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Abstract

These notes provide an introduction to recent work by Kevin Costello in which integrable
lattice models of classical statistical mechanics in two dimensions are understood in terms of
quantum gauge theory in four dimensions. This construction will be compared to the more
familiar relationship between quantum knot invariants in three dimensions and Chern-Simons
gauge theory. (Based on a Whittaker Colloquium at the University of Edinburgh and a lecture
at Strings 2016 in Beijing.)
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1 Preliminary Remarks

Since the discovery of the Bethe ansatz in the early days of quantum mechanics, integrable quantum
spin systems in 1 + 1 dimensions and their close cousins of various sorts have been a topic of much
fascination. Important advances have been made by many physicists and mathematicians, among
them Onsager, Yang, Baxter, Lieb, Kruskal, Fadde’ev, Drinfeld, Miwa, Jimbo, and A. and Al.
Zamolodchikov. The subject is so multi-faceted that no short summary can do justice to it.

In today’s lecture, I will be describing a new approach to integrable lattice models of two-
dimensional classical statistical mechanics, developed recently by Kevin Costello [1]. Costello’s
work has offered an essentially new perspective in which these models are understood in terms of
four-dimensional gauge theory.1 Arguably this perspective is in line with a vision relating theories
in different dimensions that was offered many years ago by Michael Atiyah [4]. As we will see,
Costello’s work is also a close cousin of the relationship [5] between Chern-Simons gauge theory in
three dimensions and the Jones polynomial of a knot.2

There are several different kinds of integrable systems in one space or two spacetime dimensions,
including classical nonlinear PDE’s, continuum quantum field theories, quantum spin chains, and
classical lattice systems. However, these different types of model turn out to be closely related.
(Among the many excellent sources where one can find different perspectives are [7–10].) Even
though our main topic today will be lattice statistical mechanics in two dimensions, to motivate
the ideas I will begin with integrable models of continuum quantum field theory in 1+1 dimensions.
The ideas that I will sketch were first used as a tool to directly construct a relativistic S-matrix by
A. and Al. Zamolodchikov [11].

Fig. 1 is meant to be a spacetime picture of elastic scattering of two particles in 1+1 dimensions.
A particle of constant velocity is represented by a straight line, with a slope depending on the
velocity. Because of conservation of energy and momentum, the outgoing particles go off at the
same slope (same velocity) as the incoming particles. There are time delays that I have not tried to
draw. The time delays mean that the outgoing lines are parallel to the ingoing ones, but displaced
slightly inwards. This will not really affect our discussion.

In a typical relativistic quantum field theory, there are also particle production processes, which
are a large part of what makes quantum field theory interesting. An example with two particles
going to three is sketched in fig. 2. The symmetries of typical relativistic field theories allow such
processes and they happen all the time in the real world. In a 2→ 3 scattering event, in a massive
theory, the incoming and outgoing lines can be assumed to all end or begin at a common point in
spacetime, to within an error that depends on the range of the particle interactions and is reflected
in the time delays.

1Another and superficially quite different relation of some of the same models to gauge theory was discovered
earlier by Nekrasov and Shatashvili [2, 3].

2Costello has actually described two related approaches to this subject, one in terms of a four-dimensional cousin
of Chern-Simons gauge theory and one in terms of a twisted version of four-dimensional N = 1 super Yang-Mills
theory. Roughly speaking, the first approach, which we follow here, comes by integrating out some variables from
the second. For a review of the second approach, see [6].
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Figure 1: A spacetime picture of two-body elastic scattering in 1 + 1 dimensions.

Figure 2: Inelastic scattering in 1 + 1 dimensions with particle production.

However, in two spacetime dimensions, there are “integrable” field theories that have extra
symmetries that commute with the velocity or momentum but move a particle in space by an
amount that depends on its velocity. Then particle production is not possible. Starting with a
spacetime history in which the incoming and outgoing lines meet at a common point in spacetime,
a symmetry that moves the incoming and outgoing lines by a velocity-dependent amount will create
a history such as that of fig. 3 in which the outgoing particles could have had no common origin
in spacetime.

By contrast, two particle scattering does happen even in integrable systems, since two lines in
the plane do generically intersect, as in fig. 4. But in an integrable theory, two particle scattering
is purely elastic, in the sense that the initial and final particles have the same masses (this is true
separately for the left- and right-moving particles). Otherwise, the initial and final velocities are
different and consideration of a symmetry that moves particles in a velocity-dependent way again
leads to a contradiction.

2




































































































































































































































































































































Figure 3: An inelastic 2→ 3 scattering process is sketched by the solid lines. In a theory that has a symmetry
that moves particles by an amount that depends on their momentum, the application of such a symmetry
would move the outgoing lines parallel to themselves, leaving their slope unchanged. (By combining the
symmetry in question with an ordinary spacetime translation, we can assume that the incoming lines are
unaffected, as drawn here.) After such a transformation, the outgoing lines – now showed as dotted lines
– have no common point of intersection in the plane, let along a common point of intersection at which
they also meet the incoming lines. This means that a 2→ 3 process is not possible in a theory with such a
symmetry.

Figure 4: Two lines in the plane generically intersect, a statement that is not affected by translating them
parallel to themselves. So two-body elastic scattering can be nontrivial even in an integrable field theory.
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Figure 5: Elastic scattering depends only on the rapidity difference.

Figure 6: Elastic scattering of particles that carry labels i, j, k, l, with rapidity difference θ.

How do we characterize a particle? A particle has a velocity, or better, in relativistic terms, a
“rapidity” θ. The energy E and momentum p are expressed in terms of θ and the particle mass m
by (

E
p

)
= m

(
cosh θ
sinh θ

)
(1.1)

A Lorentz boost adds a constant to the rapidity, so scattering of two particles with rapidities θ1

and θ2 depends only on the rapidity difference θ = θ1 − θ2 (fig. 5).

But the amplitude for scattering of two particles of rapidities θ1 and θ2 is in general not only
a function of the rapidity difference θ = θ1 − θ2 because there may be several different “types” of
particles of the same mass. An obvious reason for this, although not the most general possibility,
is that the theory might have a symmetry group G and the particles may be in an irreducible
representation ρ of G.

The picture is then more like fig. 6. Here i, j, k, l can be understood to represent basis vectors
in the representation ρ. We write Rij,kl(θ) for the quantum mechanical “amplitude” that describes
this process. It is usually called the R-matrix.
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Figure 7: There are two ways to express a 3→ 3 scattering process as a succession of three 2→ 2 scattering
processes.

Figure 8: In more detail, the equivalence of the two pictures in fig. 7 leads to this relation, called the
Yang-Baxter equation. A sum over internal particle types (q, r, and s on the left and u, t, and v on the right)
is understood.
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The real fun comes when we consider three particles in the initial and final state. Since we
can move them relative to each other, leaving their slopes (or rapidities) fixed, we can assume that
there are only pairwise collisions. But there are two ways to do this, as in fig. 7, and they must give
equivalent results. Concretely equivalence of these pictures leads to the celebrated “Yang-Baxter
equation,” which schematically reads

R23R13R12 = R12R13R23. (1.2)

The Yang-Baxter equation is a good example of a relationship that is much more transparent in
terms of a picture (fig. 8) than by writing out an algebraic formula in detail.

Actually, there is a subtle but important difference between the R-matrix that solves the Yang-
Baxter equation and the S-matrix that describes particle scattering in an integrable relativistic
field theory. The reason for this is that the Yang-Baxter equation is not sensitive to an overall
c-number factor, that is it is invariant under the transformation Rijkl(θ) → F (θ)Rijkl(θ), for any
scalar function F (θ). (This invariance is manifest in fig. 8; on both the left and the right, one
has a succession of three scattering events with rapidity differences θi − θj , 1 ≤ i < j ≤ 3. So
overall factors F (θi − θj) will cancel out.) In applications of the Yang-Baxter equation to classical
statistical mechanics, such an overall factor is of little importance and one usually simply picks
a convenient normalization of the solution of the Yang-Baxter equation. But in S-matrix theory,
the prefactor F (θ) is very important. In simple examples, as pioneered in [11], the prefactor is
determined by conditions of unitarity and crossing symmetry and some knowledge of whether the
S-matrix should have bound state poles. It is possible to have two different models (for example
the nonlinear σ-model with target a sphere SN−1 and corresponding O(N) symmetry and an N -
component Gross-Neveu model with the same symmetry) that are governed by the same R-matrix
but with different choices of the prefactor. In fact, recently it has been argued [12] that integrable
relativistic field theories in 1 + 1 dimensions have continuous deformations whose S-matrices differ
only by the choice of F (θ). These deformations depend on infinitely many parameters that are
irrelevant in the renormalization group sense.

The traditional solutions of the Yang-Baxter equation – as discovered by Bethe, Lieb, Yang,
Baxter, Fadde’ev, Belavin, Drinfeld and others – are classified by the choice of a simple Lie group G
and a representation ρ, subject to (1) some restrictions on ρ, and (2) the curious fact that in many
important cases (like the 6-vertex model of Lieb and the 8-vertex model of Baxter) a solution of the
Yang-Baxter equation associated to a given group G does not actually have G symmetry. In fact,
there are three broad classes of solutions of Yang-Baxter, which are called rational, trigonometric,
and elliptic depending on whether the R-matrix is a rational, trigonometic, or elliptic function of
θ. Only the rational solutions of Yang-Baxter have G symmetry. Prior to the work of Costello,
it was, at least to me, a longstanding puzzle to understand better why there are solutions of the
Yang-Baxter equation that are in some sense associated to the Lie group G but do not have G
symmetry. (The question can be restated in terms of quantum groups, but to me this merely raises
the equivalent question of “why” these exist appropriate quantum group deformations.)

Now finally we come to the lattice models. I have motivated the Yang-Baxter equation by
talking about relativistic scattering, but solutions of Yang-Baxter can be used to construct several
different kinds of integrable model. Today we will focus on the integrable lattice systems of classical
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Figure 9: An integrable lattice model associated to a solution of the Yang-Baxter equation. Horizontal and
vertical lines are labeled by rapidities. (In constructing the standard integrable models and proving their
integrability, one often labels vertical lines by a common rapidity θ and horizontal lines by varying rapidities
θi, so this case is sketched here.) Line segments between two vertices are labeled by basis vectors is, js, ks,
etc., in some solution of the Yang-Baxter equation; these are the “spins” of the integrable lattice model. At
each vertex, there is a four-spin interaction given by the relevant matrix element of the R-matrix. In some
special cases, the four-spin interactions collapse to two-spin interactions, leading to more simple-looking
integrable models such as the Ising model.

statistical mechanics. They are constructed directly from a solution of the Yang-Baxter equation.3

To understand how this is done, consider fig. 9. In this this rather busy picture, the vertical and
horizontal lines are labeled by rapidities. I have labeled the vertical lines by the same rapidity
θ (though this restriction is not necessary) and the horizontal lines by different rapidities θi. In
addition, each line segment in the figure is labeled by a basis vector is, js, ks, . . . in some matrix-
valued solution of the Yang-Baxter equation. These labels will be the “spins” of our lattice model.
For the Boltzmann weights, we include for each crossing in the figure a factor of the appropriate
R-matrix element. Thus this is a model in which the spins live on the edges of a square lattice, and
there is an interaction among every four spins that live on edges that meet at a common vertex.4

It turns out that models constructed in this way are integrable, because “the transfer matrices
commute,” which means that (using the Yang-Baxter equation) the horizontal lines can be moved
up and down past each other. Conversely, familiar integrable lattice models can be put in this
form.

2 The Yang-Baxter Equation And Gauge Theory

Perhaps the most obvious question about the Yang-Baxter equation is “why” solutions of this highly
overdetermined equation exist. There is another area in which one finds something a lot like the

3For example, see [9]. The solution of Yang-Baxter used in this construction need not necessarily be rational, so
for this application one considers more general solutions of Yang-Baxter than the ones that arise in the integrable
relativistic field theories.

4To make a physically sensible model of classical statistical mechanics, one chooses the rapidities so that the
relevant matrix elements of the R-matrix are all real and positive.
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Figure 10: A Reidemeister move of knot theory, with an obvious resemblance to the Yang-Baxter equation.

Figure 11: In knot theory, one knot passes “over” or “under” the other, as in the last figure or the next
one. But in Yang-Baxter theory, two lines simply cross in the plane, as sketched here.
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Yang-Baxter equations. This is the theory of knots in three dimensions. Knots are often described
in terms of projections to the plane; two knot projections describe the same knot if they can be
related by certain moves that are known as Reidemeister moves. The most important Reidemeister
move is shown in fig. 10. The resemblance to the Yang-Baxter equation is obvious, but there is
also a conspicuous difference. In knot theory, one strand passes “over” or “under” the other, while
Yang-Baxter theory is a purely two-dimensional theory in which lines simply cross, with no “over”
or “under,” as sketched in fig. 11. Likewise, rough analogs of the other Reidemeister moves exist
in Yang-Baxter theory (see figs. 4 and 5 of [13]), but they do not really have the same content as
in knot theory because of the lack of a distinction between “over” and “under.”

In this respect, knot theory has structure that is absent in Yang-Baxter theory. But there is also
an important difference in the opposite direction: in Yang-Baxter theory, the spectral parameter
is crucial, but it has no analog in knot theory.

Despite these differences, the analogy between the Yang-Baxter equation and the first Reide-
meister move of knot theory is rather conspicuous, so let us pursue this a little bit. The usual
solutions of Yang-Baxter depend, as I have said, on the choice of a simple Lie group5 G and a
representation ρ. There are knot invariants that depend on the same data. To define them at least
formally, let M be a three-manifold, E →M a G-bundle, and A a connection on G. Then one has
the Chern-Simons function

CS(A) =
1

4π

∫
M

Tr

(
AdA+

2

3
A ∧A ∧A

)
, (2.1)

which was introduced in quantum field theory in [14, 15]. I have normalized CS(A) so that, if
G = SU(N) and Tr is the trace in the N -dimenisonal representation, it is gauge-invariant mod
2πZ. For any G, we define Tr as an invariant quadratic form on the Lie algebra of G normalized
so that CS(A) is gauge-invariant predcisely mod 2πZ. In quantum mechanics, the “action” I must
be well-defined mod 2πZ, so we can take

I = kCS(A), k ∈ Z. (2.2)

A quantum field theory with this action is a “topological quantum field theory” (modulo some
subtleties involving a framing anomaly), since there is no metric tensor in sight. Let us just take
the three-manifold M to be R3, and let K ⊂ R3 be an embedded knot, such as the trefoil knot of
fig. 12. We pick a representation ρ of G, and let

Wρ(K) = TrρP exp

(∮
K
A

)
(2.3)

be the Wilson loop operator (the trace of the holonomy) in the representation ρ.

5In the following gauge theory construction, we take the compact form of G. Also, we slightly simplify the
exposition by assuming that G is connected and simply-connected. This implies in particular that a G-bundle
E → M , where M is a three-manifold, is in fact trivial. Hence a connection A on E can be understood as a Lie
algebra valued 1-form, and CS(A) can be defined by the naive formula (2.1).
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Figure 12: The trefoil knot, projected to the plane.

The usual “quantum knot invariants,” of which the prototype is the Jones polynomial of a knot,
can be defined via the expectation value of the Wilson operator, 〈Wρ(K)〉 =

〈
TrρP exp(

∮
K A)

〉
.

One can make knot invariants this way, but from them one cannot really extract the usual solutions
of the Yang-Baxter equation since one is missing the spectral parameter. However (see [9], eqn.
(6.11)), in a sense from these knot invariants one can extract a special case of the trigonometric
solutions of the Yang-Baxter equation in which the spectral parameter is taken to i∞.

How can we modify or generalize Chern-Simons gauge theory to include the spectral parameter?
A naive idea is to replace the finite-dimensional gauge group G with its loop group LG. We
parametrize the loop by an angle θ. The loop group has “evaluation” representations that “live”
at a particular value θ = θ0 along the loop.6 We hope that this will be the spectral parameter label
θ0 carried by a particle in the solution of the Yang-Baxter equation.

Taking the gauge group to be a loop group means that the gauge field A =
∑

iAi(x)dxi now
depends also on θ and so is A =

∑
iAi(x, θ)dx

i. Note that there is no dθ term so this is not a full
four-dimensional gauge field. The Chern-Simons action has a generalization to this situation:

I =
k

4π

∫
M×S1

dθTr

(
AdA+

2

3
A ∧A ∧A

)
. (2.4)

This is perfectly gauge-invariant.

What goes wrong is that because there is no ∂/∂θ in the action, the “kinetic energy” of A is
not elliptic and the perturbative expansion is not well-behaved. The propagator is

〈
Ai(~x, θ)Aj(~x

′, θ′)
〉

=
2π

k

εijk(x− x′)k

|~x− ~x′|2
δ(θ − θ′) (2.5)

with a delta function because of the missing ∂/∂θ. Because of the delta function, every loop diagram
will acquire a factor δ(0) (fig. 13).

6It is important here that by LG we mean the loop group, not its central extension that is encountered in conformal
field theory. LG, unlike its central extension, has homomorphisms to G that map a loop g(θ) to its value g(θ0) at
some given θ0. By composing this with an ordinary representation of G, we get a representation of LG that informally
“lives” at the point θ = θ0. These representations have no close analog for the centrally extended loop group.
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Figure 13: In a naive Chern-Simons theory with gauge group LG, this loop will come with a factor
δ(θ − θ′)2 = δ(θ − θ′)δ(0) because of the two propagators connecting the same two vertices.

Costello cured this problem via a very simple deformation. Take our three-manifold to be R3,
and write x, y, t for the three coordinates of R3, so overall we have x, y, t, and θ. Costello combined
t and θ into a complex variable

z = εt+ iθ. (2.6)

Here ε is a real parameter. The theory will reduce to the bad case that I just described if ε = 0.
As soon as ε 6= 0, its value does not matter, since it can be eliminated by rescaling t or θ, and one
can set ε = 1. The purpose of including ε in eqn. (2.6) was simply to explain in what sense we will
be making an infinitesimal deformation away from the ill-defined Chern-Simons theory of the loop
group.

One replaces dθ (or (ik/4π)dθ) in the naive theory (2.4) with dz (or dz/~, where ~ is a param-
eter7 that plays the role of 1/k in the usual Chern-Simons theory) and one now regards A as a
partial connection on R3 × S1 that is missing a dz term (rather than missing dθ, as before). The
action is now

I =
1

~

∫
R3×S1

dzTr

(
AdA+

2

3
A ∧A ∧A

)
. (2.7)

We have lost the three-dimensional symmetry of standard Chern-Simons theory, because of
splitting away one of the three coordinates of R3 and combining it with θ. We still have two-
dimensional diffeomorphism symmetry. However, as we discussed in comparing Yang-Baxter theory
to knot theory, Yang-Baxter theory does not have three-dimensional symmetry, but only two-
dimensional symmetry. Modifying standard Chern-Simons theory in this fashion turns out to be just
right to give Yang-Baxter theory rather than knot theory: the three-dimensional diffeomorphism
invariance is reduced to two-dimensional diffeomorphism invariance, but on the other hand, now
there is a complex variable z that will turn out to be the (complexified) spectral parameter.

7One should think of ~ as a formal complex parameter, since there is in general no natural reality condition that
it might obey. We return to this point at the end of these notes.
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I have described the action so far on R2×C∗ where C∗ = R×S1 (parametrized by z = t+ iθ) is
endowed with the complex 1-form dz. The classical action makes sense more generally on8 Σ×C,
where Σ is any smooth (oriented) two-manifold and C is a complex Riemann surface endowed with
a holomorphic 1-form ω:

I =
1

~

∫
Σ×C

ω ∧ Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
. (2.8)

It turns out, however, that to get a quantum theory, one wants ω to have no zeroes. Intuitively
this is because a zero of ω is equivalent to a point at which ~ → ∞. (More technically, if ω has a
zero, the kinetic energy of the theory is not elliptic and one runs into a difficulty in quantization
somewhat similar to the problem with the naive theory of eqn. (2.4). One can resolve the problem
by modifying the theory near a zero of ω, but then two-dimensional symmetry is lost.) By constrast,
there is no problem with poles of ω, where effectively ~→ 0.

So C has to be a complex Riemann surface that has a differential ω with possible poles, but
with no zeroes. The only three options are C, C/Z ∼= C∗, and C/(Z+τZ), which (with τ a complex
number of positive imaginary part) is a Riemann surface of genus 1. It turns out that these three
cases correspond to the three traditional classes of solutions of the Yang-Baxter equation – rational,
trigonometric, and elliptic.

The first point is that this theory has a sensible propagator and a sensible perturbation expan-
sion. The basic reason for a sensible propagator is that on R×R or R× S1 parametrized by t and
θ, the operator ∂/∂t that appeared in the naive action (2.4) is not elliptic, but the operator ∂/∂z
that appears in the deformed version is elliptic. After a suitable gauge-fixing, the propagator (for
the rational model, i.e. on R2 × C with C = C ∼= R2) is

〈Ai(x, y, z)Aj(x′, y′, z′)〉 = ~εijkzgkl
∂

∂xl

(
1

(x− x′)2 + (z − z′)2 + |z − z′|2

)
, (2.9)

where εijkm is the four-dimensional antisymmetric tensor (but in the formula we set m = z, so that
i, j, k take the values x, y, z), and the metric on R4 = R2 × C is dx2 + dy2 + |dz|2.

With this propagator, the perturbative expansion is well-defined, as shown in [1]. This is
a tricky point. The theory is actually unrenormalizable by power counting, so on that basis,
one would not expect a well-behaved quantum theory. However, it has no possible counterterms,
because all local gauge-invariant operators vanish by the classical equations of motion. Anyway,
using a fairly elaborate algebraic machinery of BV quantization, it is shown in [1] that the theory
has a well-defined perturbation expansion.

8 Quantum mechanically, one runs into an analog of the framing anomaly of Chern-Simons theory, such that
Σ has to be framed (its tangent bundle has to be trivialized) in order to define the quantum theory. This is very
restrictive, since a compact two-manifold that can be framed is topologically a two-torus T 2. The example Σ = T 2

with a periodic array of Wilson lines is used in [1] in constructing integrable lattice models with periodic boundary
conditions. There is also an analog in this theory of the usual framing anomaly for knots in Chern-Simons theory;
this anomaly markedly restricts the class of Wilson operators that can be considered. For example, a Wilson operator
supported on a simple closed loop in Σ = R2, at a point in C, is anomalous. There is no problem for the “straight”
Wilson lines that are used in constructing integrable lattice models.
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Figure 14: Three lines crossing in the plane, now labeled by the value of a complexified spectral parameter
z. The equivalence of the two pictures is the Yang-Baxter equation.

Now we consider Wilson operators, that is holonomy operators

TrρP exp

∮
`
A (2.10)

where ` is a loop in Σ×C. As before, Σ is a topological two-manifold, and C is a complex Riemann
surface with the differential ω = dz. But we have only a partial connection

A = Axdx+Aydy +Azdz (2.11)

so we would not know how to do any parallel transport in the z direction. (We cannot interpret A
as a gauge field with Az = 0 because this condition would not be gauge-invariant, and quantizing
the theory requires gauge-invariance. We have to interpret it as a theory with Az undefined, so we
cannot do parallel transport in the z direction.) This means that we must take ` to be a loop that
lies in Σ, at a particular value of z.

But this is what we wanted to explain Yang-Baxter theory. It means that ` is labeled by some
constant value z = z0 of the (complexified) spectral parameter z.

Now let us consider some lines that meet in Σ in the familiar configuration associated to the
Yang-Baxter equation (fig. 14). Two-dimensional diffeomorphism invariance means that we are
free to move the lines around as long as we do not change the topology of the configuration. But
assuming that z1, z2, and z3 are all distinct, it is manifest that there is no discontinuity when we
move the middle line from left to right even when we do cross between the two pictures, because the
Feynman diagrams in four dimensions have no singularity when this occurs. Thus two configurations
of Wilson operators that differ by what we might call a Yang-Baxter move are equivalent.

Likewise, in the configuration associated to integrable lattice models (fig. 15), we can move the
horizontal lines up and down at will.
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Figure 15: The configuration of Wilson lines associated to the integrable lattice models. The vertical and
horizontal lines are labeled by points in C and by representations of G (the representations are not indicated
in the figure).

But why is there as elementary a picture as in the usual integrable lattice models, where one
can evaluate the path integral by labeling each line by a basis element of the representation ρ and
each crossing by a local factor Rij,kl(z)? This is a little tricky and depends on picking the right
boundary conditions so that the only classical solution of the equations of motion is the trivial
solution A = 0, and it has no automorphisms (unbroken gauge symmetries). There is a way to
achieve this for each of the three choices of C, corresponding to rational, trigonometric, and elliptic
solutions of the Yang-Baxter equation.

For simplicity I will here only explain the rational case, in which the Riemann surface is C = C,
the complex z-plane, with 1-form dz. We require that the gauge field A on Σ × C goes to 0 at
infinity in the C direction, and likewise in quantizing we divide only by gauge transformations that
approach 1 at infinity along C. With these conditions, it is indeed true that A = 0 is the only
classical solution, and that it has no unbroken gauge symmetries. However, G still exists as a group
of global symmetries (corresponding to gauge transformations that are constant at infinity along
C, rather than equaling 1). That will explain, from this point of view, why the rational solutions
of the Yang-Baxter equation, which arise from this construction, are G-invariant.9

When we expand around the trivial solution A = 0, the absence of deformations or automor-
phisms of this solution makes the perturbative expansion straightforward. Moreover, perturbation
theory gives a simple answer because the theory is infrared-trivial, which is the flip side of the fact
that it is unrenormalizable by power-counting. That means that effects at “long distances” in the
topological space are negligible.

I put the phrase “long distances” in quotes because two-dimensional diffeomorphism invariance

9For the other choices of C, boundary conditions that allow a unique classical solution that is free of unbroken
gauge symmetries do exist (for any G if C = C∗ and for G = PSU(N) if C is a curve of genus 1), but lack the
full global G symmetry. This explains from the present point of view why the trigonometric and elliptic solutions of
Yang-Baxter are not G-invariant, and why elliptic solutions only exist for the special linear group.
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Figure 16: Because the deformed Chern-Simons theory is defined with no choice of metric on Σ, we can
always use a gauge such that nonintersecting Wilson lines are very far apart. Gauge boson exchanges between
nonintersecting Wilson lines, as depicted here, vanish in this limit.

means that there is no natural notion of distance on the topological two-manifold Σ. A metric on
Σ× C entered only when we fixed the gauge to pick a propagator. Recall that we used the metric
dx2 + dy2 + |dz|2. We could equally well scale up the metric along Σ by any factor and use instead
eB(dx2 + dy2) + |dz|2 for very large B.

That means that when one looks at the picture of fig. 15 associated to the integrable lattice
systems, one can consider the vertical lines and likewise the horizontal lines to be very far apart
(compared to z − zi or zi − zj). In such a situation, in an infrared-free theory, effects that involve
a gauge boson exchange between two nonintersecting lines, as in fig. 16, are negligible.

One should worry about gauge boson exchange from one line to itself, as in fig. 17, because
in this case the distance |a − b| need not be large. Such effects correspond roughly to “mass
renormalization” in standard quantum field theory. In the present problem, in the case of a straight
Wilson line such as those of fig. 15, the symmetries do not allow any interesting effect analogous to
mass renormalization. (For more general Wilson lines, the “mass renormalization” diagram leads
to a framing anomaly that was mentioned in footnote 8.)

What about gauge boson exchange between two Wilson lines with distinct spectral parameters
z, z′ that do cross in Σ? The lowest order example with exchange of a single gauge boson is depicted
in fig. 18. To evaluate the contribution of this diagram, we have to integrate over the points a, b at
which the gauge boson is attached to the two Wilson lines. The resulting integral converges and is
dominated by the region |a|, |b| . |z − z′|. What it converges to will be discussed shortly.

Now when we study a general configuration such as the one related to the integrable lattice
models we can draw very complicated diagrams, as in fig. 19, but the complications are all localized
near one crossing point or another. The diagrams localized near one crossing point simply build
up an R-matrix associated to that crossing, and the discussion makes it obvious that the R-matrix
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Figure 17: Exchange of a gluon from one Wilson line to itself would correspond to mass renormalization (of
an external probe charge) in conventional quantum field theory. In the framework that leads to the integrable
lattice models, the symmetries do not allow any nontrivial effect analogous to mass renormalization.

Figure 18: The lowest order diagram with gauge boson exchange between two lines that cross in Σ. The
two lines have spectral parameters z, z′. To evaluate the contribution of this diagram, we have to integrate
over a and b. The integral converges and is dominated by the region |a|, |b| . |z − z′|.
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Figure 19: Evaluating in perturbation theory the configuration of Wilson operators associated to the
integrable lattice models, we run into very complicated Feynman diagrams. But after scaling up the metric
of Σ, we can assume that these diagrams are built from decoupled diagrams each of which is associated to
just one crossing point.

obeys the Yang-Baxter relation of fig. 14.

Moreover, this makes it clear that the path integral in the presence of the configuration of
Wilson operators (fig. 15) associated to the integrable lattice models can be evaluated by the
standard rules: label each vertical or horizontal line segment by a basis vector of the representation
ρ and include the appropriate R-matrix element at each crossing; then sum over all such labelings.

But why is the R-matrix obtained this way the standard rational solution of the Yang-Baxter
equation? (And similarly, with a different choice of C, why would we get the standard trigonometric
and elliptic solutions of Yang-Baxter?) In his paper [1], Costello explicitly evaluates the lowest order
correction in

R = 1 + ~r +O(~2) (2.12)

from the lowest order non-trivial diagram of fig. 18, and and gets the standard answer

r =

∑
a tat

′
a

z − z′
(2.13)

(where ta, t
′
a, a = 1, . . . ,dimG are the generators of the Lie algebra of G acting in the two

representations). Once the first order deformation is known, the full answer for the R-matrix, up
to a change of variables, follows from general arguments (see p. 814 in [16] and p. 418 in [17]).

I conclude with a few final comments. Costello’s theorem is purely about perturbation theory,
but his theorem shows that, in this particular theory (and rather exceptionally), perturbation
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theory converges. As a physicist, one would want to give an a priori “nonperturbative definition”
of the theory, which would have the claimed perturbative expansion. At first sight, there are some
difficulties in doing this. The action of conventional Chern-Simons theory is gauge-invariant mod
2πZ if the coupling parameter k is an integer, as one wishes for a quantum system that will be
well-defined beyond perturbation theory. But there is no choice of the analogous parameter ~ in
eqn. (2.7) or (2.8) that makes the action gauge-invariant mod 2πZ. Also, the path integral of
conventional Chern-Simons gauge theory is an oscillatory path integral, like that of any unitary
quantum system, because the action is real.10 The real and imaginary parts of the generalized action
in eqn. (2.7) or (2.8) are unbounded above and below, so naively the path integral is exponentially
divergent, no matter what we assume for ~.

Because of such considerations, to get a convergent, nonperturbative path integral in this the-
ory, one will have to consider an analytically continued version of the theory, in a sense that for
conventional Chern-Simons theory was described in [18]. This analytic continuation is achieved
by complexifying all variables and then constructing a different integration cycle on which the
path integral converges. For ordinary Chern-Simons theory, such analytic continuation is optional;
the theory at integer k is perfectly well-defined without any analytic continuation. But in the
four-dimensional theory that is under discussion here, only an analytically-continued version of the
path integral will make sense beyond perturbation theory. To construct this analytic continuation,
one can consider the D4-NS5 system of string theory, and proceed via the same arguments that
were used in [18] to relate ordinary Chern-Simons theory and the Jones polynomial to the D3-NS5
system.

An interesting goal for the future is to somehow link the story that has been reviewed here
to the work of Nekrasov and Shatashvili, who developed a seemingly quite different relationship
between integrable quantum spin systems and supersymmetric gauge theory [2, 3].

Another natural question is whether models such as the chiral Potts model (see for example
[19–22]) can be placed in the gauge theory framework. The chiral Potts model is an integrable
lattice model in which the spectral parameter takes values in a curve of genus greater than 1.
Perhaps surprisingly (given the genus of its spectral curve), the chiral Potts model can be related
to a trigonometric solution of Yang-Baxter for the group SU(2) (or SL2), and this viewpoint has
also been used to develop an analog for SU(N) [23, 24]. But such models are not yet understood
in the framework described in the present lecture.

Research supported in part by NSF Grant PHY-1606531. I thank K. Costello, J. Perk, and M.
Yamazaki for useful comments.
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