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Current Sheet (CS) Formation

Reconnection does not immediately
start in nature
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Consider field reversal with Harris equilibrium
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Impose background incompressible fluid flow:
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Hyper-resistivity Tearing Instability
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— Reconnection needs CS to go tearing
unstable, for Harris sheet:
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— In Ohmic tearing, there are two asymptotic ka
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Hyper-resistivity Tearing Instability
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— As CS evolves, aspect ratio changes and ' S 2/m) 5= (kaytys ¥ ’
longer tearing wavelengths become available. _ | ! KR ..
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Magnetic Accumulation Causes Mirror Instability

— CS compression cause magnetic amplification
B (t) = Brol'(t)

— In collisionless system, the double adiabatic
conservations glves pressure anisotropy >
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— Large pressure anisotropy can be unstable to
mirror instability given that 4

Am = Ay —5->0

— Bulk region with stronger initial field will be
unstable first with mirror time satisfying
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— The pressure anisotropy will then be
regulated at mirror regulation time
fnsse=t o G (Qi7,,) 12

Tcs




Numerical Framework

— Hybrid-kinetic code Pegasus++ with
kinetic ions and neutralizing electron

background fluid.

Code e Hyper-resistivity acts as the electron inertia

— Compression is modeled using continuous
frame transformation
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Watershed Segmentation to Identify X-Points

Magnetic 1sland acts as flood basins with X-points as
the local minimum point along the boundaries



Fiducial Evolution 7.5 — 1000, ap = 129
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Fiducial Evolution 7.5 — 1000, ap = 129




Fiducial Evolution T —

1000, apgp — 125

— Focus at the four stages of evolution:

e (a): t =050

e (b): t =120
® (¢c): t =160
o (d): ¢t =250

— Higher field strength in Bulk region starts
the mirror instabilities early as shown in
figure (b).

— In figure (c), the CS should still be tearing
stable, but we start seeing magnetic mirror.

— In figure (d), the reconnection is well
underway with non-linear tearing as

indicated by merging magnetic islands.

100 |

0F

T — Tcs,1

—100 |

100 |

= = Sa—— = =
= = \:f’\\n
O RE RS s - o
S Ny

AN _—
e

-

\\.‘
e o
. 5 N
LRI e N s
=~ ——_——_°" —_—

_AA =

= -~
D o Ao
& {;‘\Q ‘\“‘%‘\}‘\\\E

‘. .




Fiducial Evolution T —

— Average quantities based on the Bulk vs CS
region as well as the averaged values over the
location of X-points as XPoints.

— Confirmed secular growth of magnetic

fluctuations due to mirror instabilities 1n the
Bulk.

— Mirror fluctuations get progressively closer to
the neutral line as time progress.

— The value of average F, in CS region = T —m

decrease slowly as the magnetic islands grow. = J ’kA ’ J%ﬁ “AA‘A il ” |
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— Measured average F, over the XPoints 05 [ L
matches the previously reported value in wooo / H
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Variation of T:g

— Initial mirror growth in CS follows double
adiabatic condition, with peak values of A,
satisfies theoretical prediction
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— The dominant linear tearing modes can be

obtained from time averaging between the
peak of mirror instability parameters and the

second E, peak, 1.e. between ¢y, yeg and tonget .-
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Variation of 7.
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Wide Sheet with Variation of 7¢g
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— The reconnection onset time does not differ Z osf 1 .l e
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Summary

— During CS formation in high-beta collisionless plasma, the pressure anisotropy build up can
trigger mirror instability disrupting the sheet with ion Larmor scale perturbations.

— The rapid growth of the mirror fluctuations stimulates tearing modes by wrinkling the current
sheet, effectively reducing CS thickness and changing the value of A’.

— The resulting tearing instability onsets at earlier time and on smaller scales than it would have
without the mirrors.
e Onset time scales at approximately o rol?,
e Tearing modes are at intermediate scales between the parallel and perpendicular wavelengths of the
mirror modes.

— In turbulence context, this result puts the importance of kinetic instabilities that can disturb
magnetic folds, which locally can be seen as CS.

* Watershed segmentation can be used to robustly determine locations of X-points.



