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Fluid (and kinetic) systems support the conservation of certain quantities, i.e.,


.


The most fundamental of these is energy.


At some level, turbulence is just the nonlinear processing of these quantities 
between injection and dissipation scales.
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The conserved quantities  come in two distinct types.


Type 1:   is a generalised energy, i.e., the norm of a dynamical field.  
 for any possible realisation of the system. Examples are:

• Kinetic/magnetic energy, 
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The conserved quantities  come in two distinct types.


Type 1:   is a generalised energy, i.e., the norm of a dynamical field.  
 for any possible realisation of the system. Examples are:
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• Variance of passive scalar, 

• Enstrophy, 
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Properties of generalised energies:      cascades
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The conserved quantities  come in two distinct types.


Type 1:   is a generalised energy, i.e., the norm of a dynamical field.  
 for any possible realisation of the system. Examples are:
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• Anastrophy, 


Properties of generalised energies:      inverse cascade/transfer
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The conserved quantities  come in two distinct types.


Type 1:   is a generalised energy, i.e., the norm of a dynamical field.  
 for any possible realisation of the system. Examples are:

• Kinetic/magnetic energy, 

• Variance of passive scalar, 

• Enstrophy, 

• Anastrophy, 


Properties of generalised energies:      constrain turbulent decay
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e.g., 2D MHD:

Zhou et. al. 2019
dE
dt

∼ −
E
τL

, ⟨ψ⟩ ∼ UαLβ ∼ const ⟹ E ∝ t−p

τL ∼
L
B

ϵ−1
rec, ⟨A2

z ⟩ ∼ B2L2 ∼ const ⟹ B2 ∝ t−1



The conserved quantities  come in two distinct types.
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 can be 0, but can also be finite. Examples are:
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The conserved quantities  come in two distinct types.


Type 2:   is a directed quantity, e.g., a sign-indefinite (pseudo-)scalar or vector.  
 can be 0, but can also be finite. Examples are:


• Momentum, ;  magnetic flux, 

• Concentration of passive scalar, 

• Helicity: kinetic, ;  magnetic, ;  cross-, .


Properties of directed conserved quantities for finite :
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⟨ψ⟩

Turbulence and conservation laws

Cascades Dual/inverse cascade/transfer Constrain turbulent decay

Brandenburg et. al. 2017Milanese et. al. 2022 Müller et. al. 2012



When  is a directed quantity, we can have conditions for which 
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What, if any, are then the dynamical implications of the conservation of ? 

- Are (inverse) cascades and transfers still induced?


- Does  affect decay?
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∂ψ
∂t

+ ∇ ⋅ F ≃ 0 ⟹
∂
∂t

⟨ψ(x)ψ(x + r)⟩ + 2
∂
∂r

⋅ ⟨ψ(x)F(x + r)⟩ ≃ 0

⟹
d
dt ∫ d3r⟨ψ(x)ψ(x + r)⟩ ≃ 0

Some examples:

, Saffman (1967) integral


, Loitsyanksy (1939) integral*

, “Levich-Tsinober (1983) integral”


, Corrsin (1950) integral


ψ = u
ψ = r × u
ψ = u ⋅ ω
ψ = θ

, “magnetic Saffman integral”

, “H-S (2021) integral”

 “Bershadskii (2019) integral ”


ψ = B
ψ = A ⋅ B
ψ = u ⋅ B,

⏟≡ Iψ
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Iψ = ∫ d3r⟨ψ(x)ψ(x + r)⟩ = lim
V→∞

⟨[ ∫
V

d3x ψ(x)]
2⟩

V

⟨Ψ2
V⟩ ≡ ⟨[∫V

d3x ψ(x)]
2

⟩ ∝ V,
d
dt

⟨Ψ2
V⟩ ∝ V2/3

⟹
1
Iψ

dIψ

dt
∝ lim

V→∞
V−2/3 = 0



Kinematics: correlation integrals and spectra
The power spectrum of  is
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Importantly, these results also hold for finite ranges of . This implies inter alia that they may 
still be used to describe turbulence in a finite system or periodic box.
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Importantly, these results also hold for finite ranges of . This implies inter alia that they may 
still be used to describe turbulence in a finite system or periodic box.
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ℰA⋅B(k)

Simulation of MHD decay
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Recall that, if 
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ℰu(k → 0) U 5α > 2β + 3.
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Consequence: inverse transfer of energy 
Example: Non-helical MHD
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If conservation of  in forced turbulence would necessitate an inverse cascade or 
transfer, are similar transfers observed in the  case?
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It is unclear how one can speak of cascades of   — the invariance of   relies on 
taking a large-volume (  ) limit.
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If conservation of  in forced turbulence would necessitate an inverse cascade or 
transfer, are similar transfers observed in the  case?


It is unclear how one can speak of cascades of   — the invariance of   relies on 
taking a large-volume (  ) limit.


However, the connection between correlation integrals, large-scale spectra and the 
scaling of  with volume can be used to explain certain infra-red phenomena.
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⟨ψ⟩ = 0

Iψ Iψ
≫ L3

⟨Ψ2
V⟩
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Cascades / inertial-range phenomenology

Inverse cascades and transfers / infra-red phenomenology

Control of decaying turbulence

Correlation integrals and turbulent dynamics



The following intriguing idea is due to Levich 2009.
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correlation integral for  satisfies





Both these integrals are dominated by the large scales if , and thus





This cannot be so —  would require an extremely strong inverse transfer, and it is well 
known that this does not happen in hydro turbulence.


Conclusion is that, loosely, there must be anomalously large fluctuations in kinetic helicity at small scales in 
hydro turbulence (cf. Milanese et. al. 2022).

hK ≡ u ⋅ ω

IhK
≡ ∫ d3r⟨hK(x)hK(x + r)⟩ = 8π2 ∫ dk ℰu(k)2,

dIhK

dt
= − 16π2ν∫ dk k2ℰu(k)2 .

ℰu(k) ∝ k−5/3

dIhK

dt
∼ Re−1 U

L
IhK

⟹
d log IhK

dt
→ 0 as Re → 0.

IhK
∼ U4L ∼ const

Correlation integrals and inertial-range phenomenology



• Correlation integrals can be used to impose constraints on dynamics that conserves a 
directed quantity, when no particular “direction” is dominant.

Conclusions



• Correlation integrals can be used to impose constraints on dynamics that conserves a 
directed quantity, when no particular “direction” is dominant.


• Turbulent decay laws can be computed using correlation integrals (and the hypothesis of 
self-similarity), much as they can be computed assuming selective decay subject to 
conservation of  The decays can support inverse transfers.⟨ψ⟩ > 0.

Conclusions



• Correlation integrals can be used to impose constraints on dynamics that conserves a 
directed quantity, when no particular “direction” is dominant.


• Turbulent decay laws can be computed using correlation integrals (and the hypothesis of 
self-similarity), much as they can be computed assuming selective decay subject to 
conservation of  The decays can support inverse transfers.


• When turbulence is forced, correlation integrals and their properties can be used to interpret 
its infra-red properties.

⟨ψ⟩ > 0.

Conclusions



• Correlation integrals can be used to impose constraints on dynamics that conserves a 
directed quantity, when no particular “direction” is dominant.


• Turbulent decay laws can be computed using correlation integrals (and the hypothesis of 
self-similarity), much as they can be computed assuming selective decay subject to 
conservation of  The decays can support inverse transfers.


• When turbulence is forced, correlation integrals and their properties can be used to interpret 
its infra-red properties.


• Levich 2009 presents an correlation-integral-based argument for the development of 
anomalously strong kinetic-helicity fluctuations at the small scales of hydrodynamic 
turbulence. Might similar ideas be applicable to cross-helicity? I.e., to scale-dependent 
alignment of  and ?

⟨ψ⟩ > 0.
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