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“Seed motivation”: relativistic turbulence
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Why are nonthermal power-law distributions so common?
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How does entropy fit in?

« Collisionless plasma processes exhibit irreversibility, but characterizing it is
nontrivial due to nonthermal nature

« Prevalence of power-law particle distributions in systems with varying acceleration/
trapping/escape mechanisms suggests universal underlying principles

« Why don’t collective effects cause collisionless plasmas to relax to thermodynamic
state of maximum entropy (the thermal distribution)?

« What is role of entropy in all of this? Can it be used as a constraint or as a guiding
principle? Many current theories of energization are agnostic to entropy...

e Thereis a gap in our understanding...

“If someone points out to you that your pet theory of the universe is in disagreement
with Maxwell’s equations — then so much the worse for Maxwell’s equations. If it is
found to be contradicted by observation — well, these experimentalists do bungle
things sometimes. But if your theory is found to be against the second law of
thermodynamics | can give you no hope; there is nothing for it but to collapse in the
deepest humiliation.” — Arthur Eddington



What this talk is about

New/speculative ideas for understanding entropy production (irreversibility) in
collisionless plasmas and its role in shaping nonthermal distributions

How should we characterize entropy in a collisionless plasma?
« Dimensional representation of generalized entropy: “Casimir momenta”
What happens to entropy during dissipative processes in collisionless plasmas?
e Case study: particle-in-cell simulations of relativistic turbulence
What is generalized entropy “useful” for?

« Modeling power-law energy distributions arising from dissipative processes



Part I: Characterizing generalized entropy



What happens to entropy in a collisionless plasma?

1. Entropy production via violations of Vlasov equation?
« Nonlinear entropy cascades (Schekochihin+ 2009, Eyink 2018; see Nastac+)
e Other routes to singularities (e.g., phase mixing)
2. Coarse-grained entropy production, fine-grained entropy conservation?
« Vlasov valid microscopically, but system irreversible macroscopically (see Ewart+)
« Scrambling of information at small (kinetic) scales where nobody can see/care
3. Entropy conservation at both coarse-grained and fine-grained scales?
« Would explain prevalence of nonthermal distributions
« Consistent with low entropy production rates in PIC simulations (Liang+ 2019)

e But how does one understand irreversibility?

“Competition” between entropy conservation and entropy production?
(combo of irreversible “thermal heating” and reversible “nonthermal acceleration”?)



Roll over Boltzmann, and tell Gibbs the news...

A note before proceeding... Boltzmann-Gibbs entropy S is not the only game in town!

Infinite number of “generalized entropies” exist from information theory

Renyi (1961): H.= 1ialog (;w)

reduce to Shannon (Boltzmann-Gibbs)

Tsallis (1988): 5, =~ <1_ipq> entropy when a — 1 or ¢ —1
- i=1

“Superstatistics” (Beck & Cohen 2003), etc.

Generalized entropies are nonextensive/nonadditive, useful for systems with long-
range correlations where “information” not expected to be additive

Applications to finances, cold atoms, solar wind, dusty plasmas, spin glass relaxation,
turbulent flow, galactic dynamics, ...

Notably, Tsallis statistics have been suggested as a framework for explaining kappa
distributions of nonthermal populations in solar wind (e.g., Milovanov & Zelenyi
2000, Leubner 2002, Livadiotis & McComas 2009)



Vlasov framework

« Vlasov equation for collisionless plasma [feel free to add collisions]:

or _ 9 p_yg

8tf‘|"UVf—|—Fap 3}?

where f(x,p,t) is“fined-grained” plasma distribution for a given species

N = /d3xd3pf is number of particles (assumed asymptotically large)
pc

v = is (relativistic) velocit
/mZC2 +p2 ( ) y

F(x,p,t) isforce field (Lorentz force + external force + ...)

e “First principles”... but possibly incomplete (singularity formation?)
« Collisions ultimately needed?
« Finite N effects?

e Note: in practice, must consider “coarse-grained” particle distribution, which may
deviate from Vlasov equation



Casimir invariants

o 9 F=o

e Vlasov: Ohf+v-Vf+F- o 5

« Conserves phase-space volume: parcels of f are pushed around reversibly

« Equivalently, for closed/periodic boundary conditions, conserves the infinite set of

“Casimir invariants”: 1 5 o
¢y(f) =~ [ dadp(f)

where g(f) is any differentiable function (subject to convergence)

dg
3 3
dt N/dmd s

= ——/d3:1:d3 [ 8‘9 (Fg)]

= N d>pdS, - vg——/d3de -Fg=0

 Casimir invariants include Boltzmann-Gibbs entropy S (for g = — f log f) and infinite
number of other quantities (e.g., g = fX)... these are generalized entropies!
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How do we make sense of Casimir invariants?

For simplicity, consider power-law functions:

Cy(f) = L d>zd’p fX

where x > 0 is a “weight” parameter

Issue: these Casimir invariants do not have physically meaningful dimensions, since
distribution has units of inverse phase volume; [f] = L™ x p~3

3(1— 3(1—
[CX]:L( X) x p3t=x)
Get physical dimensions (of angular momentum) by raising to another power:

1/3(1— _
CX/ (1—x) [C>1</3(1 X =Lxp

Interpretation: Length scale related to a typical number density 179, momentum
scale to a typical momentum/energy <p>

For applications with fixed mean density, but injected energy, can factor out nal/g...
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Casimir momenta

A dimensional representation of generalized entropy, with units of momentum:

1 —1/3(x—1)
Pex(f) = né/g (N /ded?’pr> “Casimir momenta”
(VZ, PRX 2022)

Represents a characteristic “spread” of distribution in momentum space
|deally conserved by Vlasov equation!

Evolution indicates violation of Vlasov (irreversibility!) at corresponding energy:
large weight x > 1 is low energy, small weight x < 1 is high energy

Integral resembles generalized (non-extensive) entropies of Renyi (1961) and Tsallis
(1988), with overall form similar to “exponential entropy” of Campbell (1966)

Upon energy injection, measures nonthermality of dissipation:
« For thermal dissipation, pc,x(t) o (p)(t) forall X

e For nonthermal dissipation, pe  (t) will vary with X

12



Interpreting the index x

o s /1 —1/3(x—1)
Casimir momenta: pcy :no/ (N/dgxd?’pfx)

. : : : 1
« X — 1 recovers dimensionalized Boltzmann-Gibbs entropy S: p¢ 1 = no/?’eS/P’N

« For uniform isotropic distribution, X maps to different values of momentum/energy

h 204 + 22
o Example: thermal (I\/IaxweII-Juttner) distribution /= 1 QCTFn.’Z(mCQ/ )exp ( me Tpe )
ivictic limit: _ (8”)1/3 1/(x—1)
Ultra-relativistic limit: pe = ~——x (p) e oy

2
(T /mc* > 1) YD 51 as v = oo

Non-relativistic limit: pey = gxl/z("_”@
(T/mc* < 1)
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Reduction of entropy by anisotropy and inhomogeneity

e Inhomogeneities and anisotropies will decrease the Casimir momenta relative to the
uniform/isotropic case:

flx,p) = f(@)+0f(x,p) ==  Pex(f) <pex(f)
f(x,p) = fiso(p) +0f(0,0,0) = DPex([) < pex(fiso)

X

This follows from Holder’s inequality: (/d%f/V) > /d3:cfX/V if y<1
X

</d3:cf/V> S/d3fo/V if x>1

e Generalized maximum entropy state will be isotropic, uniform!

 Interpretation: any nontrivial structure will lower entropy

14



Growth of Casimir momenta for global distribution

Casimir invariants of global (system-averaged) distribution evolve via:
Fpit) = [ dof(e.p.t)/V
(1) Wl [ apg 7107 = [ g
Fip.t)= [ daFf/V

Compare to “heating” rate (increase in average E = (m?c* + p?c?)/?) given by:

(2) % jt/d?’pd?’ Ef /d3pEaf /d3pv F

If energy injected to system, then @ > 0 and v - JF must have net positive part...
If ? is monotonically decreasing with D, then (9?/5’p - F will tend negative
(1) then implies €, (f) will typically grow if ¢ <0 and declineif g” >0
Taking g = X, then pc,x(f) will tend to grow for all values of X!

While heuristic, this suggests: when energy is injected to a system, spatial structure
will develop that lowers entropy, which (via Vlasov) must be compensated by
increasing entropy of global distribution, as measured by Casimir momenta

15



Casimir momenta in PIC simulations

Now that we’ve introduced the Casimir momenta,

Vs (1 [ g g )W
Pe,x — Ny (N/d xd pr)

let’s see what happens to them in PIC simulations!
Recall: upon energy injection,
« For thermal dissipation, D¢ () o< (p) () forall X
e For nonthermal dissipation, Pc,y (t) will vary with X
2D PIC simulations (3D in momentum) using Zeltron (code: Cerutti+ 2013)
Relativistically hot pair plasma (motivated by nonthermal particle acceleration)
To/mec* = 100 By = 16mnoTy/B2 = 1/4 L/27peo =~ 109
Casimir momenta calculated from distribution on “coarse-grained” grid
« Up to 642 position-space bins (322 cells per bin), 2563 momentum-space bins

« Momentum space bin size adapts to local average: Ap; nin = Dj rms/4

16



f(p/mc)

Casimir momenta in (2D) turbulent flow
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Verdict: Vlasov is violated
(especially at high energy)

Entropy is produced!

Probable cause: entropy cascade
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Local Casimir momenta are proxy
for irreversible dissipation
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Part | summary: characterizing generalized entropy

Anomalous entropy production can be characterized by non-conservation of infinite
set of Casimir momenta (representing generalized entropy):

s (1 —1/3(x—1)
Pex = Ny (N/d?’md?’pfx)

Growth of Casimir momenta (following injection of energy) indicates violation of
Vlasov equation, and thus irreversibility

By this merit, PIC simulations indicate that (relativistic) turbulence leads to efficient
entropy production in collisionless plasmas, mainly at high energies

Future directions:

« local Casimir momenta as a proxy for sites of energy dissipation (applications to
solar wind and Earth’s magnetosphere; see Pezzi+ 2021)

« more analytical investigation on simplified problems (e.g., density fluctuation)
« more numerical investigation on complex problems (e.g., 3D turbulence)

« connections with other areas of statistical physics (e.g. gravitational dynamics)

19



Part Il: Generalized maximum entropy
and particle acceleration



Back to the motivation...
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Why do power law distributions even exist?

Acceleration mechanisms are often Fermi-type processes described by quasilinear
theory:

of _ 9 of 1 p?
o ~ ap (D““ ap) Drp = 57—

However, knowledge of acceleration mechanism alone is insufficient to predict
power law and its index (¥

Classical picture: Fermi acceleration must be balanced by escape or trapping
mechanism to get a power law

PIC simulations: no escape (periodic box), unclear trapping, diverse mechanisms

Not obvious how to model power-law distributions seen in PIC simulations

22



4.0

Mysteries of particle acceleration

« Relativistic turbulence and magnetic reconnection both exhibit similar scalings of
power-law index (X versus magnetization, or beta (e.g., Werner+ 2018, VZ+ 2017)

e Similarin 2D and 3D domains (e.g., Werner & Uzdensky 2017 for relativistic
reconnection, Comisso & Sironi 2019 for relativistic turbulence)

Relativistic turbulence
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Modeling particle acceleration with Casimir momenta

Suppose dynamics cause irreversible dissipation mainly at a super-thermal energy

Model: maximize Casimir momentum at that scale! (“dissipation momentum” Pc y,)

—1/3(xa—1)
[ — N3 (/d3prd/N) : -\ (/dSpf—N> — A2 {/d?’pE(p)f—NF

Casimir momentum Density constraint Energy constraint

0L =0 wupon variations Jf
Generalized maximum entropy distribution:

f(p) o [E(p)/Ep + 1] 7xa)

where
E(p) = (m2c* + p*c®)Y? — mc? Ey is determined by F
One “free” parameter: index X d representing dissipation scale

Power law if x4 < 1, thermal if x4 = 1, and flat-topped if Xq > 1

VZ, JPP 2020
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Generalized maximum entropy distribution

Illlllll rrrmm rrrir

Model fit to P‘C J
o, (data from VZ+ 2018).

Generalized maximum
entropy distribution:

—1/(1—xq © - \
f(p) < [E(p)/ By + 1]~/ ) E L | btz BRRR

T 10 — |—wiacae IR

e A=£.30 VNN

- —— 1o A=11.1 A §

——toA=13.3 \ N
10” — |- ¥,~0315 \ %
- \
lllIIIII I IIIIIIII |} AIIIIII\ I\\ll} :‘\‘ \'\
10° 1¢° 10° 10°
E/mc®

 Fair fit to PIC simulations of relativistic turbulence
e Equivalent to “Tsallis distribution” obtained from maximizing Tsallis entropy

e Reduces to kappa distribution in non-relativistic limit, commonly used in space and
astrophysical applications (e.g., Livadotis & McComas 2009)
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Connecting power-law index to Casimir momenta

« Power-law index of energy distribution, (¢, can be related to ratio between

“entropy-maximizing” momentum (p. ) and “typica

Ultra-relativistic limit: (E > mc?)

pC,Xd UR\ Q _|_ 1 (Oé+2)/3
"\Na-—2

Pc,o0o

Non-relativistic limit: (F < mc?)
Dexa NR. (04 _ 1/2) (2a+1)/6

pc,oo o — 2

10

8

(24
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« Can we predict Pc vy /pc,oo for given plasma parameters and energization

mechanism?
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Power-law index from “magnetic dissipation”

« |dealized model: suppose particles are energized by an amount comparable to the
free magnetic energy before equilibration

Ecr, ~ eEo+ nNEfee Frree = 532/87Tn0 1] is conversion efficiency
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pcaXd EC7Xd (E61Xd —|_ 2mc2> /
Pec,oo | Ec,oo (Ec,oo + 2mc2)

[ (eEg + NEee)(eEy + NEtee + 2mc?) 1/2
EO (EO -+ 2m02)

[[e +1(3B/Bo)?/Belle + n(0B/Bo)?/Be + 2/00}] 2,
1+2/6,

3

where 5B/BO fluctuation amplitude

0. = Eo/mc2 characteristic temperature

B = SWHOEO/Bg characteristic plasma beta
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Comparison of “magnetic dissipation” model to PIC

Idealized model: particles are energized by free magnetic energy before equilibrating

Model prediction (ultra-relativistic limit):
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Theory close to relativistic turbulence simulations (VZ+ 2017, Comisso & Sironi 2019)

Similar to relativistic magnetic reconnection simulations (e.g. Werner+ 2019, Ball+ 2018)
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Merits and limitations of generalized max entropy model

Merits:

« Explains ubiquitous appearance of power-law tails in particle distributions
e Predicts similar particle acceleration in 2D and 3D domains (a priori)
« May apply to turbulence and magnetic reconnection

Limitations:

« Assumes dynamics are sufficiently complex to enable generalized maximum
entropy state, which may not always be the case

e Ignores dynamical constraints (such as anisotropy of global distribution)

e Assumes entropy maximization at a “single” energy scale, while mechanisms
might compete over a range of energy scales in realistic cases

e Hysteresis (memory of initial distribution and time-dependent parameters) not
accounted for
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Part Il summary: maximum entropy modeling

Casimir momenta form a foundation for modeling particle acceleration from
maximum entropy principles

Generalized maximum-entropy distribution provides a fair fit to PIC simulations
(which may be improved with more sophisticated modeling)

Simple model for power-law index from “magnetic dissipation” is able to reproduce
scaling of index versus magnetization observed in turbulence

Future work:
e more rigorous treatment of dissipation mechanisms

e connect maximum-entropy modeling with Fokker-Planck equation, quasilinear
theory, etc.

e broader tests of model: numerical + experimental (e.g., solar wind distributions
consisting of core and halo populations)

« other processes: shocks, wave damping, etc.
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Take-home messages

e Entropy is at the frontier of plasma physics

« New mathematical approaches such as the Casimir momenta, as well as increasing
quality of kinetic simulations, may allow us to finally confront fundamental questions
about entropy production in collisionless plasmas

e Incorporating entropy production into reduced modeling of nonthermal particle
distributions is a promising avenue, and should be taken seriously

Thank you!
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Open questions on generalized entropy

Are Casimir momenta a sufficient basis, or does one need to expand to even more
generalized entropies?

Are Casimir momenta a useful measure of free energy?
Can one build a generalized statistical mechanics? (see Schekochihin, Ewart, etc.)

Are there other statistical applications? (note widespread use of Tsallis entropy in
modeling nonlinear systems)
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Example: Casimir momenta in a neutral shear flow

Uncharged particles, shear force: F'peqar (a:)
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Increase in Casimir momenta is small relative to amount of energy injected

Implication: linear phase-mixing only leads to modest entropy production

Verdict: Vlasov is satisfied (dynamics are reversible)
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Example: Casimir momenta in parallel shear flow

Pair plasma, parallel shear flow: F'gear () = Fpsin (kz)y By = Byy
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Increase in Casimir momenta is small relative to amount of energy injected

Verdict: Vlasov is satisfied at microscale (dynamics are reversible)
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Example: Casimir momenta in perpendicular shear flow

Perpendicular shear force: F'gpear () = Fp sin (kz)y By = Bpz
= 1 1 ] 1 1 ] 1 1 l 1 1 o
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Increase in Casimir momenta is small relative to amount of energy injected

Verdict: Vlasov is satisfied at microscale (dynamics are reversible)
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Future: connecting entropy with Fokker-Planck equation

Quasilinear theory suggests particle acceleration is described by Fokker-Planck equation:
(advection-diffusion in energy space)

(v = Efm.c?)

Orf = 0y(D0y f) — 0y(Af)

2nd order Fermi acceleration / D ui 5
~ A
gyroresonance by Alfven waves: (7) 30L7
Confirmed by PIC simulations of relativistic turbulence!
Coefficients from tracked particles in PIC Kai Wong, VZ+ 2020
> Fokker-Planck solution
- p—TETY TR
—  P|---rIC45Lje
“ — =PI R4 e
T 10 ke PIC 134 L e
—FP 4.4L/e
|| FP 8oL
W Fl—TFP 134L)0
T10f 1P 10 107
r-’.
36

“
|
[-—
o
o~
[
L)
o
a



