Generalized entropy in collisionless plasmas: navigating an uncertain landscape

Vladimir Zhdankin (Center for Computational Astrophysics, Flatiron Institute)

Vienna, 8/1/2022

SIMONS FOUNDATION

The Ninth Wave, Ivan Aivazovsky

"Seed motivation": relativistic turbulence

Kinetic Turbulence in Relativistic Plasma: From Thermal Bath to Nonthermal Continuum

Vladimir Zhdankin, ^{1,2} Gregory R. Werner, ² Dmitri A. Uzdensky, ^{2,3} and Mitchell C. Begelman ^{1,4}

¹JILA, University of Colorado and NIST, 440 UCB, Boulder, Colorado 80309, USA

²Center for Integrated Plasma Studies, Physics Department, University of Colorado, 390 UCB, Boulder, Colorado 80309, USA

³Institute for Advanced Study, Princeton, New Jersey 08540, USA

⁴Department of Astrophysical and Planetary Sciences, 391 UCB, Boulder, Colorado 80309, USA

(Received 14 September 2016; revised manuscript received 18 December 2016; published 3 February 2017)

Why are nonthermal, power-law distributions so common?

How does entropy fit in?

- Collisionless plasma processes exhibit irreversibility, but characterizing it is nontrivial due to nonthermal nature
- Prevalence of power-law particle distributions in systems with varying acceleration/ trapping/escape mechanisms suggests universal underlying principles
- Why don't collective effects cause collisionless plasmas to relax to thermodynamic state of maximum entropy (the thermal distribution)?
- What is role of entropy in all of this? Can it be used as a constraint or as a guiding principle? Many current theories of energization are agnostic to entropy...
- There is a gap in our understanding...

"If someone points out to you that your pet theory of the universe is in disagreement with Maxwell's equations — then so much the worse for Maxwell's equations. If it is found to be contradicted by observation — well, these experimentalists do bungle things sometimes. But if your theory is found to be against the second law of thermodynamics I can give you no hope; there is nothing for it but to collapse in the deepest humiliation." — Arthur Eddington

What this talk is about

- New/speculative ideas for understanding entropy production (irreversibility) in collisionless plasmas and its role in shaping nonthermal distributions
- How should we characterize entropy in a collisionless plasma?
 - Dimensional representation of generalized entropy: "Casimir momenta"
- What happens to entropy during dissipative processes in collisionless plasmas?
 - Case study: particle-in-cell simulations of relativistic turbulence
- What is generalized entropy "useful" for?
 - Modeling power-law energy distributions arising from dissipative processes

Part I: Characterizing generalized entropy

What happens to entropy in a collisionless plasma?

1. Entropy production via violations of Vlasov equation?

- Nonlinear entropy cascades (Schekochihin+ 2009, Eyink 2018; see Nastac+)
- Other routes to singularities (e.g., phase mixing)

2. Coarse-grained entropy production, fine-grained entropy conservation?

- Vlasov valid microscopically, but system irreversible macroscopically (see Ewart+)
- Scrambling of information at small (kinetic) scales where nobody can see/care

3. Entropy conservation at both coarse-grained and fine-grained scales?

- Would explain prevalence of nonthermal distributions
- Consistent with low entropy production rates in PIC simulations (Liang+ 2019)
- But how does one understand irreversibility?

"Competition" between entropy conservation and entropy production? (combo of irreversible "thermal heating" and reversible "nonthermal acceleration"?)

Roll over Boltzmann, and tell Gibbs the news...

- A note before proceeding... Boltzmann-Gibbs entropy S is not the only game in town!
- Infinite number of "generalized entropies" exist from information theory

Renyi (1961):
$$H_{\alpha} = \frac{1}{1-\alpha} \log \left(\sum_{i=1}^{n} p_{i}^{\alpha} \right)$$
 reduce to Shannon (Boltzmann-Gibbs)
Tsallis (1988): $S_{q} = \frac{k}{q-1} \left(1 - \sum_{i=1}^{n} p_{i}^{q} \right)$ entropy when $\alpha \to 1$ or $q \to 1$

"Superstatistics" (Beck & Cohen 2003), etc.

- Generalized entropies are nonextensive/nonadditive, useful for systems with long-range correlations where "information" not expected to be additive
- Applications to finances, cold atoms, solar wind, dusty plasmas, spin glass relaxation, turbulent flow, galactic dynamics, ...
- Notably, Tsallis statistics have been suggested as a framework for explaining kappa distributions of nonthermal populations in solar wind (e.g., Milovanov & Zelenyi 2000, Leubner 2002, Livadiotis & McComas 2009)

Vlasov framework

Vlasov equation for collisionless plasma [feel free to add collisions]:

$$\partial_t f + \boldsymbol{v} \cdot \nabla f + \boldsymbol{F} \cdot \frac{\partial f}{\partial \boldsymbol{p}} = 0$$
 $\frac{\partial}{\partial \boldsymbol{p}} \cdot \boldsymbol{F} = 0$

where $f(\boldsymbol{x},\boldsymbol{p},t)$ is "fined-grained" plasma distribution for a given species $N=\int d^3x d^3pf \quad \text{is number of particles (assumed asymptotically large)}$ $\boldsymbol{v}=\frac{\boldsymbol{p}c}{\sqrt{m^2c^2+p^2}} \quad \text{is (relativistic) velocity}$

 $oldsymbol{F}(oldsymbol{x},oldsymbol{p},t)$ is force field (Lorentz force + external force + ...)

- "First principles"... but possibly incomplete (singularity formation?)
 - Collisions ultimately needed?
 - Finite N effects?
- Note: in practice, must consider "coarse-grained" particle distribution, which may deviate from Vlasov equation

Casimir invariants

• Vlasov:
$$\partial_t f + \boldsymbol{v} \cdot \nabla f + \boldsymbol{F} \cdot \frac{\partial f}{\partial \boldsymbol{p}} = 0 \qquad \qquad \frac{\partial}{\partial \boldsymbol{p}} \cdot \boldsymbol{F} = 0$$

- Conserves phase-space volume: parcels of f are pushed around reversibly
- Equivalently, for closed/periodic boundary conditions, conserves the infinite set of "Casimir invariants": $\mathfrak{C}_g(f) \equiv \frac{1}{N} \int d^3x d^3p g(f)$

where g(f) is any differentiable function (subject to convergence)

$$\frac{d\mathbf{c}_g}{dt} = \frac{1}{N} \int d^3x d^3p \frac{dg}{df} \partial_t f$$

$$= -\frac{1}{N} \int d^3x d^3p \left[\nabla \cdot (\mathbf{v}g) + \frac{\partial}{\partial \mathbf{p}} \cdot (\mathbf{F}g) \right]$$

$$= -\frac{1}{N} \int d^3p d\mathbf{S}_x \cdot \mathbf{v}g - \frac{1}{N} \int d^3x d\mathbf{S}_p \cdot \mathbf{F}g = 0$$

• Casimir invariants include Boltzmann-Gibbs entropy S (for $g=-f\log f$) and infinite number of other quantities (e.g., $g=f^\chi$)... these are generalized entropies!

How do we make sense of Casimir invariants?

For simplicity, consider power-law functions:

$$\mathcal{C}_{\chi}(f) \equiv rac{1}{N} \int d^3x d^3p f^{\chi}$$

where $\chi > 0$ is a "weight" parameter

• Issue: these Casimir invariants do not have physically meaningful dimensions, since distribution has units of inverse phase volume; $[f]=L^{-3}\times p^{-3}$

$$[\mathcal{C}_{\chi}] = L^{3(1-\chi)} \times p^{3(1-\chi)}$$

• Get physical dimensions (of angular momentum) by raising to another power:

$$\mathcal{C}_{\chi}^{1/3(1-\chi)} \qquad [\mathcal{C}_{\chi}^{1/3(1-\chi)}] = L \times p$$

- Interpretation: Length scale related to a typical number density n_0 , momentum scale to a typical momentum/energy $\langle p \rangle$
- For applications with fixed mean density, but injected energy, can factor out $n_0^{-1/3}$...

Casimir momenta

A dimensional representation of generalized entropy, with units of momentum:

$$p_{c,\chi}(f) = n_0^{1/3} \left(\frac{1}{N} \int d^3x d^3p f^{\chi}\right)^{-1/3(\chi - 1)}$$

"Casimir momenta"

(VZ, PRX 2022)

- Represents a characteristic "spread" of distribution in momentum space
- Ideally conserved by Vlasov equation!
- Evolution indicates violation of Vlasov (irreversibility!) at corresponding energy: large weight $\chi\gg 1$ is low energy, small weight $\chi\lesssim 1$ is high energy
- Integral resembles generalized (non-extensive) entropies of Renyi (1961) and Tsallis (1988), with overall form similar to "exponential entropy" of Campbell (1966)
- Upon energy injection, measures nonthermality of dissipation:
 - For thermal dissipation, $p_{c,\chi}(t) \propto \langle p \rangle(t)$ for all χ
 - For nonthermal dissipation, $p_{c,\chi}(t)$ will vary with χ

Interpreting the index χ

Casimir momenta:
$$p_{c,\chi} = n_0^{1/3} \left(\frac{1}{N} \int d^3x d^3p f^{\chi}\right)^{-1/3(\chi-1)}$$

- $\chi o 1$ recovers dimensionalized Boltzmann-Gibbs entropy S: $p_{c,\chi o 1} = n_0^{1/3} e^{S/3N}$
- For uniform isotropic distribution, χ maps to different values of momentum/energy
- Example: thermal (Maxwell-Juttner) distribution $f = \frac{n_0}{4\pi m^2 c T K_2(mc^2/T)} \exp\left(-\frac{\sqrt{m^2 c^4 + p^2 c^2}}{T}\right)$

Ultra-relativistic limit:
$$p_{c,\chi} = \frac{(8\pi)^{1/3}}{3} \chi^{1/(\chi-1)} \langle p \rangle$$

$$(T/mc^2 \gg 1)$$

$$\chi^{1/(\chi-1)} \to \infty \text{ as } \chi \to 0$$

$$\chi^{1/(\chi-1)} \to 1 \text{ as } \chi \to \infty$$

Non-relativistic limit:
$$p_{c,\chi} = \frac{\pi}{2} \chi^{1/2(\chi-1)} \langle p \rangle$$
 $(T/mc^2 \ll 1)$

Reduction of entropy by anisotropy and inhomogeneity

• Inhomogeneities and anisotropies will decrease the Casimir momenta relative to the uniform/isotropic case:

$$f(\boldsymbol{x}, \boldsymbol{p}) = \overline{f}(\boldsymbol{p}) + \delta f(\boldsymbol{x}, \boldsymbol{p}) \implies p_{c,\chi}(f) \le p_{c,\chi}(\overline{f})$$
$$f(\boldsymbol{x}, \boldsymbol{p}) = f_{\text{iso}}(p) + \delta f(p, \theta, \phi) \implies p_{c,\chi}(f) \le p_{c,\chi}(f_{\text{iso}})$$

This follows from Holder's inequality:
$$\left(\int d^3x f/V\right)^\chi \geq \int d^3x f^\chi/V \quad \text{if} \quad \chi < 1$$

$$\left(\int d^3x f/V\right)^\chi \leq \int d^3x f^\chi/V \quad \text{if} \quad \chi > 1$$

- Generalized maximum entropy state will be isotropic, uniform!
- Interpretation: any nontrivial structure will lower entropy

Growth of Casimir momenta for global distribution

• Casimir invariants of global (system-averaged) distribution evolve via:

(1)
$$\frac{d\mathfrak{C}_{g}(\overline{f})}{dt} = \int d^{3}pg'(\overline{f})\partial_{t}\overline{f} = \int d^{3}pg''(\overline{f})\frac{\partial \overline{f}}{\partial \boldsymbol{p}} \cdot \boldsymbol{\mathcal{F}}$$

$$\mathcal{F}(\boldsymbol{p},t) \equiv \int d^{3}x f(\boldsymbol{x},\boldsymbol{p},t)/V$$

$$\mathcal{F}(\boldsymbol{p},t) \equiv \int d^{3}x F f/V$$

• Compare to "heating" rate (increase in average $E=(m^2c^4+p^2c^2)^{1/2}$) given by:

(2)
$$\frac{Q}{V} = \frac{d}{dt} \int d^3p d^3x \frac{Ef}{V} = \int d^3p E \partial_t \overline{f} = \int d^3p \boldsymbol{v} \cdot \boldsymbol{\mathcal{F}}$$

- If energy injected to system, then Q>0 and ${m v}\cdot{m {\mathcal F}}$ must have net positive part...
- If \overline{f} is monotonically decreasing with p , then $\partial \overline{f}/\partial m{p}\cdot m{\mathcal{F}}$ will tend negative
- (1) then implies $\mathfrak{C}_g(\overline{f})$ will typically grow if g''<0 and decline if g''>0
- Taking $g=f^\chi$, then $p_{c,\chi}(\overline{f})$ will tend to grow for all values of $\chi!$
- While heuristic, this suggests: when energy is injected to a system, spatial structure will develop that lowers entropy, which (via Vlasov) must be compensated by increasing entropy of global distribution, as measured by Casimir momenta

Casimir momenta in PIC simulations

Now that we've introduced the Casimir momenta,

$$p_{c,\chi} = n_0^{1/3} \left(\frac{1}{N} \int d^3x d^3p f^{\chi} \right)^{-1/3(\chi - 1)}$$

let's see what happens to them in PIC simulations!

- Recall: upon energy injection,
 - For thermal dissipation, $p_{c,\chi}(t) \propto \langle p \rangle(t)$ for all χ
 - For nonthermal dissipation, $p_{c,\chi}(t)$ will vary with χ
- 2D PIC simulations (3D in momentum) using Zeltron (code: Cerutti+ 2013)
- Relativistically hot pair plasma (motivated by nonthermal particle acceleration)

$$T_0/m_e c^2 = 100$$
 $\beta_0 = 16\pi n_0 T_0/B_0^2 = 1/4$ $L/2\pi \rho_{e0} \approx 109$

- Casimir momenta calculated from distribution on "coarse-grained" grid
 - Up to 64² position-space bins (32² cells per bin), 256³ momentum-space bins
 - Momentum space bin size adapts to local average: $\Delta p_{i,\mathrm{bin}} = p_{i,\mathrm{rms}}/4$

Casimir momenta in (2D) turbulent flow

Verdict: Vlasov is violated (especially at high energy) Entropy is produced!

Probable cause: entropy cascade

Spatial structure of entropy

Local Casimir momenta are proxy for irreversible dissipation

Part I summary: characterizing generalized entropy

 Anomalous entropy production can be characterized by non-conservation of infinite set of Casimir momenta (representing generalized entropy):

$$p_{c,\chi} = n_0^{1/3} \left(\frac{1}{N} \int d^3x d^3p f^{\chi}\right)^{-1/3(\chi - 1)}$$

- Growth of Casimir momenta (following injection of energy) indicates violation of Vlasov equation, and thus irreversibility
- By this merit, PIC simulations indicate that (relativistic) turbulence leads to efficient entropy production in collisionless plasmas, mainly at high energies

Future directions:

- local Casimir momenta as a proxy for sites of energy dissipation (applications to solar wind and Earth's magnetosphere; see Pezzi+ 2021)
- more analytical investigation on simplified problems (e.g., density fluctuation)
- more numerical investigation on complex problems (e.g., 3D turbulence)
- connections with other areas of statistical physics (e.g. gravitational dynamics)

Part II: Generalized maximum entropy and particle acceleration

Back to the motivation...

Why do power law distributions even exist?

 Acceleration mechanisms are often Fermi-type processes described by quasilinear theory:

$$\frac{\partial f}{\partial t} = \frac{\partial}{\partial \mathbf{p}} \cdot \left(D_{pp} \frac{\partial f}{\partial \mathbf{p}} \right) \qquad D_{pp} = \frac{1}{4} \frac{p^2}{\tau_{\text{acc}}}$$

- However, knowledge of acceleration mechanism alone is insufficient to predict power law and its index $\,\alpha\,$
- Classical picture: Fermi acceleration must be balanced by escape or trapping mechanism to get a power law
- PIC simulations: no escape (periodic box), unclear trapping, diverse mechanisms
- Not obvious how to model power-law distributions seen in PIC simulations

Mysteries of particle acceleration

- Relativistic turbulence and magnetic reconnection both exhibit similar scalings of power-law index α versus magnetization, or beta (e.g., Werner+ 2018, VZ+ 2017)
- Similar in 2D and 3D domains (e.g., Werner & Uzdensky 2017 for relativistic reconnection, Comisso & Sironi 2019 for relativistic turbulence)

 $v_A/c = \sqrt{\sigma/(1+\sigma)}$

23

Magnetization: $\sigma = B^2/4\pi h$

Modeling particle acceleration with Casimir momenta

- Suppose dynamics cause irreversible dissipation mainly at a super-thermal energy
- Model: maximize Casimir momentum at that scale! ("dissipation momentum" p_{c,χ_d})

$$\mathcal{L} = N^{1/3} \left(\int d^3p f^{\chi_d} / N \right)^{-1/3(\chi_d - 1)} - \lambda_1 \left(\int d^3p f - N \right) - \lambda_2 \left[\int d^3p E(p) f - N \overline{E} \right]$$
 Casimir momentum Density constraint Energy constraint

 $\delta \mathcal{L} = 0$ upon variations δf

Generalized maximum entropy distribution:

$$f(\boldsymbol{p}) \propto [E(p)/E_b + 1]^{-1/(1-\chi_d)}$$

where

$$E(p) = (m^2c^4 + p^2c^2)^{1/2} - mc^2$$

 E_b is determined by \overline{E}

- One "free" parameter: index χ_d representing dissipation scale
- ullet Power law if $\chi_d < 1$, thermal if $\ \chi_d = 1$, and flat-topped if $\ \chi_d > 1$

Generalized maximum entropy distribution

Generalized maximum entropy distribution:

$$f(\mathbf{p}) \propto [E(p)/E_b + 1]^{-1/(1-\chi_d)}$$

- Fair fit to PIC simulations of relativistic turbulence
- Equivalent to "Tsallis distribution" obtained from maximizing Tsallis entropy
- Reduces to kappa distribution in non-relativistic limit, commonly used in space and astrophysical applications (e.g., Livadotis & McComas 2009)

Connecting power-law index to Casimir momenta

• Power-law index of energy distribution, $\,lpha\,$, can be related to ratio between "entropy-maximizing" momentum $\,(p_{c,\chi_d})\,$ and "typical" momentum $\,(p_{c,\infty})\,$

Ultra-relativistic limit: $(E \gg mc^2)$

$$\frac{p_{c,\chi_d}}{p_{c,\infty}} \xrightarrow{\mathrm{UR}} \left(\frac{\alpha+1}{\alpha-2}\right)^{(\alpha+2)/3}$$

Non-relativistic limit: $(E \ll mc^2)$

$$\frac{p_{c,\chi_d}}{p_{c,\infty}} \xrightarrow{\text{NR}} \left(\frac{\alpha - 1/2}{\alpha - 2}\right)^{(2\alpha + 1)/6}$$

• Can we predict $p_{c,\chi_d}/p_{c,\infty}$ for given plasma parameters and energization mechanism?

Power-law index from "magnetic dissipation"

Idealized model: suppose particles are energized by an amount comparable to the free magnetic energy before equilibration

$$E_{c,\chi_d} \sim eE_0 + \eta E_{\text{free}}$$

$$E_{\rm free} = \delta B^2 / 8\pi n_0$$

 $E_{
m free} = \delta B^2/8\pi n_0$ η is conversion efficiency

$$\frac{p_{c,\chi_d}}{p_{c,\infty}} = \left[\frac{E_{c,\chi_d}(E_{c,\chi_d}+2mc^2)}{E_{c,\infty}(E_{c,\infty}+2mc^2)}\right]^{1/2}$$

$$\sim \left[\frac{(eE_0+\eta E_{\rm free})(eE_0+\eta E_{\rm free}+2mc^2)}{E_0(E_0+2mc^2)}\right]^{1/2}$$

$$\sim \left[\frac{[e+\eta(\delta B/B_0)^2/\beta_c][e+\eta(\delta B/B_0)^2/\beta_c+2/\theta_c]}{1+2/\theta_c}\right]^{1/2}$$
 where
$$\delta B/B_0$$
 fluctuation amplitude
$$\theta_c = E_0/mc^2$$
 characteristic temperature

$$\delta B/B_0$$

$$\theta_c = E_0/mc^2$$

 $\theta_c = E_0/mc^2$ characteristic temperature

$$eta_c = 8\pi n_0 E_0/B_0^2$$
 characteristic plasma beta

Comparison of "magnetic dissipation" model to PIC

Idealized model: particles are energized by free magnetic energy before equilibrating

Model prediction (ultra-relativistic limit):

$$\eta \left(\frac{\delta B}{B_0}\right)^2 \frac{1}{\beta_c} = \left(\frac{\alpha+1}{\alpha-2}\right)^{(\alpha+2)/3} - e$$

In relativistic turbulence,

$$\beta_c = 1/4\sigma$$

$$\delta B/B_0=1$$

Theory close to relativistic turbulence simulations (VZ+ 2017, Comisso & Sironi 2019)
Similar to relativistic magnetic reconnection simulations (e.g. Werner+ 2019, Ball+ 2018)

Merits and limitations of generalized max entropy model

Merits:

- Explains ubiquitous appearance of power-law tails in particle distributions
- Predicts similar particle acceleration in 2D and 3D domains (a priori)
- May apply to turbulence and magnetic reconnection

Limitations:

- Assumes dynamics are sufficiently complex to enable generalized maximum entropy state, which may not always be the case
- Ignores dynamical constraints (such as anisotropy of global distribution)
- Assumes entropy maximization at a "single" energy scale, while mechanisms might compete over a range of energy scales in realistic cases
- Hysteresis (memory of initial distribution and time-dependent parameters) not accounted for

Part II summary: maximum entropy modeling

- Casimir momenta form a foundation for modeling particle acceleration from maximum entropy principles
- Generalized maximum-entropy distribution provides a fair fit to PIC simulations (which may be improved with more sophisticated modeling)
- Simple model for power-law index from "magnetic dissipation" is able to reproduce scaling of index versus magnetization observed in turbulence

Future work:

- more rigorous treatment of dissipation mechanisms
- connect maximum-entropy modeling with Fokker-Planck equation, quasilinear theory, etc.
- broader tests of model: numerical + experimental (e.g., solar wind distributions consisting of core and halo populations)
- other processes: shocks, wave damping, etc.

Take-home messages

- Entropy is at the frontier of plasma physics
- New mathematical approaches such as the Casimir momenta, as well as increasing quality of kinetic simulations, may allow us to finally confront fundamental questions about entropy production in collisionless plasmas
- Incorporating entropy production into reduced modeling of nonthermal particle distributions is a promising avenue, and should be taken seriously

Thank you!

For more details:

- 1) V. Zhdankin PRX 2022, arXiv:2110.07025
- 2) V. Zhdankin JPP 2022, arXiv:2203.13054

SCIENCE TIP: IF YOU HAVE A COOL CONCEPT YOU NEED A MAYNE FOR, TRY "DYNAMIC ENTROPY."

Open questions on generalized entropy

- Are Casimir momenta a sufficient basis, or does one need to expand to even more generalized entropies?
- Are Casimir momenta a useful measure of free energy?
- Can one build a generalized statistical mechanics? (see Schekochihin, Ewart, etc.)
- Are there other statistical applications? (note widespread use of Tsallis entropy in modeling nonlinear systems)

Example: Casimir momenta in a neutral shear flow

Uncharged particles, shear force: ${m F}_{
m shear}(x) = F_0 \sin{(kx)} \hat{{m y}}$

Increase in Casimir momenta is small relative to amount of energy injected

Verdict: Vlasov is satisfied (dynamics are reversible)

Implication: linear phase-mixing only leads to modest entropy production

Example: Casimir momenta in parallel shear flow

Pair plasma, parallel shear flow:
$$m{F}_{
m shear}(x) = F_0 \sin{(kx)} \hat{m{y}}$$
 $m{B}_0 = B_0 \hat{m{y}}$

Increase in Casimir momenta is small relative to amount of energy injected

Verdict: Vlasov is satisfied at microscale (dynamics are reversible)

Example: Casimir momenta in perpendicular shear flow

Perpendicular shear force:
$$\boldsymbol{F}_{\mathrm{shear}}(x) = F_0 \sin{(kx)} \hat{\boldsymbol{y}}$$

$$\boldsymbol{B}_0 = B_0 \hat{\boldsymbol{z}}$$

Increase in Casimir momenta is small relative to amount of energy injected

Verdict: Vlasov is satisfied at microscale (dynamics are reversible)

Future: connecting entropy with Fokker-Planck equation

Quasilinear theory suggests particle acceleration is described by Fokker-Planck equation:

$$\partial_t f = \partial_{\gamma} (D\partial_{\gamma} f) - \partial_{\gamma} (Af)$$

(advection-diffusion in energy space)

gyroresonance by Alfven waves: $D(\gamma) \sim \frac{u_A^2}{3cL} \gamma^2$ $(\gamma = E/m_e c^2)$

$$D(\gamma) \sim \frac{u_A^2}{3cL} \gamma^2$$

$$(\gamma = E/m_e c^2)$$

Confirmed by PIC simulations of relativistic turbulence!

Coefficients from tracked particles in PIC

Kai Wong, VZ+ 2020

