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Abstract:
We analyzethoseintegrablestatistical systemswhich originate from somerelevantperturbationsof the minimal models of conformalfield

theories.When only massiveexcitationsarepresent,the systemscan be efficiently characterizedin terms of the relativisticscatteringdata. We
review thegeneralpropertiesof thefactorizableS-matrix in two dimensionswith particularemphasison thebootstrapprinciple. The classification
programof theallowed spinsof conservedcurrentsandof thenon-degenerateS-matricesis discussedand illustratedby meansof somesignificant
examples.Thescatteringtheoriesof severalmassiveperturbationsof theminimal modelsarefully discussed.Amongthem arethe Ising model, the
tricritical Ising model, thePottsmodels, theseriesof thenon-unitaryminimal models~ thenon-unitarymodel .4135 and thescalinglimit of
thepolymersystem.The ultraviolet limit of thesemassiveintegrabletheoriescan be exploitedby thethermodynamicsBetheansatz,in particular
thecentralchargeof theoriginal conformaltheoriescanbe recoveredfrom thescatteringdata.We alsoconsiderthenumericalmethodbasedon the
so-calledconformalspacetruncatedapproachwhich confirms thetheoreticalresultsandallows adirect measurementof thescatteringdata,i.e. the
massesand the S-matrix of the particles in bootstrapinteraction. The problem of computing theoff-critical correlationfunctions is discussedin
termsof the form-factorapproach.



1. Introduction

Closeto a second-orderphasetransitionpoint, the thermodynamicbehaviourof astatisticalmodel is
dominatedby large-scalefluctuations.The most importantscaleis given by the correlationlength ~,

which is much largerthan all other microscopiclengths.In particular,it divergesat the critical point
and the systembecomesscaleinvariant. In the vicinity of the critical point the fine details of the
microscopicstructureof many systemsareobservedto play an irrelevantrole: statisticalmodelswith
the sameinternal symmetry and the samedimensionalityof the spacesharethe sameset of critical
exponentsand definethe sameclassof universality [1—61.Taking into accountthisuniversalbehaviour,
anefficient descriptionof critical phenomenacan begiven in termsof EuclideanQuantumField Theory
(QFT) and its underlying framework,the RenormalizationGroup(RG) [1—101.

Besides its predictions of extraordinary accuracy, the renormalizationgroup also provides a
geometrical interpretationof the physical aspectsof the critical phenomena.The scaling invariant
theoriesareidentified with fixedpointsof the RG transformations(in the infinite dimensionalspaceof
the local Hamiltonians~) whereasthe universalityclassesare in correspondencewith the attraction
domainsof thesefixed points.

Two-dimensionalsystemsareideal theoreticallaboratoriesfor testing the RG approachto statistical
models.The reasonis twofold. First, thereexistsa completecharacterizationof the fixed pointsof the
RG. They correspondto ConformalFieldsTheories (CFT), widely studiedin the last years[11—281.
Secondly, the off-critical theories can be consideredas CFf perturbed by appropriate relevant
operators,i.e. theycorrespondto the RG trajectorieswhich originatefrom the critical points [29,301.
Onecan expectthat a RG trajectorystartingfrom a fixed point either goesto anothercritical point or
developsa finite correlation length, in which casethe correspondingfield theory presentsa purely
massivespectrum.

An important progress in the investigation of non-scaleinvariant theories lies in a remarkable
observationmadeby Zamolodchikov[29,30] that, amongall possibledeformationsof CFII”, some of
thempossessan infinite set of commutingintegralsof motion,i.e. theydefine integrablequantumfield
theories.These modelsare solvable evenaway from the critical point, and, if massive,they can be
characterizedin termsof a factorizedscatteringtheory. In this casethe integralsof motion restrictthe
possibleboundstatestructureandmassratiosin the theory.Assumingfurther the bootstrapprinciple,
i.e. all boundstatesbelongto the sameset of asymptoticparticles,it is possibleto constructthe exact
S-matrixwith only a finite numberof physicalpoles.

The aim of this paperis to presenta review of thegeneralpropertiesof factorizedS-matricesin two
dimensionsandtheir relevancein understandingthe scalingregion aroundthe fixed points. The range
of phenomenadescribedby them is rich andinstructive, as we will haveampleopportunityto showin
later chapters.In this introductionwe will give abrief outline of the subject,startingwith somefeatures
of scale invariant systemsin two dimensions.

1.1. Minimal modelsof conformalfield theories

There exist several excellentreviews on ConformalField Theories (CFT), see e.g. refs. [15—181,
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which we advise the readerto consult.Our purposehereis to simply providethe most basicresultsand
notationsof CF’T without attemptingto justify the details.

Let us consider a two-dimensionalstatistical model with short-rangeinteractions,invariant under
translationsand rotations.In the vicinity of a critical point, its propertiesaredescribedby a Euclidean
OFT. The basicquantitiesof the theory arethe correlationfunctionsof local fields (orderparameters)
4~(r),

us Zt I ~ ~a(ri )~b(r2)” ~~(r~) ~ (1.1)

whereS is the action of the theory and Z the correspondingpartition function,

Z = f ~ e~1. (1.2)

The variation of the correlationfunctions(1.1) underinfinitesimal coordinatetransformation,

r~—*r’~+ E~(r), (1.3)

is expressedby the following Ward identity:

(1.4)

This definesthe stress-energytensorT,LP. Rotationalinvarianceimplies

~ = ~ , (1.5)

whereastranslationinvarianceleadsto the conservationlaw

(1.6)

At the critical fixed point, the trace of the stress-energytensorvanishes

(1.7)

and the systembecomesinvariant underdilatations

ArTM. (1.8)

Actually, the condition(1.7), togetherwith the locality of T,LP, automaticallyimplies invarianceundera
largegroup of symmetrygiven by all transformationssuch that the tracelesssymmetricpart of ~
vanishes[11]. Suchtransformations,actingas a combinationof arotationplus a dilatation,preserveall
angles.This is the setof conformaltransformations.

Accordingto the scalinghypothesis[3j, in the spaceof local fields 4~we can choosea basis given by
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the scalingoperators,which are eigenfunctionsof the dilatation operator

(1.9)

The constantsx~define the anomalousdimensionsof the fields ~. Their computation is the main
problemof the theory of critical phenomenabecausetheydeterminethe singularity of thermodynamical
functionsin the vicinity of the critical point.

A successfulapproachfor solving this problemhasbeenproposedoriginally by Polyakov [11] and
hasbeenfully developedby Belavin, Polyakov and Zamolodchikov[12]. In this approach,known as
conformalbootstrapapproach,oneassumesthe existenceof an associativeOperatorProductExpansion
(OPE) algebra for the scaling fields ~,

= ~ ~k(0), (1.10)

where Cflmk are the structure constants of the algebra.Requiring the compatibility of the operator
algebrawith the conformal symmetry, one gets a system of equationswhich fixes, in principle, the
valuesof the anomalousdimensionsandthe structureconstants.The far-reachingconsequencesof the
conformalbootstrapapproachfor two-dimensionalsystemsbecomemuchevident by adoptingcomplex
coordinates,

z=~xt+ix2, iusxt_ix2. (1.11)

In the z, i basis, the symmetricstress-energytensorhas components

T=T
55, T=T~~,T5~=~�1. (1.12)

At the critical point 6’ = 0 andthe conservationlaw (1.6) gives the equations

~1;T=0, ~T0, (1.13)

so that T= T(z) is a purely holomorphicfield whereasT = T(~)is purely anti-holomorphic.The OPE
of thesefields are given by [12]

c 2T(z2) t3T(z2)
T(z1)T(z2)= 4 + 2 + +regularterms,

(z1 — z2) (z1 — z2) z1 —

T(z,)T(i2) = regularterms, (1.14)

- - c 2T(~2) 3T(i2)T(~~)T(~2)= - - 4 + - - 2 + - — - + regularterms.
(z1 — z2) (z1 — z2) z1 z2

The parameterc is the conformal anomaly called central charge. It is oneof the most important
quantitiesof a conformal universalityclass.

In complex coordinates,the conformal transformations— definedby the vanishingof the traceless
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symmetricpart of a ILP() — satisfy the conditions

a~sz=0,aZrO. (1.15)

Equations(1.13) togetherwith (1.15) imply that in two dimensionsthe conformalgroup ~, generated
by T(z) and T(fl, factorizesinto a direct productof local transformationsof the form

z—*f(z), i—*f(i), (1.16)

where f(z) andf(fl arearbitrary holomorphicandanti-holomorphicfunctions.The decouplingof the
variables z andi is a noteworthysimplification of two-dimensionalconformalsystemswhich allows us
to concentrateonly on the holomorphicpart,keepingin mind that similar propertiesalso hold for the
anti-holomorphicone. It is convenient to introducethe operatorsL~,n = 0, ±1,±2,...as coefficients
of the Laurentexpansion of the analytic component of the stress-energy tensor,

T(z)=~-4~2 (1.17)

(similarly, we can define L~as coefficients of the Laurentexpansionfor T(i)). It follows from (1.14)
that the operators L~satisfy the commutation relations

[La, Lm] = (n — m)Ln+m + i~cn(n
2— 1)~n+m~ (1.18)

(with a similar result for the La). The above infinite-dimensionalconformal algebra is called the
Virasoroalgebra.A subalgebrasl(2, C) of (1.18) consistsof thegeneratorsL..

1, L0, L1, associated to
the global conformaltransformations

z—*w(z)=(az+ b)I(cz+d), ad—bc1. (1.19)

They are also known as Möbius transformationsand are the only invertible mappingsof the whole
z-planecompletedby a point at infinity.

Basic fields in two-dimensionalConformalField Theories(CFT) arethoseoperators‘k~(z,i) which
transformunder theconformal transformations(1.16) as

~ i)—* (dfIdz)~”(dfIdi)~”P~(f(z),f(i)). (1.20)

Such operatorsare called primary fields Li2]. The pair (zt~,zt,,) definestheir conformal weights.The
combinationsx,~= 4, + L1~ands,= z.t~— 4, aretheanomalousscaledimensionand the spin of the field
P,,, respectively. A primary field I.~’,, satisfies(1.20) for all conformal transformations.This property
distinguishesthem from the qua,si-primary fields .~,,, which transformas a tensorof weights (4,,4,)
only under the global conformal transformation(1.19). Obviously, any primary field is also quasi-
primary but the contrarydoesnot hold.

Oneof themost powerfulresultsof two-dimensionalconformalfield theoriesis the classificationof
theoperatorcontentof a given critical model accordingto irreduciblerepresentationsof theVirasoro
algebra[12]. To label the states,we usetheir conformal weights 4,, i.e. the eigenvaluesof L

0, and
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every scalingoperatoris eithera primary field or a descendentthereof. Primaryoperatorscorrespond
to highestweight vectors.Theseareeigenvectorsof L() which are annihilatedby all L~for n > 0,

LQ~4)=4i) , L~~4)=0, n>0. (1.21)

Among them, thereis the vacuum 0). However, this state is also annihilatedby L1 becauseit is
invariantunderthe sl(2,C) global conformal group. Hence, it satisfies

L~~0)0,n�—1. (1.22)

The correspondencebetweenthe conformal primary fields and the highestweightvectorsis given by

= I~(O)$O). (1.23)

Descendantoperatorsat level N with scaling dimension~i+ N correspondto linear combination of
statesof the form

L~1L~. . L~4) , n1 � n2 � ~ ~ ~k’ n~= N. (1.24)

Thesefields, togetherwith the primary fields ‘P~form the so-called conformalfamilies [P,.],equiva-
lently known as the Verma modules. Under a conformal transformation,each member of [~I~]is
mappedinto a representativeof the sameconformal family, i.e. [I~] form a representationof the
Virasoroalgebra.

Exactsolutionsof two-dimensionalconformal field theorieshavebeenstudiedextensivelyin the last
years(see,e.g. ref. [14]). In thisreviewwe aremainly concernedwith an infinite seriesof them,known
as minimal models[12—14].The minimal models~ are characterizedby a pair (p’ p’l of coprime
positive integers*). The operatorproduct expansionalgebraof thesemodels closeswithin a finite
numberof primary fields I~with conformal weights given by the Kac formula

(rp’—sp) —(p—p’)
~r.s~p-r,p’-s ~, , 1~r~p—1,1~s~p’—1. (1.25)

The centralchargeof thesemodelsis

c=1—6(p—p’)
2Ipp’. (1.26)

It is also convenientto define an effectivecentral charge E given by

~usc_244mjn=1_~6Ipp’, (1.27)

where ~min is the lowest conformalweight in (1.25). For the minimal models,~ is a positivequantity

*) An importantsubsetof theseminimal theoriesconsistsof theunitary conformalmodels, for which p andp aretwo consecutiveintegers:
p—p’I=l, seeref. [13].
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alwaysless than 1. For the unitary minimal model, Ltmjn = 0 andthe effective centralchargecoincides
with the centralchargeitself.

In the minimal models~ the descendantstates(1.24) are not all independentbecausesome
linear combinationsof them vanish. The correspondingstatesare called null-vectors [12] and their
generalexpressionhas beenexplicitly found in ref. [21]. In order to obtainirreduciblerepresentations
of theVirasoroalgebrafor the minimal modelsAl~,we haveto projectout all null-vectorsfrom the
Verma modules.The correlation functionsof the fields P~,and their descendantsthen satisfy linear
differentialequationsexpressingthese“null-vector” conditions[12]. All correlatorscan be obtainedin
termsof a Coulombgas representation[20] and provide an explicit solution of the theory.

The structureof the Vermamodulesdefinedby the primary fields ~r.s is encodedin the correspond-
ing characters,

—c/24 L —(c/24)+~i n
x(q,c)~ usq Trq oI~ =q r.s d~5(n)q. (1.28)n0

Herein, drs(fl) is the numberof linearly independentstatesof the representation{~rs} at level n. The
explicit formula for ~ c) is given by [23]

x~(q, c) = t(q)q 24~r.s ~ qPP~k

2(q’(frP~3P)— qkfrP’+SP)) (1.29)r.s

where q(q) is the Dedekinda-function

~(q) = q”24 (1— qk)~ (1.30)

The physicalmeaningof the variableq becomesclearoncewe considera CFT definedon a (complex)
toruswith modularparameter‘r. The variableq is then identified with

q=e2~~~T, (1.31)

and the characters(1.28) enterthe expressionof the partition function on the torus as

Z(q, ~ (1.32)

Nh ,~are non-negativeintegerswhich characterizethe operatorcontentof the theoryand thereforeits
classof universality. They arefixed by the requirementof modularinvariance[24], i.e. the independ-
enceof the partition function (1.32) from the particular parameterizationof the complex torus. The
group of these transformationsis called modular group and is generatedby two fundamental
transformations

T—*T+1, T—)11T. (1.33)

The problemof finding all suchmodularinvariant partitionfunctionsin the caseof the minimalmodels
was solvedin ref. [25].The resultis that thesepartition functionsareclassifiedby thesameADE
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serieswhich classify the simply laced Lie algebras.In the caseof minimal unitary CFT, they arethe
continuumlimit of thecorrespondingpartition functionsfor the lattice statisticalmodelssolvedin refs.
[31—33].Among them, thereare familiar systemsof statisticalmechanics:.4134 describesthe classof
universality of the Ising model [12],.11145 can be identified with the tricritical Ising model [13]and, in
general, the modelsfalling into the A series can be interpretedas multicritical points of statistical
modelswith a Z2 symmetry [34].The first model of the D serieshasan operatorcontentwhich is a
subalgebraof .41 6 and is identified with the classof universalityof the 3-statePottsmodel [35].

1.2. Scalingregion near the critical points

The analysisof the classesof universalityof statisticalmodelsmust includethe constructionof the
conformalfield theoriesof the fixed points aswell asthedescriptionof thescalingregionaroundthem.
The linear neighbourhoodof thesefixed points is spannedby the relevantscalar operatorscP~~. present
in the characteristicCFT. Theseare the operatorswith anomalousdimensionsx~= 24 <2. Any RG
trajectoryflowing away from a suchfixed point is obtainedby any combinationof the relevantfields.
The correspondingoff-critical action is given by

5O5P*+~AJ~(x)d2x (1.34)

where ,92* is the actioncorrespondingto CFT. The relevantoperatorsareof superrenormalizabletype
with respectto theultraviolet divergencesencounteredin theperturbationseriesof (1.34).Hencethey
do not affect the behaviourof the system at short distancesbut they do changeit at large distance
scales.Onecanexpectthat theRG trajectorieseitherreachanothercritical point (and,in this case,the
large distancebehaviouris governedby theCFT associatedto it) or end at a non-critical fixed point,
correspondingto a massive quantum field theory. For the unitary models, an important result
concerningthe RG flows is given by thec-theoremof Zamolodchikov[36].

1.2.1. c-theoremand someapplications
Zamolodchikov[36]establishedthe following theoremabout the RG trajectories.For a class of

quantumfield theorieswhich possessesrotationalinvariance,reflectionpositivity andconservationof
thestress-energytensor,thereis a functionC( { A,}) of thecoupling constantsA, which is non-increasing
alongtheRG trajectoriesand is stationaryonly atthe fixed points. At the fixed points it coincideswith
the centralchargec of the correspondingCFT. -

The proof is very simple [16,36]. Let T, 6’ and T be the spin 2, 0 and —2 componentsof the
stress-energytensor.With theaboveassumptions,their correlatorscan be written as

(T(z, flT(0,0)) = F(mzfllz
4, (T(z, flø(0, 0)) = G(mzi)1z3z,

(1.35)
(ø(z,~)6’(0,0)) =H(mzi)/z2z2,

wherem is a massscale.Using the conservationof the stress-energytensor

a~T+~aø=0, 3
5T+ ~a10=0, (1.36)
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we deducethe following differential equationsfor the scalarfunctionsF, G andH,

P+ ~(O—3G)=0, O— G+ ~(I~—2H)=0, (1.37)

where

FusdF(x)Idlogx.

Defining

C~2F—G—~H, (1.38)

we have finally

C=-~H. (1.39)

The positivity condition of OFT implies that H is a positive quantity and C is thusa non-increasing
function. At the critical points, the trace of the stress-energytensor vanishes, 6’ = 0. Therefore
G = H = 0 and F = c, so C reducesto thecentralchargeof thecorrespondingCFT.

A reformulationof thec-theoremin termsof thespectralrepresentationof the two-point functionof
the stress-energytensorhasbeen proposedin ref. [37]. Moreover, Cardy [38]hasput forward an
interestinglink betweenthe CFT’ dataand theoff-critical correlatorsby consideringthe integralversion
of eq. (1.39). Let us considerthesimplestcaseof a deformationof CFT achievedby perturbingonly
with one relevantfield 1 with anomalousdimensionx = 24. The traceof the stress-energytensoris
given in this caseby

= 2irA(2 — 24)~(r). (1.40)

Using eq. (1.39),Cardyestablishedthefollowing sumrule for thetotal changein C from shortto large

distances:

&=31TA2(2_2z1)2fd2xJxI2~(x)~(0)). (1.41)

The aboveformulahasbeencheckedfor thethermalperturbationof Ising model [38],i.e. for a massive
free fermiontheory. A moreinterestingexampleis to apply Cardy’ssum rule (1.41) to a quantumfield
theory dependingon a couplingconstant.Let us considerfor instancethe sine—Gordonmodel with a
Lagrangiangiven by

.~e=~(aTMW)2+(m2If32)(cosf3~tt—1):. (1.42)

We restrictour attentionto thephaseregiondefinedby ~2 <8 ir. This modelis massive(with c = 0) and
we may considerit asa deformationof the free masslesstheory (with c = 1). In this casewe haveat
lowest order in (m21f32)

Atp e(x)= (m2If~2):(cos ~ — 1): (1.43)
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with anomalousdimension

24=/32/4i~. (1.44)

For /32 <8ir, the field e(x) is a relevantoperator.Equation(1.41) becomes

~c=3i~(2—/32I41T)2J’d2x~x~2<r(x)r(0)). (1.45)

Since the left-handside of (1.45) doesnot dependon /3 (in particular,it is equalto 1) the samemust
hold for the right-hand side at the order in (m21/32) we are working. Notice that the sum rule is
saturatedjust by the zero-orderterm in 1~,namelyby the termcorrespondingto a free massivetheory.
In fact, at this orderwe have

e(x)=~m2co2,4=0,
(1.46)

t 4 2 4 2 2

(s(x)r(0))=~m(~(x)~’(0))=(mI8~)K
0(mIx~)

(K0 is a Besselfunction) andtherefore

-~-~ f~2xx~2K~(m~x~)=3fdRR
3K~(R)=1. (1.47)

This meansthat, expandingin seriesof ~2 the right-handsideof (1.45), the first coefficientsin f32 must
vanish.Taking the first derivativewith respectto /32 andthen putting 132 = 0,

~ d p20 = - ~ 1d2x x~2(r(x)r(0))+4f d2x xV ~r(x)r(0)). (1.48)

The first term is what we computedbeforefor the free massivetheory. In order to evaluatethe second
term, we expandthe term cos(f3q) to the fourth order anduseWick’s theorem.The result is

~ d p~o= - + (~)4 ~ d2x d2z x~2K~(m~x- z~)K~(m~z~). (1.49)

The last integral is easilycomputed:with the changeof variable x — zI—* tj, it becomestheproductof
the integrals

2~~TJR3K~(R)dR= ~, 2irJ RK~(R)dR= ir (1.50)

(the term in (1.49)which containsthescalarproductx z is zeroafter theangularintegration). Inserting
this into (1.49),we seethat thevariation of the centralchargewith respectto /32 is zero,asit shouldbe.

The c-theoremhasbeenexploited in the analysisof quite a largenumberof physical systems,see
e.g. refs. [39—42].A ratherremarkableexamplehasbeenrecentlydiscussedby Zamolodchikov[43]:he
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founda remarkablepatternof “roaming” trajectoriesof theRG which flow nearthesuccessionof the

fixed points. We refer to the original literature for a detaileddiscussionof this point.

1.3. Minimal integrablemodels

An integrablemodel is characterizedby an infinite set of conservedcurrents.In two-dimensional
systemswe can useholomorphicand anti-holomorphicindices andwrite the conservationlaws for a
current (J~~ , J~ ) in the form

a~J~+a~J~=0. (1.51)

As we noticedbefore, an important featureof theCET is the decouplingof the z and ~ dependence.
We may takeas J~ any independentoperatorin the conformal block of the stress-energytensor.
Since they are analytic functions,thereforeeq. (1.51) is trivially satisfiedby them, i.e. theconformal
field theoriesof the fixed points possessan infinite numberof conservedcurrents.

In the deformedtheorydefinedby theaction (1.34), thishierarchyof conservedcurrents— together
with the decouplingof the z and i dependence— is generallydestroyed.An analysis of the models
which ariseby an arbitrary deformationof the critical point action may be performedby the usual
perturbative methods, but many aspectsof the theory might remain hidden in this approach.
Alternatively, the discoveryby Zamolodchikov[29,30] of the so-calledintegrabledeformationsof CFT
hasopeneda completelynewperspectivein this investigation.The correspondingOFT possessesan
infinite setof conservedcharges~ in involution which permitsto solve the theorynon-perturbatively.
We call this classof theoriesMinimal Integrable Models (MIM).

In this review we areinterestedin thosedeformationsof CFT which give rise to massiveintegrable
models.The infinite numberof integralsof motion presentin thesetheories,precludesthepossibilityof
inelasticscatteringof the massiveexcitationsand the n-particleS-matrix factorizesinto a productof
n(n — 1)/2 elastic two-particle S-matrices. As a consequenceof this factorization, the two-particle
S-matricessatisfy, in addition to the usual requirementsof unitarity and crossing, the star-triangle
equations[120].Moreover, theyare linked amongthemselvesby the bootstrapequations[30].

The knowledgeof the exacton-shellS-matrixof amodel is the startingpoint of further investigations
of its properties.Oncethe scatteringamplitudesareknown, one can exploit bootstrapmethodseither
to constructmatrix elementsof local fields (the so-calledform factors), or to computefinite-sizeeffects
of suchtheoriesby meansof the thermodynamicalBetheansatz.

1.3.1. Bootstrapprogramfor the minimal integrablemodels
A constructiveapproachto the MIM consists in the following program. Given the conformal

data*) — centralcharge,dimensions,fusion algebras,etc. —

(i) find possible integrableperturbations,i.e. identify the off-critical conservationlaws;
(ii) solve the bootstrapequationsfor the S-matrixconsistentwith the conservationlaws, satisfying

unitarity, crossingsymmetry,analyticity and factorization;

*) In OFT this is equivalentto knowingtheshort distancebehaviour,i.e. theultravioletpropertiesof thetheory;the infraredpropertiesare the

subjectof our analysis.
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(iii) find the field equationsandthe off mass-shelltheoriescorrespondingto theseexactS-matrices.
Eachof thesepointsneedssomecomments.
The realizationof point (i) of this programis far from beingconclusivealthoughthereis a largeand

still growing numberof examplesof integrabledeformationsof CFT. Let T~~2be the quasi-primary
descendentsof the stress-energytensor.Given a perturbation~ the problemis to see which of the
conformal conservationlaws

(1.52)

gives rise to the off-critical conservationlaws, i.e. to find the spinss andthe local fields 023, suchthat

= . (1.53)

Wheneverthe initial systempresentsan invarianceunder an infinite algebrain addition to conformal
symmetry [26] (this is the case, for instance,of the superconformalminimal models [27] or the
parafermionicmodels[28]), the previousdiscussioncan be generalizedto the quasi-primarydescen-
dents of the correspondingcurrents [156,179] (seechapter2). Therefore,we may haveconserved
charges

= f (T2~2dz+ 025 di) (1.54)

of integer,half-integeror fractionalspins.Their existenceis deeplyrelatedto the null-vectorconditions
of the primary field ‘1~-~ [29,30, 150, 189].

The bootstrapequationsof point (ii) are the following functional equationsfor the two-particle
scatteringamplitudeSab(O) [30,121]

Scd(o)=Sbd(o—iu~c)Sad(o+iu:~c), t~=ir—u, u~C+u~C+u~b=2ir. (1.55)

We haveintroducedthe rapidity 0, relatedto the light-conecomponentsof the momentumby p = me°
and 1J= m e °. To solve theseequations,it is often necessaryto find an ansatzfor the two-particle
bootstrapfusionsof some minimal subsetof particles.These fusionsshould be consistentwith the
conservationlaws and the symmetriesof the model. The massesof the particlesenter the analytic
structureof the scatteringamplitudes,i.e. they fix the locationof the physicalpoles0 = iU~6of Sa6~For
example,the fusions

axa—~à+b, bxb—~ (1.56)

(i denotethe antiparticleof i = a, b, with the samemassm, = m1) are consistentwith the conserved
spins

s=1,4,5,7,8,11 (modl2) (1.57)

iff

U~a=~ir~ U~a=~7T~ U6~iT. (1.58)
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With this “initial condition”, one can find a closed solution of eqs. (1.55) including only two new
particles[156,159] (seesection6.7).

The heuristicapproachto integrablemodelsdiscussedso far is complementaryto the quantumgroup
approachandboth approachesenlightenthe structureof theseQFT. In fact, if we knewthesymmetries
of the perturbedmodelsandthe representationswhich areconsistentwith the conservationlaws, then
thebootstrapfusionswould be nothingbut thetensorproductrulesof theserepresentations.Therefore,
the bootstrapfusionsencodedin the physical polesof the exact S-matricesare an important tool in
searchingfor the hiddensymmetriesof the MIM. We presentageneralschemeto classify theN-particle
bootstrapfusionsandthe correspondingS-matricesin section3.5 [149,156, 158, 160]. The questionwe
addressis: given a setof N massiveparticlesa,(p,),wherep, is the momentum,with the fusions

a,(p1)x a.(p1)—s’~C~Jkak( p, +p1) (1.59)

find
• the resonanceanglesu,~enteringthe on-shell masscondition

m~—m~—m~=2m~m1cosi4,uq+ujk+u,~=
2ir (1.60)

the massratiosm
1/m~,and the solutionof bootstrapequations(1.55);

• the infinite setof conservedchargesP~consistentwith (1.59) and (1.60),such that*)

P5~a~(p1))=

(1.61)

P~at(p~)... a~(p~))= ~ y~(pkImk)~al(pl). . a~(p~)),

where y~aresomeconstants.For instance,if N = 1 theonly possiblebootstrapfusion is

a(p1)x a(p2)—*a(p1+p2). (1.62)

The particle a appearsas boundstateof itself. The consistencycondition reads

2 cos(sir/3)= 1. (1.63)

Thenthe conservedspinsares = 1, 5 (mod 6) and the minimal elasticS-matrix, satisfyingthe bootstrap

fusion (1.62),hasthe form [148]

Saa(0)’tanh[~(0+~iir)]/tanh[~(0— ~iir)] . (1.64)

Point (iii) is the mostdifficult one,so far. The existenceof infinite-dimensionalsymmetriesin these
integrablemodelssuggeststhat they are completelysolvable, not only on mass-shell,but also in an

*) This form of the eigenvaluesof P, is a consequenceof Lorentzinvariance.
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arbitrarydomain of momentumspace.However,a powerful schemefor dealing with such a problem
(analogousto the conformalapproachof Belavin,PolyakovandZamolodchikov[121for the QFTof the
critical points) hasnot yet beenaccomplished.The computationof the correlationfunctionsawayfrom
criticality remainsa formidabletaskandexactresultsareknownonly for few cases[78—81].However,a
lot of progresshasbeen achieved in the computationof the form factorsof the integrabletheories
[69—71,83—86, 1471. Thesearematrix elementsof local quantumfields U5

F~= 0~~p1,p2,. . . ‘Pm~0a(0)~Pm+i,.. . , p~. (1.65)

The two-point functionsof the operatorsU5 can be computed,in principle, as an infinite sum overthe
form factorsexploiting the following spectralrepresentation

(Ua(P)Ua(0))=Ga(P)=J ~ , (1.66)
p K +IE

with the spectralfunctionsgiven by

r
2 11 ~ 1) 0 I 1 a2

Pa(K )_ ~J 2
6(K —~~p~)6(K—~~p~)F~. (1.67)

,,n. i(2ir)

Although the computationof the form factorshasbeen performedin severalinterestingcases,the
difficult stepto find a close expressionfor the spectralfunctionsPa(K) remainsunsolved.

1.3.2. Quantumgroup symmetry
It hasbeenrecognizedrecentlythat the massiveintegrablequantumfield theoriesarecharacterized

by a quantumgroupsymmetry[91—97].A well-known exampleis providedby the relationbetweenthe

~‘~t,3 deformationof minimal modelsand the sine—Gordontheory at rational values of the coupling
constant.The sine—Gordontheory possessesan SU(2)qinvariancewherethe q-parameteris a function
of the coupling constant/3 of the model. The soliton and the anti-soliton statesof the sine—Gordon
theoryact like a doubletrepresentationof this groupwith spin j = 1/2. The higher multisoliton states
areobtainedastensorproductsof this fundamentalrepresentation.However,atspecialrationalvalues
of f3218ir, q becomesa root of unity andthe representationtheory changesdrastically,i.e. the model
cannotsustainsolitons exceedinga certainnumberand a reductiontakes place in the system.This
meansthat somedegreesof freedombecomefrozen,whereasthe otherscombinetogetherandgive rise
to a new basis of the reducedHubert space. This mathematicalanalysis perfectly agreeswith the
observedphysicalrealizationof ‘P

13-perturbedCFT, whichcan be checked,for instance,by numerical
methods[53,134, 1391: after the perturbation,the original multiple degeneratevacuum of the fixed
point splits into a finite numberof different groundstateswhich areconnectedonly by a finite number
of soliton states.

An analogoussituationalso occursfor the ~1,2 and ~2,t deformationsof the CFT. As shown by
Smirnov[93], theyare relatedto the quantumgroupreductionof the Zhiber—Mikhailov—Shabatmodel
definedby the following Lagrangian:

$f= ~(aTM~)
2+ [~exp(i2\/ q5) + exp(i\/~3~)]. (1.68)
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In this paper, we will summarizethe resultsof this reductionprocedureand discusssomesignificant
examplesof deformedCFT.

1.4. Affine Todafield theories

In chapters7 and8 of this reviewwe will discussa classof integrableLagrangiantheoriesknownas
Affine TodaField Theories(ATFT). Previousinvestigationsof thesemodelshavebeencarriedout by
several authors, see e.g. refs. [213—215,222—224]. These theories have recently attractedmuch
attentionin relation to the deformationsof CET and the bootstrapapproach.

The ATFI associatedto a Lie algebra~ of rank r is a theoryof r bosonicfields 4’ with a Lagrangian

~ (a~)2 - ~ n~exp(/3 > a~cb~)+ exp(_f3~ nka~’)], (1.69)

wherem~is a massscale,/3 the couplingconstantanda,(i = 1,2,.. . , r) the simple rootsof the algebra
~. The last term in (1.69) involves the maximalroot w

w—>~n~a~. (1.70)

The set of integers{n,} is specific for eachalgebra.The Coxeternumberof the algebrais given by

h=~n~+1. (1.71)

The connectionbetweenATFT anddeformationsof CFT hasbeensuggestedin refs. [189,190] andhas
proved to be a rich subject.Significant examplesare given by the ATFT constructedin termsof the
Dynkin diagramof the exceptionalalgebrasE~.The minimal*) S-matricesof theseATFT arerelatedto
the first modelsof the minimal unitary seriesin CFT: E

8 is associatedto the Ising model in a magnetic
field [30,159], E7 to the tricritical Ising model (TIM) [157,159] and E6 to the tricritical Potts model
(TPM) [156,159] both in their high temperaturephase.

The S-matricescorrespondingto the conservedchargeswhose spins coincide with the Coxeter
exponentsof the affine (Kac—Moody) algebrashavebeenrelated to the generalizedToda systemin
refs. [158,160]. The samesetof S-matriceshasalso beencomputedin ref. [171]andtheir relationwith
the root systemshasbeeninvestigatedin refs. [174,177].

A perturbative analysis of the ATFT with real coupling constanthas been pursuedin refs.
[157,158, 171—173]. A distinctionoccursbetweenthe ATFT constructedon the simply laced algebras
andthoseconstructedon the non-simplylacedones.For instance,the massratiosof the simply laced
ATFI are stableunderquantumcorrections.At one loop order, thereis a universalformula for the
massshift ~ of the ith particle [158,171]

~m~Im~= (/3
214h)cot(irlh). (1.72)

*) The exactscatteringamplitudesof theseLagrangianmodelscan be written as 5(0, ~3)= Srna(0)Z(0,~). The “minimal” S-matrixdoesnot
involve the coupling constantand containspolesonly in the physical strip. Z(0, 13) is a coupling constantdependentsolution which ensures
S(0)I,,.~

0= 1. Both termssatisfy the requirementsof unitarity, crossingsymmetry andthe bootstrapprinciple.
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The rhs of (1.72) is nothingbut theareaof the regularplanarpolygon with h equalsidesandperimeter
/3. On the contrary, the massratiosof the non-simplylacedATFT are generallynot robustunderloop
corrections.Moreover, the conjecturedexact S-matricesfor thesemodels presentsome mysterious
higher-orderpoles on the physical sheetthat cannot be explainedin terms of multiple scattering
processes[158,171]. For their quantum consistency,the introduction of some additional degreesof
freedomis required[1781.

1.5. Layoutof the paper

In this introductionwe haveconveyedsomebasicideason the off-critical statisticalsystems.In the
restof this work we will discusssomeof the majorapproachesto this largesubjectsystematically.The
paper is organizedas follows. In chapter2, the conformal approachto the conservationlaws for
off-critical systemsis examined. In chapter3 we discussthe general propertiesof the factorized
S-matrix, including the restrictedmodels originating from the sine—Gordonand from the Zhiber—
Mikhailov—Shabatmodels.They providethe scatteringtheoriesfor the massivedeformationsof CFT
madeby the operators~1,3, ~1,2 and ~2.1 respectively.In chapter4 we review the thermodynamical
Bethe ansatz,which has becomean important tool in the analysis of the purely elastic scattering
theories.Another efficient methodof investigationis given by the numericaldiagonalizationof the
off-critical Hamiltonianfor systemsdefinedon a domainwith cylindrical geometry.We will discussthe
basic ideasof this approachin chapter5. Chapter6 coverssomesignificant examplesof scattering
theoriesfor the minimal modelsaway from criticality. Chapters7 and8 aredevotedto affine Todafield
theorieswith realcoupling. Chapter9 gives anintroductionto theproblemof computingthe correlation
functions away from the critical points. Our conclusionsare in chapter10. There are also several
appendiceswheretechnicaldetailsaregatheredin a conciseway.

2. Conservationlaws

An integrablequantum field theory is characterizedby the existenceof an infinite number of
conservationlaws. For integrablemodelsoriginating from a perturbationof a CFT, theseintegralsof
motion can be interpretedas deformationsof the conformal conservation laws. A criterion for
establishingtheir existence,at leastfor thelowestdegreesof theseconservedlaws, is easilyobtainedin
termsof the OperatorProductExpansion(OPE) and the characterformulas.

2.1. Deformationsof the conformalconservationlaws

Let us consider_theconformal minimal models~ deformed by a relevantprimary scalarfield

‘~~lk(z,~)= 4,k(z)4/k(z),with anomalousdimensionx = 24 <2. The off-critical action is given by

~_~0+Af~l4(z,z)dz. (2.1)

Let ~5(z) be a conservedcurrentof the model .A1~(a1~5(z)= 0) with spin s (integer or fractional),



G. Mussardo, Off-critical statistical models: factorized scattering theories and bootstrap program 233

local with respectto k(k:

‘~ d~”~ 1

CS(z)~k(w,~ = n=2 (z —w)~~ ~)+ ~ — ~ BIk(w, ~) +... (2.2)

(n is an integer, cP~and Bik are descendentsof ~lk and d~some constants).The corresponding
deformedWard identitiesfor ~5(z,i) can be written in termsof the conformal ones [16]:

(2.3)

Equations(2.2) and (2.3), togetherwith the identity

1 _ —

+•

lead to the perturbedcounterpartof the conformal conservationlaws: to the first order in A we have

81C5(z,~)= A[Blk(z, ~)— d~a5P~]. (2.4)

The existenceof the off-critical conservationlaw dependson whetherBtk is a total derivative with
respectto z. The simplestexampleis providedby energy—momentumconservation:if ~ = T, whereT
is the stress-energyoperator,we have

Bik — d~a5~~= (1 — 4) aZ’1~k(z,fl (2.5)

andtherefore

ä5T(z,i) = — ~ä~0~6’ = —4A(1 — 4)~P!k(z,~). (2.6)

The correspondingconservedchargehasthe form

us p = f(T dz+ ~9 dfl. (2.7)

In order to understandthe occurrenceof higher integralsof motion, let us considersomesignificant
examples:

(i) The minimal model .11145 correspondsto the classof universalityof theTricritical Ising Model*)
(TIM), knownto be alsothe first superconformalmodel [13,27] (seesection6.5). We chooseas ~ the
supercurrentG312 with spin s = ~ andas deformationfield the vacancydensityoperator~ =

In the following wealsousethe notationP~to denotetheconformalfields. The supersymmetricWard
identity

G(z1)~315315(z2,i2)= (~+ i a2)~110315(z2,z2) +... (2.8)

5zt2 zi2

~ A microscopicrealizationof this model may be given by an Ising ferromagnetwith vacancies,seesection6.5.
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(z17 us z1 — z,) leadsto the conservationlaw [179]

a1G(z,i) = a. IP(z, ~), W(z,i) = ~AI11~0315(z,i). (2.9)

The correspondingconservedcharge

Pii2usQ=J(Gdz+~di) (2.10)

hasspin s = ~. By using the conformal OPE’s

G(z1)G(z2)= T(z2)+..., G(z1)~1101110(z2, i,) = ~151110(z2,i2) +..., (2.11)

it is easyto show that

Q2fdz dz2G(1)G(2)+~AJdiid;{G(1), ~t/t0,3/5(2)}

= J(2Tdz + ~A~315~ d~)= 2P. (2.12)

Similarly, ~2 = 2P and

Q~+ ~Q= ~AJ [(a~~1110~ dz+ (a5~~110~ di]. (2.13)

The right-handside of this equationis the topological chargeof the TIM andtherefore{ Q, Q, P, P}
generatean off-critical global supersymmetry[179].

(ii) The class of universality of the 3-state Tricritical Potts Model (TPM) correspondsto a
sub-algebraof the minimal model .4167 [13]. We chooseas ~ the chiral field W of spin s = 5 and as
deformationthe field ~12(z,~)= ~1f7,I/7~ The conformal OPE

= (~+ i a7)~2217~17~z2,~,)+... (2.14)
z12 Z12

(where w0 is a constant)gives rise to the conservedchargeof spin 4:

P4 = J (~Vdz+ A dfl, A = (w0 — ~)~22f7,1I7. (2.15)

The field ~ ,2 is the scalinglimit of the energy-densityoperatorof the statisticalmodel. Its insertionin
the action thusshifts the temperatureaway from the critical value. This perturbationpreservesthe
S3 = Z2 ® Z3 permutationsymmetryof the model,generatedby C (chargeconjugationoperator)andby
~ [156,159,179],

C
2 = 1.

P
4 is an odd operatorunder C, i.e. CP4 = —P4C, while P1 is an evenoperator,CP1 = P1C.
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(iii) Let us consideragain the model 4167, but this time we are interestedin the deformationby
meansof the field I~

3(z, i) = ~5/75 ~ and in the integral of motion originating from the operator
= 1//4/3 with spin s = ~. The parafermionicOPE

~413(z1)~517517(z2)= + -~ aZ)~l/2l5/7(z2)~ (2.16)
z12 Z12

(.~ is a constant)leadsto the conservationlaw:

a5ip413(z,~)= 6s~Aa5~1121517(z,1). (2.17)

The correspondingspin-~ charges~ and ~ (associatedto the current 1//4/3 of oppositeZ3 charge),
togetherwith .~2and ~~ realizean interestingoff-critical algebra[179]

(~)
3=(~)3=P, (.~2)3=(~t)3=P

..°L°2—q~2P2=t, ~ (2.18)

~ ~t.~_q~t=tt

where q = exp(2iri/3) and t, t~etc. are the topological chargesof the model. Their expressions,in
termsof theorder—disorderparameterfields o and ji with dimensions(~,~ aregiven by

t = KJJ~ dz + a~di), t~= K J(a~~~dz+ a
5~tdi),

(2.19)
t=KfJ(a5~dz+a1~dz),~t=KJ(a5~tdz+a5~td~),

whereK = 140/9.
(iv) As our last example,let us considerthe OFT definedby a ~~13 deformationof the minimal

unitarymodel.111 ,p+ 1• Let <l~=: T
2: be thequasi-primaryfield of spin4 in theconformalfamily of the

identity operator.Applying the stress-energytensor’sOPEtwice, we have*)

B
13 = A(4 — l)[2L1L2 — 2L.3 + ~(4 — 3)L~1]~13(z,i). (2.20)

The only term that may spoil the existenceof conservationlaw is the secondone. However,the field
~t3 satisfiesthe following null-vectorcondition at the level 3 [12]

L3~13= (~+ 2 L1L2 — (4+ 1)(4 + 2) L~~)~t3 (2.21)

Therefore,we canexpressthe piecein L_3 in termsof apure derivativeexpressionand, consequently,

*) We use: L,[ .1 = ~ ‘1.
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thereexists a conservedchargewith spin 3 for any value of p [30]:

Pi=f(T4dz+ 02d~), (2.22)

where

02= A ~ (24L2 + (4— 2X~—1)(4+3) L~1)~t3~ (2.23)

Using the correspondingOPEs, it is easyto prove that P1 and P3 commute: [P1,P3] = 0.
Eguchi and Yang [189]have related the deformationsof the minimal models of CFT with the

operator113 to the sine—Gordonmodel: they haveexplicitly constructedthecurrentscorrespondingto
conservedchargesof spinss = 3, 5, 7, 9 and they have furtherconjecturedthe existenceof an infinite
numberof them,with odd values of s.

All theseexamplesdemonstratethe usefulnessof the conformal OPEs for constructingthe lowest
spin conservedcurrents.A powerful method,knownasthecountingargument,hasbeenintroducedby
Zamolodchikov[30] in order to provide a sufficient criterion for the existenceof such non-trivial
conservationlaws.

2.2. Countingargument

We illustrate the counting argumentin the caseof conservedcurrentswhich originate from the
conformalfamily of the identity operator.A similar resultis obtainedby consideringconservedcurrents
which are local with respectto theperturbingfield I~.

Let T5~1be the spaceof the quasi-primarydescendentsof the identity operatorat levelss + 1, i.e.
the factor space:

~s+t = T5~1Ia5T5

Analogously,let ~ be the factor spaceat level s of theconformalfield P whichperturbsthe actionof
the fixed point,

= ~Ia2~5,

The mapping

a1: T5~1—*A~5

hasa nonvanishingkernelwhen

dim ~ >dim ~ (2.24)

If this condition is realized,thereexist somefields T,~1(z,i) E T,~1and ~51(z, ±~)E ~s1 suchthat

a~T5+1(z,~)= A a1~.1(z,~), (2.25)
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i.e. we havea conservedchargewith spin s. The condition (2.24) is easilycheckedby computingthe

dimensionsof thespacesby meansof thecharacterformulae:

q
5 dim t~= (1 — q) ii

1(q)+ q , ~ qS+~k1dim(~I’kl)S= (1 — q),~k,t(q)

where
— (c—1)/24—.~

xr.s(q) = q

andxr,s(q) is the characterof the field ‘-rs’ given in eq. (1.29).
The counting argumentusually provides a useful source of information on the structureof the

conservedcurrentsonly for low valuesof s*) Using thecounting argument,Zamolodchikov[30]has
provedtheexistenceof higherintegralsof motion for theoff-critical systemsdefinedby thedeformation
of the minimal modelsof CFT by the operators~ ,3~ ,2 and ~“2,~ Thereforetheseoperatorsalways
define an integrabledeformationof the minimal modelsof CFT.

2.2.1. Examples
Let us apply the counting argumentto example(ii) of the previoussection,i.e. to the thermal

perturbation.of the tricritical Pottsmodel. Therearetwo classesof conservedoperators.The first class
originatesfrom the descendentsof the stress-energytensor T whereasthe secondset is given by the
descendentsof the operator 141. They are further characterizedby their parity propertiesunder the
chargeconjugationoperatorC. The result is [156]

dim i’5.1 > dim(11/71/7)5 for s = 1,5,7,11 (C-even)

dim i~i’5 > dim(422/7~/7)Sfor s = 4, 8 (C-odd).

The natural conjectureis that the spins of the infinite set of conservedchargesare given by the

following sequence
s=1,4,5,7,8,11 (modl2). (2.26)

Thesespinscoincidewith theCoxeterexponents,modulotheCoxeternumber,of E6. Theappearance
of this Lie algebrastructureis due to an additionalsymmetryof theconformaltricritical Potts model,
which can be equivalentlyobtainedasthe first model of the WE6-extendedconformal algebra.

The analogouscalculation for the tricritical Ising model (4145) perturbedby the energyoperator
~1,2 = ~1/10,1/1O gives [157]

dim ts+t > dim(~11101110)5fors = 1, 5, 7, 9, 11, 13 , (2.27)

which coincide with some Coxeterexponentsof E7. The natural conjectureis that the spinsof the

infinite set of conservedchargesaregiven in this caseby
s=1,5,7,9,11,13,17(modl8), (2.28)

*) This becausethedimensionof the conformalblock of any operator4J~,,at level s growsasymptoticallymuchfasterthanthe corresponding

dimensionof the identity operator.
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where 18 is the Coxeternumberof E7. The E7 structureof the TIM is related to the equivalent
realizationof this model in termsof the coset[(E7)1®(E7)1]l(E7)., (seeappendixB).

For the Ising model (4134) perturbedby the magnetizationoperator ‘12 = ~tf 16,1/16’ we have[30]

dim ~ > dim(t~11161116)3for s= 1,7,11,13,17,19,

i.e. the first numbersof a conjecturedinfinite set equalto the Coxeterexponentsof E8, modulothe

Coxeternumberh = 30,

s=1,7,11,13,17,19,23,29(mod30). (2.29)

This is not a coincidencebecausethe Ising model canalso be realizedin termsof thecosetconstruction
[(E8)1® (E8)1]/(E8)2(seeappendixC).

We will discussin detail theoff-critical theoriesof thesemodelsin chapter6. [(E8)1® (E8)1]/(E5)2
(seeappendixC).

2.3. Multi-coupling deformationof CFT

We haveconsideredup to now someminimal modelsperturbedby only one relevantoperatorand
we havediscussedunderwhich conditions the off-critical modelsare integrable. Onemight wonder
whethertheanalysismadeso far could be generalizedto thecaseof multiple deformationsof CFT. For
instance, in the Ising model there are two individual integrabledeformationscorrespondingto a
thermaland a magneticperturbationof the critical point action, respectively.Onemight askwhether
thereexist otherintegrablelines*) in theplaneof thephasediagramdefinedby theaxesof temperature
andmagneticfield. Similarly, for next minimal unitarymodel given by the tricritical Ising model,both

~and ~1.2 deformationsareindividually integrable:is it possibleto find otherintegrabledirectionsin
thephasediagramof this model definedby theaxesofthescalingfields ~1.2 and~I’~3?The samekind of
questioncan be also addressedto othermodelsaswell.

A definite resolutionaboutthis problemhasnot beenreachedso far. However,we will showthat

B

T-T~

Fig. 1. Renormalizationgroup trajectoriesof theIsing model.

* If thereexistsan integrablepoint in theplaneof thephasediagram, it necessarilybelongsto oneof therenormalizationgrouptrajectories

(fig. 1), hencethemodel would be integrablealongthe full line.
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conservedcurrentswith low valuesof the spin s do not exist whenmultiple coupling deformationsof
minimal modelsof CFT areconsidered.The reasonsareessentiallythedifferent null-vectorconditions
satisfiedby theperturbingfields. Thoughour computationsarerestrictedto the first non-trivial values
of s, wheresuch currentsmight exist, theyreveala geometricalstructurethat maybe exploitedin a
morecompleteproof of the abovestatementfor highervalues of s.

To startwith, we recall thederivationof the non critical conformalconservationlaw in presenceof
only one perturbation.We considerfor simplicity the caseof unitary theoriesand ‘~ E T5. Generally,
up to derivativeterm, we have(seealso eq. (2.4))

— (1) — n(n) —

a1~’5(z,z) = ABtk (z, z) +... A Btk (z,z) +... (2.30)

A dimensionalanalysisfixes the scalingdimensionsof theoperatorB~(z,1) to be

[s—n(1—4),1—n(1—4)].

Since 4 < 1, thereexists an integern~suchthat for all n> n~the right dimensionsof B~(z,i) are
negative.The absenceof stateswith negativedimensionsin theunitaryminimal modelsforcestheseries
(2.30) to stop and, actually, in most casesonly the first termsurvives[29,30]. If we now considerthe
caseof two relevantperturbations(with scalingdimensions~ ~2 andcoupling constantsA1 andA2),
thegeneralizationof (2.30) becomes

a1~5(z,i) = ~ A~A~B~m)(z,1). (2.31)
n,m~’1

The anomalousdimensionsof the termsB~~m)are

[s — n(1 — 4~)— m(1 — ~2), 1— n(1 — D1) — m(1 — ~2)1. (2.32)

Again, we concludethat the serieshasto terminate.Moreover, at least for the Ising and the TIM
models,the seriessplits into two independentseriesin A~and A2*)~The reasonis very simple. In fact,
the right dimensionshouldcoincidewith oneof the dimensionspresentin the conformalgrid. For the
Ising model in an externalmagneticfield and at a non-critical value of the temperaturewe have

1~nx~~mX~=4r, (2.33)

for some~ of themodel. As possiblevaluesof ~r we only have~r = {0, ~, ~}.Hence,it is impossible
to haveboth n andm non-zeroat thesametime.

The samehappensfor the TIM, perturbedby the energyoperator~1/1O,1/1Oand by the vacancy
density operator ~

In thesetwo models,we thushavein (2.31)thedirect sumof thecontributionsdue to bothterms.If
a conservedcurrent exists, it must occur at the common level of the conservedcurrentsfor each
perturbation.For what concernsthe fields ~1/21/2 for Ising and P315315 for TIM, they areboth ~

operators.Therefore, from example(iv) of section 2.1, the conservedcurrentsassociatedto these

~d We suspectthat a similar conclusionholds for all minimal models4l,,~,,althoughwe do not havea generalproof for that.
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operatorsoccur at the values of s

5 = 1,3,5,7, .

i.e. at eachodd level. On the contrary, for the Ising modeltheperturbationgiven by theother operator
~1/t6.t/16gives rise to a set of conservedcurrentswith spins equalto the Coxeterexponentsof E8

s=1,7,11,13,19,23,29 (mod30).

For the tricritical Ising model, theperturbationgivenby the secondoperator~t/1O,1/1O possessesaset of
conservedcurrentswith spins equalto the Coxetercomponentsof E1

s=1,5,7,9,11,13,17 (modl8).

Therefore,in both models the common set of conservedspins coincideswith the respectiveset of
Coxeterexponents.

In the following, we will explicitly show that currents which areconservedunderboth deformations
do not exist in these models, at leastfor thelowestvaluesof s. This result seems to indicate the absence
of integrabilityof the multi-coupling deformationsof thesemodels.

2.3.1. Tricritical Ising model
Let us startwith theTIM becausethis model hasa possiblecommonconservedcurrentat thevalue

of the spin equal to s = 5, whereasfor the Ising model we shouldconsiderat leastthecurrentswith spin
s = 7 (seebelow). The explicit expressionfor the conservedcurrent~ of a ~13’ perturbationof a
minimal model iU,~ of CFT hasbeencomputedin refs. [30,189],

= (T(T
2))+ ~(c + 2)(Ta2T), (2.34)

where c is the central chargeof the model and (AB) denotesthe normal orderedproduct of the
operators A and B,

(AB)(z) us~ A(w)B(z).

Applying a
1 to (2.34) and using eq. (2.3), we get

a1C6= A1(1 + 413)[(p + 1)L_5 —pL_2L_3]P13+ L_1[~~]. (2.35)

The first termon the right-handside is indeedzero for the field ~ as a consequenceof the level-3
null-vectorcondition (2.21). Therefore,C~

1~is conservedundera ~1,3 deformation.Pluggingc = 7/10
into (2.34), we get the expressionof the conservedcurrent of the TIM deformed by the field
~1,3 = ~ Wehave now to seeif C~1~is still conservedoncewe perturbthe TIM with thesecond
operator~1.2 = ~1/1o.1/IO~ Repeatingthecomputation,we obtain

a
1C6 = A2(1 + 4~,)(3(1~(+~~8) L, — 6L2L3)~12+ L1[...]. (2.36)
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We see, however,that the null-vector condition for ~

(L2 — 2(24~+1) L~1)~t,2 = 0, (2.37)

doesnot imply now the vanishingof the first term on the right-hand side of (2.36)! And indeed,the
currentwhich is conservedunder ~1,2 is not that onegiven in (2.34) but is given by

C~
2~= (T(T2)) + ~~(181— 17c + 15V25— 26c + c2)(Ta2T). (2.38)

Therefore, a conserved current of spin s = 5 for this multi-coupling deformationof the TIM doesnot
exist.

The TIM has also conservedcurrentsof spin 7. One of them comes from the deformationunder

~1/1o,1/to (correspondingto the E
7 structure), the other one from the operator~353 = ~33/53/5. The

explicit expression of the conserved current under a 3 deformation is given by [189]

C8(T(T(T
2))) + ~(c + 8)(T(Tö~T))+ th(c2+ 4c — 101)(T a~T), (2.39)

where c = ~ for the TIM. The question is whetheror not this current is still conserved when we
considerthedeformationof the critical theoryundertheenergydensityoperator~ / 10,1/ 1O~Theexplicit
computation,which can be foundin appendixD, showsthat is not thecase.

2.3.2. Ising model
Forthe Ising model*) in an external magnetic field andata non-critical valueof the temperature,the

first commonconservedchargemayappearfor the spin s = 7. The expressionof theconservedcurrent
underthe thermalperturbationis given by eq. (2.39) with c = ~. In this specific example one can also
take advantageof the null-vector condition of the identity operatorat level 6 to simplify the
computation.For technicalreasons,the calculationsaregiven in appendixC. The final result is that a
conservedcurrentunderboth perturbationsdoesnot exist.

These results point out the difficulties in obtaining conservedcurrents in the presenceof two
perturbations.Moreover, in section8.8 we will seethat the insertionof theenergyoperator /21 / 2 in
the Ising model with an externalmagnetic field destroysthe E

8 structureof the model. In fact, the
particleswith massesabovethresholdareno longerstableand they decay.The sameoccursfor the E7
structureoftheTIM at a non-critical temperature,if weadditionally insertthevacancydensityoperator

/ 5,3/ 5•

3. FactorizedS-matrix

In this chapterwe review thepropertiesof two-dimensionalelasticscatteringtheories.Theyprovide
useful on mass-shellinformation of the massiveintegrabledeformationsof CFT.

*) We are grateful to J.L. Cardy and S.K. Yang for discussion on this model. In particular, S.K. Yang has also done the computation, in

agreementwith our result 11911.
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3.1. Generalpropertiesof purely elasticS-matrices

Consider a (1 + 1)-dimensionalOFT with an infinite number of conservedcharges~?1~which
transformaccordingto higherrepresentationsof theLorentz group.We assumethat thesechargesare
labelledby their “spin” s andare given by an integralof somecurrentdensities

~sJ(T5÷tdz+6~~tdi). (3.1)

+ and 0~_~arelocal fields satisfying

a5T~4.,=a~05_1. (3.2)

The S-matrix of such a OFT is restrictedby severalstrong constraints.In fact, the existenceof an
infinite numberof integralsof motion implies (i) absenceof particleproduction;(ii) equalityof the sets
of initial and final momenta,{p1, p2,. . . p,,} = {p, p~,.. . , p,’,}, suchthat the scatteringprocesses
which takeplacein thesesystemsarepurely elastic.It is also possibleto show,that asa consequenceof
the existenceof an infinite numberof local currents,an arbitrary n-particlecollision processbecomes
factorizedinto theproductof n(n — 1)/2 elasticpair collisions[108—110].Hence,thescatteringconsists
of a successionof individual elastic two-body collisions where possible exchangesof momentaand
quantumnumbersmay occuronly betweenparticlesof thesamemass.The physicalobservablesin such
purely elasticscatteringtheoriesare the time delays (comparedto the free case)of the outcoming
particles.

The factorizationpropertyprovidesa drasticsimplification of the scatteringproblembecausein this
caseit reducesto an evaluationof the two-particleS-matrices.Thesetwo-body amplitudessatisfy the
usualrequirementsof unitary andcrossingsymmetry.Furthermore,theequivalentwaysof decompos-
ing an n-particle amplitudeinto two-particleS-matricesgive rise to cubic constraints(Yang—Baxter
equations)for the two-particlescatteringmatricesand to the bootstrapequations.

3.2. Rapidity variable, unitary equationsand crossingsymmetry

We initially considerthescatteringprocessesof particle-likeexcitations.The scatteringamplitudesof
kink-like excitations,i.e. of field configurationswhich interpolate betweenadjacentvacua,will be
discussedat the endof this chapterand in someexamplesof deformedCFT (seechapter6).

Let p1 and p2 be the initial momenta of the incoming particles A. and A. and p3, p4 the
correspondingquantitiesof the outgoing statesAk and A, (see fig. 2). Up to an overall energy—
momentum~ function, Lorentz invariance fixes the two-body S-matrix to be a function of the
momentumonly throughtheir Lorentzscalars.Theyaregiven by theMandelstamvariabless, t and u,

s=(p1+p2)
2, t(p

1—p3)
2, u—(p

1—p4)
2, s+t+u~m~. (3.3)

In (1 + 1) dimensionsand for elasticscattering,only oneof them is independent.It is thus convenient
to introducea parameterizationin termsof the rapidity variable 0. The momentumof theparticleA, is



G. Mussardo, Off-critical statistical models: factorized scattering theories and bootstrap program 243

Fig. 2. Two-bodyS-matrix.

given by

p~=m,cosh01,p~=m,sinh0. (3.4)

For the invariantsquaredenergys of the collision process

A,AJ—+AkA,, (3.5)

we have

s(0)=(p1+p2)
2=m~+m~+2m~m

1cosh00,0~0,—0,.. (3.6)

The inversetransformation

Is — m~— m~+ ~[(s — (m1 + m2)
2)(s— (m

1 — ) (3.7)
2m1m2

mapsthe physicalsheetof thes planeinto thestrip 0 ~ Im 0 ~ ir. The secondsheetis mappedinto the
strip — ~ Im 0 ~ 0 and this structure repeatswith period 2iri. In terms of the 0 variable, the
two-particleS-matrix elementsare definedby*)

Ai(Ot)Aj(02))’in = S,~’(0l2)IAk(02)A,(0t))OU~. (3.8)

The functionsS~’(0)satisfy the unitarity equations

~ S~m(0)S~(_0) = 5~ô’,. (3.9)

If themodel is invariantunderparity andtime-reversaltransformations,we haveadditionalrestrictions.

Parity invarianceimplies

S,~
1(0)= S~f(0), (3.10)

*) For future purposes,it is alsouseful to introducean expressionof theS-matrix written in termsof the originalMandelstamvariable s. We

denoteit by 9’. Its relation with the S-matrix definedin (3.8) is establishedthroughthe Jacobianof the transformations(0), i.e. 9~,5,1(~)=
4mm, sinh0,, S~’(0,).
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while time-reversalsymmetryleadsto

S~’(0)= S~,(0). (3.11)

Furthermore,we can also exploit the crossinginvarianceof the scatteringprocesseswhich providesa
relation amongthe amplitudesof all possiblechannelsin which the four particlesAa are involved.
Namely, the amplitudefor the cross-channelprocess

A.Ak—~A,Af (3.12)

is obtainedfrom S~by an analyticcontinuationfrom the “s-channelto the t~channel~~*):

S~(0)= S~’(iir— 0). (3.13)

If the massspectrumis notdegenerate,theelasticityof thescatteringprocessesimplies thevanishingof
the reflectionamplitudesand,in thiscase,the S-matrixbecomescompletelydiagonalandreducesto a
setof phases.Vice versa,if the systempresentsmultiplets of degenerateparticles,the elasticityof the
collisions inducesonly a redistributionof the momentaamongthe particleswith the samemasses.

3.3. Non-commutativealgebraof the asymptoticstatesand Yang—Baxterequations

The general structure of the scattering processescan be describedin terms of an associative
non-commutativealgebra[108].Let A (0) be a set of non-commutativeoperatorswhich representthe
correspondingparticles. They are regardedto be the generatorsof the infinite-dimensionalalgebra
given by all possibleproductsof the form

Aa(Oi)Aa(02) A~(0,,). (3.14)

The incoming and outgoing asymptoticstates are in correspondenceto a decreasingand increasing
arrangementof the rapidities 0~in the sequence(3.14), respectively.In this algebraicapproach,the
S-matrix plays the role of braiding operatorfor the non-commutativefields A,(0),

A,(01)A1(02)= S,k,l(012)A,(02)Ak(0l). (3.15)

Thesecommutationrelationsshouldbecompatiblewith the requirementof algebraicassociativity.This
translatesinto the following cubic relation (star—triangleor Yang—Baxterequations)for the two-body
amplitudesS~,

1[104—108]

5kIk2(~)5)iJ3(~)5)2k3(~) = S~~~(013)S~~~(012)~~~(~23) (3.16)

(where a sum on the intermediateindices is understood).This equation correspondsto the com-

*) Thegeneralexpressionof thecrossingsymmetry is given by .~

12(i1T— 0) = C.~(0)C,wherethesuffix t, meanstranspositionwith respectto

thefirst spaceand C is thechargeconjugationoperator.The S-matrix canbe consideredasanoperatorS’1
1

2 thatactson thetensorproductV’1 0 V’5
of the isotopic subspacesV’1 andV’2 of the particlesA, and A,..
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Fig. 3. Yang—Baxterequations.

mutativity of the processesshown in fig. 3 and can be justified by a particle-displacementargument
[111].The reasoninggoes as follows: we can use the conservedcharge~P5to define the seriesof
operators

~(a) = exp(ia~.P5). (3.17)

The first of them, ~, is constructedin termsof themomentumoperatorand, appliedto any stateof
thesystem,only producesa uniform translationin space-time.But, applying any otheroperatorT5(a)
to the wavepacketsthat describetheparticles(localizedboth in coordinateandmomentumspace),we
canmove themby an amountwhich dependson their momentum.Hence,by meansof a fine-tuning
combinationof the operators.~T5(a),we can arbitrarily shift thepoints of interaction in any scattering
process.Since the conservedchargescommute with the Hamiltonian of the system, the different
situationsdepictedin fig. 3 shouldcorrespondto thesameamplitude— arequirementthat leadsto eqs.
(3.16).

The conditionsof unitarity, crossingsymmetryand factorizationgive a systemof equationsfor the
two-particleS-matrix that, togetherwith theknowledgeofthesymmetryof thesystem,is in manycases
sufficient to determinea consistentsolution*). The particle contentof the theory is encodedinto the
analyticstructureof the S-matrix.

3.4. Analytic structureof the S-matrixand bootstrapprinciple

The elasticS-matricesareanalyticfunctionsin the complexplaneof theMandelstamvariables with
squarebranchcut singularitiesat (m5 — mb)

2and(ma + mb)2 (fig. 4). Hence,theamplitudesS~’(0)are
meromorphicfunctionsof the rapidity 0. The stablebound statesare usuallyassociatedto thesimple
poles with positive residueswhich lie on the imaginaryaxis of thephysicalstrip [211].However,recent
developmentsin the analysisof the deformationsof CFT haveshown how this assumptionmay be
generalizedboth to the caseof poleswith negativeresidues**) [92,148—150,161, 163, 164] and to the
caseof oddhigherorderpoles[157,158, 161, 163, 171, 172]. Postponingthediscussionof thesetopicsto
latersections,let usconsiderhere for simplicity thecaseof an S-matrixwith initial particlestatesA,and
A. andwith a simplepole in the s-channelat 0 = iu~.In the vicinity of this singularity, we have

S~’(0)— iR,~,I(0— iu~). (3.18)
*) We remindthat thegeneralsolutionpresentsin any caseanambiguityrelatedto theso-calledCDD poles.Thediscussionof thispoint may be

found in refs. 1108,216,2171.
**) This occursin the S-matricesof themassivetheoriescoming from the non-unitaryCFT.
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.5

=.. .
(ma — rn6)

2 (m
0 + rn6)

2

Fig. 4. Analytic structureof theS-matrix in thes plane. The dots are thebound states.

The residueR~in (3.18) is relatedto theon-massshell coupling constantsof theunderlyingquantum
field theory. As shown in fig. 5, we have

R~,.=f,fflfk,fl . (3.19)

The existenceof a non-zerocoupling constantf,~implies a polesingularity in the amplitudes5,,, and Si,,
aswell, due to the intermediateboundstatesA. andA., respectively[30].In thebootstrapapproach,
the bound statesare themselvesidentified with someof the particlesappearingas asymptoticstates.
This leadsto thefollowing relation amongthe massesof thesystem:if 0 = iu~is a pole in the scattering
processof the particleA. andA., the massof the “bound-state”A~is given by

ma,, = m,~+ m~+ 2m,m
1cosu,~- (3.20)

From a geometricalpoint of view, wehavea triangle*) with sidesof lengthsm,,rn andm,, (seefig. 6).
The location of thesethreepoles is thus restrictedby the following identity (fig. 7),

u~+u~,,+u!,,,=2ir. (3.21)

AjAk

A A1 m~

Fig. 5. Coupling constantsversusresidue. Fig. 6. Mass triangle.

~ This masstriangle will play an important role in theperturbativecheckof the exactS-matricesof affine Toda field theories.
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Fig. 7. Three-particlecoupling.

The generaldiscussionof the S-matrix carriedout in the previoussection,drasticallysimplifies in two
cases.The first caseis whenthesystemunderconsiderationhasa non degeneratemassspectrum.The
secondoneis whenthe systempresentsa spectrumof degenerateparticleswhich can be unambiguously
distinguishedby their higher chargeeigenvalues.Undertheseconditions,the S-matrix is diagonaland
the star—triangleequationsare trivially satisfied.Equations(3.9) and (3.13) become

Sab(0)Sab(0) = 1, Sab(~7T— 0) = 516(0) (3.22)

(a denotesthe antiparticle).These equationsimply that the 5ab (0) are periodic functions of 0 with
period 2in. Since the bootstrapprinciple gives the possibility to considerthe asymptoticstateson the
samefooting as the boundstates,the S,

1s satisfy the following functionalequations[30,121]

S,1(0)= S,~(0+ iaY,)S~k(o— iU!k), (3.23)

where

Uab IT — Uab~ (3.24)

A graphical representationof the bootstrapequationsis illustrated in the fig. 8. The mathematical
structureof theseequationswill be investigatedin section 3.7. As a consequenceof the bootstrap
equations,scatteringmatrices of particleswith heaviermassgenerallypresenthigher-orderpoles.

The most general solution of (3.22) is expressedin termsof an arbitrary productof the following
functions[217]

s~(0)=sinh[~(0+irrx)]Isinh[~(0 —iinx)]. (3.25)

j . i

k~ = k>~

Fig. 8. Bootstrapequations.
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It is not restrictive to choosex in the range —1 ~ x ~ 1. In the doublecovering of the s-plane,i.e.
— in ~ Im 0 ~ in, Thesefunctionshavea simple pole at 0 = ixir and a simple zero at 0 = —ixir. They
satisfythe following properties:

s~(0)s~(—0)=s~(0)s~(0)=1,s1(0)=s~+2(0)=s1(—0),s~(0)=—s~(0)=1,
(3.26)

s~(iin— 0) = —s~~(0)-

In caseall particlesareself-conjugate,the functionalspaceof the solutionsof eq. (3.22) is spannedby
productsof functionsf~(0)definedby

~ (3.27)

The simple poles of these functions are located at the crossing symmetric points 0 = iinx and
0 i(1 — x)in. Thereare zerosas well, locatedat —ixin and at —i(1 — x)in. Importantpropertiesof f~
are

f1(0) f~(iir—0) f1_~(0)~f~(—°)f..~(°)= 1/f~(0). (3.28)

A simplification of the iterative procedureof the bootstrapequations(3.23) canbe obtainedby defining
an operator~/11’actingon a function G(0) in the following way [157]:

= G(0 + iiny)G(0 — iITy). (3.29)

Applying ~ to the functionss~andf1 we have

= s~+~(0)s~_~(0), P?~(f~(O))=f~+~(°)f~—~(0). (3.30)

This operationis commutativeanddistributive

~/~Y(pJ~Z(G)) = ~
2(~G)) , ~Jt3’(G

1)~~(G2)= ~/~(G1G2). (3.31)

Moreover, if a function G(0) satisfies

G(0) = G(iin — 0) = 1IG(—0), (3.32)

it is easyto see that the operator~ preservesthesepropertiesas well.

3.5. Bootstrapconsistencyequations

The integralsof motion arespecificsetsof datafor eachtheory.If a Lagrangianof thesystemunder
considerationwas known, their expressionsin terms of the elementaryfields could in principle be
derived (see, e.g. refs. [122—125]).On the contrary, the knowledge of the S-matrix only gives a
restrictionon the possiblevaluesof the spins of the conservedchargesP5. In this case,the computable
quantitiesare just the ratios of the eigenvaluesof ~. Zamolodchikov[30]hasderiveda system of
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consistencyequationsfor the eigenvaluesof the conservedchargeson the basis of the bootstrap
principle and locality alone.

Let P5 be the set of conservedcharges.The asymptoticstatesi~4a(0))arechosento be eigenstatesof

PS

P5~Aa(0))= ~~(0)~Aa(0)) . (3.33)
The existenceof a conservedcurrentwith spins implies that at leastoneeigenvaluew is different from

zero. Lorentz invariancefixes the functionalform of w(0) to be

w(0) = X~ae~°, (3.34)

wherex are constants.x~are just the massesof the particles

x~= ma . (3.35)

The locality requirementof the theory implies

P5IAa(0i) A~(0~.))= (w’(01) + . . •w’~~(0))~A(0)~. . Aa(Ok)) . (3.36)

For certainimaginaryvaluesof the rapidities, the two-particlestatesfuse togetherand give rise to the
boundstates.Hence,if u6 is such a valuefor the asymptoticstate IA a (0~)Ab (02)), we can identify the
bound state A~)as

tim F~IAa(0 + iiTi~— ~s)A6(0 — ii~+ be))= 1A1(0)) . (3.37)

Applying P5 to both sides of this equationand using (3.36) and (3.34) we get the following infinite
systemof linear equationsfor the ~

x~exp(isü~~)+ x~exp(—isi~~)= ~ (3.38)

This setof homogeneousequationsis alwayssatisfiedby x = 0 (Va, s). Howeverthis solution is not
interestingbecauseit implies the absenceof anyoperatorP5 and,in this case,we cannotanylonger use
the factorizationpropertyof the S-matrix to solvethe scatteringproblem.Non-trivial solutionsof (3.38)
are obtainedfor specialsetsof resonanceanglesu6 of the S-matrix. Since they are homogeneous
equations,they provide significant limitations on thevaluesof the spin s. Let us consider,for example,
the casea = b andx � 0. Equation(3.38) reducesto

2 cos(sü~)= xYx~. (3.39)

In the casea = b = c, the aboveequationhasan uniquesolution

aa°a = SIT, s=1,5 (mod6). (3.40)

The correspondingS-matrixpresentsthe so-called“~ ~“ property,i.e. theparticleA, appearsasbound
stateof itself.
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To proceedfurther in our analysis, let us also introducethe notion of bootstrapfusions [156,157].
Let {A,} be a completeset of one-particlestatesin a theory with bootstrapinteraction.The bootstrap
structureof the boundstatesis encodedinto the following non associativealgebra[157,156]

A,xAf=~X,~Ak. (3.41)

is a Booleanvariable, different from zero only whenAk appearsas a boundstatein the scattering
processof the particlesA. andA.. It is worth noticing the analogywith the fusion rule algebraof the
CFT [22], the key differencebeingthe associativitycondition.

3.5.1. Non-degeneratebootstrapsystems
Let us assumethe existenceof non-trivial solutionsfor (3.38).We choosetheir normalizationin such

a way that the nonzeroeigenvaluesof the lightestparticleA1 is equalto 1. For self-conjugateparticle
systems,it is easyto show — by induction— that all remainingeigenvaluesare real. Equations(3.38)
thus split into two equations:

= (x~)
2+ (x~)2+ ~ cos(su~b), (3.42)

x~x~=sin(sü~~)/sin(sü~~). (3.43)

The first equationappearsas a generalizationof the masstriangle equation(3.20) whereaseq. (3.43)
expressesa simple property of such a triangle. The latter equation is particularly useful from a
computationalpoint of view because,in order to havea nonzero valuefor x andx~’the aboveratio
of sinesshouldbe independentof any boundstateIA~)appearingin the channelIAaA b). Knowing the
resonanceangle of one bound state in this channel,we can use this equationeither (a) to correctly
identify the location of the other ones or (b) to prove that it is impossibleto have higher-order
conservedchargescompatiblewith the bootstrap.

Some examplesmay clarify the aboveobservation[160].Let us consider two different bootstrap
systemsdefined by the following S-matrix for the lowestparticle,S~~:

S~= —f
119f~19, (3.44)

for the first one and

S11 = —f1~f1~7~ (3.45)

for thesecondone.Wewill usethecriterion of the independenceof the ratio(3.43) from the index c in
order to selectwhich of the two modelsmay give rise to a consistentbootstrapsystem.

(i) In the caseof the bootstrapmodel defined by the S-matrix (3.44), we identify the poles at
0 = iin/9 andi5in/9 with two new boundstatesm2 and m3. Applying (3.23) we can compute

~t2 = f~16f~7118f11118f~t2- (3.46)

In this amplitudethe poleat0 = il7in/l8 correspondsto the particleA1. This angleis u~2andtherefore
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fixes the ratios(3.43). From table 1 we seethat we canidentify thepolesat 0 = iin/6 and 0 = illin/18
as due to additional boundstates.The conservedspinsare s = 1, 5, 7, 9, 11, 13, 17 (mod 18).

(ii) For themodel definedby the S-matrix (3.45),let us supposewe identify the poleat 0 = iir/7 as
a singularity due to a particleA2, i.e. u~1= in/7. We can computethe amplitude ~12 by applying the
bootstrapequation

~12 = f3114f1114f19170f9170. (3.47)

In this amplitude, thepole at 0 = il3ir/ 14 is due to the particleA1. Hence,this angle fixes the ratios
x~Ix~.However, from table 2 we seethat thereis no otherpole in this amplitudewhich gives thesame
value of theseratios for s = 1, 3,. . . , 35. Therefore the bootstrapsystemdefined by (3.45) is not
supportedby theexistenceof higheradditionalchargesand,consequently,is not a consistentbootstrap
model. The sameconclusionis reachedstarting with anyother possibleu~1.In orderto classify the
off-critical conservationlaws,we will assumetheknowledgeof the total numberN of massiveparticles

Table 1
Ratios y~/y,’,s = 1 17, calculated for the poles occurring in the amplitude ~l2 calculated starting with

5, = —f,,9f519.The first column containsthe ratios for the identified pole u2.

1 1.970 1.970 1.970 1.970 1.970
3 1.732 1.732 0.303 —0.866 0.647
5 1.286 1.286 —1.177 1.286 —0.920
7 0.684 0.684 2.159 0.684 —0.989
9 0 0 —1.219 0 —2.888

11 —0.684 —0.684 0.850 —0.684 —0.258
13 —1.286 —1.286 0.333 —1.286 1.040
15 —1.732 —1.732 10.190 0.866 0.068
17 —1.970 —1.970 —0.507 —1.970 3.603

Table 2
Ratios-y~/y,~,s= 1 35, calculatedfor thepolesoccurringin theamplitudeS,~calculatedstartingwith 5,~= —f,],7. The first column contains

the ratios for the identified pole u~.
5 2~l

1 1.950 1.950 1.950 1.950 1.950 1.950 1.950
3 1.564 1.564 —0.344 1.325 —0.841 1.812 0.836
5 0.868 0.868 —0.705 0.284 1.204 1.547 —0.66
7 0 0 —3.343 —0.821 0.450 1.171 —1.41
9 —0.868 —0.868 0.906 —1.582 0.142 0.710 —4.28

11 —1.564 —1.564 —0.296 0.087 —1.086 0.195 —1.08
13 —1.950 —1.950 6.053 —1.857 —1.438 —0.340 0.534
15 —1.950 —1.950 —1.122 —0.855 0.961 —0.862 1.184
17 —1.564 —1.564 0.905 0.289 —2.275 —1.340 —5.405
19 —0.868 —0.868 —1.064 1.225 —1.569 —1.765 1.498
21 0 0 0.840 1.441 0.659 —2.194 —0.423
23 0.868 0.868 —1.039 3.016 —0.792 —11.529 —1.069
25 1.564 1.564 2.395 1.458 0.078 —1.548 1.136
27 1.950 1.950 —0.002 0.281 —0.416 —1.596 —2.353
29 1.950 1.950 0.731 —0.798 1.841 —1.381 0.315
31 1.564 1.564 —2.052 —1.388 1.527 —1.023 1.013
33 0.868 0.868 —1.410 0.088 —1.009 —0.568 —0.429
35 0 0 —0.118 —2.271 2.518 —0.052 5.248
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which close the bootstrapandwe will exploit the consistencyof the fusions(3.41) [149,156, 158]. We
concentrateon somesignificant examplesof this classificationprogramof the bootstrapmodels.

N = 1 bootstrapsystems.The bootstrapfusion is given by

AxA—~A. (3.48)

In this case,the model satisfiesthe “ba” propertyand the possiblevaluesof conservedspinsare

s=1,5 (mod6). (3.49)

A physicalrealizationof such a systemis given by the off-critical Yang—Lee Model, i.e. thesimplest

minimal (non-unitary)CFT perturbedby an imaginary magneticfield [148].
N = 2 bootstrapsystems.Forthesystemwith N = 2 particlesin bootstrapinteraction,neglectingthe

reduciblefusionsAa x Aa ~ Aa’ A,, x A b ~ A1,, we considerthe following examples*):

(i) AaXAa_~~A6~A,,XA,,—~A,,,

(ii) AaXAa~~Aa+A1,, AbXAb~4Aa~

The consistencyconditionsfor the processes(i) are

2~cos(s1~,,)= ~ ~ cos(sü~,,)= x. (3.50)

For x~b� 0, they reduceto

cos(st~,,)cos(st~,,)= . (3.51)

This equationadmitstwo solutions[1561:

Uab= kin, ~b= ~ s=1,4,5,7,8,11 (modl2) , (3.52)

Uab~51T, Uab=57T~ s=1,3,7,9 (modlO). (3.53)

For self-conjugateparticles the evenspinsdo not exist. Then the allowed set of conservedspins in

(3.52) are only
s=1,5,7,11 (modl2). (3.54)

For theprocess(ii), we haveto takefor the spin s the commonsolutionof eq. (3.40)andof eqs. (3.53)
and (3.54).For instance,in the caseof thesolution (3.53), we have

s=1,7,11,13,17,19,23,29 (mod30). (3.55)

*)The completeanalysisof the N = 2 bootstrapsystemwas carriedOut in refs. [149,158].
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N = 3 bootstrap systems.We considerthe simplest N = 3 system,definedby the bootstrapfusion

AaXAa~~~~A
6,A6XA6_*Ac, AcXAc_~>Aa~ (3.56)

The consistencycondition is

cos(sx1)cos(sx2)cos(sx3)=~ . (3.57)

The four solutionsof this equationare [156]

x1=9ir, x2=9ir, x3=~ir, s=1,3,5,7,11,13,15,17(modl8),

x1=~in, x2=~in, x3=4ir, s=1,2,3,4,5,6 (mod7),
(3.58)

x1= ~pn, x2=~in, x3=~3in, s=1,3,7,9,11,13,17 (mod20),

x1=~in, x2=~, x3=~5ir, s=1,3,7,9,11,13,17 (mod20).

If we also addto (3.56) theprocessAa x Aa ~ A a’ the admissiblespinschangeasfollows: thoseof the
first equationin (3.58) becomeequalto the E~

1~exponentsand thoseof the last equationin (3.58)
becomeequalto the E~exponents(seetable 15 in chapter7).

Onecanfurthercomplicatethe3-particlesprocessesandconsider,for instance,thebootstrapfusions

AaXAa.~~~A
6+AC, A6XA6~~~Aa, AcxAc—~Aa; (3.59)

AaXAa~_*A6+Ac, A,,XA,,—+A~, AcXAc~Aa. (3.60)

The consistencyequationsfor (3.59) are:

cos(sx1) cos(sx3) = , cos(sx~) cos(sx4) = . (3.61)

They are satisfied by (3.52) and (3.53) with the E~
1~exponentsas the admissible spins. In the case

(3.60) we haveto add to (3.57) thecondition

cos(sx
3)cos(sx4)= . (3.62)

The solutionis given by the last equationin (3.58) with x4 = in (or ~in).

Chainbootstrapfusions.For a genericsystemwith N self-conjugateparticles,it is easyto analyzethe
so calledpure chain bootstrapprocesses[149,156, 158]:

AKXAk—~Ak+l i=1,2,...,N, AN+lusAl. (3.63)

The consistencycondition is

[I 2cos(s1~k+1)=1. (3.64)
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The solution is given, up to a permutation,by the resonanceangles

Ukk+t = kinl(2N + 1), (3.65)

and by the A~.3Coxeterexponents

s=1,3,...,2N—1,2N+3,...,4N+1 (mod4N+2). (3.66)

A more detailedanalysisof the bootstrapfusions is necessarywhen some of the x,~vanish for
particularvaluesof the indices i ands. This happens,for instance,for the current £3’~in the tricritical
Ising model with a thermalperturbationand in theE~t~affine Toda field theory.

3.5.2. Exampleof degeneratemultipletsin bootstrap interaction
The previousanalysiscanbe extendedto thebootstrapfusions of non self-conjugateparticles.This

situation occurs,for instance,in thoseQFT which are invariant under a groupof symmetry as U(1),
Z,,, S

3 etc. We choosethe symmetric group S3 for our discussion.Physicalrealizationsof bootstrap
systemswith S3 invariancearegiven by the off-critical 3-statePottsmodel [146]andits tricritical version
[156,159]. The group S3 is a direct product of two Abelian subgroupZ3 and Z2. The former is
generatedby i~,with ~ = 1 whereasthe latter is generatedby C, with C

2 = 1. We can interpretC as
the chargeconjugationoperator.The irreduciblerepresentationsof S

3 aregiven by two one-dimensional
representationsandonebidimensionalrepresentation.Let us considerthe bidimensionalrepresentation
(Aa, A1) of this group. The generatorsC and t~tof S3 act on this doublet as follows:

i~A~=qA~,t~A1=~A1CAaA1 (3.67)

Herein, q = exp(~iri).Let us considerthe following bootstrapfusionsof two doublets (A,,, A,,) and
(A,,,A5):

AaXAö~3Aã+A5~ A,,XA,,—*A1. (3.68)

It is possible to prove that in sucha model conservedcurrentswith evenspins are C-odd

CP2~= —P25C, i.e. P25A1= X25(P/m)
2’,4

1, (3.69)

whereasconservedcurrentsP25.,.1 with odd spinsare C-even[156,159]. The consistencyconditionscan

be obtainedusing eq. (3.38), taking into accountthe C-parity of the currents
2~cos(sxa)= ±,~ , ~ cos(sxb)= ±~ , 2cos(~sir)= ±1, (3.70)

wherethe plus sign is for thes odd and the minus sign for the s even.The solutionof this systemis
again(3.52). Taking into accountthis sign modification, onecaneasilyrepeatthepreviousanalysisfor
the caseof S3 chargedparticles.

3.5.3. General remarks
The analysisof more complicatedsets of fusions, for example
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Aa X Aa~A1,, A,, X A,,—s.(noboundstate), (3.71)

or

AaXAa~Ab~ AaxA,,-~+Aa+Ac;
(3.72)

A,, x A,,—3(no boundstate), A~x A(—*Ab,

requiresan explicit constructionof the solutions of the bootstrapequations(3.23). We leave this
problemto thenext sections.Here,our purposewasto show how thebootstrapfusionscanbe usedfor
the analysis of possibleconservationlaws. As a byproductof eachexample,we have found a set of
resonanceangles u~,which arethe necessaryextra datawe needto solve thebootstrapequations.

The discussionmadeso far naturallysuggeststhat thereis a deeprelationshipbetweenthebootstrap
equationsand the consistencyequationsfor the conservedcharges.A key observationin this respect
was put forward by Bradenet al. [171].Their argumentwas as follows. Supposewe considerthe
logarithmicderivative of the S-matrix elements

‘Pab(
0) = —i ln Sab(0). (3.73)

In termsof Wab’ thebootstrapequations(3.23) can be written as

p
11(0)= ~11(0+iz~)+ ~P~k(0u!kL (3.74)

We can expand‘Pa6(
0) as a Fourierseriesin 0 becausethe non-degenerateS-matricesare2iri periodic

functions

‘Pab(0) = ~ e~°- (3.75)

Plugging this expansioninto (3.74), we get the following constraintson the coefficients~

= ~ exp(isi~)+ ~ exp(—ist~k), (3.76)

which arevery similar to eq. (3.38). Additional restrictionson the coefficientsin (3.75)comefrom the
unitaryconditions(3.9),namely

~Pab(0) = ~Pab(°)~ (s) = (-s) , (3.77)

as well as from the crossingrelation (3.13),

— 0) = —~‘~,,(0)--+~ = (—1)~~’~~- (3.78)

Let us work out thecoefficients ~ for an S-matrix of the form

S,,,,(0)= [IIs~,(0), (3.79)
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where

s~,(0)= sinh[~(0+ jinx1)] Isinh[~(0— iiTx,)]

With the position p~= —i ds5IdO, we have

co5(O)= —(sin mx,)/(cosh0 — cos mx,). (3.80)

The coefficientsof the correspondingFourier series,

~Pa6(
0)= — p~,,exp(—s101), (3.81)

are given by

= 2 ~ sin(slrx,). (3.82)

As a consequenceof the bootstrapconsistencyequations(3.42) and (3.43), the massratios satisfy

ma/mb = , (3.83)

for any d. Therefore, any ~ can be expressedin terms of the correspondingquantity of the

fundamentalparticle as
= p~’~(rna/mt)(rn,,/mi)- (3.84)

For an S-matrix of the form

Sab(~)= f(O), (3.85)

where

f
5,(0) = tanh[~(0+ imnx,)]/tanh[~(0— jinx1)],

we havea crossingsymmetriccombinationof thepreviouscase.Takingthe logarithmicderivative,we
have

~a~(0)= ~i (sinh(0+ iinx~)— sinh(0 — iinxj)) ~ ~(0), (3.86)

where

f~(°).
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The Fourier seriesof eachindividual term ~. is given by

= A4’~2 1
= —2 ~ e(2n~)8( ~2n+1 ) A

1 = e”~’. (3.87)

The previously mentionedconnectionwith theconservedspinsis clarified by someexamples.Let us

considerthe S-matrix of the Yang—Leemodel [148](seechapter6)

S(0)=F213(0).

In this case,we have

A
6 = 1,

and correspondinglyall terms~ (s) with s = 3n are absentfrom theexpansion(3.75). This meansthat
currentscorrespondingto thesespins do not appearin thesetof conservedquantities.Repeatingthe
sameanalysisfor the S-matrix for the lightestparticleof the Ising model in amagneticfield [30] (see
chapter6)

5(0) = f
213(0)f215(0)f1115(0)

the only non-zerocoefficients~(s) in (3.75) are thosewith

s=1,7,11,13,17,19,23,29 (mod30).

As a last remark,it is worth noticing that in thebootstrapapproachall particlesare on the same
footing andno distinctionoccursbetweenasymptoticandboundstates*).The correspondingfunctional
equationsfor the scatteringmatricesS,~respectthis equivalencebut the solutionsdo not. In fact, in
orderto solve thebootstrapequations(3.23), we haveto chooseoneparticleas a fundamentaloneto
startwith. Usually this is theparticlewith the lightestmass.The S-matricesof this particle will havea
minimal pole structure,whereastheS-matricesof the other oneswill presenta higherpole structure
describingthe multi-scatteringprocesses[148,158, 171, 172, 193]. Thesehigher singularitiesare pro-
ducedby an iterative applicationof eqs.(3.23). It is suggestivethat, consideringparticleswith heavier
mass, the analytic structureof their S-matrix elementsgets richer and more complicatedpatterns,
supporting the interpretationof the mass of a particle as a dynamical parameterrelated to the
complexity of its interactions.

3.6. Multiple scatteringprocessesandhigher-orderpoles

One of the interesting featuresof the exact S-matricesis their multiple pole structure— an
unavoidableconsequenceof the iterativeapplicationof thebootstrapequations.A consistentinterpre-
tation of thescatteringtheorydemandsits explanationin termsof elementarycollision processeswhich
takeplace in the system.

~‘In thepast,suchan approachwaspursuedfor describingthestronginteraction of thehadronicparticles, see refs. 1126, 127].
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The simplepoles correspondto the boundstateswhich appearin the intermediatechannels(seefig.
9). This identificationis truein anydimensionof the space-timein which the scatteringprocessesoccur
andis one of the main pointsof the analytictheory of the S-matrix [211].Concerningthehigher-order
poles, their appearanceis insteada peculiar featureof (1 + 1)-dimensionalsystems.In more familiar
four-dimensionaltheories,the singularitieswhich may appearin perturbationtheory are just branch
cuts. It is only the dimensionalityof phasespacethat makestheseanomalousthresholdsingularities
(often called Landausingularities)doubleor higher-orderpolesin two dimensionsand branchcuts in
four dimensions.This observationis the basisof the Källen—Toll theorem[195].

Historically, the problemof thesecond-orderpoleswhich populatethe physicalsheetsof the (1 + 1)
elasticS-matriceswas discussedin the contextof sine—Gordonmodelby ColemanandThun [193]and,
independently,by Goebel[194].Theirresultswere recentlygeneralizedto the higher-orderpolesof the
S-matricesof the affine Toda field theoriesby Christeand Mussardo[157,158] and by Braden et al.
[171,1721. In particular,a systematicanalysisof this problemwaspursuedin ref. [1721andwe refer the
readerto it for details. In this section, following ref. [1721,we will briefly review the procedurefor
isolating the leading-orderfrom Feynmandiagrams.

Let us assumethe existenceof a set of Feynmanrules which define the dynamicsof a theory.The
scatteringprocessesare given by a sum of Feynmandiagramsand the problemis to single out those
Feynmandiagramswhich becomesingular at a particular value of 0, say 0 —* i00. The leading-order
singularitiesarisewhen all the propagatorsof the intermediateparticlesare simultaneouslyon shell
[196,2111. It is possibleto prove that to isolate the most singular term in a scatteringamplitude it is
enough to consideronly the verticeswhich involve threeparticles [1721.Therefore, for the sakeof
simplicity, we considera bosonictheory with g~

3interaction*~The singularitiesin theS-matrix have
the form

S,,,,(0) g2~R~/(0— 0~)~, (3.88)

and they originate from the Feynmandiagramswith P propagatorsand L loops, with the condition

p = P — 2L. The proof requiressomepreliminary discussionabout thechoice of variables.
3.6.1. Choice of variables

Let us considera Feynmandiagram ~ with four externallegs, P internalpropagatorsand L loops.
Sinceeachvertexis of three-particletype,therewill be 2p vertices.Hence,sucha graphis of orderg2”.
Let p,, and Pb be the momentaof the external incoming particles, with p~= m~,p~= m~and
5 = (Pa + p,,)2. In addition, let ~~O) and~~O) be the valuesof the momentasuchthat s = s,, i.e. the pole

position. Whenthe externalmomentaand all P internalmomentaareon-shellsimultaneously,we can

Fig. 9. Pole singularity.

~ may stay for a multiplet of fields.
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write the internalon massshell momenta~~O) ([p~~)]2= m~)as linear combinationof the momenta
andp~,O),

= a
1p~°~+ b1p~,,°~, i = 1,2,. . . , P. (3.89)

A further definition is necessaryif we shift Pa andPb away from their singularvalues.We define

us a1p,,+ b.p,,. (3.90)

Then

p~— m~= a,b,(s— s0) e,(s — s0). (3.91)

EachpropagatormomentumP, at a genericnon-singularposition can be expressedas

P1=p1+~A11l1usp1+k1, (3.92)

where l~is the jth loop momentum and some constant coefficients. The appropriate linear
combinationis fixed by the requirementof momentumconservationat eachvertexof the graph.We
have

P’~— m~= e,(s— s0) + 2p1 . k. + k,~k,. (3.93)

With the shift 1,—> (s — s0)11, finally we get

P’~— m~= (s — s0)[e, +
2p~.k, + (s — s

0)k,.k,] - (3.94)

Hence,the final expressionof aFeynmandiagram~ with P propagatorsand L loops becomes

~g2PJfld2l P~_ +ie P~—rn~+ir P~—rn~+is

g
2P J fl d21. 1 1 (3.95)

(s~s
0)”

21~1=1 ‘ 2p~°~k
1+e1+ie 2p~~k~+r~,+ie

The orderof pole matcheswith the singularity (3.88) of the S-matrixandthe residuecan becomputed
explicitly via the multiple integral with the propagatorsreplacedby linear functions of the loop
momenta.

3.6.2. Doublepoles
A simple applicationof eq. (3.95)is the explanationof thedoublepole singularities.This problem

wasfirstly analyzedby ColemanandThun for theS-matricesof the sine—Gordonmodel [193].Let us
considerthe graph depictedin fig. 10. This Feynmandiagramproducesa singularity in the forward
scatteringof two particlesA andB. Onceall externalandinternalmomentaof theparticlesinvolved in
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B A

Table 3

A B ,~,Resonanceanglesof the A~
2’model.

Fig. 10. Multiscattering processresponsiblefor higher-order pole
singularitiesin the S-matrix.

this multi-scatteringprocessareput on shell,theproblemof locatingthesingularity becomesa problem
of planegeometry. In fact,-.the anglesdrawn in fig. 10 are exactly the resonanceangles u,~of the
elementaryscatteringcollision. The dot in the middle of the graph representsthe S-matrix5,,,, of the
intermediateparticles.Fromthe previousanalysis,we obtainthat eachloop gives rise to a simplepole
and the consequentdoublepole is locatedat

a b
0AB = 2mn — UAC — UBC. (3.96)

Of course,sucha doublepole arisesonly if the graphcan actuallybe drawn.This gives the following
bound for the resonanceangles:

0a,,=uac+u,,c<T2•. (3.97)

This is a dynamicalconditionon the setof resonanceanglesthata bootstrapsystemmay possess.As an

example,considerthe two-particlebootstrapchain definedby

A~xA
1—~A2,A2xA2—~A1. (3.98)

The S-matrix was computedin ref. [149],

S~~(0)=f215(0), 512(0) =f315(0)f415(0), 522(0) =f4/s(0)[f2/t(0)1
2 - (3.99)

The poles correspondingto the boundstatesaregiven in table 3. The massspectrumis

rn
1=M, m2=2Mcos~mr. (3.100)

The amplitude~22 of the heaviestparticleA2 presentsa doublepoleat 0 = ~mi, whichcorrespondsto

the doublescatteringprocessof fig. 10, all internal particlesbeingA1.

3.6.3. Third- and higher-orderpoles
In our previousexamplewe assumedthat the amplitude ~ab in the middle of the diagramwas a

regularfunction at 0 = °ab•A newsingularity occurswhen
0ab is itself a pole of ~ab In this case,the

effectivesingularity of sucha graphis of thekind of ahigher-orderpole.For instance,if 0ab is a location
of asimplepolefor 5,,,, we can furtherstretchthe dot in the middle of fig. 10 to replaceit by meansof
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an intermediatepropagator.Altogether,we havethesituationdepictedin fig. 11 anda third-orderpole
occurs.Dependingon whetherthesystemhasa degeneratespectrumor not, we will haveatermf~or
s~in the S-matrix. As noticed in refs. [157,172], the odd-orderpoles provide a new mechanismto
producebound statesand they should be takenin accountfor computingconsistentlythe bootstrap
fusion algebra.

Concerningthe even-orderpoles, let us consider the casewhen 5ab has a double pole at 0ab~

Stretching5al~as before,we have the situationshownin fig. 12. Thereis not apropagatorin between
which connectsthe left and right loops and therefore this graph describesa purely multi-scattering
processwithout the creationof intermediatebound states.This conclusionseemsto apply to any
even-orderpole singularity.

The actual analysisof higher-orderpole singularitiesis quite involved andwill notbe pursuedhere.
The interestedreaderis encouragedto consulttheoriginal literature, in particularrefs. [157,171, 172].
A simple consequenceof the previousdiscussionis that the scatteringamplitude~ of the lightest
particlecannothavehigher-orderpoles, becausethe resonanceangleof two heavyparticleswith the
lightest one is greaterthan 2ir13 and thereforeit is impossibleto draw a figure like fig. 10 with the
particleA

1 on all four externallegs and the internaloneson-shell [172].
The resultsso far obtainedon higher-ordersingularitiesare particularlyuseful in the discussionof

the mathematicalstructureof thebootstrapequationsand their classification,which we will discussin
the next section.

3.7. Classificationprogram of the bootstrapsystems

The classificationof all massiveintegrablesystemswith bootstrapinteractionis quite a vastproblem
and still far from being completed.In the context of Betheansatzapproach,thereare remarkable
paperson the classification of the factorizedS-matrix of particleswhich transformaccordingto the
representationsof the simple lacedLie groups[180—182].In the presentapproach,we will not assume
any a priori underlyingalgebraicstructureof the modelsbut, on the contrary,we will takethe point of
view of consideringthe bootstrapequationsas our basic entities, restrictedonly by the consistency
equationsof the conservedspins and by a multi-scatteringinterpretation of higher-orderpoles.
Interestingresults havebeenobtainedin the case of non-degeneratesystems[158,160]. As we have
alreadydiscussed,for thesemodelsthe generalsolutionof the unitary andcrossing-symmetryequations
is given by the functionsf~(0),i.e. any S-matrixelementcan be written as

[I f5(0). (3.101)
x

:‘< :>~<:
Fig. 11. Third-orderpole. Fig. 12. Fourth-orderpole.
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We denoteby ~ thespaceofthe functionsf5 and theirproducts.The setsof positive { x} s or { 1 — x } s in
(3.101)arerelatedto the positionof the polesin thescatteringamplitudesSab, i.e. theysignal possible
bound states in this channel. A priori, we will not put any requirement on the sign of their residues but
we will demandthat their values must be consistentlydeterminedby the dynamicalprinciple of
bootstrap.

In the strong versionof the bootstrapprogram,any odd-orderpole is assumedto be in correspond-
encewith a boundstate(appearingor in thes-channelor in the t-channel)andthewhole setof bound
statesshould form a completeset of stateswhich describesthe asymptotic particles as well. This
translatesinto the bootstrapequations(3.23). The resonanceanglesfix the values of the massesby
meansof eq. (3.20). Hence,startingfrom the scatteringamplitude ~ of the lightestparticle,onecan
computetheS-matricesof theboundstateswith highermassusingiterativelyeq. (3.23). However,not
all initial ~l give rise to a closed bootstrapprocess.Furthermore,since in principle we havethe
possibilityto choosefor eachfunctionf5 the poleat 0 = i mx or at 0 = i in( 1 — x) in order to continuethe
bootstrap,ateachstepof the processwe can haveramificationpoints. The naturalstructureassociated
to eqs. (3.23) is that of a schematic tree with the node of each set of branches representing an S-matrix
reachedat that stage of iteration and the branchesoriginating from each node, the possible new
singularities can be used to continue the process (fig. 13). The problem is thus to select Sii and then,
out of all possibletreesarisingfrom it, only thoseones,which give rise to a consistentset of S-matrices.
Theconsistencyrequirementsarethoseof existenceof higherconservedchargesand,atthe sametime,
theexplanationof all singularitiesin termsof the basicprinciples of theanalyticS-matrix. It is easyto
see that many initial choicesfor S11 can be immediatelydiscardedbecausethe result of applyingeqs.
(3.23) will lie outsidethe space~. But it remainsto investigatethoseoneswhich give rise to a set of
functions which belong to the functional space ~.

Fig. 13. Bootstraptree.
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It was observed in ref. [160]that such a formulation of the bootstrap classification of the integrable
systems is closely related to basic questionswhich arise in the analysis of algorithms and their
complexity, as discussede.g. in refs. [128—131].Fundamentaldevelopmentsin mathematicallogics
show the existence of insolvable problems: No algorithm can possibly exist for the solution of some
problems. A typical one is the so-calledhalting problem: Given a computer algorithm*) (as, for
instance,that onedefinedby eqs. (3.23) plus an initial condition) is it possible to decide whether or not
it will ever halt for any initial input? The answeris negative, i.e. there is no algorithm that solves
correctly all instancesof the problem [132].

In our casethe situationis not so extremebecausethe bootstrapsystemsdefinedby eqs. (3.23) are
severelyconstrainedby the consistencyequationsand, furthermore,by a coherentexplanationof the
higher-ordersingularitiesproducedby the iterative ~ipplicationof (3.23).Becauseof that,in generalthe
construction of a consistent set of S-matricesis anoverdeterminedproblemand onecould hopeto find
an answer to the following questions: Is it possible that the same ~ gives rise to differentbootstrap
systems? Is there a way to know a priori whether or not the bootstrap closes within a finite number of
particlesand how many thereare? Startingwith ~ with a finite numberoff5 termscould we endup
with an arbitrarily long path in the bootstraptree?

For instance,it seemseasyto generatean infinite pathin the following way. Let us takeS11 = f1~
(r >0) and choose the singularity at 0 = iin(~ — e) to start with. This gives a bound state A2 with mass
equal tom2 =2cos mr(~— — ~e)]m1and, using eq. (3.23), ~22 =f113~2~(f113~)

2~Then, choosing as a
newsingularity thepole at 0 = imn( ~ + 2r), we find a newboundstatewith massm

3 2 cos mn(~ + e)m2.
Proceedingin this way andtaking r arbitrarily small,wewill generatea bootstrapwith infinitely many
particles,a subsetof thosewith theunboundedmassesm,, ‘-= 3~”’~

2m
1.Actually this is not aconsistent

system,in view of a theoremwhich we will prove in the next section.

3.7.1. Bootstrap treesgeneratedby an initial S-matrixwith onesingularity
Let usconsidera bootstrapsystemwith

511=f5(0). (3.102)

Our approachconsistsin the applicationof eqs. (3.23) asfar astherearesingularitiesin the functions
5ab identifiable as boundstates.At this stage,we will not makea distinction betweenreal and virtual
stateswhich is made,for instance,in the discussionof sine—Gordonmodel, i.e. thoserelatedto poles
with positive and negative residue, but we try to find a self-consistentsolution of the bootstrap
equations.A simpletheoremwasestablishedin ref. [160]for dealingwith bootstraptreesgeneratedby
an amplitude S~with only one singularity. The first part of the theoremsaysthat thereis only one
possibleway to implementthe bootstrapwhich satisfiestheconsistencyequations(3.38).The resulting
spectrumis given by

mk 2m sin(kx/2). (3.103)

The secondpart of the theoremdealswith theimplementationof thesecondconstraintthat anS-matrix
hasto satisfy, i.e. a consistentexplanationof the higher-orderpoles. To fulfill this requirement,it is
necessaryto decouplethe lightestparticleA2n+ 1 producedby thebootstrapfrom themassivesectorof

~ This notion is usuallyformalized in termsof Turing machines.Seerefs. [128—131]for details.
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the theory. This is achievedby putting its massequalto zero. Hence,we havethe following condition
for x

m5~÷1=0, ‘—*x=2in1(2n + 1). (3.104)

Beforeattackingtheproofof this theorem,it is instructiveto study first thecaseswhenx is closeto ~in.

(a) x> ~in. In this case,thesingularityat 0 = i mx correspondsto a boundstateA2 with massm2 less
thanm1,

m2/m1=2cos(x/2) (3.105)

and therefore contradicts the assumptionthat A1 was the lightest particle. This fact alone is not
necessarilya drawbacksincethebootstrapallows us to computethescatteringamplitudeschoosingany
arbitrary particle as starting point. Thereforeit could only meanthat our initial identificationof the
lightest particle waswrong. But the realdifficulty comeswhenwe compute

S22=f2(f)
2, (3.106)

becausewe seethat in this amplitude(which is now the amplitudeof theparticle with lightestmass)
appearsa double pole which cannotoccur (seesection 3.6.3). Hence,thereis no consistentset of
S-matricesstartingfrom Si~= f

5 whenx> ~in.

(b) x slightly less than~in, x = (~— e)mn (s—* 0). In this case,the bootstrapproducesthreebound
stateswith masses(fig. 14)

mk=2msin(kx/2), k=1,2,3, (3.107)

andS-matrices

~11 =f5 ~~‘12=f3~12f~2~~‘13=f5f25
(3.108)

~22 = f2~(f5)
2‘ ~23 =f

5x/2fx/2(f3xf2)
2 S

33=f35(f~f25)
2-

As in case(a), we obtain a particleA
3 with massm3 lessthan m1, which is theonewe startedwith. S33

containsaswell unwanteddoublepoles. The only way to makethis systemconsistentis to pushm3—*0
and, correspondingly,decoupleA3 from the restof the theory. In this limit all S-matricesinvolving A3
go to the identity and the particlestateA2 becomesidentical to A1. The initial three-particlesystem
collapsesto that onewith only oneparticle stateand S-matrix

~ =f2~3(0). (3.109)

m3 m1 m2 m

Fig. 14. Massspectrumgeneratedby 5,, = f, with x close to 2sr/3.
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This correspondingto the S-matrix of the Yang—Leemodel [148].
Let us considernow thegeneralcaseandprovethat thereexistsonly one pathin thebootstraptree

which respectsthe consistencyequations.The proof is given by induction. Starting with 5~= f5~we
obtain a newbound statewhosemasscanbe written as

m2!m1= 2 cos(x/2)= 2m sin(x)/2msin(x/2), (3.110)

wherem is an arbitrary massscale. We can compute~12 by applying eq. (3.23)

~12 = 511(0 — ix/2)511(0+ ix/2) =f3512f,~2- (3.111)

We get a function with four singularities:those at 0 = imnx/2 and 0 = (1 — x12)in (from the f512 term)
and those at 0 = i~mrxand 0 = i(1 — ~x)m(from the f3~2term). Among these,the one at 0 = i(1 —

x12)in correspondsto the boundstateA1. Therefore we havecorrectly identified this angle as the
resonanceangledueto a boundstate.We cannowapply eq. (3.43) in order to decidewhichof the two
poles in f3~2correspondsto a new boundstateA3. The answerturns out to be that one at 0 = i~inx.
This meansthat we cannotusetheothersingularity at 0 = (1 — ~x)inin order to implementfurther the
bootstrapif we require a non zero solution of the consistencyequations.On the contrary, we are
obliged to follow the path definedby the resonanceangleu~2= mx. The massof the newparticle is

m3/m1= 2m sin(~inx)I2msin(~~nx). (3.112)

We can compute

-—1 -—2
~13 = 51.,(0—iu,3)511(0+ iu13) f5f2~- (3.113)

Repeatingthesamereasoningof before,weidentity thepole at 0 = i(1 — x)in asu13 and in this waywe
fix the ratio of the conservedquantities~1’~3 in (3.43). The singularitydue to a newboundstateA4 is
that at 0 = iu~3= i2mnx. The massof this new boundstate is

= 2m sin(2mnx)12msin(~mx). (3.114)

The processcan be continuedup to the particleA2n + 1 where n is definedby

2in/(2n+3)<x~2in/(2n+ 1) (3.115)

andhasto be completedby thecomputationof the remainingS-matrices.Themassspectrumis given
by

mk—2msin(2kx), k=1,2,...,2n+1. (3.116)

The particleA2~~1us A1 is the lightestoneandits 511-matrixhasa plethoraof doublepoles.We can get
aconsistentsetof S-matricesonly if we put m2,,+ 1 = 0 anddecouplethis particlefrom thetheory. In this
limit the remaining2n particlesbecomepairwiseidenticalandwe endup with an n-particlesystemwith
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S-matrix
min(a, b)—1

5 5 /5

~ab — Jla—bI/(2n+1)J(a+b)I(2n+1)

(a, b = 1,2,. . . , n). All doublepoleshavenow explanationin termsof multi-scatteringprocessesand

the conservedspinsare all odd numbersbut multiplesof 2n + 1

s=1,3,. - - ,2n—1,2n+3,.. - ,4n+1 (mod4n+2). (3.118)

The price to be paid is that theseS-matricesare not one-particleunitary and indeedcorrespondto the

~1.3 deformationof the non-unitaryminimal models~2,2n+3 [92,148, 150] (seesection 6.2.!).

3.7.2. Bootstrap treesgeneratedby an ~ with multiple poles
The problemto find consistentsetsof S-matricesstartingwith a scatteringamplitude S~with more

thanonesingularitybecomesmorecomplicated.In orderto investigatethe bootstraptreegeneratedby
ageneric~1 1’ a computeralgorithmwasdesignedto spanall possiblepathsandto selectonly thoseones
which satisfy our requirementsof consistency[160].The algorithmwas basedon the following items:

(i) m1 is the lowestparticle,
(ii) the theory is one-particleunitary,
(iii) the singularitiesin Sii aresimple poles with rational values.
As input data, it is necessaryto specify the number of functions f5 in S1~and their common

denominatorD. The value of D dependson the memorycapacityof the computer.The analysiswas
performedfor the casesD ~ 128 (which is equivalentto analyze~—i0

9initial ~ The resultscan be
summarizedas follows.

(a) ~ = f~. (3.119)

The only consistentsetof S-matricesis obtainedwhen

~11 = ~f
119f.~9 (3.120)

andthis correspondsto the minimal S-matrix of the E7 system[157,159].

(b) S~= ~ f5. (3.121)

The only consistentsetof S-matricesis obtainedwhen

S~=f1~3f~f11~5~ (3.122)

which correspondsto the minimal S-matrixof the E8 system [30,159].

(c) S11=fl f5, N=4,5. (3.123)

In the rangeof D previously discussed,the bootstrapdoesnot give rise to any consistentsystem.
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3.8. FactorizedS-matrixof kink states in deformedCFT

Many perturbedCFT aredescribedby integrablemassivefield theorieswith solitonbehaviour.This
meansthat the deformationof the critical point action gives rise to an effectivepotential with a finite
numberof degeneratevacua.It is thereforeinterestingto extentour analysisto thesecases.The soliton
configurationswhich interpolate between different vacua are the basic massive excitationsof the
spectrum.A classicalexampleof sucha theory is given by the thermaldeformationof the Ising model.
At the critical point (T = Tc), this model can be describedin termsof a scalarfield P with a quartic
interaction

~‘= ~(a~P)2+gP4. (3.124)

A thermalperturbationis realizedby addinga quadraticterm to the previousLagrangianandchanging
theeffectivepotential to

V(P) = (T— T~)P2+ gP4. (3.125)

If T> T~,we havea uniquevacuum. On the contrary,when T < T~,themodel hastwo degenerate
vacuaand theone-particleexcitationsof thespectrumaregivenby the kinks connectingthe two ground
states.

A generalapproachfor dealingwith the massiveintegrableQFT with solitonbehaviourobtainedas

,2 and ~21 deformationsof minimal modelsof CFT hasbeen developedin recentyears.The
main idea of this approachis based on the well-known relation betweenthe S-matricesand the
R-matricesof integrablemodels.Severalauthorshavepointed out that theabovedeformationsof CFT
are obtained by restricting the Hilbert space of the integrable sine—Gordon(SG) and Zhiber—
Mikhailov—Shabat(ZMS) modelswhile preservingtheir integrability [91—96].A heuristicargumentfor
understandingthe relevanceof the SG and the ZMS models in the descriptionof theseintegrable
deformationsof CFT is basedon the realizationof the minimal models~ in termsof a conformal
quantizationof a Liouville theory [208—210]

= (a)2 + ~ (3.126)

The primary fields I~,,are identified with the vertexoperatorsexp[ — ~ i(n — 1) f3p]. A deformationof
the conformaltheory by the operator ,

3 is thusobtainedby inserting its vertexrepresentatione-

into the Lagrangian (3.126). The resulting theory is the sine—Gordon model. Analogously, the
deformationof CFT by meansof the operator~1,2 exp(—~/3w) gives rise to the Zhiber—Mikhailov—
Shabatmodel.

The heuristicargumentgiven aboveis supportedby amoredetailedanalysisof the Hilbert spaceof
the SG andZMS models.An importantfeatureof both modelsis theinvarianceof their R-matrixunder
the quantumgroup*) SL(

2)q. The q-parameteris a function of the coupling constant/3. When q is a
root of unity, we can restrictthe Hubertspaceof the original modelpreservingboth the integrability
andthe locality of an invariantset of operators.This happenswhen/32/8in is a rational number.The
restrictedmodelsobtainedin this way renormalizein the ultraviolet limit to a minimal model of CFT

~‘ An introduction to the theory of quantumgroups canbe found in refs. [218,204—206].
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with central chargegiven by

c=1—6(f32/8mn+8in//32—2). (3.127)

In this section we will focus only on the resultsof this analysisreferring to the original literaturefor

their derivative andjustification. Interestingapplicationsof them will be presentedin chapter6.

3.8.1. ~ ~ deformationof minimal modelsof CFT as restrictedsine—Gordonmodel

The sine—Gordon(SG) model is describedby the Lagrangian

~e= ~(a~)2 + (m2/f32)(cosf3q~—1). (3.128)

The theory hasan infinite numberof degeneratevacua.The solitonsolutionsof the equationof motion
aregivenby thosefield configurationswhich interpolatebetweentwo vacua.They can becharacterized
by their topological charge

= ~ J ~ dx = (/3I2in)[~o(+~s)- ~(_co)], (3.129)

which takesvaluest = ±n,n = 0, 1,2,...
The sine—Gordonmodel is integrable both at the classical and quantumlevel [108,124, 192—

194, 197—200]. In the quantumversionof the theory, the solitons (A, A) with t = ±1 play the role of
fundamentalparticles whereasthe solitons with higher topological chargesform the multi-soliton
configurations.The spectrumalso containsneutral particlesB~(the so-calledbreathers),which are
boundstatesof the soliton—antisolitonstates.The total numberof breathersis [in /y], where y is the
renormalizedcouplingconstant

y = inf32/(8in — /32) (3.130)

and[x] staysfor the integerpart of the realnumberx. The S-matrixof this model for ~32<8in hasbeen
derivedin ref. [108]by solving the Yang—Baxterequationsandthe usualrequirementsof unitarity and
crossingsymmetry. The SG model possessesa hidden SL(2)q quantumsymmetry which permits to
assembletogetherthe scatteringamplitudesof the soliton sector into the structureof the R-matrix
correspondingto A~’~which has, in addition to SL(2)q, a spectral parameter[91,92,94—96]. The
deformationparameteris given in termsof the coupling constantby

q = exp(2in2i/y). (3.131)

The quantumgroupSL(2)qis definedas the universalenvelopingalgebraCllq[sl(2)] with the commuta-

tion relations[206]
[J~,J]=(qH_q_H)/(q_q_l), [H,J+]±2J.,. - (3.132)

A “comultiplication” ~tqis definedby

4q(H)=1®H+H®!~ ~q(J±)=qW2®J±+J±®q_~~2. (3.133)
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The irreduciblerepresentationsof SL(2)q are obtainedby meansof the comultiplication4q [206].
The doublet (A, A) forms the fundamentalspin 1/2 representationof the quantumgroup SL(2)q

whereasB,,saresinglets.Wecangenerateall theirreduciblerepresentationswith higherspinsof SL(2)q
using theq-analogof the Clebsch—Gordancoefficients,

vIJi 12 Ji.
.1, M~= ~ m

1)®~j2, m2~ - (3.134)
m1,m2 m1 m2 ~

Theexplicit expressionsoftheq-analogsof the Clebsch—Gordancoefficientsandof the 6-j symbolscan
be found in ref. [206].They areexpressedin termsof the q-numbers[n]q’ definedby

[fl]q= (q” — q”)/(q — q
1). (3.135)

For q not a root of unity, the representationsof SL(2)q are thus obtainedas deformationsof the
representationsof the classicalalgebraSL(2). However,whenq is a root of unity (q” = ±1), someof
the Clebsch—Gordanand the 6-f coefficientsbecomesingular and thereforethe usual representation
theoryis not well-defined. In this case,the sensiblerepresentationsarethosewith an upperboundfor
the value of the spins0 ~ JS ~ where~max is fixed by the condition [2Jmax+ 1],, = 0, i.e.

~max ~N—1. (3.136)

For the SG model, this happenswhen /32/8 in is a rational number,

f3218in=p/p’, (3.137)

with p andp’ two coprime integers(p’ > p). Correspondingly,

yIir = pI(p’ — p), (3.138)

and the resultingHilbert spaceof theSG model decomposesinto a finite numberof subspaceswith spin
J boundedby

‘max ~p—1. (3.139)

Performing a changeof basis from vertex to IRF basis [206],the solitons and the antisolitons are
replacedby kinks K,,,, with a — b~= 1/2 and a, b = 0, i,... J,,,~.This meansthat the restrictedSG
model does not possessan infinite number of vacuum statesbut only a finite number of them,
connectedby the kink statesKab~The kink—kink S-matricesS~(0) which describethe scattering
Kda + Kab Kdc + Kcd are given by a RSOSrestriction of the original solitonS-matrices.Its explicit
form is given by [91,92, 94—96]

5ab 0 — U(O) ([2a + 1]qL2C + 1]q \9121Ti
dc( ) 2mi \[2d+1]q[2b+1]qJ

r 0 [2a+1] [2c+1} 1/2 iir—0~L~5i~(~)([2d+ 1]:[2b + 1]) + ~acsinh( )], (3.14~)
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where

U(0)= F(l/y)F(l +i0/y)F(1 — 1/y—iO/y) fI R,,(o)R~(imn—o) (3.141)

R 0 — F(2n/y+iO/’y)F(1+2n/y+iOIy) 3142
n( ~F((2n+1)/y+i0/y)F(1+(2n—1)/y+i0Iy)~ (

The breathersector remainsuntouchedin the reductionproceduresince it is a singlet subspaceof
SL(2)q.The S-matricesS~”~(0)of the kink—breatherscatteringK,,,, + B,,—* B,, + K,,,, are given by the
correspondingscatteringamplitudesof the original SG theory [108],

S~(0)=slnh0+lcos(
2n’Y) fl sn[4(n )Y 4 2] - (3.143)

sinh0—icos(1ny)1=1 Slfl [4(n—2l)y— ~in— ~i0]

An analogousresult holds for the scatteringof two breathersB,, + B,,, —* Brn + B,,. The S-matrix
(nm)5 (0) (n � m) lS given by [108]

5(n.rn)(o) — sinh 0 + i sin[~(n+ m)y] sinh 0 + i sin[~(n— m)y]
— sinh 0—i sin[~(n+ m)y] sinh 0—i sin[~(n— m)y]

rn—I sin
2[~(m— n — 2l)y + ~i0]cos2[~(m+ n — 21)y + ~i0]

~ 11 - 2 1 1- 2 1 1- (3.144)
(=1 sin [~(m—n—2l)y—

1i0]cos [4(m+n—21)y— 110]

The S-matricesof the kink statessatisfy the relation

ab bc
SdC(0)= S,,d(11r— 0), (3.145)

which expressesthe crossingsymmetry.An importantconstraintcomesfrom theconditionof unitarity.
In fact, the S-matricesof the kink statessatisfy the equation

~ S~(0)S~(—0)= ~ac• (3.146)

Hence,as far as theconditionSt(0)= S(—0)is satisfied,the scatteringtheory is unitary.This occursfor
the following valuesof y/in [91]

y/mn~’p/(p’—p)=N/(Nk+1) N�2,k�0,

=3/(3k+2) k�0. (3.147)

It hasbeenarguedthat theultraviolet limit of the integrablemodelsconstructedthat wayis controlled
by the minimal conformalmodel ~ deformedby the operator~1,3 [91,92, 94—96]. A non trivial
checkof this conjecturehasbeenobtained by meansof the thermodynamicalBethe ansatz[53,54].
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3.8.2. ~ .2 and ~P, deformationsof minimal modelsof CFT
It hasbeen pointed out by Smirnov [93]that the deformationof minimal model of CET by the

operator~1,2 can be consideredas reducedsystemsof the Zhibner—Mikhailov—Shabat(ZMS) model
with imaginarycouplingconstant.The Lagrangianis formally given by

= Jdx [~(a~)2 + (~e’~+ e~2)]. (3.148)

An importantdifferenceof this model with respectto the SG model is that the Lagrangian(3.148) is
not a Hermitian operatorand, therefore, the definition itself of the theory seemsto be problematic.
The solutionof this problemand the resultingS-matricesfor themassivedeformationsofCFT is oneof
the most beautiful results in the quantumgroup approachto off-critical models.In fact, as shownby
Smirnov [93], in this caseonly the restrictedtheorieshavea physical meaning.

Thefirst stepof Smirnov’s analysisis to considerthe R-matrix of the theory.It is intrinsically related
to the algebra~ which similarly to the caseof sine—Gordoncontainsa spectralparameterbut is
constructedstarting from the spin 1 representationof SL(2)q [99].Its expressionis given by

R
12(A,q) = (A~— 1)q

312R
12(q) + (1— A)q

312R~’(q)+ q512(q2— 1)(q3+ 1)P
12. (3.149)

R12(A, q) is an operatoracting on the vector spaceC
3 ®C3, A is the spectral operator,q is the

parameterof thequantumgroup,and P
12 is thepermutationoperator.The matrix R12(q) is the constant

solutionof the Yang—Baxterequationfor spin 1 representationsof the quantumgroupSL(
2)q,givenby

R
12(q)= exp(~H®H)[1+ (q

2 — 1)E®F+ (q — 1)2(q + 1)E2®F2], (3.150)

where

/20 0\ /01 0 000
H = ( 0 0 0), E = ( 0 0 q~2 , F = q’ 1 0 0 . (3.151)

\o 0 —2! \o 0 0 0 qV2 0

In order to interpretthe matrix R(A,q) as anS-matrix, oneneedsto relateA to the rapidity variable 0
andq to the couplingconstant/3 of the model. With the following identifications

q = exp(16in2i//32), A = exp(2in0/~),~ = ~[mf32/(16in— p2)] (3.152)

thehypotheticalS-matrix of the three-componentkink (which is the fundamentalparticle of theZMS

model) is given by
512(0) = S

0(0)R12(exp(2in0/~),exp(l6mr
2i//32)). (3.153)

The prefactorS~(0)ensuresthe validity of the “unitary” relation

S12(0)S21(—0)= 1, (3.154)

and fixes the pole structureof the scatteringamplitude.It reads
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S0(0)= {sinh[(in/~)(0— in)] sinh[(inI~)(0— 4ini)]}~

x exp(_2iJ dx sin(Ox) sinh(~mx)cosh[(~in— ~)x]~ 3 155
x cosh(~nx) sinh(~~x) ). ( . )

0

In orderto discussthe analyticstructureof S~(/3), it is moreconvenientto write it as

~
(3.156)

where E( /3) is the following infinite product

= ~ F(in/~+ (2kin — if3)/~)F(2in/~+ (2km+ i/3)/~)
k=0 F(n/~+ (2kin + i/3)/~)F(2ir/~+ (2kin — if3)/~)

><
F(1+(2kin—i/3)/~)F((~+in)/~+(2kn+i/3)/~)

>< F(in/34 + (2km + i/3) /~)F(4n/3~+ (2km — i/3) /~)
F(n/3~+ (2kin — i$)/~)F(4n/3~+ (2kn + i/3)/~)

>< ~ 3157

F((2in + 3~)/3~+ (2kin + i/3) /~)F((5in+ 3~)/3~+ (2km — if3)I~)

It is easyto check that S~(/3)satisfiesthe equation

S0(f3)= 50(imr — /3) (3.158)

For generic ~, the simple poleswhich lie on the physicalsheetare at thecrossingsymmetriclocations

0=imr—i~m, i~m, m>0, (3.155a)

=~ini—i~m,~mni+i~m, m�0. (3.155b)

In both sets, the first poles are the singularities in the direct channel and the secondonesare the
crossingpoles.

For the first set (3.155a),the R-matrixdegeneratesinto a one-dimensionalprojector. Smirnov has
identified thesesingularitiesas thoseof the breatherboundstates.Using the bootstrapequation,the
S-matrixof the fundamentalbreather(correspondingto the pole 0 = in — i~)is given by

S,,,,,,,(0)= f2/3(0)ff,(0)ff/~_1/3(0). (3.59)

On the other hand, considering the secondset (3.155b), the R-matrix degeneratesinto a three-
dimensionalprojector.Hence,thesepolescanbe interpretedasthosecorrespondingto thecreationof
higherkinks. However, from a physical point of view, the definiton itself of ~12 hassomedrawbacks
which forbid to interpret it asthecorrectscatteringamplitudeof themodel [93,207]. Oneof them is
that the matrix R12, for the importantcaseswhen q = 1, doesnot satisfy the relation

R~2(A)= R21(A~), (3.160)
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which is crucial in orderto correctly implementthe unitarity requirementof the scatteringamplitudes.
Therefore,the S-matrix (3.153) as it is, cannotbe interpretedas the scatteringamplitudeof the ZMS
model. Though,as Smirnovobserved,the RSOSrestrictionof the R-matrix yields S-matriceswhich
havea sensiblephysicalinterpretation.This happenswhenqr = 1. The RSOSstateswhichappearin the
reducedmodel,

01, f~, k1, a1~02,f2~k2,. . . ~ j,,, ku), (3.161)

arecharacterizedby their rapidity 0,, by their typek (which distinguishesthe kinks from the breathers),

by their SL(
2)q spin j and by a string of numbersa

1, constrainedby the following limitations:
a1~~(r—2), ak 1~ak+l�min(ak+1,r3ak). (3.162)

The S-matrix of theseRSOSstatesis given by

S(0k_Ok+11 ak~) 15()[{l ~k-l ak}
ak+1 a/, 4i 1 ak+l a,, q

~k*l ~
x {[exp((2in/4)(Ok+l — 0k)) — 1]q

c,,,_,c,,,,,~
— [exp(— (2n/~)(0,,~1— Ok)) — 1]q }

+ q
5/2(q3 + 1)(q2 — 1)~aa]. (3.163)

Herein,Ca are givenby c,, = a(a + 1). The expressionof the 6-f symbolscan be found in ref. [93]. The
aboveS-matrix is unitary if andonly if the6-f symbolsarerealandthishappensfor the following values
of /3218n: (i)

/32/8n = r/(r + 1), (3.164a)

which correspondto the ~ .2 deformationof the minimal unitary models ~ 1; (ii)

/32/8n = 21(2n+ 1), /32/8n= 3n1(3n+ 1), (3.1Mb)

which arerelatedto the ~ .2 deformationof thenonunitaryminimal models~ 2,2n+ 1 and Al
3 ,3p~~ For

thesevaluesof /3 2~8 in, the maximal allowed spin is 0 and ~. Hence,the kinks disappearfrom the
reducedspaceandonly breathersremainas asymptoticstatesin thespectrum;(iii)

/3
2/8n = 4n/(4n±1), (3.164c)

which correspondto the ~ .2 deformationof the nonunitaryminimalmodel4(4,4,,±~. For this seriesthe
maximal allowedspin is equalto 1 and, accordingto theRSOSrestriction,the kinks behaveasscalar
particles.

The discussionof the S-matricesof themassivestatesoriginating from thedeformationof minimal
model of CFT by the operator~‘21 is similar to the one above, the only difference being in the
definition of the q-parameterandthe spectralparameterA. In thiscase,thecorrectidentificationsareas
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follows

q=exp(in
2/32/4), A=exp(2in0I4~),4= ~in2/(/32—4n), /32I8n>~- (3.165)

Correspondingly,in all previousformulas4 hasto be changedto 4. The condition/32/8in> ~selectsthe
rangeof /3 for which the field ~2.1 is a relevant operator, since its anomalous dimension is given by

~2.1 = —~ +6in1f32. (3.166)

3.9. SupersymmetricS-matrices

Our previousanalysiscanbe also generalizedto thesupersymmetriccaseandgives riseto interesting
modelsof fermion—bosoninteraction.Integrableandsupersymmetricdeformationsof thesuperconfor-
mal modelshavebeendiscussedby severalauthors[115—119,179]. FactorizedS-matricesthat haveboth
0(N) symmetryandsupersymmetryhavebeenanalyzedby ShankarandWitten [111].Theycorrespond
to the scatteringamplitudesof the Lagrangianmodel of the 0(N) supersymmetricnon-linearsigma
model [112—114].We will presentheretheir basicfindings.

The Lagrangianof the 0(N) supersymmetricnon-linearsigma model is given by

= d2x [~(a~n~)2 + ~~ i a~y~pa+ 1(~a~a)2] (3.167)

with the constraints

>~flana,,1 ~ni~—0.

Here n” is an N-componentreal scalarfield and ~ is an N-componentMajoranafermion. Thismodel
may be seenasa hybridizationof thenon-linearo- model andthe Majoranaversionof the Gross—Neveu
model.

In the large-Nlimit, themodel (3.167)presentsasymptoticfreedomanddynamicalmassgeneration
[114].This meansthat the spectrumconsistsof a degeneratesupermultipletof N massivebosonstates

~andN massivefermionstatesf~~ Concerningtheboundstates,the large-Nexpansionshowsthe
existenceof a fermion—bosonboundstatein addition to the fermion—fermionboundstate.Theseare
the only extrainformationswe needin order to fix completelythe exact S-matrixof the model.

Among the conservedchargesof the model, we havethe chiral componentsof the supercharge~.

They satisfythe supersymmetryalgebra

~=p
0+p1, i~=P0—p1, ~ .~2+P~,—P~,22±=0. (3.168)

Their action on the one-particlestatesis

I b~(0)= e°~
2If”(O) ~ , ~ f~(0)= e6121 b~(0))

(3.169)
~2_Ib’(o)=ie’°’2If~(0)), ~2_If~(0) = —ie~2Ib~(0)~-
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A basis of the two-particle asymptoticstatesis given by

(3.170)

The conservationof the fermionicnumberimplies that the first two statesscatterinto eachotherandso
do the last two. Thereforethe 4 x 4 S-matrixsplits into t~o2 x 2 block matrices.Their form is further
restrictedby supersymmetry.In fact, the S-matrixmust commutewith the bosonicoperator~
which in our basis is

1 sinh~0 0 0
~ ,.,. sinh~0 —1 0 0

‘Li 0 0 0 —cosh~0

0 0 —cosh~0 0

(0 = 01 — 02). A setof commoneigenstatesis given by

Sab) = (cosh~0)”2[cosh ~0 ba(0
1)bIs(02))+ sinh ~0 jf”(01)f”(02))],

IT~~)= (cosh~0)”
2[—sinh ~0 b~(0

1)b~(02))+ cosh ~0 fa(o)fb(o)fl
(3.172)

= [Iba(o1)fl~(o2))+fa(01)bl(02))]I\/~’,

= [Ib”(01)f”(02)) — fa(o)bb(o))]!.v~~

In the new basis, the S-matrix assumesa diagonalform. It is also easyto see that supersymmetry
implies

(5cd1515ab) = (u~ISIu~’), (TCdISITI!5) = (v’’IsIv’
th) . (3.173)

Hence,the generalform of the S-matrixcompatiblewith 0(N) symmetry andsupersymmetrycan be

parameterizedas follows

(scdlslsab) = (u~’IsIu’~,= 51(0)5”6” + ~ +
5(0)~ad~5bc

(3.174)

= (v~’IsIv’~= ~ T2(0)~a~5ca+T3(O) d8bc -

The functionsS~and 53 (T1 and T3) arethe transitionand reflection amplitudesrespectively,while ~2

(T2) is the amplitudeof the annihilationprocesses.They mustsatisfythe unitary equations

[S~(0)+ S3(0)][S1(—0) + S3(—0)]= 1, [S~(0)— S3(0)][S1(—0) — S3(—0)] = 1
(3.175)

[S~(0) + 53(0) + NS2(0)][51(—0) + S3(—0)+ NS2(—0)] = 1,

(the samefor the T,s), correspondingrespectivelyto the threeisospinchannelswhich arethe symmetric
andtracelesschannel,the antisymmetricchanneland the isosingletone. The crossingrelationsare
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(in —0) + T1(iin —0) = S~(0)+ T1(0),

(in—U)— T1(in —0) = —i tanh~0 [S1(0) — T1(0)],
(3.176)

S2(in—0)+ T2(iin—0)=53(0)+ T3(0),

S2(iin — 0) — T2(in — 0) = —i tanh ~0 [53(0)— T3(0)].

Additional constraintscomefrom the Yang—Baxter equations.Solving the cubic constraintsof the
Yang—Baxterequations,the S-matrix can be put in the form

S (0)=(1— if ~0) S (0)=— 2ni S~(0)

1 \ sinh~0! ‘ 2 N2 (in—U)

53(0) = — ~‘2 S1~0), T1(0) = (i + .~10)E(o), (3.177)

T 0 —— 2ini T1(0) T 0 — 2ini T1(0)2( ) N—2 (in—U)’ ~ ~N—2 U

wheref is an unknown constantand E(0) is a meromorphicfunction which satisfiesthe following
equations:

02 sinh
2 ~0

= 02 + ~2 sinh2 ~0 +f2 , ~(0) = E(in —0), (3.178)

with ~.t= 2n/(N — 2). We mayfix fusing the resultsof the large-Nlimit on the bound-statestructureof
the theory.The large-Nexpansionindicatesthat the interactionis repulsivein thechannelscorrespond-
ing to Si, ~2 andS

3 but attractivein the channelsT1, T2 andT3 [114].Hence,the possibleboundstates
mayoccuronly in the T. channelsbut not in the 5, ones.To implementthis condition,we imposethat
the prefactor(1 — if/sinh 0/2) appearingin 5, vanishesat the values 00 where.E(0) presentsa pole, i.e.

f= —isinh ~ (3.179)

In addition, the large-N expansionselectsas possiblechannelswherethe bound statepoles appear
those ones of T2 and T1 — ?‘3 but not that of T1 + T3. This gives the following condition on the
resonancepole U~:

1 — 2ni/(N — 2)O~= 0, (3.180)

UbU. (3.181)

Combiningwith eq. (3.179),we obtain

f=sin[in/(N—2)]. (3.182)
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It remains to find E(0) by solving the functional equations (3.178), with the requirement that it has a
simple pole at 0 = ii.1. It is convenient to factorize E(0) in terms of two crossing symmetric functions
Q(0) and Y(0), i.e. .~(0)= Q(0)Y(0),which satisfy

Q(0)Q(—0)= 021(02+ 42), Q(0) = Q(iin — 0), (3.183)

sinh2 ~0

Y(0)Y(—0)= sinh2 ~0+ sin2 ~ , Y(0)= Y(in — 0). (3.184)
Let usdiscussfirst the function Q(0). The simplestsolutionof the first equationin (3.183) is given by*)

Q~°~(0)= 01(0+ i4). (3.185)

However, this doesnot satisfy the crossingsymmetry relation. We mayrepairthat by using

= [01(0 + iLl)] (in — 0)I(in — 0 + iLl), (3.186)

which is crossing symmetric but no longer satisfiesunitarity. Unitarity is restoredby multiplying by
anotherfactor

Q~2~(0)= [01(0 + iLl)[(in — 0)I(in — 0 + iLl)][(in + 0 + ii.l)I(in + 0)]. (3.187)

But we havespoiledcrossingsymmetryagain.This can be adjustedby including an extrafactor. It is
thereforeclear that only an infinite productof factors can simultaneouslysatisfy unitarity and the
crossingcondition. This infinite productcan be rearrangedin termsof F functions.The final result is

Q(0, 4) = R(0, i.l)R(in — 0, 4), (3.188)

where

F(412n — i 0I2ir)F(~ — i 0/2n)

R(0,~ = F(—i0I2n)F(~+ 4/2n — i 0/2n) (3.189)

An equivalentintegralrepresentationis by

/ - I dx sin(Ox/2n)sinh(~x/4n)sinh[( ~ + 4 /4in)x] \
Q(0,4) = [01(0+ iLl] exp(,~—2iJ —i- ~, ) - (3.190)

COSii
4x

We proceedsimilarly for the Y(0) function, startingfrom* *)

sinh ~U
y~= - 1 - 1 (3.191)sinh 10—isin1~

*) The othersolution,Q~= 91(9 — i’l) will be discussedlater on.
~ The second minimal solutionobtainedstartedfrom (3.191)will be discussedlateron.
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The final result is

Y(0, 4) = ~(0, 4)~,,(iin— 0, 4), (3.192)

where

l?11’0 4\ — F(—iU/2in) F(4/2in — iO/2in + 1)k’ ) - .F(1—iO/2in) 11 F(Ll/2n—i0/2n+l+1)

F(—4/2nr — iU/2in + I — 1)F
2(—iU/2in+ I —

x . . (3.193)
F(—412n— i0/2n+ I — ~)F(—i0I2ir + 1— 1)

The above factorization of E(0) in termsof the functionsQ(0) and Y(0) reflectsan importantproperty
of the 0(N) supersymmetricnon-linearsigmamodel, namelyits closerelation bothto supersymmetric
sine—Gordon and to the Gross—Neveu model. In fact, Q(0) is the same function which enters the
S-matrix of the bosonic0(N) non-linearsigmamodel, solved by Zamolodchikovand Zamolodchikov
[108].On the otherhand,the function Y(0)appearsin the scatteringamplitudeof thesupersymmetric
sine—Gordon.The Lagrangianof this model is

~1= ~(a~4)~+~i8~y~i+(1/4/32)cos2/3~— ~(cos/3~)~/itfr. (3.194)

The invariant amplitudes for the elementaryboson and fermion particles of the supersymmetric
sine—Gordonwhich satisfythe constraintsof supersymmetry,the Yang—Baxterequations,the unitarity
and crossingsymmetryrelationsare given by*) [111]

Sb,t(0) [1±i(sin~4)/sinh ~0)]Y(0), (3.195)

wherethe expressionwith the plus sign holds for the bosoniccaseandthe otheronefor the fermionic
case.

Hence, the S-matrix of the elementaryexcitationsof the supersymmetric0(N) non-linearsigma
model is a product of two S-matrices, one of them related to the ordinary bosonic non-linear a- model,
the otherone relatedto the supersymmetricsine—Gordon.The scatteringamplitudesof the fermionic
boundstatesof the supersymmetrica- model, with massratios

mklml = sin[kin/(N — 2)]/sin[in/(N —2)], k = 1,2,. . - , — 1, (3.196)

can be computedvia the usualbootstrapequations.
As a last remark,wecomebackto the ambiguity inherentin solving thefunctionalequations(3.183)

and (3.184). Equation (3.183) admits two possible minimal solutions: the first is given in terms of
R(U, 4), eq. (3.189),the secondoneis constructedby meansof R(0,—4). Analogously,eq. (3.184)has
two minimal solutions: the first one is given in terms of ~/I(U,4), eqs. (3.193), the secondone is
obtainedchanging4—* —4 into ~(0, 4). Therefore,for .E(U) we can have the following four solutions:

The completeS-matrix of thesupersymmetricsine—Gordonhasbeendiscussedin ref. [119].
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_1(0) = Q(0, 4)Y(0,4), ~~2(0) = Q(0, 4)Y(0,—4),
(3.197)

~(0) = Q(0, —4)Y(0,4), E4(0)= Q(0, —4)Y(0,—4).

However, the physical requirementis that E(0) containsa single pole at 0 = iLl. Thereforeneither

_2(0) nor ...~3(0)satisfythis conditionbecausethe formerdoesnot haveanypoleand thelatter, on the
contrary,hasa doublepoleat 0 = iLl. About S1(0)and E4(0), theyactuallycoincide. The interpreta-
tion of this fact is the aforementionedrelation of the 0(N) supersymmetricsigma model with the
non-linearsigmamodel or with the Gross—Neveumodel. Choosing~1(0), we assignthe origin of the
pole at 0 = iLl to the supersymmetricsine—Gordon model, whereasthe original 0(N) symmetry is
realizedin termsof the usualbosonicnon-linearsigmamodel,which hasno boundstates.On the other
hand,choosingfor E(0) the solution E4(0), the 0(N) symmetryis realizedin termsof the fermionsof
the Gross—Neveumodel, which hasinsteadboundstates.Hence,the supersymmetric0(N) non-linear
sigma modelcan be consideredequivalentlyas the supersymmetricversionof both the Gross—Neveu
model andthe non-linearsigma model.

The scatteringtheoryso far discussedis believedto describecorrectlythe dynamicsof the model for
N> 4. For N c4, the S-matrixpresentssomedrawbackswhich spoils its interpretation.For instance,
for N—* 4, the massof oneof the boundstatesgoesto zeroandfor N—* 3 the theorydoesnot havean
enlargedsupersymmetrywhich is known, on the contrary, to exist [112].

4. ThermodynamicalBetheansatz

The infinite-volume thermodynamicsof a massiveOFT can be computedin terms of its S-matrix.
This idea, originally proposedin ref. [45], has recently found wide applications for the (1 + 1)-
dimensionalintegrabletheoriesessentiallyfor two reasons:(a) the specialpropertiesof the S-matrices
for thesetheories;(b) the possibility to extendthe techniquesof the ThermodynamicalBetheAnsatz
(TBA) proposedfor the non-relativisticmodelsby Yangand Yang[46,47] to the relativistic cases.By
meansof the TBA, the derivation of the thermodynamicalquantitiesof a purely elastic scattering
theory reducesto the solution of a set of couplednonlinearintegral equationsfor the one-particle
excitationenergiesand the rapidity distributions of the particlesof the theory.

Originally, the TBA equationsfor relativisticmodelswith diagonalS-matriceshasbeenproposedby
Zamolodchikov[48] and several applicationshavebeendiscussedby him and other authors[49—52].
Recentdevelopmentsconsistin the generalizationof the TBA equationsto the non-diagonalS-matrices
[53—55]and to the excitedstates[56—58].

4.1. Casimir energy

The basicgeometrywe consideris that of a cylinder with periodicboundaryconditionboth in the R
and L direction (seefig. 15). There are two alternativeways to define a EuclideanOFT on such a
geometry [48]: since the R-direction and the L-direction play a symmetric role, we can choose
equivalently oneof them as quantizationaxis, the other one playing the role of Euclideantime*).

* In thecontext of CFT, this is nothing but the invarianceunderthe modulargroup [24].
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C)__ID
Fig. 15. Toroidal geometrywith orthogonalcircles of circumferenceR and L.

Hence,the partition function assumesthe two alternativeexpressions:

Z(R,L)=Trexp(—L~R), (4.1)

or

Z(R, L) = Trexp(—RXL). (4.2)

~‘~R and ~‘~Lare the Hamiltonians for the system quantizedalong the R-axes and the L-axes,
respectively.In the limit L—÷oz,the partition function (4.1) is dominatedby the groundstateenergy
E0(R) of ~R and we have

Z(R, L)=exp[—LE0(R)]. (4.3)

On the otherhand,looking at the secondexpression(4.2) of the partitionfunction,L —~ ~ resultsin the
thermodynamicallimit of the one-dimensionalquantumsystemdefinedon the L-axesat temperature
TushR. In this limit, the partition function becomes

Z(R,L)=exp[—LRf(R)], (4.4)

wheref(R) is the bulk free energyof the systemat temperature1 IR. Comparingthe two expressions,
the relationshipbetweenthe CasimirenergyE0(R) of the finite volume andthe free energyf(R) of the
infinite one-dimensionalsystemis given by

E0(R)= Rf(R). (4.5)

A useful parameterizationof E0(R) is given by

E0(R)= —nE(r)/6R, (4.6)

where r = m1Randm1 is the lowestmassin the theory.As we will showlater on, the scalingfunction
c~.’(r)can bedeterminedfrom the scatteringdata usingthe thermodynamicalBetheansatzequations.In
the limit r—* 0, conformalinvariancepredictsfor the groundstateenergy[24]

E0(R)= (2in/R)(Llmin + — ~c), (4.7)
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andc’(r) should thusreduceto the effective centralcharge

lim E(r) = c — 244mjn~ (4.8)

This limit establishesa remarkablelink betweenthe scatteringdataof a given massivetheory andCFT
governingits ultraviolet behaviour.Severaldeformationsof minimal modelsof CFT havebeenchecked
in this way (see chapter6). In this chapterwe will derive the TBA equationsfollowing the original
works of Yangand Yang [47] andZamolodchikov[48].

4.2. The relativistic Bethewavefunction

Let us consideran integrableOFTon acircle of lengthL. We assumethat the spectrumconsistsof a
set of particlesA,, (a = 1, 2, . . . , n) of mass m,, and that the scatteringamplitudesare diagonal and
characterizedby their phase-shifts,5,,,,(/3) = exp[i3,,,, (/3)]. The lowestmassfixes the correlationlength
of the system,i.e. 4 = 1/rn1.

TheHilbert spaceof sucha theory is quite simple. Givenany N-particlestate,the integrabilityof the
modelensuresthat the identitiesof the particlesandtheir individual momentaarepreservedall over its
time evolution. Hence, it is meaningful to associateto any state of the systema wave function
~P(x1,x2,. . - , xN). In the configurationspaceof an N-particlestatewe selectN! regionswhereall the
particlesarefar apart,i.e. 1x1 — x1~1I ~‘ 4, andconsequentlythe relativistic effectsdueto off-massshell
processescan be neglected.Eachsuch domain is labelledby an orderingx.1 ~ x,2 ~8x,3” ‘N of the
coordinatesof the particlesandherethe wave function is simply

~(x1, x1,. .. , xJ = H exp(ip1xj. (4.9)

• The interchangingof two particlepositionsmapsone domaininto anotherandeverytransitionresults
in a multiplication of the wave function by the correspondingscatteringamplitude. Imposingperiodic
(anti-periodic)boundaryconditionsfor the total wave function of bosons(fermions), we arrive at the
following quantizationequations*)for the momentap,:

exp(ip1L)flS(01—~)=±1, i= 1,2,... ,N, (4.10)
j+i

or

m~Lsinh 0~+ ~ ~ — ~)= 2inn1, (4.11)
1+1

where 6,~(0)= —i ln S,~(0).The numbers{n,} areintegersfor bosonsand semi-integersfor fermions.
Together with the set of rapidities satisfying eq. (4.11), they label the Bethe ansatz states

In1, 01; n2, 02;... ; nN,
0N)~The correspondingenergyandmomentumaregiven by

E=~m
1cosh~,p~1m1s h01. (4.12)

*) In absenceof any interaction, we recoverthe usualquantizationconditionp = 2,rnIL.
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4.3. Selection rules

The Bethewave function mustbe symmetric(antisymmetric)underthe interchangeof two identical
bosons(fermions) of the samerapidity. Therefore,we have to take into accountsomeselectionrules
arising from the identity of the particles.For the diagonalS-matrices,the unitarity conditionimplies

S~,,(0)= 1 , (4.13)

andtwo differentcasesmayoccur:
(i) The first case,

Saa(0)=~1, (4.14)

resultsin a wave function which is antisymmetricunderthe exchangeof the two particleswith the same
rapidity. If theyarebosons,this is clearly incompatiblewith the Bosestatistics.Therefore,two bosons
A,, cannothavethe samerapidity andeachvalue of rapidity can be occupiedby at mostone particle.
This meansthat all the integersn~of the species a, appearingin (4.11), must be different. On the
other hand,if the identical particlesare fermions no such restrictionarises.

(ii) In the secondcase,we have

S,,,,(0)= 1. (4.15)

Herethe situationis reversedwith respectto the previousone. Two identicalbosonscan takethe same
valueof the rapidity andthereis no restrictionon n~.Onthe contrary,if the two identicalparticlesare
fermions,eachvalueof therapidity can be occupiedby only oneparticle,i.e. all the integersn~of the
speciesa are different.

For the sakeof simplicity, in thefollowing we restrictour attentiononly to the caseof S-matricesof
bosonicparticleswith 5,,,, = —1. This is the situationthat generallyoccursin the context of perturbed
CFT. The discussionof the generalcasecan be found in ref. [48].

4.4. Derivation of thermodynamics

In the thermodynamiclimit, both L andall N,, go to infinity but thedensitiesN,,/L remain finite. It is
thus convenientto introducecontinuousrapidity densitiesof particlesp ~ They are definedas the
number of particlesA,, with rapidity between0 and U + i~6divided by L z~O.In termsof them, the
energyper unit length of the systembecomes

E[p(r)] = ~ ~ cosh0. (4.16)

The Betheansatzequationscan be written in the form

masinh0~+ ~ (~* p~)(0)= 2nn~IL, (4.17)
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where* denotesthe convolution,

(f*g)(0)= J ~— f(0—0’)g(O’). (4.18)

Whenevern~is a setof admissiblequantumnumbers,the correspondingsolutions0~will be referred
to as roots of speciesa and their densitiesare given by p~.However, theseequationshave also
solutionsfor thosevaluesof n~which do not correspondto actualstates.Suchvaluesof 0 are called
holesof speciesa andthe correspondingdensityis denotedby p~. The absenceof someintegersin the
sequenceof the actualquantumnumbersof the physicalstates,i.e. the existenceof hole solutionsfor
the Betheansatzequations,follows from the discussionwe madeon the selectionrules: for instance,in
the bosoniccasewith 5(0) = —1, choosingan orderingfor theO~variables,then~correspondingto
the physicalstatesmustform aprogressionof strictly increasingnumbersand, therefore,someintegers
may be skippedin this sequence.

In the thermodynamiclimit, thereis thusadensitydistributionof roots aswell as of holes.Thetotal
density p,, of occupiedandempty levelsof theparticleA,, is equalto the derivativeof the left-handside
of eq. (4.17),

p(a)(O) = pT) + ~(h) = (mal2n)cosh0+ (~,, * p~)(0), (4.19)

where

tp,,,,(O) = dô~(O)Id0. (4.20)

By the unitarity conditionof the S-matrix, thesefunctionssatisfy çtt,,,,(—0) = tPab(0). For an S-matrix

built up in termsof the functionss~.(0),
S,,,,(0)= ]IT s~,(0),

their explicit expressionwas worked out in chapter3. We recall that they are 2ni periodic functions
with a Fourierexpansiongiven by

tp,,,,(o) = — ~ exp(—slOI), ~ = 2 ~ sin(snx,). (4.21)

Becauseof the existenceof holes,many microscopicstatesof approximatelythe sameenergycan be
describedby the samedensitiesPa and p ~. Their numberis given by

= [L(p,,(0)4O]!/[Lp?~(O)4O]![Lp~(O)40]!. (4.22)

Correspondingly,the entropy .9’ = ln(H,, 12,,) per unit length is equalto

~O[~ p(r)] = dO [Paln p,, — p~ln p~— (Pa — p~)ln(p,, — p~a)]. (4.23)
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The free energyper unit length is thus given by

f[~ ~(r)~ = E[p~’~~]— R’9’[p, p(r)] (4.24)

In order to obtainthe thermodynamicalpropertiesof the systemin thermalequilibrium at temperature
T = 1 IR, we haveto minimize the free energywith respectto p,, and p~1)subject to the constraint
(4.19). The extremumcondition is given by

maRcosh0 = ln[(p,, — p~)/p~1)] + ~ (~,, *ln[p,,/(p,, — p~)])(0). (4.25)

Defining the functionsr,,(O) and L,,(0) as

p,,(0)/p~(0)= 1 + exp(E,,(0)), L,,(U) = ln[1 + exp(—r,,(0))], (4.26)

eqs. (4.25) becomes

th,,r cosh0= r,,(0) + ~ (p,,,, * L,,)(O), (4.27)

whereth,, = m,,/m1. The equilibrium free energyis given by

m,, f L,,(0)cosh0d0. (4.28)
-00

Using eqs. (4.5) and (4.6), we get the following expressionfor the scalingfunction ~‘(r),

~ ih,,r f L,,(0)cosh0dO. (4.29)
in a=1

4.5. Conformallimit ofpurely elasticscattering theories

The conformal limit of the massivefield theory is reachedwhen r—>0. To evaluatethe scaling
function E(r) in this limit, we needto analyzesomepropertiesof the integral equations(4.27). The
solutions E,,(0) are even functions of 0 and, when r—+0, they become constant in the region
—ln(2 Ir) ~ 0 4 ln(2/ r). Their limiting constantvalues r,, satisfy the transcendentalequations

= ~ N,,,, ln[1 + exp(—r,,)], (4.30)

whereN,,b is a symmetricmatrix given by

N,,,, = —j ~ p,,,,(U)= — ~— [ö,,,(+co)— ~,,,,(—cx)]. (4.31)
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For largevalues of 0, the right-handside of eq. (4.27) can be written as

th,,rcosh0—. ~th,,e°=th,, exp[O —ln(21r)], (4.32)

andthereforethe r-dependenceof the functionse,,(O) reducesto a simple shift*)

O—~O—2Ir. (4.33)

For r —~ 0, their behaviournearthe edgeof the interval is universaland dictatedby the equation

ili,, e°= ll,,(0) + ~ (~°a~* Lb)(0). (4.34)

The ~,,(0) assumethe constantvalues r,, for 042 /r andgo exponentiallyto infinity when 0—~ oo. The
correspondingL,,(0) interpolatebetweenzero andthe limit valuesgiven by eq. (4.30). For thisreason
the universalfunctions ~a arecalled the kink solutions[48]. In termsof them,the value of the scaling
function E(r) at zero assumesthe form

~(0)= —~ ~ J dO L,,(O)tñ,,e°. (4.35)
in a=1

0

Substitutingfor ifi,, e°the derivativeof the left-hand side of eq. (4.34),

e°= d~(o)— ~ (coat. * 1. ::xp(—~,,) ~)(O)~ (4.36)

we have

ê~(0)= -~ ~ JdO ~a(0)[d~(0)— ~ ~ * 1+exp(~~)~~)(o)]. (4.37)

Since the ~,, are monotonicincreasingfunctions,the first term on the right-handside becomessimply

Jdo [(0) ~0) Jd~[(e). (4.38)

The convolutiontermin (4.37)canbe replacedusingthesameequation(4.34).After an integrationby
part, the final result is given by [48,51]

i(0) = ~ E,,(e,,), (4.39)

*1 We discussthebehaviourof thes,~(9) functionsfor positive valuesof 9, thecorrespondingpatternfor negativevaluesof 0 canbeobtainedby

their parity properties.
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where

= 4 (J dx ln(1 + e~)+ ~,, ln(h + e’*)) = 4 L(h1(1 + e0~)), (4.40)

and L(x) is the Rogersdilogarithm function [59]

1 1 / lnt ln(1—t)\
L(x)=—~jdtl~j_—+ ,~ ). (4.41)

Hence,the computationof the centralchargeof the underlyingCFT of a massivefield theory with a
purely elasticdiagonalS-matrix reducesto solve the transcendentalequations(4.30) andto plug their
solutionsr,, into eq. (4.39).

4.6. Universalbulk energyterm

In a theory with a massivescale,additivity of energypredicts a linear growing of the ground state
energywith respectto the dimensionof the system

E
0—~0R. (4.42)

~ is interpretedas the singular part of the infinite bulk energywhich arises becauselong-range
fluctuationsarepresentin the system.Usually its value is not universal,beingrelatedto the ultraviolet
regularizationof the theory.However, in a perturbedCFT the schemeof regularizationis fixed by the
requirementthat the off-critical quantitiesreducein the ultraviolet limit to the conformal data and a
universal ~, dependingonly on the scatteringdata, can be extracted.Indeed,sinceE0 is relatedto the
scalingfunction ~(r), eq. (4.6), the bulk energy~ is given by

~ m~ (4.43)

For the evaluationof this limit, let us introducethe functions [48]

~/i,,(O)= (t9r + r~a5)s,,(o)- (4.44)

r,,(O) dependson r through eq. (4.27). It is easyto seethat ui,, satisfiesthe integral equations

~,,(0)=th,,e0+~ (~,,*~,,I(e’~+1))(0). (4.45)

Using eq. (4.29),we have

~ ~ = — —~ ~JdO ru,, e°e~~1 (4.46)
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In the limit r—~0, the integrandis localizedneartheedgeof the flat regionand its behaviouris fixed by
the kink functionsL,,(0). Thereforewe obtain

= -~ ~ifl,, f dOe°a~L,,(0) — —~ ~ th,,T,,. (4.47)
r dr r0 ~ —00 in ,,=1

In orderto computethe right-handside of this equation,we proceedasfollows. Firstly, looking at the
asymptoticexpansionfor 0 —* —~ of theconvolution term, we get

~ (co,,,,*L,,)(0)=—s,,+-~--~ ço~T,,+”~, (4.48)
,,=1 in ,,=1

whereco~is the first modein the Fourierexpansionof thesefunctions,given in (4.21). Matchingwith
the exponentialterm in eq. (4.36), we obtain

~ co~T,,~”2n. (4.49)

Secondly,using eq. (3.84),we have

,,~co~T,,= ~ ~ th,,Tb, (4.50)

where co ~ is the correspondingquantity for the lightestparticle.Therefore,the universalbulk energy
term is fixed by the S-matrixof the lightestparticlevia

= m~I2tp~’~. (4.51)

A direct measurementof this quantity can be obtainedby meansof a numericalalgorithm which is
discussedin the nextchapter.

5. The conformal spacetruncationapproach

The scaling region around the fixed points of the minimal models of CFT can be efficiently
investigatedby meansof a numericalapproach.The method,known as ConformalSpaceTruncation
Approach(CSTA), hasbeensuggestedby Yurov andZamolodchikov[133]andlater on developedand
applied by other authors [134—137,139, 162]. It consistsin studying the numericalspectrumof the
off-critical Hamiltonian in a finite volume (a circle). The perturbedHamiltonian actson the Hilbert
spacedefinedby the fixed point action and its matrix elementscan be extractedfrom the conformal
field theory. Truncation of the space at a suitable level reducesthe problem to a numerical
diagonalizationof a finite dimensionalHamiltonian.

The truncationmethodis particularlyusefulfor the analysisof the massivedeformationsof the CFT
action and in the following we will restrict our considerationsonly to thesesituations.Severalnon
perturbativeparametersof the theoriescanbe extractedin thisway, amongthem the massgapsandthe
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bulk energy.A direct numericalmeasurementof the exactS-matrixof the integrablemodelsbecomes
also availableby analyzingthe thresholdlines of the massivemodels.

5.1. Truncatedoff-critical Hamiltonian

Let us consider a CFT which is perturbedby a relevantscaling field P with angularmomentum
4 — 4 = 0 and scalingdimension4 + 4 = x. A very convenientapproachto analyzesucha theoryis to
use a Hamiltonian formalism. To this aim, let us consider the model defined on an infinitely long
cylinder, i.e. the strip —c’z < u <es, 0 � v ~ R with periodic boundary conditions. The conformal
transformation

w~u+iv=(R/2n)lnz, (5.1)

mapsthe plane onto sucha strip. The whole information about a statistical theory is encodedin its

Hamiltonian(the logarithm of the transfermatrix) which can be written as
H,,=H0+AV. (5.2)

The Hamiltonianof the fixed point canbeexpressedin termsof theVirasorogeneratorsL0, L0 and the
centralchargec [24],

H0 = (2n/R)(L0+ L0 — *c). (5.3)

The interaction V is formally given by

v=f ~(u,v)dv. (5.4)

By a scaling argument,the spectrumof HA dependson only the dimensionlessvariable AR
2~.

Therefore,we can set A = 1 and study thespectrumas a function of R.
Since cP is a scalaroperator,both H

0 and V commutewith the momentumoperatoron the strip,

K = (2nIR)(L0 — L0). (5.5)

Theeigenstatesof H0, which aretheconformalstatesof the fixed point,areassumedto form a basis of
the Hilbert space. They are labelled by their conformal dimensions,their momentumand additional
quantumnumberswhich distinguishdegeneratestatesat theconformalpoint. The matrix elementsof V
in this basis are easily computed. In fact, the spaceintegration in (5.4) ensuresthe momentum
conservation,

(41IVk1~=(R/2n)(~lIcI(0,0)I~J)ôKK, (5.6)

and it remainsto compute conformal three-pointfunctions in the plane. By virtue of the infinite-
dimensionalconformalsymmetry, thesefunctionsin turn can be expressedin termsof a finite number
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of dimensionlessstructure constantsof the primary fields which characterizethe short distance
behaviourof CFT [12].An algorithmthat performsall thesecomputationshasbeenwritten by Lässig
and Mussardo[135].

The analysis of the spectrumof the infinite-dimensional Hamiltonian (5.3) is impracticable.
However,we canconstructa sequenceof truncatedHamiltoniansHA with a finite numberof elements.
The truncationcan be performedaccordingto theconformal dimensionsof thestates,i.e. putting an
upperboundA in theenergies.The sequenceHA of Hamiltoniansapproximatesthe infinite-dimensional
Hamiltonian(5.3) andconvergesto it in the limit A —~ ~. Therefore,aftera suitabletruncationof the
Hilbert space,it remainsto numericallydiagonalizetheHamiltonianHA. A typical spectrumobtained
by the diagonalizationof a truncatedHamiltonian is shown in fig. 16. In order to extract sensible
physicalquantitiesand to control the truncationeffectsof the Hilbert space,we needto know some
generalfeaturesof the energylevels.

Without truncation, theenergylevels E, on a strip of width R satisfy the scalinglaw

E~(R,A) = (2nIR)f,(R/4), (5.7)

i.e. thedependenceon thecoupling constantA is containedonly in thecorrelationlength 4(A). From a
quantumfield theorypoint of view, 4 is the inverseof thelowestmassgapm1 and is a nonperturbative
parameter.Simple expressionsfor the energylevel are obtainedin two different asymptoticregimes,
R44 and R~ 4.

In the ultraviolet regime, R4 4, the system is conformal invariant and the spectrumof (5.3)
coincideswith that of H0, hencef, are directly relatedto theconformal data,

E, -~ (inIR)(4, + Ll~— ~c) (R4 4). (5.8)

In the infrared regime,R8~-4, we areessentiallydealingwith R/4 copiesof independentsystems.The

(a)

Fig. 16. A typical spectrumE~(R)obtainedfrom TCSA. (a) Ground stateenergy,(b) one-particleline, and (c) thresholdline.
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additivity propertyof the energyleadsto a linear behaviourof theenergylevelsand their generalform
is given by

E,(R)= (e0/~
2)R+ M,. (5.9)

The dimensionlessconstantr.~is the anti-bulk vacuumenergywhich, for the integrablemassivefield

theories,can be extractedfrom the thermodynamicalBetheansatzas
(5.10)

where ~ is givenin termsofthescatteringdataby eq. (4.51). M, is the (multi)particlemasstermof the
ith level.

The previousdiscussionis slightly modified in thepresenceof a truncationof the Hubertspace.The
truncationresults in the introductionof an additional scaleparameterp relatedto theuppereigenvalues
of the unperturbedHamiltonian H

0 and the scalingform for the energiesaccordinglybecomes

E;r(R, A, p) = (2inIR)f~(R/~,RIp). (5.11)

The correlationlength~rules thecrossoverfrom theultraviolet regimeto the infraredregime,while p
characterizesthe onsetof truncationeffects.H0 is now a boundedoperator.This implies that for R
largerthanp, the eigenvalueswe extractfrom thediagonalizationof (5.3) areessentiallythoseof V. In
this unphysical regime, insteadof the behaviourpredictedby eq. (5.9), theenergiesscalelike

E:~~..,Rl_x(R>>p). (5.12)

To extract reliable information about the infrared region, a sufficient numberof stateshasto be
includedsuchthat p ~ ~. Consequently,in the spectrumof the truncatedlevelswehaveto distinguish
threedifferent scalingregimes(5.8),(5.9) and (5.12),separatedby two crossoverregionsatR -~ ~ and
R— p. Thesethreeregimescan be easily identified by meansof an effective scalingexponent[134]

a,(R) = Rd ln E,IdR. (5.13)

Measurementsof non perturbativeparametersin the infrared regionmustbe performedin the region
where a. reachesa plateauat the value a. = 1. In the unphysicalregime, we haveinsteada, = 1 — x.

In virtue of its formulation,theCSTA is not restrictedto theanalysisof integrabledeformationsbut
can be applied as well to the investigationof a genericdeformationof CFT. However,an interesting
situation occurswhenthe deformationof the conformaltheoryhappensto be integrable.In this case,
severalintersectionsbetweendifferent eigenvaluesareobservedat finite valuesof R [133—136].It is a
generalresultof quantummechanicsthat for a Hamiltonianwhich dependson a parameter(in our case
R), thecondition for possiblecrossingsof two energylevelsis that they belongto different irreducible
representationsof thesymmetrygroupof theHamiltonian. In otherwords,genericeigenvaluelines (in
the absenceof any symmetry)do not cross[140].Therefore,the energylevel intersectionsobservedin
several integrabledeformationsof CFT were interpretedas the signal of the infinite dimensional
symmetry underlying these models.
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5.2. Measurement of the S-matrix

For the integrabledeformationsof CFT, the truncation approach together with the Bethe ansatz
allows a direct numericalmeasurementof theelasticS-matrix. The basicideais dueto Lüscher[141]
andfurther developedby LflscherandWolff [142].It consistsin applyingthe Betheansatzequationsto
the caseof the two-particlestatesIA ,,A,,~t. For any obser~ied level with zero total momentum, relative
momentumk and energy E,

E=~m~+k2+\/m~,,,+k2, (5.14)

the phaseshift ~,,,,(k) is given by

exp[2i ô,,,,(k)] = exp(—ikR). (5.15)

The energyE and the mass gaps m,, andm,, can be determinedby the CSTA andcorrespondinglythe
momentumk extractedfrom eq. (5.14). Hence,the scatteringphase 5,,,,(k) can be measureddirectly
from eq. (5.15).

Lãssigand Martins [136]haveapplied this method to several integrabledeformationsof minimal
conformal modelsand confirmed the conjecturedscatteringtheoriesof thesequantumfield theories.

6. ElasticS-matricesof minimal modelsawayfrom criticality

In this chapter we present the S-matrices proposedfor the descriptionof massive integrable
perturbationsof some minimal modelsof conformal field theories.The starting point of almost all
examplesis the knowledgeof the first degrees(spins)of the additional conservedcurrentsaway from
the critical point. The minimal form of the S-matrix may be fixed on the basis of symmetry and
analyticity argumentsalone.

Initially we will consider simple bootstrapmodels associatedwith integrabledeformationsof the
non-unitary minimal models ~‘~~2,2n+ ~ and .iU~. The correspondingS-matricessatisfy the unitarity
condition S(O)S(—0) = 1 but they are not one-particleunitary. This means they may havenegative
residuesat someof the poles.

Then we will analyzethe integrablemassivedeformationsof the Ising model. Although the Ising
model is the simplestcritical system,its perturbationby amagneticfield gives rise to a bootstrapmodel
which closeswith eightparticlesand exhibitsa very rich structureof higher orderpoles.This is related
to a hiddenE,, symmetry of the model. The thermalperturbationof the Ising model is muchsimpler
becauseit reducesto free massiveMajoranafermions.However,in the spin sectorof the model, the
theory is not free andthe S-matrix is equalto S = —1.

Next to the Ising model, its tricritical version also presentsan interesting pattern away from
criticality. Therearethreedifferent integrabledeformationsof the action of the critical point. The first
is a thermalperturbationwhich givesrise to a bootstrapsystemwith sevenparticles.The secondoneis
a sub-leadingenergydeformationwhichpreservesthe supersymmetryof the conformalmodel.The last
one is the sub-leadingmagneticdeformationwhich presentsan asymmetricscatteringof the kinks K~
and K_, with one boundstatein the channel I K.. K~)but none in the channel I K~K_ ) -
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We also discussthe thermalperturbationsof the three-statePottsmodel andof its tricritical version.
Our last exampleis the exact factorizedS-matrixof the quantumfield theory correspondingto the

scalinglimit of the 0(n) vectormodelwith —2� n ~ 2 away from the critical point. In the limit n—~ 0,
this model describesthe scalingbehaviourof self-avoiding polymerchains.

We point out that theS-matricesso far proposedto describetheon-massshell dataof theoff-critical
theories are based on some conjecturesand thereforethey need additional checks. Their correct
identification may be supportedby meansof the ThermodynamicalBethe Ansatz (TBA) and the
Conformal Space Truncation Approach (CSTA).

6.1. S-matrixof the Yang—Leeedgesingularity

The simplestS-matrix of a systemwith bootstrapinteractionwas foundby Cardy andMussardo[148]
and identified with the scatteringamplitudeof the massiveexcitation of the Yang—Lee model away
from criticality.

The Yang—Lee (YL) singularity describesthe critical behaviour of an Ising model in a pure
imaginaryfield ih [151,152]. For h > h~,thezerosof thepartition functionaredenseon the imaginary
h-axis. The Landau—GinzburgLagrangianof this model is given by [153]

~=J[~(3~)2_i(h_h)~_ig3]ddx. (6.1)

This theoryat criticality (h = h~)hasonly one relevantoperator,namelythe field 4’ itself. Cardy [154]
showedthatin two dimensionsthis propertyis satisfiedby the minimalmodel~ with centralcharge
c = —22/5 andonerelevantoperatorwith scalingdimensionequalto 24 = —2/5. The effective central
charge of this model is thus c= 2/5. This theory is not unitary, i.e. the Hilbert space contains states
with negativenorm.

The scaling region aroundthe fixed point of the YL model is a one-dimensional(complex) space
spannedby the coupling constantof the relevant field 4’. Taking this coupling constantpurely
imaginary, the correspondingLandau—GinzburgLagrangianis given by eq. (6.1). Using the counting
argument,onecan explicitly establishfor the off-critical systemthe existenceof conservedcurrentswith
spins

s = 1,5,7,11, 13, 17, 19,23. (6.2)

Cardy andMussardo[148]haveconjecturedthe existenceof similar currentsfor eachvalueof s not
dividable by 2 or 3. This patternof the conservedspins allows the existenceof a particleA which
appearsas a boundstateof itself, i.e. the S-matrix5AA hasa pole at s = m~.In termsof the rapidity
variable,the s-channelpole is locatedat U = ~ in. Crossingsymmetryfixes the pole in the t-channelto
be at 0 = ~ in. Assumingno further poles*), the uniquesolution of the bootstrapequation

~AA(~) = SAA(0— ~in)SAA(U+ tin) (6.3)

*) This assumptioncan be supportedby theanalysisof thenon-relativisticBorn approximationof the Lagrangian(6.1), which showsthatthe

exchangeof the A particle in the t-channelleads to a repulsive potential.
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is given by

~AA = tanh[~(0+ ~in)]/tanh[~(O— fin)] =f213. (6.4)

Comparingwith eq. (6.1), one can easily extractthe value of the renormalizedcoupling constant*)

-2 4~ 2~ .31 4

—ig =3m s1nh(5ln)=l~v3m. (6.5)
An intriguing observationis that the residueat the polehasthe oppositesign to the oneexpectedin a
unitarytheory. On the otherhand, theS-matrix (6.4) satisfiesby constructionthe unitarity condition
5(0)S(— 0) = 1. The solution of this paradoxand, consequently,the compatibility of the above two
different formulationsof unitarity is the following [148].Let usdefine an operatorC (C

2 = 1) by

CçbC—çb. (6.6)

The Hamiltonianobtainedby (6.1) is not Hermitian but•rathersatisfiesthe equationHt = CHC. The
Fock spacestatesare createdby the repetitiveactionof thefield 4’ on the vacuum,hencethey are all
eigenstatesof C with eigenvalues(~1)”, whereN is the particle number.Since H is not hermitian,its
left eigenstates(n

5 I are not the adjointsof the right eigenstates,but they aregiven by (n~I = (nrl C.
The completenessequationreads

~ n~)(n~= E Inr)(nrIC. (6.7)

The unitarity of the S-matrix, namely

= 1, (6.8)

dealsonly with the fact that the in-statesandthe out-statesform a basisin the Hilbert spaceanddoes
not concernwhetheror not the Hamiltonianis hermitian.However,whenwe insert the completeness
equationinto (6.8),each term will be weightedby (—1 )‘~‘. This is the reasonof the wrong signfor the
residueat the pole.Thereforethe S-matrix is unitary in the sensethat it preservesthe probability but is
not one-particle unitary.

The simplicity of this model selectsit as an ideal theoretical “laboratory” for explicit checkson
off-critical statistical systems.The ultraviolet limit of the massivefield theory defined by the above
S-matrix hasbeenstudiedby Zamolodchikov[48]by meansof the thermodynamicalBetheansatz.In
this case,we haveonly one pseudo-energye~which satisfies

= ln(1 + e~’). (6.9)

The positive solution of this equationis

e1=ln[~(V~+1)]. (6.10)

*) We renorinalizethe theoryon themass-shell,i.e. therenormalizedcoupling constantis definedby i times the residueof the pole.
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Insertinginto eq. (4.39), we get for the effective centralchargethe value

~‘= (61n2)L(11(1 + e0’)) = , (6.11)

in agreementwith the CFT’ prediction.Using eq. (4.51), the universalbulk energyterm is predictedto
be

= — ~V~m2. (6.12)

A numericalanalysisof the off-critical Yang—Leemodel anda detailedcomparisonwith the scattering
theoryof the model hasbeenperformedin ref. [133].

6.2. Integrabledeformationsof non-unitarymodels~l2,2fl+3

The Yang—Leemodel belongsto the seriesof non-unitaryminimal models~‘1~2,2n+3. They havethe
most asymmetricalKactableconsistingof only onecolumn.Therearen conformalfields in additionto
the identity operator,all of them with negativeconformal weights,

~1.r~1.2n±3—r — (r—1)(2n+2—r)12(2n +3), r=0, 1,..., n - (6.13)

The central charge c and the effective central charge E are given by

c = —2n(6n+ 5)/(2n+ 3), ~= 2n/(2n+ 3). (6.14)

The fusion rules of the conformal fields are particularlysimple,

a+b

x [4’~~~]= ~ [4’~÷~J, (6.15)

c=Ia—bI

wherethe sum over c is in stepsof 2.

6.2.1. EI~1J3deformation
The scatteringtheory originating from this deformationhas beendiscussedin ref. [150].The starting

point is the knowledgeof the conservedspins.An interestingresult is obtainedfrom the analysisof the
Verma modules. In fact, in all thesemodels,the secondindependentnull-stateof the identity field
occursatlevel 2n + 2. This meansthat the dimensionof thespaceA

2~~2is loweredby 1 with respectto
that of a non-minimalmodel. However, the secondindependentnull vectorof the field P1,3exists at
level 2n, henceits descendentat level 2n + 1 is a total derivativeand doesnot affect the dimensionof
the space~2n + ~. It is thereforeplausible that the holomorphicpart

T,~dz (6.16)

(s + 1 = 2n + 2) of the conservedcharge Q2,,~1vanishesdue to the secondnull-vector state in the
Vermamoduleof the identity field. An explicit checkof thisresultin the casesn = 1,. . . , 4 wasdonein
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ref. [150],whereit was shownthat the abovecomponent(6.16) is proportional,up to totalderivative
field, to the null-vector state.The conjecturedset of conservedspins is thusgiven by

s=1,3,...,2n—1,2n+3,...,4n+1 (mod4n+2). (6.17)

Basedon the above analysisof the conservedspins,Freundet al. [150]proposedthat the massive
theory associatedto the ~“1 3 deformationof ~ 2,2,~+ 3 involves n massiveparticles with chain-like
bootstrapfusions,

A1xA1—*A2, A2xA2—>A3, ..., A~xA~—~A1. (6.18)

Using the resultof section 3.5.1,a solution of the consistencyequationsis given by

Ukk+l_klTI(
2fl+l), k=1,2,...,n. (6.19)

The massspectrumthen reads

m,,=sin[an/(2n+1)], a=h,2,...,n. (6.20)

The scatteringamplitudeof the lightestparticleA
1 is

S~~(0)= f2/(2,,+1)(0) , (6.21)

andthe remainingamplitudesareobtainedby induction

min(a,b)—1

S,,,,(U) =f1,,_,,1/(2~+l)f(,,+b)/(2~+l)T’~ (f(I,,-b+2k)/(2fl+1)
2. (6.22)

The simple poleof the first factor (for a� b),

O=iu~t”=i[1—Ia—bI/(2n+1)]n, (6.23)

is relatedto theparticleA ~ appearingas a boundstatein this scatteringprocess.Thesimple poleof
the second factor,

0 = iu~’~= i(a + b)inI(2n + 1), (6.24)

is due to the particle of type n(a, b) = min(a+ b, 2n + 1 — a — b). The doublepoles of the remaining
functions are requiredby the closureof the bootstrap.They can be correctly identified as multiple
re-scatteringprocessesalong the way describedin section3.6.2.

The TBA analysispermitsus to obtainthecorrecteffectivecentralchargeof thesemodels[51].The
matrix N,,,, entering the transcendentalequations(4.30) hasthe form

N,,,, =2min(a, b) 5ab’ (6.25)
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and the pseudo-energiess,,, solutionof theequations

= N,,,, ln(1 + e~), (6.26)

are given by

= sin[an/(2n + 3)] sin[(a + 2)in/(2n + 3)] (6 27)

e sin2[in/(2n + 3)]

The resulting valuefor E follows from a sum rule of the Rogersdilogarithm functions,

E -~ ~ L(1/(1 + e~))= 2n1(2n+ 3). (6.28)
in ,I=1

6.2.2. ~1.2 deformation
The ~1,2 deformationof thenon-unitaryminimal models~2.2n+1 gives rise to aninterestingsituation

where the underlyingsoliton structureonly appearsthrough the bound states,called breathers.This
meansthat thesolitonsplay the role of quarks,which do not appearasasymptoticstates,whereasthe
breathersare the “mesonic” particles of the theory, sensibleto measurement.This picture deduces
from the RSOSreductionof the Zhiber—Mikhailov—Shabatmodelwith respectto the quantumgroup
SL(2)q, found by Smirnov [93](see section 3.8.2). This integral deformationof ‘~~2,2n+1has been
analysedin full detail in refs. [161,163].

The spectrum consists in n — 1 breathersb,. The S-matrixof the fundamentalparticleb
1 is given by

Sb1b1(0) = fl/3fl(U)f2/3(0)f_(fl_l)f3fl(~• (6.29)

From that,we extractthepolesu~1= in andu~1= inI3n. This first poleis interpretedas a boundstate
correspondingto the fusion b1b1 —+ b1 —p b1b1. This S-matrix has the “~“ propertyand thereforea
currentwith spin s = 3 is absentfrom the setof conservedquantities(seesection3.5). The secondpole
correspondsto the breatherb2. Its mass is given by

m21m1= sin(2ir/6n)/sin(n/6n). (6.30)

Using the bootstrapequations[30,108], we can computethe amplitude
5b

1b,’

S,,~,,,(O)= f3/6fl(O)fl/6fl(O)f(2fl+l)/,,fl(O)f~~2fl+3)I,,fl(O)- (6.31)

If n is largerthan3, weget a newparticleb3 at thepoleu~2= in/2n.Treatingsimilarly the scatteringof
b1 andb3, a new boundstateb4 appearsandso on. By induction,we obtain thewhole sequence

5~j~k

(k=1,2,. - .~n—1)

5lolbk = ~ - (6.32)

The remainingscatteringamplitudesareobtainedby successiveapplicationof thebootstrapequations.
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A compactform for the generalS-matrix5t.b

5 (for p, k= 1, 2,. . . , n — 1) is given by

C, f4 \24
— J(k+p)/6n~oJ(k+p—2)/6n ~ J(k—p)/6n

x f(2n+k+p—2)/6n f(2n+k—p+2)/6nf(2n+k—p)/6n

x f(—2fl+k—~+2)I6~ f(—2~+k+~—2)/6flf(—2fl+k+~)/6fl- (6.33)

The mass spectrum is given by

mk=sin(kinl6n), k=h,2,...,n—1. (6.34)

Notice that the first line in (6.33) correspondsexactly to the structureof the S-matricesfound for the
~deformationof thesemodels[148,150]. Moreover,the numberof polesin the physicalsheetgiven

by the functionsin the secondline of (6.33),coincideswith thenumberof zerosgiven by the functions
of the third line. The matrixN,,,, whichentersthe thermodynamicalBetheansatz(TBA) is thusgivenby

N,,,, = 2 min(a,b) — ~ (6.35)

The solutionsof the equationsfor the pseudo-energies

= N,,,, log(1 + e~) (6.36)

are given by

= sin[air/(2n +1)]sin[(a+2)in/(2n + 1 , a = 1, , n — 1 (6 37)

Insertingtheminto theexpressionof thepartial centralchargecontributionsandusingthe sum rulesof
the Rogersdilogarithmfunction L(x), we get

~ L(h/(h+e
6”))=2(n—1)/(2n+1). (6.38)

in ,,=1

This coincideswith the effective centralcharge~wa c — 244min of the models~2.2n+1~ A moredetailed
analysis of the TBA for finite temperatureand a comparisonwith the numericalspectrumextracted
from the CSTA were carriedout in ref. [163].In figs. 17a—17cthe first 20 lines of thescalingfunctions
RE(R) for the models~2,2n+1 for n = 3, 4, 5 are presented.The long dashedlines correspondto the
one-particlestates,with normalizationm

1 = 1. The correspondingmassratiosarein agreementwith eq.
(6.34). The short dashedlines characterizethe lowest two-particlestate(thresholdline). Fromfig. 17
one can see that only the two lowest one-particlestates(m1, m2) are below the thresholdline. The
thresholdline, in the ultraviolet limit, originatesfrom the conformalfamily of most relevantfields ~
[136]andfor n � 3 this producesnon-trivial crossingswith the one-particlestatesm., i � 3 (opencircles
in fig. 17).
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For largeR, the energylevelsE,(R) tendto straight lineswith the sameslope,E,(R) -~ — s0R,where
r0 is the vacuumbulk energy.The numericalresultsfound in ref. [163]for t.~ arein perfectagreement
with the theoreticalone predictedby eq. (4.51), namely

(8s0)
1 = sin(in/3n) + sin(~n)+ sin(in/3n — sin). (6.39)

(a)
E*R
40

30

20

10

—Th-
I R~~i2

—10

—20

(b)

E*R

20

S— 1.0

—20

—40

Fig. 17. First 20 levels of thescalingfunctionR * E.(R) for themodels(a) JI,,, (b) ~ and(c) 4f
21, The short dashedlines correspondto the

thresholdline. The long dashedlines correspondto the massesm, of theparticles presentin the spectrum.The open circlescharacterizelevel
crossingsbetweenthethresholdline and theone-particlestatem~,i � 3.
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E*R (c)

20 _________________________________________

Fig. 17. (cont.).

The TBA equationsfor the groundstateenergyat temperatureT = 1 IR are

E1(O)+—~ JdO’coj1(O—0’)L1(s1)m1Rcosh0~ i=1,2,...,N,
lTj=l

00 (6.40)

E0(R)=R’F(R), F(R)=— -~-- ~mRJ dOcoshOL,(r,).
1=1

F(r) is a function of the variable r = m1R(m1 is the lightest mass) and its general expression reads

F(r) = — j~ + (e012n)r
2+ ~ f~(r~”~)”~, (6.41)

wherey(n) = 2(1 — ~1,2)= 6n/(2n+ 1). In eq. (6.41) the first coefficientf
1 is proportionalto the scale

betweenthe lowest massm1 and the perturbingcouplingconstantA, namely

A = [(2n)IC~1,,~12,1~]f1m~ (6.42)

where C~1n~’12~1 arethestructureconstantsof the ~ ,2n+1 models.Solving numerically eq. (6.40) for
small r, the authorsof ref. [163] computedthe exponenty and found a good agreementwith the
predictionof conformalperturbationtheory.

This analysis has confirmed that the ultraviolet limit of the massive theories defined by the scattering
amplitudes(6.33) is controlledby the fixed points of the series.A~2,2n+ 1 and thereforethe S-matrix
(6.33) defines these theories away from criticality.
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6.3. Integrabledeformationsof the non-unitarymodelk.~

The Kac table of the non-unitary minimal model At35 contains four primary operators with
anomalousdimensionsgiven in table4. With the identification

1 = ‘I~J~, 0 = ~1/201/20 ~ = ~/5~f5 /,=~ (6.43)

the fusion algebracan be summarizedas

çliXt/i=1, uX*r1+co, cXco=l+co,
(6.44)

IJX.rcp, cbXcoru, coX~o~+,It.

We can consistentlyintroducea Z2 parity, identifying the fields 1 and co asevenoperatorswhile o and~/i

as odd ones.The centralchargeand effectivecentralchargeof the model areequalto

c = — , E= c — 244mm = - (6.45)

The counting argumentpredicts conservedcurrentswith higher spins for any deformationof the
fixed-point actiongiven by the fields o~,co and ~(~‘

u—~s=1,5,11, co—~sl,
3,S,7,9,1l, I~,—*s=1,5,7,9,1l. (6.46)

Therefore,the scaling region is describedby threedifferent integrablefield theories.

6.3.1. o- deformation
From the analysiscarried out by Smirnov [93](seesection3.8.2), in this casethe kinks disappear

after the restriction and the spectrumconsistsonly of breather particles. The S-matrix of the
lowest-massparticle is given by

S~~(U)= f
217(0)f213(0)f_1121(0). (6.47)

Notice the appearanceof the function f213(O) which indicates the cP
3 property of the model, in

agreementwith the setof conservedspinsfor this deformation.The bootstrapprogramfor this model
hasnot beencarriedout andthereforethe completespectrumof the theory is presentlyunknown.

Table4
Kac tableof themodel41~andZ, parity for

theoperatorsin the41,, model.

Kactable 41 Z,

i 0 1 +
i —~ IT -

ç +

0 ~ 41—
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6.3.2. co deformation
The correspondingmassivetheory— proposedin ref. [91]— is relatedto a reductionof the sine—

Gordon model. In this reduction, certain degreesof freedomof the original sine—Gordonmodel
becomefrozen and the solitonscombineinto a single scalarparticlea, with an S-matrix given by

S,,,,(0)= tanh[~(O— i~n)]. (6.48)

Thereis no additionalboundstatesincethe aboveS-matrixhasonly an unphysicalpole at 0 = — i ~in.

The thermodynamicalBethe ansatzcomputationsfor the scatteringtheory definedby (6.48) were
performedin ref. [52].The analysisconfirms that the ultraviolet limit of this massivefield theory is
governedby theconformalmodel4135. The sameconclusionis reachedby studyingthis deformationby
meansof the conformal spacetruncationapproach[164].The first eigenvaluesof the spectrum,as
functionsof R, are shown in fig. 18. The CSTA data presenttwo degenerateground states,which
exponentiallyapproacheachother

E1(R)—E0(R)~~~.e_m!
4 (6.49)

(m is the massof the fundamentalparticlea) and no additional boundstates.The slopeof themassive

levels in this caseis positive [52]
12

= ~m - (6.50)

The thermodynamicalconsequenceof thepositivity of s hasbeeninvestigatedin ref. [164].

6.3.3. ~frdeformation
The operator4’ appearsin two placesin the Kac table: at theposition(1,4) and at (2, 1). As field

i/i belongsto the classof integrabledeformationsof a conformal minimal model discussedby
Smirnov [93](seesection3.8.2).The completesolutionandthenovelty of this deformationhasbeen

E

1 (R)

O~468IO

Fig. 18. First energylevels of the Hamiltonian associatedto the 41 deformationof the model 41,,.
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discussedin ref. [164].The massiveexcitationsof themodelsare kink-like and thereareno additional
breatherboundstates.Oneimportantfeatureof this scatteringtheory is the presenceof poles with real
residuesand with “wrong” signs.This implies that thecorrespondingunderlyingfield theoryhassome
of the coupling constantspurely imaginary.

The RSOSreduction of the model related to its quantumgroupstructure,selectsout as possible
one-particlestatesthe vectors: 1K01), 1K10) and 1K11). All of them havethe samemassm. The RSOS
restrictionprojectsout the state1K00), which cannotappearneitheras an asymptoticstatenor as an
intermediateone. Thereforea basis for the two-particle asymptoticstatesis given by

1K01K10) , 1K01K11) , 1K11K11) , 1K11K10) , 1K10K01) . (6.51)

The scatteringprocessesare

1K01(01)K10(02))= S~(O1— 02)IK01(02)K10(01))

1K01(o1)K11(o2))= S~(O~— 02)IK01(02)K11(01))

1K11(o1)K10(o2))= S~(0~— 02)1K11(O2)K10(01)), (6.52)

1K11(01)K11(02))= S~(O~— 02)1K11(02)K11(01))+ S~(O~— 02)1K10(02)K01(01))

1K10(01)K01(02)) = S??(U~— 02)1K10(02)K01(01))+ S~?(0~— U2)IK11(02)K11(01)) -

Explicitly, theaboveamplitudeare given by

0 0 = S~(0)= —i~S0(0)sinh(~0+ i~in), (6.53a)
1

0,/)x(\1 = S~(U)= i~S0(0)sinh(~O— i~n), (6.53b)

1~ =S~(O)=-i~S0(U) ::~sinh(~0+i~n), (6.53c)

1~~x~’~I= S~(0)= ~ sinh(~0), (6.53d)

N 0 / sin(~in)
= S~(O)= i~S0(O)- ~ sinh(~0— ikir). (6.53e)

0 sln(5n)

S0(O) is the following function:

S~(°)= —[sinh(~(O— in)) sinh(~(0— ~ni))J~w(0, ~)w(O,~)w(0, ?~~), (6.54)
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where

w(O, x) = sinh(1~j0+ inx)/sinh(1~0— mx).

The above amplitudessatisfy the unitarity equations:

S??(o)S??(—o)+ S?~(O)S~(—0)= 1 , S~(°)S?~(—°)+ S~(0)S~(—0)= 1 (6.55)

S~?(°)S??(—°)+ S1
1~(0)S

1
1?(—0)= 0 , S~(0)S~(—O)= 1, S~(0)S~(—0)= 1

They areperiodic functionsalongtheimaginary axis of 0 with period lOni. Restrictingour attentionto
thephysicalsheet,0 � Im 0 ~ in, the polesof theS-matrixarelocatedat 0 = ~ni and0 = ~ni. Thefirst
polecorrespondsto aboundstate in the direct channelwhile the secondone is the singularitydueto
the particle exchangedin the crossedprocess(seefig. 19). The residuesat 0 = ~ni are given by

S s-channel t-channel

o~~o>j~

1~~1>±<

i~ji>±<

Fig. 19. Intermediatestatesin thes-channeland T-channelof the RSOSS-matrix for the41-deformationof the model 41,,.
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r1 = Res0200113S~(U)= 0

r2 = Res5200113S~(0)= —i[s(~)Is(~)]
2w

r
3 = Res0217113S~(U)= —iw , (6.56)

r4 = Res921~113S?~(0)= —[s(~)Is(~)]~
2w

r,, = ResO.
21T1/3S??(O)= i[s(~)/s(~)]w

wheres(x) sin(inx) and

w = 4 s(~)s(~)Is(i~j). (6.57)

Notice the absenceof a boundstate in the direct channelof the amplitude S~.This is due to the
decouplingof the unphysicalstate K00) The residuesarenot all independentsincea relationamong
them is fixed by crossingsymmetry

S~(in— 0) = S~(O), S??(in— 0) = a2S~(U),S?~(iir— U) = aS~(0), (6.58)

where

a = —i[s( ~)Is( 2)] 1/2 (6.59)

The valuesof the residuesarein correspondencewith the couplingconstantsg111~of an underlyingfield
theory. The importantpoint hereis that the couplingconstantsg~arenot necessarilysymmetricnor
real, sincethey define an interactionbetweenthe domainwalls of asymmetricvacuaof a non-unitary
theory [164].Using the following conventionfor the ordering of the indexesin g~,i.e. starting from
the left valueand turning clockwise,

gIft

thereare the following self-consistentassignments

g111 =iv’~i, g1~=\/[s(~)Is(~)]w
(6.60)

= i[s( ~) Is( ~ )]v’7ii , g110 = i[s( ~) /s( ~ )]‘v’~i -

Some of the couplingconstantsarethereforeimaginary.
Thephysicalpicturecoming from the abovescatteringtheory hasbeenverified by the CSTA in ref.

[164].An interestinglink betweenthe conformaldataandthescatteringtheory is obtainedby analysing
the asymptoticbehaviourof the phaseshifts ô,(0) definedby

S~(0)~exp[2i~0(0)],S~(0)~exp[2iô1(0)]. (6.61)
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The samefunctions 5,(0) also appeardiagonalizing the 2 X 2 symmetric S-matrix which rules the

dynamicsof the kinks with boundaryconditionsequalto thevacuuma = 1,

(S~(0) S~(0)~ (662)

~S?~(O)S?~(°)~-

Asymptotically, they havethe following limits

lim exp[2i30(U)] = exp(~iri), urn exp[2i81(0)] = exp(~tri). (6.63)

Theseasymptoticvalues(6.63) can be usedfor the definition of a generalizedbilinear commutation

relationfor a set of two fields ~(t, x) (i = 1, 2) [100—102],
~(t, x)i~(t,y) = i~(t,y)~,(t,x) exp[2nis11e(x— y)]. (6.64)

The generalized“spin” ~ is thusextractedfrom theasymptoticbehaviourof theS-matrix. A consistent
assignmentis given by

= = ô~(co)/n‘ ~12 0, ~22 = = ~1(ctt)/n. (6.65)

The monodromypropertiesof the fields i~are thoseof the chiral field F= cP~/50 of the original CFT
4135. In fact, the operatorproductexpansionof Fwith itself reads

F(z)F(0)=—~1+~f~F(0)+”, (6.66)

where C111 is the structureconstantof the OPEalgebra. Movingz aroundthe origin, z—~ e
2lTiz, the

phaseacquiredfrom the first termon theright-handsideof (6.66) comesfrom theconformaldimension
ofthe operatoritself. In contrast,thephaseobtainedfrom thesecondtermis due to thepresenceof the
operatorF. A similar structureappearsin the monodromyrelation of the fields ~: the first phaseis
relative to the amplitudee2’~°,where thereis no boundstatein thes-channel(the “identity term” in
(6.66)), whereasthe secondphasecomesfrom the amplitudee2’~1where a bound stateappearsfor

= ~ini (the “F term” in (6.66)). In thescalinglimit, the fields ~ should thus reduceto theoperator
F(z).

As last remark,let usnotice that theamplitudesS~(0)of this model areparticularsolutionsof the
Yang—Baxterequationsfor the “hard squarelattice model” [1].The non-unitarity propertiesof the
theoryimplies that not all Boltzmannweightsarerealfunctionswhencomputedfor imaginaryvaluesof
the rapidity 0. A classificationof the consistentsets of S-matricesoriginating from the hard square
lattice model hasbeenpursuedin ref. [165].

6.4. Integrabledeformationsofthe Ising model

The two-dimensionalIsing model is definedby the microscopicHamiltonian

(6.67)
<I.)) i
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with the spin variablesu, = ±1. In the thermodynamicallimit the systemundergoesa second-order
phasetransition at /3 = ~ and h = 0 with a logarithmic singularity in the specificheat [1,73—81]. As
shownin appendixA, thescalingfield theory of the two-dimensionalIsing model is the theoryof free
massiveMajoranafermions

~/?=~ç1i~94’/az+ ~ç1iTh/i/äz + iml/JI/J. (6.68)

The massparametermeasuresthe deviationof the temperaturefrom its critical value

m=T~Tc. (6.69)

At the critical point, we have free masslessfermions with equationsof motion

(6.70)

Hence,4’ is a holomorphicfield and 4’ an anti-holomorphicone. Their two-point functionsare

(4’(zl)4’(z2)) = 1/(z~— Z2) (4’(i1)4i(i2)) = 1/(i1 — Z2) - (6.71)

From the expressionof thestress-energytensor

T(z)= — : 4’(z) ~— 4’(z): (6.72)

and its two-point function

(T(z1)T(z2))= 1/4(z1— z2)
4 , (6.73)

we can extractthe valueof the centralchargeof the model, c = ~. Therefore,the scalinglimit of the
Ising model is describedby the first minimal unitary model 4134 of CFT [12].The Kac table of this
model is shownin table 5. -

The field with dimension~2,1 = 4~3= ~and4 = 0 is correctlyidentifiedwith theOnsagerspinor4’(z)

of the Ising model. The scalarcombination

r(z, ~) = i: i/i(fl4’(z): (6.74)

correspondsto thescalinglimit of theenergyoperatorof the lattice model.The critical exponentof the
specificheat, a = 0, can be extractedfrom its two-point function.

The spin sectorof themodel is given by themagnetizationoperatoro-(z,~) andby thedisorderfield

Table 5

Kac table of theIsing model.

0
~1~

16 16

0
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~(z, 1). Thesefields havespin zero, i.e.

~0. = = , (6.75)

andthe Kramers—Wanniersymmetryfixes their anomalousdimensionsto be equal. Explicitly,

= , (6.76)

as can be seenfrom the exactsolution of the model for the two-point function

(o(z, flo(0,0)) = lzLt’4. (6.77)

The fields 4’, ci and ~aare not mutually local: in fact, thecorrelationfunction

(4’(z)cr(z
1)”.cr(z,,)~s(z,,~1”~/.L(Zm)) (6.78)

is adouble-valuedanalyticfunction of z that acquiresa phasefactor(—1) aftertheanalyticcontinuation

aroundany singularpoint Zk [77].This translatesinto the following operatorproductexpansion
4’(z)u(0, 0) = ~(0,0)1V2+..., 4’(z)p.(0,0) = ci(0, 0)/V~+...,

(6.79)
ci(z, flp,(0, 0) = z

318z~”8[4’(z) + . .] + z’8i318[4’(i) + --S].

Thereare threedifferent setsof local fields which can describethe critical regimeof the Ising model.
Theycan be easilyselectedout by analyzingthe effect of boundaryconditionschosenfor the transfer
matrix of themodel [24].We denoteby ZA~thepartitionfunctionfor an 1 x 1’ rectanglewith boundary
conditionsof typesX, V on the two pairs of oppositesides.P stays for periodicboundaryconditions
whereasA for antiperiodicones.Let r be the ratio of two dimensions

rl’Il. (6.80)

With periodic boundarycondition in both directions,the only combinationinvariant under the full
modulargroupgeneratedby

T—3l1T, T~T+i, (6.81)

is given [24] as

2 2 2Z~, xo + Xl/
16 + Xl/2 . (6.82)

Thereforethe local setof fields with theseboundaryconditionsare

{A1} = {1, ci, , (6.83)

or, equivalently,
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{A1} = {1, ~s,r} - (6.84)

The OPE algebrais given by

[s]*[s] = [1], [e]*[cr]= [ci], [ci]*[ci]= [1]+ [e] . (6.85)

These fusion rules are compatiblewith the spin reversalsymmetry (o-—-s’ —ci) and duality (s—~—
If we choose antiperiodic boundaryconditions on the horizontal sides of the strip and periodic

boundaryconditions on theotherdirection thepartition function is given by [24]

= lx11t~I
2+ + ~Yl/2- (6.86)

Inverting the role of the two directions, we get

ZPA = 1x
01

2 — 1x
11161

2+ 1x
1121

2. (6.87)

The combination

ZPA+ZAP=lxo+xl/,I2 (6.88)

is invariant under a subgroupof the modulargroup generatedby

T—*lIT, T—~T+21, (6.89)

andgives rise to the free fermiondescriptionof the Ising model. In this descriptionthesetof local fields

coincideswith
{A

3} = {1, 4’, 4’, r} , (6.90)

and the fusion rules are

[4’]*[4’]=[1], [~p]*[~p]=[1], [4’]*[4c]=[e],
- (6.91)

[r]*[4’][~i], [s]*[4’][4’].

The computationof the correlationfunctionsof the critical Ising model hasbeencarried out in refs.
[12,82]. In thenext sections,we will discussthe scalingregionaroundthe critical point spannedby the
thermaland magneticdeformationsof the Ising model.

6.4.1. Thermal deformation
The thermaldeformationof thecritical point actionof the Ising model correspondsto the quantum

field theory defined by the massivefermionic system, eq. (6.68). The interchangebetweenhigh-
temperaturephase(T> T~)and low-temperaturephase(T < T~)is equivalentto reversingthe sign of
themassterm. Sincethe two phasesarerelatedby duality, it is sufficient to discussonly one of them,
say the high-temperaturephase.
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The fermionic sectorof the model is of coursea free field theory with an S-matrix equal to the
identity. However, the magnetizationsector correspondsto a Z2-invariant field theory of a single
(self-conjugate)bosonfield ci. It gives rise to the simplestnontrivial scatteringtheorywith no bound
statesand an S-matrix [81,143]

s=—i. (6.92)

This resultcan be obtainedasa limit caseof the generalZ,~invariant modelssolved by Köberleand

Swieca[143].Thesemodelshaven — 1 particleswith massspectrum
m,,=sin(na/n), a=1,2,...,n—1. (6.93)

The S-matrix for the fundamentalparticle is given by

S~= tanh[~(0+ i2n/n)]/tanh[~(0— i2n13)] = f21,~ (6.94)

Choosingn = 2, we recoverthescatteringamplitude(6.92)
The checkof thecorrectcentralchargerecoveredin theultraviolet limit is easy:theconstantvalue

of the pseudo-energys1 is just s~= 0 and substitutingthis in eq. (4.39),we get

(6.95)

in agreementwith the predictionof CFT.

6.4.2. Magneticdeformation

Let S* be thecritical actionof theIsing model. Its perturbationby the relevantoperator~ ,2 = ci(x),

55*+hJU(x)d2x, (6.96)

couplesthe modelto an externalmagneticfield h. The valueof the temperatureis that of thecritical
point T= Tc. The analysisof the quantumfield theory originating from the action (6.96) hasbeen
worked out in a remarkablepaper by Zamolodchikov[30],which initiated the whole areaof study.

The magneticdeformationof the Ising model preservesa numberof nontrivial local conserved
chargespresentat theconformalpoint. The lowestdegreesof theseintegralsof motion canbeobtained
by applying the counting argument[30].The first representativesare

s=1,7,11,13,17,19. (6.97)

Noticethe lackingof spinss having3 and 5 asdivisors. The absenceof degreesswhich aremultiplesof
3 is easily explainedby postulatingthe existenceof a fundamentalparticle A1 (with massm1) that
possessesthe cP

3 property,i.e. A
1 itself appearsasboundstatein theA 1A1 scatteringwith resonance

angleu~1= ~ni. This is compatiblewith the explicit breaking of the Z2 symmetryof the conformal
action. The absenceof degreess divisible by 5 can be explainedby conjecturingthe existenceof a
secondparticle stateA2 (with massm2) that, togetherwith A1, gives rise to the following subsetof
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bootstrapfusions:

A1xA1—~A1+A2,A2xA2—*A1. (6.98)

Let u~1be the resonanceangle correspondingto the boundstateA2 that appearsin the scattering
amplitude 5~~(0)of the fundamentalparticle and u~2the resonanceangle associatedto A1 in the
scatteringamplitude522(0). Using the variables

y1 = exp(~iu~1),y2 =exp(~iu~2), (6.99)

the bootstrapconsistencyequationsassociatedto thebootstrapfusions (6.98)are given by (seesection
3.5)

y~+ y~’= (m2Im1)~y~I~~,y~+ y~
5= (m

1/m2)~~I~~. (6.100)

For s running on the set (6.97), a nontrivial solution is given by

y1=exp(~in), y2=exp(~in). (6.101)

Thereforethe massratio is fixed to be

m21m1=2cos~n. (6.102)

Collectingtheseresults,we concludethat in thescatteringamplitudeS11(0)of the fundamentalparticle
thereare poles with positive residuesat the resonanceangles

0=iu~1=~ini,0=iu~1=~ni, (6.103)

togetherwith the cross-channelpoles (with negativeresidues)at

U=iü~1=~iin, U=it~1=4ini. (6.104)

However,it is possibleto satisfy the bootstrapequation

S~~(0)= S~~(U— ~in)S11(U+ kin) (6.105)

with only thepoles (6.103) and (6.104). It is thus necessaryto include furtheradditional poles. The
minimal way to satisfy (6.105), without spoiling the conservedchargeswith degrees(6.97), is to
introducea pole at 0 = ~in (with positive residue)and its crossedsymmetricalone at 0 = ~ in (with
negativeresidue).The scatteringS-matrixfor the fundamentalparticleconjecturedby Zamolodchikov
[30]is thus

S~~(0)=f113(0)f215(0)f1115(0)- (6.106)

The bootstrap tree generatedby this fundamentalamplitude closes within eight particle states
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A1,A2,. . . , A8 and mass spectrumcollected in table 6. The full set of S-matricesis gatheredin
appendixC, togetherwith the bootstrapfusions and the resonanceangles.The massratios and the
S-matricesare relatedto the “root system” of E8. This algebraicstructurecanbe tracedbackto the
equivalentrealizationof the Ising model in terms of the cosetconstruction(E8)1 ® (E8)1/(E8)2 (see
appendixC).

The thermodynamicalBetheansatzanalysisof the scatteringmodel correspondingto themagnetic
deformation of the Ising model confirms that the ultraviolet central chargeis equal to 1/2 [51].
Numerical checksof the massspectrumhavebeenobtainedin refs. [137,138, 184].

6.5. Integrabledeformationsof the tricritical Ising model

The Tricritical Ising Model (TIM) is the secondmodel in the minimal unitary conformal series
[12,13]. Its central chargeis c = ~, and there are four relevant scaling fields. It representsthe
universality classof the Landau—Ginzburg~P

6theory

J ~ (6.107)

at its critical point A
1 = A2 = A3 = A4 = 0 [34]. This Lagrangian describesthe continuum limit of

microscopicmodelswith a tricritical point, amongthem the Ising modelwith annealedvacancies.Its
Hamiltonian is given by [60,61]

~‘—/3~ ci,ci1t1t1—p..~t1. (6.108)
(‘I) I

/3 is the inversetemperature,~ the chemicalpotential,ci, the Ising spinsand t1 is thevacancyvariable*).
The model has a tricritical point (P~~p~)related to the spontaneoussymmetry breaking of Z2
symmetry. The phasediagramis shown in fig. 20. The dashedline correspondsto a critical line of
second-orderphasetransition: the largedistancebehaviouron this line is controlledby the Ising fixed
point. The solid line is, on the contrary,a line of first-orderphasetransition.

At the critical point (f3~,~), TIM can be describedby the following scaling fields: the energy
density~(z, i) with anomalousdimensions(4,4) = (~,~), thevacancy_operatoror subleadingenergy
operatort(z, ~) with (4, 4)= (4, 4), the irrelevant field ~“ with (4, 4)=(~,~), the magnetization
field (or order parameter)ci(z, i) with (4,4) = (~,~), and the so-called subleadingmagnetization
operatora(z, fl with anomalousdimensions(~,~) (see table7). All thesefields enterthemodular

*) As usual,a- = ±1and t = 0,1.

Table 6 Table 7
Mass spectrumof the Ising model in a magneticfield. Kac table of thetricritical Ising model.

m,=M 1 0
m2=2Mcos(lsr) 1.61803
m,=2Mcos(,

1eir) 1.98904 i’i~ mIs mIt
m

4 = 4M cos(~ir) cos(~ sr) 2.40487 0
m,=4Mcos(lir)cos(~ir) 2.95629
m6 = 4M cos(lsr)cos(s~ir) 3.21834
m7 4Mcos

2(iir)cos(~ir) 3.89116
m

8 = 8M cos
2( ir) cos(~ ir) 4.78338



312 G. Mussardo, Off-crtt,cal statistical models: factorized scattering theories and bootstrap program

tt~c,C

/3
Fig. 20. Phasediagramof the tricritical lsing model.

invariant partition function [24,25]. The Z2 original symmetry of the Hamiltonian splits the set of
operatorsinto two classes,odd and even.The spin operatorsareodd while the energyoperator,the
vacancyoperatorand the irrelevant field r” areeven. In the subalgebraof theseevenfields, thereis a
secondZ2 symmetrygiven by the Kramers—Wannierduality, underwhich r ands” areoddwhereast is

even:

DtED = —r, D’tD = t (6.109)

In the spin sector,the applicationof Kramers—Wannierduality generatesthe dual disorderfields.
A peculiarfeatureof TIM is thepresenceof two otherinfinite-dimensionalsymmetriesin additionto

that of the Virasoro algebra:a local fermionicsupersymmetry(generatedby T(z)and G(z)= ~3/2,o)

and a hiddenE7 structurerelatedto the equivalentconstructionof TIM in terms of the cosetmodel
(E7)10(E7)11(E7)2.We refer to appendixB for thediscussionof the tricritical Ising model in termsof
this cosetconstruction.Here we briefly analyzethe superconformalpropertiesof the model.

The fermionic symmetry is that of N = 1 supersymmetry[64]. This consistsof the Neveu—Schwarz
andRamondalgebras.The Virasoro representationsorganizethereforeinto irreduciblerepresentations
of N = 1 superconformaltheory.

The Neveu—Schwarz(NS) sector is given by the evensubsectorof the Z2 symmetry: the energy
operatorand the vacancyoperatorbuild up a superfield,wherethe latter one plays the role of the
highestcomponent

P(z, i) = r(z, z) + 0~1’(z,i) + ~(z, i) + UOt(z, ~). (6.110)

The NS sectorof the theory is solvedwith thegeneralizednull-vector method [65].
The Hilbert spaceof the superconformaltheoriesalso containsirreduciblerepresentationsof the

Ramondalgebra,correspondingto thespinfields [64]. Theyare non local with respectto the fermionic
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part of the superfields. To solve the theory in the Ramondsector, it is more convenientto use a
Coulombgasformalism, in which the Ramondfields arerepresentedby the Ising order—disorderfields
times the usual bosonicvertex [66]. In the presentcase,the Ramondfields are the original Z2 odd
operators.

This algebraicapproachcan be rephrasedin termsof a supersymmetricLagrangianformalism. In
fact,TIM describesthe nontrivial fixed point of the following Landau—Ginzburgsupersymmetricaction
of one real scalarsuperfield[34]

~f= Jd
2z d20 [~DcP13~P+ gW(~)]. (6.111)

D = aIao + 0 818z is the usual covariantderivativeand W(P) = iJ~.The Lagrangian(6.111) hasthe
advantageof showingdirectly which arethe deformationsof the theory that preservesupersymmetry.
They arethe F-componentsof the superfields.In the caseof TIM this is just thefield t(z, fl. Since this
field is evenunderduality, its insertion into the action

~ + Af d2zt(z, ~) (6.112)

shifts the theory alongthe phasetransitionlines. The sign of the deformationdetermineswhetherthe
off-critical systemreachesthe line of second-orderphasetransitionor that of first order. If A > 0, we
havea situationof spontaneouslysupersymmetrybreaking [67]: the scalarfield becomesmassivebut
the fermionfield remainsmassless(goldstino).The renormalizationgroup trajectoryendsat the fixed
point of the Ising model. In the infrared limit the scalar particle becomesinfinitely massiveand
decouplesfrom the theory and we obtainthe usual masslessdescriptionof Ising model. If A <0, the
model describesthe scalingregion of the first-orderphasetransitionline. The correspondingmassive
quantumfield theory will be describedin section6.5.2.

After this discussionabout the propertiesat the critical point, we now turn to the analysisof the
massivetheoriesarising from differentdeformationsof TIM. The countingargumentselectsthreeof
them as integrable directions in the phase diagram, those of the leading thermal operator, the
sub-leadingthermaloperatorand the sub-leadingmagnetization(tables8—11). The leadingmagnetic
perturbationseemsto be non-integrable:this is supportedby the counting argument(table 8a) andby
an explicit check of the absenceof conservedcurrentsof spin5 andspin 7 [134,63]. Furthersupportof
this picture comesfrom the numericalanalysisof this deformation[134].

- Table 8
Dimensionsof thespacesA,., and ç2

131~,1,.The counting argumentgives no evidenceof conservedcurrentsfor this perturbation.

s 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 0 1 0 2 0 3 1 4 2 6 3 9 6 12 9 18 14

~(3I80)s 0 1 1 1 2 2 3 4 5 6 8 10 12 15 19 22 28 34

- Table 9
Dimensionsof thespacesA,~,and ~,,,,,,. In boldfacearethe spinsof theconservedcurrentsfound by thecounting argument.

s 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 0 1 0 2 0 3 1 4 2 6 3 9 6 12 9 18 14

~(1/10)s 0 0 1 1 1 2 2 3 3 5 5 8 8 11 13 17 19 25
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- Table 10
Dimensionsof the spacesA,,, and ~(716)s• In boldfacearethe spinsof the conservedcurrentsfound by thecounting argument.

S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
A,, 1 0 1 0 2 0 3 1 4 2 6 3 9 6 12 9 18 14
~(7I16)s 0 0 1 1 1 2 2 2 4 4 5 7 8 10 13 15 18 23

Table 11
Dimensionsof the spacesA,,, and ~(6/ ,,,,. In boldfacearethe spins of the conservedcurrentsfound by the countingargument.

s 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
A,, 1 0 1 0 2 0 3 1 4 2 6 3 9 6 12 9 18 14

0 1 0 2 1 2 2 4 3 6 5 9 9 13 13 20 20 28

6.5.1. Leadingthermal perturbation
Let us considerthe theory definedby the action

~~*+Afd2zE(zi) (6.113)

For A >0 the systemis in the Z2-symmetrichigh-temperaturephase.The behaviourof the systemin the
low-temperaturephase(A <0) is relatedby duality to the previousone. In the following we consider
the massivequantumfield theory definedby (6.113) with A positive.

As shown in appendixC, the field r is associatedto the adjoint of E7. Following the original
suggestionof Eguchi—Yang[1891andHollowood—Mansfield[190],the off-critical massivesystemshares
the samegradingof conservedcurrentsas the affineTodafield theory for the algebraE7, i.e. thespins
of the higher conservedcurrentsare equal to the exponentsof the E7 algebramodulo the Coxeter
numbersh = 18, i.e.

s= 1,5,7,9,11,13,17 (modl8). (6.114)

The existenceof thesenon-trivial conservedcurrentscan be explicitly checkedfor thelowestvaluesof s
usingthe countingargument.The presenceof thesehigher conservedcurrentsimplies the elasticityof
the scatteringprocessesof the massiveexcitations.To computethe massspectrumandthe scattering
amplitudes,it is importantto observethat the “fundamentalparticle” of this massivetheorycannotbe
a boundstate of itself becausein the set of conservedspinsthereis the spin s = 9. As explainedby

Fateevand Zamolodchikov[159],one should expectthe occurrenceof this situationbecausethe 1,
symmetry is exactevenaway from criticality andcan be usedasgood quantumnumberfor labelling the
states. The “fundamentalparticle” is expectedto be Z2 odd and thereforecannotsatisfy the P~
property.However, the existenceof Z2-evenparticleswith the P

3 propertyis not in contradictionwith
the conservedchargesprovidedthe operator~9annihilatesthesestates.Let usassumethat the lightest
of such particles,denotedby A

2, appearsas bound state in the scatteringamplitude of the Z2-odd
“fundamentalparticle”A1. Since ‘y~~ 0 but y~= 0, usingeqs.(3.38)weobtainfor the resonanceangle
u~1the condition

cos(~u~1)=0. (6.115)
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As shownin ref. [159], in the range0< u~1< in the solutionof (6.115)which gives rise to a consistent
systemis

u~1~n. (6.116)

This fixes the massratio of the particlesto be

m2=2cos(fgn)m1. (6.117)

Usingeq. (3.23)we seethat the existenceof apoleat 0 = i ~in in Si~with positiveresidueimpliesapole
in ~12at 0 = i ~in with negativeresidue,correspondingto the singularity dueto the particleA1 in the
cross-channel.With theseconditions,the bootstrapequationsfor the amplitudesS~and S12 become

Si2(0)=S1i(0+i~n)Sii(0—ii~n), (6.118)

S~~(0)= S~~(0+ ifr)512(0 — i~n). (6.119)

We cannotsatisfytheseequationwith only onepolein ~1 1 and S12.The minimalway to fulfill themis to
introducean additional pole at 0 = i ~in with positive residuein S~(and correspondinglya pole at
0 = i ~in with negativeresidue) and a pole at 0 = i~ in with positive residue(and at 0 = i ~4in with
negativeresidue)in ~12~ The poleat 0 = i~inin S~correspondsto a new Z2-evenboundstateA4 with
mass

m4=2cos(1
1

8in)m1. (6.120)

The pole at 0 = i~
7

8in in ~12 representsanotherZ2-odd particleA3 with mass

m32cos(~in)m1. (6.121)

We can now usethe bootstrapequationsin order to computethe other scatteringamplitudes.The
bootstrapcloseswith sevenparticles. The completeset of S-matriceswas computedby Christeand
Mussardo[157]and can be found in appendixB. The list of the resonanceanglesis given in table 12
whereasthe massesof the particlestogetherwith their Z2 parity are collected in table 13. The seven

Table 12
List of the polesu,

6, of odd orderof the S-matricesS,,. In parenthesesare thoseof order >1.

Pole Setof u,~, Pole Setof
4 5 7 jj 6 7 3 3

9 IT U

11, U72, U33 18 IT (u46), (u,,), u,4, u23
6 7 2 ~ ~ 5 5 ~ 2

6 IT U14, U,5 u44, (ufl), u~6,(u36), (u,,), u52
2 7 7 I 4 4 6 6~Sr U16, u,4 si u~2,(u45), u25, (u67), (u,7)

(u~),(u~7),(u~~),U~3,U~4,ub, u~,,(u~~)

ii u~, ii u~,u~3,(u~7),u~7,u~5,(u~7),u~6
(u~5),u~2 ~1r u~6,u~,,u~6,u,, u~7,u~6,(u~7)

~Ir u~2,u,,, (u36), u~4 fir u~4,u~6,u~7,u~7,u~,,u~,
u13, (u35), (u6j, (u27), (un), u,~
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Table 13
Massspectrumof theE

7 Toda system.

m1=M I odd
m,=2Mcos(~ir) 1.28557 even
m1=2Mcos(lir) 1.87938 odd
m4=2Mcos(~ir) 1.96961 even
m~=4Mcos(~ir)cos(~r) 2.53208 even
m6=4Mcos(~i~)cos(~i,-) 2.87938 odd
m7=4Mcos(~~)eos(~ir) 3.70166 even

particlescan be written in termsof two triplets and one singlet [157],

(Q1, Q2’ Q3) =(m6, m3, m1) , (K1, K2, K3)~(m2,m4, m7) , (N)~(m5). (6.122)

The first triplet consistsof particles that are odd under the Z2 symmetry.The other triplet and the
singlet are Z2 even. The “bootstrapfusions’ involving [N] and [N, K1] form closedsubsets

N~N=N, N•KA=Kl+K2+Kl,
(6.123)

KA•KA+l=KA+N, KA~KA=KA+KA+l+N.

The remainingparticlesonly couple to the previousone. We obtain

KA . QA = QA+1 , KA~QA+1 = Q1 + Q2 + Q3,

KA~QA-1 = QA_1 + Q~1, QA QA = KA_l + KA+l, (6.124)

QA.QA+I=KA+KA_I+N, N~QA=QA_l+QA÷l.

We will commentfurther on theserelations in the next chapterdevotedto the affine Toda field
theories.It is worth noticing here that thesebootstrapfusions are a subsetof the tensorproduct
decompositionof the associaterepresentationsof E7 [226,227] (seeappendixA).

The massspectrumhasbeennumericallyconfirmedby Lässig,MussardoandCardy in ref. [134].An
independentcheckhasalsobeendoneby Von Gehlenby usingfinite-size analysison the Blume—Capel
model [62]. The TBA computationconfirms that the ultraviolet behaviourof the above scattering
theory is controlledby the CFT of the tricritical Ising model [51].

6.5.2. Sub-leadingthermal perturbation
The scatteringtheory relativeto this integrabledeformationof TIM hasbeendiscussedoriginally by

Zamolodchikov[179].The off-critical theory is definedby the action

~~*+AJd2zt(z,i). (6.125)

Besidesa numberof local bosonicconservedcurrentswith spins s = 1, 3, 5, 7,. . . , the field theory
definedby (6.125)also possessestwo integrals of motion Q and Q with spin s = ±~ (seechapter2).
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This is becausethe field t(z, ~)is the uppercomponentof the superfield 1’(z, i) in eq. (6.110) and
thereforethe off-critical action (6.125) is invariant undera global supersymmetrygeneratedby

Q=J(Gdz+~Pdfl, Q=J(Gdi+~Pdz). (6.126)

For A <0, the modeldevelopsafinite correlationlength.Thefield t(z, i) is invariant with respectto the
duality transformationand its insertion into the action shifts the theory alongthe self-dualline of the
first-orderphasetransitionline, wherethreephasessimultaneouslycoexist.The correspondingLandau—
Ginzburgpotentialis shown in fig. 21. Therearethreedegenerateground statesdenotedby —1), 0)
andIi). Themassiveelementaryexcitationsconsistin four differentkinks connectingtwo neighbouring
vacua.We denotethem by

K0,_1 , K~10, K_1,0 . (6.127)

They have the same mass M. An asymptotic multi-particle state is given by a sequenceof kink
configurations

K~0~1(O1)K~,1g2(02). K~1~(O~)). (6.128)

In order to havea finite energy,the neighbouring“vacua” u~must satisfythe condition

(6.129)

The action of Q and Q on the asymptoticstatesis given by [179]

Fig. 21. Landau—Ginzburgpotential for the~ deformationof the tricritical Ising model in themassiveregime.
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QIKl(O1)Kff1ff2(O2)~. K~1~(O~))= ~ M”
2~(~,~) e°~

x K_~
0,_,~(O1)~K_aji.aj(~)K_~j,~,+ K~_1,~(O~))

QIK~(Ol)KffI,U2(O~. . K~(O~))= ~ M~$(~,~) e°’~ (6.130)

X K_~,_,~1(O1). K_~1 ~ . K~1ff(Ofl)) ,

where

J3(o-, r’)=o~+iu’, o,o’)=u—io’. (6.131)

Since the operatorsQ and Q are integralsof motion, they must commutewith the S-matrix of the
model, definedby

= A0(01 — 02)1K0 +~(O2)K+50(O1))+ A1(01 — O2)~K0._~(O2)K_5,0(O1)),

K+~0(O1)K0~5(O2))= B0(01 — O2)~K+50(82)K0+3(01)) , (6.132)

K+~0(O1)K05(O2))= B1(01 —

The above amplitudesare furtherrestrictedby the unitarity and the crossingsymmetry conditions

A0(6)A0(—O)+ A1(O)A1(—O)= 1, B0(O)B0(—O)+ B1(O)B1(—O)= 1,
(6.133)

B0(O)= A0(i~— 0), B1(0)= A 1(ilr — 0).

The minimal solution is given by [179]

A0(0)=e’~°cosh~0E(0),A1(0)=e~~°sinh~0E(0)
(6.134)

B0(0)= e’~°(cosh~0— i sinh ~0)E(0), B1(0) = e~’°(cosh~0+ i sinh ~0)E(0),

wheree
2’~’~’= 2 and E(0) is the following meromorphicfunction

E(0)= (cosh ~0)_112 exp(~ j ~ sin(0tRT)cosh2~t). (6.135)

It satisfiesthe functional equations

E(0)E(—0)= 1/cosh2~0,E(O)= E(ilT— 0). (6.136)

Thescatteringamplitudesareperiodic functionsof 0 with period equalto 8 in. They do not havepoles
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on the physical sheet and therefore no additional bound states appear in the spectrum. It is worth
noticing that the same scattering amplitudes are recovered by applying the generalreductionprocedure
for the cI~~ deformation discussed in section 3.8.1, the only difference being in the notation used for
denoting the kink states. The abovepicture of this off-critical theory hasbeenconfirmed both by a
numerical analysis [134]and by the TBA approach [53].

6.5.3. Sub-leadingmagneticperturbation -

The perturbing field has anomalous dimensions (4, 4) = (~
7g,~) and is odd with respect to the Z

2
spin-reversal transformation. Hence, this deformation explicitly breaks the Z2 symmetry of the
tricritical point and the corresponding massivetheory can exhibit the P

3 property. The counting
argument supports this picture, giving for the spin of the conservedcurrents the values s =

(1, 5, 7, 11, 13) [30,134]. The interesting features of this massive field theory have been first outlined in
ref. [134]where the model was studiedby the conformalspacetruncationapproach.Thelowestenergy
levels with periodic boundary condition are given in fig. 22. The theory presents two degenerate ground
states (which correspond to the minima of the asymmetric double-well Landau—Ginzburg potential in
fig. 23) and a single excitation B of mass m below the threshold at 2m. The twofold degeneracy of the
vacuum permits two fundamental kink configurations K+) and K_) and, possibly, bound states
thereof. If the two vacua were related by a symmetry transformation, i.e. if we were in the situation of
a spontaneously broken symmetry, a double degeneracy of the breather-like bound state I B) would be
expected in the infrared regime R—~ °~. However, the absence of a Z

2 symmetry makes it possible that
in this case only one of the two asymptotic states I K~K_) or K_K~)is coupled to the bound state B).
This is confirmed by the explicit solution of the model, proposed in [166]along the line of Smirnov’s
RSOSreductionof the Zhiber—Mikhailov—Shabatmodel. In this case, the only possible values of a,
which label the vacuumstatesin the RSOSS-matrix (seesection3.8.2) are0 and 1. The one-particle
statesare thus the vectors: 1K01), 1K10) and 1K11). They correspond to the states that we previously
denoted as Ky), K_) and B) respectively.All of them havethe samemassm. Notice that the state

::~T,~2

Fig. 22. First energylevelsof the Hamiltonian associatedto thesub-leadingmagneticdeformationof thetncritical Ising model.
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V (ct)

Fig. 23. Landau—Ginzburgpotential for the sub-leadingmagneticdeformationof the tricritical Ising model.

1K00) is projectedout becauseof the reduction.The scatteringprocessesaregiven by

K01(01)K10(02))= S~(0~— 02)1K01(02)K10(01))

= S~(0~— 02)1K01(02)K11(01)),

= S~(o1— 62)1K11(o2)K10(61)), (6.137)

= S~’~(0~— 02)1K11(02)K11(01))+ S~’?(0~— 02)1K10(02)K01(01))

= S°
0(0— 0

2)1K10(02)K01(01))+ S~?(0~—lt\ 1

Explicitly, the aboveamplitudesare given by

0~ = S~(0)= i ~S~(0)sinh(~0— i sin), (6.138a)

oXi = S~(0)= —i ~S0(0)sinh(~0+ i sin), (6.138b)

1 sin(~1r)iXi = S~(0)= i ~S~(0)sin(~in)sinh(~0— i fin),

= S?~(0)= —i ~So /sin(kin)” 1/2/0 (0)(\sin(2)) sinh(~0), (6.138d)

i)~

sin(~1T)
1 = S??(0)= —i ~S~(0)sin(~ir)sinh(~0+ i gin). (6.138e)

0
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The function S~(0)which implements the unitanty condition reads

S~(0)= —[sinh(~i(0 — un))sinh(~(0 — ~ini))]1w(O,—~)w(0,~)w(0, i~i)

xt(0, ~)t(0, — ~)t(0, ~)t(0, — ~), (6.139)

where

sinh(~0 + iinx) sinh(~(0 + iinx))
w(0, x) = . . , t(0, x) .

sinh(~0— llTx) slnh(
5(0— lTX))

Note that a non-trivial chargeconjugationoperatorappearsin thecrossingsymmetry transformations.
However, it is always possible to implement the crossingsymmetry in a standardfashion by using
“gauge” transformedamplitudes,asclarified in refs. [95,166]. This consistsin a changeof basisin the
spaceof asymptoticstatesand, correspondingly

sakak 0 — 0 ~ (_i\(ak~~)I

2ak_lak+Ik k k+1) ‘. /

/ [2a + 1] [2’ + 1] \ 0/2iTi— k q k q I 5akak (0 — 0 ) (6 140)
— \ [2a~_

1+ i]q[
2ak+1 + 1]qi ak_lak+l k k+1

where

[Y]q= (qY/2 — q_Y/2)I(q”2 — q”2)

In the new basis, thecrossingrelationsbecometrivial

aktak+1( — 0) = S~
4,1~~(0). (6.141)

But, the price we pay by performing such procedure is that the new amplitudes have an oscillatory
behaviourfor 0 —~ co, which might be inconvenientfor a comparisonof the ultraviolet limit of the
S-matrixwith theunderlyingCR’ (seebelow).

The amplitudes (3.3) are periodic along the imaginary axis of 0 with period i0ini. The whole
structureof poles and zeros is quite rich. On the physical sheet, 0 sTm 0 � in, thepolesof theS-matrix
are locatedat 0 = ~ni and 0 = ~in (fig. 24). The first pole corresponds to a bound state in the direct
channelwhereasthe secondone is thesingularity dueto theparticleexchangedin thecrossedprocess.
The residuesat 0 = ~in aregiven by

o o 0 0 0

* * * * * * *

I I I I I I I

in 2ni in 2iri 7ni 8iri
0 -~- —b-- ~ _i— -j-- -j-- in

Fig. 24. Pole structureof S0(O) in theRSOS S-matrix of the sub-leadingmagneticdeformationof the tricritical Ising model.
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= Res02,~113S~(0)= 0

r3 = Res9.27.1/3S~(0)= i[s(~)Is(~)]
2w

r
3 = Res0..2,~1/3S~(0)= ico , (6.142)

01 2 1 1/2
= Res0.2,~1/3S~~(0)= l[S(g)IS(g)] w ,

= Res02,~1/3S??(0) = i[s( ~) Is( k

where

5 ~

(09 ~ (6.143)

ands(x) sin(lnx). In the amplitude S~thereis no boundstate in the direct channelbut only the
singularity coming from the state1K11) exchangedin the t-channel.This is easily seen from fig. 19
where we stretch the original amplitudes along the vertical direction (s-channel)and along the
horizontalone (t-channel).Since the state1K00) is not physical,the residuein the direct channel is
zero.

The above scattering theory easily explains the spectrumobtained by the CSTA. In fact, the
one-particleline a of fig. 22 correspondsto thestate1K11). This energylevel is not doubly degenerate
becausethe state1K00) is forbiddenby the RSOSselectionrules. With periodicboundaryconditions,
thekink states1K01) and 1K10) areprojectedout and 1K11) is only one-particlestatethat can appearin
the spectrum.

The sameanalysisof thephase-shiftsthat we pursuedfor the cP21 deformationof theminimal model
4(35 can be repeatedhere. For real values of 0, the amplitudesS~(0)and S~(0)are numbersof
modulus1 and can be parameterizedas

S~(0)usexp[2i~0(0)],S~(0)~exp[2i~1(0)]. (6.144)

The non-diagonalsectorof the scatteringprocessesis characterizedby the 2 X 2 symmetricS-matrix

(S~(0) S?~(°) (6 145)

\S~(o)S??(°) .

The eigenvaluesof this matrix coincidewith the samefunctionsin (6.144),

/ 2iS~(O) ~e (6.146)
\ 0 e

2iô1(~)!

The phaseshifts, for positive values of 0, are shown in fig. 25. Asymptotically, they havethe limits

lirn exp[2i6
0(0)] = exp(±~in), lirn exp[2i~1(0)] = exp(±~ni). (6.147)
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(a)

.5 I I

o I 2 3 4 5 6

(b)
.2o i 2 3 4 5 6

Fig. 25. Phase-shiftsof the RSOSS-matrix of thesub-leadingmagneticdeformationof thetricritical Ising model.

There is a striking differencebetweenthe two phaseshifts: while c5~(0) is a monotonicdecreasing
function,startingfrom its valueat zeroenergy~~(0)= in, ~(0) showsamaximumfor 0 -~ in andthen
decreasesto its asymptotic value ~in. Its values are always larger that o0(0)= in. Such different
behaviourof the phaseshifts is relatedto the presenceof a zero very close to the real axis in the
amplitudee

2~°~°~,i.e. at 0 = i ~in. This zerocompeteswith thepole at 0 = i ~in in creatinga maximumin
the phase shift. Similar behaviour also occurs in non-relativistic cases [169]and in the case of
breather-likeS-matriceswhich contain zeros[170].The presenceof sucha zerois deeplyrelatedto the
absenceof the pole in the s-channelof the amplitude e2~°~°~.For the amplitudee2~’~°~,the zero is
locatedat 0 = ~in (betweenthe two poles) and thereforeits contribution to thephaseshift is damped
with respectto the one resulting from thepoles. The overall effect is a monotonicdecreasingphase
shift.

Comingbackto the 2 x 2 S-matrixof eq. (6.145),theunitarytransformationwe haveto performto
diagonalizeit turns out to be independentof the rapidity 0. A basis of eigenvectorsis given by
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~1(01)~1(02)) = 2 (~K11(01)K11(02))+ aIK10(01)K01(02))),Vi + a

1 (6.148)
~ = / 2 (alK1i(01)K11(02))—

vi+a

where

a= —(2cos ~finy~’
2. (6.149)

The “kinks” 4~and ~2 havethe generalizedbilinear commutationrelation [100,101,93]

~ x)4
1(t, y) = ~1(t, y)~~(t,x) exp[.2inis,1e(x — y)] , (6.150)

with s,1 given by

~ s12=0, s22=~=ô1(co)Iin. (6.151)

It is easyto prove that thesemonodromypropertiescoincidewith thoseof the chiral field ~1’= ~6/1OOof

the original CR’ of the TIM, i.e.

~P(z)~P(0)= ~ 1 + ~1’(0)~ (6.152)

where C~,,1,is the structureconstantof the OPE algebra.
A different S-matrix for this deformation of the tricritical Ising model has been proposedby

Zamoldchikov[167].A comparisonbetweenthe two scatteringmodelshasbeenperformedin ref. [166]
by usingthe CSTA approachandthe predictionsof finite-sizetheory [168].We refer the readerto the
original literature for the discussionof this problem.

6.6. Thermalperturbationof the three-statePottsmodel

The partition function of the lattice formulation of the 3-statePottsmodel is given by

Z(~)= ~ exp(~~ ~ + c.c.)), (6.153)
{o}

where o = exp(i~)and ~ = 0, ±~in. The model is invariant underthe group of permutationsS3. The
groupS3 is isomorphicto the dihedralgroup D3 henceis asemidirectproductof two abeliangroups,Z3
andZ2 with generatorst~and C

= c
2 =1, Ci~= I~tC. (6.154)

The operatorC correspondsto thechargeconjugationsymmetry.The irreduciblerepresentationsof S
3

are both one-dimensionalandbidimensional.
The three-statePottsmodel alsopossessesorder—disordersymmetry(self-duality)with the self-dual
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point equalto

~ln(\/~+1). (6.155)

At $ = l3~the model undergoesa secondorder phasetransition [145].The correspondingcritical
theory is describedby a subsetof operatorsof the minimal models ~ with central chargec =

[35,24]. These operatorsenterthe modular invariant partition function of the type (D, A) in the
notation of Cappelli, Itzykson and Zuber [25] and they transform according to the irreducible
representationsof the groupS3. Therearetwo spindensitydoubletscorrespondingto theprimary fields

= ~1/15,1f 15 and o~’= ~~2/3,2/3which transformaccordingto the bidimensionalrepresentationof S3.
The chiral fields V= ~7/5,2/5 and V= ~2/5,7/5 with spin 1 together with the spin-3 fields W= ~ and
W= ~I3~3are neutral under Z3 but they change sign under the charge conjugation C. The list of
operatorsalsoincludesa setof threescalarenergyoperators~ = ~2/5,2/5’ e’ = ~ e” = I~33which
are invariant underthe whole group S3.

Equivalently,we can considerthe three-statePottsmodel as the classof universalityof the critical
Landau—GinzburgLagrangian

,~7 (~j)(J~*) + A[(tP)
3 + (c~*)3], (6.156)

where P is a complexscalarfield [16]. The leadingmagneticoperatorsa- areidentifiedwith the fields 1
and P~whereas the second magnetic doublet a-’ correspondsto (J,*)2J and ~ The chiral
operatorsV and W correspondto (1* c3’~I— ~P

13P*) and (tII* a
3t~I~— tJ~o3cI~*),respectively.The

relevantoperatore of the energysector is easily identified with ~ * cP.
The Pottsmodel can be shiftedaway from its critical temperatureby addingto the Hamiltonian the

relevantoperatore

H=H~+AJe(x)d2x. (6.157)

The field theory defined by (6.157) is integrable and characterizedby a purely elastic S-matrix
[143,146, 147]. In terms of the Landau—Ginzburgdescription,the thermalperturbationof the three-
statePottsmodel is equivalentto aninsertionof amassterm ~2qJ,*~J,into the Lagrangian(6.156).The
perturbedconformalfield theoryis still invariantunderS

3 andthe massiveparticlesarecharacterizedby
their propertiesunderS3. The fundamentalasymptoticstatesof the scatteringtheory form a doubletof
particle—antiparticle(A, A) of massm. They form a representationof S3 with the properties

s~A=wA, ~tA=thA,CA=A, (6.158)

where w= exp(~mi). The most generaltwo-particleS-matrix is given by

IA(01)A(02))1~= u(012)IA(01)A(02))0~1
- - - (6.159)

IA(01)A(02))111= t(012)lA(01)A(02))0~1+ r(012)IA(01)A(0))0~~

As consequenceof the higherintegralsof motion,the coefficientof reflection vanishesandthe S-matrix
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is completelydiagonal[146].The crossingsymmetryimplies

t(0) = U(iin —0), (6.160)

and unitarity leadsto

t(0)t(—0)= 1, u(0)u(—0)= 1. (6.161)

The minimal solution of these equations is given by [146]

sinh(~O+~iin) sinh(~0+~iin)

u(0)= sinh(~0—~iin)’ t(0)= sinh(~0—~iin) (6.162)
The antiparticleA appearsas a boundstateof two particlesA andvice versa.

The finite-size effects of the relativistic theory definedby (6.162) can be analyzedby meansof the
TBA [48]. The integral equationsfor the two speciesof particles aregiven by

~ mRcosho+SA+ccAA*LA+cPAA*LA=O,
(6.163)

where

LA = ln[1 + exp(—CA)], LA = ln[1 + exp(—EA)] , (6.164)

~AA(°)~AA2COsho+1

(6.165)

~AA(0)~AA 2cosh0—1

The ground stateenergyof the theory on a cylinder with width R is thusgiven by

E(R)= m f ~ cosh0 [LA(0) + LA(O)]. (6.166)

In order to study the thermodynamicsof the chargesymmetricsectorwe imposethe condition

EA(0) = EA(0). (6.167)

Theanalysisin the othersectorshasbeenpursuedin refs. [56,57]. Taking into accounteq. (6.167), the
TBA equations(6.163) reduceto a single integral relation

—Rmcosho+s+çc*ln(1+e~)=0, (6.168)

where
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2V~sinh(20)

= ~~~(0)+ ‘PAA = — sinh(30) (6.169)
In the ultraviolet limit R—*0, the pseudo-energye goes to the limiting value

= ln[(V~+ 1)12], (6.170)

andthe ground energytakesthe scalingform

E(R)= —2inI15R, (6.171)

i.e. the massivefield theory reducesto the critical three-statePotts model with centralchargec =

6. 7. Thermalperturbation of the three-statetricritical Potts model

The tricritical version of the three-statePotts model is identified with a subsetof the minimal
conformal model ~~67 [13]. Similarly to the Potts model, its tricritical version is invariant under the
permutation group S3. Its thermal perturbation is realized by adding to the critical action the energy
operator ‘~.2 with anomalous dimensions (4, 4) = (~,~). This field is the most relevantS3 invariant
operatorpresentin the Kac table of the model.

The off-critical model is an integrable quantum field theory and its exact S-matrix has been
determinedin refs. [156,159]. Following ref. [156],we assumethe existenceof two doublets(Aa, A~)

and (A,,,A6) with bootstrapfusions

AaXAa~-*Aã+A6, A,,XA,,-_*A~+A6, (6.172)

andmassesmaandm,, (ma <mb). The analysisof the correspondingconsistencyequations(seesection
3.5.2) leads to the following resonanceangles:

Ua
1 b ~ a

a
5 l2~, a5 l2~, aã3in~

According to the analysisof ref. [144],when the anti-particleA~ appearsas a bound state in the
scatteringof two particles AaAa~the correspondingreflection amplitude vanishes, i.e. S~= 0.
Thereforewe are left with the following amplitudesfor the lowest massdoublet (Aa’ A~):

l4a(01)24a(02))in= ~5’aa(0t
2)lAa(0i)Aa(02))out ‘ lA~(01)A,j(02))jn= S~ä(Oi2)lAa(Oi)Aã(O2))out-

(174)

The fusion a x a—* a implies

S~(0)= Saa(0— ~~in)Saa(0+ i~in), Saa(0)= SL(0— i~m)S~~(0+ i~in). (6.175)

Equivalently,

Saa(0)~~aa(0— ~~in)Saa(0+ i~in)= 1. (6.176)
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The minimal solution of theseequationsthat satisfiesthe unitary condition is

sinh(~0+ i~mr)sinh(~0+ i~in) sinh(~0+ i~1n)
~~aa(0)= sinh(~0— i~in)sinh(~0— ij~~in)sinh(~0— i~m) s2/3(0)s1/6(0)s1/2(0). (6.177)

~aa hastwo simple poles with positive residue: the one at 0 = i ~in correspondsto the particleA
whereas the other one at 0 = i ~in correspondsto the particleA5. Their massratio is

m5 = mb= 2macos(~in). (6.178)

The additional pole at 0 = i ~ in has a negative residueand representsa boundstatein the crossing
channel.In fact,

SL(0)= Saa(ilT — 0) = —sl/3(0)st/2(0)ss/,,(0), (6.179)

which has a simple pole with positive residueat 0 = i ~in. This pole is associatedwith a new neutral
particleA~,with mass

m~= 2macos(~in). (6.180)

The scatteringamplitude
5db is obtainedfrom

~~a~(0) = S~~(°— i~in)Sab(0 + i~in).

The result is

S~b(O)= s
3/4(0)s1/4(0)s1/12(0)s5/l2(0)s~/12(0). (6.181)

The pole structureof
5ãb showsthe presenceof a new neutralparticleAd, entering the fusions

A~x Ab--* A~+ Ad

with mass

md =4ma cos(~m)cos(~mr). (6.182)

It is possible to show that this set of six particles {Aa, A~,A,,,A
5,A~,Ad} closesthe bootstrap

processand the full set of S-matricesis
C’ ...I1\12\I1\ ~ — ~ çT —

~aa— ‘.6)~.3)k2) ‘ ~Üd — ~aa ‘ “ad — ~3)~.6)~.2)

C’ — C’ I1\13( 7 \/11\f5\2 c — c
~ab — — ~ 4’.12)’~12)’~12) ‘ ~aS — ‘-‘db — ~12)~.4)~4A12)’~12/
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C — C’ _I1 \13\f5\fi.\ C’ — C’ — 1\i5\I1\
212\21i\2

~acc)’.4)’.12)’.12)’ ~‘ad “dd ~.6)~.6)’.3) ~~3) ‘.2)

S _(5\j~\2j~2j1\2~’2\3j1\3 çT /1\(5\212\211\3/1\3bb’.6A6) ~.3) ‘.6) ‘.3) ‘.2) , IJbS k6)’.6) ‘.3) ‘.3) ‘.2)

C’ — C’ (1\/5fj\2(Z\211\2 c — c — fI\/ll\f1\~f1\~(.5\~f1\~
~bc~bck6)’.6t.2) ‘.3) ‘.3) ‘ ~bd ‘~bd ‘.12)k12.”.4) ‘.4) ‘.12) ‘.12)

C — ul\15\(1\f2\fl\2 ç j 1 \(11\f1\2(3\2( 5 \3f7\3
‘~cc t.6)’.6)’.3.”.3.”.2) ‘ Jcd’.12)’.12)’.4) ‘.4) ‘.12) ‘.12)

C’ — (1\315\3/1\512\5f1\6
‘~‘dd’.6) ‘.6) ‘.3) ‘.3) ‘.2)

wherewe usethe shortnotation (x) s~(0). The resonanceanglesarecollectedin table 14. The TBA
analysis of the ultraviolet limit of the above massiveOFT supportsthe interpretationof the above
scatteringtheory as off-critical modelof the thermalperturbationof the Potts model[51]. Notice that
the abovescatteringamplitudesare the minimal S-matricesof the E

6 affine Toda field theory.This is
not surprising since the tricritical Potts model may be obtained as the coset construction (E6)1 ®(E6) ~I
(E6)2.

6.8. Thermalperturbationof the 0(n) critical models

The 0(n) model is characterizedby the isotropic ferromagneticinteraction of n-componentspin

variables S,. The partition function of such a model on the “honeycomb” lattice is defined by [87]

Z(k,n)=fJJdS~[I (1+kSkSJ). (6.184)
i (k,j)

Table 14
Resonanceanglesof the E~’~S-matrices.

Ub=~1T u,,=~1T
U~•,=~1r Ud lIT

= u~,,= ~4ir u,~= lIT u~= ~Ir

u., = u~= Ir u,~5= Ir u~= -

u~~=lir

U~blIT U~14Sr U~2IT

ubd=12

1T

u~lIT
= ~IT ~ ~

~~IT

u:r=iIr -

b_2 b
— ~sr Ubd

4IT

u~~IT

= 1st
~7T
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Making use of

JdS=1, JdsSaS6=o~, (6.185)

the partition function can be expressedas a sum over all closednon-intersectingloops on the lattice

Z(k, n) = ~ kLfl~. (6.186)

L is the total numberof bondsandr is the numberof loops. Equation(6.186) definesthe 0(n) model
for arbitraryvaluesof n. For n—*0, the correlationfunctionsof (6.186) describethe statisticsof the
self-avoidingpolymer chains [88]. The series(6.186) is convergent for k< k~where

k~= [2+ (2— n)112]~’2. (6.187)

Hence, in the range —2<n <2, the model presentsa second-orderphase transition [87]. The
correspondingconformal field theory hasbeen identified by Dotsenkoand Fateev [20]. Its central
chargeis given by

c=1—61p(p+1), (6.188)

wherep is a function of n,

n = 2 cos(inlp). (6.189)

The scalinglimit of the energyoperatoron the latticecorrespondsto the primaryoperator in the
conformalmodel. Hence, the thermalperturbationof the critical point actionis describedby

A=Ac+TJ ~
13(x)d

2x. (6.190)

The S-matrix of the massiveexcitationsof this model hasbeenproposedby Zamolodchikov[89]. On
the basis of the form of the partitionfunction (6.186),hearguedthat it is possibleto interpret the loops
as the trajectoriesof a set of n particles that belongto the vectorrepresentationof 0(n). Hence,the
scattering matrix for the processA~(0

1)A1,(02)—*A.1(01)A12(02)can be decomposedas

S~/~(0)= S0(0)8~ô~+ S~(0)o~~~+ S2(0)3~~~,6”-. (6.191)

The property that the loops entering (6.186) are non-intersectingpathsimplies

S~(0)=0. (6.192)

The remaining amplitudessatisfy the crossingsymmetryrelation

5~(0)= S2(imr — 0). (6.193)
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The generalsolution of the Yang—Baxterequationsis given by

S~(0)= i sinh[(iin — 0) Ip]R(0), S2(0)= i sinh(OIp)R(0), (6.194)

where R(0) is an arbitrary crossingsymmetricfunction,

R(0) = R(iin — 0). (6.195)

It can be fixed by imposingthe unitary equations

S1(0)S1(—0)= 1, S1(0)52(0)+ S2(0)S1(—0)+ nS2(0)S2(0)= 0. (6.196)

The second equation of (6.196) is automatically satisfied by (6.194), using eq. (6.189). The first
equationof (6.196) implies

R(0)R(—0)= — {sinh[(iin — 0)/p] sinh[(iin + 0)Ip]}’ . (6.197)

The minimal solution of (6.195) and (6.197) is given by

R’0’— 1 F(1—0/iinp)‘ 1 sin[in(lIp — 0/imp)] 1(1+ 0/imp)

~ 1(2k/p — 0/iinp)F(1 + 2k/p — Oliinp)
k=1 1(2k/p+ 0/iinp)1(1 + 2k/p + 0/imp)

> F((2k — 1)/p + Oliinp)F(1 + (2k — 1)/p + 0/iinp) 6198
1((2k—1)Ip—Oliinp)1(1+(2k—1)/p—O/iinp) ( . )

/\S0)

Fig. 26. Polymerinteractions.
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Notice thatat n = 1

S1(0)+ S2(0)= —1, (6.199)

i.e. the S-matrix reduces to that of thermalperturbationof Ising model. In the limit n—sO, the
amplitudesS~andS2 can be interpretedas the two possibleinteractionsof the polymerchainsshownin
fig. 26. A different interpretationof the limit n—sOhasbeenproposedin ref. [90].

7. Affine Toda field theories

7.1. Basicproperties

Much attention has been paid recently to the Affine Toda Field Theories(ATFT) as possible
integrable Lagrangian theories for the off-critical models coming from deformationsof CR’ [157—
159, 171, 172,174, 176,177, 184, 185, 189, 190]. Following EguchiandYang, the argumentis the follow-
ing: considera CR’ describedby a coset~k ® ~1’~k+t where ~is a Lie algebrawith rankr. In the usual
decompositionof the first two algebraswith respectto the third one, one can identify a field cP paired
with the adjoint representationof ~k + ~. Its anomalousdimensionis given by 4 = (k + 1) / (k + t/i + 1),
wherei/i is the dualCoxeternumberof the algebra~. Usinga Fegin—Fuchsconstructionin termsof free
bosonfields 4t, (i = 1, . . - , r), t1 can be representedby the vertex operator

= exp(—if3a~1. ~). (7.1)

In (7.1) /3 is fixed to be

(7.2)

and ar+i is the highestroot of ~. Its expressionin termsof the simple roots a, is

a~+1= — q1a~. (7.3)

The set of integers { q,} is specific to eachalgebra. The simple roots a. enterthe expressionof the
screeningoperators*)

= exp(i/3a.~). (7.4)

The effective Hamiltonianof the off-critical cosetmodel ~k ® ~ I~k+ 1 perturbedby the operator~I’is
thusgiven by

*) We use the normalization 0,12 =2.
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H = dz(~exp(if3a,. ~) + exp(—i/3ar+i . 4k)). (7.5)

This is the affine TodaHamiltonian(with imaginarycoupling) basedon the algebra~. There is a large
literatureon theseintegrablemodels[213—215,218—224].Classically, the conservedchargeshavespins
equal to the Coxeterexponentsof ~ modulothe Coxeternumber(seetable 15).

There exists a strong belief among workers in the field that the off-critical descriptionof themodels
of CR’ is obtained by a quantum group reduction on the statesof the Hamiltonian (7.5). An explicit
realizationof this reductionfor SU(3) has beeninvestigatedin ref. [97].However, a general proof of
this mechanismfor an arbitraryroot systemis still lacking. Ratherthanpresentinga discussionon this
interestingproblem,we havedecidedto illustrate the propertiesof ATFT with real coupling, i.e. those
definedby an analyticcontinuation/3 —* —i/3. The reasonis that theyprovideinterestingintegrableOFT
whose S-matricescan be computed exactly. This allows us to formulate questionsconcerningthe
meaningof bound states,conservedcharges,and perturbativecalculationsin a manageablesetting.

For ATFT with real coupling, the Hamiltonianpresentsa ground stateshiftedfrom the origin: the
minimum is at the points

~ln(q~N),N=1J (n,)~. (7.6)

With the shift /~—* 4 — ~the Lagrangiancan be rewrittenas

r 2 r+1

— q,[exp($a~’4’)—1], (7.7)

wherem~setsthe massscale.In the caseof non-simply lacedalgebras,for ar+ onecan also takethe

Table 15
Coxeternumbersandexponentsfor affine Dynkin diagrams.

Algebra ‘/, Exponents

A~’
1 r+1 1,2 r

A~A,,iZ
2 4r+2 1,3,5 2r—1,2r+3 4r+1

B~” 2r 1,3,5 2r— 1
2r+2 1,3,5 2r+1

C~’
1 2r 1,3,5 2r—1

4r—2 1,3,5 4r—3
D~’~ 2r—2 1,3,5 2r—3,r—1
E~’~ 12 1,4,5,7,8,11
E~ 18 1,5,7,9,11,13,17
E~ 30 1,7,11,13,17,19,23,29
G~1~ 6 1,5

12 1,5,7,11
F~1~ 12 1,5,7,11
F

4~E~
21 18 1,5,7,11,13,17
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maximalshort root. Thesesecondsystemswill be called twistedTodasystemsanddenotedwith a tilde,
~. In both cases,the extendedroot systemforms the Dynkin diagram of an affine (twisted) Lie algebra
(seerefs. [103,187]). The basicpropertiesof the integernumbers{q,} are (with q,~1= 1)

r+1 r+1

~ q,a1=O, ~ q1=h. (7.8)

For all untwistedmodels,h is equal to ~‘i, the Coxeternumberof ~. In the twisted situation, it will
coincidewith the dualCoxeternumberi/i, eitherof ~ itself or of anothernon-simplylacedLie algebra
[158].

A geometricalinterpretationof the interaction couplingsobtainedby expandingthe exponential
termsin (7.7) can be given as follows. Let us consideran electrostaticchargedistributiongiven by r + 1
electricpositivecharges{q,}, placedat a.. The total chargeof this systemwill be h. The condition(7.8)
is nothing but the definition of the charge-centerframe and diagonalizing the quadraticterm is
equivalentto choosingthe axesalongtheprincipal axesof the ellipsoid of the quadrupolemoment.The
higher couplingsarethus the higher momentsof this chargedistribution.

It is importantto distinguishbetweenthe affine Toda field theoriesconstructedin terms of simply
lacedalgebras(ADE) from thoseconstructedin termsof the non-simplylacedalgebrasB, C, F andG.
The distinguishedrole of the ADE seriesarisesfrom the fact that they give rise to consistentsystems
bothat classicaland quantumlevel. About the non-simplylaced algebras,it turns out that although
classicallyevery-non-simply-lacedtheory can be obtainedby the so-called“folding procedure”of the
ADE series,this folding doesnot preservethe consistencyof the quantumtheory. Other degreesof
freedomarenecessaryin order to constructa consistentquantumfield theory for thesemodels[178].
We will discussthe folding of non-simply lacedATFT in the next sectionandwe will commenton the
consistencyof the quantumtheoriesin section8.7.2.

7.2. Non-simplylacedATFT: folding procedure

The Lagrangian of ATFI of non-simply laced algebras can be obtainedby folding a Lagrangian
basedon simply laced root systems[158,171,223]. Namely, the discreteautomorphismsof the Dynkin
diagramsof the simply laced ATFT allow us to organizethe fields in termsof conjugacyclasses.The
equationsof motion respectthisstructureand therefore,if a field initially belongsto a subspacewhich
is invariantundera discreteautomorphism,its classicalevolutionremainsin this subspaceas well. This
meansthat, for what the classicalequationsof motion concerns,we can consistentlyrestrictthe initial
Lagrangianto the invariant subspaces.This reductiongives rise to the Lagrangiansof non-simplylaced
ATFI. The complete list of thesefoldings is in tables 16 and 17. Rather than extensivelyanalyzing
thesereductions,we concentrateon somesignificant examples.

We startwith the most simple example,the ~ modelsversusthe ~ ones.Their affine Dynkin
diagrams_aregivenin table16. The simply lacedA~modelshave2r particles,organizedin degenerate
pairs (i, 2r + 1 — i), with masses

rn = 2M sin[ini/(2r + 1)] , 1 � i ~ r, (7.9)

andm, = m,. The massdegeneracycan be removedby imposingthe following constrainton the fields
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Table 16
Foldingsof simply lacedDynkin diagrams:theprincipal series.Near to the roots arethenumbersq,.

+Z2
I 122 222

I ~.

a2~ ar+lal

B~
1 1 1

2 2 2 2 ~ 2 2 2 2 2

~ _____
a

1 ~r a1 I ar

D~2/Z2 Br

1 1
~r+3O.

22 22 111 1 11z2 ~ ~—o

a1 ar+1 ar+lal ar
1 1

±Z2
122 221

1, a2r ~- ______

a1 o...c _0 ~2r—1 ar÷lal a,.

D~/Z2 A~1 Cr

a2~1>~r~< ::~~ ~

Lengthsquare = 1 o = 2 = 4

~ 1�i~r. (7.10)

This amountsto folding the affine algebrawith respectto the Z2 symmetryof the Dynkin diagram,as
depictedin tables16 and 17. This operationprojectsout the odd sectorof the original ~ theory.The
remaining even fields must be rescaled by a factor 1 / 2 to ensure a correct normalization of the kinetic
term in the new Lagrangian,that is the onefor theA~model.This non-simply lacedmodelhasr non
degeneratemassesgiven in eq. (7.9). Classically the conservedspins are

s=1,3,. . - ,2r—1,2r+3,. . . ,4r+1 (mod4r+2). (7.11)
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Table 17
Foldings of simply lacedDynkin diagrams:theexceptionalseries.Near to the roots arethenumbersq,.

D.~1)/o,

1 1
a

5 ~,,

12:1

a1 a~J’a2 a3 a1

E~/Z3 D~
3~C

2

ala2aI

E~

1~/Z

2

a7 ~i
1 2 3 .1 2

2

1 2 2 1

E~/Z2 E~

2~

Z2

1 2 3 I 2

a
8 ~

1 2 3 ‘1 3 2 1 a1 a2 a3 a.1 a3

Length square . = 1 or 2/3 a = 2

Let us consideranothernon-simply lacedmodel, i.e. the twisted version G2 (alsodenotedas D~
3’in

refs. [103,187]). The parenttheory is E~1~andthis model is obtainedby making a folding of the E~
ATFT with respectto the Z

3 symmetryof the Dykin diagram.By folding of E~
1~with respectto the 1,

symmetry of its axis, we obtainas resulting model the ATFT on the root systemF~1’.
Our last example is F

4. This twisted model can be obtained from the E~model using the Z.,
symmetry of the root system.As shown in ref. [157],the particlesof E~areclassified accordingto
their Z2 parity: threeparticlesareodd andfour areeven.The oddonesareprojectedout by the folding
operationandonly the four evenparticlesappearin the twisted F4 model.

7.3. Massspectrum

Expandingthe potentialterm in the Lagrangian(7.7) in a powerseries,we have

r+1 r+l

V(çb)=m~~ ~ q,a’a,
t’cb”çb”+rn~f3~ ~ ~ (7.12)

The quadraticterm gives rise to the mass-matrix
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r+ 1

M~b= m~~ q.a~a,b. (7.13)

The classicalmassspectrum{m,} is determinedby the roots of its characteristicequation

lIM2—x~1ll=0. (7.14)

Equation (7.14) is a polynomial of order r whosegeneralform is

~p(x)=xl_pixr_l pxr_2 . . . ~p (7.15)

The first coefficient p
1 is simply the traceof M

2 andfor the simply lacedalgebrasis twice the Coxeter
number. The other coefficientsPt can be expressedin termsof the tracesof higher powers of M2 as
well. In order to simplify the notation,we put 4( = M2. Their expressionis thusgiven by

kpk=ak—plak_l—pklal, (7.16)

where

a
1=Tr%t=~m~,a2=TrA(2=>m~,..., a0=Tr4(~=~m~. (7.17)

As shownin ref. [228],it is convenientto introduceamatrix .N’ directly relatedto the Dynkin diagrams.
Its matrix elementsare given by

= (q,a~,a1) = ~ ~ (7.18)

It is easyto prove that

Tr4(’=TrX’, s=1,2,...,n. (7.19)

Hence,the characteristicequationof 4( coincideswith that of X. However,X is a (n + 1) x (n + 1)
matrix whereas4( is only a n X n matrix but a0 is a linear combinationof the other simple roots a,.
Consequently,X is a singularmatrix. Oneof its eigenvaluesis zerowhile the remainingonescoincide
with the eigenvaluesof 41.

In the basis of its eigenvectors,M,~= m~i5‘~. The massspectrumis degeneratewhetherthe groupof
automorphismsof the non-affineDynkin diagramof the Lie algebrais non-trivial. In thesecases,it may
be simpler to organizeparticles in complexconjugatepairs. In the caseof simply laced theoriesan
interestingresult is that the massescan be organizedin avector

m=(m1,m2,.. . ,mr),

which is an eigenvectorof the incidencematrix of the algebra~ [44,171, 174, 177]. Indeed,m is the
Perron—Frobeniuseigenvectorof ~ andits componentscan be associatedwith the spotsof the Dynkin
diagram[225].On the otherhand,the spotsof the Dynkin diagramdefinethe fundamentalrepresenta-
tions in the caseof simply laced theoriesof the algebra ~. We havein this way a correspondence
betweenthe particle with massm, andthe relativerepresentationof ~. This observationwill be useful
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in the discussionof the bootstrapfusionsandthe decayprocessesin presenceof multiple deformations
of CR’.

In the nextsubsections,following ref. [228],we systematicallyanalysethe massspectrumfor all Lie
algebras.Similar computationcan alsobe foundin refs. [171,220].Theresultsaregiven in table 18 and
table 19. Let us startwith the ADE series.

7.3.1. A~series
For the A~’~series,thematrix X reducesto theCartanmatrix of the affine Lie algebra.Hence,the

characteristicequationassociatedto X is

2—x —1 0 0 0 —1
—1 2—x —1 0 0 0
O —1 2—x —1 ... 0 0

. (7.20)
0 0 0 ... —1 2—x —1

—1 0 0 ..- 0 —1 2—x

Table 18
Massesof modelsrelatedby folding.

A~ 2M sin(iri/(2r+ 1)), 1 � j s2r A~ 4M sin(iti/(2r + 1), 1 � i � r

D~
1, M, M,2Msin(itil2r) , 1~i~r—1 B~’~M,2Msin(itil2r) , 1~i�r—1

D~’,~
2M,M, 2M sin(iti/(2r +2)), 1 � i ~ r D~

2+~ B, ‘I/~Msin(iti/(2r +2)), 1 � i ~ r

A~ 2M sin(iti/2r), I ~ i ~ 2r 1 C~ 2M sin(iti/2r), 1 ~ i � r

~ M, M,2Msin(itiI2(2r—1)), Lsis2r—2 ~ M/V~,V~Msin(itiI(2r—1), 1~i�r—1

D~,’1 M,M,M,V’~M G~ M,V’~M

E~’~m, = m
4= M D~’~G2 mr, md

m,,= m,, 2Mcos(i~iir)
m~= 2M cos(lit) F~’~m,,,m,,,mr,m4
m4= 4M cos(~ it)cos(~it)

~ m1 = M E~
2~= F

4 m,, m,, m,, m,
m2= 2M sin(I it)

= 2M cos(~it)

m4= 2M cos(~ it)

m5= 4M cos(~‘sit) sin( I it)

m6= ~Msin(1~git)
m, = 4M cos(~ it)cos(I it)

Table 19

massspectrum.

m, =M m,=4Mcos(lsr)cos(i~st)
m2=2Mcos(Iit) m6‘~4Mcos()iT)cos(3

1oit)
m, = 2M cos(~ it) m

7= 2M cos
2(~it) cos(~ it)

m
4= 4M cos( ~ it) cos(~ it) m3= 8M cos’(~it) cos(~ IT)



G. Mussardo, Off-critical statistical models:factorizedscattering theoriesand bootstrapprogram 339

Putting 2y = 2— x, it is possibleto show(seee.g. ref. [229])that

~n+1 = 2[~T,,.~1(y)— 1] , (7.21)

where ~,,~1(y) is the Chebyshevpolynomial of the first kind,

~n+i(’°~ 0) = cos(n+ 1)0. (7.22)

The massspectrumof theA~seriesis given by the n non-zeroroots of the equation~ + 1(y) = 1, i.e.

m~=4sin
2[kin/(n+1)], k=1,2,...,n. (7.23)

7.3.2. ~ series
For this series,the expressionof X is the following:

4 —2 0 0 0 —2 —2
—2 4 2 0 0 0 0
(7.24)

O —1 0 0 0 2 0
—1 0 0 ... 0 0 0 2

The characteristicequationhasthe form

IX—x1~I=2’~2(y—1)(2y—1)2~1
0_2(y)=0, (7.25)

wherewe put x = 4(1 — y). ~ is theChebyshevpolynomialof thesecondkind. Therootsof (7.25)are
given by

y,,÷1=l —s x,,~1=O, y~=~ —~ x,,=2, y0_1=~ —~ x,,_1=2 (7.26)

andby ~102(y) = 0, i.e.

yk=cos(,~1) —s xk=8sin(2( 1))’ k=1,2,...,n—2. (7.27)

The first root in (7.26) is irrelevant for the computationof the massspectrum.The resulting mass
spectrumis given in table 18.

7.3.3. E~series
The analysis of this exceptionalseries is carried out by consideringeach of the characteristic

equationsseparately.
(i) The characteristicequationfor the massspectrumof the ATFT built on the E6 algebrais

41—x.1l~=x
6—24x5+216x4—936x3+2O52x2—216Ox+864

(x2—12x+24)(x2—6x+6)2. (7.28)
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Therearetwo doubletsof degenerateparticlesplus two other particleswith differentmasses.The mass
spectrumcan be found in table 18.

(ii) The characteristicequationfor the ATFT built on the E7 algebra is

— x 1 = x
7 — 36x6 + 504x5 — 3552x4 + 13536x3— 27648x2 + 27648x — 10368

= (x —6)(x3 — 18x2 + 72x — 72)(x3 — 12x2 + 36x —24). (7.29)

The mass spectrum is given in table 18. The Z
2 symmetry of the affine E7 diagram classify the particles

into odd and even ones [157].
(iii) For the ATR’ on E,, we have

— x• 1 = x
8 — 6Ox7 + 1440x6 — 18000x5 + 1257440x4 — 518400x3 + 1166400x2 — 1296000x

+ 518400

= (x4 — 30x3 + 240x2 — 72Ox + 720)(x4 — 3Ox3 + 300x2 — 1080x + 720). (7.30)

The masses can be found in table 19.
These cases exhaustthe massspectrum of the simply-laced Toda field theory. Now we turn to the
non-simplylaced ATR’.

7.3.4. B,, series
The matrix X for the B~’~series is given by

4 —2 0 ... 0 0 —2 —2
—2 4 2 ... 0 0 0 0
. (7.31)

—1 0 0 ... 0 0 2 0
—1 0 0 0 0 0 2

Then we have

x~YJ(x)= xdet(%t— x .1) = det(X — x .1’), (7.32)

where1 is the n x n unit matrix and 1’ is the (n + 1) x (n + 1) unit matrix. Defining x = 4(1 — y), we
can write (7.32) in the following form

~3,,(x) = 2~(1— 2y)°lt,,(y). (7.33)

Thereforethe classicalmassspectrumis given by

rn~,,—2, m~=8sin2(kin/2n),k=1,2,...,n—1. (7.34)

7.3.5. C,, series
For theC~1~seriesthe matrix X has the form
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2 —1 0 ... 0 0 0 —2
—1 2 —1 ... 0 0 0 0iii .~. ~ . (7.35)

O 0 0 0 —1 2 0
—1 0 0 ... 0 0 0 2

Let us introducethe determinant

x~,,(x)= xdet(41— x .1)= det(X — xi’). (7.36)

Using thevariabley = 1 — x /2, we canwrite ‘~,(x) in termsof the Chebyschevpolynomial of the second
kind,

= (—l)~2(y+ l)Ol1,,1(_y). (7.37)

The classicalmassratios aregiven by

m~=4sin
2(kin/2n),k= 1,2,..., n. (7.38)

The C,, twistedseries hasthe following matrix X:

1 —~ 0 0 0 0 0
—1 2 —1 ... 0 0 0 —1::: . (7.39)

0 0 0 •.. 0 —1 2 0

0 —~ 0 ... 0 0 0 1

With the position 2 — x = 2y, the characteristicequationtakesthe form

det(X— x .1’) = —xdet(4( — xi) = 2(y — 1)[°l1,,(y) + A1,,_
3(u)]. (7.40)

The massratios areeasily computed

m~=1, m~=4sin
2[kin/(2n—1)], k=1,2,. . . ,n—1. (7.41)

7.3.6. G
2

We startwith theuntwistedG2 ATFI’. This theory can be obtainedby folding the ATR’ constructed
on D~[158,171, 223]. The massmatrix in the diagonalbasisis

41=(~ ~). (7.42)

Thereforethe massratio is
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rn2 = rn1 . (7.43)

The massmatrix of the twisted G2 is given, on the contrary,by

/ 1 -~

3 ). (7.44)

Then the massratio is

m2/m1=2cos(in/12)=(1+V’~)/s/~. (7.45)

This theory is obtainedby folding the E~’~ATFT [158,171, 223].

7.3.7. F4
The untwistedF4 ATFT in the diagonal basis has the mass matrix

3-Vs
- 2(3-V~)

3+V’~ (7.46)
2(3+V~)

andthe massratios of the theory can be readdirectly.
For what concernsthe twisted F4 ATR’, this model is recoveredas a folding of the E~theory

[157,158, 171,223]. The folding is donewith respectto the Z2 symmetryof the Dynkin diagramof the
affineE7 theory.This projectsout particles,which are oddwith respectto the Z2 symmetry,leavingthe
four even particlesof E

t~as the basic fields of the twisted F
4 ATR’. Therefore,the characteristic

equation for the F4 ATR’ can be read off from the characteristic equation of E~, namely

~P(x)=x
4—24x3+180x2—504x+432=O. (7.47)

The corresponding mass ratios are in table 18.

7.4. Interaction couplings

The seriesexpansion(7.12) gives the whole set of the interaction couplings. The Feynmanrules
associatedto them areeasilyobtained.Next to the massmatrix, thefirst importanttermsarethe three
particle couplings

= m~f3~ ~ (7.48)

Thesecouplingscan be written in termsof geometricalquantities[157,158, 171, 172, 177]. First of all,
theyvanishif it is impossibleto constructwith the valuesof the massesma, mb, andrn~,threesidesof a
triangle whose angles are rational fractions*) of in. They are also zero if forbidden by a discrete

This is a naturalconsequenceof thefact that themassesare algebraicnumbers.
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symmetry of the affine Dynkin diagram (like in the E~1~)or by anotherdiscretesymmetry of the root
system(this is the caseof D,, series[171,172]). The vanishingof f’~”whenoneof threeparticleshasa
masslargerthan the sumof theremainingtwo, ensuresthe stability of the spectrumat lowestorder in /3
andis a consequence of integrability. Whennot zero,~ is simply proportionalto the area,~abcof the
above mentioned triangle. If g is simply laced,we have

fabc~ = (4p/~r/j)~abc (7.49)

This is the so called area formula. Equation (7.49) is slightly modified if ¶~is non-simply laced
[158,171]. As discussed in ref. [158],the rhs of eq. (7.49) is sometimescorrectedmultiplicativelyby a
factor which takes into accountthe different ratio of the short rootwith respectto the long one. When
we consider the twisted versionsof the algebras,the rhs of eq. (7.49) is multiplied by 1/V’~for
B,,, C,,, F

4 and 1/V~for G2. In the case of untwistedalgebras,we haveto distinguishtwo classesof
particles: the first class consists of I strong particles (I beingthe numberof long roots)and the second
one is that of s = r — 1 weak particles. The reasonfor this denominationis that, if any strong particle
entersthe vertex fabc then eq. (7.49) holds as it stands.But if we consider a three-couplingconstant
involving all weak particles we have to modify the area formula by a factor 1 /\/~for B,,, C,,, F4 and
2/V~for G2.

In the case of simply laced algebras, the importance of these couplings is related to their “topological
nature”, i.e. the exact S-matricesof thesetheoriesrespectthe tableof the non-zerothree-couplings:
they give the bootstrap fusions of the models.Interestingexamplesaregiven by the exceptionalseries
E,, which will be analyzedin the nextchapter.

Concerninghigher-ordercouplingsin (7.12), they do not shareany simple geometricalinterpreta-
tion. However, theycan be expressedin termsof somerecursiveequations[158].Let us definea set of

- a r+1 r+l(r + 1)-dlmenslonal vectors {~}a=i E l~ by

(~a)m~laa 1�a~r; (~r+1)1 (7.50)

We introducethe reducedn-vertexcouplingsf, dividing the original n-vertexcouplingsf by the masses
of the particlesinvolved

jai a,, = fa1. = ~ q~1 ... ~. (7.51)
ma rn,, i1

In particularfal~a2 = 6a1,a2andf”l = 0. The ~vectorsform a basisof linearly independentvectorsin ~

andthereforethe vector y~’(a, b~ r) with componentsyr” = ~ hasthe decomposition

= = oa~ ~1 = ~ a, b ~ r. (7.52)

This equationallows us to computerecursivelyall couplingsf by using the identity

ja i,..., a,, = ~a,,.1,a,, ja ~ a,,_2 + 1a1,..., a,,_2,xjx,a,,.1,a,, (7.53)

It is also convenientfor the discussionof the renormalizationpropertiesof the quantumfield theory to
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define a matrix F built up out of all the ~ vectorsbut ~ I

= ~ ~ (7.54)

It satisfiesthe properties

~ 1~a�r; I~~T+1=0. (7.55)

This matrix will appearin the calculationof tadpolediagrams(seesection8.7).

8. Scatteringtheory of the affine Todafield theoriesbasedon simply lacedroot systems

The scattering theoryof the affine Todafield theoriesbasedon simply laced Lie algebras~ present
an interesting featureof universalitywhich allows us to discussthem in a unified scheme.The same
doesnot holdfor the scatteringtheory of the ATR’ constructedon non-simplylacedroot systems.For
this reason,in this chapterwe will discussonly the ATFT relatedto the ADE seriesreferringto the
original literature for the analysisof the scatteringtheoryof non-simply laced ATFT [158,171, 178].

For simply laced ATR’, the classical masses,the three-particlecouplingsand the fusion angles
provide a solution to the bootstrapequationsfor the S-matrix of the quantizedtheory. The exact
S-matricescan be written as a productof two terms [144,157, 158, 171]:

S.~(0,/3) = S(mln)(o)z (0 b(f3)) . (8.1)

S~”~(0),which form the so-called“minimal solutions”, only dependon the resonanceangles u,~and
encodethe informations on the mass spectrum. These factors are independentfrom the coupling
constant/3 presentin the Lagrangian(7.7) andhavealreadyall poleswe needin order to identify the
physicalboundstates.The coupling constant/3 entersthe secondtermZ,, in (8.1) throughthe function
b(f3). The full S-matrices(8.1), as functionsof /3, must havethe samepole structureof 5(mbn) in the
physical strip. Hence,theZ,1 termsmayhaveonly zerosin the physicalstrip (andpolesoutside).The Z,1
termsare furtherrestrictedby the requirementsof unitarity, crossingand closureunderthe bootstrap
iteration. In the limit /3—sO, the full S,~must reduceto the identity operatorsinceall couplingsbut the
massratiosvanish.Correspondingly,b(f3)—s0and the Z,1 termsreduceto the inverseof the minimal
solution

Z,1(0, b(0)) = [S~”~(0)]’ . (8.2)

The function b(,13) seems to have a universal expression for all simply laced ATR’. The conjectured

formula is given by [144,158, 171]
inb = (f3

212h)(1 + /32/4in)_1 , (8.3)

whereh is the Coxeternumberof the algebra‘~. This relationwasinitially guessedin ref. [144]for the
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~ modelsusing known result for the sine—Gordonmodel*). The function b(f3) given in eq. (8.3),
being the matter of a conjecture,should at least be checkedperturbatively,by calculatingorder by
order the coefficientsof the power expansion

(8.4)

We will presentthe computationof the lowestordersin section8.7.3.
In refs. [158,171] the following duality relationsfor the S functionswere pointed out:

S.1(b)= S,1(2/h— b). (8.5)

Using (8.3), this means

= S,1(4in1f3). (8.6)

At the self-dualpoint b = 1/h, /3 = V4~,the Z,1 factorsbecomethe squareof a meromorphicfunction,
i.e. with double poles and double zeroes.Equation (8.6) implies that the S-matrix reducesto the
identity also in the strongcouplinglimit, i.e. /3 —s co The origin of this duality propertyis not yetclear
but a possiblehint comesfrom the finite renormalizationeffect, discussedin section8.7.2.

An importantstepfor the determinationof the exactS-matricesof theADE seriesis the assumption
that the conservedchargesof the quantumtheory coincidewith thoseof the classicaltheory andthat
the particles of these theories are uniquely identified by the conservedcharges(even the mass
degeneratestates).This implies the absenceof anyreflection amplitude andthe S-matricesarepurely
elastic. The above assumptionabout the quantumversion of the ATR’ hasto be verified in the
discussionof the renormalizationpropertiesof the theory. Since only the ratios of the conserved
chargesaredeterminedin the scatteringtheory, the renormalizationof the ATR’ for the ADE series
should reduce, on-shell, only to an overall normalization of the charges. In particular it becomes
importantto checkthat the massratiosarepreservedby theloop corrections.Equally important is the
explanationof the higher-orderpolespresentin the S-matricesin termsof Landausingularitiesof the
Feynmangraphsconstructedfrom the Lagrangian(7.7).We will discussthe renormalizationproperties
of ATFT andtheir multiple structurein section8.7.

In the last sectionof this chapterwe will usethe correspondencebetweenthe particlesand the
fundamentalrepresentationsof the algebra~ in order to computethe decayprocessesof the particles
with higher massesin CR’ which havebeendeformedby two relevantfields.

8.1. S-matricesof the A~series

The S-matricesof the ~ serieshavebeendiscussedby Arinshteinet al. [144].The Dynkin diagram
of the affinealgebrais completelysymmetricwith respectto anyroot. The symmetryof thesemodelsis
given by the groupZ2 x Z~1.The Z,,~1symmetryis relatedto the invarianceof the Lagrangian(7.7)
underthe cyclic permutationçb~—s /~+ ~.The Z2 symmetryis given by the automorphismof the Dynkin
diagram under a reflection. The models contain particles and anti-particles. We label them by

*) A similar expressionalso appearsin theanomalyof thestress-energytensor1190,2221.
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a = 1, 2,. . - , n, where~ = n + 1 — a, as a resultof the Z2 symmetry.In particularfor oddn theparticle
4(n + 1) /2 is self-conjugate. The masses are

ma =2Msin[iral(n+ 1)], a= 1,2,... ,n. (8.7)

The “minimal solution” for the scattering amplitude of the lightest particle is

S~T’~(0)= s2/(,,÷1)(0)- (8.8)

It possesses a pole at u~1= 2ir/(n + 1) which corresponds to the particle A2 appearingas boundstatein
this channel.The otherscatteringamplitudescan be inferredfrom the bootstrapequations

min(a,b)—I 2
S~’~~(o)= 5~abI/(,,+t)(0)5(a+b)/(,,+1)(0)( [I 5(Ia~bI+2k)/(,,+1)(0)) - (8.9)

Notice the presence of double poles in these amplitudes which arise from multi-scattering processes.
The Z term for the fundamental amplitude reads

Z11(0, b(/3)) = s_b(0)s_21(,,+1)+b(0) - (8.10)

The other Zab terms are found by applying the bootstrap equations. In order to compare the exact
expressionof the S-matrixwith the perturbativecomputationcoming from the Lagrangian,wehaveto
solve b for /3. The conjecturedcloseformula reads

inb(/3) = [f3
2/2(n+ 1)](1 + /32/4in)1 - (8.11)

Notice that the minimal solution for n = 1, that is S~= —1, coincides with the S-matrix for the thermal
perturbationof the Ising model (seesection6.4.1) andfor n = 2 we get the S-matrices of the critical
3-state Potts model perturbedby the leadingenergydensityoperator(seesection6.6).

8.2. S-matricesof the D~series

The S-matrices of these models have beencomputedin ref. [171].Onehasto distinguishtwo cases,
dependingon whethern is even or odd.

8.2.1. D~,n even
In this case the n particles are all self-conjugate and will be denoted by 1,2,. . - ,n — 2, f

1 and f2.
Their masses are

mf,=mf2=l, ma =2sin[ira/2(n—1)], a=1,2, - . . , n—2. (8.12)

The minimal solutions for the scattering amplitudes of the particles A1 are given by

n/2— I

S~~)= S~~7)= —~~‘;:~= (_1)~~/2fJ f(O) - (8.13)
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The correspondingZ-termsare

n/2—1

Zff(0, b(0))= Zff(0, b(0)) = (_1)~2 II f~k/(,,~1)~(~1)kb(O),

k-U (8.14)
n/2—1

Z1112(0,b(0)) = _(_1)~~/2J~ f_k/(fl_1)+(_lkb(O)

The remaining minimal S-matrices are computed by the bootstrap equation. Their expression is given
by

S~(0)= S~1~(9)= (_1)a LI fl/2-(a-2k)/2(n-I)(O)’ a = 1,2,. . - , n —2, (8.15)

min(a,b)—1 2

S~~~(0)= ~a_bI/2(fl_1)(0)f(a+b)/2(,,1)(0)(H f(IabI+2k)/2(fll)(0)) - (8.16)

8.2.2. D~,n odd
In thiscase,therearen — 2 particleswhich areself-conjugateanda doubletof particles(f, f) which

are conjugateto eachother. The massspectrumis againgiven by eq. (8.12). The basicamplitudesare

S~’~~(O)= S~’~~(O)= :~:sk,(,,1)(0). (8.17)

For the Z-termswe have

Z11(0,b(0)) = :~s~k/(,,~1)~(~1)kb(0),Zff(0, b(0)) = :~sk/(fl1)+~1)kb(0). (8.18)

The scatteringamplitudesof the remainingparticlesareequalto thosecomputedin the caseof n even.

8.3. S-matricesofE~ATFT

The full set of minimal S-matrices is given by the scattering amplitudes of the thermal perturbation of
the tricritical 3-state Potts model, discussedin section 6.7. Here we only recall the fundamental
amplitudeand the correspondingZ-term. The minimal S-matrixof the lowest particle is given by

S~T°’
t(0)= sl/6(0)sl/2(0)s2,3(0) . (8.19)

The Z-term is given by

Z
11(0, b(f3)) = 5_b(0)5_1/6+b(0)5_1/2+b(0)~_2/3+b(0) - (8.20)

The bootstrapfusionsof this model (which correspondto the non-zerothree-pointcouplings)can be
written in a compactway. To this aim, let usconsiderthe characteristicequation(7.28) of this model
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and let us introducethe following notation: the particleswhose massesare solutionsof the equation

(x2—6x+6)2=O, (8.21)

as denotedas

ma = m —s A
1 , m~= m —s A1, mh = 2rn cos(~in)—s A~, mb = mb —s A2

(with m
2= 3 — 2\/~).Let us considerthe other factor in (7.28),

x2—12x+24=O. (8.22)

The correspondingparticlesare labelledas

= 2rn cos(~ in) —s B
1, m~= 4mcos( ~in) cos(~in) —s B2.

With thesenotations, the bootstrapfusionsof E~’~can be written as

A~xA~=A1+A2,A~xA~÷1=A1+A2,A~xA1=B~,

A1xA~~1=B1+B2,A1xB~=A1+A2, A~XB~=A1+A2, (8.23)

A.xB,~1=A,~1,B.xB,=B1+B2, B.xB,+~=B1+B2.

Using the above mentioned correspondence between the particles and the representations of the Lie
algebra[150,171], from table20 we have

ma,ma . . - 27,27; m~ - . - 78; mb,rnb . - - 351,351; m~ - . - 2925, (8.24)

whereon the right-handsidesarereportedthedimensionsof the irreduciblerepresentationsof E6. It is
easy to check that the abovefusion rules are a subsetof the tensorproduct decompositionof the
representations(8.24) of E6 [172].

8.4. S-matricesofE~ATFT

The full set of minimal S-matrices is given by the scattering amplitudes of the massive excitations of

Table 20
Dynkin diagram of E, and assignmentof themassesto the corre-

spondingdots.

Exponents: 1,4,5,7,8,11

m~1 -

ma mb md mg m~
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the tricritical Ising model perturbedby theenergyoperatorand has been discussed in section 6.5.1. The

minimal S-matrix of the lowest particleis
S~T”~(0)= —f

119(0)f519(0). (8.25)

The correspondingZ-term is

Z11(0, b(/3)) = —f—b(
0)f—l/U+b(0)f—5/9+b(0)- (8.26)

Using the factonzation of the characteristic equation (7.29), we organize the seven particles into two

triplets and one singlet [157],

(Q
1’ Q2, Q3)us(m6~m3, m1) , (K1, K2, K3)~(m2,m4, m7) , (N)—=(m5) . (8.27)

Thefirst triplet consistsof particleswhich areodd underthe Z2 symmetryof theDynkin diagramof the
affine algebra. The other triplet and the singlet are Z2 even. In section 6.5.1 we have used this
symmetry in order to write the bootstrapfusions of this model in a compactway. Thesebootstrap
fusions are a subset of the tensor product decomposition of the associate representations of E7 (see,
e.g., refs. [226,227]and appendixB).

8.5. S-matricesof E~
1~ATFT

The full set of minimal S-matricesis given by the scatteringamplitudesof the Ising model in a
magnetic field. They can be foundin appendixC. The minimal S-matrix of the lightest particle is

S~T’11t(°)=f
113(0)f215(0)f1115(0). (8.28)

The correspondingZ-term reads

Z11(0, b(/3)) =f—b(

0)f_I/3+b(0)f_2/5+b(O)f_1/15÷b(O) - (8.29)

The bootstrapfusionscan be found in appendixC.

8.6. Conservedcharges

The spins of the conservedchargesin ATFI’ coincidewith the exponentsof the corresponding
algebra,modulothe Coxeternumber.But a closeanalysisof the conservedquantitiesrevealsa more
remarkablestructure.First of all, the set of massesfor the ADE seriescan be organizedin a vector
which is the Perron—Frobeniuseigenvectorof the Cartanmatrix of thecorrespondingalgebra¶.~.This
result was obtainedin refs. [44,171, 174] and proved in ref. [177].The Cat-tan matrix is definedby

C~
1a-a1. (8.30)

If we introducethe vector m= (m1,m2,.. . , m~)madeout of the r-massesof the theory,we have
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Cm = !~minm, ~smjn= 4 sin2(in/2h). (8.31)

This observation permits to associate each mass m,with a dot of the Dynkin diagram for ~ and hence
with the corresponding fundamental representation of that algebra. Hence,oneis temptedto interpret
the bootstrapfusions of the bound states

AIXAI—~~Ak (8.32)

as Clebsch—Gordandecompositionof the tensor product representationsassociatedto the mass
eigenstates.Actually, this is only true for the A~seriesand~ For the othersimply lacedalgebras
the bootstrapfusionscoincideonly with asubsetof the Clebsch—Gordanseries[172].A generalanalysis
of the bootstrapfusionsfor the simply laced ATFT has been carried out in refs. [174,177], where their
relation with the root system has been clarified.

The above observation on the masses can be generalized to the higher conserved quantities q~,
enteringthe consistencyequations

q exp(—isi~~)+ q~exp(isi~~)= q~. (8.33)

Indeed, the vectorsq, = (q~,q~ q) of the conservedchargesare eigenvectorsof the Cat-tan
matrix [171,174, 177]

Cq
5 = ~ i-~= 4sin

2(sir/2h), (8.34)

wherethe spins takesvaluesin the set of ther possibleexponentsof the algebra~. In all ADE models
thereare r linear independentvectorsq, which label uniquely theparticlesof the theoryandmakethe
scatteringprocessespurely elastic.

8.7. Perturbationtheory

In this section we discuss some aspects of perturbation theory for ATFT and compare the results
with the proposedexact solutionsof the on-shell theory provided by the S-matrices computed in the
previoussections.

8.7.1. Infinite renormalizationofATFT
The quantizationand the renormalizationof the ATR’ is not completelystraightforwardin many

cases. In particular this is true for the non simply laced models. In this section we only discuss the
universalultraviolet divergencesthat occur in the ATFT constructedon root systemseitherof simply
laced algebrasor non-simply laced ones. These divergencesoriginate from the self-contractions
(tadpoles)of the fields themselves(fig. 27). In thosetheoriesin which only one field is present,the
tadpolescan be neglectedas a consequenceof normalordering.However,if manydifferent fields with
different massesare present,it is not obvious that the finite part of the tadpolesdo not result in
renormalizationeffects,that dependon the particularvertexor propagatortheyare attachedto. In ref.
[158]it was shown that this situationcannotoccur. The reasoningis the following. Considerthe two
possiblekinds of generaltadpoleswhich can affect a generalvertexf41 a,, (a propagatorif n = 2)
(fig. 28). The bulb representsall possibleloop correctionsto the tadpoles.It can be connectedto the
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Fig. 27. Tadpole.

E~D ~

(a) (b)
Fig. 28. Generaltadpolegraphs.

vertexfa1 a,, either directly, via propagatorswith massesm~1,.. . , mXk (fig. 28a), or indirectly, as
shownin fig. 28b. WhateverthecontributionG(x1,. . . , Xk) of the bulb is (finite or infinite), the sumof
graphsin fig. 28 amountsto computing

~ (~a1....,a,,,x1 xk — ~ fa1. . . . a,,,p _4~fP.XI xk)G(X . . - Xk) . (8.35)
~ Xk mp

Using the propertiesof ~ al a,, discussed in section 7.4, we can write this expression as

X1, ~ , Xk(~q~~1... ~n(8.~ - ~.)p~1 ... /3~k)G(x1,. . Xk), (8.36)

wherethe matrix Fis definedin eq. (7.54).With eq. (7.52), we can decompose

= K~.xk~

1 + ~ (8.37)

Thematrix 5 — I’ actingon this lastvectorwill benon-zeroonly if K’~1is nonzero.Due to thefact that
all componentsof ~r+t are 1, we concludethat eq. (8.36) reducesto

(Xl. .~ .Xk K~.~G(x
1,.. . , x~))J~’. . , a,, = ~ja1... , a,,, (8.38)

i.e. it factorizesinto a productof f~ a,, times a term ~ that doesnot dependon the particular
choiceof indicesa1,. . - , a,,. This shows, that the way propagatorsor verticesareaffectedby finite or
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infinite tadp9lecontributionsdoesnot dependon the particularchoiceof the propagatoror the vertex.
Divergences are now easy to evaluate. We can get rid of the divergent part of ~ by taking all
propagatorsto be regularizedwith the samecut-off ~2 This is equivalentto consideringthe exponents
in the Lagrangianas normal orderedwith respectto this arbitrary scale.The baremassM in front of
the potential in (7.7), computed with an ultraviolet cut-off A, is relatedto the dressedone as

M2—sM2(A2/~t2)-/4~~)hIh (8.39)

where

r r+1

~ q~a’a~’. (8.40)
a1 i=1

In the simply lacedcases,h = h and they cancel in (8.39).The finite part of the tadpolesgives a further
finite renormalizationof the parameterM. Other finite renormalizationeffects will be discussedin the
nextsection. It is interestingto note that /3 doesnot renormalize.

8.7.2. Finite renormalization
Except for the tadpolediagrams,all other Feynmandiagramsof ATR’ are finite. Hence we can

computeperturbativelythe finite renormalizationof the theories.One importantpoint is to checkthat
the ratiosof massesarepreservedby quantumcorrectionsbecausethe bootstrapcan closeaftera finite
numberof stepsonly if theseratiostakevery particularvalues.In the casesof ADE Todafield theories
the massratios, as determinedfrom the exact solution of the S-matrixproblem,coincide with those
obtainedat the classical level. Therefore the mass ratios must remain stable with respect to the
quantumcorrections.

The massesof thequantumATR’ aregiven by the polesof thefull propagators.At the lowestorder
in /3, the self-energydiagramsare given by the diagramshownin fig. 29 with the externalmomentum
put on-shell. Summingup all intermediatecontributions,a nice universalresultappearsfor the ATR’
of simply laced type [158,171],

= (/32/4h)cot(in/h), (8.41)

i.e. the massshift is given by the areaof the regularplanarpolyhedronwith h equalsidesandperimeter
/3. This resultseemsto indicatethe existenceof a universalrenormalizationfunction E( /3, h), thatonly
dependson /3 and h, and connectsanybaremassto its renormalizedone, as

(rna)ren= (ma)
0E(/3, h). (8.42)

i~i
Fig. 29. One-loop masscorrection.
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An interestingopenproblemis to find its closed form.
The analysis madeso far on the mass ratios of ADE Toda field theoriesdoes not hold for the

non-simply laced ones.In fact, orderoneloop, the quantumcorrectionsspoil the classicalmassratios
[158,171]. This renormali~ation of the mass ratios conflicts with the quantumintegrability of the
models. The only casewherethis problemseemsabsentis the ~ serieswherethe renormalization
propertiesareinduced,in a consistentway, by thoseof the parent~ theories.In all othercases,the
folding of the simply laced ATR’ not only removes the non-invariant particles from the set of
asymptoticstates,but alsoforbids them to appearas virtual intermediateparticles.Thesevirtual states
are very important in the parenttheoriesand give rise to the universalmassrenormalization(8.41).
Their absenceessentiallyexplainsthe lack of an analogousformula for the non-simply lacedATFT.
Thesedifficulties for a consistentquantumfield theoryof the non-simply laced ATFT areunpleasant
but not surprising.The unpleasantfact is that thereexist someminimal models of CR’ that can be
constructedin terms of a cosetconstructionon non-simply laced algebrasand, moreover,their Kac
tablepresentsa relevantfield that can be usedto write the Lagrangianof thecorrespondingATR’. For
instance,theseare the casesof the minimal model ~9,1o (obtainedas coset construction on the
exceptionalalgebra G2) and of the minimal model ~1o,l1 (obtainedas coset constructionon the
exceptionalalgebraF4). Onthe otherhand,the difficulties pointedout for the non-simplylacedATFT
are not surprising becauseanalogouscomplicationsexistat the level of conformalfield theorymodels
(see,e.g. refs. [231,232] for the coset construction on the non-simply laced algebras) - The quantum
consistencyof the scattering theory for the non-simply laced ATR’ requires the introduction of
additional degreesof freedom,as shownref. [178].

Another importanttestfor the quantumintegrability of theATFT is the stability of the particles.In
many systemsthere are particles above the thresholdof the lightest particle. They do not decay
classicallybecausethe three-couplingsof the possibledecaysarezero. Any decayat thequantumlevel
would rule out the existenceof an infinite numberof conservedquantities.The calculationsmadeat
one-looporder showthat theyare still stable [158].This amountsto computethe Feynmandiagrams
shown in fig. 30. We will commentfurtheron the decayprocessesin section8.8,whenwe considerthe
off-critical theorieswith two differentperturbingfields.

8.7.3. Pole structure
The exact S-matricescomputedin the previoussectionscontain a rich structureof singularities. In

the standard interpretation of these singularities, the simple poles are associated with the bound states
in the direct or in the cross channel,dependingon the sign of the residue.But, as we observedin
chapter3, aninterestingfeatureis given by their multiplepolestructure.In the caseof ~ seriesthere
aresimple anddoublepoles,in theD~

1~seriestherearesingularitiesup to 4th orderpoles,whereasin
the E

6 theory thereare polesup 6th order, in E7 up to 8th andin E8 up to 12th order. A consistent
identification of theseexact S-matriceswith thoseobtainedby the LSZ reductionof the Lagrangian

Fig. 30. Vertex corrections.
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(7.7) requiresat least a checkwith the lowestordersin perturbationtheoryand an explanationof all
singularitiesin termsof Landausingularitiesof the Feynmandiagrams[211].The generalanalysiswas
reviewedin chapter3 andthereforeherewepresent,as asimpleexampleof thegeneralstructureof the
simply laced ATFT, the caseof ATR’ on the root systemof ~

The full S-matrix for the lightest particle of E~’~is given by

~I1 = f
119(0)fb_l/9(0)f5/s(0)fbl/9(0)fb(0) - (8.43)

In the physical sheet we have two simple poles with positive residue at 0 = in-/9 and Siin/9 which
correspond to physical particles. How the S-matrix depends on /3 through the function b( 13) can be
determined using perturbation theory. At the tree level we have the graphs of fig. 31. First of all, one
can easilyverify the elasticityof all the scatteringprocesses.For the allowedamplitudesthe polescome
from the internal propagators.On the other hand, we can see where the poles are located just
expandingS. In our example,we obtain

~ =iinb( ~iin) — sinh(0— ~iin) + sinh(0— ~iin) — sinh(0— ~iin) — sinh(0)) +

The pole with negative residue —2mb at 0 = 0, that comes from fb(O), is a consequence of the
Jacobian that appears expressing 5(0) in terms of the Mandelstam variable s,

~9°(s)= 4m,m1sinh(0,1)S(0,1). (8.45)

Perturbation expansion (i.e. the graphs in fig. 31) shows that the residue at this pole is only non zero in

~aa for anya. The two otherpoleswith positiveresiduesmb are identified with the poles in the direct
channel(fig. 31b) wherethe internalpropagatorscorrespondto the particleswith massesm2 andm4. It
is interestingto note that the bootstrapcondition which acts multiplicatively on the S-matrices,is
instead additive at the perturbative level, mappingpoles with different physical meaningsinto each
other. The residuesare alwayssimple multiplesof b, althoughthe graphsof perturbationtheoryhave
very different propagators and vertices fabc This fact leads to the areaformula (7.49) for the couplings
fabc becausethe sameareaappearsin eq. (8.45)andin theresidueof the propagators.With thisdirect
comparison,we can consistentlyobtainthe lowestterm of the function b( /3). For anysimplylacedroot
system we obtain [158,171]

irb=13
2/2h+” (8.46)

(a) (b) (c) (d)

Fig. 31. Tree level scatteringprocesses.
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Bradenand Sazaki [175] havefurther pursuedthe computationcheckingthe function b(f3) at the
secondorder in perturbationtheory,

irb = (132/2h)(1 — /32/4in+ ..-). (8.47)

This result is in agreementwith thecorrespondingorder in the expansionof the conjecturedexactform
of the function b(/3),

irb = (/32/2h)(1+ f32/4in)1 . (8.48)

The structureof higher-orderpoles hasbeenanalyzedin detail in ref. [172].

8.8. Decayprocessesin theorieswith two perturbingfields

In this sectionwe go backto the caseof CR’ theoriesperturbedaway from the critical point by two
relevantfields. We assumethat theseperturbationsarein correspondencewith somefields in the Toda
field theories.Explicitly we considerthe caseof the Ising model andthe tricritical Ising model.

Supposewe perturbthe Ising model at the critical point by inserting a magneticfield and also
increasingits temperatureabove T~.The magneticfield is the most relevantperturbationassociated
with E

5. Onemightwonderif the structureof E8 remainsa reliable descriptionof themodel, atleastto
the first order in (T — T~)us~T. We have to checkwhetheror not the particlesof E8 abovethreshold
remainstable.

The probability of the decayprocessesis given by

dP= ~ I1~(hIl1l2)0~j~

2 d~2~hs ~2 ~ (8.49)

whereh is a particlewith massM andl~, 12 aretwo particleswith massesm
1, m2 in which the particleh

can decay.Assumingthe independenceof the matrix elementfrom the momentum,we can compute
the total two-bodyphasespace,

~(2) = f (2in)
252(p

1 +~2 ~ (21T)2E1 (2in)2E2 = 2 M~p~O(M
2 — (m

1 + m2)
2), (8.50)

where

p~=~[M2 — (m
1 + m2)

2][M2 — (m
1 — m2)

2]/2M.

For dimensionalreasons,the matrix element(h~l
1l2~ is proportional to M

2 andcanbe estimatedby the
Wigner—Eckarttheorem.Whatwe needto know is the quantumnumberof the quantitiesinvolve~iin
(8.49). The transformationpropertiesof the operator~ /2,1/2 with respectto the groupE

8 areworked
out in appendixC. They coincidewith thoseof the particlewith massm2 in the spectrumof the Ising
model in a magneticfield. Hence,we can usethe bootstrapfusionsgiven in appendixC for obtaining
the allowed decayprocesses.The full list is presentedin table21.

It is worth noting that althougheachparticlewith massabovethresholddecays,thereexisthowever
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Table 21
Possibledecayprocessesfor theE

8 massesof the Ising model in thepresenceof theenergyoperator~ / 2, 2

m8—~m,m1 no m8—~m,m4 yes m7-~m,m. yes
m8—~m1m, no m,—~m,m, yes m7—~m,m, yes

no m,—~m3m1 yes m6—~m1m1 yes
m,—÷m,m4 yes m,—*m,m4 no m6—~m1m, yes
m,—~m1m, yes m7—~m,m1 no m,—~m1m~ yes
m8—~m1m6 yes m7—~m1m, yes m,—~m,m1 yes
m,—÷m2m, yes rn7—4m1m~ yes m,—*m1m, yes
m,--~m2m2 yes m7—~m,m4 yes m4—~m1m1 yes

Table 22
Possibledecayprocessesfor theE7 massesof theTIM in the presenceof thedensity operator~6/ 0 6/

m7—~m1m1 yes m7—~m,m, yes m6—~m,m, no
m7—~m1m, no m7—~m,m~ no mS_.*mrn/ yes
m7—~m1m3 yes m7—~m2m4 yes m,—’m1m, no
m7—~m1m4 no m6—~m,m1 no
m7—~m1m, no m6—~m1m, yes

someselectionrules in theseprocesses.For instance,the particlewith thehighestmassm8cannotdecay
into the lightest ones m1m1.

Let us considernow the tricritical Ising modelperturbed by the energyoperator~ andby the
vacancy density operator tP6/10,6/10. The density energyoperatoris most relevant, and fixes the E7
structureof the model.The transformationpropertiesof the field ~6I1O,o/1O with respect to the group E7
coincide with those of the particle with mass m4. This particle is even under the Z2 symmetry of the
model. Using the bootstrap fusion of the model, we obtain the allowed decays given in table 22. In this
case the selection rule acting in the decay of these particles is just the Z2 parity of the model.

9. Correlation functions and form factors

In the previous chapters, we have characterized massive integrable field theories in terms of their
scatteringdata,i.e. their propertieson mass-shell.An importantproblem is to completethe analysisof
such models by computing the correlationfunctionsof local fields. Despitethe existenceof an exact
S-matrix of these integrable models, the investigation of the off-shell behaviour reveals to be a difficult
taskandclosedexpressionsfor the correlatorshavenot beenfoundup to now. An exceptionconsistsin
the tour de force calculationof the correlationfunctionsof the Ising model [78—81].

One possible approachto get informations aboutthe off-critical correlatorsis to use the spectral
density representation. This means that we decompose the correlation functions into an infinite sum
over multiparticle intermediate states, each of those contributions being given by the corresponding
form factors. For instance,in the caseof two-point functionswe have

(~a(p)Ca(0)) = Ga(P) = f ~ , (9.1)
p K +lr
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with the spectralfunctionsgiven by

= ~ JLI d2p, 5(K° —~ p~)5(K1 —E~p~F~2. (9.2)

,,n. ,(2in)

Theform factorsF~are matrix elementsof the quantumfields Ca betweenasymptoticscatteringstates,

F~=
0~1(p1,p2,... Pmk~a(0)IPm+i’~. .p,,)1,,. (9.3)

As a result of unitarity and CPTinvariance,the form factors obey the Watson equations [68], which, for
systemswith factorized elastic S-matrices,becomerather simple functional equations[83,84]. In
addition,the form factorscorrespondingto multiparticle asymptoticstatesarerelatedby LSZ reduction
and bootstrapequationsto thosewith fewer particles.

These two types of conditions, together with analyticity requirements, have been used to determine
some of the form factorsin several theories [69—71,83—86, 147]. In certain cases the results may be
testedagainstexactor perturbativesolutions.

The form factor approach for computing the off-critical correlators presents, however, some
shortcomings. The first one is related to the arbitrariness inherent in solving the Watson equations —

analogouslyto the CDD arbitrarinesspresentin any S-matrix. In fact, it is often necessaryto make
certain “minimality” assumptionsin order to find the correct form factorsof a specific theory. The
secondsourceof difficulties is that, althoughthe form factorsof a theory maybe computedexactly,the
difficult step remains in finding a closed expression for the infinite sum over the intermediate particle
number.

The goal of this chapteris to briefly review the basic propertiesof the form factorsin a factorized
scattering theory and to show — taking the Ising modelas example— how they can be used for studying
the ultraviolet limit of amassive field theory.

9.1. Equations for the form factors

The form factors are matrix elements of local operators 0(x) betweenout-statesand in-states.We

define the functions
F,,=(OIC(0)lpi,. . - ,p,,)~. (9.4)

If C hasspin s, Lorentz invarianceimplies that F,, is of the form e~°’timesa function dependingonly on
the differences0~,= 0, — 0~,.This function is the boundaryvalueon the real axis of an analyticfunction
of the 0~,.The most generaln-particle form factorsare

Pm~C(0)~Pm+i,. . , p,,)~,,. (9.5)

Crossing invariance allows us to expressthem as analytic continuation of (9,4), and they are equal to

Fn(0,I,iin~0rs,Ok!), (9.6)

where1~i<j~m,1�r~m<s~n,andm<k<l~n. We haveassumed,for simplicity, a theory
with self-conjugateparticles.
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The Watson equationsare derived by inserting into (9.5) a complete set of in-states before the
operatorC, and of out-statesafter this operator. Weuse then the definition of the S-matrix

S,,(p
1,... ~ = ~Km,- . - ,p,,~p1,... , p,,)1~, (9.7)

together with the factorization property

S,,(p1,...,p,,)=flS2(p~,p1). (9.8)
i<i

The matrix elementwith in- andout-statesinterchangedis obtained by CPT invariance from (9.5) by
changing the signs of all the O~,.Thus, the final form of the Watson equations is

~ (9.9)
k<l

In the casen = 2, theseequationssimplify to

F2(O)= F2(—O)52(O), F2(iir — 0) = F2(iin + 0). (9.10)

It was shown in ref. [69] that the general solutions of this system of equations have the form

F,, = K,, LI Fmjn(0,j), (9.11)
i <I

where Fmjn(O) hasthe propertiesthat by itself satisfies(9.10), is analyticin OsIm 0 � 2ir, and hasno
zeros in 0< Im ~i <2in. These requirements uniquely fix this function. The remaining factors K,, then
satisfy the Watson equations with ~2 = 1, which implies that they are completely symmetric, periodic
functionsof the O~.

The other constraint on the K,, is that theymustcontain all the physicalpolesexpectedin the form
factor under consideration. Kinematic poles are expected at 0,~ = i in, with the correspondingresidues
which link (n + 2)-particleform factorswith n-particle form factors [71]

Res~0F,,1 ,,,,,,(0’ + in, 0,0~,., - = — S~~(O— 0i))F~1a2 ,a,,(0i,. . ,O,,). (9.12)

This correspondsto a zero-anglescatteringof the particle Aa — a processwhich comesfrom the two
different kinematicalsituationsdepictedin fig. 32.

Eventual additional poles depend on the operator C, on its transformationpropertiesunder any
global symmetries the theory may possess and on the structure of the bootstrap fusions. If there exists a
set of operators which share the same symmetry properties, they will present the same pole structure in
the K,, and will only differ in the numeratorwhich multiplies thesepoles. Moreover, their specific
expressionis furtherconstrainedby the requirementthat the residuesof the polesareproportionalto
form factorswith fewerparticles. If particlesA, andA. giverise to aboundstateA~,thecorresponding
amplitudepresentsa pole at 0 = iu~,with residueequalto the productof on-mass-shellthree-point
vertices(fig. 33)



G. Mussardo, Off-critical statistical models:factorizedscatteringtheoriesand bootstrapprogram 359

Fig. 32. Two different kinematicalsituationsfor thescatteringprocessat zero rapidity.

Aj~-~~Aj

Fig. 33. Bound-statepole in scatteringamplitude.

Res01,,~S,~(0)= if~f~. (9.13)

Hence,we obtainthe following relationshipbetweena n-particleand(n — 1)-particleform factors(fig.
34)

i Res~0F,,~,, a.a.(0i, 02,.. - , 0~+ iü~— r/2, 0~— ii~ + e/2)—f~F~,,(0~,°2’’~ , Or).

(9.14)

After this generaldiscussionon the matrix elementsof thelocal operatorsC, we return to the problem
of the arbitrarinesspresentin solving the Watsonequationsand to the analysisof the asymptotic

.~iI~ItI~\\c~~III
Fig. 34. Bootstrapequationfor theform factor ~.
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behaviourof the two-point function (9.1). As a nontrivial example we will considerthe spin—spin
correlationfunction of the Ising model at a noncritical value of the temperature[70,71].

9.2. Magnetizationcorrelation functionsin the Ising model

In general,the Watsonequationsandthe LSZ reductionformulaeform a linear systemof equations,
whosesolutionsthereforespana linear space.In deriving the equations,the only important fact that
mattersis the knowledgeof thesymmetrypropertiesof the operatorC whichmayconstrainthe form of
the couplingsto the asymptoticstates.A family of operatorswhichsharethe samesymmetrytherefore
satisfiesthe same set of equations.At the conformal point, such families are given by the Verma
modulesof primary fields. It is thus naturalto think that this typeof organizationof the fields at the
conformalpoint hassomeimplicationalsofor thefields out of the critical point andthat form factorsof
the off-critical fieldsoriginating from the sameconformalfamily satisfythe sameWatsonequations,i.e.
the spaceof solutionsto the Watson+ LSZ systemis isomorphicto the spaceof descendentoperators.
This problemhas beeninvestigatedby Cardy andMussardo[70] for the Ising conformalfield theory
perturbedby the energyoperator.Theseauthorshaveshownthat thereexistsa naturalgradingof the
spaceof solutionsto the equationsfor theform factorsandthat thedimensionat the level (n, n)agrees
with that of the correspondingVirasoro representation.Moreover, the analysis of the ultraviolet
behavior of the form factors correspondingto deformed descendantoperators leads to scaling
dimensionswhich arepreciselyshiftedby n andi~with respectto thoseof the primaryoperator.These
findingswere interpretedas theresultof a pair of Virasoroalgebrasactingon the spaceof form factors
in the non-criticaltheory. We briefly summarizethe analysis developedin [70].

The thermalperturbationof the Ising model preservesthe original Z2 spin symmetryof the critical
point, thereforethe operatorsmay be labelledby their parity quantumnumber. The S-matrix in the
spin sectorof the thermalperturbedIsing model is given by S = —1 anddoesnot presentany additional
boundstate.The minimal solution of (9.10) is simply

Fmin(0)= sinh ~0. (9.15)

For C we take a Z2-odd operatororiginating from somefield in the conformal tower of the primary
magnetizationoperator.The Z2 symmetryimplies that F,, vanisheswhen n is even.The pole structure
of K,, maybe deducedas follows. Thereshouldbe polesin everythree-bodychannel.Onemayargue
thatno explicit polesshouldoccurin n-bodychannelswith n >3, becausecrossingwould thenimply the
existenceof inelasticprocesses.Using the fact that

(p,+pJ+pk)
2—1=8cosh~O,Jcosh~~,kcosh2Ok~, (9.16)

we seethat all possiblethree-bodypolesmaybe takeninto accountby letting

K,, = R,,(flcosh~ (9.17)
i<i

where the function R,, has no singularities.Note that when n is odd, the denominatorin (9.17) is
periodic in eachrapidity variable O~,and thereforeso must be R,,. We may thereforeconsiderit as
having a Taylor expansionin the variablese~ande°’.Actually, it is possibleto prove that in order for



G. Mussardo, Off-critical statisticalmodels:factorizedscattering theoriesand bootstrapprogram 361

the ultraviolet behaviorof the two-point function to be power-lawbounded,this expansionshould in
fact terminate,so that R,, maybe written in the form

R,,=P,,(p1,... ,p,,)exp(_N~O~ (9.18)

for someintegerN. HereP,, is a totally symmetricpolynomial in the variablesp. = e°’.If the spin of C is

s, P,, must in fact be homogeneousof degrees + N. We will focus on the caseN = 0. Using the
bootstrapequationsfor the form factorsF,, (this time, they relate F,, with F,,2 becausethe model
presentsno boundstatesbut singularitiesin the three-particlechannels,see fig. 35), it is possibleto
showthat the P,, satisfy the recursionequations

P,,(p1,—p1,p3,. . . , p,,)=2iP,,2(p3,.. - , p,,). (9.19)

Note that degP,, = degP,,2, which implies that it is possible to find a solution with degP,, = s,
independentof n. In other theories,the situationis differentandthe degreeof P,, increaseswith n. In
the cases = 0, which correspondsto the primary magnetizationoperator,we see that P,, is just a
constant,proportionalto (2i)”

2. This resultwaspreviouslyobtainedin ref. [69].Thegeneralsolutionof
(9.19)can be written asa sumof productsof the form 0~k0k~~.. , with Y~,k, = s, wherethe 0k arethe
elementarysymmetricpolynomials in the momentap,, -

u
1pI+p2+..., u2=p1p2+p1p3+-”, cr~=p1p2p3+”- (9.20)

Then, before the bootstrapequations(9.19) are used,the dimensionof the spaceof solutionsto the
Watson equationsat this level is given by the number P(s) of partitionsof s. But, imposingthe
bootstrapequations(9.19), the numberof independentsolutionsbecomesequalto the numberq(s) of
partition of s into odd integers [70]. The generatingfunction of this partition (see e.g. ref. [72])
coincides,up to a prefactor,with the characterof the magneticprimary field of the Ising model,

>q(5)xs=fl(1+xT). (9.21)

Fromthis result, one can infer that the dimensionof the spaceof solutionsto the equationsfor the
off-critical form factorsof the most relevantoperatorswith spin s is equalto that of the spaceof such

6n~1

Fig. 35. Bootstrapequationfor the form factor .~ in thethermal perturbationof theIsing model.
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operatorsin the conformalfield theory,establishingthereforean isomorphismbetweenthe conformal
and the off-critical theory.

Let usanalyzethe ultraviolet behaviourof the two-point function of the leadingprimarymagnetiza-
tion operator. Its expression,in real Euclideanspacereads

G(r)~’~-~j~~exp(_Ir~cosh0,)IF,,~2. (9.22)

The F,, are given by

F,, = P,,(p
1, p.,,. - - , p,,)fltanh ~ (9.23)

i<i

with p,, = (2i)~’
2.Then, if we define

V(0)=—lntanh2 ~O, U(y)=e~, l=ln(2/r), (9.24)

the aboveexpressionmaybe rewrittenin the very suggestiveform [70]

G(r) = ~[E(1/2n, 1) + .~‘(—1/2ir,1)] . (9.25)

where

E(z, 1) = ~ ~ J [I do, exp(_ ~ [U(O,+ 1) + U(l — 0,)]) exp(_ ~ V(O, — Os)). (9.26)

This is nothing but the grand partition function for a one-dimensionalgas of particles,of fugacity z,

interactingwith each other via a two-body potential V, and with two walls, located at ±1,with a
potentialU. Both of thesepotentialsare repulsiveand short-range.In the limit I—s~, we have

—ln E-~—2pl+ 2f,, + O(e1~), (9.27)

where p is the pressure, f~is the surface or boundary contribution to the free energy, and ~ is of the
orderof the correlationlength. We see thereforethat each term in (9.25) should have a power law
dependenceon r, with anexponentproportionalto thepressurep. Sinceweexpectthe gaswith positive
fugacity (correspondingto the first term in (9.25)) to havelarger pressure(a result which may be
checkedwithin the virial expansion[71]), we have the predictionthat, as r—sO,

G(r) const/r2’~- (9.28)

Hencethe overall scalingdimensionof the operatoris nothing but the pressureof this fictitious gas,
with fugacity z = 1 /2 in. In orderto find its value,wecan takeadvantageof the short rangecharacterof
the potentialandsolve the one-dimensionalgasin the approximationof nearestneighbourinteraction.
In this approximation,the pressuresolvesthe following equation
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2in = J dx e~tanh2 ~x, (9.29)

whosenumericalsolution is

p = 0.125294. (9.30)

This gives a remarkablygood approximationto the exactanswer,namelyp = 1/8. The validity of the
nearestneighborhoodapproximationcan be consistentlycheckedby computing the densityof the
particlesof the one-dimensionalgas.The result is (N) II = 0.1019, which showsthat the gas is really
dilute. An exactexpressionof p, which coincideswith the expectedvaluep 1/8, hasbeenfound in
ref. [71] by summingthe clusterexpansionseries.

Let us turn now to correlationfunctionsof descendentoperators,whose form factorsdiffer from
thoseof the primaryoperatorby special combinationsof polynomialsin the variablese°’ande °‘, of
respectivedegreesn andñ~Theircorrelationfunctionscan be written as expectationvaluesof these
polynomials in the fictitious gas ensemble[70]

E(z, l)(P({e°’}, {e~})), (9.31)

wherethe partition function is, as before,essentiallythe two-point function of the primaryoperator,
and P is homogeneousof degrees2n, 2ñ, respectively,in the two setsof variables.Theycanbe put in
the following form

exp[2(n + ii)l]i(P(U(l — 0,), U(l + 4)). (9.32)

The latter expectationvalue,which is relatedto the probability for finding a givennumberof particles
close to one or other of the walls, is finite in the thermodynamiclimit I—s~ Thus, in that limit, the
scalingdimensionof anoperatorwhoseform factorscontainspolynomialsof degree(n,ñ) hasa scaling
dimensionshifted by (n + ñ) from that of the primary field. Of course, it is clear from the Lorentz
transformationpropertiesof its form factors that it correspondsto spin (n — ñ). This shows the
isomorphismbetweenthe descendentfieldsof the magnetizationoperatorsat the conformal point and
the off-critical fields for the deformedtheory.

10. Conclusions

We haveanalyzedmassiveintegrablemodelsoriginatingfrom the deformationsof minimal modelsof
CFT. The casewhereonly one relevantfield is usedto move the systemaway from criticality showsa
rich pattern.The infinite setof non-criticalconservedcurrentsallows usto computethe exactS-matrix
of the correspondingrelativistic field theory andthemassspectrumof the excitations.Thesearerelated
to the different correlation lengths of the statisticalsystems.The bootstrapapproach,successfully
applied to the computationof the scatteringmatrices,also providespowerful meansfor studyingoff
mass-shellpropertiesof integrabletheories.The finite-sizecorrectionscan be analyzedin termsof the
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thermodynamicalBethe ansatzwhereasthe problem of off-critical correlatorscan be formulatedin
terms of the form-factormethod.

An interesting result of the S-matrix approachis that the scatteringdata of several massive
deformationsare relatedto the root systemsof simply lacedalgebras.We havediscussedin detail the
statistical modelscorrespondingto the exceptionalalgebrasE,,: the Ising model in a magnetic field
background(E8), the tricritical Ising model (E7) and the tricritical Potts model (E6), both in their
high-temperaturephase.These additional symmetriesof the models permit to write the bootstrap
fusionsof the scatteringprocessesin a very compactway.

We havealso consideredthe Ising model andthe tricritical Ising model in the caseof multi-coupling
deformationsof the correspondingcritical CR’. The problemunder considerationhasbeen to see,
whetherthereexist integrabledirectionsin the planeof the phasediagramotherthanthosealongthe
axis of the temperatureand, for Ising, the axis of magneticfield whereasfor the tricitical Ising model
the axis of the chemicalpotentialof the vacancies.In thesecases,dimensionalanalysisshowsthat the
possibleconservedspinsmight only occurat the valuesgiven by the Coxeterexponentsof E8 (Ising)
and E7 (TIM). The explicit computationfor the lowest values of the spinsshows that conserved
currentsdo not exist when the fixed point action is perturbedby two different relevant fields. The
reasonlies in the different null-vector conditionssatisfiedby the two different operators.Onemight
consider the less relevantfield as a perturbationof the theory defined by the most relevant one.
However, this perturbationreally ruins the structureof the original theory. In fact, in the original
theoriessomeparticlemassesareabovethe thresholdof the lightestoneandtheir stability is relatedto
the root systemof the algebrasE8 and E7. When the secondrelevantfield is presentall theseheavy
particlesdecay.

The integrability of thesemodelsis still anopenproblem,eventhoughwe believethat the argument
given in the text for the lowestspin can be generalizedto higher level in order to showthe absenceof
anyconservedcurrentscommonto bothperturbations.Assumingthe non-integrabilityof thesemodels,
it would be interestingto studythem in somedetail as prototyperealistic modelswhich show a much
richerbehaviourthanthe integrableones.Onewould expectthe appearanceof resonancesas well as
boundstateswith an S-matrix no longer beingelastic.

Concerningrecentdevelopmentsin the analysis of integrabledeformationsof CR’, the S-matrix
approachhasrecently been generalizedby Zamolodchikovand Zamolodchikov[233]to masslessbut
non-scaleinvariant QR’ which correspondto renormalizationgrouptrajectoriesflowing betweentwo
fixed points of infinite correlationlength. Although the statusof this proposalneedsfurther investiga-
tion, the presentunderstandingis supportedby the analysisof the (infinite) systemof integral Bethe
equationswhich gives the correctvalue of the fixed-point centralcharges.

In conclusion,the S-matrixapproachsetsa referencegroundfor developingideasandtechniquesin
off-critical statisticalmodelsandoffers a new viewpoint on the spaceof two-dimensionalquantumfield
theories.
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Appendix A

In this appendixwe discussthe fermionic representationof the two-dimensionalIsing model. Let us
considera squarelattice of N = n2 spinsconsistingof n rows and n columns,with periodic boundary
conditions.Let js.,, (a = 1,2, - . - , n) denotethe collection of all spin coordinatesof the a-row

I~a= {u
1, 02~. - °n}a row - (A.1)

A spin configurationis specifiedby a set of { .~ - .. , p.,,}. The athrow interactsonly with the nearest
rows labelledby (a — 1) and(a + 1). Let E(p..,,,~ be the interactionenergybetweenadjacentrows
andE( p.,,) be the interactionenergyof thespinswithin the ath row (eventuallycoupledto an external
magneticfield B). Explicitly,

E(p.,p.’)=—e1~u~u~, (A.2)

(A.3)

where r~and e2 are the coupling constantsin the horizontaland vertical directions,respectively.The
total energycan be written as

(A.4)

and the partition function is then

Z=~~--~exp[—/3E(p.1,.- - ‘p.,,)]. (A.5)
!~l!’2 i’,,

Let P be the2~x 2” transfermatrix operatordefinedby the matrix elements

(p.~P~p.’)=exp[—/3(E(p., p.’)+E(p.))]. (A.6)

Then

~ (A.7)
~‘1 l~2 P.,, P.1

The operator P can be written as

P=V3V2V1, (A.8)

whereV~are the 2” X 2” matrices,

(~l--flIVlIu--~)=flexp(Pelffk~), (A.9)
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(A.1O)

~ (A.11)

A more convenientexpressionfor thesematrices is obtainedby introducingthe following operators
definedin termsof direct products

a

~1(a)=1x1x-.-x~x1-”x1, (A.12)

a

~(a)=1x1x---x~x1---x1, (A.13)
a

a)=1x1x-x~x1”-x1, (A.14)

wherea-, are the usual Pauli matrices.For a � b it is easyto check that

[ô~(a),~(b)] = 0, (A.15)

whereasfor the samea, the ~(a) satisfy

[~.(a), ~(b)] = 2ie~Jktk(a), (A.16)

{~(a),6~(a)}= ~ (A.17)

In terms of t~,(a),P can be written as

P= c fl exp[/3B~3(a)]exp[/3e2~3(a)~3(a + 1)] exp[0~1(a)], (A.18)

where

c = [2sinh(2f3e1)]~’
2, tanh0 = exp(—2/3e

1).

The correspondingHamiltonian can be definedby

(A.19)

where a is the lattice spacing. In the continuum limit (a—sO) and in absenceof the magneticfield
(B = 0), we have

H = [~1(a) + ~~3(a)~3(a+1)], (A.20)

where ~ and ~j are new coupling constants(functions of the previousones).
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We can define the dual operatorsby

~3(r + ~)= H ~
1(p), (A.21)

j.
2

1(r+ ~)=63(r)~3(r+1). (A.22)

It is easyto check the relations

= = 1, /J.3(r 2)p.3(r+ ~)= ~(r) , Eü1(r+ ~),p.3(r + ~)] 2v5~.
(A.23)

[j.~3(r+~),p.~(r+ ~)]=0, [/.~3(r+~),ä1(r’)]=0.

The Hamiltonian (A.20), in termsof the dualoperators,reads

H=~[~3(r—~)/i3(r+ ~)+~p.1(r+ i)]. (A.24)

The Kramers—Wanniersymmetry is expressedby the equations

~ p.3�*o-3, ?~‘E-*?7 (A.25)

and can be mademanifestby this expressionof the Hamiltonian

H= ~ [~~t(r) +,~~(r+i)]. (A.26)

The equationsof motion are

(a/at)~3(r)= [H, cr3(r)] = ~o1(r)o3(r), (A.27)

(a/at),23(r+ ~)= [H, ji(r+ ~)]= ~~3(r)~3(r+1)~2~(r+~). (A.28)

Let us put

u(r) = p.3(r — ~)~3(r) , (A.29)

v(r)=p.3(r+ 1)~3(r). (A.30)

The equationsof motion for the new variablesbecome

~3u(r)/at= ~jv(r) — ~v(r— 1), (A.31)

av(r) /9t = ~u(r) — ~u(r — 1), (A.32)

and in the continuumlimit we obtain



368 G. Mussardo, Off-critical statistical models:factorizedscattering theoriesand bootstrapprogram

(A.33)

Ov(r)/Ot = (~— ~)u(r) — ij t9u(r)/Or. (A.34)

The two fields u(r) and v(r) can be organizedas

/ u(r) \

t/i(r)= ~v(r)) (A.35)
with anticommutationrelations

{u(r), u(r’)} = 2Srr~, (A.36)

{v(r), v(r’)} = 25rr~- (A.37)

A compactform of the equationsof motion is given by

(y° 8/at + y3 8/Or — m)i/i = 0, (A.38)

where

~ (0 1\ ~ (1 0\

~ ~i o)’ ~~o —i)’

y°and y3 being the Euclideany matrices.
Therefore,the Ising model is equivalentto a free Majoranafermionicsystem.At the critical point,

definedby ~ = ij, the massparametervanishes.

Appendix B

Herewe discusssomepropertiesof the tricritical Ising model. First of all, we considerthe coset
constructionof the tricritical Ising modelsin terms of the exceptionalgroup E

7

M4 = (E7)1® (E7)1/(E7)2 . (B.1)

We needthe following resultsfrom the theory of the affine Kac—Moody algebras[230].The central
chargeof a conformal field theory constructedon an affine Lie algebraG at level k is given by

CG = k~GI/(k+ ~‘G), (B.2)

where IG~is the dimensionof the algebraand ,fr0 the dualCoxeternumber.The unitarity conditionfor
the CR’ restrictsthe highestweightrepresentations(X)) which can appearat the level k. Denoting
with w the highestroot, the allowedrepresentationsA) at the level k must satisfy

2w-A/w
2~k. (B.3)



G. Mussardo,Off-critical statistical models:factorizedscatteringtheoriesand bootstrapprogram 369

Their dimensionis

C5/w
2 (B.4)k+

where C
5 is the quadraticCasimirin the representation{ A}.

Using a subgroupH CG we can constructa CR’ on thecosetgroupG/H. Thecosettheory G/H has
centralchargeequalto [230]

cG/H = C13 — CH = k0jG~/(k0+ ~I’G)— kH~H~/(kH+ ~H) (B.5)

and its representationshk are obtainedby the decompositionof the Hilbert space

IcG, AG) = ~k[lcG/H, h~/H)®~cH,Az)]. (B.6)

In the caseof the TIM, ~/i = 18 and eq. (B.5) gives c = ~. At level k = 1 the possiblerepresentations
are the identity 1 andthe representation11~with scaling dimension0 and~ respectively

(E7)1 —s {1, 116) = {0, ~} - (B.7)

Their components(n1,n2,. . - , n7)(n, integer) with respectto the simple roots of E7 are [226,2271

1—s(0,0,0,0,0,0,0), [16—5(0,0,0,0,0,1,0). (B.8)

At the level k = 2 one finds the representations

(E7)2—s{1, ~ ‘~2’111,116)= {O, ~, ~, ~,~} - (B.9)

The correspondingfundamentalweights are

11~—s(1,O,0,0,0,0,0),112—s(0,1,0,0,0,0,0),11~—s(0,0,0,0,1,0,0). (B.10)

H~is the adjoint representation.Using eq. (B.6) we can recoverthe scalingdimensionsof the TIM,

(0)1 x (0)1 = [(O)TIM ® (O)~]+ ~ )TIM ® (111)2] + [(fii)TIM ® (11~)~]

(0)1 x (~)~= [(?b)TIM ®(112)2] + [(~)T1M ®(~6)2] , (B.11)

13\ f~\ — I~\ tc\Ifl\
~.4)i ~.4)1 — k2)TIM’°’’.”)2 -

Note that the operatorof the energydensity ~1/1O1/1O is associatedto the adjoint of E7. This is the
necessary condition in order to write the ATFT Lagrangianon E7 for the non-critical model.

The value of the massesgiven in table 18 form the componentsof the Perron—Frobeniusvectorof
the algebraE7, with thefollowing correspondenceto the representationsof E7 (seetable23) [225—227]
(we usethe dimensionof the representationsto denotethem)
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Table 23
Dynkin diagram of E

7 and assignmentof themassesto the corre-

spondingdots.

Exponents: 1,5,7,9,11,13,17

m31 - -

m2 m5 m7 rn6 rn.1 m1

m1-s56, m2—s133, m3—s912, m4—s1539,
(B.12)

m538645, m6—s27664, m7—s365750.

Fromeq. (B.11), thevacancydensityoperator~6/!o,6/tO is pairedwith (Hz) that hasthe samequantum
numberof the particlewith massm4. The list of all minimal S-matricesof thequantumE7 Todasystem
(which coincide with the thermaldeformationof theTIM) is given in termsof the following particular
subsetof functionsf1:

f1~18’f5118’ f7118’ f116’ F219, f419, f819, f2/3’ f112 . (B.13)

The positionsof their polesarethosegiven in table 12. The completeset of two-particle functions
5AB

reads:

~11 = f
419f819 ‘ ‘~I2= f5116f7~18‘ ‘~13= f213f219f419‘ ‘~14= f116f1118f7~18f112

~15 = f2/9f4/9(f213)
2 S~= f

213f2~9f8~9(f419)
25~= fl/

6fl/2(fs/18)

2(f

7/l8)

2 ‘ ~22 = f
213f4~9f819

~23 = f116f5118f7118f112~ S~= f21~f~1~(f2~3)
2‘ ~25 = fl/

6f11l8f51l8fI12(f7/l8)

2

C f 4 /4’ \2/4’ \2 ç ......~ (4’ ~ \2(4’ \3 ç c c ~ ~ \2

‘-‘26 — i1/6J1/2’.J5!18) ‘.J7/18) ‘ ‘‘27 — J8/9’.J2!9) ‘.J213) ‘.J419) ‘ ‘‘33 — f2/9J8!9kJ2!3) ‘.f4!9)

— 2 2 _~:. ~ç \2f 4’ \2( 4’ \3 ç — ~ j 4~ \2f 4’ \3( J.~ ~3

— f
116f112(f5~18)(f7118) S35 — J8/9’.J2/9) ‘.J213) ‘.J4/9) ‘ ‘-‘36 — J8!9’.J2!91 kf4!9) ~J2!3J

(B.14)
C’ — £ / 4’ \

2f 4- \2/ £ \3( 4 \4 ç — ç ç / ~ \2f ~ c — ~ f (4’ \~(f
— Jl/18’.J1!2) ‘.J1/6) ‘.J5!18) ‘.J7/18) ‘ ‘-‘44 J2!3J2/9’.J8/9) ‘.J419) ‘ ‘—‘45 — Jl/6J1!2kJ5/18) ‘.J7118)

C — 4~ ( 4~ \2(4’ \2/ ~‘ \2/ 4’ \3 C’ —4’ (4’ \3(4’ \4(f \4
“46 — Jl/l8’.J1/2) ‘.Jl/6) ‘.J5/18) ‘.J7/18) ‘ ‘-‘47 — J8!9’.f2/9) ‘.J4!9) ‘.J2/3)

C, — / 4 \2( j- \2/ j- \3( 4’ ~4 C —4’ / ~ \3/ ~ ~ 4’
355 — kJ219) ‘.J8/9) ‘.J2/3) ‘.J4!9) ‘ ‘-‘56 — J8/9’.J2/9) ‘.J2!3) ‘.J4!9)

C, — 4~ (4 \3f 4’ \3/ 4 \4/4 \5 — ~-,c \2/4’ \3( ç \4/ 4’
‘-‘57 — Jl/18’-.J1/2) ‘.Jiio) ‘.J5/18) ‘.J7/18) ‘ ‘-‘66 — kJ8/9) ‘.J2!9) ‘.J2/3) tf4/9)

C’ 4 / 4- \3/ 4- \3( 4~ ~ ~ \6 C’ — / 4’ \~/c ~5i c ~7 c \8
-‘67 — fl/18’.J1!2) ‘.J!/6) ‘.J5/18) ‘.J7!18) ‘ ‘‘77 — kJ8!9) ‘.J219) ‘.J2/3) ‘.J4!9) -

Appendix C

Herewe derivesimilar resultsof thepreviousappendixfor the caseof the Ising model.We consider
the coset
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M3 = (E8)1®(E8)1/(E8)2- (C.1)

The Coxeternumberis now ‘fr = 1/18. Using eq. (B.5) we get c = ~. At the levelk = 1 thereis only the
identity representation1 with dimension0. At the level K = 2 thereare threerepresentations

(E8)2—s{1,111,117}={0,~, ~}. (C.2)

H~is the adjoint representationof E8. The Ising model is recoveredby the decomposition

(0)1 x (0)! = [(°)Is ® (°)~]+ [(ii ~ ® ( f~)2] + [(~)Is ® ( ~ )2] - (C.3)

The spin operator ~1/!6,1/16 is associatedto the adjoint H~and following Eguchi and Yang the
off-critical Ising model in the presenceof a magneticfield is describedby the ATFT basedon E8. The
Perron—Frobeniusvector of the masses is associatedto the following representationsof E8
[225,226,227] (seetable 24):

m1—’s248, m2—s3875, m3—s30380, m4—s147250, m5—s2450240,
- (C.4)

m6—~6696000, m7—s146325270, m8—s6899079264.

Fromeq. (C.3), the energydensityoperator~I/2,!/2 is associatedto the representation117, i.e. to the
particlewith massm2.

The squareof the masses{m1,m6, m5,m7} arethe roots of the quarticpolynomial

P1 =x
4—30x3+300x2—1080x+720 (C.5)

and we introducethe notation

(m
1,m6, m5, m7)—9’(A1, A2,A3,A4) - (C.6)

The squareof the masses{m2, m3, m8, m4} are the roots of the otherquarticpolynomial

P1 =x
4—30x3+240x2—720x+720 (C.7)

and for them we introducethe notation

(m
2,m3, m8,m4)—s(B1, B2, B3, B4) - (C.8)

Table 24
Dynkin diagram of E,, and assignmentof the massesto the corre-

sponding dots.

Exponents: 1,7, 11, 13, 17,19,23,29

m41 -

m2 Tn6 Tn8 m7 rn5 m3 m1
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The bootstrapfusionsof the E8 systemscan be written as

A,xA~=A,+B,+B1~1,A1xA1~1=A1~2+A,~3+B1~3,

A1 x A1~2=A1~1+ A1÷3+ B1~+ B1~3, A1 x A1~3= A1÷~+ A1~2+ B1~2

B, x B. = A, + A1~1 + A1~2+ B. + B1÷3, B, x B,~1= A, + A1÷1+ B.~1
(C.9)

B,xB,~2=A1~1+A,~3,B~xB1~3=A1+B,+A1~3,A,xB1=A1+B1+B1~1+B,~3,

A, x B.÷1= A, + A,~2 + B. + B,÷3 , A, x B1~2= B1~2 + A~3

A. x B1~3= A1~1 + A1÷2 + B, + B,~1+ B1÷3

andthey area subsetof the tensorproductdecompositionof the E8 representationsgiven in eq. (C.4)
[226,227].

In orderto simplify the expressionof the S-matrices,in this appendixwe denotethe basicfunctions

f4- simply by (x) (with the identification(x) (1 — x)). With this abbreviation,the completesetof two

particle S~4B-matricesfor the Ising model in a magneticfield reads:

C’ — /i\(~\/_i\ C’ _/_4_\/~\(4\/~~7_\
‘-‘Il — ‘.3.”. 5)1 15) ‘ -‘12 — ‘.15)’. 5/ks)’. I7)~

C — / 1 ~/ 1 \/ 3 \/ 17 \/ i~~2 C’ — / 1 \/ 3 \( 7 \( 17 \/ 19 \/ 1 \2
‘-‘13 ‘.1O)’.30)’.tO.”.30)’.30) , ‘‘14 ‘.6)’.1O)’.30)’.30.I’.30)’.2)

C — / 2 \/ 1 \/ 7 \/ 11 \/ 1 \2/ 2 \2 ç — / 1 \/ 7 \/ 11 \/ 1 \2/ 7 \2/ 17 \2
‘-‘i5k15)’.15)’.15)’.15)’.3)’.5) ‘ ‘-‘16 ‘.6)’.10)’.30P~.2)k30)k30)

C — / 1 \/ 1 \/ 7 \/ 1 \2/ 7 \2/ 11 \2/ 17 ~2 ç — / 2 \/ 1 \2/ 2 \2/ 2 \2/ 11 \2/ 7 \3
~L~l7’.I0)’.6)’.3O)’.2) ‘.10) ‘.30) ‘.30) ‘ ‘-‘18 ‘.15)1.5)1.5)1.3) 115) 1.15)

— / 1 \/ I \/ 2 \/ 7 \/ 11 \( 2 \2 ç — / 1 \/ 11 \/ 3 \/ 1 \2/ 7 \2/ 17 \2
“22 ‘.15)kS)’.3)’.15)’.15)’.5) ‘ ‘-‘23’.6)’.30)’.I0)k2)k30)’.30)

C — / 1 \/ 1 \/ 7 \/ 1 \2/ 11 \2/ 3 \2/ 17 \2 c — / 2 \/ 1 \2/ 2 \2/ 4 \2/ 2 \2( 7 \2
‘-‘24’.10)’.6)k30)’.2) ‘.30) ‘.10) 1.30) ‘ ‘‘25 ~.15.”.5) ‘.5)115)13)115)

C — / 1 \/ 1 \( 1 \( 1 \2/ 3 \2/ 7 \2/ 11 \3/ 17 \3 C’ — / 1 \/ 7 \2/ 1 \2/ 3 3/ 11 \3/ 17 \3/ 1 ~4
‘-‘26k30)’.10)’.6)’.2) ‘.10)1.30) ‘.30) ‘.30) ‘ ‘-‘27 ‘.10)130)16) ‘.10 ‘.30) ‘.30) ‘.2)

— / 1 \/ 2 \2/ 1 \2/ 4 \~/2 \4( 2 \4( 8 ~4 ~ — / 2 \/ 4 ~/ 8 \/ 1 \2/ 2 \3/ 2 \3
‘‘28 ‘.15)115)1.5)115)13)15)115) ‘ ‘-‘33 ‘.15)’.15)k15)’.l5) ‘.5)13)

C — / 2 \/ I \2/ 2 \2/ 2 \2/ 4 \2/ 8 ~3 ~ — / 1 \/ 1 \/ 7 \/ 1 \2/ 1 \2/ 3 \3/ 17 \3/ 19 \4
‘-‘34 115)1.5)15)13)115)1.15) ‘-p35 ‘.30)’.6)’.30)’.10) ‘.2)1.10)130)130)

— / 2 \/ 2 \2/ 1 \3/ 2 \3( 4 \~/ 7 \~ C — / 1 \/ 1 \2/ 2 ~/ 4 \3/ 2 \4/ 1 \4/ 7 \4
‘-‘36’.15.~’.3) ‘.5)15)115)115) ‘-p37 ‘.15)1.5)115)1.15)13)1.5) 115)

C — / 1 \/ 1 ~3/ 3 \4/ 7 \4/ 11 \4/ 17 \5/ 1 \6 C, — / 1 ~/ 2 \/ 1 \2/ 4 \2/ 2 \3/ 2 \3/ 7 \~
‘-‘38’.10.~’.6) 1.10)1.30)1.30)130)1.2) ‘ ‘-‘44 ‘.15)115)1.5)115)13)1.5) 115)

C, — / 1 \/ 1 \2/ 7 \3/ 3 \3/ 11 \3/ 1 \4/ 17 \4 C — / 1 \/ 1 \2/ 2 \2/ 4 \3/ 2 \4/ 2 \4/ 7 \~
‘-‘45’.10.~1.6) ‘.30) ‘.10)130)1.2)1.30) ‘ ‘-~46 l.15)k5) ‘.15)1.15) ‘.3) ‘.5) 115)

C’ — / 1 \/ 2 \2/ 1 \3/ 2\4/ 4 \‘~/ 2 \5( 7 \5 C, — / 1 \/ 1 \2/ I \3/ 7 \4/ 3 \5/ 1 \6/ 11 \6/ 17 \6
‘-‘47’.t5)k1S) ‘.5)13) ~.15) ‘.5)115) ‘ ‘-‘48130)110)1.6)130)110)12)130)130)

C — / 1 \2/ 2 \2/ 1 \2/ 4 \3/ 7 \4/ 2 \5/ 1 \5 (2 — / I \( 1 \~/ 3 \~/ 11 \~/ 7 \4/ 17 \5/ 1 \6
‘-‘55115)1.15) ~.5)’.15) ‘.15)1.3)15) ‘ “56 110.~’.6) ‘.10)130)1.30)130)12)

C — / 1 \/ 1 \2/ 1 \3/ 7 \4/ 3 \5/ 1 \6/ 11 \6/ 17 \6 C’ — / 1 \/ 2 \3/ 1 \5/ 2 \6/ 4 \6/ 2 \7/ 7 \8
‘-‘57130)110) ‘.6)130)110)12)130)130) ‘ ‘‘58115)115)1.5)1.3)115) ‘.5)115)
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C — / 1 \2/ 2 \2/ 1 \
3f 4 \4( 2 \5( 7 \5/ 2 \6 C — / 1 \( 2 \3/ 1 \4/ 4 \5/ 2 \6/ 2 \6( 7 \7

‘-‘661.15/1.15)15)1.15)1.3)115)1.5) ‘ ‘-‘67115.115/1.5)1.15)1.3)1.5)1.15)

— / 1 \j 1 \3/ 1 \4( 7 \5/ 3 \7( 1 \8/ 11 \8/ 17 ~8 C, — / 1 \2/ 2 \3/ 1 \5/ 4 \6( 2 \7/ 2 \8( 7 ~8
‘-‘68k30)k10) 1.6)1.30)1.10)12)130)1.30) ‘ ‘77\15) 115)15/1.15)1.3)1.5)1.15)

C /1 \/ 1 \3(1\5/ 7 \7/ 3 \8/11\9/1\10/17\10 C, _(1 \3( 2 \~/1\~/ 4 \9/2\11(2\12/ 7 \12
‘-‘781.30)1.10)1.6)1.30)1.10)1.30)1.2) 1.30) ‘ ‘-‘88 1.15/115)15)1.15)1.3/ 1.5) 1.15) -

AppendixD

In this appendixwe presentthecomputationsrelatedto the conservedchargewith spins = 7. Weuse
an algebraicmethodthat leadsto anexpressionfor thecurrentP

8 differentfrom that given in ref. [189],
eq. (2.39),but the resultcan be obtainedfrom the expression(2.39) as well.

At level 8, thegeneralexpressionof a quasi-primaryoperatorin the family of the identity operator
1(z) is

A~”~= a1L8 + a2L_6L_2+ a3L_5L_3+ a4L~4+ a5L_4L~2+ a6L~3L_2+ a7L
4

2. (D.1)

The coefficients {a,} arefixed by the condition of the quasi-primaryfields, namely

L+1A~”~= 0, L0A~”~= 0. (D.2)

Fromthis we obtain the equations

9a1+5a4+27a7=0, 7a2+4a6+24a7=0, 6a3+10a4+3a5=0, 5a5+8a6+18a7=0.
(D.3)

At the level 8 there exist threequasi-primaryoperatorsin the family of the identity operator.We
choose

A(i)_ ~2 5~, , _4,

— ~ ~4 3L~5L~3 9 L~~8 ~

A~
2~= L~

3L_2 — 4L_6L_2+ U_SL_3 — ~L_4L~2, (D.4)

A~
3~= L’~

2 — ‘~L4L~2+ ~L5L3 — ~L6L2 — 3L8 -

A linear combinationof theseoperators,

P8 = aA~+ f3A~
2~+

7A~
3~, (D.5)

is conservedunder the perturbationof the field ~ ~,dueto the null-vector conditionsatisfiedby this

field. To fix the coefficient a, f3, and y we haveto compute
(D.6)
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andto demandthat thepieceB (which is not a totalderivative) is zero. This can beachieveddueto the
null-vectorcondition of the field ~ ~. The computationis doneusing the operatorsD,, definedby the
commutationrelationswith the L,,s [29],

[Dm, L,,] = ((1 — zl)(n + 1) + m)Dn+m , D0 = 8~, D,,1(z)= [A/(n — 1)!]L1~”P-

For the Ising model the result is given by

p~l)— A~
1~+ 968240 A’~2~— 69160 A~3~ D 7

8 — 8 166869 8 18541 8 ( - )

whereasfor the TIM

pW — A~’~+ 83537300A~2~— 53253200A~3~ D 8
8 — 8 12310833 8 12310833 8 - ( - )

Both currentsarenotconservedundertheperturbationof the respective~1,2 operator,~I/16,1/l6 for the
Ising model and ~1/10,1/1O for theTIM. In fact, the linear combinationwhich is conservedunder the
perturbationof the Ising model with a magneticfield is

p(2) — A~’~— 1585360 A~2~— 4426240 A~3~ D 98 — 8 12003709 8 12003709 8 - ( - )

This is theconservedcurrentof the E
8 group.The conservedcurrentof the groupE7 (TIM perturbed

with energydensity operator~1/Io.I/1o) is given by

p(
2) — A~’~— 764750 A~2~— 3458000A~3~ D 108 — 8 8735637 8 8735637 8 - ( - )
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