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0.1 Introduction

These lecture notes are devoted to introduction to Keldysh formalism for
treatment of out of equilibrium interacting many–body systems. The name
of the technique takes its origin from the 1964 paper of L. V. Keldysh [1].
Among earlier approaches that are closely related to the Keldysh technique,
one should mention Konstantinov and Perel [2], Schwinger [3], Kadanoff
and Baym [4], and Feynman and Vernon [5]. Classical counterparts of the
Keldysh technique are extremely useful and interesting on their own right.
Among them Wild diagrammatic technique [6], and Matrin–Siggia–Rose
method [7] for stochastic systems (see also related work of DeDominicis [8]).

There is a number of presentations of the method in the existing litera-
ture [9, 10, 11, 12, 13, 14, 15]. The emphasis of this review, which is a sub-
stantially extended version of Les Houches Session LXXXI lectures [16, 17],
is on the functional integration approach. It makes the structure and the
internal logic of the theory substantially more clear and transparent. We
will focus on various applications of the method, exposing connections to
other techniques such as the equilibrium Matsubara method [18, 19] and the
classical Langevin and Fokker–Planck equations [20, 21]. The major part
of the review is devoted to a detailed derivation of the nonlinear σ–model
(NLSM) [22, 23, 24, 25], which is probably the most powerful calculation
technique in theory of disordered metals and superconductors. This part
may be considered as a complimentary material to earlier presentations of
the replica [27, 28, 29, 30, 31] and the supersymmetric [32, 33, ?] versions
of the σ–model.

The applications and advantages of Keldysh formulation of the many–
body theory among others include:

• Treatment of systems away from thermal equilibrium, either due to the
presence of external fields, or in a transient regime.

• An alternative to replica and supersymmetry methods in the theory of
systems with quenched disorder.

• Calculation of the full counting statistics of a quantum observable, as
opposed to its average value or correlators.

• Treatment of equilibrium problems, where Matsubara analytical continu-
ation may prove to be cumbersome.

0.2 Closed time contour

Consider a quantum many–body system governed by a (possibly time–
dependent) Hamiltonian Ĥ(t). Let us assume that in the distant past
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t = −∞ the system was in a state, specified by a many–body density ma-
trix ρ̂(−∞). The precise form of the latter is of no importance. It may
be e.g. the equilibrium density matrix associated with the Hamiltonian
Ĥ(−∞). The density matrix evolves according to the Heisenberg equation
of motion ∂tρ̂(t) = −i

[
Ĥ(t), ρ̂(t)

]
, where we set ~ = 1. It is formally solved

by ρ̂(t) = Ût,−∞ρ̂(−∞)
[Ût,−∞

]† = Ût,−∞ρ̂(−∞)Û−∞,t, where the evolution
operator is given by the time–ordered exponent:

Ût,t′ = T exp
(
−i

∫ t

t ′
Ĥ(τ)dτ

)
= lim

N→∞
e−iĤ(t)δte−iĤ(t−δt)δt . . . e−iĤ(t ′+δt)δt ,

(0.1)
where an infinitesimal time-step is δt = (t− t′)/N .

One is usually interested in calculations of expectation value for some
observable Ô (say density or current) at a time t, defined as

〈Ô(t)
〉 ≡ Tr{Ôρ̂(t)}

Tr{ρ̂(t)} =
1

Tr{ρ̂(t)}Tr
{Û−∞,tÔÛt,−∞ρ̂(−∞)

}
, (0.2)

where the traces are performed over the many–body Hilbert space. The
expression under the last trace describes (read from right to left) evolution
from t = −∞, where the initial density matrix is specified, forward to t,
where the observable is calculated and then backward to t = −∞. Such
forward–backward evolution is avoided in the equilibrium by a specially
designed trick.

Let us recall e.g. how it works in the zero temperature quantum field the-
ory [19]. The latter deals with the expectation values of the type 〈GS|Ô|GS〉 =
〈0|Û−∞,tÔÛt,−∞|0〉, where |GS〉 = Ût,−∞|0〉 is a ground–state of full inter-
acting system. The evolution operator describes the evolution of a simple
noninteracting ground state |0〉 toward |GS〉 upon adiabatic switching of the
interactions. Now comes the trick: one inserts the operator Û+∞,−∞ in the
left most position to accomplish the evolution along the entire time axis.
It is then argued that 〈0|Û+∞,−∞ = 〈0|eiL. This argument is based on the
assumption that the system adiabatically follows its ground–state upon slow
switching of the interactions ”on” and ”off” in the distant past and future,
correspondingly. Therefore, the only result of evolving the noninteracting
ground–state along the entire time axis is acquiring a phase factor eiL. One
can then compensate for the added evolution segment by dividing this fac-
tor out. As the result: 〈GS|Ô|GS〉 = 〈0|Û+∞,tÔÛt,−∞|0〉/eiL and one faces
description of the evolution along the forward time axis without the back-
ward segment. It comes with the price, though: one has to take care of the
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Fig. 0.1. The closed time contour C. Dots on the forward and the backward
branches of the contour denote discrete time points.

denominator (which amounts to subtracting of the so–called disconnected
diagrams).

Such a trick does not work in a nonequilibrium situation. If the system
was driven out of equilibrium, then the final state of its evolution does not
have to coincide with the initial one. In general, such a final state depends on
the peculiarities of the switching procedure as well as on the entire history
of the system. Thus, one can not get rid of the backward portion of the
evolution history contained in Eq. (0.2). Schwinger [3] was the first who
realized that this is not an unsurmountable obstacle. One has to accept
that the evolution in the nonequilibrium quantum field theory takes place
along the closed time contour. Along with the conventional forward path,
the latter contains the backward one. This way one avoids the need to know
the state of the system at t = +∞.

It is still convenient to extend the evolution in Eq. (0.2) to t = +∞ and
back to t. It is important to mention that this operation is identical and
does not require any additional assumptions. Inserting Ût,+∞Û+∞,t = 1̂ to
the left of Ô in Eq. (0.2), one obtains

〈Ô(t)
〉

=
1

Tr{ρ̂(−∞)}Tr
{Û−∞,+∞Û+∞,tÔÛt,−∞ρ̂(−∞)

}
. (0.3)

Here we also used that according to the Heisenberg equation of motion the
trace of the density matrix is unchanged under the unitary evolution. As
a result, we have obtained the evolution along the closed time contour C
depicted in Fig. 0.2.

The observable Ô is inserted at time t, somewhere along the forward
branch of the contour. Notice that, inserting the unit operator Ût,+∞Û+∞,t =
1̂ to the right of Ô, we could equally well arrange to have an observable on the
backward branch of the contour. As we shall see later, the most convenient
choice is to take a half–sum of these two equivalent representations. The ob-
servable may be also generated by adding to the Hamiltonian a source term
ĤO(t) ≡ Ĥ(t)± Ôη(t)/2, where the plus (minus) signs refer to the forward
(backward) parts of the contour. One needs to calculate then the generating
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functional Z[η] defined as the trace of the evolution operator along the con-
tour C with the Hamiltonian ĤO(t). Since the latter is non–symmetric on
the two branches, such a closed contour evolution operator is not identical
to unity. The expectation value of the observable may be then generated as
the result of functional differentiation

〈Ô(t)
〉

= δZ[η]/δη(t)|η=0. We shall
first omit the source term and develop a convenient representation for the
partition function

Z[0] ≡ Tr{ÛC ρ̂(−∞)}
Tr{ρ̂(−∞)} = 1 , (0.4)

where ÛC = Û−∞,+∞Û+∞,−∞ = 1̂. The source term, breaking the forward–
backward symmetry, will be discussed at a later stage. Notice that since
Z[0] = 1, the observable may be equally well written in the form, more
familiar from the equilibrium context:

〈Ô(t)
〉

= δ ln Z[η]/δη(t)|η=0. The
logarithm is optional in the theory with the closed time contour.

The need to carry the evolution along the two–branch contour compli-
cates the nonequilibrium theory in comparison with the equilibrium one.
The difficulties may be substantially reduced by a proper choice of vari-
ables based on the forward–backward symmetry of the theory. There are
also good news: there is no denominator eiL, unavoidably present in the
single–branch contour theory. (One should not worry about Tr{ρ̂(−∞)}
in Eq. (0.4). Indeed, this quantity refers entirely to t = −∞, before the
interactions were adiabatically switched ”on”. As a result, it is trivially cal-
culated and never represents a problem.) The absence of the denominator
dramatically simplifies description of systems with the quenched disorder.
It is the denominator, eiL, which is the main obstacle in performing the
disorder averaging of the expectation values of observables. To overcome
this obstacle the replica [26, 27, 28] and the supersymmetry [32, 33] tricks
were invented. In the closed time contour theory the denominator is absent
and thus there is no need in any of these tricks.

0.3 Bosonic coherent states

An extremely useful tool for our purposes is the algebra of bosonic coherent
states [34], which we summarize briefly in this paragraph. Consider the
bosonic annihilation and creation operators, b̂ and b̂†, which operate in the
space of the boson occupation numbers n in the following way

b̂ |n〉 =
√

n |n− 1〉 ; b̂†|n〉 =
√

n + 1 |n + 1〉 . (0.5)
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The number states |n〉 form a complete orthonormal basis: 〈n|n′〉 = δnn′

and
∑

n |n〉〈n| = 1̂. By acting on an arbitrary basis state, one may check
the following relations

b̂†b̂|n〉 = n|n〉 ; b̂b̂†|n〉 = (n + 1)|n〉 ; [b̂, b̂†] = 1̂ . (0.6)

Coherent state, parameterized by a complex number φ, is defined as a
right eigenstates of the annihilation operator with the eigenvalue φ

b̂ |φ〉 = φ|φ〉 ; 〈φ| b̂† = φ̄〈φ| , (0.7)

where the bar denotes complex conjugation. As a result, the matrix elements
in the coherent state basis of any normally ordered operator Ĥ(b̂†, b̂) (i.e. all
the creation operators are to the left of all the annihilation operators) are
given by

〈φ|Ĥ(b̂†, b̂)|φ′〉 = H(φ̄, φ′) 〈φ|φ′〉 . (0.8)

One may check by the direct substitution that the following linear superpo-
sition of the pure number states is indeed the required right eigenstate of
the operator b̂ :

|φ〉 =
∞∑

n=0

φn

√
n!
|n〉 =

∞∑

n=0

φn

n!
(
b̂†

)n|0〉 = eφ b̂† |0〉 , (0.9)

where |0〉 is the vacuum state, b̂ |0〉 = 0. Upon Hermitian conjugation, one
finds 〈φ| = 〈0| e φ̄ b̂ =

∑
n〈n|φ̄n/

√
n! .

The coherent states are not mutually orthogonal: their set forms an over-
complete basis. The overlap of two coherent states is given by

〈φ|φ′〉 =
∞∑

n,n′=0

φ̄nφ′n′√
n!n′!

〈n|n′〉 =
∞∑

n=0

(φ̄φ′)n

n!
= e φ̄φ′ , (0.10)

where we employed the orthonormality of the pure number states. One may
express resolution of unity in the coherent states basis. It takes the following
form:

1̂ =
∫

d[φ̄, φ] e−|φ|
2 |φ〉〈φ| , (0.11)

where d[φ̄, φ] ≡ d(Reφ) d(Imφ)/π. To prove this relation one may employ
the Gaussian integral

Z[J̄ , J ] =
∫

d[φ̄, φ] e−φ̄φ+φ̄J+J̄φ = e J̄J . (0.12)
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As its consequence one obtains
∫

d[φ̄, φ] e−|φ|
2
φ̄nφn′ =

∂n+n′ Z[J̄ , J ]
∂Jn∂J̄n′

∣∣∣∣∣
J̄=J=0

= n! δn,n′ . (0.13)

Substituting Eq. (0.9) and its conjugate into the right hand side of Eq. (0.11)
and employing Eq. (0.13) along with the resolution of unity in the number
state basis 1̂ =

∑
n |n〉〈n|, one proves the identity (0.11).

The trace of an arbitrary operator Ô, acting in the space of the occupation
numbers, is evaluated as

Tr{Ô} ≡
∞∑

n=0

〈n|Ô|n〉 =
∞∑

n=0

∫
d[φ̄, φ] e−|φ|

2 〈n|Ô|φ〉〈φ|n〉 (0.14)

=
∫

d[φ̄, φ]e−|φ|
2

∞∑

n=0

〈φ|n〉〈n|Ô|φ〉 =
∫

d[φ̄, φ] e−|φ|
2 〈φ|Ô|φ〉 ,

where we have employed resolution of unity first in the coherent state basis
and second in the number state basis.

Another useful identity is

f(ρ) ≡ 〈φ|ρ b̂†b̂|φ′〉 = e φ̄φ′ρ . (0.15)

The proof is based on the following operator relation g(b̂†b̂) b̂ = b̂ g(b̂†b̂− 1)
valid for an arbitrary function g(b̂†b̂), which is verified by acting on an
arbitrary basis vector |n〉. As a result,

∂ρf(ρ) = 〈φ|b̂†b̂ ρ b̂†b̂−1|φ′〉 = 〈φ|b̂†ρ b̂†b̂ b̂|φ′〉 = φ̄φ′f(ρ) .

Integrating this differential equation with the initial condition f(1) = eφ̄φ′ ,
which follows from Eq. (0.10), one proves the identity (0.15).

0.4 Partition function

Let us consider the simplest many–body system: bosonic particles occupy-
ing a single quantum state with the energy ω0. Its secondary quantized
Hamiltonian has the form

Ĥ = ω0 b̂†b̂ , (0.16)

where b̂† and b̂ are bosonic creation and annihilation operators with the
commutation relation [b̂, b̂†] = 1̂. Let us define the partition function as

Z =
Tr

{ÛC ρ̂
}

Tr{ρ̂} . (0.17)
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If one assumes that all external fields are exactly the same on the forward
and backward branches of the contour, then Û C = 1̂ and therefore Z = 1.
The initial density matrix ρ̂ = ρ̂(Ĥ) is some operator–valued function of
the Hamiltonian. To simplify the derivations one may choose it to be the
equilibrium density matrix, ρ̂0 = exp{−β(Ĥ−µN̂)} = exp{−β(ω0−µ)b̂†b̂},
where β = 1/T is the inverse temperature and µ is the chemical potential.
Since arbitrary external perturbations may be switched on (and off) at a
later time, the choice of the equilibrium initial density matrix does not
prevent one from treating nonequilibrium dynamics. For the equilibrium
initial density matrix one finds

Tr{ρ̂0} =
∞∑

n=0

e−β(ω0−µ)n = [1− ρ(ω0)]−1 , (0.18)

where ρ(ω0) = e−β(ω0−µ). An important point is that, in general, Tr{ρ̂} is
an interaction and disorder independent constant. Indeed, both interactions
and disorder are switched on (and off) on the forward (backward) parts of
the contour sometime after (before) t = −∞. This constant is therefore
frequently omitted without causing confusion.

The next step is to divide the C contour into (2N − 2) time intervals
of length δt, such that t1 = t2N = −∞ and tN = tN+1 = +∞ as shown
in Fig. 0.2. One then inserts the resolution of unity in the over–complete
coherent state basis, Eq. (0.11),

1̂ =
∫

d[φ̄j , φj ] e−|φj |2 |φj〉〈φj | (0.19)

at each point j = 1, 2, . . . , 2N along the contour. For example, for N = 3 one
obtains the following sequence in the expression for Tr{Û C ρ̂0}, see Eq. (0.14)
(read from right to left):

〈φ6|Û−δt |φ5〉〈φ5|Û−δt |φ4〉〈φ4|1̂|φ3〉〈φ3|Û+δt |φ2〉〈φ2|Û+δt |φ1〉〈φ1|ρ̂0|φ6〉 ,
(0.20)

where Û±δt is the evolution operator during the time interval δt in the posi-
tive (negative) time direction. Its matrix elements are given by:

〈
φj

∣∣∣Û±δt

∣∣∣φj−1

〉
≡

〈
φj

∣∣∣e∓iĤ(b†,b)δt

∣∣∣φj−1

〉
≈

〈
φj

∣∣∣
(
1∓ iĤ(b†, b

)
δt

∣∣∣φj−1

〉

=
〈
φj |φj−1

〉(
1∓ iH(φ̄j , φj−1)δt

) ≈ e φ̄jφj−1 e∓iH(φ̄j ,φj−1)δt , (0.21)

where the approximate equalities are valid up to the linear order in δt. Here
we have employed expression (0.8) for the matrix elements of a normally-
ordered operator along with Eq. (0.10) for the overlap of the coherent states.
Equation (0.21) is not restricted to the toy example (0.16), but holds for any
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Fig. 0.2. The closed time contour C. Dots on the forward and the backward
branches of the contour denote discrete time points.

normally–ordered Hamiltonian. Notice that there is no evolution operator
inserted between tN and tN+1. Indeed, these two points are physically indis-
tinguishable and thus the system does not evolve during this time interval.

Employing the following property of coherent states 〈φ|e−β(ω0−µ)b†b|φ′〉 =
exp

{
φ̄φ′ρ(ω0)

}
(cf. Eq. (0.15)) and collecting all the exponential factors

along the contour, one finds for the partition function, Eq. (0.17),

Z =
1

Tr{ρ̂0}
∫ 2N∏

k=1

d[φ̄k, φk] exp


i

2N∑

j,j ′=1

φ̄j G−1
jj ′ φj ′


 . (0.22)

For N = 3 the 2N × 2N matrix iG−1
jj ′ takes the form

iG−1
jj ′ ≡




−1 ρ(ω0)
h− −1

h− −1
1 −1

h+ −1
h+ −1




, (0.23)

where h∓ ≡ 1∓ iω0δt. The main diagonal of this matrix originates from the
resolution of unity, Eq. (0.19), while the lower sub-diagonal from the matrix
elements (0.21). Finally the upper right element comes from 〈φ1|ρ̂0|φ2N 〉 in
Eq. (0.20). This structure of the iĜ−1 matrix is straightforwardly general-
ized on arbitrary N .

To proceed with the multiple integrals, appearing in Eq. (0.22), we remind
the reader of some properties of Gaussian integrals.

0.5 Bosonic Gaussian integrals

For any complex N ×N matrix Âij , where i, j = 1, . . . N , such that all its
eigenvalues, λi, have a positive real part, Reλi > 0, the following statement



0.5 Bosonic Gaussian integrals 9

holds

Z[J̄ , J ] =
∫ N∏

k=1

d[z̄k, zk] e
−

NP
ij

z̄iÂijzj+
NP
j
[z̄jJj+J̄jzj]

=
e

NP
ij

J̄i(Â
−1)ijJj

detÂ
, (0.24)

where Jj is an arbitrary complex vector and d[z̄jzj ] = d(Rezj)d(Imzj)/π.
This equality is a generalization of the Gaussian integral (0.12), used above.
To prove it, one starts from a Hermitian matrix Â, which may be diagonal-
ized by a unitary transformation: Â = Û †Λ̂Û , where Λ̂ = diag{λj}. The
identity is then proven by a change of variables with a unit Jacobian to
wi =

∑
j Ûijzj , which leads to

Z[J̄ , J ] =
N∏

j=1

∫
d[w̄j , wj ] e−w̄jλjwj+w̄jIj+Ījwj =

N∏

j=1

e Ījλ−1
j Ij

λj
,

where Ii =
∑

j ÛijJj . Using
∑

j Ījλ
−1
j Ij = ~̄JT Û †Λ̂−1Û ~J = ~̄JT Â−1 ~J , along

with detÂ =
∏

j λj , one obtains the right hand side of Eq. (0.24). Finally,
one notices that the right hand side of Eq. (0.24) is an analytic function of
both ReAij and ImAij . Therefore, one may continue them analytically to
the complex plane to reach an arbitrary complex matrix Âij . The identity
(0.24) is thus valid as long as the integral is well defined, that is all the
eigenvalues of Â have a positive real part.

The Wick theorem deals with the average value of za1 . . . zak
z̄b1 . . . z̄bk

weighted with the factor exp
(−∑

ij z̄iÂijzj

)
. The theorem states that this

average is given by the sum of all possible products of pair-wise averages.
For example,

〈zaz̄b〉 ≡ 1
Z[0, 0]

δ2Z[J̄ , J ]
δJ̄aδJb

∣∣∣∣
J=0

= Â−1
ab , (0.25)

〈zazbz̄cz̄d〉 ≡ 1
Z[0, 0]

δ4Z[J̄ , J ]
δJ̄aδJ̄bδJcδJd

∣∣∣∣
J=0

= Â−1
ac Â−1

bd + Â−1
ad Â−1

bc ,

etc.
The Gaussian identity for integration over real variables has the form

Z[J ] =
∫ N∏

k=1

(
dxk√
2π

)
e
− 1

2

NP
ij

xiÂijxj+
NP
j

xjJj

=
e

1
2

NP
ij

Ji(Â
−1)ijJj

√
detÂ

, (0.26)

where Â is a symmetric complex matrix with all its eigenvalues having a
positive real part. The proof is similar to those in the case of complex vari-
ables: one starts from a real symmetric matrix, which may be diagonalized
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by an orthogonal transformation. The identity (0.26) is then easily proven
by a change of the variables. Finally, one may analytically continue the
r.h.s. (as long as the integral is well defined) from a real symmetric matrix
Âij , to a complex symmetric one.

The corresponding Wick theorem for the average value of xa1 . . . xa2k

weighted with the factor exp
(− 1

2

∑
ij xiÂijxj

)
takes the form

〈xaxb〉 ≡ 1
Z[0]

δ2Z[J ]
δJaδJb

∣∣∣∣
J=0

= Â−1
ab , (0.27)

〈xaxbxcxd〉 ≡ 1
Z[0]

δ4Z[J ]
δJaδJbδJcδJd

∣∣∣∣
J=0

= Â−1
ab Â−1

cd + Â−1
ac Â−1

bd + Â−1
ad Â−1

bc ,

etc. Notice the additional term in the second line in comparison with the
corresponding complex result (0.25). The symmetry of Â (and thus of Â−1)
is necessary to satisfy the obvious relation 〈xaxb〉 = 〈xbxa〉.

0.6 Normalization and continuum notations

Having established Gaussian identity (0.24) one can apply it to Eq. (0.22)
to check the normalization factor. In this case Â = −iĜ−1 and it is straight-
forward to evaluate the corresponding determinant employing Eq. (0.23)

det
[− iĜ−1

]
= 1− ρ(ω0)(h−h+)N−1 = 1− ρ(ω0)

(
1 + ω2

0δ
2
t

)N−1

≈ 1− ρ(ω0) eω2
0δ2

t (N−1) N→∞−→ 1− ρ(ω0), (0.28)

where one used that δ 2
t N → 0 if N →∞. Indeed, we divide the contour in a

way to keep δtN = const (given by a full extent of the time axis) as a result
δ2
t ∼ N−2. Employing the fact that the Gaussian integral in Eq. (0.22) is

equal to the inverse determinant of −iĜ−1 matrix, Eq. (0.24), along with
Eq. (0.18), one finds

Z =
1

Tr{ρ̂0}
1

det
[− iĜ−1

] = 1 , (0.29)

as it should be, of course. Notice that keeping the upper–right element of
the discrete matrix, Eq. (0.23), is crucial to maintain this normalization
identity.

One may now take the limit N → ∞ and formally write the partition
function (0.22) in the continuum notations, φj → φ(t), as

Z =
∫

D[φ̄(t), φ(t)] e iS[φ̄,φ] , (0.30)

where the integration measure is the shorthand notation for D[φ̄(t), φ(t)] =
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∏2N

j=1 d[φ̄j , φj ]/Tr{ρ̂0}. According to Eqs. (0.22) and (0.23), the action is
given by

S[φ̄, φ] =
2N∑

j=2

δtj

[
iφ̄j

φj − φj−1

δtj
− ω0φ̄jφj−1

]
+ i φ̄1

[
φ1 − iρ(ω0)φ2N

]
,

(0.31)
where δtj ≡ tj − tj−1 = ±δt on the forward and backward branches, cor-
respondingly. In continuum notations, φj → φ(t), the action acquires the
form

S[φ̄, φ] =
∫

C
dt φ̄(t)Ĝ−1φ(t) , (0.32)

where the continuum form of the operator Ĝ−1 is

Ĝ−1 = i∂t − ω0 . (0.33)

It is extremely important to remember that this continuum notation is only
an abbreviation which represents the large discrete matrix, Eq. (0.23). In
particular, the upper–right element of the matrix (the last term in Eq. (0.31)),
that contains the information about the distribution function, is seemingly
absent in the continuum notations Eq. (0.33). The necessity to keep the
boundary terms originates from the fact that the continuum operator (0.33)
possesses the zero mode e−iω0t. Its inverse operator Ĝ is therefore not
uniquely defined, unless the boundary terms are included.

To avoid integration along the closed time contour it is convenient to split
the bosonic field φ(t) into the two components φ+(t) and φ−(t) which reside
on the forward and the backward parts of the time contour respectively. The
continuum action may be then rewritten as

S[φ̄, φ] =
∫ +∞

−∞
dt

[
φ̄+(t)(i∂t − ω0)φ+(t)− φ̄−(t)(i∂t − ω0)φ−(t)

]
, (0.34)

where the relative minus sign comes from the reversed direction of the time
integration on the backward part of the contour. Once again, the continuum
notations are somewhat misleading. Indeed, they create an undue impres-
sion that φ+(t) and φ−(t) fields are completely uncorrelated. In fact, they
are connected due to the presence of the nonzero off–diagonal blocks in the
discrete matrix, Eq. (0.23). It is therefore desirable to develop a continuum
representation that automatically takes into account the proper regulariza-
tion and mutual correlations. We shall achieve it in the following sections.
First the Green functions should be discussed.
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0.7 Green functions

According to the basic properties of the Gaussian integrals, see section 0.5,
the correlator of the two bosonic fields is given by

〈
φj φ̄j ′

〉 ≡
∫

D[φ̄, φ] φj φ̄j ′ exp


i

2N∑

k,k′=1

φ̄k G−1
kk′ φk′


 = iGjj ′ . (0.35)

Notice, the absence of the factor Z−1 in comparison with the analogous
definition in the equilibrium theory [34]. Indeed, in the present construction
Z = 1. This seemingly minor difference turns out to be the major issue
in the theory of disordered systems (see further discussion in chapter ??,
devoted to fermions with the quenched disorder). Inverting the 2N × 2N

matrix (0.23) with N = 3, one finds

iGjj ′=
1

det
[− iĜ−1

]




1 ρh2
+h− ρh2

+ ρh2
+ ρh+ ρ

h− 1 ρh2
+h− ρh2

+h− ρh+h− ρh−
h2− h− 1 ρh2

+h2− ρh+h2− ρh2−
h2− h− 1 1 ρh2−h+ ρh2−
h2−h+ h−h+ h+ h+ 1 ρh2−h+

h2−h2
+ h−h2

+ h2
+ h2

+ h+ 1




,

(0.36)
where ρ ≡ ρ(ω0). Generalization of the N = 3 example to an arbitrary N

is again straightforward. We switch now to the fields φ±j , residing on the
forward (backward) branches of the contour. Hereafter j = 1, . . . , N and
thus the 2N×2N matrix written above is indexed as 1, 2, . . . , N, N, . . . , 2, 1.
Then the following correlations may be read out of the matrix (0.36):

〈φ+
j φ̄−j ′〉 ≡ iG<

jj ′ =
ρ hj ′−1

+ hj−1
−

det
[− iĜ−1

] , (0.37a)

〈φ−j φ̄+
j ′〉 ≡ iG>

jj ′ =
hN−j

+ hN−j ′
−

det
[− iĜ−1

] =
(h+h−)N−1h1−j

+ h1−j ′
−

det
[− iĜ−1

] , (0.37b)

〈φ+
j φ̄+

j ′〉 ≡ iGTjj ′ =
hj−j ′
−

det
[− iĜ−1

] ×
{

1 j ≥ j ′

ρ(h+h−)N−1 j < j ′
, (0.37c)

〈φ−j φ̄−j ′〉 ≡ iG
eT
jj ′ =

hj ′−j
+

det
[− iĜ−1

] ×
{

ρ(h+h−)N−1 j > j ′

1 j ≤ j ′
. (0.37d)
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Here the symbols T and T̃ stay for time ordering and anti-ordering corre-
spondingly, while < (>) is a convenient notation indicating that the first
time argument is taken before (after) the second one on the Keldysh contour.

Recalling that h∓ = 1 ∓ iω0δt, one can take the N → ∞ limit, keeping
Nδt a constant. To this end notice that (h+h−)N = (1 + ω2

0δ
2
t )

N N→∞−→ 1,

while hj
∓

N→∞−→ e∓iω0δtj = e∓iω0t, where we denoted t = δtj and correspond-
ingly t′ = δtj

′. Employing also the evaluation of the determinant given by
Eq. (0.28), one obtains for the correlation functions in the continuum limit

〈φ+(t)φ̄−(t′)〉 = iG<(t, t′) = nB e−iω0(t−t′) , (0.38a)

〈φ−(t)φ̄+(t′)〉 = iG>(t, t′) = (nB + 1) e−iω0(t−t′) , (0.38b)

〈φ+(t)φ̄+(t′)〉 = iGT(t, t′) = θ(t− t′)iG>(t, t′)+ θ(t′− t)iG<(t, t′) , (0.38c)

〈φ−(t)φ̄−(t′)〉 = iG
eT(t, t′) = θ(t′ − t)iG>(t, t′) + θ(t− t′)iG<(t, t′) , (0.38d)

where we introduced bosonic occupation number nB as

nB(ω0) =
ρ(ω0)

1− ρ(ω0)
. (0.39)

Indeed, to calculate number of bosons at a certain point in time one needs
to insert the operator b̂†b̂ into the corresponding point along the forward or
backward branches of the contour. This leads to the correlation function
〈φj−1φ̄j〉, or in terms of φ± fields to either 〈φ+

j−1φ̄
+
j 〉 or 〈φ−j φ̄−j−1〉 (notice the

reversed indexing along the backward branch). According to Eqs. (0.37c,d)
in the N →∞ limit both of them equal nB.

The step–function θ(t) in Eqs. (0.38c,d) is defined as θ(t − t′) = 1, if
t > t′ and θ(t − t′) = 0, if t < t′. There is an ambiguity about equal
times. Consulting with the discrete version of the correlation functions,
Eqs. (0.37), one notices that in both equations (0.38c) and (0.38d) the first
step function should be understood as having θ(0) = 1, while the second
as having θ(0) = 0. Although slightly inconvenient, this ambiguity will
disappear in the formalism that follows.

In analogy with the definition of the discrete correlation functions as a 2N -
fold integral, Eq. (0.35), it is convenient to write formally their continuum
limit, Eq. (0.38), as a functional integral

〈
φ±(t) φ̄±(t′)

〉
=

∫
D[φ̄, φ] φ±(t)φ̄±(t′) e iS[φ̄,φ] , (0.40)

where the action S[φ̄, φ] is given by Eq. (0.34). Notice that, despite the
impression that the integrals over φ+(t) and φ−(t) may be split from each
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other and performed separately, there are non-vanishing cross-correlations
between these fields, Eqs. (0.38a,b). The reason, of course, is that the contin-
uum notation (0.40) is nothing but the shorthand abbreviation for N →∞
limit of the discrete integral (0.35). The latter contains the matrix (0.23)
with non-zero off-diagonal blocks, which are the sole reason for the exis-
tence of the cross-correlations. It is highly desirable to develop a continuum
formalism, which automatically accounts for the proper cross-correlations
without the need to resort to the discrete notations.

This task is facilitated by the observation that not all four Green functions
defined above are independent. Indeed, direct inspection shows that

GT(t, t′) + G
eT(t, t′)−G>(t, t′)−G<(t, t′) = 0 . (0.41)

This suggests that one may benefit explicitly from this relation by perform-
ing a linear transformation. The Keldysh rotation achieves just that. Notice
that, due to the regularization of θ(0) discussed above, the identity does not
hold for t = t′. Indeed at t = t′ the left hand side of Eq. (0.41) is one
rather than zero. However, since t = t′ line is a manifold of measure zero,
the violation of Eq. (0.41) for most purposes is inconsequential. (Notice
that the right hand side of Eq. (0.41) is not a delta-function δ(t − t′). It
is rather a Kronecker delta δjj ′ in the discrete version, which disappears in
the continuum limit).

0.8 Keldysh rotation

Let us introduce a new pair of fields according to

φcl(t) =
1√
2

(
φ+(t) + φ−(t)

)
, φq(t) =

1√
2

(
φ+(t)− φ−(t)

)
, (0.42)

with the analogous transformation for the conjugated fields. The super-
scripts “cl” and “q” stand for the classical and the quantum components
of the fields correspondingly. The rationale for these notations will become
clear shortly. First, a simple algebraic manipulation with Eqs. (0.37a)–
(0.37d) shows that

〈
φα(t) φ̄β(t′)

〉 ≡ iGαβ(t, t′) =




iGK(t, t′) iGR(t, t′)

iGA(t, t′) 0


 , (0.43)

where hereafter α, β = (cl, q). The fact that the (q, q) element of this matrix
is zero is a manifestation of the identity (0.41). Superscripts R, A and K

stand for retarded, advanced and Keldysh components of the Green function
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respectively. These three Green functions are the fundamental objects of
the Keldysh technique. They are defined as

GR(t, t′) = G cl,q(t, t′) =
1
2

(
GT −G

eT + G> −G<
)

= θ(t− t′)
(
G> −G<

)

(0.44a)

GA(t, t′) = G q,cl(t, t′) =
1
2

(
GT −G

eT −G> + G<
)

= θ(t′ − t)
(
G< −G>

)

(0.44b)

GK(t, t′) = G cl,cl(t, t′) =
1
2

(
GT + G

eT + G> + G<
)

= G> + G< (0.44c)

As was mentioned below Eq. (0.41), these relations hold for t 6= t′ only, while
the diagonal t = t′ is discussed below. Since by definition [G<]† = −G> [cf.
Eq. (0.37)], one notices that

GA =
[
GR

]†
, GK = −[

GK
]†

, (0.45)

where the Green functions are understood as matrices in the time domain.
Hermitian conjugation therefore includes complex conjugation along with
interchanging the two time arguments.

The retarded (advanced) Green function is a lower (upper) triangular
matrix in the time domain. Since a product of any number of triangular
matrices is again a triangular matrix, one obtains the simple rule that the
convolution of any number of retarded (advanced) Green functions is also a
retarded (advanced) Green function

GR
1 ◦GR

2 ◦ . . . ◦GR
l = GR , (0.46a)

GA
1 ◦GA

2 ◦ . . . ◦GA
l = GA , (0.46b)

where the circular multiplication sign stands for the convolution operation,
i.e. multiplication of matrices in the time domain and subscripts denote all
other indexes apart of the time.

Both retarded and advanced matrices have non-zero main diagonal, i.e.
t = t′. The important observation, however, is that

GR(t, t) + GA(t, t) = 0 , (0.47)

see Eqs. (0.38c,d) and the discussion of θ(0) regularization below them.
Since in all subsequent calculations it is always the sum of the two which is
important, one may use, as a rule of thumb, that both retarded and advanced
Green functions separately vanish at coinciding time arguments. Provided
the relation (0.47) is always understood, there is no danger in extending
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G
R

G
A

G
K

f (t)
cl

f (t )
q ,

f (t)
q

f (t )
cl ,

f (t)
cl

f (t )
cl ,

Fig. 0.3. Graphic representation of GR, GA, and GK correspondingly. The full
line represents the classical field component φcl, while the dashed line the quantum
component φq.

Eq. (0.44) to the diagonal t = t′ in the continuum formalism. In the energy
representation Eq. (0.47) takes the form

∫
dε

2π

[
GR(ε) + GA(ε)

]
= 0 . (0.48)

Once again, although it is only the integral of the sum of the two which
vanishes, one may use, as a rule of thumb, that energy integrals of retarded
and advanced Green functions are separately zero. This is due to the fact
that retarded (advanced) functions are analytic functions in the entire upper
(lower) half plane of the complex energy argument. Therefore, by closing
the energy integration contour at infinity, one expects the integral to be
zero.

It is useful to introduce graphic representations for the three Green func-
tions. To this end, let us denote the classical component of the field by a
full line and the quantum component by a dashed line. Then the retarded
Green function is represented by a full–arrow–dashed line, the advanced by
a dashed–arrow–full line and the Keldysh by full–arrow–full line, see Fig.
0.3. Notice that the dashed–arrow–dashed line, that would represent the
〈φqφ̄q〉 Green function, is absent. The arrow shows the direction from φα

towards φ̄β.
Employing Eqs. (0.38), one finds for our toy example of the single boson

level

GR = −iθ(t− t′) e−iω0(t−t′) → (ε− ω0 + i0)−1 , (0.49a)

GA = iθ(t′ − t) e−iω0(t−t′) → (ε− ω0 − i0)−1 , (0.49b)

GK = −i [2nB(ω0) + 1] e−iω0(t−t′) → −2πi[2nB(ε) + 1]δ(ε− ω0) . (0.49c)

The Fourier transforms with respect to t− t′ are given for each of the three
Green functions. Notice that the retarded and advanced components contain
information only about the spectrum and are independent of the occupa-
tion number, whereas the Keldysh component depends on it. In thermal
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equilibrium ρ = e−(ω0−µ)/T , while nB = (e(ω0−µ)/T − 1)−1 and therefore

GK(ε) = coth
ε− µ

2T

[
GR(ε)−GA(ε)

]
. (0.50)

The last equation constitutes the statement of the fluctuation–dissipation
theorem (FDT). The FDT is, of course, a general property of thermal equi-
librium that is not restricted to the toy example, considered here. It implies
a rigid relation between the response functions and the correlation functions
in equilibrium.

In general, it is convenient to parameterize the anti–Hermitian Keldysh
Green function, Eq. (0.45), with the help of a Hermitian matrix F = F †, as
follows

GK = GR ◦ F − F ◦GA , (0.51)

where F = F (t, t′). The Wigner transform (see chapter ??), f(τ, ε), of the
matrix F is referred to as the distribution function. In thermal equilibrium
f(ε) = coth((ε− µ)/2T ), Eq. (0.50).

0.9 Keldysh action and its structure

One would like to have a continuum action, written in terms of φcl, φq, that
properly reproduces the correlators Eqs. (0.43) and (0.49) i.e.

〈
φα(t) φ̄β(t′)

〉
= iGαβ(t, t′) =

∫
D[φcl, φq] φα(t) φ̄β(t′) eiS[φcl,φq ] , (0.52)

where the conjugated fields are not listed in the action arguments and in the
integration measure for brevity. According to the basic properties of Gaus-
sian integrals, section 0.5, the action should be taken as a quadratic form
of the fields with the matrix which is an inverse of the correlator Gαβ(t, t′).
Inverting the matrix (0.43), one thus finds the proper action

S[φcl, φq] =
∫∫ +∞

−∞
dt dt′

(
φ̄cl, φ̄q

)
t

(
0

[
G−1

]A

[
G−1

]R [
G−1

]K

)

t,t′

(
φcl

φq

)

t′
.

(0.53)
The off-diagonal elements are found from the condition [G−1

]R ◦ GR = 1
and the similar one for the advanced component. The right hand side here
is the unit matrix, which in the time representation is δ(t− t′). As a result,
the off-diagonal components are obtained by the matrix inversion of the
corresponding components of the Green functions

[
G−1

]R(A) =
[
GR(A)

]−1.
Such an inversion is most convenient in the energy representation

[
G−1

]R(A) = ε− ω0 ± i0 → δ(t− t′) (i∂t′ − ω0 ± i0) , (0.54a)
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where in the last step we performed the inverse Fourier transform back to the
time representation, employing that the Fourier transform of ε is δ(t−t′)i∂t′ .

Although in the continuum limit these matrices look diagonal, it is impor-
tant to remember that in the discrete regularization

[
GR(A)

]−1 contains ∓i

along the main diagonal and ±i−ω0δt along the lower(upper) sub-diagonal.
The determinants of the corresponding matrices are given by the product
of all diagonal elements det

[
G−1

]R det
[
G−1

]A =
∏N

j=1 i(−i) = 1. To ob-
tain this statement without resorting to discretization, one notices that in
the energy representation the Green functions are diagonal and therefore
det

[
G−1

]R[
G−1

]A =
∏

ε

[
GR(ε)GA(ε)]−1 = exp

{−∫
dε
2π [lnGR + ln GA]

}
= 1.

Here we used the fact that Eq. (0.48) holds not only for the Green functions
themselves, but also for any function of them. This property is important
for maintaining the normalization identity Z =

∫
D[φcl, φq] eiS = 1. Indeed,

the integral is equal to minus (due to the factor of i in the exponent) the
determinant of the quadratic form, while the latter is (−1) times the prod-
uct of the determinants of the off diagonal elements in the quadratic form
(0.53).

The diagonal Keldysh component of the quadratic form (0.53) is found
from the condition GK◦[GA]−1+GR◦[G−1]K = 0. Employing the parametriza-
tion (0.51), one finds

[
G−1

]K =
[
GR

]−1 ◦ F − F ◦ [
GA

]−1
. (0.54b)

The action (0.53) should be viewed as a construction devised to reproduce
the proper continuum limit of the correlation functions according to the rules
of Gaussian integration. It is fully self–consistent in the following sense: (i)
it does not need to appeal to the discrete representation for regularization;
(ii) its general structure is intact upon renormalization or “dressing” of its
components by the interaction corrections (see chapter ??).

Here we summarize the main features of the action (0.53), which, for lack
of better terminology, we call the causality structure:

• The cl−cl component of the quadratic form is zero. It reflects the fact that
for a pure classical field configuration (φq = 0) the action is zero. Indeed,
in this case φ+ = φ− and the action on the forward part of the contour is
canceled by that on the backward part (except for the boundary terms,
which are omitted in the continuum limit). The very general statement
is, therefore, that

S
[
φcl, 0

]
= 0 . (0.55)

Obviously this statement is not restricted to the Gaussian action of the
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form given by Eq. (0.53), but holds for any generic action (see chapter
??).

• The cl− q and q− cl components are mutually Hermitian conjugated up-
per and lower (advanced and retarded) triangular matrices in the time
domain. This property is responsible for the causality of the response
functions as well as for protecting the cl− cl component from a perturba-
tive renormalization (see below). Relations (0.47), (0.48) are crucial for
this last purpose and necessary for the consistency of the theory.

• The q − q component is an anti–Hermitian matrix [cf. Eq. (0.45)]. It is
responsible for the convergence of the functional integral and keeps infor-
mation about the distribution function. In our example

[
GK

]−1 = 2i0F ,
where F is a Hermitian matrix. The fact that it is infinitesimally small is
a peculiarity of non-interacting model. We shall see in the following chap-
ters that it receives the finite value, once interactions with other degrees
of freedom are included.

0.10 External sources

So far we have been content with the representation of the partition function.
The latter does not carry any information in the Keldysh technique, since
Z = 1. To make the entire construction meaningful one should introduce
source fields, which enable one to compute various observables. As an ex-
ample, let us introduce an external time–dependent potential V (t), defined
along the Keldysh contour C. It interacts with the bosons through the Hamil-
tonian ĤV = V (t)b̂†b̂. One can now introduce the generating function Z[V ]
defined similarly to the partition function (0.17) Z[V ] = Tr

{ÛC [V ]ρ̂
}
/Tr{ρ̂},

where the evolution operator ÛC [V ] includes the source Hamiltonian ĤV

along with the bare one, Eq. (0.16). Repeating the construction of the co-
herent state functional integral of section 0.4, one obtains for the generating
function

Zd[V ] =
1

Tr{ρ̂0}
∫ 2N∏

j=1

d[φ̄j , φj ] exp


i

2N∑

j,j ′=1

φ̄j G−1
jj ′ [V ] φj ′


 , (0.56)

where the subscript d stands for the discrete representation. The 2N × 2N

matrix iG−1
jj ′ [V ] is similar to the one given by Eq. (0.23) with h∓ → h∓[V ] =

1∓ i(ω0 + Vj)δt, where Vj is the value of V (t) at the corresponding discrete
time point. According to Eq. (0.24) the generating function is proportional
to the inverse determinant of −iG−1

jj ′ [V ] matrix. The latter is calculated in
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a way very similar to Eq. (0.28), leading to

Zd[V ] =
1

Tr{ρ̂0}
1

det
[− iĜ−1[V ]

] =
1− ρ(ω0)

1− ρ(ω0)e−i
R
C dt V (t)

, (0.57)

It is convenient to introduce classical and quantum components of the source
potential V (t) as

V cl(t) =
1
2

[
V +(t) + V −(t)

]
; V q(t) =

1
2

[
V +(t)− V −(t)

]
, (0.58)

where V ±(t) is the source potential on the forward (backward) branch of the
contour. With these notations along with Eq. (0.39) the generating function
takes the form

Zd[V cl, V q] = exp
{
− ln

[
1− nB(ω0)

(
e−2i

R
dt V q(t) − 1

)]}
. (0.59)

The fact that the generating function depends only on the integral of the
quantum component of the source and does not depend on its classical com-
ponent at all is a peculiarity of our toy model. However, the very general
statement is

Z[V cl, 0] = 1 . (0.60)

Indeed, if V q = 0 the source potential is the same on the two branches,
V +(t) = V −(t), and thus the evolution operator brings the system exactly
to its initial state, i.e. ÛC [V cl] = 1̂. One crucially needs therefore a fictitious
potential V q(t) to generate observables.

Since the source potential is coupled to the number of particles operator
n̂ = b̂†b̂, differentiation over V q(t) generates expectation value of −2i〈n̂(t)〉
(factor of two is due to the fact that we insert b̂†(t)b̂(t) on both branches)
〈n̂(t)〉 = (i/2)δZd[V q]/δV q(t)|V q=0 = nB(ω0), as was already established
in section 0.7. The higher order correlation functions may be obtained by
repetitive differentiation of the generating function. To generate irreducible
correlators 〈〈n̂k(t)〉〉 ≡ 〈(n̂(t)−nB)k〉 one needs to differentiate the logarithm
of the generating function, e.g.

〈〈n̂2(t)〉〉 =
(

i

2

)2 δ2 ln Zd

δ[V q(t)]2

∣∣∣∣∣
V =0

= n2
B + nB ;

〈〈n̂3(t)〉〉 =
(

i

2

)3 δ3 ln Zd

δ[V q(t)]3

∣∣∣∣∣
V =0

= 2n3
B + 3n2

B + nB ; (0.61)

〈〈n̂4(t)〉〉 =
(

i

2

)4 δ4 ln Zd

δ[V q(t)]4

∣∣∣∣∣
V =0

= 6n4
B + 12n3

B + 7n2
B + nB ;
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etc.
Let us see now if these results can be reproduced in the continuum tech-

nique, without resorting to the discretization. The continuum generating
function is defined as

Zc[V ] =
∫

D[φ̄, φ] e iS[φ̄,φ]+iSV [φ̄,φ] , (0.62)

where the bare action S[φ̄, φ] is given by Eq. (0.34) and

SV [φ̄, φ] = −
∫

C
dt V (t)φ̄(t)φ(t) = −

+∞∫

−∞
dt

[
V +φ̄+φ+ − V −φ̄−φ−

]
(0.63)

= −
+∞∫

−∞
dt

[
V cl(φ̄+φ+ − φ̄−φ−) + V q (φ̄+φ+ + φ̄−φ−)

]
= −

+∞∫

−∞
dt ~̄φT V̂ ~φ ,

where ~φ = (φcl, φq)T and

V̂ (t) =
(

V q(t) V cl(t)
V cl(t) V q(t)

)
. (0.64)

As a result, for our example of the single bosonic level the continuum gen-
erating function is given by

Zc[V cl, V q] =
∫

D[φ̄, φ] e i
R

dt ~̄φ T
(
Ĝ−1−V̂ (t)

)
~φ =

1
Tr{ρ̂0}

1
det

[− iĜ−1 + iV̂
]

=
1

det
[
1− ĜV̂

] = e−Tr ln
[
1−ĜV̂

]
, (0.65)

where we have used Eq. (0.29) along with the identity ln detÂ = Tr ln Â.
According to Eqs. (0.43) and (0.49) the matrix Green function is

Ĝ(t, t′) = −ie−iω0(t−t′)
(

fB(ω0) θ(t− t′)
−θ(t′ − t) 0

)
(0.66)

and fB(ω0) = 2nB(ω0) + 1.
The continuum generating function Zc is not identical to the discrete one

Zd. However as we shall show, it possesses the same general properties and
generates exactly the same statistics of the number operator. First, let us
verify Eq. (0.60) by expanding the logarithm in Eq. (0.65). In the first order
in V̂ one finds −Tr ln

[
1−ĜV̂

] ≈ TrĜV̂ =
∫

dt V cl(t)[GR(t, t)+GA(t, t)] = 0,
where we put V q = 0 and employed Eq. (0.47). In the second order one
encounters

∫
dtdt′V cl(t)GR(t, t′)V cl(t′)GR(t′, t) and similarly for GA. Since

GR(t, t′) = 0 if t < t′, while GR(t′, t) = 0 if t > t′, the expression under the
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integral is non-zero only if t = t′. In the continuum limit (N → ∞) this is
the manifold of zero measure, making the integral to be zero. Clearly the
same holds in all orders in V cl. This illustrates how the generic feature of
the Keldysh technique, Eq. (0.60), works in our simple example.

Consider now iδZc[V ]/δV q(t)|V =0 = 〈φ̄+(t)φ+(t) + φ̄−(t)φ−(t)〉, we refer
to Eqs. (0.62) and (0.63) to see this relation. Expectation value of which
operator is calculated this way? The naive answer is that φ̄(t)φ(t) is gen-
erated by 〈b̂†(t)b̂(t)〉 and we deal with the sum of this operator inserted on
the forward and backward branches. If this would be the case, φ̄ would be
taken one time step ahead of φ field, as is indeed the case in the discrete
representation. However, our continuum expression indiscriminately places
both φ̄± and φ± at the same time t. One can check that such a “demo-
cratic” choice of the time arguments corresponds to the expectation value
of the symmetric combination f̂(t) ≡ b̂†(t)b̂(t) + b̂(t)b̂†(t). Employing the
equal time commutation relation [b̂(t), b̂†(t)] = 1̂, one finds f̂(t) = 2n̂(t) + 1
and 〈f̂(t)〉 = i δZc[V cl, V q]/δV q(t)

∣∣
V =0

= iGK(t, t) = fB(ω0) as it should
be, of course. For higher order irreducible correlators one obtains

〈〈f̂2(t)〉〉 = i2
δ2 lnZc

δ[V q(t)]2

∣∣∣∣
V =0

= f2
B − 1 ;

〈〈f̂3(t)〉〉 = i3
δ3 lnZc

δ[V q(t)]3

∣∣∣∣
V =0

= 2f3
B − 2fB ; (0.67)

〈〈f̂4(t)〉〉 = i4
δ4 lnZc

δ[V q(t)]4

∣∣∣∣
V =0

= 6f4
B − 8f2

B + 2 ;

etc. To see how it works, consider e.g. the third order term in the expansion
of the logarithm in Eq. (0.65) in powers of V q(t) at V cl = 0

1
3
Tr{(ĜV̂ )3} =

1
3

∫
dtdt′dt′′Tr

{
Ĝ(t, t′)V q(t′)Ĝ(t′, t′′)V q(t′′)Ĝ(t′′, t)V q(t)

}

= i
f3

B

3

(∫
dtV q(t)

)3

− ifB

∫
dtV (t)

(∫

t
dt′V q(t′)

)2

= i
f3

B − fB

3

(∫
dtV q(t)

)3

.

To calculate the last integral in the intermediate expression here one intro-
duces W (t) =

∫
t V q(t) and therefore V q = −Ẇ , the integral in question

is thus − ∫
dtẆW 2 = − ∫

dWW 2 = −(1/3)W 3(t)|∞−∞ = (1/3)(
∫

dtV q)3.
Differentiating over V q three times, one arrives at Eq. (0.67).

Substituting f̂ = 2n̂ + 1 and fB = 2nB + 1, it is easy to check that
the respective momemnts (0.61) and (0.67) are exactly equivalent! There-
fore, although the generating functions Zd and Zc generate slightly different
set of correlators, their statistical content is equivalent. From now on we
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shall always deal with the continuum version, circumventing the tedious
discretization procedure.

The generating function Z[V q] gives an access not only to the moments,
but to a full quantum statistics of the operator n̂(t0), or f̂(t0). Let us
define the probability to measure n bosons at a time t0 as P (n). Then
〈n̂k(t0)〉 =

∫
dnnkP (n). The generating function Z[λ] ≡ ∫

dn eiλnP (n) =∑
k(iλ)k〈n̂k(t0)〉/k!, where λ is called counting “field”. Comparing this with

Zd[V q], one notices that Z[λ] may be obtained by the substitution V q(t) =
−(λ/2)δ(t− t0). Employing Eq. (0.57), one finds

Z[λ] =
1− ρ(ω0)

1− ρ(ω0) eiλ
=

(
1− ρ(ω0)

) ∞∑

k=0

[ρ(ω0)]k eikλ . (0.68)

Performing the inverse Fourier transform and recalling that ρ(ω0) = e−β(ω0−µ),
one finds

P (n) =
∞∑

k=0

δ(n− k)
(
1− e−β(ω0−µ)

)
e−β(ω0−µ)k . (0.69)

I.e. one can measure only integer number of bosons and the correspond-
ing probability is proportional to e−β(En−µn), where the energy En = nω0.
This is, of course trivial result, which we have already de-facto employed
in Eq. (0.18). The important message, however, is that the counting field
λ is nothing but a particular realization of the quantum source field V q(t),
tailored to generate an appropriate statistics. As opposed to the calculation
of the moments (0.61), (0.67), one should not put the quantum source to
zero when the full statistics is evaluated. We shall employ this lesson in
chapters ?? ??, when we shall discuss much less obvious examples of the full
quantum statistics.

0.11 Harmonic oscillator

The simplest many–body system of a single bosonic state, considered above,
is, of course, equivalent to a single–particle harmonic oscillator. To make this
connection explicit, consider the Keldysh contour action Eq. (0.30) with the
correlator Eq. (0.33) written in terms of the complex field φ(t). The latter
may be parameterized by its real and imaginary parts as

φ(t) =
1√
2ω0

(
P (t)− i ω0 X(t)

)
, φ̄(t) =

1√
2ω0

(
P (t) + i ω0 X(t)

)
.

(0.70)
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In terms of the real fields P (t) and X(t) the action, Eq. (0.30), takes the
form

S[X,P ] =
∫

C
dt

[
P Ẋ − 1

2
P 2 − ω2

0

2
X2

]
, (0.71)

where the full time derivatives of P 2, X2 and P X were omitted, since they
contribute only to the boundary terms, not written explicitly in the contin-
uum notations (they have to be kept for the proper regularization, though).
Equation (0.71) is nothing but the action of the quantum harmonic oscil-
lator in the Hamiltonian form. One may perform the Gaussian integration
over the real field P (t) to obtain

S[X] =
∫

C
dt

[
1
2

Ẋ2 − ω2
0

2
X2

]
. (0.72)

This is the Feynman Lagrangian action of the harmonic oscillator, written on
the Keldysh contour. It may be generalized for an arbitrary single particle
potential U(X)

S[X] =
∫

C
dt

[
1
2

Ẋ2 − U(X)
]

. (0.73)

One may split the X(t) field into two components: X+(t) and X−(t), re-
siding on the forward and backward branches of the contour. The Keldysh
rotation for real fields is convenient to define as

Xcl(t) =
1
2

[
X+(t) + X−(t)

]
; Xq(t) =

1
2

[
X+(t)−X−(t)

]
. (0.74)

In terms of these fields the action takes the form

S[Xcl, Xq] =
∫ +∞

−∞
dt

[
−2XqẌcl − U

(
Xcl + Xq

)
+ U

(
Xcl −Xq

)]
, (0.75)

where the integration by parts was performed in the term ẊqẊcl. This is
the Keldysh form of the Feynman path integral. The omitted boundary
terms provide a convergence factor of the form ∼ i0(Xq)2.

If the fluctuations of the quantum component Xq(t) are regarded as small,
one may expand the potential to the first order and find for the action

S[Xcl, Xq] = −
∫ +∞

−∞
dt

[
2Xq

(
Ẍcl + U ′(Xcl)

)
+ O

[
(Xq)3

]]
, (0.76)

where U ′(X) = ∂U(X)/∂X. In this approximation the integration over
the quantum component, Xq, may be explicitly performed, leading to the
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functional delta-function of the expression in the round brackets. This delta-
function enforces the classical Newtonian dynamics of Xcl

Ẍcl = −U ′(Xcl
)
. (0.77)

This is the reason the symmetric, over forward and backward branches, part
of the Keldysh field is called the classical component. One should be careful
with this name, though. If the higher order terms in Xq are kept in the
action, both Xq and Xcl are subject to quantum fluctuations.

Returning back to the harmonic oscillator, U(X) = ω2
0X

2/2, one may
rewrite its Feynman-Keldysh action in the matrix form

S[ ~X] =
1
2

∫ +∞

−∞
dt ~XT D̂−1 ~X , (0.78)

where in analogy with the complex field, Eq. (0.53), we introduced

~X(t) =
(

Xcl(t)
Xq(t)

)
; D̂−1 =

(
0 [D−1]A

[D−1]R [D−1]K

)
(0.79)

and superscript T stands for matrix transposition. Here the retarded and
advanced components of the quadratic form in the action are given by
1
2 [D−1]R(A) = (i∂t ± i0)2 − ω2

0. As before, one should understand that this
expression is simply a continuous abbreviation for the large lower (upper)
triangular matrices with −δ−1

t along the main diagonal, 2δ−1
t − ω2

0δt along
the lower (upper) sub-diagonal and −δ−1

t along the second lower (upper)
sub-diagonal. This makes D̂−1 matrix symmetric, since its [D−1]K compo-
nent must be symmetric by construction (its antisymmetric part does not
enter the action). In continuous notations the Keldysh component [D−1]K is
only a regularization. It is convenient to keep it explicitly, since it suggests
the way the matrix D̂−1 should be inverted to find the correlation functions

〈
Xα(t)Xβ(t′)

〉
=

∫
D[ ~X] Xα(t)Xβ(t′) e iS[ ~X] = iD̂αβ(t, t′) , (0.80)

where α, β = (cl, q) and the correlation matrix is given by

D̂αβ(t, t′) =
(

DK(t, t′) DR(t, t′)
DA(t, t′) 0

)
. (0.81)

To apply the rules of the Gaussian integration for real variables (see sec-
tion 0.5), it is crucial that the matrix D̂−1 is symmetric. In the Fourier
representation components of the correlation matrix are given by

DR(A)(ε) =
1
2

1
(ε± i0)2 − ω2

0

, (0.82a)
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DK(ε) = coth
ε

2T

[
DR(ε)−DA(ε)

]
, (0.82b)

where we have assumed an equilibrium thermal distribution with zero chem-
ical potential. One way to check the consistency of the expression for the
Keldysh component is to express Xα through φ̄α and φα and employ the
correlation functions for the complex fields, derived in Chapter ??.

The normalization identity
∫

D[ ~X] eiS[ ~X] = 1, is maintained in the fol-
lowing way: (i) first, due to the structure of D̂−1 matrix, explained above,
det[1i D̂

−1] = −det[1i D
−1]R det[1i D

−1]A = (2/δt)2N ; (ii) the integration mea-

sure is understood as D[ ~X] =
∏N

j=1 2
(
dXcl

j /
√

2πδt

)(
dXq

j /
√

2πδt

)
(in com-

parison with Eq. (0.26) there is an additional factor of 2, which originates
from the Jacobian of the transformation (0.74), and factor δ−1

t at each time
slice, coming from the integration over P (t)). According to Eq. (0.26) this
leads exactly to the proper normalization. One can also understand the nor-
malization in a way discussed below Eq. (0.54a), without resorting to the
discrete representation.

0.12 Quantum particle in contact with an environment

Consider a quantum particle with the coordinate X(t), placed in a potential
U(X) and brought into a contact with a bath of harmonic oscillators. The
bath oscillators are labeled by an index s and their coordinates are denoted
as ϕs. They posses a set of frequencies ωs. The Keldysh action of such a
system is given by the three terms S = Sp + Sbath + Sint, where

Sp[X] =
∫ +∞

−∞
dt

[
−2XqẌcl−U

(
Xcl + Xq

)
+U

(
Xcl −Xq

)]
, (0.83a)

Sbath[ϕs] =
1
2

∑
s

∫ +∞

−∞
dt ~ϕT

s D̂−1
s ~ϕs , (0.83b)

Sint[X, ϕs] =
∑

s

gs

∫ +∞

−∞
dt ~XT σ̂1 ~ϕs , (0.83c)

where the symmetric quadratic form D̂−1
s is given by Eq. (0.79) with the

frequency ωs. The interaction term between the particle and the bath os-
cillators is taken as a product of their coordinates

∑
s gs

∫
C dtX(t)ϕs(t) =∑

s gs

∫
dt(X+ϕ+

s −X−ϕ−s ). Performing the Keldysh rotation according to
Eq. (0.74), one arrives at Eq. (0.83c), where σ̂1 is the first Pauli matrix. The
corresponding coupling constants are denoted as gs.

One may now integrate out the degrees of freedom of the bath to reduce
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the problem to the particle coordinate only. Employing Eq. (0.26) for the
Gaussian integration over the real variables, one arrives at the so–called
dissipative action for the particle

Sdiss =
1
2

∫∫ +∞

−∞
dt dt′ ~X T (t) D̂−1(t− t′) X̂(t′) , (0.84a)

D̂−1(t− t ′) = −σ̂1

∑
s

g2
sD̂s(t− t ′) σ̂1 . (0.84b)

The straightforward matrix multiplication shows that the dissipative quadratic
form D̂−1 possesses the causality structure as e.g. Eq. (0.79). For the Fourier
transform of its retarded (advanced) components, one finds:

[
D−1(ε)

]R(A) = −1
2

∑
s

g2
s

(ε± i0)2 − ω2
s

=

∞∫

0

dω

2π

ωJ(ω)
ω2 − (ε± i0)2

, (0.85)

where J(ω) = π
∑

s(g
2
s/ωs)δ(ω − ωs) is the bath spectral density.

We shall assume now that the spectral density behaves as J(ω) = 8γω,
where γ is a constant at small frequencies. This is the so-called ohmic
bath, which is frequently found in more realistic models of the environment.
Substituting it into Eq. (0.85), one finds

[
D−1(ε)

]R(A) = 4γ

∫
dω

2π

ω2

ω2 − (ε± i0)2
= const± 2iγε , (0.86)

where ε–independent real constant (same for R and A components) may be
absorbed into the redefinition of the harmonic part of the potential U(X) =
constX2 + . . . and, thus, may be omitted. If the bath is in equilibrium the
Keldysh component of the correlator is set by FDT

[
D−1(ε)

]K =
([

DR
]−1 − [

DA
]−1

)
coth

ε

2T
= 4iγε coth

ε

2T
, (0.87)

where we assumed that the bath is at temperature T and put the chemical
potential of the bath excitations to be zero. Notice that the validity of this
expression does not rely on the particle particle being at equilibrium, but
only the bath. The Keldysh component is an anti–Hermitian operator with
a positive–definite imaginary part, rendering convergence of the functional
integral over ~X(t).

In the time representation the retarded (advanced) component of the cor-
relator takes a time–local form:

[
DR(A)

]−1 = ∓2γ δ(t− t′) ∂t′ . On the other
hand, the Keldysh component is a non–local function, that may be found
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by the inverse Fourier transform of Eq. (0.87):

[
D−1(t− t′)

]K = 4iγ

[
(2T + C)δ(t− t′)− πT 2

sinh2[πT (t− t′)]

]
, (0.88)

where the infinite constant C serves to satisfy the condition
∫

dt[D−1(t)]K =
[D−1(ε = 0)]K = 8iγT . Finally, one obtains for the Keldysh action of the
particle connected to the ohmic bath

S[ ~X] =
∫ +∞

−∞
dt

[
−2Xq

(
Ẍcl + γẊcl

)
− U

(
Xcl + Xq

)
+ U(Xcl −Xq)

]

+2iγ

∫ +∞

−∞
dt

[
2T

(
Xq(t)

)2 +
πT 2

2

∫ +∞

−∞
dt′

(
Xq(t)−Xq(t′)

)2

sinh2[πT (t− t′)]

]
. (0.89)

This action satisfies all the causality criteria listed in Sec. 0.9. Notice, that
in the present case the Keldysh (q−q) component is not just a regularization,
but a finite term, originating from the coupling to the bath and serving to
limit fluctuations. The other manifestation of the bath is the presence of
the friction term, ∼ γ∂t in the R and the A components. In equilibrium the
friction coefficient and fluctuations amplitude are rigidly connected by the
FDT. The quantum dissipative action, Eq. (0.89), is a convenient playground
to demonstrate various approximations and connections to other approaches.
We shall discuss it in details in chapter ??. If only linear terms in Xq are
kept in the action (0.89), the integration over Xq(t) results in the functional
delta function, which enforces the following relation

Ẍcl = −U ′(Xcl
)− γẊcl . (0.90)

This is the classical Newtonian equation with the viscous friction force.
Remarkably, we have obtained Ẋcl term in the equation of motion from the
action principle. It would not be possible, if not for the doubling of the
number of fields Xcl and Xq. Indeed, in any action, depending on Xcl only,
terms linear in the first time derivative may be integrated out and thus do
not affect the equation of motion.

0.13 From Matsubara to Keldysh

Most of the texts, dealing with equilibrium systems at finite temperature,
employ Matsubra technique [18, 19]. This method is designed to treat the
equilibrium density matrix e−βĤ as the evolution operator. To this end one
considers an imaginary time quantum mechanics, with imaginary time τ

restricted to the interval 0 ≤ τ < β. When calculating an expectation value
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of an observable Ô(τ), one evaluates trace of the form 〈Ô〉 = Tr{Ô(τ)e−βĤ}.
To this end one divides the imaginary time interval [0, β] onto N infinitesimal
segments and inserts the resolution of unity in the coherent state basis at
each segment, similarly to our procedure in section 0.4. As a result, one
ends up with the fields, say coordinate X(τ), which in view of fact that one
evaluates the trace obeys the periodic boundary conditions, X(0) = X(β).
In the Fourier representation it is represented by a discrete set of components
Xm =

∫ β
0 dτX(τ) eiεmτ , where εm = 2πmT is a set of Matsubra frequencies

and m is an integer.
We shall discuss now, how to convert an action written in the Matsubara

technique into the Keldysh representation. This may be useful, if one wishes
to extent treatment of the problem to non-equilibrium or time-dependent
conditions. As an example consider the following bosonic Matsubara action:

S[Xm] =
i

2
γT

∞∑
m=−∞

|εm||Xm|2 , (0.91)

Due to the absolute value sign: |εm| 6= i∂τ . In fact, in the imaginary time
representation the kernel Fm = |εm| acquires the form F (τ) =

∑
m |εm|e−iεmτ

= Cδ(τ)−πT sin−2(πTτ), where the infinite constant C is chosen to satisfy∫ β
0 dτF (τ) = F0 = 0. As a result, in the imaginary time representation the

action (0.91) obtains the following non-local form

S[X] =
i

2
γT

∫∫ β

0
dτ dτ ′X(τ) F (τ − τ ′) X(τ ′)

=
i

4π
γ

∫∫ β

0
dτ dτ ′

π2T 2

sin2[πT (τ − τ ′)]
(
X(τ)−X(τ ′)

)2
. (0.92)

This action is frequently named after Caldeira and Leggett [?], who used it
to investigate the influence of dissipation on quantum tunneling.

To transform to the Keldysh representation one proceeds along the fol-
lowing steps: (i) double the number of degrees of freedom, correspondingly
doubling the action, X → ~X = (Xcl, Xq)T and consider the latter as func-
tions of the real time t or real frequency ε ; (ii) according to the causality
structure, Sec. 0.9, the general form of the quadratic, time translationally
invariant Keldysh action is:

S
[
~X

]
= γ

∫
dε

2π

(
Xcl

ε , Xq
ε

)(
0 FA(ε)

FR(ε) FK(ε)

)(
Xcl

ε

Xq
ε

)
; (0.93)

(iii) the retarded (advanced) component FR(A)(ε) is the analytic continua-
tion of the Matsubara correlator F (εm) = |εm| from the upper (lower) half–
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plane of the complex variable εm to the real axis: −iεm → ε, see Ref. [19].
As a result, FR(A)(ε) = ±iε ; (iv) in equilibrium the Keldysh component fol-
lows from FDT: FK(ε) =

(
FR(ε) − FA(ε)

)
coth (ε/2T ) = 2iε coth (ε/2T ),

cf. Eqs. (0.86) and (0.87). We found thus that γF̂ (ε) = 1
2 D̂−1(ε) and there-

fore the Keldysh counterpart of the Matsubara action, Eqs. (0.91) or (0.92)
is the already familiar dissipative action (0.89), (without the potential and
inertial terms, of course). One may now include external fields and allow
the system to deviate from the equilibrium.
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