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Plasma turbulence in the sub-ion-Larmor-radius range

Main questions:

What are the spectra of fluctuations?
1075 What is the mechanism causing the -2.8 magnetic spectrum

1074 . .
. measured in the solar wind?

P(k)/P, [nT® km]

10°°

1078

What is the nature of the dissipative processes?

107> 10™* 10™° 107®%* 107! 10° 10! .
k=2nf/V [km™'] How are ions and electrons heated?

Solar wind magnetic spectrum form
Cluster [Alexandrova+ 2019]



Electron heating

Efficient electron heating is observed in kinetic Magnetic reconnection yields
turbulence simulations around current sheets. efficient electron heating
current electron heating current electron heating

3-2-10 1 2 3 3-2-10 1 2 3
r/a z/a

[Wan+ 2012, 2015] [Loureiro+ 2013]

Some long-standing discussion: relation between current sheets, reconnection, and heating

What can be the role of reconnection in kinetic turbulence? setting the spectra? facilitating heating?



Spectra and spectral anisotropy

Total magnetic fields B = Byz + 6B, correlation lengths of fluctuations: length £ ~ 1/k;, thickness A ~ 1/k, and width &

General arguments:

At scales k| p; > 1, equipartition b/w magnetic and density fluctuations gives ©x ~ (p;Va/c)0B 1
Linear time scale is set by propagation of KAWs 71 ~ wkaw X k1 psk Va ~ psVa/(LN)
Dimensionally, the nonlinear eddy-turnover rateis v, ~ /(pov5y/2) ~ €/(6B7 , /87)

Critical balance: Yi ~ VYnl



Injection

Kolmogorov-type cascade of KAW A/
Total magnetic fields B = Byz + 6B, correlation lengths of flu d width &
General arguments:

Transfer
At scales k, p; > 1, equipartition b/w magnetic and density fluc QQOQO O

Linear time scale is set by propagation of KAWs 71 ~ WKAW
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Critical balance: Yi ~ VYnl
Dissipation

Specify the nonlinear physics!

Dimensionally, the nonlinear eddy-turnover rateis v, ~ ¢/

~7/3

* Kolmogorov-type cascade of KAWs --- k|

IF Yl ™~ UA//\a where Uy ~ (C/BO)QO)\/)‘ [Cho&Lazarian 2004; Howes+ 2008; Schekochihin+ 2009]
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Intermittency

Total magnetic fields B = B,z + 6B, correlation Intermittent

General arguments: “energy-

containing”
structures

300

At scales k|, p; > 1, equipartition b/w magnetic an

Linear time scale is set by propagation of KAWs Coherent

magnetic
Dimensionally, the nonlinear eddy-turnover rate i fields/eddies 2
100
Critical balance: Y1 ™~ Vnl
OE J i ~ _—
Specify the nonlinear physics! 0 108 = 300 oo - ~7/3

* Kolmogorov-type cascade of KAWs --- k|

IF Yl ™~ UA/’\a where Uy ~ (C/BO)(PA/A [Cho&Lazarian 2004; Howes+ 2008; Schekochihin+ 2009]

IF Yol ~ux/XA  Yni~¢€/(0B7 px) 72

/ * Intermittency --- k18/3 and k,
Volume-filling fact x .
ime-tifing factor P [Boldyrev&Perez 2012]

2D “energy containing” sheets



Tearing mediation

r

Total magnetic fields B = B,z + 6B, correlation lengths of k, idth &

General arguments:

At scales k, p; > 1, equipartition b/w magnetic and density

Linear time scale is set by propagation of KAWs 71 ~ WK

Dimensionally, the nonlinear eddy-turnover rate is  ~y;,; ~

/7

» Kolmogorov-type cascade of KAWs --- k17/ 3

|\

Critical balance: Yi ~ VYnl

k- k, k;

Specify the nonlinear physics!

IF yni ~ ux/A, where ux ~ (¢/Bo)pa/A [Cho&Lazarian 2004; Howes+ 2008; Schekochihin+ 2009]
>
~urx/A Yl ~ E/(0B7\ Pa . - —7/2
- Y n /(/M' ) * Intermittency --- klg/3 and k, 7/
Volume-filling factor py o< A.

[Boldyrev&Perez 2012]
2D “energy containing” sheets

IF  Tearing mediation --- k18/3 (or k7?) and k”_7/2

1/2y—5/2
Tnl ™~ Yt UAApide/ AT
[Loureiro&Boldyrev 201 7] (the original MHD version of the theory:
Loureiro&Boldyrev 2017; Mallet+ 2017)
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Isothermal limit --- Spectra and spectral anisotropy

Total magnetic fields B = B,z + 6B, correlation lengths of fluctuations: length £ ~ 1/k,, thickness A ~ 1/k , and width &
General arguments:

At scales k| p; > 1, equipartition b/w magnetic and density fluctuations gives ©x ~ (p;Va/c)0B 1
Linear time scale is set by propagation of KAWs 71 ~ wkaw X k1 psk Va ~ psVa/(LN)
Dimensionally, the nonlinear eddy-turnover rateis v, ~ /(pov5y/2) ~ €/(6B7 , /87)

Critical balance: Yi ~ VYnl

Specify the nonlinear physics!

» Kolmogorov-type cascade of KAWs --- k17/ 3

IF Yl ™~ UA//\a where Uy ~ (C/BO)QOA/)‘ [Cho&Lazarian 2004; Howes+ 2008; Schekochihin+ 2009]

IF Yol ~ux/XA  Yni~¢€/(0B7 px) 72

/ * Intermittency --- k18/3 and k,
Volume-filling fact x .
ime-tifing factor P [Boldyrev&Perez 2012]

2D “energy containing” sheets

IF * Tearing mediation --- k18/3 (or k73) and k”_7/2

1/2y—5/2
Tnl ™~ Yt UAApide/ AT
[Loureiro&Boldyrev 201 7] (the original MHD version of the theory:
Loureiro&Boldyrev 2017; Mallet+ 2017)



Studying phase-space dynamics is crucial to understand particle heating

m Phase mixing (field-particle interaction)

“kinetic-channel” of dissipation at small velocity-space
scales

velocity space

o — Nonlinear advection
. | O Q “fluid-channel” of dissipation

at small spatial scales

k

1

injection

spatial space



Anti-phase-mixing and plasma echoes

Schekochihint+ 2016; Adkins & Schekochihin 2018

r~ |kf*/5 Y r~ K/
‘ : 4e-01
no \‘.. '," 0“9\ s T~ A’/I/
\ : : \\\q\
energy N )| V° 6e-02
B % e
/ diffusion diffusion /|
‘ peofex A | 11e-02
o "" ﬂ\ﬂ.\'c mlmng 2¢-03
/ - (Wncompensated)
echo | |
(anti-phas€’. || , 3e-04
“mixing) phasc ||
\‘\ ,." mixing |
—y — /2 d Confirmed by simulations in the inertial range
Q (1/) with compressive fluctuations [Meyrand+

2018]

Q: is it obvious that echoes are expected in the sub-p; range with electromagnetic fluctuations? "



Kinetic Reduced Electron Heating Model (KREHM) framework

A rigorous asymptotic reduction of gyrokinetics (GK) valid in the limit of low electron plasma-beta ﬂe ~ me/mi
[Zocco+ 201 1]

lons become isothermal. A
GK Poisson’s law containing FLR ~ 0n¢/nge = 1/7(I'g — 1)ew/Tp.

Electrons are described by 0 f. = ge + (0ne/N0e + 20U )e/Vihe) Foe

l
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Kinetic Reduced Electron Heating Model (KREHM) framework

A rigorous asymptotic reduction of gyrokinetics (GK) valid in the limit of low electron plasma-beta ﬂe ~ me/mi
[Zocco+ 201 1]

lons become isothermal. A
GK Poisson’s law containing FLR ~ 0n¢/nge = 1/7(I'g — 1)ew/Tp.

Electrons are described by 0 f. = ge + (0ne/N0e + 20U )e/Vihe) Foe

l

1 don. . e

Lo S 22
Continuity: o di b che d;V1A
: d 0p T - one 0T,
Ohm’s law (A — dAV? A, = | Y. €
dt( | VLA “ 02 e v (n()e Toe

N : da,, A 1 -
Kinetic equation g — b - V \/m T Ims1 + Egm—l _ 5m7192 _ \/§5m’2[) AV € dﬁViAll
dt 2 2 CM

Jm: Hermite moments of g,
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With kinetic electrons --- Phase space cascade and electron heating

dgm — OYm | c {0, gm } Source of free energy in velocity space b - VJ

dt ot By
dgm A m + 1 n .
= —\Utheb -V (\/ 5 Im+l T4/ 5 gm—1 l5m,192> B \65m,2b VY]
|
2 k) VtheGm / VM ~

U

B (A gm}/Vim

collisions

Phase mixing

Nonlinear advection

|3



Critical Hermite moments and echos?

dgm — OYm | c {0, gm } Source of free energy in velocity space b - VJ

dt ot By
dgm A m + 1 n .
= —\Utheb -V (\/ 5 Im+l T4/ 5 gm—1 l5m,192> B \ﬁ5m,2b VY]
|
2 k) VtheGm /v ~

U

B (A gm}/Vim

Phase \mixing -

At each scale A, there is a critical Hermite order m_,.: Nonlinear advection

nonlinear advection rate ~ Phase mixing rate =

& Uthe
{S07gmcr} ™~ {Avamcr}/’\/ My
By By

mer(A) ~ (A/de)?/(277)

Above m_,. plasma echo is expected to happen and impede phase mixing
In weakly collisional plasmas, the collisional cut off > m,,

Why is efficient electron heating observed in solar wind [Chen+ 2019] and in kinetic simulations[e.g. Howes+2016-2018]? Y



A zeroth-order solution of g, in the velocity space and its Hermite spectrum

dgm agm C 7

- = & | 5 {0, Gm } Source of free energy in velocity space b-VJ,
0
dqgm, ~ m + 1 m ~
|~ —Utheb -V (\/ 5 Ym+1 S gm—1 — 5m,192> —V26m,2b - VJ|
\ l

\
R k|| VtheGm /M ~

U

B (A gm}/Vim

In the phase-mixing dominated regime, Lh.s. << r.h.s.

To the lowest order: Im+1 = —\/m/(m + 1)gm—1 for m > 3, and

g3 = —\/2/3 (ps/de)J)

The Hermite spectrum of g,: Er = {gml?/2) = {|gmeillgm—1])/2

Em-l—l/Em—l ~ gm—l—lgm/(gm—lgm—Q) — \/(m o 1)/(m + 1)

E., m~1/?

15



Turbulence at scales below the electron skin depth

In the range A < d. < p; , fluctuations become electrostatic.

Equipartition between density fluctuations and kinetic energy of parallel electron flows:
(0ne /noe ) noeToe ~ d2|V2 A2 /87 ——  ©a~ (piVa/c)ded B/ A

Assuming standard Kolmogorov-type cascade: ¢ ~ v, %1000 /To. Yal ~ ©x/A°

Eo(k)ock[?, Epg(ky) o k] "™?

Critical m,,, where phase-mixing rate balance nonlinear-advection rate:

Mey ™ ()‘/de)4/(272)

At k,d, > 1, nonlinear advection is always faster than phase mixing --- fluid-channel of
dissipation should dominate = steep Hermite spectrum

16



Numerical simulations

We perform simulations for turbulence in the kinetic range by solving KREHM equations

White-noise forcing added to the continuity equation (forcing density perturbation) at box scale
Balanced turbulence

Energy injection balanced by dissipation through hyper-collision at large m or through hyper-
diffusion at large k|

* |sothermal limit, i.e., g, = 0: Energy spectra of fluctuations, spectral anisotropy, intermittency

* electron kinetic physics accounted for (g, # 0): phase space dynamics, electron heating

17



Spectra and spectral anisotropy

Existing models:
—-7/3
* Kolmogorov-type cascade of KAWs --- k n / . [Cho&Lazarian 2004; Howes+ 2008; Schekochihin+ 2009]

: —-7/2
* Intermittency - and k” / [Boldyrev&Perez 2012]

. - _ ~7/2
* Tearing mediation -- (or k73) and k, / [Loureiro&Boldyrev 2017]

(the original MHD version of the theory: Loureiro&Boldyrev 2017; Mallet+ 2017)

Our approach to distinguish the role of intermittency vs tearing mediation:

In numerical simulations, the frozen flux constraint can instead be
broken by (hyper) resistivity ng;V{:

EB(kIJ_)de_L - kl(7na+2a+2)/(3na+2)dk_l_.

n is the parameter for the configuration of magnetic fields: n=1 Harris sheet; n=2 sinusoidal profile

|18



Isothermal simulations — Energy spectra

10° ~8/3
8/3 Simulations are performed in the sub-p; range, with
;—\I _ the flux-unfreezing mechanism being the main
& 107°F — electron inertia = difference.
‘Q ——— resistivity
—— hyper-resistivit _
1010 s d ~kl8/35pectrum; predicted by the intermittency

> T 50 100 500 model and the tearing-mediation model

k1 p;

19



Energy spectra is not set by tearing mediation

electron mertia

resistivity

hyper-resistivity

i

]
~~~
-_—,

o
k1 p;

100

500

Simulations are performed in the sub-p; range, with
the flux-unfreezing mechanism being the main
difference.

If the spectra are set by the tearing mediation:

EB(kJ_)ko_ X kJ—_(7O&—|—3)/(3O¢—|—1)

Electron inertia: -8/3
Resistivity: -2.4
Hyper-resistivity: -2.6

The overlap of the spectra rules out tearing-mediation as

the physical mechanism underpinning the energy cascade.
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Energy spectra is not set by tearing mediation

electron mertia

resistivity

hyper-resistivity

i

]
~~~
-_—,

o
k1 p;

100

500

Simulations are performed in the sub-p; range, with
the flux-unfreezing mechanism being the main
difference.

If the spectra are set by the tearing mediation:

EB(kJ_)ko_ X kJ—_(7O&—|—3)/(3O¢—|—1)

Electron inertia: -8/3
Resistivity: -2.4
Hyper-resistivity: -2.6

The overlap of the spectra rules out tearing-mediation as
the physical mechanism underpinning the energy cascade.
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Spectral anisotropy shows no evidence of progressive alighment

10V | —'81/3' o , - ° )
1 Why don’t the turbulence eddies become tearing unstable!
g
= S —— |
n 1077 clectron inertia 1 3D structure functions of the A
L kb magnetic fields: Lg
—— hyper-resistivity & ' /
—10 e 2 & o oan ¢ e s cacoy .\, _ 2
k. p; g (€~ 1/k))

(A~1/k1)
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Spectral anisotropy shows no evidence of progressive alighment

) —
10 18/3 Why don’t the turbulence eddies become tearing unstable?
g
< N, N
mm AU eleqté“pr}tlnertla 3D structure functions of the
‘ resistivity e
hyper-resistivity magnetic fields:

1500 SQ(&I') = <‘AB(I',5I')‘2>I.

Isotropic morphology of eddies in perpendicular planes
— no progressive alignment for tearing mediation 23



Spectral anisotropy shows no evidence of progressive alighment

—8/3 Why don’t the turbulence eddies become tearing unstable?

_|
~C ~
~ —51 : : -~ .

Aa 10 eleqtrpn Inertia 3D structure functions of the
‘Q resistivity

magnetic fields:

hyper-resistivity \
—=iy S2(0r) = (|AB(r, ir)|%),

3 10°

Solar wind measurements
fjl
= from MMS and PSP

[Wang+ 2020; Zhang+2022;]

Li(km)

1107

Isotropic morphology of eddies in perpendicular planes
— no progressive alignment for tearing mediation
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High-order structure function indicates 2D intermittent structures

10V

i

,- §.

electron mertia

resistivity
hyper-resistivity

50 100
K1 pi

Using higher order structure functions
to quantify intermittency

S, (0r) = (|AB(r, d1)|?), ~ b1’

Self-similar fluctuations, i.e., no
Intermittency

........ Clq
q/3+ 1

O electron 1nertia

L
.
.
.
A
*
A
\d
.
L ]
L
.
.
]
*
]
.
"
.

‘O
A
A
“
L

O resistivity L. o
& hyper-resistivity .. QT &
L 3
PR
1 2 3 4 D 0

2D Intermittent structures;

Main assumption to derive the -8/3 spectrum

by Boldyrev&Perez 2012 .




Simulations with kinetic electrons

201

?J/,Oz'
-

_20_

MHD transition to sub-p;,
d, unresolved

sub-p;, d, resolved

p.
fl = 0.1, kimaxde =
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In the sub-p; range:

spectra become steeper (than kIB/ 3)

In the sub-d, range:

Ey(k ) ock[?, Eg(ky) o k] "™?

01 10 50100 300 5 10 50 100 300 5 10 50 100 200
k1 p; k1 p; kid.
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50100 300 5 1

High-m dissipation turns on at p;.

In the range p; < 4 < d,, the
“kinetic dissipation” dominates.

In the range d, > A, the “fluid
dissipation” dominates.
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Landau damped EM energy matches electron heating

sub-p; turbulence From the linear dispersion relation of KAWVs:

- | E i damping rate Y4 and frequency wgan

10°

EX(kL) ~ E5°(k1)(1 — 2yraw /wrAw )-

" 10—2 ‘

L 10-3 ~ VY1 (critical balance)

EM fluctuations are Landau-

damped at each scale 10 9 50 100 200
independently - phase k| p;
mixing domination

30
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A zeroth-order solution of g, in the velocity space and its Hermite spectrum

gm+1 = —v/m/(m+ 1)gm_1 for m > 3, and Velocity-space spectrum:

g3 = —v/2/3 (ps/de)J|

MHD to p; & sub-p; runs

—10' ) 2/\/§ (de/ps)c]z . 7
1 L 1 1 1 1 1 _15 1 1 1 1 1 ]
—300 —200 —100 O 100 200 300 -15 —-10 -5 0 5! 10 15

J, g3

%15 —10 -5 0 5 10 15 215 —-10 -5 0 5 10 15 m
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With kinetic electrons --- Phase space cascade and electron heating

Assuming ¢ and A, have the same
configuration/gradients

100 :
At each scale A, there is a cpitical Hermite order m....: :
- Mer - M =30
Nonlinear advectiop/rate~ Phase mixing rate dee — — M =60
C { } Vthe {A }/ 60 I _
D m ™~ 'y Ym \V Mer .
BO SO? g Cr BO || g CT S -L-
mcr()\) ~ ()\/de)Q/(QTQ) 30_ _____________________ —\\\ ——
\
10- 3
For both cases, there is a sufficiently wide 10V 101 107

dynamical range that echo could happen.
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Local weakening of nonlinearity around current sheets enables strong phase mixing

Jm+1 = —\/m/(m +1)gm—1 for m > 3, and

g7/

10 15
‘Jz/t]rms‘

The ratio of the nonlinear-advection rate to phase-mixing rate as a
function of normalized current density. The positions with large
energy density of g,,, (with strong current density) have locally

weakened nonlinearity.
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Heating occurs around current sheets

Jm+1 = —\/m/(m +1)gm—1 for m > 3, and

g3 = —\/2/3 (ps/de)J)

g7/

10!

10°

y/Pz'

101

102

15

Magenta contours indicates regions

The ratio of the nonlinear-advection rate to phase-mixing rate as a with strong collisional dissipation.
function of normalized current density. The positions with large

energy density of g,,, (with strong current density) have locally
weakened nonlinearity.
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Conclusions

We study the kinetic turbulence in the low-f limit, composed of KAWVs.

In this specific regime:

* The magnetic and density energy spectra in kinetic turbulence is set by
intermittency.

* The kinetic channel (via phase mixing) of energy dissipates dominates the fluid
channel, energy dissipated at small scales in velocity space.

* Electron heating is caused by Landau damping of KAWVs in this regime.

* Energy dissipation/electron heating occurs mostly around current sheets, due to the
local weakening of nonlinearity.
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