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Fluid (and kinetic) systems support the conservation of certain quantities, i.e.,


.


The most fundamental of these is energy.


At some level, turbulence is just the nonlinear processing of these quantities 
between injection and dissipation scales.


∂ψ
∂t

+ ∇ ⋅ F = − dissipation

Turbulence and conservation laws
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The conserved quantities  come in two distinct types.


Type 1:   is a generalised energy, i.e., the norm of a dynamical field.  
 for any possible realisation of the system. Examples are:

• Kinetic/magnetic energy, 
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The conserved quantities  come in two distinct types.


Type 1:   is a generalised energy, i.e., the norm of a dynamical field.  
 for any possible realisation of the system. Examples are:

• Kinetic/magnetic energy, 

• Variance of passive scalar, 

• Enstrophy, 

• Anastrophy, 


Properties of generalised energies:      cascades


ψ

ψ
⟨ψ⟩ > 0

u2, B2

θ2

ω2

A2
z

εψ ∼
ψl

τl
∼ const ⟹ ℰ(k)

εE ∼ u2
l

ul

l
⟹ ul ∼ (εEl)1/3 ⟹ ℰ(k) ∝ k−5/3e.g., 3D hydro: 
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The conserved quantities  come in two distinct types.


Type 1:   is a generalised energy, i.e., the norm of a dynamical field.  
 for any possible realisation of the system. Examples are:

• Kinetic/magnetic energy, 

• Variance of passive scalar, 

• Enstrophy, 

• Anastrophy, 


Properties of generalised energies:      inverse cascade/transfer


ψ

ψ
⟨ψ⟩ > 0

u2, B2

θ2

ω2

A2
z

Turbulence and conservation laws

εZ ∼
u2

l

l2

ul

l
⟹ ul ∼ ε1/3

Z l ⟹ ℰ(k) ∝ k−3

εE ∼ u2
l

ul

l
⟹ ul ∼ (εEl)1/3 ⟹ ℰ(k) ∝ k−5/3
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The conserved quantities  come in two distinct types.


Type 1:   is a generalised energy, i.e., the norm of a dynamical field.  
 for any possible realisation of the system. Examples are:

• Kinetic/magnetic energy, 

• Variance of passive scalar, 

• Enstrophy, 

• Anastrophy, 


Properties of generalised energies:      constrain turbulent decay
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e.g., 2D MHD:

Zhou et. al. 2019
dE
dt

∼ −
E
τL

, ⟨ψ⟩ ∼ UαLβ ∼ const ⟹ E ∝ t−p

τL ∼
L
B

ϵ−1
rec, ⟨A2

z ⟩ ∼ B2L2 ∼ const ⟹ B2 ∝ t−1



The conserved quantities  come in two distinct types.


Type 2:   is a directed quantity, e.g., a sign-indefinite (pseudo-)scalar or vector.  
 can be 0, but can also be finite. Examples are:


• Momentum, ;  magnetic flux, 
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The conserved quantities  come in two distinct types.


Type 2:   is a directed quantity, e.g., a sign-indefinite (pseudo-)scalar or vector.  
 can be 0, but can also be finite. Examples are:


• Momentum, ;  magnetic flux, 

• Concentration of passive scalar, 

• Helicity: kinetic, ;  magnetic, ;  cross-, .


Properties of directed conserved quantities for finite :

ψ

ψ
⟨ψ⟩

u B
θ

u ⋅ ω A ⋅ B u ⋅ B
⟨ψ⟩

Turbulence and conservation laws

Cascades Dual/inverse cascade/transfer Constrain turbulent decay

Brandenburg et. al. 2017Milanese et. al. 2022 Müller et. al. 2012
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Questions: 


What, if any, are then the dynamical implications of the conservation of ? 

- Are (inverse) cascades and transfers still induced?


- Does  affect decay?
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When  is a directed quantity, we can have conditions for which 


Questions: 


What, if any, are then the dynamical implications of the conservation of ? 

- Are (inverse) cascades and transfers still induced?


- Does  affect decay?


 correlation integrals.
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Correlation integrals
∂ψ
∂t

+ ∇ ⋅ F ≃ 0 ⟹
∂
∂t

⟨ψ(x)ψ(x + r)⟩ + 2
∂
∂r

⋅ ⟨ψ(x)F(x + r)⟩ ≃ 0

⟹
d
dt ∫ d3r⟨ψ(x)ψ(x + r)⟩ ≃ 0

Some examples:

, Saffman (1967) integral


, Loitsyanksy (1939) integral*

, “Levich-Tsinober (1983) integral”


, Corrsin (1950) integral


ψ = u
ψ = r × u
ψ = u ⋅ ω
ψ = θ

, “magnetic Saffman integral”

, “H-S (2021) integral”

 “Bershadskii (2019) integral ”


ψ = B
ψ = A ⋅ B
ψ = u ⋅ B,

⏟≡ Iψ
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2D slice of  from simulation of MHD decayψ = h = A ⋅ B
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V
2D slice of  from simulation of MHD decayψ = h = A ⋅ B

Iψ = ∫ d3r⟨ψ(x)ψ(x + r)⟩ = lim
V→∞

⟨[ ∫
V

d3x ψ(x)]
2⟩

V

⟨Ψ2
V⟩ ≡ ⟨[∫V

d3x ψ(x)]
2

⟩ ∝ V,
d
dt

⟨Ψ2
V⟩ ∝ V2/3
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2D slice of  from simulation of MHD decayψ = h = A ⋅ B

Iψ = ∫ d3r⟨ψ(x)ψ(x + r)⟩ = lim
V→∞

⟨[ ∫
V

d3x ψ(x)]
2⟩

V

⟨Ψ2
V⟩ ≡ ⟨[∫V

d3x ψ(x)]
2

⟩ ∝ V,
d
dt

⟨Ψ2
V⟩ ∝ V2/3

⟹
1
Iψ

dIψ

dt
∝ lim

V→∞
V−2/3 = 0



Kinematics: correlation integrals and spectra
The power spectrum of  is


              


If the correlation function decays sufficiently quickly with , then
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Importantly, these results also hold for finite ranges of . This implies inter alia that they may 
still be used to describe turbulence in a finite system or periodic box.
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Importantly, these results also hold for finite ranges of . This implies inter alia that they may 
still be used to describe turbulence in a finite system or periodic box.

ψ

ℰψ(k) =
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2π2 ∫ d3reik⋅r⟨ψ(x)ψ(x + r)⟩

r

ℰψ(k → 0) =
k2

2π2 ∫ d3r⟨ψ(x)ψ(x + r)⟩ −
k4

2π2 ∫ d3r r2⟨ψ(x)ψ(x + r)⟩ + O(k6)

0 < a ≤ 3
⟨ψ(x)ψ(x + r)⟩ ∝ r−a ⟺ ℰψ ∝ ka−1 ⟺ ⟨Ψ2

V⟩ ∝ R6−a

r, k, R

ℰA⋅B(k)

Simulation of MHD decay
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Recall that, if 
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If, instead, 





⟨ψ⟩ > 0,
dE
dt

∼ −
E
τL

, ⟨ψ⟩ ∼ UαLβ ∼ const ⟹ E ∝ t−p
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dE
dt

∼ −
E
τL

, Iψ = ∫ d3r⟨ψ(x)ψ(x + r)⟩ ∼ U2αL2β+3 ∼ const ⟹ E ∝ t−q
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Consequence: inverse transfer of energy 
If correlations in  decay quickly, we know that
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∼ −
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⟨ψ⟩ = 0,
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2π2 ∫ d3r⟨u(x) ⋅ u(x + r)⟩ −
k4

2π2 ∫ d3r r2⟨u(x) ⋅ u(x + r)⟩ + O(k6)

ℰu(k → 0) U 5α > 2β + 3.
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Consequence: inverse transfer of energy 
Example: Non-helical MHD
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Example: Non-helical MHD
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dE
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∼ −
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τL
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Correlation integrals and decaying turbulence

⟹ ℰB(k → 0) ∼ B2L5k4 ∝ B−2k4

Brandenburg et. al. 2015
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dt

∼ −
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τL

, Iψ = ∫ d3r⟨ψ(x)ψ(x + r)⟩ ∼ U2αL2β+3 ∼ const ⟹ E ∝ t−q

ψ ⟨ψ⟩ = σ⟨ψ⟩max ∼ σUαLβ, σ ≪ 1

⟨ψ⟩ = const ∼ σUαLβ

Correlation integrals and decaying turbulence
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If conservation of  in forced turbulence would necessitate an inverse cascade or 
transfer, are similar transfers observed in the  case?


It is unclear how one can speak of cascades of   — the invariance of   relies on 
taking a large-volume (  ) limit.


However, the connection between correlation integrals, large-scale spectra and the 
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This cannot be so —  would require an extremely strong inverse transfer, and it is well 
known that this does not happen in hydro turbulence.


Conclusion is that, loosely, there must be anomalously large fluctuations in kinetic helicity at small scales in 
hydro turbulence (cf. Milanese et. al. 2022).
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directed quantity, when no particular “direction” is dominant.


• Turbulent decay laws can be computed using correlation integrals (and the hypothesis of 
self-similarity), much as they can be computed assuming selective decay subject to 
conservation of  The decays can support inverse transfers.


• When turbulence is forced, correlation integrals and their properties can be used to interpret 
its infra-red properties.


• Levich 2009 presents an correlation-integral-based argument for the development of 
anomalously strong kinetic-helicity fluctuations at the small scales of hydrodynamic 
turbulence. Might similar ideas be applicable to cross-helicity? I.e., to scale-dependent 
alignment of  and ?

⟨ψ⟩ > 0.
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