encounter

〈〈φ(xcl
t1−xcl

t2 , t1−t2)φ(0, 0)〉ee〉imp = 2
∫

dq
(2π)d

∫
dω

2π
〈eiq·(xcl

t1
−xcl

t2
)〉imp 〈φφ〉qω

× (cosω(t1 + t2)− cosω(t1 − t2)) , (11.198)

where the correlator for the fluctuating potential is specified in Eq. (11.269). For a
diffusion process we have, according to Eq. (7.104),56

〈eiq·(xcl
t1

−xcl
t2

)〉imp = eiq·〈(xcl
t1

−xcl
t2

)〉imp = e−D0 q2|t1−t2| (11.199)

and we get

〈〈(ϕ[xcl
t ])2〉ee〉imp =

2e2kT

πσ0

t/2∫
−t/2

dt1

t/2∫
−t/2

dt2

∫
dq

(2π)d

∫
dω

2π
e−

1
2 D0 q2|t1−t2|−iω(t1−t2) , (11.200)

where the ω-integration is limited to the region 1/τϕ ≤ |ω| ≤ kT/�. The averaged
phase difference is seen to increase linearly in time:

1
2
〈〈(ϕ[xcl

t ])2〉ee〉imp =
t

τϕ
(11.201)

at a rate in accordance with the previous result for the phase-breaking rate, Eq.
(11.194).

The lack of effectiveness in destroying phase coherence by interactions with small
energy transfers is reflected in the compensation at small frequencies between the two
cosine terms appearing in the expression for the phase difference, Eq. (11.198). In the
case of diffusion-enhanced electron–electron interaction this compensation is crucial
as there is an abundance of scattering events with small energy transfer, whereas
the compensation was immaterial for electron–phonon interaction where the typical
energy transfer is determined by the temperature.

56The last equality is an approximation owing to the constraint, x−t/2 = xt/2, however, for large
times a very good one.
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Whereas the phase-breaking rate for electron–phonon interaction is model depen-
dent, i.e. material dependent, we note the interesting feature that the phase-breaking
rate for diffusion-enhanced electron–electron interaction is universal. In two dimen-
sions we can rewrite

1
τϕ

=
e2σ0kT

2π�2
ln

kFl

2
. (11.202)

Phase-breaking rates in accordance with Eq. (11.194) have been extracted from
numerous magneto-resistance measurements; see, for example, references [88] and
[89]. We note that at sufficiently low temperatures the electron–electron interaction
dominates the phase-breaking rate in comparison with the electron–phonon interac-
tion.

11.4 Anomalous magneto-resistance

From an experimental point of view, the disruption of coherence between time-
reversed trajectories by an externally controlled magnetic field is the tool by which
to study the weak-localization effect. Magneto-resistance measurements in the weak-
localization regime has considerably enhanced the available information regarding
inelastic scattering times (and spin-flip and spin-orbit scattering times). The weak-
localization effect thus plays an important diagnostic role in materials science.

The influence of a magnetic field on the Cooperon was established in Section
11.2.4, and we have the Cooperon equation{

−iω −D0{∇x −
2ie

�
A(x)}2 + 1/τϕ

}
Cω(x,x′) =

1
τ

δ(x− x′) . (11.203)

We can now safely study the d.c. conductivity, i.e. assume that the external electric
field is static, so that its frequency is equal to zero, ω = 0, as the Cooperon in an
external magnetic field is no longer infrared divergent. The Cooperon is formally
identical to the imaginary-time Schrödinger Green’s function for a fictitious particle
with mass equal to �/2D0 and charge 2e moving in a magnetic field (see Exercise C.1
on page 515). To solve the Cooperon equation for the magnetic field case, we can
thus refer to the equivalent quantum mechanical problem of a particle in an external
homogeneous magnetic field. Considering the case of a homogeneous magnetic field,57

and choosing the z-direction along the magnetic field and representing the vector
potential in the Landau gauge, A = B (−y, 0, 0), the corresponding Hamiltonian is

H =
D0

�
(p̂x + 2eBŷ)2 +

D0

�

(
p̂2

y + p̂2
z

)
. (11.204)

The problem separates
ψ(x, y) = e

i
�

px x e
i
�

pz z χ(y) , (11.205)

where the function χ satisfies the equation

−�D0

2
d2χ(y)

dy2
+

1
2

�

2D0
ω̃2

c

(
y − px

2eB

)2

χ(y) = Ẽ χ(y) (11.206)

57The case of an inhomogeneous magnetic field is treated in reference [95].
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the shifted harmonic oscillator problem where ω̃c is the cyclotron frequency for the
fictitious particle, ω̃c ≡ 4D0|e|B/�, so that the energy spectrum is E = Ẽ+�D0Q

2
z =

�ω̃c(n + 1/2) + �D0Q
2
z, n = 0, 1, 2, ...; Qz = 2πnz/Lz, nz = 0,±1,±2, ... . In the

particle in a magnetic field analogy, n is the orbital quantum number and px is the
quantum number describing the position of the cyclotron orbit, and describes here the
possible locations of closed loops. The Cooperon in the presence of a homogeneous
magnetic field of strength B thus has the spectral representation

C0(x,x′) =
∑
Qz

′ nmax∑
n=0

∫
dpx

2π�

ψn,px (x)ψ∗
n,px

(x′)
4D0|e|Bτ�−1(n + 1/2) + D0 τQ2

z + τ/τϕ
, (11.207)

where the ψn,px are the Landau wave functions

ψn,px (x) =
1√
Lz

e
i
�

px x eiQz z χn(y − px/2eB) (11.208)

and χn(y) is the harmonic oscillator wave function. In accordance with the derivation
of the Cooperon equation, we can describe variations only on length scales larger than
the mean free path. The sum over the orbital quantum number n should therefore
terminate when D0τ |e|Bnmax ∼ �, i.e. at values of the order of nmax � l2B/l2, where
lB ≡ (�/|e|B)1/2 is the magnetic length.

To calculate the Cooperon for equal spatial values, C0(x,x), we actually do not
need all the information contained in Eq. (11.207), since by normalization of the wave
functions in the completeness relation we have∫ ∞

−∞

dpx

2π�
χ∗

n

(
y − px

2eB

)
χn

(
y − px

2eB

)
= −2eB

2π�

∫ ∞

−∞
dy |χn(y)|2 = −2eB

2π�

(11.209)
and thereby

C0(x,x) = −2eB

2π�

∑
Qz

′ nmax∑
n=0

1
4D0|e|Bτ�−1(n + 1/2) + D0 τQ2

z + τ/τϕ
. (11.210)

11.4.1 Magneto-resistance in thin films

We now consider the magneto-resistance of a film of thickness a, choosing the di-
rection of the magnetic field perpendicular to the film.58 Provided the thickness
of the film is smaller than the phase coherence length, a � Lϕ (the thin film, or
quasi-two-dimensional criterion), or the usually much weaker restriction that it is
smaller than the magnetic length, a � lB, only the smallest value of Qz = 2π n/Lz,
n = 0,±1,±2, ... contributes to the sum. Since the smallest value is Qz = 0, we
obtain, according to Eq. (11.59), for the quantum correction to the conductivity

δσ(B) =
e3BD0τ

π2�2a

nmax∑
n=0

1
4D0|e|Bτ�−1(n + 1/2) + τ/τϕ

. (11.211)

58The strictly two-dimensional case can also be realized experimentally, for example by using the
two-dimensional electron gas accumulating in the inversion layer in a MOSFET or heterostructure.
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Employing the property of the di-gamma function ψ (see, for example, reference [96])

ψ(x + n) = ψ(x) +
n−1∑
n=0

1
x + n

(11.212)

we get for the magneto-conductance

δGαβ(B) =
e2

4π2�
f̃2(4D0|e|B�

−1τϕ) δαβ , (11.213)

where

f̃2(x) = ψ

(
1
2

+
1
x

)
+ ψ

(
3
2

+ nmax +
1
x

)
. (11.214)

The magneto-conductance of a thin film is now obtained by subtracting the zero field
conductance. In the limit B → 0, the sum can be estimated to become

nmax∑
n=0

1
4D0|e|Bτ�−1(n + 1/2) + τ/τϕ

→ ln(nmax4D0|e|B�
−1τϕ) . (11.215)

Using the property of the di-gamma function

lim
n→∞

ψ

(
3
2

+ n +
1
x

)
� ln n (11.216)

we finally arrive at the low-field magneto-conductance of a thin film

∆Gαβ(B) ≡ δGαβ(B) − δGαβ(B → 0) =
e2

2π2�
f2(B/Bϕ) δαβ , (11.217)

where

f2(x) = lnx + ψ

(
1
2

+
1
x

)
(11.218)

and Bϕ = �/4D0|e|τϕ, the (temperature-dependent) characteristic scale of the mag-
netic field for the weak-localization effect, is determined by the inelastic scatter-
ing. This scale is indeed small compared with the scale for classical magneto-
resistance effects Bcl ∼ m/|e|τ , as Bϕ ∼ Bcl �/εFτϕ.59 The weak-localization
magneto-conductance is seen to be sensitive to very small magnetic fields, namely
when the magnetic length becomes comparable to the phase coherence length, lB ∼
Lϕ, or equivalently, ωcτ ∼ �/εFτϕ. Since the impurity mean free time, τ , can be
much smaller than the phase coherence time τϕ, the above description can be valid
over a wide magnetic field range where classical magneto-conductance effects are ab-
sent. Classical magneto-conductance effects are governed by the orbit bending scale,

59In terms of the mass of the electron we have for the mass of the fictitious particle �/2D0 ∼
m�/εFτ , and the low magnetic field sensitivity can be viewed as the result of the smallness of the
fictitious mass in the problem.
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ωcτ ∼ 1, whereas the weak-localization quantum effect sets in when a loop of typical
area L2

ϕ encloses a flux quantum.60 We note the limiting behavior of the function

f2(x) =


x2

24 for x � 1

ln x for x� 1 .

(11.219)

The magneto-conductance is positive, and seen to have a quadratic upturn at low
fields, and saturates beyond the characteristic field in a universal fashion, i.e. in-
dependent of sample parameters.61 The magneto-resistance is therefore negative,
∆R = −∆G/G2

cl, which is a distinct sign that the effect is not classical, since we are
considering a macroscopic system.62

Weak localization magneto-conductance is also relevant for a three-dimensional
sample, and cleared up a long-standing mystery in the field of magneto-transport in
doped semiconductors. For details on the three-dimensional case we refer the reader
to chapter 11 of reference [1].

The negative anomalous magneto-resistance can be understood qualitatively from
the simple interference picture of the weak-localization effect. The presence of the
magnetic field breaks the time-reversal invariance, and upsets the otherwise identical
values of the phase factors in the amplitudes for traversing the time-reversed weak-
localization loops. The quantum interference term for a loop c is the result of the
presence of the magnetic field changed according to

Ac A∗
c̄ → |A(B=0)

c |2 exp
{

2ie

�

∮
c

dx̄ ·A(x̄)
}

= |A(B=0)
c |2 e

2ie
�

Φc , (11.220)

where Φc is the flux enclosed by the loop c. The weak-localization interference term
acquires a random phase depending on the loop size, and the strength of the magnetic
field, decreasing the probability of return, and thereby increasing the conductivity.
The negative contribution from each loop in the impurity field to the conductance
is modulated in accordance with the phase shift prescription for amplitudes by the
oscillatory factor, giving the expression

〈G(B)〉−〈G(O)〉 =
e2

2π2�
〈
∑

c

|A(B=0)
c |2 {1−cos(2πΦc/Φ0)} e−tc /τϕ 〉imp . (11.221)

The summation is over all classical loops in the impurity field returning to within a
distance of the mean free path to a given point, and tc is the duration for traversing

60Beyond the low-field limit, ωcτ < �/εFτ , the expression for the magneto-conductance can not
be given in closed form, and its derivation is more involved, since we must account for the orbit
bending due to the magnetic field, the Lorentz force [97]. When the impurity mean free time τ
becomes comparable to the phase coherence time τϕ , we are no longer in the diffusive regime, and
a Boltzmannian description must be introduced [98].

61Experimental observations of the low field magneto-resistance of thin metallic films are in re-
markable good agreement with the theory. The weak-localization effect is thus of importance for
extracting information about inelastic scattering strengths, which is otherwise hard to come at. For
reviews of the experimental results, see references [88] and [89].

62The classical magneto-resistance of a macroscopic sample calculated on the basis of the Boltz-
mann equation is positive.
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the loop c, and Φ0 is the flux quantum Φ0 = 2π�/2|e|. The sum should be performed
weighted with the probability for the realization of the loop in question, as expressed
by the brackets. The weight of loops that are longer than the phase coherence length
is suppressed, as their coherence are destroyed by inelastic scattering. In weak mag-
netic fields, only the longest loops are influenced by the phase shift due to the mag-
netic field. It is evident from Eq. (11.221) that the low field magneto-conductance
is positive and quadratic in the field.63 The continuing monotonic behavior as a
function of the magnetic field until saturation is simply a geometric property of dif-
fusion, viz. that small diffusive loops are prolific. Instead of verifying this statement,
let us turn the argument around and use our physical understanding of the weak
localization effect to learn about the distribution of the areas of diffusive loops in
two dimensions. Rewriting Eq. (11.210) we have in two dimensions

C0(x,x) =
∫ ∞

0

dt e−t/τϕ B

τΦ0

nmax∑
n=0

e
− 4π B D0

Φ0
(n+1/2)t

. (11.222)

For times t > τ we can let the summation run over all natural numbers and we can
sum the geometric series to obtain

C0(x,x) =
∫ ∞

0

dt
e−t/τϕ

4πτD0t

2πBD0t

Φ0

1
sinh 2πBD0t

Φ0

. (11.223)

The factors independent of the magnetic field are the return probability and the
dephasing factor. Representing the factors depending on the field strength, which
describes the influence of the magnetic field on the quantum interference process, by
its cosine transform

2πBD0t

Φ0

1
sinh 2πBD0t

Φ0

=
∫ ∞

−∞
dS cos

SB

Φ0
ft(S) (11.224)

and inverting gives

ft(S) =
1

4D0t

1

cosh2
(

S
4D0t

) . (11.225)

For the weak localization contribution to the conductance we can therefore write

δG(B) = −2e2D0τ

π�

∫ ∞

0

dt
e−t/τϕ

4πτD0t

∫ ∞

0

dS ft(S) cos
(

BS

Φ0

)
(11.226)

and we note that ft(S) is normalized, and has the interpretation of the probability
for a diffusive loop of duration t to enclose the area S.

For the average size of a diffusive loop of duration t we have

〈S〉t ≡
∫ ∞

0

dS Sft(S) = 4D0t ln 2 , (11.227)

63The minimum value of the magneto-resistance occurs exactly for zero magnetic field value, and
the weak localization effect is thus one of the few effects that can be used as a reference for zero
magnetic field.
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i.e. the typical size of a diffusive loop of duration t is proportional to D0t.
For the fluctuations we have

〈S2〉t ≡
∫ ∞

−∞
dS S2ft(S) = 8π2(D0t)2 (11.228)

and we can write

ft(S) =
π√

2〈S2〉t
1

cosh2 πS√
2〈S2〉t

. (11.229)

The probability distribution for diffusive loops is thus a steadily decreasing function
of the area.

The weak localization effect in cylinders and rings leads through the Aharonov–
Bohm effect to an amazing manifestation of the quantum mechanical superposition
principle at the macroscopic level. Furthermore, the weak localization effect can
be reversed to weak anti-localization if the impurities, such as is the case in heavy
compounds, give rise to spin-orbit scattering. Discussion of these effects can be found
in chapter 11 of reference [1].

11.5 Coulomb interaction in a disordered conductor

The presence of impurities changes the effective electron–electron interaction. We
shall study this effect in the weak disorder limit, εFτ � �, which is the common situ-
ation in conductors such as metals and semiconductors. The change from ballistic to
diffusive motion leads to diffusion enhancement of the electron–electron interaction.
This leads to interesting observable effects such as the temperature dependence of
the conductivity of a three-dimensional sample being proportional to the square root
of the temperature [99], σ ∝

√
T , instead of the usually unnoticeable T 2-term due to

Umklapp processes in a clean metal. For experimental evidence of the square root
temperature dependence see references [100, 101].

Let us assume that the inverse screening length is much smaller than the Fermi
wavelength; i.e. the range of the screened Coulomb potential, V , is much larger than
the spacing between the electrons. The exchange correction to the electron energy
ελ due to electron–electron interaction is then much larger than the direct or Hartree
term. We shall use the method of exact impurity eigenstates and, since diagonal
elements dominate, Σλ ≡ Σλλ, we have for the exchange self-energy

Σex
λ = −

∑
λ′occ.

∫
dx
∫

dx′ V (x− x′)ψ∗
λ(x)ψ∗

λ′ (x′)ψλ(x′)ψλ′(x) , (11.230)

where the summation is over all occupied states λ′, i.e. all the states below the Fermi
level since for the moment we assume zero temperature. We are interested in the
mean energy shift averaged over all states with energy ξ (measured from the Fermi
energy)

Σex(ξ) =
1

N0V

∑
λ

〈δ(ξ − ξλ)Σex
λ 〉 (11.231)
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for which we obtain the expression, say ξ > 0,

Σex(ξ) = − 1
N0V

0∫
−∞

dξ′
∫

dx
∫

dx′ V (x− x′)

×
〈∑

λ,λ′

′
δ(ξ − ξλ) δ(ξ′ − ξλ′ ) ψ∗

λ(x)ψ∗
λ′(x′)ψλ(x′)ψλ′(x)

〉
, (11.232)

where the prime on the summation sign indicates that the sum is only over states λ′

occupied and states λ unoccupied. The impurity-averaged quantity is the product of
two spectral weight functions in the exact impurity eigenstate representation, except
for the restrictions on the summations. However, these are irrelevant as the main
contribution comes from ξ′ � ξ. In the standard impurity averaging technique we
encounter in the weak-disorder limit, 1/kFl � 1, the diffusion ladder, and we obtain

Σex(ξ) = − 1
2π

∞∫
ξ/�

dω

∫
dq

(2π)d
V (q)

D0 q2

ω2 + (D0 q2)2
. (11.233)

In the above model of a static interaction the average change in energy is purely
real. The result obtained can be used to calculate the change in the density of states.
To lowest order in the electron–electron interaction we have for the change in density
of states due to the electron–electron interaction

δN(ξ) ≡ 〈N(ξ)〉 −N0(ξ) = −N0(ξ)
∂Σex(ξ)

∂ξ

=
N0

2π�

∫
dq

(2π)d
V (q)

D0 q2(
ξ
�

)2

+ (D0 q2)2
(11.234)

as the change in the density of states due to disorder is negligible in the weak-disorder
limit.

Exercise 11.3. Verify that if V is a short-range potential, the change in the density
of states near the Fermi surface due to electron–electron interaction is in the weak-
disorder limit

δN3(ξ)
N3(0)

=
V (q = 0)
4
√

2π2

√
|ξ|

(�D0)3/2
(11.235)

in three dimensions and, in two dimensions,

δN2(ξ)
N2(0)

=
V (q = 0)
(2π)2�D0

ln
|ξ|τ
�

. (11.236)
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The singularity in the density of states is due to the spatial correlation of the exact
impurity wave functions of almost equal energy, as described by the singular behavior
of the spectral correlation function. The singularity in the density of states gives rise
to the zero-bias anomaly, a dip in the conductivity of a tunnel junction at low voltages
[102].

Quite generally the propagator in the energy representation satisfies, in the pres-
ence of disorder and electron–electron interaction, the equation

GR
λλ′ (E) = G

(0)R
λλ′ (E) +

∑
λ1λ′

1

G
(0)R
λλ1

(E) ΣR
λ1λ′

1
(E) GR

λ′
1λ′(E) , (11.237)

where the propagator in the absence of electron–electron interaction is diagonal,
G

(0)R
λλ′ (E) = G

(0)R
λ (E) δλλ′ , and specified in terms of the exact impurity eigenstates

(here in the momentum representation)

G
R(A)
0 (p,p′, E) =

∑
λ

ψλ(p)ψ∗
λ(p′)

E − ελ
+
(−) i0

≡
∑

λ

ψλ(p)ψ∗
λ(p′)G

(0)R(A)
λ (E) .

(11.238)
Since energy eigenstates are only spatially correlated if they have the same energy,
only the diagonal terms, ΣR

λ (E) ≡ ΣR
λλ(E), contribute in Eq. (11.237), and we obtain

the result that the propagator is approximately diagonal and specified by

GR
λ (E) =

1
E − ελ − ΣR

λ (E)
. (11.239)

The imaginary part of the self-energy describes the decay of an exact impurity eigen-
state due to electron–electron interaction. When calculating the inelastic decay rate,
we should only count processes starting with the same energy, and on the average in
the random potential we are therefore interested in the quantity

ΣR
E′(E) =

1
N0V

∑
λ

〈δ(E′ − ξλ)ΣR
λ (E)〉 . (11.240)

To lowest order in the electron–electron interaction we can set E equal to E′ in
Eq. (11.240) because their difference is the real part of the self-energy, and we get
for the inelastic electron–electron collision rate

1
τe−e(E, T )

= −2�m ΣR
E(E) = i

(
ΣR

E(E)− ΣA
E(E)

)

= − 1
2π�N0V

∑
λ

〈(
ΣR

λ (E)− ΣA
λ (E)

)(
G

(0)R
λ (E)−G

(0)A
λ (E)

)〉
,

(11.241)
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where we have expressed the delta function in Eq. (11.240) in terms of the spec-
tral function. We thus have to impurity average a product of a self-energy and
a propagator, say the retarded self-energy and the advanced propagator, presently
both expressed in the exact impurity eigenstate representation. In the weak-disorder
limit, kFl � 1, the contributions to the collision rate are therefore specified in terms
of the Diffuson and the effective electron–electron interaction as depicted in Figure
11.6. For the case of the product of the retarded self-energy and the advanced prop-
agator there are contributions from the two diagrams depicted in Figure 11.6. In the
case of the retarded interaction, the Diffuson occurs only for the case where the ki-
netic Green’s function appears right at the emission vertex since impurity correlators
effectively decouple momentum integrations (recall the similar analysis in connection
with Eq. (11.82)).

D

R K

R

p, E p′, E

p − �q p′ − �q

q, ω

E − �ω

A A

E − �ω

+ D

R R

K

p, E p′, E

p − �q p′ − �q

q, ω

E − �ω

A A

E − �ω

Figure 11.6 Lowest order interaction diagrams for the inelastic collision rate.

We then obtain for the inelastic collision rate or energy relaxation rate in terms
of the Diffuson and the electron–electron interaction

1
τe−e(E, T )

= − 1
2�V 2

�m

(∫
dq

(2π)3

∫
dω

2π
D(q, ω)(V

R
(q, ω)− V

A
(q, ω))u4

×
∑
pp′

GR(E − �ω,p− �q)GA(E,p′)GR(E − �ω,p′ − �q)GA(E,p)

×
(

tanh
E − �ω

2kT
+ coth

�ω

2kT

))
. (11.242)

Here we have used that the effective Coulomb interaction has similar statistics prop-
erties as bosons, and in arriving at Eq. (11.242) we have in fact used the fluctuation–
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dissipation relation that relates the kinetic component of the effective Coulomb in-
teraction to the spectral component

V
K
(q, ω) =

(
V

R
(q, ω)− V

A
(q, ω)

)
coth

�ω

2kT
(11.243)

accounting for the second term arising from the second diagram in Figure 11.6.64

At this point, we benefit in interpretation from an important feature of the de-
veloped real-time non-equilibrium diagram technique, viz. that for the choice of
propagators we have made, the quantum statistics of fermions and bosons manifest
itself in a distinct way in diagrams as noted in Section 5.4. In the first diagram in
Figure 11.6, where the retarded interaction appears, it leads (according to the dia-
grammatic rules of Section 5.4) to the appearance of the quantum statistics of the
fermions, accounting for the first term in Eq. (11.242). It is important that this term
occurs in combination with the term containing the boson statistical properties of
the effective Coulomb interaction, and that the boson kinetic component couples to
the electrons as a classical external field. This feature is generic, and leads in the
present case to the physical feature that zero-point fluctuations do not cause dissipa-
tive effects. In the present context it corresponds to the fact that the imaginary part
of the self-energy, the inelastic collision rate, for an electron on the Fermi surface,
E = 0, vanishes at zero temperature. Or equivalently, that in accordance with the
exclusion principle the lifetime of an electron on the Fermi surface, E = 0, at zero
temperature is infinite.65

The momentum integrals over the impurity-averaged propagators are immediately
performed and we obtain

�

τe−e(E, T )
=
∫

dq
(2π)3

∫
dω

2π
�mV

R
(q, ω) �eD(q, ω)

(
tanh

E − �ω

2kT
+ coth

�ω

2kT

)
(11.244)

from which we can calculate the collision rate.
The effective electron–electron interaction itself, specifying the electron self-energy,

is also changed owing to the presence of impurities. It is thus the dynamically
screened electron–electron interaction in the presence of impurities, as expressed by
the dielectric function, ε(q, ω),

V
R
(q, ω) =

V (q)
ε(q, ω)

, (11.245)

64In the calculation in Section 11.3.2 of the weak localization phase-breaking rate due to electron–

electron interaction with small energy transfers, only the kinetic component of the interaction, V
K

,
was included, but this is justified by the presence of its quantum statistics factor making it the
dominant component in the low frequency regime. This is the reason for the success of the single-
particle description used for the calculation, where the electron–electron interaction is represented
by a Gaussian distributed classical stochastic potential since it has identical properties with respect
to the dynamical indices as the kinetic component.

65Such spurious zero-point fluctuation effects are with frequency conjectured in the literature for
various physical quantities. For an early rebuttal in the context of weak localization see reference
[91].
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which appears in Eq. (11.244), and not the bare Coulomb interaction, V (q). The
basic excitation of the bare Coulomb potential in an electron gas is the particle–
hole excitation, and it will lead to screening of the interaction. It is sufficient to
use the random phase approximation where additional interaction decorations by
electron–electron interactions are negligible since the disorder effects are driven by
the long ranged Diffuson.66 Before averaging with respect to the random impu-
rity potential we thus have the diagrammatic matrix representation of the effective
electron–electron interaction

qω
=

q
+

q

p−E−

p+E+

q

+
q

p−E−

p+E+

q

p−E−

p+E+

q
+ . . .

=
q

+
q

p−E−

p+E+

qω
, (11.246)

where the thick wiggly line represents the effective Coulomb interaction, i.e. in the
triagonal representation the matrix

qω
=

(
V

R
(q, ω) V

K
(q, ω)

0 V
A
(q, ω)

)
(11.247)

and similarly for the thin line representing the bare Coulomb interaction for which we
note V K(q) = 0. Analytically the Dyson equation for the matrix Coulomb propagator
has the form

V (q, ω) = V (q) + V (q) Π(q, ω) V (q, ω) , (11.248)

where the polarization, Π, in the triagonal representation has the form

Π(q, ω) =
(

ΠR(q, ω) ΠK(q, ω)
0 ΠA(q, ω)

)
(11.249)

66The random phase approximation can also be stated as the linearized mean-field approximation
as discussed for example in chapter 10 of reference [1].
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and in the random phase approximation specified in terms of the dynamical indices
according to

Πkk′ = −2iγ̃k
ii′ Gi′j′ Gji γk′

j′j . (11.250)

Solving the Dyson equation for the effective interaction in the random phase
approximation gives

qω
=

1

q

−1 −
qω

p−E−

p+E+

qω

. (11.251)

According to our universal rules for boson–fermion coupling in the dynamical
indices, Eq. (5.51) and Eq. (5.52), the retarded polarization bubble is given by

ΠR(q, ω) = −i

∫
dp

(2π)3

∞∫
−∞

dE

2π

(
GR(p)GK(p− q) − GK(p)GA(p− q)

)
, (11.252)

where p = (E,p) and q = (ω,q). In the diagrammatic expansion of the effective
electron–electron interaction, we must then impurity average the electron–hole or
polarization bubble diagram. To lowest order in the disorder parameter 1/kFl, we
should insert the impurity ladder into the bubble diagram; i.e. we encounter the
diagrams of the type

qω

A A

RR

qω
. (11.253)

The impurity-averaged bubble diagram is evaluated using the standard impurity
Green’s function technique, and we thus have in the diffusive limit, ql, ωτ � 1 (in
the three-dimensional case), for the dielectric function, ql, ωτ � 1,

ε(q, ω) = 1 +
e2

ε0 q2

2N0D0 q2

−iω + D0 q2
= 1 +

D0 κ2
s

−iω + D0 q2
, (11.254)

relating the bare Coulomb interaction to the effective interaction.67 Inserting into
Eq. (11.244), we can calculate the inelastic collision rate.

67The calculation is equivalent to the calculation of the density–density response function of a
disorder conductor giving the expression

χ(q, ω) =
2N0D0 q2

−iω + D0 q2
.

This is understandable since we note that a fluctuation in the density of electrons creates an electric
potential, which in turn is felt by an electron. Fluctuations in the density or current of the elec-
trons give rise to fluctuations in an electromagnetic field inside the electron gas, as discussed quite
generally in Section 6.5 in connection with the fluctuation–dissipation relations of linear response.
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We could also calculate the inelastic collision rate or energy relaxation rate in
the dirty limit by solving the Boltzmann equation with the two-particle interaction
modified by the impurity scattering

∂f(ε)
∂t

= 2π

∫ ∞

−∞
dω

∫ ∞

−∞

dε′

2π�
P (ω) R(ε, ε′, ω) , (11.255)

where

R(ε, ε′, ω) = f(ε) f(ε′ − ω) (1− f(ε− ω)) (1− f(ε′))

− f(ε− ω) f(ε′) (1 − f(ε)) (1− f(ε′ − ω)) (11.256)

and

P (ω) =
2N0 τ2

π�

∫
dq

(2π)3

(
V (q)
|ε(q, ω)|

(D0 q)2

ω2 + (D0 q)2

)2

(11.257)

is analogous to Eliashberg function, α2F , for the electron–phonon case. We notice
that we can rewrite

P (ω) =
τ

πω
�m

∫
dq

(2π)3
V R(q, ω)

ζ(q, ω)
1− ζ(q, ω)

, (11.258)

where ζ is the insertion Eq. (11.20) (here the relevant case is the particle–hole channel,
but the result is identical to that of the particle–particle channel) and given (in two
and three dimensions) by

ζ(q, ω) =
i

2ql
ln

ql + ωτ + i

−ql + ωτ + i
, q ≡ |q| (11.259)

with the limiting behavior

ζ(q, ω) =


π

2ql ql > ωτ, ql > 1

1 + iωτ −D0τq2 ql, ωτ < 1 .

(11.260)

In the three-dimensional case we have, ωτ < 1,

P (ω) =
ω−1/2

8
√

2π2�N0D
3/2
0

. (11.261)

We therefore get for an electron on the Fermi surface in a dirty metal the electron–
electron collision rate at temperatures kT < �/τ68

1
τe−e(T )

=

∞∫
0

dω P (ω)
2ω

sinh �ω
kT

= c
τ1/2

kFl

(kT )3/2

√
�εFτ

, (11.262)

The dielectric function and the density and current response functions are thus all related

ε(q, ω) = 1 +
iσ(q, ω)

ω ε0
= 1 +

e2

ε0 q2
χ(q, ω) .

For a discussion we refer the reader to chapter 10 of reference [1].
68From the region of large ω and q we get the clean limit rate, Eq. (7.206), which dominates at

temperatures kT 
 �/τ .
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where c is a constant of order unity (ζ(3/2) � 2.612)

c =
3
√

3π

16
ζ(3/2)(

√
8− 1) . (11.263)

For an electron in energy state ξ, ξ < �/τ , we get analogously in the dirty limit
for the electron–electron collision rate at zero temperature69

1
τe−e(ξ)

=
√

6
4

τ1/2

�3/2(kFl)2
ξ3/2 . (11.264)

The scattering rate due to electron–electron interaction is thus enhanced in a
dirty metal compared with the clean case [103, 104, 105], diffusion enhanced electron–
electron interaction.70 Equivalently, the screening is weakened owing to the diffusive
motion of the electrons. The interpretation of this enhancement can be given in terms
of the previous phase space argument of Exercise 7.10 on page 214 for the relaxation
time and the breaking of translational invariance due to the presence of disorder.
The violation of momentum conservation in the virtual scattering processes due to
impurities gives more phase space for final states. Alternatively, viewing the collisions
in real space, owing to the motion being diffusive instead of ballistic the electrons
spend more time close together where the interaction is strong, or, wave functions
of equal energy in a random potential are spatially correlated thereby leading to an
enhanced electron–electron interaction. The scattering process now includes quantum
interference between the elastic and inelastic processes as signified by the collision
rate �/τe−e being dependent on �.

We note that the expression for the energy relaxation rate in two dimensions
diverges in the infrared for a dirty metal in the above lowest-order perturbative
calculation. For the Coulomb potential for electrons constricted to movement in two
dimensions the bare Coulomb potential is

V (q) =
2πe2

|q| (11.265)

and for ωτ < 1
P2(ω) =

1
8εFτ

1
ω

(11.266)

69At temperatures and energies kT, ξ > �/τ , the expressions for relaxation rates are those of the
clean limit, recall Exercise 7.10 on page 214.

70In the case of electron–phonon interaction, local charge neutrality forces the electrons to follow
adiabatically the thermal motion of the ions, and because of the coherent motion with the lattice of
the fixed impurities, the interaction with the longitudinal phonons is in fact decreased owing to this
compensation mechanism. The imaginary part of the electron self-energy will therefore be given by
the results obtained in Section 11.3.1 for the phase-breaking rate. As shown there, the interaction
with transverse phonons are either enhanced or diminished depending on the temperature regime.
The influence of impurities will not be universal for the case of interaction with phonons as will be
the case for the diffusion enhanced electron–electron interaction.
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giving the divergent expression for the relaxation rate, kT < �/τ ,71

1
τe−e(T )

=
1

2kFl

∞∫
0

dω
1

sinh �ω
kT

. (11.267)

However, this is not alarming since we do not expect the relaxation rate to be the
relevant measurable quantity, as in this quantity scattering at all energies is weighted
equally. We do not expect such divergences in physically measurable rates, and indeed
the phase relaxation rate of the electronic wave function in a dirty two-dimensional
metallic film does not diverge because of collisions with small energy transfer, as
discussed in Section 11.3.2. There we made use of the expression for the effective
electron–electron interaction at low energies and momenta in a dirty metal for which,
according to Eq. (11.243), we have72

V
K
(q, ω) = =

−4ie2kT

σ0 |q|2
. (11.268)

The low frequency electron–electron interaction in a disordered conductor is thus
identical to the Nyquist noise in the electromagnetic field fluctuations, the correlator
we used in Section 11.3.2 (here represented by the scalar potential),

〈φ(q, ω)φ(−q,−ω)〉 =
2kT

σ0q2
. (11.269)

We observe the generality of the result of Section 6.5.

11.6 Mesoscopic fluctuations

In the following we shall show that when the size of a sample becomes comparable to
the phase coherence length, L ∼ Lϕ, the individuality of the sample will be manifest
in its transport properties. Such a sample is said to be mesoscopic. Characteristically
the conductance will exhibit sample-specific, noise-like but reproduceable, aperiodic
oscillations as a function of, say, magnetic field or chemical potential (i.e. density
of electrons). The sample behavior is thus no longer characterized by its average
characteristics, such as the average conductance, i.e. the average impurity concen-
tration. The statistical assumption of phase-incoherent and therefore independent
subsystems, allowing for such an average description, is no longer valid when the
transport takes place quantum mechanically coherently throughout the whole sam-
ple. As a consequence, a mesoscopic sample does not possess the property of being
self-averaging; i.e. the relative fluctuations in the conductance do not vanish in a

71We note that the relaxation rate due to processes with energy transfers of the order of the
temperature is

1

τT
∼ kT

mD0
.

72The factor of −2i between Eq. (11.268) and Eq. (11.269) simply reflects our choice of Feynman
rules.
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central limit fashion inversely proportional to the volume in the large-volume limit.
To describe the fluctuations from the average value we need to study the higher
moments of the conductance distribution such as the variance ∆Gαβ,γδ. We shall
first study the fluctuations in the conductance at zero temperature, and consider the
variance

∆Gαβ,γδ = 〈(Gαβ − 〈Gαβ〉)(Gγδ − 〈Gγδ〉)〉 . (11.270)

For the conductance fluctuations we have the expression

〈Gαβ Gγδ〉 = (L−2)2
∫

dx2

∫
dx′

2

∫
dx1

∫
dx′

1〈σαβ(x2,x′
2)σγδ(x1,x′

1)〉 . (11.271)

The diagrams for the variance of the conductance fluctuations can still be managed
within the standard impurity diagram technique in the weak disorder limit, εFτ � �,
and a typical conductance fluctuation diagram is depicted in Figure 11.7 (here the
box denotes the Diffuson).73

α

R R

R R

A A

A A

p p′

p p′

p p′

p p′

r1 r′1

r r′

γ δ β

Figure 11.7 Conductance fluctuation diagram.

The construction of the conductance fluctuation diagrams follows from impurity
averaging two conductivity diagrams. Draw two conductivity bubble diagrams, where
the propagators include the impurity scattering. Treating the impurity scattering
perturbatively, we get impurity vertices that we, upon impurity averaging as usual
have to pair in all possible ways. Since we subtract the squared average conductance
in forming the variance, ∆G, the diagrams for the variance consist only of diagrams
where the two conductance loops are connected by impurity lines. As already noted
in the discussion of weak localization, the dominant contributions to such loop-type
diagrams are from the infrared and long-wavelength divergence of the Cooperon, and
here additionally from the Diffuson.

73The diagram is in the position representation, and the momentum labels should presently be
ignored, but will be explained shortly.
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To calculate the contribution to the variance from the Diffuson diagram depicted
in Figure 11.7, we write the corresponding expression down in the spatial represen-
tation in accordance with the usual Feynman rules for conductivity diagrams. Let
us consider a hypercube of size L. If we assume that the sample size is bigger than
the impurity mean free path, L > l, the spatial extension of the integration over the
external, excitation and measuring, vertices can be extended to infinity, since the
propagators have the spatial extension of the mean free path. We can therefore in-
troduce the Fourier transform for the propagators since no reference to the finiteness
of the system is necessary for such local quantities. Furthermore, since the spatial
extension of the Diffuson is long range compared with the mean free path, we can
set the spatial labels of the Diffusons equal to each other, i.e. r1 = r and r′1 = r′.
All the spatial integrations, except the ones determined by the Diffuson, can then be
performed, leading to the momentum labels for the propagators as depicted in Figure
11.7 Let us study the fluctuations in the d.c. conductance, so that the frequency, ω,
of the external field is zero. The energy labels have for visual clarity been deleted
from Figure 11.7, since we only have elastic scattering and therefore one label, say
ε, for the outer ring and one for the inner, ε′. According to the Feynman rules, we
obtain for the Diffuson diagram the following analytical expression:

〈GαβGγδ〉D = L−4

(
e2

�
2u2

4πm2

)2 ∫ ∞

−∞
dε

∂f(ε)
∂ε

∫ ∞

−∞
dε′

∂f(ε′)
∂ε′

∫
dp

(2π�)3

∫
dp′

(2π�)3

× GR
ε (p′)GA

ε (p′)GA
ε′(p

′)GR
ε′(p

′)GR
ε (p)GA

ε′(p)GA
ε (p)GR

ε′(p)

× pα pγ p′δ p′β

∫
dr
∫

dr′ |D(r, r′, ε− ε′)|2 . (11.272)

In order to obtain the above expression we have noted that

D(r, r′, ε′ − ε) = [D(r, r′, ε− ε′)]∗ , (11.273)

which follows from the relationship between the retarded and advanced propagators.
At zero temperature, the Fermi functions set the energy variables in the propagators
in the conductance loops to the Fermi energy, and the Diffuson frequency to zero. At
zero temperature we therefore get for the considered Diffuson diagram the following
analytical expression, D(r, r′) ≡ D(r, r′, 0),

〈GαβGγδ〉D = L−4

(
e2

�
2u2

4πm2

)2∫
dp

(2π�)3

∫
dp′

(2π�)3
pα pγ p′δ p′β

× [GR
εF(p)GA

εF(p)GR
εF(p′)GA

εF(p′)]2
∫

dr
∫

dr′ |D(r, r′)|2 . (11.274)
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It is important to note that the same Diffuson appears twice. This is the leading
singularity we need to keep track of. If we try to construct variance diagrams con-
taining, say, three Diffusons, we will observe that they cannot carry the same wave
vector, and will give a contribution smaller by the factor �/εFτ . The momentum
integrations at the current vertices can easily be performed by the residue method
(recall Eq. (11.27))

jαγ =
∫

dp
(2π�)3

pα pγ [GR
εF (p)GA

εF(p)]2 =
4π

3
p2
FN0

�3
τ3 δαγ (11.275)

and for the considered Diffuson diagram we obtain the expression

〈GαβGγδ〉D = L−4

(
e2D0τ

2π�

)2

δαγ δδβ

∫
dr
∫

dr′ |D(r, r′)|2 . (11.276)

To calculate the Diffuson integrals we need to address the finite size of the sample
and its attachment to the current leads, since the Diffuson has no inherent length
scale cut-off. At the surface where the sample is attached to the leads, the Diffuson
vanishes

D(r, r′) = 0 r or r′ on lead surfaces (11.277)

in accordance with the assumption that once an electron reaches the lead it never
returns to the disordered region phase coherently. On the other surfaces the current
vanishes; i.e. the normal derivative of the Diffuson must vanish (recall Eq. (7.96) and
Eq. (7.97))

∂D(r, r′)
∂n

= 0 r or r′ on non-lead surfaces with surface normal n .

(11.278)
We assume that the leads have the same size as the sample surface.74 Therefore by
solving the diffusion equation for the Diffuson, with the above mixed (Dirichlet–von
Neumann) boundary condition, we obtain the expression

∫
dr
∫

dr′ |D(r, r′)|2 =

(∑
n

1/τ

D0 q2
n

)2

, (11.279)

where n ≡ (nx, ny, nz) is the eigenvalue index in the three-dimensional case

qnα =
π

L
nα nα = nx, ny, nz (11.280)

where
nx = 1, 2, ..., ny,z = 0, 1, 2, ... (11.281)

74This “thick lead” assumption is not of importance. Because of the relationship between the
fluctuations in the density of states and the time scale for diffusing out of the sample, the result
will be the same for any kind of lead attachment [106].
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and we have assumed that the current leads are along the x-axis. Less than three
dimensions corresponds to neglecting the ny and nz. We therefore obtain from the
considered Diffuson diagram the contribution to the conductance fluctuations75

〈GαβGγδ〉D =
(

e2

4π�

)2

cd δα,γ δδ,β , (11.282)

where the constant cd depends on the sample dimension. The summation in Eq.
(11.279) should, in accordance with the validity of the diffusion regime, be restricted
to values satisfying n2

x + n2
y + n2

z ≤ N , where N is of the order of (L/l)2. However,
the sum converges rapidly and the constants cd are seen to be of order unity. The
dimensionality criterion is essentially the same as in the theory of weak localization,
as we shall show in the discussion below of the physical origin of the fluctuation
effects. The important thing to notice is that the long-range nature of the Diffuson
provides the L4 factor that makes the variance, average of the squared conductance,
independent of sample size (recall Eq. (6.57)). The diagram depicted in Figure 11.7
is only one of the two possible pairings of the current vertices, and we obtain an
additional contribution from the diagram where, say, current vertices γ and δ are
interchanged.

In addition to the contribution from the diagram in Figure 11.7 there is the other
possible singular Diffuson contribution to the variance from the diagram depicted in
Figure 11.8.
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A A
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γ δ

r
r′ r1 r′1

β

Figure 11.8 The other possible conductance fluctuation diagram.

75Because of these inherent mesoscopic fluctuations, we realize that the conductance discussed in
the scaling theory of localization is the average conductance.
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This diagram contributes the same amount as the one in Figure 11.7, but with a
different pairing of the current vertices. We note that the diagram in Figure 11.8
allows for only one assignment of current vertices.76

Reversing the direction in one of the loops gives rise to similar diagrams, but
now with the Cooperon appearing instead of the Diffuson. Because the boundary
conditions on the Cooperon are the same as for the Diffuson, in the absence of a
magnetic field, the Cooperon contributes an equal amount. For the total contribution
to the variance of the conductance, we therefore have (allowing for the spin degree
of freedom of the electron would quadruple the value) at zero temperature

∆Gαβ,γδ =
(

e2

2π�

)2

cd (δαγ δδβ + δαδ δγβ + δα,β δγ,δ) . (11.283)

The variance of the conductance at zero temperature, and for the chosen geometry
of a hypercube, is seen to be independent of size and dimension of the sample and
degree of disorder, and the conductance fluctuations appear in the metallic regime
described above to be universal.77

Since the average classical conductance is proportional to Ld−2, Ohm’s law, we
find that the relative variance, ∆G〈G〉−2, is proportional to L4−2d. This result should
be contrasted with the behavior L−2d of thermodynamic fluctuations, compared with
which the quantum-interference-induced mesoscopic fluctuations are huge, reflecting
the absence of self-averaging.

The dominating role of the lowest eigenvalue in Eq. (11.279) indicates that meso-
scopic fluctuations, studied in situations with less-invasive probes than the current
leads necessary for studying conductance fluctuations, can be enhanced compared
to the universal value. In the case of the conductance fluctuations, the necessary
connection of the disordered region to the leads, which cut off the singularity in the
Diffuson by the lowest eigenvalue, nx = 1, reflecting the fact that because of the
physical boundary conditions at the interface between sample and leads, the max-
imal time for quantum interference processes to occur uninterrupted is the time it
takes the electron to diffuse across the sample, L2/D0. When considering other ways
of observing mesoscopic fluctuations, the way of observation will in turn introduce
the destruction of phase coherence necessary for rendering the fluctuations finite.

In order to understand the origin of the conductance fluctuations, we note that,
just as the conductance essentially is given by the probability for diffusing between
points in a sample, the variance is likewise the product of two such probabilities.
When we perform the impurity average, certain of the quantum interference terms
will not be averaged away, since certain pairs of paths are coherent. This is similar to
the case of coherence involved in the weak-localization effect, but in the present case
of the variance of quite a different nature. For example, the quantum interference

76The contribution from the diagram in Figure 11.7 can, through the Einstein relation, be ascribed
to fluctuations in the diffusion constant, whereas the diagram in Figure 11.8 gives the contribution
from the fluctuations in the density of states, the two types of fluctuation being independent [107].

77However, for a non-cubic sample, the variance will be geometry dependent [108, 109].
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process described by the diagram in Figure 11.7 is depicted in Figure 11.9, where the
solid line corresponds to the outer conductance loop, and the dashed line corresponds
to the inner conductance loop. The wavy portion of the lines corresponds to the long-
range diffusion process.

R∗

R

R

R∗

Figure 11.9 Statistical correlation described by the diagram in Figure 11.7.

When one takes the impurity average of the variance, the quantum interference terms
can pair up for each diffusive path in the random potential, but now they correspond
to amplitudes for propagation in different samples. The diagrams for the variance,
therefore, do not describe any physical quantum interference process, since we are not
describing a probability but a product of probabilities. The variance gives the statis-
tical correlation between amplitudes in different samples. The interference process
corresponding to the diagram in Figure 11.8 is likewise depicted in Figure 11.10.
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R∗

R

R

R∗

Figure 11.10 Statistical correlation described by the diagram in Figure 11.8.

When a specific mesoscopic sample is considered, no impurity average is effec-
tively performed as in the macroscopic case. The quantum interference terms in the
conductance, which for a macroscopic sample average to zero if we neglect the weak-
localization effect, are therefore responsible for the mesoscopic fluctuations. In the
weak-disorder regime the conductivity (or equivalently the diffusivity by Einstein’s
relation) is specified by the probability for the particle to propagate between points
in space. According to Eq. (11.95)

P = Pcl + 2
∑
c,c′

√
|Ac Ac′ | cos(φc − φc′) (11.284)

as
Ac = |Ac| eiφc , φc =

1
�

S[xc(t)] , (11.285)

where |Ac| specifies the probability for the classical path c, and its phase is specified
by the action. When the points in space in questions are farther apart than the mean
free path, the ensemble average of the quantum interference term in the probability
vanishes. The weak localization can be neglected because for random phases we
have 〈cos(φc − φc′)〉imp = 0. However, for the mean square of the probability, we
encounter 〈cos2(φc − φc′)〉imp = 1/2, and obtain

〈P 2〉imp = 〈P 〉2imp + 2
∑
c,c′

|Ac| |Ac′ | . (11.286)

Because of quantum interference there is thus a difference between 〈P 2〉imp and
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〈P 〉2imp resulting in mesoscopic fluctuations. Since the effect is determined by the
phases of paths, it is nonlocal.

The result in Eq. (11.283) is valid in the metallic regime, where the average
conductance is larger than e2/�. To go beyond the metallic regime would neces-
sitate introducing the quantum corrections to diffusion, the first of which is the
weak-localization type, which diagrammatically corresponds to inserting Cooperons
in between Diffusons. Such an analysis is necessary for a study of the fluctuations in
the strongly disordered regime, as performed in reference [84].

The Diffuson and Cooperon in the conductance fluctuation diagrams do not de-
scribe diffusion and return probability, respectively, in a given sample, but quantum-
statistical correlations between motion in different samples, i.e. different impurity
configurations, as each conductance loop in the Figures 11.7 and 11.8 corresponds
to different samples. In order to stress this important distinction, we shall in the
following mark with a tilde the Diffusons and Cooperons appearing in fluctuation
diagrams.

We now assess the effects of finite temperature on the conductance fluctuations.
Besides the explicit temperature dependence due to the Fermi functions appearing
in Eq. (11.272), the ladder diagrams will be modified by interaction effects. The
presence of the Fermi functions corresponds to an energy average over the thermal
layer near the Fermi surface, and through the energy dependence of the Diffuson
and Cooperon introduces the temperature-dependent length scale LT =

√
D0�/kT .

Since the loops in the fluctuation diagrams correspond to different conductivity mea-
surements, i.e. different samples, interaction lines (for example caused by electron–
phonon or electron–electron interaction) are not allowed to connect the loops in a
fluctuation diagram. The diffusion pole of the Diffuson appearing in a fluctuation
diagram is therefore not immune to interaction effects. This was only the case when
the Diffuson describes diffusion within a sample, since then the diffusion pole is a con-
sequence of particle conservation and therefore unaffected by interaction effects. The
consequence is that, just as in the case for the Cooperon, inelastic scattering will lead
to a cut-off given by the phase-breaking rate 1/τϕ. In short, the temperature effects
will therefore ensure that up to the length scale of the order of the phase-coherence
length, the conductance fluctuations are determined by the zero-temperature expres-
sion, and beyond this scale the conductance of such phase-incoherent volumes add
as in the classical case.78 A sample is therefore said to be mesoscopic when its size
is in between the microscopic scale, set by the mean free path, and the macroscopic
scale, set by the phase-coherence length, l < L < Lϕ. A sample is therefore self-
averaging only with respect to the impurity scattering for samples of size larger than
the phase-coherence length.79 A sample will therefore exhibit the weak-localization
effect only when its size is much larger than the phase-coherence length but much
smaller than the localization length Lϕ < L < ξ.

An important way to reveal the conductance fluctuations experimentally is to
measure the magneto-resistance of a mesoscopic sample. To study the fluctuation
effects in magnetic fields, we must study the dependence of the variance on the

78For example for a wire we have g(L) = g(Lϕ) L/Lϕ .
79The conductance entering the scaling theory of localization is thus assumed averaged over phase-

incoherent volumes.
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magnetic fields ∆Gαβ(B+,B−) , where B+ is the sum and B− is the difference in
the magnetic fields influencing the outer and inner loops. Since the conductance
loops can correspond to samples placed in different field strengths, the diffusion pole
appearing in a fluctuation diagram will not be immune to the presence of magnetic
fields, as in the case when the Diffuson describes diffusion within a given sample,
since particle conservation is, of course, unaffected by the presence of a magnetic field.
According to the low-field prescription for inclusion of magnetic fields, Eq. (11.105),
we get for the Diffuson

D0

{
(−i∇x −

e

�
A−(x))2 + 1/τϕ

}
D̃(x,x′) =

1
τ

δ(x− x′) , (11.287)

where A− is the vector potential corresponding to the difference in magnetic fields,
B− = ∇x × A−, and we have introduced the phase-breaking rate in view of the
above consideration. In the case of the Diffuson, the magnetic field induced phases
subtract, accounting for the appearance of the difference of the vector potentials A−.
For the case of the Cooperon, the two phases add, and we obtain

D0

{
(−i∇x −

e

�
A+(x))2 + 1/τϕ

}
C̃(x,x′) =

1
τ

δ(x − x′) , (11.288)

where A+ is the vector potential corresponding to the sum of the fields, B+ =
∇×A+.

The magneto-fingerprint of a given sample, i.e. the dependence of its conductance
on an external magnetic will show an erratic pattern with a given peak to valley ratio
and a correlation field strength Bc. This, however, is not immediately the information
we obtain by calculating the variance

∆Gαβ,γδ(B+,B−) = 〈[Gαβ(B1)− 〈Gαβ(B1)〉][Gγδ(B2)− 〈Gγδ(B2)〉]〉 , (11.289)

where B1 is the field in, say, the inner loop, B1 = (B+ + B−)/2, and B2 is the
field in the outer loop, B2 = (B+ −B−)/2. In the variance, the magnetic fields are
fixed in the two samples, and we are averaging over different impurity configurations,
thus describing a situation in which the actual impurity configuration is changed, a
hardly controllable endeavor from an experimental point of view. However, if the
magneto-conductance of a given sample, G(B), varies randomly with magnetic field,
the two types of average – one with respect to magnetic field and the other with
respect to impurity configuration – are equivalent, and the characteristics of the
magneto-fingerprint can be extracted from the correlation function in Eq. (11.289).
The physical reason for the validity of such an ergodic hypothesis [110, 111], that
changing magnetic field is equivalent to changing impurity configuration, is that
since the electronic motion in the sample is quantum mechanically coherent the wave
function pattern is sensitive to the position of all the impurities in the sample, just
as the presence of the magnetic field is felt throughout the sample by the electron.80

The extreme sensitivity to impurity configuration is also witnessed by the fact that
changing the position of one impurity by an atomic distance, 1/kF , is equivalent to
shifting all the impurities by arbitrary amounts, i.e. to create a completely different
sample [113, 114].

80The validity of the ergodic hypothesis has been substantiated in reference [112].
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The ergodic hypothesis can be elucidated by the following consideration. In the
mean square of the probability for propagating between two points in space we en-
counter the correlation function

〈
(

cos(φc(B1)− φc′(B1))
)(

cos(φc(B2)− φc′(B2))
)
〉imp (11.290)

where (φc(B) − φc′(B)) depends on the phases picked up due to the magnetic field,
i.e. the flux through the area enclosed by the trajectories c and c′. When the
magnetic field B1 changes its value to B2 (where the correlation function equals one
half), the phase factor changes by 2π times the flux through the area enclosed by
the trajectories c and c′ in units of the flux quantum. This change, however, is
equivalent to what happens when changing to a different impurity configuration for
fixed magnetic field, i.e. the quantity we calculate.81

In order to calculate the variance in Eq. (11.289) we must solve Eq. (11.287) and
Eq. (11.288) with the appropriate mixed boundary value conditions in the presence of
magnetic fields, and insert the solutions into contributions like that in Eq. (11.276).
However, determination of the characteristic correlations of the aperiodic magneto-
conductance fluctuations can be done by inspection of Eq. (11.287) and Eq. (11.288).
The correlation field Bc is determined by the sample-to-sample change in the mag-
netic field, i.e. B−. According to Eq. (11.287) and Eq. (11.288), this field is deter-
mined either by the sample size, through the gradient term, or the phase coherence
length. When the phase-coherence length is longer than the sample size, the cor-
relation field is therefore of order of the flux quantum divided by the sample area,
Bc ∼ φ0/L2, where φ0 is the normal flux quantum φ0 = 2π�/|e|, since the typical
diffusion loops, like those depicted in Figures 11.9 and 11.10, enclose an area of the
order of the sample, L2. We note that in magnetic fields exceeding max{φ0/L2,
φ0/L2

ϕ}, the Cooperon no longer contributes to the field dependence of the conduc-
tance fluctuations, because its dependence on magnetic field is suppressed according
to the weak-localization analysis.82

We note that the weak-localization and mesoscopic fluctuation phenomena are a
general feature of wave propagation in a random media, be the wave nature classical,
such as sound and light,83 or of quantum origin such as for the motion of electrons.
The weak-localization effect was in fact originally envisaged for the multiple scat-
tering of electromagnetic waves [81].84 The coherent backscattering effect has been
studied experimentally for light waves (for a review on classical wave propagation in
random media, see reference [116]). For the wealth of interesting weak-localization
and mesoscopic fluctuation effects, we refer the reader to reference [1], and to the
references to review articles cited therein.

81Another way of revealing the mesoscopic fluctuations is to change the Fermi energy (i.e. the
density of conduction electron as is feasible in an inversion layer). The typical energy scale Ec for
these fluctuations is analogously determined by the typical time τtrav it takes an electron to traverse
the sample according to Ec ∼ �/τtrav . In the diffusive regime we have τtrav ∼ L2/D0.

82For an account of the experimental discovery of conductance fluctuations, see reference [115].
83Here we refer to conditions described by Maxwell’s equations.
84It is telling that it took the application of Feynman diagrams in the context of electronic motion

in disordered conductors to understand the properties of classical waves in random media.
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11.7 Summary

Quantum effects on transport coefficients have been studied in this chapter, espe-
cially the weak localization effect, which is the most important for practical diag-
nostics in material science as it is revealed at such small magnetic fields where the
diffusion enhancement of the electron–electron interaction is unaffected and classical
magneto-resistance effects absent. Though the weak localization effect is a quantum
interference effect, the kinetics of the involved trajectories were the classical ones,
be they Boltzmannian or Brownian, and we could therefore make ample use of the
quasi-classical Green’s function technique developed in Chapters 7 and 8. We calcu-
lated the phase breaking rates due to interactions, the phase relaxation of the wave
function measured in magneto-resistance measurements, thereby opening the oppor-
tunity to probe the inelastic interactions experienced by electrons. We studied how
the interactions are changed as a result of disorder. In the case of Coulomb interac-
tion a universal diffusion enhancement or weakening of screening resulted, whereas
for the case of electron–phonon interaction, the longitudinal interaction was weak-
ened owing to the compensation mechanism of the vibrating impurities, whereas the
interaction with transverse phonons could be enhanced or weakened depending on
the temperature regime. Finally, we discussed the phenomena that sets in when the
electronic motion is coherent in the sample and the signature of mesoscopic fluctu-
ations are present in transport coefficients, such as the quantum fluctuations in the
conductance, the universal conductance fluctuations.
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Classical statistical dynamics

The methods of quantum field theory, originally designed to study quantum fluctua-
tions, are also the tool for studying the thermal fluctuations of statistical physics, for
example in connection with understanding critical phenomena. In fact, the methods
and formalism of quantum fields are the universal language of fluctuations. In this
chapter we shall capitalize on the universality of the methods of field theory as intro-
duced in Chapters 9 and 10, and use them to study non-equilibrium phenomena in
classical statistical physics where the fluctuations are those of a classical stochastic
variable. We shall show that the developed non-equilibrium real-time formalism in
the classical limit provides the theory of classical stochastic dynamics.

Newton’s law, which governs the motion of the heavenly bodies, is not the law
that seems to govern earthly ones. They sadly seem to lack inertia, get stuck and
feebly ramble around according to Brownian dynamics as described by the Langevin
equation. Their dynamics show transient effects, but if they are on short time scale
too fast to observe, dissipative dynamics is typically specified by the equation v ∝ F
where the proportionality constant could be called the friction coefficient. This is
Aristotelian dynamics, average velocity proportional to force, believed to be correct
before Galileo came along and did thorough experimentation. If a sponge is dropped
from the tower of Pisa, it will almost instantly reach its saturation final velocity. If
a heavier sponge is dropped simultaneously, it will fall faster reaching the ground
first. If on the other hand an apple is dropped and when reaching the ground is
given its opposite velocity it will according to Newton’s equation spike back up to
the position it was dropped from, before repeating its trip to the ground. If a sponge
has its impact velocity at the ground reversed, it will fizzle immediately back to the
ground. Unlike Newtonian mechanics, which is time reversal symmetric, sponge or
dissipative dynamics chooses a direction of time.

We now turn to consider dissipative dynamics, in particular Langevin dynamics.
In this chapter we will study systems with the additional feature of quenched disorder,
in particular vortex dynamics in disordered superconductors. The field-theoretic
formulation of the problem will allow the disorder average to be performed exactly.
The functional methods will allow construction of a self-consistent theory for the
effective action describing the influence of thermal fluctuations and quenched disorder

449
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on vortex motion. This will allow the determination of the vortex response to external
forces, the vortex fluctuations, and the pinning of vortices due to quenched disorder,
and allow to consider the dynamic melting of vortex lattices.

12.1 Field theory of stochastic dynamics

In this section we shall map the stochastic problem, formulated first in terms of a
stochastic differential equation, onto a path integral formulation, and obtain the field
theoretic formulation of classical statistical dynamics. We show that the resulting
formalism is equivalent to that of a quantum field theory. In particular we shall
consider quenched disorder and the resulting diagrammatics. The field theoretic
formulation will allow us to perform the average over the quenched disorder exactly.

12.1.1 Langevin dynamics

A heavy particle interacting with a gas of light particles, say a pollen dust particle
submerged in water, will viewed under a microscope execute erratic or Brownian
motion. Or in general, when a particle interacting with a heat bath, i.e. weakly with
a multitude of degrees of freedom in its environment (of high enough temperature
so that quantum effects are absent), will exhibit dynamics governed by the Langevin
equation

mẍt = F(xt, t)− ηẋt + ξt , (12.1)

where m is the mass of the particle, F is a possible external force, η is the viscosity
or the friction coefficient, and ξt is the fluctuating force describing the thermal agi-
tation of the particle due to the interaction with the environment, the thermal noise,
or some other relevant source of noise. For a system interacting with a classical envi-
ronment assumed in thermal equilibrium at a temperature T , the fluctuating force is
a Gaussian stochastic process described by the correlation function for its Cartesian
components1

〈ξ(α)
t ξ

(β)
t′ 〉 = 2ηkBT δ(t− t′) δαβ (12.2)

relating friction and fluctuations according to the fluctuation–dissipation theorem,
as proper for linear response.

Being the dissipative dynamics for a system coupled to a heat bath, Langevin
dynamics is relevant for describing a vast range of phenomena, and of course not just
that of a particle as considered above. For example, randomly stirred fluids in which
case the relevant equation would be the Navier–Stokes equation with proper noise
term [117]. The field theoretic formulation of the following section runs identical for
all such cases. Also, the coordinate above need not literally be that of a particle,
but could for example describe the position of a vortex in a type-II superconductor,
as discussed in Section 12.2. However, we shall in the following keep referring to the
degree of freedom as that of a particle.

1The quantum case and the classical limit are discussed in Appendix A.
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12.1.2 Fluctuating linear oscillator

For a given realization of the fluctuating force, ξt, there is a solution to the Langevin
equation, Eq. (12.1), specifying the realization of the corresponding motion of the
particle xt. In other words, xt is a functional of ξt, xt = xt[ξt̄], and vice versa
ξt = ξt[xt̄]. The properties of the fluctuating force is described by its probability
distribution, Pξ[ξt], which is assumed to be Gaussian

Pξ[ξt] =
∫
Dξt e−

1
2

∫
dt1

∫
dt2 ξt1

K−1
t1 , t2

ξt2 , (12.3)

where K−1
t1,t2 is the inverse of the correlator of the stochastic force

Kt,t′ = 〈ξtξt′〉 (12.4)

and we have used dyadic notation to express the matrix structure of the force corre-
lations in Cartesian space. This structure is, however, irrelevant as the quantity is
diagonal.

Using the one-to-one map between the fluctuating force and the particle path,
xt ←→ ξt, the probability of given paths, xts, equals that of the corresponding
forces, ξts,

Px[xt]Dxt = Pξ[ξt]Dξt . (12.5)

In general, this does not allow us to state proportionality between the two probability
distributions, since the volume change in the transformation from Dξt to Dxt must
be taken into account, the change in measure described by the Jacobian. Only if the
Langevin equation, Eq. (12.1), is linear is this a trivial matter, restricting the force
in Eq. (12.1) to that of a harmonic oscillator, F(xt, t) = −mω2

0xt (and a possible
external space-independent force, F(t), which we suppress in the following), i.e. the
equation of motion is that of a harmonic oscillator in the presence of a fluctuating
force

−D−1
R x = ξ (12.6)

where we have introduced the retarded Green’s function for the damped harmonic
oscillator

D−1
Rd.h.o.

(t, t′) = −(m∂2
t + η∂t + mω2

0) δ(t− t′) (12.7)

and suppressed the time variable and used matrix multiplication notation in the time
variable.2 In the considered linear case the Jacobian is a constant and

Px[xt] ∝ Pξ[ξt] = Pξ[mẍt + ηẋt + mω2
0xt] , (12.8)

where the last equality is obtained by using the equation of motion, Eq. (12.6). Using
the fact that the fluctuations are Gaussian, gives for the probability distribution of
paths,

Px[xt] ∝ e−
1
2

∫
dt1dt2 ξt1

[xt̄1 ] K−1
t1 , t2

ξt2
[xt̄2 ]

= e−
1
2

∫
dt1dt2(mẍt1+ηẋt1+mω2

0xt1)K−1
t1 , t2

(mẍt2+ηẋt2+mω2
0xt2) (12.9)

2It could of course be considered a matrix in Cartesian coordinates, but since it would be diagonal
it is superfluous.
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for the case of a harmonic oscillator coupled to a heat bath.
Completing the square in the following Gaussian path integral

P [xt] = N−1

∫
Dx̃t e−

1
2

∫ ∞
−∞dt̃

∫ ∞
−∞dt̃′ x̃t̃ Kt̃, t̃′ x̃t̃′ −i

∫ ∞
−∞dt̃ x̃t̃ ·(mẍt̃ +ηẋt̃ +mω2

0xt̃ ) (12.10)

gives the previous expression, and the path integral representation for the probabil-
ity distribution of paths has been obtained. The proportionality factor is fixed by
normalization of the probability distribution.

We can also arrive at the expression for the probability distribution of paths in
the following way. For a given realization of the fluctuating force, ξt, the probability
distribution for the particle path corresponds with certainty to the one fulfilling the
equation of motion as expressed by the delta functional

P [xt] = N−1δ[mẍt + ηẋt + mω2
0xt − ξt] , (12.11)

where N−1 is the constant resulting from the Jacobian. Introducing the functional
integral representation of the delta functional we get

P [x] = N−1

∫
Dx̃ e−i

∫ ∞
−∞dt x̃·(mẍ+ηẋ+mω2

0x−ξ) . (12.12)

The average over the thermal noise, being Gaussian, can now be performed and we
obtain

Px[xt] = 〈P [x]〉ξ = N−1

∫
Dx̃ e−i

∫ ∞
−∞dt̃

∫ ∞
−∞dt x̃·(mẍ+ηẋ+mω2

0x−x̃i〈ξξ〉x̃) . (12.13)

Realizing that the correlation function, Eq. (12.2), is the high-temperature classi-
cal limit of the inverse of the correlation function for a harmonic quantum oscillator
coupled to a heat bath (see Appendix A), i.e. the kinetic component of the real-time
matrix Green’s function, we introduce the notation

−iD−1
K (t, t′) = K−1(t, t′) = 〈ξt ξt′〉 = 2ηkBT δ(t− t′) (12.14)

where reference to the irrelevant Cartesian coordinates is left out, i.e. K−1 now
denotes the scalar part in Eq. (12.2).

In addition the advanced inverse Green’s function is introduced

D−1
A (t, t′) = D−1

R (t′, t) (12.15)

and both functions are diagonal matrices in Cartesian space and will therefore be
treated as scalars. We can then rewrite for the path probability distribution (rein-
troducing an external force F(x, t))

Px[xt] =
∫
Dx̃ eiS0[x̃,x]+ix̃·F+ix·j , (12.16)

where
S0[x̃,x] =

1
2
(x̃D−1

R x + xD−1
A x̃ + x̃D−1

K x̃) (12.17)
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and we have absorbed the normalization factor in the path integral notation, it is
fixed by the normalization of the probability distribution∫

Dxt Px[xt] = 1 . (12.18)

We have in addition to the physical external force F(t) introduced a source, J(t),
and have the generating functional

Z[F,J] =
∫
Dx
∫
Dx̃ eiS0[x̃,x]+ix̃·F+ix·J (12.19)

with the normalization
Z[F,J = 0] = 1 . (12.20)

The source is introduced in order to generate the correlation functions of interest,
for example

〈xt〉ξ =
∫
Dx xt Px[xt] = −i

δZ[J ]
δJ(t)

J=0

= −
∫ ∞

−∞
dt̄ DR(t, t̄)F(t̄) , (12.21)

where the last equality follows from the equation of motion, and the retarded prop-
agator DR is thus the linear response function (for the considered linear oscillator,
the linear response is the exact response).

Because of the normalization condition, Eq. (12.20), all correlation functions of
the auxiliary field x̃ (generated by differentiation with respect to the physical external
force F), vanish when the source J vanishes.

We now realize that the above theory is equivalent to the celebrated Martin–
Siggia–Rose formulation of classical statistical dynamics [118], here in its path inte-
gral formulation [119, 120, 121], albeit for the moment only for the case of a damped
harmonic oscillator.3 This restriction was of course self-inflicted and the formalism
has numerous general applications, such as to critical dynamics for example studying
critical relaxation [122].

We note that whereas equilibrium quantum statistical physics is described by Eu-
clidean field theory (recall Section 1.1 and see Exercise A.1 on page 506 in Appendix
A), non-equilibrium classical stochastic phenomena are described by a field theory
formally equivalent to real-time quantum field theory.

We hasten to consider a nontrivial situation, viz. that of the presence of quenched
disorder. The corresponding field theory will be of the most complicated form, in
diagrammatic terms it will have vertices of arbitrarily high connectivity.

3In other words, the Martin–Siggia–Rose formalism is simply the classical limit of the real-time
technique for non-equilibrium states, where the doubling of the degrees of freedom necessary to
describe non-equilibrium situations is provided by the dynamics of the system. We note that the
presented field theoretic formulation of the Langevin dynamics is the classical limit of Schwinger’s
closed time path formulation of quantum statistical mechanics of a particle coupled linearly to, for
the considered type of damping, an Ohmic environment. Equivalently, it is the classical limit of
the Feynman–Vernon path integral formulation of a particle coupled linearly to a heat bath, as
discussed in Appendix A.
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12.1.3 Quenched disorder

We now return to the in general nonlinear classical stochastic problem specified by
the Langevin equation

mẍt + ηẋt = −∇V (xt) + Ft + ξt , (12.22)

where V eventually will be taken to describe quenched disorder. Owing to the pres-
ence of the nonlinear term V (xt), the argument for the Jacobian being a constant is
less trivial. However, by using forward discretization,4 one obtains the result that,
owing to the presence of a finite mass term, the Jacobian can be chosen as a constant
and the analysis of the previous section can be taken over giving5

P [x] = N−1

∫
Dx̃ e−i

∫ ∞
−∞dt x̃·(mẍ+ηẋ+∇V −F−ξ) . (12.23)

The averages over the thermal noise and the disorder can now be performed and
we obtain the following expression for the path probability density

Px[xt] = 〈〈P [x]〉〉 = N−1

∫
Dx̃ eiS[x̃,x]+ix̃·F , (12.24)

where the action, S = S0 + SV , is a sum of a part owing to the quenched disorder
and the quadratic part

S0[x̃,x] =
1
2
(x̃D−1

R x + xD−1
A x̃ + x̃i〈ξξ〉x̃) , (12.25)

where we have introduced the inverse propagator for the problem in the absence of
the disorder

D−1
R (t, t′) = −(m∂2

t + η∂t)δ(t− t′) , (12.26)

i.e. the retarded free propagator satisfies

−(m∂2
t + η∂t)DR

tt′ = δ(t− t′) (12.27)

with the boundary condition
DR

tt′ = 0, t < t′. (12.28)

The corresponding inverse advanced Green’s function

D−1
A (t, t′) = D−1

R (t′, t) (12.29)

has been introduced, and we shall also use the notation introduced in Eq. (12.14).

4Stochastic differential equations should be approached with care, since different discretizations
can lead to different types of calculus.

5Often in Langevin dynamics the over-damped case is the relevant one, i.e. in the present case
corresponding to the absence of the mass term, m = 0. In such cases it can be convenient to throw
in a mass term at intermediate calculations as a regularizer. In Section 12.1.6 we show that for the
over-damped case the Jacobian leads in diagrammatic terms to the absence of tadpole diagrams.
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The quenched disorder is assumed described by a Gaussian distributed stochastic
potential with zero mean, 〈V (x)〉 = 0, and thus characterized by its correlation
function

ν(x− x′) = 〈V (x)V (x′)〉 , (12.30)

where now the brackets denote averaging with respect to the quenched disorder. The
interaction part is then

SV [x̃,x] = − i

2

∫ ∞

−∞
dt

∫ ∞

−∞
dt′ x̃α

t

∂2

∂xα∂xβ
ν(x)

∣∣∣∣
x=xt−xt′

x̃β
t′ . (12.31)

The above model thus describes a classical object subject to a viscous medium and
a random potential. In the case of two spatial dimensions it could be a particle on a
rough surface experiencing Ohmic dissipation, a case relevant to tribology. However,
the theory is applicable to any system where quenched disorder is of importance, say
such as when studying critical dynamics of spin-glasses.

The generating functional for the theory is thus

Z[F,J] =
∫
Dx
∫
Dx̃ eiS[x̃,x]+ix̃·F+ix·J (12.32)

where the action is S = S0+SV with S0 and SV given by Eq. (12.25) and Eq. (12.31),
respectively. The normalization

Z[F,J = 0] = 1 . (12.33)

allows us to avoid the replica trick for performing the average over the quenched
disorder [123].

The generating functional generates the correlation functions of the theory

〈xt1 · · ·xtn 〉ξ =
∫
Dx xt1 · · ·xtn Px[xt] = (−i)n δnZ[J ]

δJ(t1) · · · δJ(tn)
J=0

. (12.34)

The retarded full Green’s function, GR
αα′ , is seen to be the linear response function

to the physical force Fα′ , i.e. to linear order in the external force we have

〈xα(t)〉 =
∫ ∞

−∞
dt′ GR

αα′(t, t′)Fα′ (t′) (12.35)

and GK
αα′ is the correlation function, both matrices in Cartesian indices as indicated.

12.1.4 Dynamical index notation

It is useful to introduce compact matrix notation by introducing the dynamical index
notation. We collect the path and auxiliary field into the vector field

φ =
(

x̃
x

)
=
(

φ1

φ2

)
(12.36)
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as well as the forces

f ≡
(

F
J

)
≡
(

f1
f2

)
. (12.37)

This corresponds to introducing the real-time dynamical index notation we used to
describe the non-equilibrium states of a quantum field theory. Here they appear as
the Schwinger–Keldysh indices in the classical limit of quantum mechanics.6 In this
notation the quadratic part of the action becomes

S0[φ] =
1
2
φD−1φ , (12.38)

where

D−1 =
(

D−1
K D−1

R

D−1
A 0

)
=
(

i〈ξtξt′〉 D−1
R

D−1
A 0

)
(12.39)

is the free inverse matrix propagator

D−1D = δ(t− t′)1 (12.40)

and

D(t, t′) =
(

0 DA(t, t′)
DR(t, t′) DK(t, t′)

)
. (12.41)

Exercise 12.1. Show by Fourier transformation of Eq. (12.27) that

DR
ω =

1
(ω + i0)(mω + iη)

(12.42)

and thereby that the solution of Eq. (12.27) is

DR
tt′ = −1

η
θ(t− t′)

(
1− e−η(t−t′)/m

)
. (12.43)

The generator for the free theory is

Z0[f ] =
∫
Dφ eiS0[φ]+iφf =

√
det iD e−

i
2 fDf , (12.44)

where the matrix D is specified in Eq. (12.41). The diagonal component, the kinetic
component, is given by the equation

DK = −DRi〈ξξ〉DA (12.45)

and its Fourier transform is therefore

DK
ω = −2iηkBTDR

ωDA
ω . (12.46)

The free correlation function of the particle positions

〈xt xt′〉 = (−i)2
δ2Z0[f ]

δf2(t) δf2(t′)

∣∣∣∣
f2=0

= iDK
tt′ + 〈xt〉〈xt′〉 (12.47)

6See also the Feynman–Vernon theory, discussed in Appendix A.
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has connected and disconnected parts.
The generating functional in the presence of disorder becomes

Z[f ] =
∫
Dφ eiS[φ]+iφf , (12.48)

where S = S0 + SV , and the action due to the quenched disorder is

SV [φ] = − i

2

∫ ∞

−∞
dt

∫ ∞

−∞
dt′ φα

1 (t)
∂2

∂xα∂xβ
ν(x)

∣∣∣∣
x=xt−xt′

φβ
1 (t′) (12.49)

and the normalization condition becomes

Z[f1, f2 = 0] = 1 . (12.50)

The generator generates the correlation functions, for example the two-point
Green’s function

〈φt φt′〉 = − δ2Z

δft δft′

∣∣∣∣
f2=0

. (12.51)

The generator of connected Green’s functions, iW [f ] = lnZ[f ], for example generates
the average field

〈φt〉 = −i
1

Z[f ]
δZ[f ]
δft

∣∣∣∣
f2=0

= −i
δZ[f ]
δft

∣∣∣∣
f2=0

. (12.52)

12.1.5 Quenched disorder and diagrammatics

Let us investigate the structure of the diagrammatic perturbation expansion resulting
from the quenched disorder, i.e. the vertices originating from the quenched disorder.
The perturbative expansion of the generating functional in terms of the disorder
correlator is

Z[f ] =
∫
Dφ eiφD−1φ+ifφ

(
1 + iSV [φ] +

1
2!

(iSV [φ])2 + . . .

)
. (12.53)

The vertices in a diagrammatic depiction of the perturbation expansion are deter-
mined by SV , Eq. (12.31) and can be expressed as

SV [φ] =
i

2

∫
dt

∫
dt′
∫

dk
(2π)2

ν(k)k · x̃t eik(xt−xt′ ) k · x̃t′ . (12.54)

The vertices of the theory thus have one auxiliary field, x̃, attached and an arbitrary
number of fields x attached, and are depicted as a circle with the time in question
marked inside and a dash-dotted line to describe the attachment of an impurity
correlator

x̃

x
x

x

t

·· ·

. (12.55)
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As any vertex contains attachment for the impurity correlator, vertices occur in pairs

x̃ x̃
ν(k)

x
x

x x
x

t t′

·· · · · ·
(12.56)

resulting in vertices of second order in the auxiliary field x̃ but of arbitrary order
in position of the particle, x. The diagrammatic representation of the perturbation
expansion in terms of the disorder is thus specified by this basic vertex, and the
propagators of the theory are in this classical limit of the real-time technique, the
propagators DR, DA and DK. Diagrams representing terms in the perturbation
expansion of the generating functional consist of the vertices described above and
connected to one another or to sources by lines representing retarded, advanced and
kinetic Green’s functions. An example of a typical such vacuum diagram of the
theory, containing two impurity correlators, is displayed in Figure 12.1.

��k�
t� t

�

�

��k�
t� t

�

�

Figure 12.1 Example of a vacuum diagram. The solid line represents the correlation
function or kinetic component, GK, of the matrix Green’s function. The retarded
Green’s function, GR, is depicted as a wiggly line ending up in a straight line, and
vice versa for the advanced Green’s function GA. A dashed line attached to circles
represents the impurity correlator. The cross in the figure represents the external
force F.

As an application of the above Langevin dynamics in a random potential, we shall
study the dynamics of a vortex lattice. But before we discuss the phenomenology
of vortex dynamics, we consider the relation of the theory with a mass term to the
over-damped case.
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12.1.6 Over-damped dynamics and the Jacobian

We have noted in Section 12.1.3 that the presence of the mass terms can be used as a
regularizer leaving the Jacobian for the transformation between paths and stochastic
force an irrelevant constant. However, many situations of interest are concerned with
over-damped dynamics and we shall therefore here deal with that situation explicitly.
We show in this section that the neglect of the mass term in the equation of motion
gives a Jacobian, which in diagrammatic terms leads to the cancellation of the tadpole
diagrams.

In the over-damped case the inverse retarded Green’s function, Eq. (12.26), be-
comes

D−1
R (t, t′) = −η ∂tδ(t− t′) (12.57)

corresponding to setting the mass of the particle equal to zero. The Jacobian, J , is
for the considered situation the determinant

J = det
(

δξt

δxt′

)
(12.58)

which by use of the equation of motion can be rewritten

J = −(DR)−1
tt′ +

δ∇V (xt)
δxt′

= η ∂tδ(t− t′) +
δ∇V (xt)

δxt′
(12.59)

or equivalently

J = det

(
η∂tδ(t− t′)δαβ +

∂2V (xt)

∂xα
t ∂xβ

t

δ(t− t′)

)

= det
(
η∂tδ(t− t′)δαβ

)
× det

(
δ(t′′ − t′)δαβ + η−1

∫
t̃

∂−1
t (t′′, t̃)

∂2V (xt)
∂xα∂xβ

δ(t̃− t′)
)

, (12.60)

where the inverse time differential operator is

∂−1
t (t1, t2) = θ(t1 − t2) . (12.61)

Using the trace-log formula, ln det M = Tr lnM , the Jacobian then becomes

J = det
(
η∂tδ(t− t′)δαβ

)
× exp

(
Tr ln

(
δ(t′′ − t′)δαβ + η−1∂−1

t (t′′, t̃)
∂2V (xt)
∂xα∂xβ

δ(t̃− t′)
))

= det
(
η∂tδ(t− t′)δαβ

)
× exp

(
−

∞∑
n=1

1
n

Tr(−η−1∂−1
t (t′′, t̃)

∂2V (xt)
∂x∂x

δ(t− t′))n

)
. (12.62)

The Jacobian adds a term to the action, and the diagrams generated by the Jacobian
are seen to be exactly the tadpole diagrams generated by the original action except
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for an overall minus sign, and the Jacobian can thus be neglected if we simultane-
ously omit all tadpole diagrams. This is equivalent to choosing the step function in
Eq. (12.62) to be defined according to the prescription

θ(t) =
{

0 t ≤ 0
1 t > 1 (12.63)

since then the first term of the Taylor expansion of the logarithm will be

Tr(∂−1(t− t′′)V ′′(xt′′ )δ(t′′ − t′)) =
∫

dt θ(0)V ′′(xt) = 0 . (12.64)

The higher-order terms in the Taylor expansion are similarly shown to be zero. The
result we obtain for the Jacobian for this particular choice of the step function is
therefore independent of the disorder potential V

J = det (η∂t(t− t′′) δ(t′′ − t′)) = const . (12.65)

The derivation of the self-consistent equations can therefore be carried out in the
same way as for the case of a nonzero mass when we have chosen this particular
definition of the step or Heaviside function. The only difference is that the following
form of the free retarded propagator is used:

DR(t, t′) = −1
η
θ(t− t′) . (12.66)

The equations obtained by setting the mass equal to zero in the previous equations
are then exactly the same as the ones obtained for the over-damped case.

12.2 Magnetic properties of type-II superconductors

The advent of high-temperature superconductors has led to a renewed interest in
vortex dynamics since high-temperature superconductors have large values of the
Ginzburg–Landau parameter and the magnetic field versus temperature (B–T ) phase
diagram is dominated by the vortex phase.7 In this section we consider the phe-
nomenology of type-II superconductors, in particular the forces on vortices and their
dynamics. Since vortex dynamics in the flux flow regime is Langevin dynamics with
quenched disorder, they provide a realization of the model discussed in the previous
sections.

12.2.1 Abrikosov vortex state

The essential feature of the magnetic properties of a type-II superconductors is the
existence of the Abrikosov flux-line phase [124]. At low magnetic field strengths,

7The Ginzburg–Landau parameter, κ = λ/ξ, is the ratio between the penetration depth and
the superconducting coherence length. The magnetic field penetration depth was first introduced
in the phenomenological London equations, µ0 j̇s = E/λ2 and µ0∇ × js = −B/λ2, the latter the
important relation between the magnetic field and a supercurrent describing the Meissner effect of
flux expulsion as obtained employing the Maxwell equation to get B + λ2∇×∇× B = 0.
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just as for a type-I superconductor, a type-II superconductor exhibits the Meiss-
ner effect, magnetic flux expulsion. A counter supercurrent on a sample’s surface
makes a superconductor exhibit perfect diamagnetism, giving it a magnetic moment
(which can provide magnetic levitation). Above a critical magnetic field, Hc1, the
superconducting properties of a type-II superconductor weakens, say for example its
magnetic moment on increase of magnetic field, and the superconductor has entered
the Shubnikov phase (1937). In this state, magnetic flux will penetrate a type-II
superconductor in the form of magnetic flux lines, each carrying a magnetic flux
quantum, φ0 = h/(2e), with associated vortices of supercurrents. This phase is the
Abrikosov lattice flux-line phase, and persists up to an upper critical field, Hc2, where
superconductivity breaks down, and the superconductor enters the normal state. The
supercurrents circling the vortex cores, where the order parameter is depressed and
vanishing at the center, screen the magnetic field throughout the bulk of the material.
The coupling of magnetic field and current results in a repulsive interaction between
vortices which for an isotropic superconductor leads to a stable lattice for the regular
triangular array, the Abrikosov flux lattice.

The energetics of two vortices are governed by the magnetic field energy and the
kinetic energy of the supercurrent, and as governed by the London equation give a
repulsive force, assuming the same sign of vorticity, on each vortex of strength

F = φ0 js , (12.67)

where js is the supercurrent density associated with one vortex at the position of the
other vortex. In the presence of a transport current, j, through the superconductor
the vortices will therefore per unit length be subject to a Lorentz force of magnitude

FL = φ0 j , (12.68)

where j is the transport current density, and the direction of the force is specified by
j × B. Even a small transport current will give rise to motion of the vortex lattice
perpendicular to the current in a pure type-II superconductor in the Abrikosov–
Shubnikov phase. This motion causes dissipative processes due to the normal currents
in the core, which phenomenologically can be described, at low velocities, by a friction
force (per unit length) opposing the motion of a vortex with velocity v

Ff = −η v . (12.69)

The friction coefficient is given by8

η =
φ2

0

2πa2ρn
(12.70)

where ρn is the normal resistance of the metal, and a is the size of the normal core
(approximately equal to the superconducting coherence length).

8For a phenomenological justification of the friction term we refer to the Bardeen–Stephen model
[125], or analysis based on the time dependent Ginzburg–Landau equation [126, 127, 128]. As
proclaimed, we describe only the phenomenology of the relevant forces, no derivation based on the
microscopic theory will be done, instead we refer the reader in general to reference [129].
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In addition, there can also be a Hall force

FH = α v × n̂ (12.71)

acting on the vortex [130].
In a real superconductor there are always imperfections, referred to as impurities,

causing the vortices to have energetically preferred positions. The pinning force is
caused by defects such as twinning or grain boundaries, or dislocation lines. These
can pin a vortex, which would otherwise move in the presence of a transport current.9

At low enough temperatures and below a critical value of the transport supercurrent,
the vortex lattice is pinned and the current carrying state dissipationless. At larger
currents or higher temperatures, the motion of the vortices occur by thermal excita-
tion of (bundles of) vortices hopping between pinning centers, the state of flux creep.
In the regime where the pinning force, Fp, is weak compared with the driving force,
the motion of the vortex lattice is steady, characterized by a velocity, v, the super-
conductor is in the dreaded flux flow regime. The moving magnetic field structure
associated with the vortices, leads by induction to the presence of an electric field,
E = −v × B. The electric field has, as a result of the friction force, a component
parallel to the current, and the work, E ·j, performed by the electric field is dissipated
by the friction force. The resistance is of the order of the normal state resistance,
and the dissipation will drive the superconductor to its normal state.

There is also interaction between the vortices as discussed previously. We shall be
interested in the case where the deformation of the Abrikosov lattice is weak, leading
to a harmonic interaction between the vortices described by continuum elasticity
theory.

12.2.2 Vortex lattice dynamics

We now turn to the case of interest, the dynamics of the Abrikosov vortex lattice in
the flux flow regime. The formalism is identical to the previously considered case of
one particle, except the occurrence of the whole lattice of vortices with the additional
feature of their interaction.

We consider a two-dimensional (2D) description of the vortices, since we have
in mind a thin superconducting film, or a three-dimensional (3D) layered supercon-
ductor with uncorrelated disorder between the layers. We shall be interested in the
influence of quenched disorder on the vortex dynamics in the flux flow regime. The
description of the vortex dynamics is, according to the previous section, described
by the Langevin equation of the form

müRt + ηu̇Rt +
∑
R′

ΦRR′uR′t = F + αu̇Rt × ẑ−∇V (R + uRt) + ξRt , (12.72)

where uRt is the two-dimensional displacement, normal to ẑ, at time t of the vortex
(or bundle of vortices), which initially has equilibrium position R, η is the friction

9The existence of the Abrikosov vortex state and the pinning of vortices is, from the point
of applications using superconducting coils as magnets, the most important property. They can
produce magnetic fields in the excess of tens of Tesla. Usual copper coils can not produce the stable
field produced by the supercurrent, not to mention its mess of water-cooling.
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coefficient, and m is a possible mass of the vortex (both per unit length). The mass
of a vortex is small and will eventually be set to zero. The interaction between the
vortices is treated in the harmonic approximation and described by the dynamic
matrix ΦRR′ whose relevant elasticity moduli is discussed in Section 12.6. The
force (per unit length) on the right-hand side of Eq. (12.72) consists of the Lorentz
force, F = φ0 j × ẑ, due to the transport current density j, which we eventually
assume constant, and the second term on the right-hand side is a possible Hall force,
characterized by the parameter α, and V is the pinning potential due to the quenched
disorder. The pinning is described by a Gaussian distributed stochastic potential with
zero mean, 〈V (x)〉 = 0, and thus characterized by its correlation function

ν(x− x′) = 〈V (x)V (x′)〉 . (12.73)

The thermal noise, ξ, is the white noise stochastic process with zero mean and
correlation function specified according to the fluctuation–dissipation theorem (where
the brackets now denote averaging with respect to the thermal noise)

〈ξα
Rt ξα′

R′t′〉 = 2ηT δ(t− t′) δRR′ δαα′ (12.74)

and, since the forces are per unit length, the temperature T has the dimension of
energy per unit length.

Upon averaging with respect to the thermal noise and the quenched disorder, the
average restoring force of the lattice vanishes

−
∑
R′

ΦRR′ 〈〈uR′t〉〉 = 0 (12.75)

since the average displacement is the same for all vortices, and a rigid translation
of the vortex lattice does not change its elastic energy, leaving the dynamic matrix
with the symmetry property ∑

R′

ΦRR′ = 0 . (12.76)

Owing to dissipation, the vortex lattice reaches a steady state velocity v = 〈〈u̇Rt〉〉,
corresponding to the average force on any vortex vanishes

F + Ff + FH + Fp = 0 , (12.77)

i.e. there will be a balance between the Lorentz force, F, the average friction force,
Ff = −ηv, the average Hall force, FH = αv × ẑ, and the pinning force

Fp = −〈〈∇V (R + uRt)〉〉 . (12.78)

The pinning force is determined by the relative positions of the vortices with respect
to the pinning centers and is invariant with respect to the change of the sign of α.
The average velocity, v, is the only vector characterizing the vortex motion which
is invariant with respect to the change of the sign of α, and the pinning force is
therefore antiparallel to the velocity. Thus, the pinning yields a renormalization of
the friction coefficient

−ηv + Fp = −ηeff v . (12.79)
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The effective friction coefficient depends on the average velocity of the lattice, the
disorder, the temperature, the interaction between the vortices, the Hall force, and a
possible mass of the vortex. In the absence of disorder, the effective friction coefficient
reduces to the bare friction coefficient η.

The pinning problem has no simple analytical solution. One way of attacking the
problem is a perturbation calculation in powers of the disorder potential. A second-
order perturbation calculation works well for high velocities, as we show in Section
12.5.1.10 At low enough velocities the higher-order contributions in the disorder
become important. We shall employ the self-consistent effective action method of
Cornwall et al. [53] to sum up an infinite subset of the contributions in V . Such self-
consistent methods are uncontrolled but many times they yield surprisingly good
results. In order to apply the field theoretic methods of Cornwall et al. we need
to reformulate the stochastic problem in terms of a generating functional, which is
achieved by the field theoretical formulation of classical statistical dynamics.

In the following the influence of pinning on vortex dynamics in type-II supercon-
ductors is investigated. The vortex dynamics is described by the Langevin equation,
and we shall employ a field-theoretic formulation of the pinning problem which al-
lows the average over the quenched disorder to be performed exactly. By using the
diagrammatic functional method for this classical statistical dynamic field theory, we
can, from the effective action discussed in the previous chapter, obtain an expression
for the pinning force in terms of the Green’s function describing the motion of the
vortices.

12.3 Field theory of pinning

The average vortex motion is conveniently described by reformulating the stochastic
problem in terms of the field theory of classical statistical dynamics introduced in
Section 12.1. The probability functional for a realization {uRt}R of the motion of
the vortex lattice is expressed as a functional integral over a set of auxiliary variables
{ũRt}R, and we are led to consider the generating functional11

Z[F,J] =
∫ ∏

R

DuRt

∫ ∏
R

DũRt J eiS[u,ũ] , (12.80)

where in the action

S[u, ũ] = ũ(D−1
R u + F−∇V + ξ) + Ju (12.81)

the inverse free retarded Green’s function is specified by

−D−1
R uRt = müRt + ηu̇Rt +

∑
R′

ΦRR′uR′t + αẑ × u̇Rt , (12.82)

10Vortex pinning in the flux flow regime was originally considered treating the disorder in lowest
order perturbation theory [131, 132], and later by applying field theoretical methods [133, 134].

11In the following we essentially follow reference [134].
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i.e.

D−1
R (R, t;R′, t′) = −ΦRR′ δ(t− t′) −

[
(m∂2

t + η∂t)1− iασy∂t

]
δR,R′ δ(t− t′) ,

(12.83)

where matrix notation is used for its Cartesian components, i.e. 1 and σy denote
the unit matrix (occasionally suppressed for convenience) and the Pauli matrix in
Cartesian space, respectively. The Fourier transform of the inverse free retarded
Green’s function is therefore the two by two matrix in Cartesian space given by the
expression

D−1
R (q, ω) =

(
mω2 + iηω −iαω

iαω mω2 + iηω

)
− Φq . (12.84)

In Eq. (12.81) we have introduced matrix notation in order to suppress the integra-
tions over time and summations over vortex positions and Cartesian indices. Thus,
for example, ũD−1

R u denotes the expression

ũD−1
R u =

∑
RR′

α,α′=x,y

∞∫
−∞

dt

∞∫
−∞

dt′ ũα(R, t)D−1αα′

R (R, t;R′, t′)uα′(R′, t′) . (12.85)

The Jacobian, J = |δξRt/δũR′t′ |, guaranteeing the normalization of the generating
functional

Z[F,J = 0] = 1 (12.86)

is given by

J ∝ exp

− ∑
Rαα′

∞∫
−∞

dtDRαα′

Rt;Rt

∂2V (R + uRt)
∂xα′∂xα

 , (12.87)

where the proportionality constant is the determinant of the inverse free retarded
Green’s function, |(D−1

R )αα′

Rt,R′t′ |. As discussed in Section 12.1.6, in the case of a
nonzero mass, m �= 0, the Jacobian is an irrelevant constant; and in the case of
zero mass, dropping the Jacobian from the integrand is equivalent to defining the
retarded free Green’s function to vanish at equal times, DR

tt = 0, which in turn leads
to the full retarded Green’s function satisfying the same initial condition. In terms of
diagrams, the contribution from the Jacobian exactly cancels the tadpole diagrams
as discussed in Section 12.1.6.

The average with respect to both the thermal noise and the disorder is imme-
diately performed, and we obtain the averaged functional, dropping the irrelevant
Jacobian,

Z[f ] = 〈〈Z〉〉 =
∫
Dφ eiS[φ]+ifφ . (12.88)

We have employed the compact notation for the fields

φRt = (ũRt,uRt) = (φ1(R, t), φ2(R, t)) (12.89)
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and for the external force and an introduced source, J(R, t),

f(R, t) = (F(R, t),J(R, t)) . (12.90)

The action obtained upon averaging, which we also denote by S, consists of two
terms

S[φ] = S0[φ] + SV [φ] . (12.91)

The first term is quadratic in the field

S0[φ] =
1
2
φD−1φ , (12.92)

where the matrix notation now in addition includes the dynamical indices, i.e. φD−1φ
denotes the expression

φD−1φ = i
∑
RR′

αα′ij

∞∫
−∞

dt

∞∫
−∞

dt′φα
i (R, t)D−1 αα′

ij (R, t;R′, t′)φα′

j (R′, t′) . (12.93)

The inverse free matrix Green’s function in dynamical index space

D−1 =

(
D−1

11 D−1
12

D−1
21 D−1

22

)
=

(
2iηT δ(t− t′) δαα′ δRR′ D−1

R (R, t;R′, t′)

D−1
A (R, t;R′, t′) 0

)
(12.94)

is a symmetric matrix in all indices and variables, since the inverse free advanced
Green’s function is obtained by interchanging Cartesian indices as well as position
and time variables

D−1α′α
A (R′, t′;R, t) = D−1αα′

R (R, t;R′, t′) . (12.95)

The interaction term originating from the disorder is

SV [φ] = − i

2

∑
RR′

αα′

∞∫
−∞

dt

∞∫
−∞

dt′ ũα
Rt

∂2ν(uRt − uR′t′)
∂uα

Rt∂uα′
Rt

ũα′

R′t′ . (12.96)

The source term introduced in Eq. (12.80)

Ju =
∑
R

∫ ∞

−∞
dt J(R, t) · u(R, t) , (12.97)

where the source, J(R, t), couples to the vortex positions, u(R, t), is added to the
action in order to generate the vortex correlation functions. For example, we have
for the average position

〈〈uRt〉〉 = −i
δZ

δJRt

∣∣∣∣
J=0

(12.98)
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and the two-point unconnected Green’s function

〈〈uRt uR′t′〉〉 = − δ2Z

δJRt δJR′t′

∣∣∣∣
J=0

. (12.99)

Here and in the following we use dyadic notation, i.e. uRt uR′t′ is the Cartesian
matrix with the components uα(R, t)uα′(R′, t′).

12.3.1 Effective action

In order to obtain self-consistent equations involving the two-point Green’s function
in a two-particle irreducible fashion, we add a two-particle source term K to the
action in the generating functional (recall Section 10.5.1)

Z[f, K] =
∫
Dφ exp

(
iS[φ] + ifφ +

i

2
φKφ

)
. (12.100)

The generator of connected Green’s functions

iW [f, K] = lnZ[f, K] (12.101)

has accordingly derivatives

δW

δfα
i (R, t)

= φ
α

i (R, t) (12.102)

and

δW

δKαα′
ii′ (R, t;R′, t′)

=
1
2
φ

α

i (R, t)φ
α′

i′ (R′, t′) +
i

2
Gαα′

ii′ (R, t;R′, t′) , (12.103)

where φ is the average field, with respect to the action S[φ] + fφ + φKφ/2,

φ
α

i (R, t) =
∫
Dφ φα

i (R, t) exp
(

iS[φ] + ifφ +
i

2
φKφ

)
(12.104)

and G is the full connected two-point matrix Green’s function

Gij = − δ2W

δfi δfj
= −i

 〈〈δũα
Rt δũα′

R′t′〉〉 〈〈δũα
Rt δuα′

R′t′〉〉

〈〈δuα
Rt δũα′

R′t′〉〉 〈〈δuα
Rt δuα′

R′t′〉〉

 , (12.105)

where
δuRt = uRt − 〈〈uRt〉〉 , δũRt = ũRt − 〈〈ũRt〉〉 . (12.106)

In the physical problem of interest, the sources K and J vanish, K = 0 and
J = 0, and the full matrix Green’s function has, owing to the normalization of the
generating functional

Z[F,J = 0, K = 0] = 1 , (12.107)
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the structure in the dynamical index space

Gij = −i

 0 〈〈ũα
Rt uα′

R′t′〉〉

〈〈uα
Rt ũα′

R′t′〉〉 〈〈δuα
Rt δuα′

R′t′〉〉



=

(
0 GA

αα′(R, t;R′, t′)

GR
αα′(R, t;R′, t′) GK

αα′(R, t;R′, t′)

)
, (12.108)

where we observe that the connected and unconnected retarded (or advanced) Green’s
functions are equal. Similarly, in the absence of sources the expectation value of the
auxiliary field vanishes, and the average field is therefore given by

φ̄Rt = (〈〈ũRt〉〉, 〈〈uRt〉〉) = (0,vt) , (12.109)

where v is the average velocity of the vortex lattice.
The retarded Green’s function GR

αα′ yields the linear response to the force Fα′ ,
i.e. to linear order in the external force we have

〈〈uα(R, t)〉〉 =
∑
R′

∞∫
−∞

dt′ GR
αα′(R, t;R′, t′)Fα′ (R′, t′) , (12.110)

and GK
αα′ is the correlation function, both matrices in Cartesian indices as indicated.

The matrix Green’s function in dynamical index space, Eq. (12.108), has only two
independent components, since the advanced Green’s function is given by

GA
αα′ (R, t;R′, t′) = GR

α′α(R′, t′;R, t) . (12.111)

Pursuing an equation for the pinning force, we introduce the effective action, Γ,
the generator of two-particle irreducible vertex functions, i.e. the double Legendre
transform of the generator of connected Green’s functions, W (recall Section 10.5.1),

Γ[φ, G] = W [f, K]− fφ− 1
2
φKφ− i

2
TrGK , (12.112)

where Tr denotes the trace over all variables and indices, i.e. TrGK denotes the
expression

TrGK =
∑
R,R′

α,α′=x,y

i,i′=1,2

∞∫
−∞

dt

∞∫
−∞

dt′ Gαα′

ii′ (R, t;R′, t′)Kα′α
i′i (R′, t′;R, t) . (12.113)

The effective action satisfies the equations

δΓ
δφ

= −f −Kφ (12.114)
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and

δΓ
δG

= − i

2
K . (12.115)

The effective action was shown in Section 10.5.1 to have the form

Γ[φ̄, G] = S[φ̄] +
i

2
TrD−1

S G− i

2
Tr ln D−1G− i

2
Tr1

− i ln〈eiSint[φ̄,ψ]〉2PI
G , (12.116)

where the quantity D−1
S is the second derivative of the action at the average field

D−1
S [φ](t, t′) =

δ2S[φ̄]
δφt δφt′

(12.117)

and Sint[φ̄, ψ] is the part of the action S[φ + ψ] that is higher than second order in
ψ in an expansion around the average field. The superscript “2PI” on the last term
indicates that only the two-particle irreducible vacuum diagrams should be included
in the interaction part of the effective action, the last term in Eq. (12.116), and the
subscript that propagator lines represent G, i.e. the brackets with subscript G denote
the average

〈eiSint[φ̄,ψ]〉G = (det iG)−1/2

∫
Dψ e

i
2 ψG−1ψ eiSint[φ̄,ψ] . (12.118)

The first dynamical index component of Eq. (12.114) together with the equa-
tion for the average motion Eq. (12.77) provide an expression for the pinning force,
Eq. (12.78), in term of the dynamical matrix propagator of the theory. The general
expression is still intractable, and in the next section we shall introduce the main
approximation.

12.4 Self-consistent theory of vortex dynamics

Because of the disorder, the equation of motion describing the vortex dynamics has no
simple analytical solution. The employed field theoretical formulation of the pinning
problem will therefore be used in combination with a self-consistent approximation
for the effective action for studying vortex motion in type-II superconductors. Since
we have constructed the two-particle irreducible effective action, we expect that its
lowest-order approximation contains the main influence of the quenched disorder
on the vortex dynamics. The validity of the self-consistent theory is ascertained by
comparing with numerical simulations of the Langevin equation. The effective action
method will be used to study the dynamics of single vortices and vortex lattices,
and yields results for the pinning force, fluctuations in position and velocity, etc.
The dependence of the pinning force on vortex velocity, temperature and disorder
strength is calculated for independent vortices as well as for a vortex lattice, and both
analytical and numerical results for the pinning of vortices in the flux flow regime
are obtained. Finally, the influence of pinning on the dynamic melting of a vortex
lattice is studied in Section 12.7.
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12.4.1 Hartree approximation

In order to obtain a closed expression for the self-energy in terms of the two-point
Green’s function, we expand the exponential and keep only the lowest-order term

−i ln〈eiSint[φ̄,ψ]〉2PI
G � −i ln〈1 + iSint[φ̄, ψ]〉2PI

G � 〈Sint[φ̄, ψ]〉G , (12.119)

i.e. we consider the Hartree approximation, which in diagrammatic terms corresponds
to neglecting diagrams where different impurity correlators are connected by Green’s
functions.
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Figure 12.2 Typical vacuum diagram not included in the Hartree approximation
for the effective action. The solid line represents the correlation function or kinetic
component, GK, of the matrix Green’s function. The retarded Green’s function, GR,
is depicted as a wiggly line ending up in a straight line, and vice versa for the advanced
Green’s function GA. The curly line ending up on the dot represents the first kinetic
component of the average field. A dashed line attached to circles represents the
impurity correlator and the additional dependence on the second component of the
average field as explicitly specified in Eq. (12.120).

A typical vacuum diagram not included in the Hartree approximation for the
effective action is shown in Figure 12.2, and represents the expression(

i

2

)2( 1
4!

)2∫
dk1

(2π)2
dk2

(2π)2
k2 · φ̄1(R2, t2)

×(k2G
R(R2, t2;R1, t1)k1)(k1G

R(R1, t1;R′
1, t

′
1)k1)

×(k1G
R(R′

1, t
′
1;R

′
2, t

′
2)k2)(k2G

K(R2, t2;R′
2, t

′
2)k2)

×ν(k1)eik1·(R1−R′
1+v(t1−t′1))ν(k2)eik2·(R2−R′

2+v(t2−t′2)) , (12.120)

where integrations over time and summations over vortex positions are implied, and
we have introduced the notation

kGR(R, t;R′, t′)k′ =
∑
αα′

kα GR
αα′ (R, t;R′, t′) k′

α′ (12.121)
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for Cartesian scalars.
In the Hartree approximation, Eq. (12.119), we drop the superscript “2PI” since

the action Sint[φ̄, ψ] only generates two-particle-irreducible vacuum diagrams, due to
the appearance of only one impurity correlator. The Hartree approximation can be
expressed as a Gaussian fluctuation corrected saddle-point approximation [135].

The effective action can in the Hartree approximation be rewritten on the form

Γ[φ̄, G] = S0[φ̄]− i

2
Tr ln D−1G +

i

2
TrD−1G− i

2
Tr1 + 〈SV [φ̄ + ψ]〉G (12.122)

since

〈Sint[φ̄, ψ]〉G = 〈SV [φ̄ + ψ]〉G − SV [φ̄] − i

2
Tr
∫ ∞

−∞
dt

∫ ∞

−∞
dt′

δ2SV [φ̄]
δφ̄t δφ̄t′

Gt′t , (12.123)

where the trace in the time variable has been written explicitly for clarity.
In the physical situation of interest the two-particle source, K, vanishes, and since

Γ is two-particle-irreducible, Eq. (12.115) therefore becomes the Dyson equation

G−1 = D−1 − Σ , (12.124)

where the self-energy in the Hartree approximation is the matrix in dynamical index
space

Σij =
(

ΣK ΣR

ΣA 0

)
= 2i

δ〈SV [φ̄ + ψ]〉G
δGij

∣∣∣∣
K=0, J=0

. (12.125)

The Dyson equation, Eq. (12.124), and the self-energy expression, Eq. (12.125), and
the equation relating the effective action to the external force, Eq. (12.114), constitute
a set of self-consistent equations for the Green’s functions, the self-energies, and the
average field, in this non-equilibrium theory the latter specifies the velocity of the
vortex lattice.

The matrix self-energy in dynamical index space has only two independent com-
ponents since

ΣA
αα′(R, t;R′, t′) = ΣR

α′α(R′, t′;R, t) , (12.126)

a simple consequence of Eq. (12.111) and the Dyson equation. From Eq. (12.125) we
obtain for a vortex lattice having a unit cell of area a2 and consisting of N vortices,
the self-energy components (each a matrix in Cartesian space)

ΣK(R, t;R′, t′) = − i

Na2

∑
k

ν(k)kk e−ϕ̃(R,t;R′,t′;k;v) (12.127)

and

ΣR(R, t;R′, t′) = σR(R, t;R′, t′) − δRR′ δ(t− t′)
∑
R̃

∞∫
−∞

dt̃ σR(R, t; R̃, t̃) ,

(12.128)
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where

σR(R, t;R′, t′) =
1

Na2

∑
k

ν(k)kk (kGR(R, t;R′, t′)k) = e−ϕ̃(R,t;R′,t′;k;v) .

(12.129)

We use dyadic notation, i.e. kk denotes the matrix with the Cartesian components
kαkα′ . The influence of thermal and disorder-induced fluctuations are described by
the fluctuation or damping exponent

ϕ
k
(R, t;R′, t′) = ik

(
GK(R, t;R, t)−GK(R, t;R′, t′)

)
k (12.130)

contained in

ϕ̃(R, t;R′, t′;k;v) = −ik · (R−R′ + v(t− t′)) + ϕ
k
(R, t;R′, t′) . (12.131)

The pinning force on a vortex, Eq. (12.78), is determined by the averaged equation of
motion, Eq. (12.77), and the first dynamical index component of Eq. (12.114), which
in the Hartree approximation yields

−
∑
R′

∑
α′

∫ ∞

−∞
dt′ D−1αα′

R (R, t;R′, t′) vα′ t′ = Fα
R +

δ〈SV [φ + ψ]〉G
δφ

α

1 (R, t)

∣∣∣∣∣
φRt =(0,vt)

(12.132)

resulting in the expression for the pinning force

Fp = i
∑
R′

∞∫
−∞

dt′
∫

dk
(2π)2

k ν(k)(kGR
RtR′t′k)e−ϕ̃(R,t;R′,t′;k;v) . (12.133)

The self-consistent theory in the Hartree approximation is still intractable to
analytical treatment, except in the limiting cases considered in the following, but it
is manageable numerically.12 In the following we shall study numerically the vortex
dynamics in the Hartree approximation. The results obtained from the self-consistent
theory will then be compared with analytical results obtained in perturbation theory,
and with simulations of the vortex dynamics.

12.5 Single vortex

In order to study the essential features of the model and the self-consistent method,
we first consider the case of a single vortex, since this example will allow the important
test of comparing the results of the self-consistent theory with simulations. The case
of non-interacting vortices is appropriate for low magnetic fields, where the vortices
are so widely separated that the interaction between them can be neglected. The
dynamics of a single vortex is described by the Langevin equation

mẍt + ηẋt = −∇V (xt) + Ft + ξt , (12.134)
12In the rest of this chapter we follow reference [134].
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where xt is the vortex position at time t. We defer the discussion of the Hall force
to Section 12.5.5.

When presenting analytical and numerical results obtained from the self-consistent
theory, we shall always choose the vortex mass (per unit length) to be small, in fact
so small, m � η2r3

p/
√

ν0, that the case of zero mass only deviates slightly from the
presented results, i.e. at most a few percent.

In the analytical and numerical calculations, the correlator of the pinning poten-
tial shall be taken as the Gaussian function with range rp and strength ν0

ν(x− x′) =
ν0

2πr2
p

e−(x−x′)2/2r2
p , ν(k) = ν0e

−r2
pk2

. (12.135)

12.5.1 Perturbation theory

At high velocities, the pinning force can be obtained from lowest-order perturbation
theory in the disorder, since the pinning force then is small compared with the friction
force, and makes, according to Eq. (12.77), only a small contribution to the total force
on the vortex. We first consider the case of zero temperature, where we obtain the
following set of equations by collecting terms of equal powers in the pinning potential

−
∫ ∞

−∞
dt′ D−1

R (t, t′) x(0)
t′ = Ft (12.136)

and

−
∫ ∞

−∞
dt′ D−1

R (t, t′) x(1)
t′ = −∇V (x(0)

t ) (12.137)

and

−
∫ ∞

−∞
dt′ D−1

R (t, t′) x(2)
t′ = −∇

(
x(1)

t · ∇V (x(0)
t )
)

. (12.138)

Assuming that the external force is independent of time, the average vortex ve-
locity will be constant in time, and in the absence of disorder the average vortex
position is

〈〈x(0)
t 〉〉 = vt =

Ft

η
, (12.139)

i.e. the friction force balances the external force, ηv = F. The first-order contribution
to the vortex position vanishes upon averaging with respect to the pinning potential,
and the second-order contribution to the average vortex velocity becomes, according
to Eqs. (12.136) to (12.138),

〈〈ẋ(2)
t 〉〉 = − i

η

∫ ∞

−∞
dt′ DR

tt′

∫
dk

(2π)2
k k2ν0 e−k2r2

p+ik·v(t−t′)

=
ν0

4πr5
pη

∫ ∞

0

dt DR
t0

(
vt

rp
−
(

vt

2rp

)2
)

e
−
(

v t
2rp

)2

. (12.140)
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The second-order contribution is immediately calculated, and for example for the
case of a vanishing mass, m � η2r3

p/
√

ν0, we obtain

〈〈ẋ(2)
t 〉〉 = − ν0

4πr4
pη2v2

v . (12.141)

The pinning force is then, according to Eq. (12.77), to lowest order in the disorder
strength, ν0, given by

Fp = − ν0

4πr4
pηv2

v , (12.142)

i.e. the magnitude of the pinning force is inversely proportional to the magnitude
of the velocity. The perturbation result is therefore valid for large velocities, v �√

ν0/ηr2
p, i.e. when the friction force is much larger than the average force,

√
ν0/r2

p,
owing to the disorder.

12.5.2 Self-consistent theory

The self-energy equations for a single vortex reduces in the Hartree approximation
to

ΣR(t, t′) =
∫

dk
(2π)2

σR
k (t, t′)− δ(t− t′)

∞∫
−∞

dt̄ σR
k (t, t̄)

 (12.143)

and

σR
k (t, t′) = ν(k)kk (kGR(t, t′)k) eik·v(t−t′) − ϕk(t,t′) (12.144)

and

ΣK(t, t′) = −i

∫
dk

(2π)2
ν(k)kk eik·v(t−t′) − ϕk(t,t′) (12.145)

with the fluctuation exponent

ϕk(t, t′) = ik
(
GK(t, t)−GK(t, t′)

)
k . (12.146)

Writing out the components of the matrix Dyson equation in the dynamical indices,
Eq. (12.124), we obtain the Cartesian matrix Green’s functions

GK(ω) = GR(ω)
(
ΣK(ω)− 2iηT1

)
GA(ω) (12.147)

and
GR(ω) =

v̂v̂
mω2 + iηω − ΣR

‖ (ω)
+

1− v̂v̂
mω2 + iηω − ΣR

⊥(ω)
, (12.148)

where the subscripts ‖ and ⊥ denote longitudinal and transverse components of the
retarded self-energy with respect to the direction of the velocity

ΣR
‖ (ω) =

∑
α,α′

v̂α ΣR
αα′(ω) v̂α′ (12.149)
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and
ΣR

⊥(ω) =
∑
α,α′

ΣR
αα′(ω) (δαα′ − v̂α v̂α′) . (12.150)

The advanced Green’s function is obtained from the retarded by complex conjugation
and interchange of Cartesian indices

GA
αα′(ω) = [GR

α′α(ω)]∗ . (12.151)

The expression for the pinning force, Eq. (12.133), reduces for a single vortex to

Fp = i

∞∫
−∞

dt′
∫

dk
(2π)2

k ν(k) (kGR
tt′ k) eik·v(t−t′) − ϕ

k
(t,t′) . (12.152)

The previous discussion of the high-velocity regime, where lowest-order pertur-
bation theory in the disorder is valid, can be generalized to nonzero temperature.
At high velocities, v � √

ν0/ηr2
p, the self-energies are, according to Eqs. (12.143)–

(12.145), inversely proportional to the velocity, and they can accordingly be neglected
in the calculation of the pinning force. We can therefore in this limit insert the free
retarded Green’s functions in the self-consistent expression for the pinning force,
Eq. (12.152), thereby obtaining an expression valid to lowest order in the disorder
strength, ν0,

Fp = − i

η

∫
dk

(2π)2
k k2 ν0 e−r2

pk2
∫ ∞

0

dt eik·vt−k2Tt/η , (12.153)

where again we only display the result for vanishing mass, m � η2r3
p/
√

ν0. The
integration over time can then be performed, and we obtain the result that the
pinning force for large velocities, v � T/(rpη), is given by the perturbation theory
expression, Eq. (12.142).

It is also possible to obtain an analytical expression for the pinning force at mod-
erate velocities, provided the temperature is high enough. At high temperatures,
T � √

ν0/rp, the kinetic component of the self-energy is inversely proportional to
the temperature, ΣK(ω = v/rp) ∼ ν0η/(r2

pT ), and its contribution to the fluctua-
tion exponent is much smaller than the contribution from the thermal fluctuations.
Similarly, at temperatures T � √

ν0/(ηr3
pv), the retarded self-energy is of order

ΣR(ω = v/rp) ∼ ν0/(r4
pT ). At moderate velocities, v ≤ √ν0/(ηr2

p), the free retarded
Green’s function can therefore be inserted in the expression for the pinning force,
and we can expand the exponential exp{ik ·vt}, and keep only the lowest-order term
in the velocity, since the inequality v � T/(ηrp) is satisfied, and obtain the result
that the pinning force is proportional to the velocity and inversely proportional to
the square of the temperature

Fp = − ν0η

8πr2
pT 2

v . (12.154)

Thus, when the thermal energy exceeds the average disorder barrier height,
√

ν0/rp,
the pinning force is very small compared with the friction force, and pinning just leads
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to a slight renormalization of the bare friction coefficient. In this high-temperature
limit, which can be realized in high-temperature superconductors, we observe that
the self-consistent theory, at not too high velocities, yields a pinning force that has
a linear velocity dependence, in contrast to the case of low temperatures where we
obtain from the self-consistent theory, as apparent from for example Figure 12.3, the
fact that the velocity dependence of the pinning force is sub-linear.

12.5.3 Simulations

In order to ascertain the validity of the self-consistent theory beyond the high-velocity
regime, where perturbation theory is valid, we perform numerical simulations of the
Langevin equation, Eq. (12.134). The pinning force is obtained from Eq. (12.77),
once the simulation result for the average velocity as a function of the external force
is determined. We simulate the two-dimensional motion of a vortex in a region of
linear size L = 20rp, and use periodic boundary conditions. The disorder is generated
on a grid consisting of 1024× 1024 points.

The disorder correlator is diagonal in the wave vectors, since averaged quantities
are translationally invariant,

〈V (k)V (k′)〉 = ν(k)L2δk+k′=0 (12.155)

and the real and imaginary parts of the disorder potential can be generated indepen-
dently according to

�e V (k) =
√

ν0L√
2

e−r2
pk2/2σ , �m V (k) =

√
ν0L√
2

e−r2
pk2/2δ , (12.156)

where σ and δ are normally distributed stochastic variables with zero mean and
unit standard deviation. The gradient of the disorder potential at the grid points
is obtained by employing the finite difference scheme. The potential gradient at the
vortex position is then obtained by interpolation of the values of the potential at the
four nearest grid points.

The simulations show that the vortex follows a fairly narrow channel through the
potential landscape. In the absence of the Hall force, the vortex will traverse only a
very limited region of the generated potential owing to the imposed periodic boundary
condition. To make better use of the generated potential, we therefore randomize the
vortex position at equidistant moments in time, and run the simulation for a short
time without measuring the velocity, in order for the velocity to relax, before again
starting to measure the velocity. In this way the number of generated potentials can
be kept at a minimum of twenty.

12.5.4 Numerical results

For any given average velocity of the lattice, the coupled equations of Green’s func-
tions and self-energies may be solved numerically by iteration. We start the itera-
tion procedure by first calculating the Green’s functions for vanishing self-energies,
corresponding to the absence of disorder, and the self-energies are then calculated
from Eqs. (12.143)–(12.145). The procedure is then iterated until convergence is
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reached. The pinning force on a single vortex can then be evaluated numerically
from Eq. (12.152).

In the numerical calculations we shall always assume that the correlator of the
pinning potential is the Gaussian function, Eq. (12.135), with range rp and strength
ν0. In order to simplify the numerical calculation, the self-consistent equations for the
self-energies and the Green’s functions, Eq. (12.147) and Eq. (12.148), are brought
on dimensionless form by introducing the following units for length, time and mass,
rp, ηr3

p/ν
1/2
0 , η2r4

p/ν
1/2
0 .

We have solved the set of self-consistent equations numerically by iteration. In
Figure 12.3, the pinning force as a function of velocity is shown for different values
of the temperature.
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Figure 12.3 Pinning force (in units of ν
1/2
0 r−2

p ) on a single vortex as a function

of velocity (in units of η−1r−2
p ν

1/2
0 ) obtained from the self-consistent theory. The

curves correspond to the different temperatures T = 0.005, 0.05, 0.1, 0.2, 0.4, 0.5 (in
units of ν

1/2
0 /rp), where the uppermost curve corresponds to T = 0.005, and m =

0.1η2r3
pν

−1/2
0 .

We find that the pinning force has a non-monotonic dependence as a function
of velocity, and that the peak in the pinning force decreases rapidly with increasing
temperature, and develops into a plateau once the thermal energy is of the order of the
average barrier height. At the highest temperature, the velocity dependence of the
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pinning force is seen in Figure 12.3 to approach the linear regime at low velocities
in accordance with the analytical result obtained in the high temperature limit,
Eq. (12.154). At high velocities, the pinning force is independent of the temperature
as apparent from Figure 12.3.

In fact, the pinning force is inversely proportional to the velocity at high veloci-
ties in agreement with the perturbation theory result, Eq. (12.142), as apparent from
Figure 12.4, where a comparison is made between the pinning force obtained from
lowest-order perturbation theory and the numerically evaluated self-consistent result.
The two results agree as expected in the large velocity regime, whereas the pertur-
bation theory result has an unphysical divergence at low velocities due to the neglect
of fluctuations, and a consequent absence of damping by the fluctuation exponent in
Eq. (12.152).
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Figure 12.4 Pinning force (in units of ν
1/2
0 r−2

p ) on a single vortex as a function of

velocity (in units of η−1r−2
p ν

1/2
0 ). The solid line represents the result obtained from

the self-consistent theory, while the dashed line represents the result of lowest-order
perturbation theory in the disorder (T = 0.005ν

1/2
0 r−1

p and m = 0.1η2r3
pν

−1/2
0 ).

In order to check the validity of the self-consistent theory beyond lowest-order
perturbation theory, we have performed numerical simulations. In Figure 12.5, a
comparison between the self-consistent theory and a numerical simulation of the
pinning force as a function of velocity is presented. The agreement between the
self-consistent theory and the simulation is good, except around the maximum value
of the pinning force, where the simulation is found to yield a higher pinning force
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in comparison to the self-consistent theory. In this region the relative velocity fluc-
tuations are large, and in fact the self-consistent theory predicts that the relative
velocity fluctuations are diverging at zero velocity even at zero temperature, as we
discuss shortly. The self-consistent equations and their numerical solution, as well as
the simulations, can therefore be expected to be less accurate at low velocities.

v

Fp

1.510.50

0.16

0.14

0.12

0.1

0.08

0.06

0.04

Figure 12.5 Comparison of the pinning force (in units of ν
1/2
0 r−2

p ) on a single vortex

as a function of velocity (in units of η−1r−2
p ν

1/2
0 ) obtained from the self-consistent

theory, solid line, and the numerical simulation, plus signs (T = 0.1ν
1/2
0 r−1

p and

m = 0.1η2r3
pν

−1/2
0 ).

The convergence of the iterative procedure can be monitored by checking that
energy conservation is fulfilled. The energy conservation relation is obtained by
multiplying the Langevin equation by the velocity of the vortex and averaging over
the thermal noise and the quenched disorder

m〈〈ẋt · ẍt〉〉 + η〈〈ẋ2
t 〉〉 = −〈〈ẋt · ∇V (xt)〉〉 + F · v + 〈〈ẋt · ξt〉〉 . (12.157)

The first term is proportional to ∂t〈〈ẋ2
t 〉〉, and vanishes since averaged quantities are

independent of time, as the external force is assumed to be independent of time. The
first term on the right-hand side, the term originating from the disorder, vanishes for
the same reason, since it can be rewritten as −∂t〈〈V (xt)〉〉. The energy conservation
relation therefore becomes, v = 〈〈ẋt〉〉,

η〈〈(ẋt − v)2〉〉 − 〈〈ẋt · ξt〉〉 = −v · Fp (12.158)



480 12. Classical statistical dynamics

or, in terms of the Green’s functions,

−iη∂2
t trGK

tt′
∣∣
t′=t

+ 2ηT∂ttrGR
tt′
∣∣
t′=t

= −v ·Fp . (12.159)

where tr denotes the trace with respect to the Cartesian indices. The energy conser-
vation relation simply states that, on average, the work performed by the external
and thermal noise forces is dissipated owing to friction.

In order to ascertain the convergence of the iteration process, employed when
solving the self-consistent equations, we test how accurately the iterated solution
satisfies the energy conservation relation. In Figure 12.6 the velocity dependence
of the left- and right-hand sides of the energy conservation relation, Eq. (12.159),
is shown. After at the most twenty iterations, the energy conservation relation is
satisfied by the iterated solution to within an accuracy of 1%.
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Figure 12.6 The values (in units of ν0η
−1r−4

p ) of the expressions on the two sides of
the energy conservation relation, Eq. (12.159), are shown as a function of the velocity
(in units of η−1r−2

p ν
1/2
0 ). The dashed line and the plus symbols correspond to the

left- and right-hand side, respectively (T = 0.05ν
1/2
0 r−1

p and m = 0.1η2r3
pν

−1/2
0 ). The

energy conservation relation is fulfilled to within an accuracy of 1%.

In Section 12.7 we shall consider dynamic melting of the vortex lattice, and it is
therefore of interest to check the validity of the fluctuations predicted by the self-
consistent theory against direct simulations of the Langevin equation. In order to
check the accuracy of the velocity fluctuations calculated within the self-consistent
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theory, we have performed simulations of the velocity fluctuations. In Figure 12.7,
the velocity fluctuations obtained from the self-consistent theory are compared with
simulations.
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Figure 12.7 Longitudinal and transverse velocity fluctuations (in units of η−2r−4
p ν0)

as a function of the average velocity (in units of η−1r−2
p ν

1/2
0 ). The solid and dashed

lines represent the results for the longitudinal (parallel to the external force), 〈〈(ẋt−
v)2〉〉, and transverse, 〈〈ẏ2

t 〉〉, velocity fluctuations obtained from the self-consistent
theory, respectively. The plus signs and crosses represent the simulation results for
the longitudinal and transverse velocity fluctuations, respectively (T = 0.1ν

1/2
0 r−1

p

and m = 0.1η2r3
pν

−1/2
0 ). At low average velocities the fluctuations approach their

thermal value, T/m, which for the parameters and units in question equals 1. At
intermediate average velocities the longitudinal velocity fluctuations are larger than
the transverse, owing to the jerky motion of the particle along the preferred direction
of the external force, before reaching the same value at high average velocities where
the effect of the disorder simply acts as an additional contribution to the temperature.

The agreement between the self-consistent theory and the numerical simulations
is seen to be good, indicating that fluctuations calculated from the self-consistent
theory are quantitatively correct. At low average velocities the velocity fluctuations
approach their thermal value T/m. The relative velocity fluctuations diverge at zero
velocity even at zero temperature. This can be inferred from the energy conservation
relation, Eq. (12.158), and the sub-linear velocity dependence of the pinning force at
low velocities, as for example is apparent from Figure 12.3. At intermediate average
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velocities, the velocity fluctuations in the direction parallel to the average velocity
(chosen along the x̂-axis), the longitudinal velocity fluctuations, 〈〈(ẋt−v)2〉〉, are found
to be larger than the fluctuations perpendicular to the average velocity, the transverse
velocity fluctuations, 〈〈ẏ2

t 〉〉. The reason behind this is that at not too high velocities,
where the force due to the disorder is strong compared with the friction force, the
motion of the particle is jerky since the particle slowly makes it to the disorder
potential tops, and subsequently is accelerated by the disorder potential. Since the
average motion of the particle is caused by the external driving force, the jerky
motion and the velocity fluctuations are largest in that preferred direction. At high
average velocity, the longitudinal and transverse velocity fluctuations saturate and
are seen to become equal, owing to the strong friction force causing a steadier motion.
In this connection we should also mention that we have noticed from our numerical
calculations that the second term on the left-hand side of Eq. (12.158) is independent
of the average velocity (and disorder), as is also apparent by comparing Figures
12.6 and 12.7. This thermal fluctuation contribution to the velocity fluctuations is
therefore given by its zero velocity value, and according to Eq. (12.158) is specified by
the equilibrium velocity fluctuations and therefore determined by equipartition. The
saturation value of the velocity fluctuations can therefore be determined from the
energy conservation relation, Eq. (12.158). For example, in the case of a small vortex
mass, m � η2r3

p/
√

ν0, we can use the high velocity expression for the pinning force,
Eq. (12.142), and obtain the result that the saturation value equals T/m+ν0/8πr4

pη
2,

a result in good agreement with Figure 12.7. At high average velocity, the velocity
fluctuations saturate, and the effect of the disorder simply acts as an additional
contribution to the temperature.

12.5.5 Hall force

In this section the effect of a Hall force is considered, and the previous analysis of
the dynamics of a single vortex is extended to include the Hall force

mẍt + ηẋt = αẋt × ẑ−∇V (xt) + Ft + ξt . (12.160)

We shall use the self-consistent theory to calculate the pinning force, the velocity
fluctuations, and the Hall angle

θ = arctan
FH

v̂ ·F = arctan
α

ηeff
, (12.161)

which can be expressed in terms of the effective friction coefficient.

Analytical results

The inverse of the free retarded Green’s function acquires, according to Eq. (12.160),
off-diagonal elements

D−1
R (ω) =

(
mω2 + iηω −iαω

iαω mω2 + iηω

)
(12.162)
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and the free retarded Green’s function is given by

DR
ω =

1
(ω+i0) ((mω+iη)2−α2)

(
mω + iη iα
−iα mω + iη

)
. (12.163)

In the high-velocity regime, v � √
ν0/(ηr2

p), where lowest-order perturbation theory
in the disorder is valid, we can neglect the self-energies in the self-consistent expres-
sion for the pinning force, Eq. (12.152), i.e. we can insert the free retarded Green’s
function and neglect the fluctuation exponent. Since the free retarded Green’s func-
tion is antisymmetric in the Cartesian indices, only the diagonal elements make a
contribution to the pinning force. The diagonal elements of the free retarded Green’s
function are identical, DRxx

t0 = DRyy
t0 , and given by

DRxx
t0 = θ(t)

−η

η2 + α2

(
1 +

(
α

η
sin

αt

m
− cos

αt

m

)
e−ηt/m

)
(12.164)

and we obtain for the pinning force, for vanishing mass, m � η2r3
p/
√

ν0,

Fp = − ην0

4π(η2 + α2)r4
pv2

v . (12.165)

We observe that the pinning force is suppressed by the Hall force in the high-velocity
limit, v � √

ν0(η2 + α2)−1/2r−2
p , and the high-velocity regime therefore sets in at a

lower value in the presence of the Hall force.
At high temperatures, T � √

ν0/rp, and moderate velocities, v < η
√

ν0/((η2 +
α2)r2

p), the Hall force has the opposite effect, i.e. it increases the pinning force, as a
calculation similar to the one leading to Eq. (12.154) shows that the pinning force is
(m � η2r3

p/
√

ν0):

Fp = −ν0(η2 + α2)
8πηT 2r2

p

v . (12.166)

We have found by solving the self-consistent equations numerically at high temper-
ature, T = 10

√
ν0/rp, that the pinning force is linear at low velocities and increases

with increasing Hall force. The deviation from the linear behavior in the presence of
the Hall force starts at a lower velocity value in accordance with the high-velocity
regime starting at a lower value in the presence of the Hall force.

Numerical results

For any given average velocity of the vortex, the pinning force can be calculated
from the self-consistent theory. We have numerically calculated the pinning force
for various strengths of the Hall force. In Figure 12.8, the resulting pinning force
as a function of the velocity is shown for different strengths of the Hall force for a
temperature lower than the average barrier height, T <

√
ν0/rp. The Hall force is

seen to reduce the pinning force in this temperature regime except, of course, at low
velocities.
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Figure 12.8 Pinning force (in units of ν
1/2
0 rp

−2) on a single vortex as a func-
tion of velocity (in units of η−1rp

−2ν
1/2
0 ) obtained from the self-consistent the-

ory for various strengths of the Hall force. The different curves correspond to
α/η = 0, 0.2, 0.4, 0.6, 0.8, 1, where the uppermost curve corresponds to α = 0
(m = 0.1η2rp

3ν
−1/2
0 and T = 0.1ν

1/2
0 r−1

p ).
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Figure 12.9 Pinning force (in units of 10−4ν
1/2
0 rp

−2) on a single vortex as a function
of velocity. Comparison of the simulation results and the results of the self-consistent
and lowest order perturbation theory, Eq. (12.165), for the case of no Hall force,
α = 0, and a moderately strong Hall force, α = η (m = 0.1η2rp

3ν
−1/2
0 and T =

0.1ν
1/2
0 r−1

p ). The solid line represents the self-consistent result and the crosses the
simulation result, while the upper dash-dotted line represents the perturbation theory
result, all for the case α = 0. The dashed line and the plus symbols represent the
self-consistent and simulation results, while the lower dash-dotted line represents the
perturbation theory result, all for the case α = η.
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In Figure 12.9 we compare the pinning force obtained from the self-consistent
theory with the result of perturbation theory valid at high velocities, Eq. (12.165),
and simulations. According to Figure 12.9, the reduction of the pinning force due to
the Hall force predicted by the self-consistent and the perturbation theory is in good
agreement at high velocities. The pinning force obtained from the self-consistent
theory and the simulations are also in good agreement in the presence of a Hall force,
even at lower velocities. In fact in much better agreement than in the absence of
the Hall force, in accordance with the fact that the Hall force suppresses the velocity
fluctuations, as we demonstrate shortly.

The Hall angle calculated from the self-consistent theory approaches from below
the disorder-independent value arctan(α/η) at high velocities, as shown in Figure
12.10.
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Figure 12.10 Hall angle as a function of velocity for a single vortex. The curves
represent the self-consistent results for the three temperatures T = 0, 0.1, 1 (in units
of ν

1/2
0 r−1

p ), where the uppermost curve corresponds to the highest temperature. The

plus symbols represent the simulation results for the temperature T = 0.1ν
1/2
0 r−1

p .
The parameter α/η is one and m = 0.1η2r3

pν0
1/2.

In Figure 12.10, the Hall angle obtained from the self-consistent theory is also
compared with simulations, and the agreement is seen to be good. As apparent from
Figure 12.10, an increase in the temperature increases the Hall angle at low velocities,
because the effective friction coefficient decreases with increasing temperature, and
this feature vanishes at high velocities. From Figure 12.10 we can also infer the
following behavior of the Hall angle at zero velocity: at low temperatures it is zero,
since the dependence of the pinning force at low velocities is sub-linear. At a certain
temperature, the Hall angle at zero velocity jumps to a finite value, since the pinning
force then depends linearly on the velocity, and saturates at high temperatures at
the disorder independent value.
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We have also determined the influence of the Hall force on the velocity fluctuations
as shown in Figure 12.11.
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Figure 12.11 Dependence of the single vortex velocity fluctuations (in units of
η−2r−4

p ν0) on the average velocity (in units of η−1r−2
p ν

1/2
0 ) for α = η and α = 0

(T = 0.1ν
1/2
0 /rp and m = 0.1η2r3

pν
−1/2
0 ). The solid and dashed lines represent the

longitudinal and transverse velocity fluctuations, respectively, calculated by using the
self-consistent theory for the case α = η, and the plus symbols and crosses represent
the corresponding simulation results. The two dash-dotted lines represent the lon-
gitudinal and transverse velocity fluctuations, respectively, calculated by using the
self-consistent theory in the absence of the Hall force, α = 0, which were compared
with simulations in Figure 12.7.

We observe that the Hall force at low velocities slightly increases the transverse
velocity fluctuations, and decreases the longitudinal fluctuations, whereas the longi-
tudinal and transverse velocity fluctuations are strongly suppressed by the Hall force
at higher velocities, in particular the longitudinal fluctuations. The suppression of
the velocity fluctuations is caused by the blurring by the Hall force of the preferred
direction of motion due to the external force, resulting in a less jerky motion. At
high average velocity, the longitudinal and transverse velocity fluctuations saturate
and become equal because of the strong friction. As previously discussed in the
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absence of the Hall force, the saturation value can be determined from the energy
conservation relation (which take the same form, Eq. (12.159), as in the absence of
the Hall force, since the Hall force does not perform any work) and the high-velocity
expression for the pinning force, Eq. (12.165), since our numerical results show that
the second term on the left-hand side of Eq. (12.158) is independent of the Hall force
and velocity (and disorder). This observation tells us that the suppression of the
velocity fluctuations caused by the Hall force, according to the energy conservation
relation, Eq. (12.158), is in correspondence with the suppression of the pinning force.
We note from Figure 12.11 that the high-velocity regime sets in at lower velocities
than in the absence of the Hall force. In Figure 12.11, the velocity fluctuations cal-
culated by using the self-consistent theory are also compared with simulations, and
the agreement is seen to be good.

We have ascertained the convergence of the numerical iteration process by testing
that the obtained solutions satisfy the energy conservation relation. We find that the
energy conservation relation is fulfilled within an accuracy of 2%, except at the lowest
velocities.

12.6 Vortex lattice

After having gained confidence in the Hartree approximation studying the case of a
single vortex, we consider in this section the influence of pinning on a vortex lattice
in the flux flow regime, where the lattice moves with a constant average velocity,
〈〈u̇Rt〉〉 = v, since the external force is assumed independent of time. We consider a
triangular Abrikosov vortex lattice, and treat the interaction between the vortices in
the harmonic approximation. The free retarded Green’s function of the vortex lattice

DR
qω =

∑
b

eb(q) eb(q)
mω2 + iηω −Kb(q)

(12.167)

is obtained by diagonalizing the dynamic matrix, and inverting the inverse free re-
tarded Green’s function specified by Eq. (12.84) (for the moment we neglect the Hall
force). The sum in Eq. (12.167) is over the two modes, b = 1, 2, corresponding to
eigenvectors eb(q) and eigenvalues Kb(q), respectively. The eigenvalues and eigen-
vectors of the dynamic matrix are periodic with respect to translations by reciprocal
lattice vectors.

Since the lattice distortions of interest are of small wave length compared to
the lattice constant, the dynamic matrix of the vortex lattice is specified by the
continuum theory of elastic media, i.e. through the compression modulus c11 and
the shear modulus c66, and in accordance with reference [136],

Φq =
φ0

B

(
c11q

2
x + c66q

2
y (c11 − c66)qxqy

(c11 − c66)qxqy c66q
2
x + c11q

2
y

)
, (12.168)
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where q belongs to the first Brillouin zone, and B is the magnitude of the external
magnetic field, and φ0/B is therefore equal to the area, a2, of the unit cell of the
vortex lattice. In the continuum limit we obtain a longitudinal branch, el(q) · q̂ = 1,
with corresponding eigenvalues Kl(q) = c11a

2q2, and a transverse branch, et(q) · q̂ =
0, with corresponding eigenvalues Kt(q) = c66a

2q2.

12.6.1 High-velocity limit

At high velocities, v � √
ν0/(ηr2

p), where lowest-order perturbation theory in the
disorder is valid, we can neglect the self-energies in the self-consistent expression for
the pinning force, Eq. (12.133), i.e. we can insert the free retarded Green’s function
for the lattice and, assuming v � T/(ηrp), neglect the fluctuation exponent, and
obtain for the pinning force

Fp = −
∫

dk
(2π)2

k ν(k)
∑
b=l,t

ηk · v (k · eb(k))2

(ηk · v)2 + (Kb(k))2
. (12.169)

The maximum values, attained at the boundaries of the Brillouin zones, of the trans-
verse and longitudinal eigenvalues are specified by the compression and shear moduli,
Kt ∼ c66 and Kl ∼ c11. The compression modulus is much greater than the shear
modulus, c11 � c66, in thin films and high-temperature superconductors (see for ex-
ample reference [137]). The order of magnitude of the first term in the denominator
of Eq. (12.169) is ηv2r−2

p , since the range of the impurity correlator is rp, and at
intermediate velocities, c66rp/η � v � c11rp/η, only the transverse mode therefore
contributes to the pinning force, and we obtain

Fp = −
∫

dk
(2π)2

k ν(k)
(k · et(k))2

ηk · v . (12.170)

The eigenvalues et(k) are periodic in the reciprocal lattice and, assuming short-range
disorder, rp � a, the rest of the integrand is slowly varying, and we obtain for the
pinning force

Fp = −1
2

∫
dk

(2π)2
k

ν(k)k2

ηk · v = − ν0

8πr4
pηv2

v . (12.171)

At very high velocities, v � c11rp/η, the eigenvalues of the dynamic matrix in
Eq. (12.169) can be neglected compared with the velocity-dependent term in the
denominator, and the longitudinal and transverse parts of the free retarded Green’s
function give equal contributions to the pinning force, and we obtain

Fp = − ν0

4πr4
pηv2

v . (12.172)
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This result is identical to the expression for the pinning force on a single vortex,
Eq. (12.142), in the high velocity regime, v � √

ν0/(ηr2
p), since the influence of the

elastic interaction is negligible.

12.6.2 Numerical results

In this section we consider the pinning force on the vortex lattice obtained from
the self-consistent theory. For any given average velocity of the lattice, the coupled
equations of Green’s functions and self-energies, Eq. (12.124) and Eq. (12.125), may
be solved numerically by iteration. In order to simplify the numerical calculation,
the self-consistent equations are brought on dimensionless form by introducing the
following units for length, time, and mass, a, ηa3/ν

1/2
0 , and η2a4/ν

1/2
0 . Starting

by neglecting the self-energies, we obtain numerically the response and correlation
functions. From Eq. (12.133) we can then determine the pinning force as a function
of the velocity. We have calculated the velocity dependence of the pinning force for
vortex lattices of sizes 4× 4, 8× 8, and 16× 16 using the self-consistent theory, and
the results are shown in Figure 12.12.
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Figure 12.12 Pinning force (in units of ν
1/2
0 a−2) as a function of velocity (in units of

η−1ν
1/2
0 a−2) obtained from the self-consistent theory for three different lattice sizes.

The stars correspond to a 4× 4 lattice, and the two curves correspond to 8× 8 and
16× 16 lattices, respectively. The mass and temperature are chosen to be zero, and
the elastic constants are given by c66a

3 = 100ν
1/2
0 and c11a

3 = 104ν
1/2
0 , and the

range of the disorder correlator is chosen to be rp = 0.1a.
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The difference between the results obtained for the 8× 8 and the 16× 16 lattice
is small, and we conclude that the pinning force is fairly insensitive to the size of the
lattice.

In Figure 12.13 we compare the pinning force as a function of the velocity for
lattices of different stiffnesses, and we find that the pinning force decreases with
increasing stiffness of the lattice.
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Figure 12.13 Pinning force (in units of ν
1/2
0 a−2) on a vortex lattice of size 16× 16

as a function of velocity (in units of η−1ν
1/2
0 a−2) obtained from the self-consistent

theory for the compression modulus given by c11a
3 = 104ν

1/2
0 and three different

shear moduli: c66a
3 = 50ν

1/2
0 (upper dashed line), c66a

3 = 100ν
1/2
0 (solid line) and

c66a
3 = 200ν

1/2
0 (lower dashed line). The mass and temperature are both chosen to

be zero, and rp = 0.1a.

Generally, the interaction between the vortices lowers the pinning force, since the
neighboring vortices in a moving lattice drag a vortex over the potential barriers.
This can be inferred from the self-consistent theory by comparing the pinning forces
depicted in Figures 12.3 and 12.12, and in perturbation theory by noting the extra
term originating from the elastic interaction in the denominator of the expression for
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the pinning force, Eq. (12.169).
When the temperature is increased, the pinning force decreases, except at very

high velocity, as apparent from Figure 12.14. This feature is common to the single
vortex case, and simply reflects that thermal noise helps a vortex over the potential
barriers.
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Figure 12.14 Pinning force (in units of ν
1/2
0 a−2) on a vortex lattice of size 16×16 as

a function of velocity (in units of η−1ν
1/2
0 a−2) obtained from the self-consistent theory

for two different temperatures. The elastic constants are given by c66a
3 = 100ν

1/2
0

and c11a
3 = 104ν

1/2
0 , and rp = 0.1a and m = 1.0 · 10−4η2a3ν

−1/2
0 . The dashed line

corresponds to T = 0, and the solid line to T = 0.5ν
1/2
0 a−1.

The convergence of the iterative procedure is monitored by checking that energy
conservation is fulfilled. The energy conservation relation for a vortex lattice is
obtained as in Section 12.5.5, and since the term originating from the harmonic
interaction between the vortices disappears owing to the symmetry property of the
dynamic matrix, Eq. (12.76), we obtain for a vortex lattice the energy conservation
relation

η ∂t tr
(
−i∂tG

K(R, t;R, t′) + 2 T GR(R, t;R, t′)
)
|t′=t = −v ·Fp . (12.173)
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The convergence of the iteration procedure, employed when solving the self-consistent
equations, has been checked by numerically calculating the terms in Eq. (12.173). We
find that the right- and left-hand sides of the energy conservation relation differ by
no more than a few percent after twenty iterations.

12.6.3 Hall force

We now consider the influence of a Hall force on the dynamics of a vortex lattice. The
motion of the vortex lattice, with its associated magnetic field, induces an average
electric field. The relationship between the average vortex velocity and the induced
electric field, E = v × B, and the expression for the Lorentz force, yields for the
resistivity tensor of a superconducting film

ρ =
φ0B

η2
eff + α2

(
ηeff α
−α ηeff

)
, (12.174)

where the effective friction coefficient, ηeff , was introduced in Eq. (12.79).13 Accord-
ing to Eq. (12.174), the following relationship between the transverse, ρxy, and the
longitudinal resistivities, ρxx, is obtained

ρxy = ρ2
xx

α

Bφ0

(
1 +

α2

η2
eff

)
. (12.175)

If the Hall force is small, α� ηeff , the scaling relation

ρxy = ρ2
xx

α

Bφ0
(12.176)

is seen to be obeyed. This scaling law is valid for all velocities of the vortex, provided
the Hall force is small compared with the friction force, α � η. We note that the
scaling law is also valid at small vortex velocities for arbitrary values of the Hall
force, if the effective friction coefficient diverges at small velocities. This occurs if
the pinning force decreases slower than linearly in the vortex velocity. This is indeed
the case, according to the self-consistent theory, at temperatures lower than the
average barrier height, T � √

ν0/rp, as indicated by the low velocity behavior of the
pinning force in Figure 12.15. This behavior of the pinning force is also obtained for
non-interacting vortices as apparent from Figure 12.8.

In Figure 12.15 is shown the pinning force obtained from the self-consistent theory
as a function of velocity for the case of zero temperature. As expected there is
no influence of the Hall force on the pinning force at low velocities, but we find
a suppression at intermediate velocities, and at very high velocities, v � c11a/η,
we recover the high velocity limit of the single vortex result, i.e. Eq. (12.165). By
comparison of Figures 12.8 and 12.15, we find that the Hall force has a much weaker
influence at intermediate velocities on the pinning of an interacting vortex lattice
than on a system of non-interacting vortices. Furthermore, the influence of the Hall
force on the pinning force is more pronounced for a stiff lattice than a soft lattice, as
seen from the inset in Figure 12.15.

13The effective friction coefficient was determined to lowest order in the disorder in reference [138].
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Figure 12.15 Pinning force (in units of ν
1/2
0 a−2) on a vortex lattice of size 16× 16

as a function of velocity (in units of η−1ν
1/2
0 a−2) obtained from the self-consistent

theory. The solid and dashed lines correspond to α = 0 and α = η, respectively.
The temperature and mass are both chosen to be zero, and rp = 0.1a. The elastic
constants are given by c11a

3 = 104ν
1/2
0 and c66a

3 = 100ν
1/2
0 . Inset: pinning force as

a function of velocity for α = 0 and α = η, respectively. Here c66a
3 = 300ν

1/2
0 and

the other parameters are unchanged.

In Figure 12.16 the dependence of the Hall angle on the velocity is presented for
various stiffnesses of the vortex lattice; the stiffest lattice has the greatest Hall angle.
Since the pinning force is reduced by the interaction between the vortices, the Hall
angle for a lattice is larger than for an independent vortex, except at high velocities
where they saturate at the same value. A similar behavior of the Hall angle at zero
velocity, as observed for a single vortex in Section 12.5.5, pertains to a vortex lattice.

12.7 Dynamic melting

In this section we consider the influence of quenched disorder on the dynamic melting
of a vortex lattice. This non-equilibrium phase transition has been studied experi-
mentally [139, 140, 141, 142, 143, 144], as well as through numerical simulation and
a phenomenological theory and perturbation theory [145, 146, 147]. The notion of
dynamic melting refers to the melting of a moving vortex lattice where, in addition to
the thermal fluctuations, fluctuations in vortex positions are induced by the disorder.
A temperature-dependent critical velocity distinguishes a transition between a phase
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Figure 12.16 Hall angle obtained from the self-consistent theory for a vortex lattice
of size 16 × 16 as a function of velocity (in units of η−1ν

1/2
0 a−1) for a moderately

strong Hall force, α = η. The compression modulus is given by c11a
3 = 104ν

1/2
0 ,

and the three curves correspond to decreasing values of the shear modulus c66a
3 =

200ν
1/2
0 , 100ν

1/2
0 , 50ν

1/2
0 . The mass and temperature are both chosen to be zero, and

rp = 0.1a.

where the vortices form a moving lattice, the solid phase, and a vortex liquid phase.
Before solving the self-consistent equations by numerical iteration in order to

obtain the phase diagram, we consider the heuristic argument for determining the
phase diagram for dynamic melting of a vortex lattice presented in reference [145].
There, the disorder induced fluctuations were estimated by considering the correlation
function

καα′(x, t) = 〈〈f (p)
α (x, t) f

(p)
α′ (0, 0)〉〉 (12.177)

of the pinning force density

f (p)(x, t) = −
∑
R

δ(x−R− uRt) ∇V (x− vt) . (12.178)

Neglecting the interdependence of the fluctuations of the vortex positions and the
fluctuations in the disorder potential, the pinning force correlation function factorizes

καα′(x, t) �
∑
RR′

〈〈δ(x −R− uRt) δ(R′ − uR′0)〉〉∇α∇α′〈〈V (x− vt)V (0)〉〉 .

(12.179)

Introducing the Fourier transform (A is the area of the film)

CRR′(q, t) = A−1〈〈e−iq·(R+uRt−R′−uR′0)〉〉 (12.180)
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of the vortex density-density correlation function

CRR′(x, t) = 〈〈δ(x −R− uRt) δ(R′ − uR′0)〉〉 (12.181)

and employing the translational invariance yields

καα′(x, t) = −nV

∑
RR′

〈〈δ(x −R− uRt −R′ − uR′0)〉〉∇α∇α′ ν(x − vt) ,

(12.182)

where nV is the density of vortices. In the fluidlike phase the motion of different
vortices is incoherent and the off-diagonal terms, R �= R′, can be neglected yielding

καα′(x, t) = −nV δ(x) ∇α∇α′ ν(vt) . (12.183)

In analogy with the noise correlator, the effect of disorder-induced fluctuations is
then represented by a shaking temperature

Tsh =
1

4ηnV

∑
α

∫
dx
∫ ∞

−∞
dt καα(x, t)

1
4
√

2π

ν0

ηvr3
p

=
1

4
√

2π

ν0

Fr3
p

, (12.184)

where in the last equality it is assumed that the pinning force is small compared
with the friction force, i.e. ηv � F . An effective temperature is then obtained by
adding the shaking temperature to the temperature, Teff = T + Tsh, and according to
Eq. (12.184) the effective temperature decreases with increasing external force, i.e.
with increasing average velocity of the vortices. As the external force is increased the
fluid thus freezes into a lattice. The value of the external force for which the moving
lattice melts, the transition force Ft, is in this shaking theory defined as the value for
which the effective temperature equals the melting temperature, Tm, in the absence
of disorder

Teff(F=Ft) = Tm (12.185)

and has therefore in the shaking theory the temperature dependence

Ft(T ) =
ν0

4
√

2πr3
p(Tm − T )

(12.186)

for temperatures below the melting temperature of the ideal lattice. We note that
the transition force for strong enough disorder exceeds the critical force for which
the lattice is pinned Ft > Fc ∼ ν

1/2
0 /r2

p.
We now describe the calculation within the self-consistent theory of the physical

quantities of interest for dynamic melting. The conventional way of determining a
melting transition is to use the Lindemann criterion, which states that the lattice
melts when the displacement fluctuations reach a critical value 〈u2〉 = c2

La2, where cL

is the Lindemann parameter, which is typically in the interval ranging from 0.1 to 0.2,
and a2 is the area of the unit cell of the vortex lattice. In two dimensions the position
fluctuations of a vortex diverge even for a clean system, and the Lindemann crite-
rion implies that a two-dimensional vortex lattice is always unstable against thermal
fluctuations. However, a quasi-long-range translational order persists up to a certain
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melting temperature [146]. As a criterion for the loss of long-range translational
order a modified Lindemann criterion involving the relative vortex fluctuations

〈(u(R + a0, t)− u(R, t))2〉 = 2c2
La2 , (12.187)

where a0 is a primitive lattice vector, has successfully been employed [146], and
its validity verified within a variational treatment [148]. The relative displacement
fluctuations of the vortices are specified in terms of the correlation function according
to

〈〈(u(R+a0, t) − u(R, t))2〉〉 = 2itr
(
GK(0, 0) − GK(a0, 0)

)
, (12.188)

where the translation invariance of the Green’s functions has been exploited. The
correlation function is determined by the Dyson equation, Eq. (12.147), where the in-
fluence of the quenched disorder appears explicitly through ΣK and implicitly through
ΣR and ΣA in the retarded and advanced response functions. Furthermore, the self-
energies depend self-consistently on the response and correlation functions. We have
calculated numerically the Green’s functions and self-energies and thereby the vortex
fluctuations for a vortex lattice of size 8 × 8, and evaluated the pinning force from
Eq. (12.133).

We determine the phase diagram for dynamic melting of the vortex lattice by cal-
culating the relative displacement fluctuations for a set of velocities, and interpolate
to find the transition velocity, vt, i.e. the value of the velocity at which the fluctua-
tions fulfill the modified Lindemann criterion (the determination of the Lindemann
parameter is discussed shortly). An example of such a set of velocities is presented
in the lower inset in Figure 12.17, where the relative displacement fluctuations as a
function of velocity are shown. The magnitude of the transition force is determined
by the averaged equation of motion

Ft = ηvt + Fp(vt) (12.189)

and is then obtained by using the numerically calculated pinning force. Repeating the
calculation of the transition force for various temperatures determines the melting
curve, i.e. the temperature dependence of the transition force, Ft(T ), separating two
phases in the FT -plane: a high-velocity phase where the vortices form a moving solid
when the external force exceeds the transition force, F > Ft(T ), and a liquid phase
for forces less than the transition force.

In order to be able to compare the results of the self-consistent theory with the
simulation results, we use the same parameters as input to the self-consistent theory
as used in the literature [145]. There, the melting temperature in the absence of
disorder is given by Tm = 0.007 (the unit of energy per unit length is taken to be
2(φ0/4πλ)2) as obtained by simulations of clean systems [149], and assumed equal
to the Kosterlitz–Thouless temperature [150, 151]

TKT =
c66a

2

4π
. (12.190)

The shear modulus is therefore determined to have the value c66 = 0.088 (as a is taken
as the unit of length). The range of the vortex interaction, λ, was approximately
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equal to the lattice spacing, a0, giving for the compression modulus [130]

c11 =
16πλ2c66

a2
0

� 50 c66 � 4.4 . (12.191)

The range and strength of the disorder correlator in the simulations are in the chosen
units, rp = 0.2 and ν0 = 1.42 · 10−5, and since the simulations are done for an over-
damped system, the vortex mass in the self-consistent theory should be set to zero.

As described above, our numerical results for the relative displacement fluctu-
ations can be used to obtain the dynamic phase diagram once the Lindemann pa-
rameter is determined. In order to do so we calculate melting curves by using the
self-consistent theory for a set of different values of the Lindemann parameter. We
find that these curves have the same shape, close to the melting temperature, as the
melting curve obtained from the shaking theory, Eq. (12.186),

T = C1 −
C2

Ft
. (12.192)

The curve which intersects at the melting temperature Tm = 0.007, the one depicted
in the upper inset in Figure 12.17, i.e. the one for which C1 is closest to the value
0.007, is then chosen, determining the Lindemann parameter to be given by the value
cL = 0.124.

Having determined the Lindemann parameter, we can determine the melting
curve, and the corresponding phase diagram obtained from the self-consistent theory
is shown in Figure 12.17. The simulation results of reference [145] are also presented,
as well as the melting curve obtained from the shaking theory. We note the agree-
ment of the simulation with the self-consistent theory, as well as with the shaking
theory, although the simulation data are not in the large-velocity regime and the
shaking argument is therefore not a priori valid.

In view of the good agreement between the self-consistent theory, the shaking
theory and the simulation, and the fact that we have only one fitting parameter at
our disposal, the melting temperature in the absence of disorder, it is of interest
to recall that while the melting curve obtained from the shaking theory was based
on an argument only valid in the liquid phase, i.e. freezing of the vortex liquid was
considered, the melting curve we obtained from the self-consistent theory is calculated
in the solid phase, i.e. we consider melting of the moving lattice. Furthermore, the
melting of the vortex lattice was indicated in the simulation by an abrupt increase
in the structural disorder [145], yet another melting criterion, and the agreement of
the self-consistent theory with the simulation data are therefore further validating
the use of the modified Lindemann criterion.

As is apparent from the upper inset in Figure 12.17, the critical exponent obtained
from the self-consistent theory, 1.0, is in excellent agreement with the prediction of
the shaking theory, where the critical exponent equals one. Furthermore, we find
that the self-consistent theory yields the value 1.65 · 10−4 for the magnitude of the
slope C2, which is in good agreement with the value, ν0/(4

√
2πr3

p) = 1.77 · 10−4,
predicted by the shaking theory, represented by the lower dashed line. That the
values are so close testifies to the appropriateness of characterizing the disorder-
induced fluctuations effectively by a temperature.
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Figure 12.17 Phase diagram for the dynamic melting transition. The melting curve
separates the two phases – for values of the external force larger than the transition
force the moving vortices form a solid, and for smaller values they form a liquid.
The dots in the boxes represent points on the melting curve obtained from the self-
consistent theory using a vortex lattice of size 8 × 8, while the three stars represent
the simulation results of reference 6. The crosses represent the lowest-order pertur-
bation theory results. The dashed line is the curve Ft(T ) = 1.77 · 10−4/(0.007− T ),
the melting curve predicted by the shaking theory. Upper inset: relationship between
temperature and the inverse transition force obtained from the self-consistent theory,
close to the melting temperature, for the particular value of the Lindemann parame-
ter cL = 0.124, for which the curve intersects the vertical axis at Tm = 0.00701. The
set of points calculated from the self-consistent theory (plus signs) coincides with
a straight line in excellent agreement with the prediction for the critical exponent
by the shaking theory being 1. Lower inset: relative displacement fluctuations as a
function of velocity. The dots to the left are calculated by using the self-consistent
theory and the dots to the right are calculated by using lowest-order perturbation
theory (for the temperature T = 0.0065).
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It is of interest to compare the melting curves obtained from the self-consistent
theory and perturbation theory. Expanding the kinetic component of the Dyson
equation, Eq. (12.124), to lowest order in the disorder we obtain

GK(1)
qω = DR

qω

(
ΣK(1)

qω − 2iηT
)

DA
qω

− 2iηkBTDR
qω

(
ΣR(1)

qω DR
qω + DA

qωΣA(1)
qω

)
DA

qω , (12.193)

where ΣR(1), ΣA(1) and ΣK(1) are the lowest-order approximations of the self-energies,
i.e. calculated to first order in ν0. The relative vortex displacement fluctuations,
Eq. (12.188), can then be obtained in perturbation theory from Eq. (12.193). In Fig-
ure 12.17 is shown the melting curve predicted by perturbation theory, i.e. where for
the transition velocity interpolation we use the relative vortex fluctuations obtained
from perturbation theory, an example of which is shown in the lower inset. As is
to be expected, the perturbation theory result is in good agreement with the self-
consistent theory, and the shaking theory, at high velocities. However, we observe
from Figure 12.17 that the melting curve obtained from lowest-order perturbation
theory deviates markedly at intermediate velocities from the prediction of the non-
perturbative self-consistent theory, and thereby from the shaking theory, which is
known to account well for the measured melting curve [142].

The shaking theory is seen to be in remarkable good agreement with the self-
consistent theory for the parameter values considered above. We have investigated
whether this feature persists for stronger disorder. As apparent from Figure 12.18,
there is a more pronounced difference between the shaking theory and the self-
consistent theory at stronger disorder. Whereas the deviation between the self-
consistent and shaking theory for the previous parameter values typically is 5%,
in the case of a five-fold stronger disorder, ν0 = 7.1 · 10−5, it is more than 15%.

We have studied the influence of pinning on vortex dynamics in the flux flow
regime. A self-consistent theory for the vortex correlation and response functions
was constructed, allowing a non-perturbative treatment of the disorder using the
powerful functional methods of quantum field theory presented in Chapter 10. The
validity of the self-consistent theory was established by comparison with numerical
simulations of the Langevin equation.

The self-consistent theory was first applied to a single vortex, appropriate for
low magnetic fields where the vortices are so widely separated that the interaction
between them can be neglected. The result for the pinning force was compared with
lowest-order perturbation theory and good agreement was found at high velocities,
whereas perturbation theory failed to capture the non-monotonic behavior at low
velocities, a feature captured by the self-consistent theory. The influence of the Hall
force on the pinning force on a single vortex was then considered using the self-
consistent theory. The Hall force was observed to suppress the pinning force, an
effect also confirmed by our simulations. The suppression of the pinning force was
shown at high velocities to be in agreement with the analytical result obtained from
lowest-order perturbation theory. The suppression of the pinning force was caused
by the Hall force through its reduction of the response function, while the effect of
fluctuations through the fluctuation exponent at not too high temperatures could be
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Figure 12.18 Phase diagram for the dynamic melting transition for the disorder
strength ν0 = 7.1 · 10−5. The plus signs represent points on the melting curve
obtained from the self-consistent theory for a vortex lattice of size 8 × 8, while the
dashed curve is the curve Ft(T ) = 8.85 ·10−4/(0.007−T ), the melting curve predicted
by the shaking theory.

neglected. The situation at high temperatures was the opposite, since in that case
the thermal fluctuations were of importance, and the Hall force then increased the
pinning force because it suppressed the fluctuation exponent.

We also studied a vortex lattice treating the interaction between the vortices in
the harmonic approximation. The pinning force on the vortex lattice was found to
be reduced by the interaction. The pinning force as a function of velocity displayed a
plateau at intermediate velocities, before eventually approaching at very high veloci-
ties the pinning force on a single vortex. Analytical results for the pinning force were
obtained in different velocity regimes depending on the magnitude of the compression
modulus of the vortex lattice. Furthermore, we included the Hall force and showed
that its influence on the pinning force was much weaker on a vortex lattice than on
a single vortex.

We developed a self-consistent theory of the dynamic melting transition of a vortex
lattice, enabling us to determine numerically the melting curve directly from the
dynamics of the vortices. The presented self-consistent theory corroborated the phase
diagram obtained from the phenomenological shaking theory far better than lowest-
order perturbation theory. The melting curve obtained from the self-consistent theory
was found to be in good quantitative agreement with simulations and experimental
data.

12.8 Summary

In this chapter we have considered the theory of classical statistical dynamics treating
systems coupled to a heat bath and classical stochastic forces. In particular we
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studied Langevin dynamics and quenched disorder, and applied the method to study
the dynamics of the Abrikosov flux line lattice. As to be expected, the formalism of
classical statistical dynamics is the classical limit of the general formalism of non-
equilibrium states, Schwinger’s closed time path formulation of quantum statistical
mechanics, the general technique to treat non-equilibrium states we have developed
and applied in this book. The language of quantum field theory is thus the tool to
study fluctuations whatever their nature might be.
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Appendix A

Path integrals

Quantum dynamics was stated in Chapter 1 in terms of operator calculus, viz.
through the Schrödinger equation or equivalently via the Hamiltonian as in the evo-
lution operator. Alternatively, quantum dynamics can be expressed in terms of path
integrals which directly exposes the basic principle of quantum mechanics, the su-
perposition principle1. To acquaint ourselves with path integrals we show here for
the case of a single particle the equivalence of the two formulations by deriving the
path integral formulation from the operator expression for Dirac’s transformation
function of Eq. (1.16), 〈x, t|x′, t′〉 = 〈x|Û(t, t′)|x′〉 = G(x, t;x′, t′) ≡ K(x, t;x′, t′).
Propagating in small steps by inserting complete sets at intermediate times we have
for the propagator

〈x, t|x′, t′〉 =
∫

dx1

∫
dx2 . . .

∫
dxN 〈x, t|xN , tN 〉〈xN , tN |xN−1, tN−1〉

× 〈xN−1, tN−1|xN−2, tN−2〉 · · · 〈x1, t1|x′, t′〉 . (A.1)

We are consequently interested in the transformation function for infinitesimal times,
and from Eq. (1.16) we obtain

〈xn, tn|xn−1, tn−1〉 = 〈xn|e−
i
�
∆tĤ(tn )|xn−1〉

= δ(xn − xn−1) +
∆t

i�
〈xn|Ĥ(tn)|xn−1〉 + O(∆t2) , (A.2)

where ∆t = tn − tn−1 = (t − t′)/(N + 1)), as we have inserted N intermediate
resolutions of the identity.

In the following we shall consider a particle of mass m in a potential V for which
we have the Hamiltonian

Ĥ(t) =
p̂2

2m
+ V (x̂, t) , (A.3)

i.e. Ĥ = H(p̂, x̂, t), where H by correspondence is Hamilton’s function.
1For a detailed exposition of how the superposition principle for alternative paths leads to the

Schrödinger equation, we refer the reader to chapter 1 of reference [1].
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Inserting a complete set of momentum states, we get

〈xn|H(x̂, p̂, tn)|xn−1〉 = 〈xn|H(xn, p̂, tn)|xn−1〉

=
∫

dpn

(2π�)d
e

i
�
pn ·(xn−xn−1) H(xn,pn, tn) , (A.4)

where we encounter Hamilton’s function on phase space

H(xn,pn, tn) =
p2

n

2m
+ V (xn, tn) . (A.5)

Inserting into Eq. (A.2), we get

〈xn, tn|xn−1, tn−1〉 =
∫

dpn

(2π�)d
e

i
�
pn ·(xn−xn−1)

(
1 +

∆t

i�
H(xn,pn, tn) +O(∆t2)

)

=
∫

dpn

(2π�)d
e

i
�
[pn ·(xn−xn−1)−∆tH(xn ,pn ,tn )] +O(∆t2) . (A.6)

Inserting additional internal times, we approach the limit ∆t → 0, or equivalently
N →∞, obtaining for the transformation function

〈x, t|x′, t′〉 = lim
N→∞

∫ N∏
n=1

dxn

N+1∏
n=1

dpn

(2π�)d
e

i
�
[pn ·(xn−xn−1)−∆tH(xn ,pn ,tn )]

≡
∫ Dxt̄Dpt̄

(2π�)d
e

i
�

∫ t
t′dt̄ [pt̄ ·ẋt̄−H(xt̄ ,pt̄ ,t̄)] , (A.7)

where x0 ≡ x′, and xN+1 ≡ x. In the last equation we have just written the limit of
the sum as a path integral, and the integration measure has been identified by the
explicit limiting procedure.

The Hamilton function is quadratic in the momentum variable, and we have
Gaussian integrals which can be performed∫ ∞

−∞

dpn

(2π�)d
e

i
�
∆t(pn ·xn −xn−1

∆t − p2
n

2m ) =
( m

2πi�∆t

)d/2

e
i

2�
m
(

xn −xn−1
∆t

)2
∆t (A.8)

and we thus get for the propagator

K(x, t;x′, t′) = lim
N→∞

1(
m

2πi�∆t

)−d/2

∫ N∏
n=1

dxn(
m

2πi�∆t

)−d/2
e

i
�
∆t

N +1∑
n=1

[
m (xn −xn−1)2

2∆t −V (xn ,tn )

]

≡
xt =x∫

xt′=x′

Dxt̄ e
i
�

∫ t
t′dt̄ L(xt̄ ,ẋt̄ ,t̄) , (A.9)
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where L in the continuum limit is seen to be Lagrange’s function

L(xt, ẋt, t) =
1
2
mẋ2

t − V (xt, t) = ẋt · pt − H(xt,pt, t) (A.10)

related to Hamilton’s function through a Legendre transformation. The integration
measure has here been obtained for the case where we take the piecewise linear
approximation for a path.2

Instead of formulating quantum dynamics in terms of operator calculus we have
thus exhibited it in a way revealing the underlying superposition principle, viz. ac-
cording to Feynman’s principle: each possible alternative path contributes a pure
phase factor to the propagator, exp{iS/�}, where

S[xt] =
∫ t

t′
dt̄ L(xt̄, ẋt̄, t̄) (A.11)

is the classical action expression for the path, xt, in question.3

The classical path is determined by stationarity of the action

δS

δxt

∣∣∣∣
xt =xc l

t

= 0 (A.12)

the principle of least action,4 or explicitly through the Euler-Lagrange equations

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
= 0 (A.13)

the classical equation of motion.
Formulating quantum mechanics of a single particle as the zero-dimensional limit

of quantum field theory amounts to focussing on the correlation functions of, for
example, the position operator in the Heisenberg picture, say the time-ordered cor-
relation function

GH(t, t′) ≡ 〈T (x̂H(t) x̂H(t′))〉 (A.14)

where the bracket refers to averaging with respect to some state of the particle, pure
or mixed, say for the ground state

GH(t, t′) = 〈ψ0|T (x̂H(t) x̂H(t′))|ψ0〉 . (A.15)

2Other measures can be used, such as expanding the paths on a complete set of functions, so
that the sum over all paths becomes the integral over all the expansion coefficients.

3In classical mechanics only the classical paths between two space-time points in question are
of physical relevance; however, stating the quantum law of motion involves all paths. The way in
which the various alternative paths contribute to the expression for the propagator was conceived
by Dirac [152], who realized that the conditional amplitude for an infinitesimal time step is related
to Lagrange’s function, L, according to

〈x, t + ∆t|x′, t〉 ∝ e
i
�

∆t L(x,(x−x′)/∆t)

however, with L expressed in terms of the coordinates at times t and t + ∆t. This gem of Dirac’s
was turned into brilliance by Feynman.

4Or principle of stationary action, but typically the extremum is a minimum.
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Noting, by inserting complete sets of eigenstates for the Heisenberg operators,
x̂H(t) |x, t〉 = x |x, t〉, we have, for ti < t, t′ < tf ,

〈xf , tf |T (x̂H(t) x̂H(t′))|xi, ti〉 =

xtf =xf∫
xt i=xi

Dxt̄ xt xt′ e
i
�

∫ tf
t i

dt̄ L(xt̄ ,ẋt̄ ,t̄) , (A.16)

where on the right-hand side the order of the real position variables xt and xt′ is
immaterial since the path integral automatically gives the time-ordered correlation
function due to its built-in time-slicing defining procedure (recall Eq. (A.9)). We
therefore have

GH(t, t′) =
∫
dxf

∫
dxi ψ∗

0(xf)ψ0(xi)

xtf =xf∫
xt i=xi

Dxt̄ xt xt′ e
i
�

∫ tf
t i

dt̄ L(xt̄ ,ẋt̄ ,t̄) (A.17)

and equivalently for any number of time ordered Heisenberg operators, thereby rep-
resenting any time-ordered correlation function on path integral form.

Exercise A.1. Derive for a particle in a potential the path integral expression for
the imaginary-time propagator (consider the one-dimensional case for simplicity for
a start)

G(x, x′, �/kT ) ≡ G(x,−i�/kT ; x′, 0) = 〈x|e−Ĥ/kT |x′〉 =

x(�/kT )=x∫
x(0)=x′

Dxτ e−SE [xτ ]/�

(A.18)
where the Euclidean action

SE [xτ ] =
∫ �/kT

0

dτ LE(xτ , ẋτ ) (A.19)

is specified in terms of the Euclidean Lagrange function

LE(xτ , ẋτ ) =
1
2
mẋ2

τ + V (xτ ) , (A.20)

where the potential energy is added to the kinetic energy.
Interpreting τ as a length, we note that the Euclidean Lagrange function LE

equals the potential energy of a string of length L ≡ �/kT and tension m, placed in
the external potential V , and we have established that the imaginary-time propagator
is specified in terms of the classical partition function for the string.

In general, only for the case of a quadratic Lagrange function, i.e. for homoge-
neous external fields, can the path integral for the propagator be performed, or rather
simply circumvented by shifting the variable of integration to that of the deviation
from the classical path, x(t) = xcl(t)+δxt, and recalling that the action is stationary
for the classical path, leading to

K(x, t;x′, t′) = A(t, t′) e
i
�

Scl(x,t;x′,t′) , (A.21)
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i.e. specified in terms of the action for the classical path and a prefactor, the con-
tribution from the Gaussian fluctuations around the classical path, which can be
determined from the initial condition for the propagator Eq. (1.15).

Exercise A.2. Obtain the expression for the propagator, T ≡ t− t′,

K(x, t, x′, t′) =
√

mω

2πi� sinωT
exp

{
imω

2� sinωT

(
(x2 + x′2) cos ωT − 2xx′

+
2x

mω

∫ t′

t

dt̄f(t̄) sin(ω(t̄− t′)) +
2x′

mω

∫ t

t′
dt̄f(t̄) sin(ω(t− t̄))

− 2
m2ω2

∫ t

t′
dt2

∫ t′

t2

dt1f(t2)f(t1) sin(ω(t− t2)) sin(ω(t1 − t′))

)}
(A.22)

for a forced harmonic oscillator

L(xt, ẋt, t) =
1
2
mẋ2

t −
1
2
mω2x2

t + f(t)xt (A.23)

by evaluating the classical action.

Consider a particle coupled weakly to N other degrees of freedom, i.e., linearly to
a set of N harmonic oscillators collectively labeled R = (R1, R2, ..., RN ). The total
Lagrange function, L = LS + LI + LE, is then

LS =
1
2
mẋ2 − V (x, t) , LE =

1
2

N∑
α=1

(
mαṘ2

α −mω2
αR2

α

)
, (A.24)

where the particle in addition is coupled to an applied external potential, V (x, t),
and the linear interaction with the environment oscillators is specified by

LI = −x
N∑

α=1

λα Rα . (A.25)

At some past moment in time, t′, the density matrix is assumed separable,
ρ(x,R, x′,R′, t′) = ρS(x, x′) ρE(R,R′), i.e. prior to that initial time the particle
did not interact with the environment of oscillators, the system and the environment
are uncorrelated. The equation, Eq. (3.13), for the density matrix specifies, by trac-
ing out the oscillator degrees of freedom, the density matrix for the particle at time
t in terms of its density matrix at the initial time according to

ρ(xf , x
′
f , t) =

∫
dxi

∫
dx′

i J(xf , x
′
f , t; xi, x

′
i, t

′) ρ(xi, x
′
i) (A.26)



508 Appendix A. Path integrals

and the propagator of the particle density matrix is

J(xf , x
′
f , t; xi, x

′
i, t

′) =

x
(1)
t =x′

f∫
x
(1)
t′ =x′

i

Dx
(1)
t̄

x
(2)
t =xf∫

x
(2)
t′ =xi

Dx
(2)
t̄ e

i
�
(S(x

(2)
t̄

)−S(x
(1)
t̄

)) F [x(1)
t̄ , x

(2)
t̄ ] (A.27)

where S is the action for the particle in the absence of the environment, and the
so-called influence functional F is

F [x(1)
t , x

(2)
t ] =

∫
dRf

∫
dRi

∫
dR′

i ρE(Ri,R′
i)

R(t)=Rf∫
R(t′)=Ri

DR(t)

Q(t)=Rf∫
Q(t′)=R′

i

DQ(t)

× exp
{

i

�

(
SI[x

(2)
t ,R(t)] + SE[R(t)]− SI[x

(1)
t ,Q(t)]− SE[Q(t)]

)}
,

(A.28)

where SE is the action for the isolated environment oscillators, and SI is the action
due to the interaction, analogous to the external force term in Eq. (A.23) upon the
substitution f → λx for each of the couplings to the oscillators.

Assuming that the initial state of the oscillators is the thermal equilibrium state,
ρE(R,R′) =

∏
α ρT(Rα, Rα), the equilibrium density matrix is immediately obtained

from Eq. (1.21) and the result of Exercise A.2, in the absence of the force, as it is
obtained upon the substitution t − t′ → −i�/kT in Eq. (A.22), here T denotes the
temperature (or equivalently in view of Exercise A.1, the imaginary time variable
being interpreted as variable on the appendix part of the contour depicted in Figure
4.4)

ρT(Rα, R′
α) = exp

{
− mαωα

2� sinh �ωα

kT

(
(R2

α + R′2
α ) cosh

�ωα

kT
− 2RαR′

α

)}

×
(

mαωα

2π� sinh �ωα

kT

)1/2

. (A.29)

The path integrals with respect to the oscillators are immediately obtained using the
result of Exercise A.2, and the remaining three ordinary integrals in Eq. (A.28) are
Gaussian and can be performed giving for the influence functional

F [x(1)
t̄ , x

(2)
t̄ ] = exp

{
i

�

∫ t

t′
dt2

∫ t2

t′
dt1[x

(2)
t2 − x

(1)
t2 ] D(t2 − t1) [x(2)

t1 + x
(1)
t1 ]

− 1
�

∫ t

t′
dt2

∫ t2

t′
dt1[x

(2)
t2 − x

(1)
t2 ] DK(t2 − t1) [x(2)

t1 − x
(1)
t1 ]
}

, (A.30)
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where

DK(t− t′) =
∑

α

λ2
α

2mαωα
coth

(
�ωα

2kT

)
cos(ωα(t− t′))

=
1
�

∑
α

λ2
α 〈{R̂α(t), R̂α(t′)}〉 (A.31)

and

D(t− t′) =
∑
α

λ2
α

2mαωα
sin(ωα(t− t′)) =

1
�

∑
α

λ2
α 〈[R̂α(t), R̂α(t′)]〉 (A.32)

specifies the non-Markovian dynamics of the oscillator through a systematic dissi-
pative or friction term and the kinetic Green’s function, Eq. (A.31), describing the
fluctuation effects of the environment, the two physically distinctly different terms
being related by the fluctuation–dissipation relation.5 The influence functional is
also immediately obtained by observing that the expression in Eq. (A.28) can be
put on contour form by letting the time variable reside on the contour depicted in
Figure 4.4, noting the force is vanishing on the appendix part of the contour. We
then obtain the exponent of the form as in Eq. (9.38), and by combining the retarded
and advanced terms the form in Eq. (A.30). This observation accounts for the iden-
tification in terms of the operator expressions for the thermal equilibrium oscillator
Green’s functions in Eq. (A.31) and Eq. (A.32).6

Introducing a continuum of oscillators and the coupling in such a way that the
spectral weight function of the oscillators

J(ω) = π
∑
α

λ2
α

2mαωα
δ(ω − ωα) = i

(
DR(ω) − DA(ω)

)
= D(ω) (A.33)

becomes the linear or Ohmic spectrum

J(ω) = η ω θ(ωc − ω) (A.34)

the friction term becomes local as D(t) = −η δ̇(t) in the limit of a large cut-off
frequency, i.e. for times much larger ω−1

c . We then obtain for the propagator of the
density matrix for the particle

J(xf , x
′
f , t; xi, x

′
i, t

′) =
∫
Dx(t)

∫
Dy(t) exp

{
i

�
(S1 + S2)

}
, (A.35)

5Instead of brute force, the result follows straightforwardly from the expresssion for the generating
functional for a harmonic oscillator, Eq. (4.108), and handling the linear coupling according to
Eq. (9.41) and Eq. (9.27).

6Essential for the structure in the expression in Eq. (A.30) is only that the coupling to the
environment oscillators is linear. The non-equilibrium, i.e. driven, spin-boson problem, representing
for example a monitored qubit coupled to a decohering dissipative environment, is discussed in
reference [153].
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where xt = (x(2)
t + x

(1)
t )/2 and yt = x

(2)
t − x

(1)
t , and

S2 = i

∫ t

t′
dt2

∫ t

t′
dt1 yt2 DK(t2 − t1) yt1 (A.36)

and (up to a boundary term which vanishes for initial and final states satisfying
y(t) = 0 = y(t′), which will be assumed in the following)

S1 = −
∫ t

t′
dt̄ yt̄

(
mẍt̄ + ηẋt̄ + VR(xt̄ + yt̄/2) − VR(xt̄ − yt̄/2)

)
(A.37)

where the Ohmic spectrum guarantees a friction force proportional to the velocity.
For the chosen type of coupling, the potential is the result of the interaction renor-
malized by a harmonic contribution, VR(x) = V (x) − ωcηx2/π. We have arrived at
the Feynman–Vernon path integral theory of dissipative quantum dynamics for the
case of an Ohmic environment [154, 155, 156, 157].

If the external potential is at most harmonic, the path integral with respect to
yt is Gaussian and can be performed giving an expression for the path probability
analogous to Eq. (12.9). We therefore obtain that the dissipative dynamics of the
quantum oscillator is a Gaussian stochastic process described by the Langevin equa-
tion, Eq. (12.1), however the noise is not just the classical thermal one of Eq. (12.2),
but includes the quantum noise due to the environment as the stochastic force is
described by the correlation function

DK(t) =

ωc∫
−ωc

dω

2π
e−iωt DK(ω) , DK(ω) = η ω coth

�ω

2kT
. (A.38)

The time scale of the correlations in the environment, tc, the measure of the non-
Markovian character of the dynamics, is set by the temperature according to

�

2ηkT

∫ ∞

−∞
dt t2 DK(t) = − t2c , tc =

�

2kT
,

�

2ηkT

∫ ∞

−∞
dt DK(t) = 1 . (A.39)

We note that, owing to quantum effects, the noise is not white but blue

DK(t) = − 2η

(
kT

�

)2 1

sinh2 πkT |t|
�

, ωc|t| � 1 . (A.40)

We note that the damping term S2 in Eq. (A.36) limits the excursions of y(t).
In the high temperature limit, kT � �ωc, quantum excursions yt of the particle are
suppressed, and the integration with respect to y(t) is Gaussian and the remain-
ing integrand in the path integral in Eq. (A.35) is the probability distribution for
a given realization of a classical path, Eq. (12.9). The corresponding Markovian
stochastic process in the Wigner coordinate, xt, is described by the Langevin equa-
tion, Eq. (12.1), and we recover the theory of classical stochastic dynamics discussed
in Section 12.1. At high enough temperatures, all quantum interference effects of
the particle are suppressed by the thermal fluctuations, and the classical dissipative
dynamics of the particle emerges. We note how potentials, alien to classical dy-
namics but essential in quantum dynamics, disappear as the classical limit emerges,
delivering only the effect of the corresponding classical force, −V ′(xt).
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Path integrals and
symmetries

A virtue of the path integral formulation is that symmetries of the action easily lead
to exact relations between various Green’s functions, the Ward identities.

An infinitesimal symmetry transformation

φ1 → φ1 + ε F1[φ] (B.1)

is one that leaves the action invariant, i.e.

δS = ε

∫
d1

δS[φ]
δφ1

F1[φ] = 0. (B.2)

If the infinitesimal symmetry transformation is not global, i.e. ε is not a constant
infinitesimal, but an infinitesimal function of space and time, ε(t,x), the variation of
the action under the transformation

φ(t,x) → φ(t,x) + ε(t,x) (B.3)

will in general not vanish, but takes the form, x = (t,x) = xµ

δS = −
3∑

µ=0

∫
dx jµ(x)

∂ε(x)
∂xµ

(B.4)

in order to vanish for the global case considered above. If the field φ(t,x) satisfies
the classical equation of motion

δS[ϕ]
δϕ(t,x)

= 0 (B.5)

the action is stationary with respect to arbitrary variations, and assuming ε(t,x) to
vanish for large arguments, a partial integration leads to the continuity equation

3∑
µ=0

∂jµ(x)
∂xµ

= 0 (B.6)
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and the existence of the conserved quantity, the constant of motion

Q =
∫

dx j0(t,x) . (B.7)

A symmetry of the action thus implies a conservation law, Noether’s theorem.
Returning to the global transformation, Eq. (B.1), the measure in the path inte-

gral representation of the generating functional

Z[J ] =
∫
Dφ ei[φ]+iφ J (B.8)

changes with the Jacobian according to

Dφ → DφDet
(

δ12 − ε
δF1[φ]
δφ2

)
= Dφ

(
1 − ε

δF1[φ]
δφ1

)
+ O(ε2) (B.9)

and since the generating functional is invariant with respect to the transformation
Eq. (B.1), we obtain

Z[J ] =
∫
Dφ

(
1− ε

δF1[φ]
δφ1

)
ei[φ]+iφ J

(
1 +

(
i
δS[φ]
δφ1

+ iJ

)
εF1[φ]

)
+ O(ε2)

(B.10)
and thereby ∫

Dφ ei[φ]+iφ J

((
δS[φ]
δφ1

+ J1

)
F1[φ] + i

δF1[φ]
δφ1

)
= 0 (B.11)

or equivalentlyδS
[

δ
iδJ

]
δφ1

+ J1

F1

[ δ

iδJ

]
+ i

δF1

[
δ

iδJ

]
δφ1

Z[J ] = 0 . (B.12)

In the event that the transformation, Eq. (B.1), is a translation, i.e. just a field
independent constant, F1[φ] = f1, Eq. (B.12) simply becomes the Dyson–Schwinger
equation, Eq. (9.32), (recall also Eq. (10.42)).

The real advantage of the path integral formulation presents itself if the transfor-
mation, F1[φ], is a symmetry of the action

δS[φ]
δφ1

F1[φ] = 0 (B.13)

which leaves also the measure Dφ invariant, in which case Eq. (B.12) becomes the
Ward identity

J1 F1

[ δ

iδJ

]
Z[J ] = 0 (B.14)

relating various Green’s functions, for example the vertex function and the one-
particle Green’s functions.



Appendix C

Retarded and advanced
Green’s functions

In this appendix we shall consider the properties of the retarded and advanced Green’s
functions for the case of a single particle. When it comes to calculations Green’s
functions are convenient, and even more so when many-body systems and their in-
teractions are considered as studied in the main text.

The retarded Green’s function or propagator for a single particle is defined as
(the choice of phase factor is for convenience of perturbation expansions)

GR(x, t;x′, t′) ≡
{
−iG(x, t;x′, t′) for t ≥ t′

0 for t < t′ ,
(C.1)

where the propagator for a single particle already was considered in Appendix A,
G(x, t;x′, t′) = 〈x, t|x′, t′〉 = 〈x|Û (t, t′)|x′〉. The retarded propagator for a particle
whose dynamics is specified by the Hamiltonian H , satisfies the equation{

i�
∂

∂t
−H

}
GR(x, t;x′, t′) = � δ(x− x′) δ(t− t′) (C.2)

which in conjunction with the condition

GR(x, t;x, t′) = 0 for t < t′ (C.3)

specifies the retarded propagator. The source term on the right-hand side of Eq. (C.2)
represents the discontinuity in the retarded propagator at time t = t′, and is recog-
nized by integrating the left-hand side of Eq. (C.2) over an infinitesimal time interval
around t′, and using the initial condition1

GR(x, t′ + 0;x′, t′) = −i δ(x− x′) . (C.4)
1The retarded propagator also has the following interpretation: prior to time t′ the particle

is absent, and at time t = t′ the particle is created at point x′, and is subsequently propagated
according to the Schrödinger equation. In contrast to the relativistic quantum theory, this point of
view of propagation is not mandatory in non-relativistic quantum mechanics where the quantum
numbers describing the particle species are conserved.
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Or one recalls that the derivative of the step function is the delta function. The re-
tarded Green’s function is thus the fundamental solution of the Schrödinger equation
and rightfully the mathematical function introduced by Green. The inverse opera-
tor to a differential equation is expressed as an integral operator with the Green’s
function as the kernel. In the context of many-body theory we have used the label
Green’s in the less specific sense, just referring to correlation functions.

The retarded Green’s function propagates the wave function forwards in time, as
we have for t > t′ for the wave function at time t

ψ(x, t) = i

∫
dx′ GR(x, t;x′, t′)ψ(x′, t′) (C.5)

in terms of the wave function at the earlier time t′, and has the physical meaning of a
probability amplitude for propagating between the two space-time points in question.

According to Eq. (C.1), the retarded propagator is given by

GR(x, t;x′, t′) = −iθ(t− t′) 〈x|Û (t, t′)|x′〉 . (C.6)

By direct differentiation with respect to time it also immediately follows that the
retarded propagator satisfies Eq. (C.2).

We note, according to Appendix A, the path integral expression for the retarded
propagator

GR(x, t;x′, t′) = −iθ(t− t′)G(x, t;x′, t′)

= −i θ(t− t′)

xt =x∫
xt′=x′

Dxt̄ e
i
�

∫ t
t′dt̄ L(xt̄ ,ẋt̄ ) . (C.7)

We shall also need the advanced propagator

GA(x, t;x′, t′) ≡
{

0 for t > t′

iG(x, t;x′, t′) for t ≤ t′ ,
(C.8)

which propagates the wave function backwards in time, as we have for t < t′ for the
wave function at time t

ψ(x, t) = −i

∫
dx′ GA(x, t;x′, t′)ψ(x′, t′) (C.9)

in terms of the wave function at the later time t′.
The retarded and advanced propagators are related according to

GA(x, t;x′, t′) = [GR(x′, t′;x, t)]∗ . (C.10)

The advanced propagator is also a solution of Eq. (C.2), but zero in the opposite
time region as compared to the retarded propagator.

We note that, in the position representation, we have

G(x, t;x′, t′) = 〈x|Û (t, t′)|x′〉 = i[GR(x, t;x′, t′)−GA(x, t;x′, t′)]

≡ A(x, t;x′, t′) , (C.11)
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where we now have introduced the notation A for the Green’s function G, and also
refer to it as the spectral function.

Introducing the retarded and advanced Green’s operators

ĜR(t, t′) ≡ −iθ(t− t′) Û(t, t′) , ĜA(t, t′) ≡ iθ(t′ − t) Û(t, t′) (C.12)

we have for the evolution operator

Û(t, t′) = i(ĜR(t, t′)− ĜA(t, t′)) ≡ Ĝ(t, t′) ≡ A(t, t′) (C.13)

and the unitarity of the evolution operator is reflected in the hermitian relationship
of the Green’s operators

ĜA(t, t′) = [ĜR(t′, t)]† . (C.14)

The retarded and advanced Green’s operators are characterized as solutions to
the same differential equation(

i�
∂

∂t
− Ĥ

)
ĜR(A)(t, t′) = � δ(t− t′) Î (C.15)

but are zero for different time relationship.
The various representations of the Green’s operators are obtained by taking ma-

trix elements. For example, in the momentum representation we have for the retarded
propagator the matrix representation

GR(p, t;p′, t′) = −iθ(t− t′)〈p, t|p′, t′〉 = 〈p|ĜR(t, t′)|p′〉 . (C.16)

Exercise C.1. Defining in general the imaginary-time propagator

G(x, τ ;x′, τ ′) ≡ θ(τ − τ ′)〈x|e−
Ĥ (τ −τ ′)

� |x′〉 (C.17)

show that for the Hamiltonian for a particle in a magnetic field described by the
vector potential A(x̂)

Ĥ =
1

2m

(
p̂− eA(x̂)

)2

(C.18)

the imaginary-time propagator satisfies the equation(
�

∂

∂τ
+

1
2m

(
�

i
∇x − eA(x)

)2
)
G(x, τ ;x′, τ ′) ≡ � δ(x− x′) δ(τ − τ ′) (C.19)

and write down the path integral representation of the solution.

The free particle propagator in the momentum representation

GR
0 (p, t;p′, t′) = −iθ(t− t′)〈p|e− i

�

p̂2

2m (t−t′)|p′〉 (C.20)
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is given by

GR
0 (p, t;p′, t′) = GR

0 (p, t, t′)〈p|p′〉 = GR
0 (p, t− t′)

{
δ(p− p′)
δp,p′

, (C.21)

where the Kronecker or delta function (depending on whether the particle is confined
to a box or not) reflects the spatial translation invariance of free propagation. The
compatibility of the energy and momentum of a free particle, [Ĥ0, p̂] = 0, is reflected
in the definite temporal oscillations of the propagator

GR
0 (p, t, t′) = −iθ(t− t′) e−

i
�

εp(t−t′) (C.22)

determined by the energy of the state in question

εp =
p2

2m
(C.23)

the dispersion relation for a free non-relativistic particle of mass m.
Fourier transforming, i.e. inserting a complete set of momentum states, we obtain

for the free particle propagator in the spatial representation

GR
0 (x, t;x′, t′) = −iθ(t− t′)〈x|e− i

�
Ĥ0(t−t′)|x′〉

= −iθ(t− t′)
(

m

2π�i(t− t′)

)d/2

e
im
2�

(x−x′)2
t−t′ . (C.24)

Exercise C.2. Show that the free retarded propagator in the momentum represen-
tation satisfies the equation{

i�
∂

∂t
− εp

}
GR

0 (p, t;p′, t′) = � δ(p− p′) δ(t− t′) . (C.25)



Appendix D

Analytic properties of
Green’s functions

In the following we shall in particular consider the analytical properties of the Green’s
functions for a single particle. However, by introducing the Green’s operators, results
are taken over to the general case of a many-body system.

For an isolated system, where the Hamiltonian is time independent, we can for any
complex number E with a positive imaginary part, transform the retarded Green’s
operator, Eq. (C.12), according to

ĜR
E =

1
�

∫ ∞

−∞
d(t− t′) e

i
�

E(t−t′) ĜR(t− t′) . (D.1)

The Fourier transform is obtained as the analytic continuation from the upper half
plane, �mE > 0. According to Eq. (C.15) we have, for �mE > 0, the equation(

E − Ĥ
)

ĜR
E = Î . (D.2)

Analogously we obtain that the advanced Green’s operator is the solution of the same
equation (

E − Ĥ
)

ĜE = Î (D.3)

for values of the energy variable E in the lower half plane, �mE < 0, and by analytical
continuation to the real axis

ĜA
E ≡ 1

�

∫ ∞

−∞
dt e

i
�

Et ĜA(t) . (D.4)

We note the Fourier inversion formulas

ĜR(A)(t) =
1
2π

∫ ∞ +
(−) i0

−∞ +
(−) i0

dE e−
i
�

Et Ĝ
R(A)
E (D.5)
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and the hermitian property, Eq. (C.14), leads to the relationship

ĜA
E = [ĜR

E∗ ]† . (D.6)

We introduce the Green’s operator

ĜE ≡


ĜR

E for �mE > 0

ĜA
E for �mE < 0

(D.7)

for which we have the spectral representation

ĜE =
1

E − Ĥ
=
∑

λ

|ελ〉〈ελ|
E − ελ

(D.8)

in terms of the eigenstates, |ελ〉, of the Hamiltonian

Ĥ |ελ〉 = ελ |ελ〉 . (D.9)

The analytical properties of the retarded and advanced Green’s operators leads,
by an application of Cauchy’s theorem, to the spectral representations

Ĝ
R(A)
E =

∫ ∞

−∞

dE′

2π

ÂE′

E − E′ +
(−) i0

(D.10)

where we have introduced the spectral operator, the discontinuity of the Green’s
operator across the real axis

ÂE ≡ i(ĜR
E − ĜA

E) = i(ĜE+i0 − ĜE−i0)

= 2π δ(E − Ĥ) = 2π
∑

λ

|ελ〉〈ελ| δ(E − ελ) . (D.11)

Equivalently, we have the relationship between real and imaginary parts of, say,
position representation matrix elements

�e GR(x,x′, E) = P
∫ ∞

−∞

dE′

π

�m GR(x,x′, E′)
E′ − E

(D.12)

and

�m GR(x,x′, E) = −P
∫ ∞

−∞

dE′

π

�e GR(x,x′, E′)
E′ − E

. (D.13)

The Kramers–Kronig relations due to the retarded propagator is analytic in the upper
half-plane.

The perturbation expansion of the propagator in a static potential is seen to be
equivalent to the operator expansion for the Green’s operator

ĜE =
1

E − Ĥ
=

1
E − Ĥ0 + V̂

=
1

(E − Ĥ0)(1 − (E − Ĥ0)−1V̂ )
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=
1

1− (E − Ĥ0)−1V̂

1
E − Ĥ0

=
(
1 + (E − Ĥ0)−1V̂ + (E − Ĥ0)−1V̂ (E − Ĥ0)−1V̂ + ...

) 1
E − Ĥ0

= Ĝ0(E) + Ĝ0(E)V̂ Ĝ0(E) + Ĝ0(E)V̂ Ĝ0(E)V̂ Ĝ0(E) + ... , (D.14)

where
Ĝ0(E) =

1
E − Ĥ0

(D.15)

is the free Green’s operator.
The momentum representation of the retarded (advanced) propagator or Green’s

function in the energy variable can be expressed as the matrix element

GR(A)(p,p′, E) = 〈p| ĜR(A)
E |p′〉 (D.16)

of the retarded (advanced) Green’s operator

Ĝ
R(A)
E =

1
E − Ĥ +

(−) i0
≡ (E − Ĥ +

(−) i0)−1 (D.17)

the analytical continuation from the various half-planes of the Green’s operator.
Other representations are obtained similarly, for example,

GR(A)(x,x′, E) = 〈x| ĜR(A)
E |x′〉 . (D.18)

The hermitian property Eq. (D.6) gives the relationship

[GR(x,x′, E)]∗ = GA(x′,x, E∗) (D.19)

and similarly in other representations.
Employing the resolution of the identity in terms of the eigenstates of Ĥ

Î =
∑

λ

|ελ〉〈ελ| (D.20)

we get the spectral representation in, for example, the position representation

GR(A)(x,x′, E) =
∑

λ

ψλ(x)ψ∗
λ(x′)

E − ελ
+
(−) i0

. (D.21)

The Green’s functions thus have singularities at the energy eigenvalues (the energy
spectrum), constituting a branch cut for the continuum part of the spectrum, and
simple poles for the discrete part, the latter corresponding to states which are nor-
malizable (possible bound states of the system).
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Along a branch cut the spectral function measures the discontinuity in the Green’s
operator

A(x,x′, E) ≡ 〈x|i(ĜE+i0 − ĜE−i0)|x′〉

= i
(
GR(x,x′, E)−GA(x,x′, E)

)
= −2�mGR(x,x′, E)

= 2π
∑

λ

ψλ(x)ψ∗
λ(x′) δ(E − ελ) . (D.22)

From the expression (P̂ (x) = |x〉〈x|)

A(x,x, E) = 2π Tr(P̂ (x)δ(E − Ĥ)) = 2π
∑

λ

|〈x|ελ〉|2δ(E − ελ) (D.23)

we note that the diagonal elements of the spectral function, A(x,x, E), is the local
density of states per unit volume: the unnormalized probability per unit energy
for the event to find the particle at position x with energy E (or vice versa, the
probability density for the particle in energy state E to be found at position x).
Employing the resolution of the identity we have∫

dx A(x,x, E) = 2π
∑

λ

δ(E − ελ) ≡ 2πN (E) , (D.24)

where N (E) is seen to be the number of energy levels per unit energy, and Eq. (D.24)
is thus the statement that the relative probability of finding the particle somewhere
in space with energy E is proportional to the number of states available at that
energy.

We also note the completeness relation∫
σ

dE

2π
A(x,x′, E) = δ(x − x′) (D.25)

where the integration (and summation over discrete part) is over the energy spectrum.
The position and momentum representation matrix elements of any operator are

related by Fourier transformation. For the spectral operator we have (assuming the
system enclosed in a box of volume V )

A(x,x′, E) =
∑
pp′

〈x|p〉A(p,p′, E)〈p′|x′〉

=
1
V

∑
pp′

e
i
�
p·x− i

�
p′·x′

A(p,p′, E) , (D.26)

and inversely we have

A(p,p′, E) = 〈p|ÂE |p′〉 = N−1

∫
dx
∫

dx′ e−
i
�
p·x+ i

�
p′·x′

A(x,x′, E) , (D.27)
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where the normalization depends on whether the particle is confined or not, N =
V, (2π�)d.

For the diagonal momentum components of the spectral function we have (P̂ (p) =
|p〉〈p|)

A(p,p, E) = 2π Tr(P̂ (p) δ(E − Ĥ)) = 2π
∑

λ

|〈p|ελ〉|2δ(E − ελ) (D.28)

describing the unnormalized probability for a particle with momentum p to have
energy E (or vice versa). Analogously to the position representation we obtain∑

p

A(p,p, E) = 2πN (E) . (D.29)

We have the momentum normalization condition∫
σ

dE

2π
A(p,p′, E) =


δ(p− p′)

δp,p′

(D.30)

depending on whether the particle is confined or not.
Let us finally discuss the analytical properties of the free propagator. Fourier

transforming the free retarded propagator, Eq. (C.22), we get (in three spatial di-
mensions for the pre-exponential factor to be correct), �mE > 0,

GR
0 (x,x′, E) =

−m

2π�2

e
i
�

pE |x−x′|

|x− x′| , pE =
√

2mE (D.31)

the solution of the spatial representation of the operator equation, Eq. (D.3),(
E − �

2

2m
x

)
G0(x,x′, E) = δ(x− x′) , (D.32)

which is analytic in the upper half plane.
The square root function,

√
E, has a half line branch cut, which according to

the spectral representation, Eq. (D.21), must be chosen along the positive real axis,
the energy spectrum of a free particle, as we choose the lowest energy eigenvalue to
have the value zero. In order for the Green’s function to remain bounded for infinite
separation of its spatial arguments, |x−x′| → ∞, we must make the following choice
of argument function

√
E ≡


√

E for �eE > 0

i
√
|E| for �eE < 0

. (D.33)

rendering the free spectral function of the form

A0(x,x′, E) =
m

π�2

sin( 1
�
pE |x− x′|)
|x− x′| θ(E) (D.34)
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and we can read off the free particle density of states, the number of energy levels
per unit energy per unit volume,1

N0(E) ≡ 1
2π

A0(x,x; E) = θ(E)



√
m

2π2�2E d = 1

m
2π�2 d = 2

m
√

2mE
2π2�3 d = 3

, (D.35)

where for completeness we have also listed the one- and two-dimensional cases.
The spectral function for a free particle in the momentum representation follows,

for example, from Eq. (D.28)

A0(p, E) ≡ A0(p,p, E) = 2π δ(E − εp) , (D.36)

and describes the result that a free particle with momentum p with certainty has
energy E = εp, or vice versa.

1This result is of course directly obtained by simple counting of the momentum states in a given
energy range, because for a free particle constrained to the volume Ld , there is one momentum
state per momentum volume (2π�/L)d . However, the above argument makes no reference to a
finite volume.



References

[1] J. Rammer, Quantum Transport Theory, Frontiers in Physics Vol. 99 (Reading:
Perseus Books, 1998; paperback edition 2004).

[2] R. P. Feynman in Elementary Particles and the Laws of Physics. The 1986 Dirac
Memorial Lectures (Cambridge: Cambridge University Press, 1987).

[3] J. Rammer, Non-Equilibrium Superconductivity, Master’s thesis, University of
Copenhagen, Denmark (1981) (in Danish).

[4] M. Gell-Mann and F. Low, Phys. Rev., 84 (1951), 350.

[5] J. Schwinger, J. Math. Phys., 2 (1961), 407.

[6] V. Korenman, Ann. Phys. (Paris), 39 (1966), 72.

[7] K.-C. Chou, Z.-B. Su, B.-L. Hao and L. Yu, Phys. Rep., 118 (1985), 1.

[8] J. Rammer and H. Smith, Rev. Mod. Phys., 58 (1986), 323.

[9] J. Rammer, Applications of quantum field theoretical methods in transport theory
of metals, Ph. D. thesis, University of Copenhagen, Denmark (1985). (Published
in part).

[10] L. V. Keldysh, Zh. Eksp. Teor. Fiz., 47 (1964), 1515 [Sov. Phys. JETP, 20
(1965), 1018].

[11] H. Umezawa, H. Matsumoto and Y. Takahashi, Thermo Field Dynamics and
Condensed States (North-Holland, 1982).

[12] A. I. Larkin and Yu. N. Ovchinnikov, Zh. Eksp. Teor. Fiz., 68 (1975), 1915 [Sov.
Phys. JETP, 41 (1975), 960].

[13] J. Rammer, Rev. Mod. Phys., 63 (1991), 781.

[14] L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics (New York: Ben-
jamin, 1962).

[15] A. A. Abrikosov, L. P. Gorkov and I. E. Dzyaloshinski, Methods of Quantum
Field Theory in Statistical Physics 2nd edition (New York: Pergamon, 1965).

[16] T. Matsubara, Prog. Theor. Phys., 14 (1955), 351.

523



524 References

[17] E. S. Fradkin, Zh. Eksp. Teor. Fiz., 36 (1959), 1286 [Sov. Phys. JETP, 9 (1959),
912].

[18] P. C. Martin and J. Schwinger, Phys. Rev., 115 (1959), 1342.

[19] G. M. Eliashberg, Zh. Eksp. Teor. Fiz., 61 (1971), 1254 [Sov. Phys. JETP, 34
(1972), 668].

[20] D. C. Langreth, in Linear and Nonlinear Electron Transport in Solids, NATO
Advanced Study Institute Series B, Vol. 17, J. T. Devreese and E. van Doren,
eds. (New York/London: Plenum, 1976).

[21] S. W. Lovesey, Theory of Neutron Scattering from Condensed Matter (Oxford:
Clarendon Press, 1984).

[22] L. W. Boltzmann, Ber. Wien. Akad., 66 (1872), 275, and Vorlesungen über
Gastheorie (Leipzig: Barth, 1896). English translation: Lectures on Gas Theory
(Berkeley: University of California Press, 1964).

[23] R. E. Prange and L. P. Kadanoff, Phys. Rev., 134 (1964), A566.

[24] G. Eilenberger, Z. Phys., 214 (1968), 195.

[25] A. B. Migdal, Zh. Eksp. Teor. Fiz., 34 (1958), 1438 [Sov. Phys. JETP, 7 (1958),
966].

[26] T. Holstein, Ann. Phys. (Paris), 29 (1964), 410.

[27] D. C. Langreth, Phys. Rev., 148 (1966), 707.

[28] B. L. Altshuler, Zh. Eksp. Teor. Fiz., 75 (1978), 1330 [Sov. Phys. JETP, 48
(1978), 670].

[29] J. L. Opsal, B. J. Thaler and J. Bass, Phys. Rev. Lett., 36 (1976), 1211.

[30] R. Fletcher, Phys. Rev., B 14 (1976), 4329.

[31] J. Misguich, G. Pelletier, and P. Schuck (eds.) Statistical Description of Trans-
port in Plasma, Astro-, and Nuclear Physics (Nova Science Publishers, 1993).

[32] J. Bardeen, Encyclopedia of Physics, S. Flügge, ed., vol. XV (Berlin: Springer-
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