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Much of the material in this talk can be found in the following paper:
E.A. Tolman, N.F. Loureiro, P. Rodrigues, J.W. Hughes, E.S. Marmar, Dependence of

alpha-particle-driven Alfvén eigenmode linear stability on device magnetic field
strength and consequences for next-generation tokamaks, Nuclear Fusion 59,
046020 (2019).
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Outline

*MIT’s high magnetic field path
*Brief introduction to alpha particles and Alfvén eigenmodes (AEs)
*Three implications of high field operation for AE behavior

Conclusions and current work
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Part 1: MIT’s high magnetic field path

Acknowledgments for this section: Jerry Hughes, Jeff Freidberg, Martin Greenwald, Zach Hartwig, Alberto Loarte, Bob Mumgaard, Brian LaBombard,
Dennis Whyte
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Fusion power increases with field and size

*Fusion power scales like:
IZBE
Py~ (nT)?V ~ By E5>V

a2

2
~ BR BV

* Magnetic field By and volume V are the main parameters which can be chosen when
constructing a new tokamak

*Other parameters are limited by plasma physics
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Q also increases with field, size
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Historically, magnetic field technology has limited accessible space
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ITER seeks large Q by increasing tokamak size

gL 1 N\ ITER
: Torus Radius [m] 6.2
6l Magnet Technology LTS
E _ Inaccessible magnetic MagneUc Field Strengtlj -3
— fields with traditional [T_
Q 4+ superconductors _
N4 percond. P [MW] 500
L
2__ eLarge devices are expensive and slow,
- require many international partners
0 ' | *Options for reducing size and accelerating

0 | ) | 4 | 6 8 10 12 14 development pathway merit exploration
Magnetic field [T]
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Recent developments enable more compact tokamaks

* High temperature, high current density [A/cm?]
field superconductors

(HTS) have been
developed

 HTS tapes have recently
become an industrially
produced product

2 THEVA SuNAN
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* Magnets made from these 80

tapes would expand the 10c

= ..
accessible fields for F Fujikura
tokamaks temperature [K — magnetic field [T]

'} i 1
* SUPERCONDUCTOR TO THE FUTURE
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HTS expands accessible parameter space

8 ! [ | | | ' | ! | ' | ' |
: *Smaller devices allow cheaper
6 - construction and smaller teams
é *The high field, compact path is
qN_, 4 | the focus of MIT’s fusion program
n | |
_ | *Has also received support from
2F -4 recent US National Academies of
: 1 Science, Engineering, and
i _ Medicine strategic report
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ARC study (2015) outlined the size reductions allowed by HTS

* Design study led by
MIT students

* Conceptual design of
demonstration fusion
pilot power plant that
obtains ITER-level
performance in much
smaller size

P S F ‘ Plasma Science and Fusion Center
Massachusetts Institute of Technology

Fusion Engineering and Design 100 [2015) 378405

Contents lists available at Sciencelirect EE_EEE
Fusion Engineering and Design
journal homepage: www.elsevier.com/locate/fusengdes R

ARC: A compact, high-field, fusion nuclear science facility and
demonstration power plant with demountable magnets

B.N. Sorbom*, J. Ball, T.R. Palmer, F.J. Mangiarotti, .M. Sierchio, P. Bonoli, C. Kasten,
D.A. Sutherland, H.5. Barnard, C.B. Haakonsen, |. Goh, C. Sung, D.G. Whyte

Flosma Science and Fusion Center, Massachusetts institute of Technology, Cambridge, MA 02730, USA

HIGHLIGHTS

® ARC reactor designed o have
500 MW fusion power at 3.3 m major
radius.

* Compact, simplified design allowed
by high magnetic fields and jointed
Mmagnets.

# ARC has innovative plasma physics
solutions such as inboardside RF
launch.

# High temperature superconductors
allows  high magnetic felds and
Jointed magnets.

* Liguid immersion blanket and jointed
magnets greatly simplify tokamak
reactor design.
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CREAPHICAL ABSTRACT

ARC Reactor

Magnet joints allow

Inboard-side vertical maintenancs

RF launch

Fusion power: Vacuum vessal: single,

525 MW replaceable companent
k FLiBa& liquid

TF cails: i i

B, = 8.2T immarsion blanket

Major radius: 3.3 m

ABSTRACT

The affordable, robust, compact (ARC) reactor is the product of a conceptual design study aimed at reduc-
ing the size, cost, and complexity of a combined fusion nuclear science facility [FN5F) and demonstration
fusion Pilot power plant. ARC 15 a ~200-250 MWe tokamak reactor with @ major radius of 3.3 m, a minor
radius af 1.1 m, and an on-axis magnetic feld of 92 T. ARC has rare earth barium copper oxide {EEBCO)
superconducting toroidal field coils, which have joints to enable disassembly. This allows the vacuum
viessel to be replaced quickly, mitigating first wall survivability concerns, and permits a single device to
test many vacuum vessel designs and divertor materials. The design point has a plasma fusion gain of
Q, = 13.6, yet is fully non-inductive, with a modest bootstrap fraction of only ~63% Thus ARC offers a
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In 2018, PSFC started the SPARC project as first step towards a reactor

* ARC requires too big of an investment and is too big of
a step to build immediately

* Instead, PSFC is working on the SPARC project:

¢ B,~ 12T, R, ~ 1.65m, Q>2

* Project is a collaboration between MIT PSFC and
the private, investor-backed Commonwealth Fusion
Systems (S115 million Series A)

* First step of SPARC is magnet development:
ongoing presently
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SPARC, ARC explore tokamak physics in different regime than ITER

*SPARC and ARC will explore tokamak
physics in a different parameter space
than ITER and than current tokamaks

*This parameter space may present
advantages for reactor operation

*This parameter space will allow
increased, complementary
understanding of tokamak physics

*Many interesting analytic questions can
already be asked about general
differences in behavior in high and low
field devices

P S F ‘ Plasma Science and Fusion Center
Massachusetts Institute of Technology

Quantity ITER SPARC strawman ARC
Major radius Ry=62m Ry =1.65m Ry=33m
On-axis Nn,(0) N (0) N (0)

electron density |  ~ 11 ~ 40 - 65 X ~ 18
x 101% m™3 10 m™> x 1017 m™3
On-axis By ~53T By ~ 12T By ~92T
magnetic field
Alfven Vao/(2TRy) ~ | Vao/(2WRy) ~ | Vyo/(2TRy) ~
frequency 1.8 x 10> Hz 6.3 — 8.0 X 4.6 X 10° Hz
10° Hz
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Alpha particles and Alfvén eigenmodes (AEs)
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Next-generation tokamaks aim to produce a significant amount of alpha particles

*Next-generation tokamaks will produce a large “amount” of alpha particles
Ne = 2np = 2ny Iy ~ T Na Ty NgTe/(2n.Te)

[Calculated using average value of 12
across slowing down distribution]

~5x%x 1049 ;=3 ~20 keV ~1018 m—3 ~580 kel ~15%

Understanding alpha particle confinement and transport physics is
important to performance goals
*Alpha particle transport can modify where alpha heat is deposited and
resulting background plasma profiles
*Loss of alpha particles can degrade plasma performance and damage the
device

*Alpha particle physics is similar to physics of energetic particles from
ICRF and NBI but has differences as well

‘ “‘He + 3.5 MeV

n+ 14.1 MeV *Overall, alpha particle physics and related topics are perhaps the most
interesting part of next-generation tokamaks
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*AEs are shear Alfvén waves that
*AEs can cause transport of alphas

*One key part of alpha particle
*Energetic particles, including
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Growth rate determined by thermal species and energetic particles

* AE linear growth rate is determined by sum of

Quantity Definition
drive and damping: - mode frequency
Y Ya Y] Var Vj ¥V alpha contribution, ion contribution,
IR — + and overall growth rate
w ) . W
J qAE safety factor at mode location
* Alpha growth is given approximately by [Betti Par P; alpha, ion beta
: Vo ,Vao, Veni | ON-axis Alfven speed, alpha birth speed,
and Freidberg, 1992]: A0 /7 a0s Bthy Erep g ’
ion thermal speed
Yo vAO 1 dpa N, gy toroidal mode number, poloidal alpha
— QAE:BCZ y A, I, I'.o Larmor radius
F growth from spatial gradient of alphas
. . . . . 1 dpg L
* lon damping is given approximately by [Betti (pa P<) at resonant velocities
and Freldberg, 1992]: G damping from energy gradient of ions
" . at resonant velocities
J 2 A0
2~ —aief6 (32
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Three implications of high field operation for AE
behavior
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Higher field affects typical plasma parameters

* At agiven magnetic field, a tokamak can operate with a wide range of plasma parameters

 Overall trends can be understood by holding tokamak figures of merit constant

Tokamak figures of merit
P faB Ne
B = _ P%% _
B /(2Ho) Av="1, Jow = 1 jna?
* Resulting trend in core plasma parameters is:
Trend with B,
p ~ B§ L, ~By, n~ B . By B T: Increases; depends on p, (see paper)
AT T —7 0
Vn

* Higher order/other trends in these quantities can also be discussed

For example: could consider decreasing fqy, with field or keeping temperature roughly constant
(e.g. 15 keV) and decreasing [
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High density in high field machines affects slowing down time, alpha source rate

* Alpha particle density scales like

Rate of a production npnr{ov)

N ~ -~ neTe3.5

Speed at which a's slow down to ash (ne/Tel-S)

* Neglecting resonance positions, ratio of AE drive to damping scales like:

. naTa
Drive N ,B_a Bz 2.5
Damping f; TNele ’
BZ

 High field devices have significant AE drive; to the extent that high T is caused by high field, this
trend results from higher field

* High density helps to slow down alphas but also produces more alphas!
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For economic viability, tokamaks should achieve a fixed value of fusion power

density

MW
* Economically, a reactor should achieve a fixed value of fusion power density, pr [

EannT(Gv) ~ngTE = Pf.econ

* Recall: Neglecting resonance positions, ratio of AE drive to damping scales like:

. 1.25
Drive Ba r25 _ Precon
- AN — NS e e 4
Damping B, ni>

 Higher magnetic field devices have higher currents at a given g, which allows higher densities
while still obeying Greenwald limit

 Higher field devices thus incur less AE drive for a given power density

Equivalently, for a given AE drive/temperature (e.qg. 15 keV), high field devices have a higher power
density

PS F‘ : Plasma Sc i eeeeee d Fusion Center Tolman | Plasma Kinetics Working Meeting | July 2019 | 20
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Increasing field (or decreasing density) cuts off resonance

*Recall expression for alpha particle

drive:

Va 2 Vao 1 dpa

- F ) ) ) )

- qarBa (Uao > dr qag, D rLHa)

F: growth from spatial gradient of alphas at
resonant velocities

*The most important TAE
resonances are Vg, Vao/3 ~

Bo/v/M0o

*The D-T fusion alpha particle birth
velocity is v, = 1.3 X 107 m/s
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Increasing field (or decreasing density) cuts off resonance

Vao = Vao
(low magnetic
field/ high density)

*Recall expression for alpha particle
drive:

14
—= ~ qlglEIBaF(

Voo 1 dpg
0

) yaE, L, I'Loq
Vao Pa dr » =d  Alphas born at v,

1.3 x10/

F: growth from spatial gradient of alphas at
resonant velocities

*The most important TAE
resonances are Vg, Vao/3 ~

Bo /Mo

*The D-T fusion alpha particle birth
velocity is v, = 1.3 X 107 m/s

Velocity [m/s]
UMOP DUIMO|S
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Increasing field (or decreasing density) cuts off resonance

*Recall expression for alpha particle Vao > Vao Vao = Vao
drive: (low magnetic (high magnetic field/
' field/ high density) low density)
Ya Vao 1 dp, S Vao
T q?lEﬁa F( ) Ar qag, 1, rLHa) S
w Vao Pa 4r :; » = Alphas born at v,
—
F: growth from spatial gradient of alphas at
resonant velocities N ., Vao
& e)
— =
. > )
*The most important TAE = @
O
resonances are Vg, Vao/3 ~ g = V4o

YN, R EEEEEES - EEREEE TR TR vao

*The D-T fusion alpha particle birth
velocity is v, = 1.3 X 107 m/s
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Computational study looks for resonance cutoff in plausible low f,,, SPARC-like shot

* Take B, few, Bn, g and profile shapes from a high- Figure | Value in C- | *° T [keV]
temperature, low-density C-Mod shot and create a | ©f merit MO;' shot | 20- —— 1. [10Y m~3]
model SPARC-sized D-T equilibrium anscacr)]ur 15-

I 0.75% | 10-
e i . . . . fow 0.18 5-

* Scan magnetic field in configuration while keeping 3 0.80 10T
b, few, bn, q and profile shapes constant qN 3C 0.0 02 04 06 08 10

2> . V70N

20-
* Temperature, density, and fusion power density P

increase with field 15-

Ny [10Y m™3]
e
-

*n, ~ By; T, increases with BO less than linearly due to 5-
increasing alpha pressure; pf ~ ngTg increases 0 | | | , ,
0.0 02 04 06 08 1.0
with field Juluy
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Computational study looks for resonance cutoff in plausible low f, SPARC-like shot

* Use suite of codes (HELENA, MISHKA, CASTOR-K) as implemented in P. Rodrigues et al. NF 2015 to study
AE behavior

HELENA (finite
element method code

MISHKA (Ideal MHD CASTOR-K (Drift-
stability code) finds AE kinetic code) finds a-

frequencies and particle and
computes AE contribution to AE
structures linear growth.

that solves Grad-
Shafranov) refines
MHD equilibrium

* These code are used extensively in studies of ITER, JET

 We use them to find AEs and growth rates as magnetic field is scanned
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Large mode width and amplitude increase AE transport

* Transport of alphas by AEs is not fully understood
* However, two factors tend to increase AE transport: mode width and amplitude

 Larger width increases the amount of the minor radius over which the mode can move particles

* Larger width modes (or multimode scenarios) increase transport

 Determinants of saturated amplitude are not fully understood

* |n general, modes with a higher linear growth rate should saturate at a higher amplitude

PS FC Plasma Science and Fusion Center Tolman | Plasma Kinetics Working Meeting | July 2019 | 27
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Higher n modes have lower width

* The spectrum of modes with the potential to become excited has no B field dependence [see Tolman et
al. NF 19]

 Which of these modes are unstable, and which are most unstable, is magnetic field dependent

* For mode E_l) = elné-wt) yn EJ_,n; (r)e~t% MHD eigenmode equation yields:

d (w? " dZ | m m2 { 2 " : - 0 Quantity | Value/definition
dr \v5 Im ] ar r2 \vj5 lm J5Lm = Ky 1 ( m )
— N
R q(r)
. . . . . . m TAE: ng + 1/2
* Balancing terms in this equation gives mode width A, 4e: EAE: ng + 1
.. 4 a Minor radius
Amode m nq ng

* Higher-n modes are narrower
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High field and device size shift AE spectrum to higher n, lower width

* When orbit width effects neglected, AE drive increases with n [Betti and Freidberg Phys Fluids 92, others]
* Orbit width effects modify this trend [Breizman and Sharapov PPCF '95, others]

Low-n, wide mode Intermediate-n mode High-n, narrow mode
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High field and device size shift AE spectrum to higher n, lower width

* When orbit width effects neglected, AE drive increases with n [Betti and Freidberg Phys Fluids 92, others]

* Orbit width effects modify this trend [Breizman and Sharapov PPCF '95, others]

Low-n, wide mode Intermediate-n mode High-n, narrow mode

* Modes with width less than the alpha particle orbit width A, ,,,;+ are ineffectively driven

a

: 4 Zqe€ Bga
»  Most unstable modes are those for which Aypge ~ — ~ Dy orbit ~ — ‘ Ny ~ ——

nq ’ Qg mgy q% v

* Trend towards higher n has been seen experimentally [See Heidbrink PoP 2002]

Higher field machines have higher mode numbers and narrower modes: reduces transport?
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Conclusions and current work
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Conclusions and current work

*The high field path to fusion energy is currently very active and offers interesting analytical questions

*High-performance high-B operation will affect AE stability physics

Current work

* |I'm currently working with Peter Catto on developing a theory of alpha transport capable of treating
both ripple and AE (hopefully preprint later this year!)

* Next, Peter will discuss a recent work of his about ripple transport

* |n our work starts from a similar place, but must take a different course in order to properly include
AE resonances (can’t transit average, must include time dependence, etc.)

 Happy to talk this week!
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An Alfvén wave in toroidal geometry requires periodicity

*Recall the shear Alfvén wave dispersion relation:

*|n a tokamak this dispersion relation is modified to require
periodicity:

* (Consider that a field line rotates azimuthally 1/g times in an axial
periodicity length 2 TR )
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Position-dependent phase velocity causes continuum damping

N
S

* Dispersion relation becomes:

— =4, m=4

-
ol

Frequency (Va/R)
=
)

* A mode of a given frequency will be resonant at one point 0.5 g(r) =1+ (1)2,
a
_ . _ . _ uniform v, (r)
*|ts eigenfunction will have a singularity 0.0
0.0 0.5 1.0
*Such modes phase mix and are dissipated [See Principles of Minor radius (r/a)
Magnetohydrodynamics, Goedbloed and Poedts, Chapter 11]
Continuum Mode Structure

*But we've so far neglected an important effect... 2 e

0

<« B
Antenna
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Toroidicity (and other effects) introduce frequency gaps

* Recall from physics (optics, condensed matter):

* Periodic variation in phase velocity w/k creates a band gap at the
Bragg frequency w = g

* (U = average phase velocity, Az = length of periodicity)

N
S

*Tokamak B o< R™1, so Alfvén speed varies along field line with
Az = q271R

-
ol

*We have a gap at:

o

Frequency (Va/R)
e & =
= =

0.0 0.5 1.0
Minor radius (r/a)
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Toroidicity (and other effects) introduce frequency gaps

* Recall from physics:
* Periodic variation in phase velocity w/k creates a band gap at the

Bragg frequency w = g
* (U = average phase velocity, Az = length of periodicity) 2.0 n=4, m=4
— =4, m=
e Tokamak B o< R™1, so Alfvén speed varies along field line with & 1.5-
Az = q21R N
e
*We have a gap at: %10
s
£0.5
0.0-
0.0 0.2 0.4 0.6 0.8 1.0
*This gap occurs where counter propagating wave vectors of two Minor radius (r/a)
adjacent harmonics have same value:
n_% (7:(:) m+y VA0
Kj1 = R:knz:_( )-q—— © = Tgr
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Toroidicity (and other effects) introduce frequency gaps

* Recall from physics:

* Periodic variation in phase velocity w/k creates a band gap at the
Bragg frequency w = g

* (U = average phase velocity, Az = length of periodicity)

[
S

—_— =4, m=4
— =4, m=5>
*Tokamak B o< R™1, so Alfvén speed varies along field line with
Az = q271R

=
b

*We have a gap at:

N
=\

0.0 0.2 0.4 0.6 0.8 1.0
Minor radius (r/a)

Frequency (Va/R)
_=
S

&
)

S
S

*This gap occurs where counter propagating wave vectors of twe
adjacent harmonics have same value:

n—i ( _(m+1)

() ) _ m+ VA0
) - T
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Eigenmodes in the frequency gap are not continuum damped

*Similar gaps will be
introduced by other effects

*The result is a continuum
spectrum with a variety of

gdPS

Frequency (v49/R)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

l/)/ll)edge
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