Thermal Conduction in High-Beta Turbulent Plasma

S. Komarov (Cambridge), E. Churazov (MPA), A. Schekochihin (Oxford), M. Kunz (Princeton), A. Spitkovsky (Princeton)

WPI 8/2019

Outline

- Thermal conduction in weakly collisional plasmas
- Suppression mechanisms
 - Local suppression by turbulence
 - Mirror instability
 - Whistler instability
- o Summary

Weakly collisional plasmas

galaxy clusters, accretion disks, (solar wind):

 $L \gtrsim \lambda_{\rm mfp} \gg \rho_i$ + turbulence

anisotropic pressure, anisotropic particle transport, Larmor-scale instabilities

Weakly collisional plasmas

galaxy clusters, accretion disks, (solar wind):

 $L \gtrsim \lambda_{\rm mfp} \gg \rho_i$ + turbulence

anisotropic pressure, anisotropic particle transport, Larmor-scale instabilities

thermal conduction in such system?

Rincon et al. 2016

Temperature variations in galaxy clusters

WPI 8/2019

Heat flux inhibition in solar wind

From radio observations $\rho_e / \lambda_{mfp} \sim 10^{-13}$ --> heat conduction along field lines

From radio observations $\rho_e / \lambda_{mfp} \sim 10^{-13}$ --> heat conduction along field lines

Cluster scale: field is tangled by turbulence.
 Suppression S~1/5-1/3 (Narayan & Medvedev 2001).

From radio observations $\rho_e / \lambda_{mfp} \sim 10^{-13}$ --> heat conduction along field lines

- Cluster scale: field is tangled by turbulence.
 Suppression S~1/5-1/3 (Narayan & Medvedev 2001).
- Scale of turbulent/ordered motions : $B \perp \nabla T$. Komarov+ 2014

From radio observations $\rho_e / \lambda_{mfp} \sim 10^{-13}$ --> heat conduction along field lines

- Cluster scale: field is tangled by turbulence.
 Suppression S~1/5-1/3 (Narayan & Medvedev 2001).
- Scale of turbulent/ordered motions : $B \perp \nabla T$. Komarov+ 2014
- Scales $\ll L_B$: plasma instabilities Pressure anisotropy-> ion mirror instability, S~1/5 Komarov+ 2016

From radio observations $\rho_e / \lambda_{mfp} \sim 10^{-13}$ --> heat conduction along field lines

- Cluster scale: field is tangled by turbulence.
 Suppression S~1/5-1/3 (Narayan & Medvedev 2001).
- Scale of turbulent/ordered motions : $B \perp \nabla T$. Komarov+ 2014
- Scales $\ll L_B$: plasma instabilities Pressure anisotropy-> ion mirror instability, S~1/5 Komarov+ 2016

Weakly collisional heat flux -> electron whistler instability

Gary+ 1975, Levinson & Eichler 1992, Pistinner 1998, Roberg-Clark+ 2018, Komarov+ 2018

From radio observations $\rho_e / \lambda_{mfp} \sim 10^{-13}$ --> heat conduction along field lines

- Cluster scale: field is tangled by turbulence. Ο Suppression S~1/5-1/3 (Narayan & Medvedev 2001).
- <u>Scale of turbulent/ordered motions</u> : $B \perp \nabla T$. Komarov+2014
- Scales $\ll L_B$: plasma instabilities Ο Pressure anisotropy-> ion mirror instability, S~1/5 Komarov+2016

Weakly collisional heat flux -> electron whistler instability

Gary+ 1975, Levinson & Eichler 1992, Pistinner 1998, Roberg-Clark+ 2018, Komarov+ 2018

WPI 8/2019

Correlation between magnetic field and temperature

Stir 2D scalar field + 2D magnetic field (set by 2D scalar vector potential).

Magnetic isolation of regions at different temperatures or $\nabla T \perp B$.

Does it happen for "realistic" turbulent motions?

WPI 8/2019

 $Pr = \nu/\eta = Rm/Re$

Pr~200, Re~3

 $Pr = \nu/\eta = Rm/Re$

Pr~1, Re~400

Introduce temperature fluctuations when dynamo is saturated:

Pr~100, Re~5

set $t_{cond} \sim L_u/u$ WPI 8/2019

Introduce temperature fluctuations when dynamo is saturated:

Pr~1, Re~400

set $t_{cond} \sim L_u/u$ WPI 8/2019

- High-Pr turbulence inhibits relaxation of temperature fluctuations by aligning $\nabla T \perp B$.
- At low Pr turbulent diffusion enhances heat exchange

- High-Pr turbulence inhibits relaxation of temperature fluctuations by aligning $\nabla T \perp B$.
- At low Pr turbulent diffusion enhances heat exchange

simulation of collisionless dynamo St-Onge+ 2018

Outline

- Efficiency of thermal conduction in the ICM
- Suppression mechanisms
 - Local suppression by turbulence
 - Mirror instability
 - Whistler instability
- o Summary

Weak collisionality and generation of pressure anisotropy

$$\mathcal{V}_{ii} \ll \Omega_{ci} = \frac{eB}{mc}$$

conservation of adiabatic invariants

$$\mu = u_{\perp}^{2} / B = \text{const}$$

$$\bigcup$$

$$p_{\perp} \neq p_{\parallel} \text{ pressure anisotropy}$$

$$\frac{1}{p_{\perp}} \frac{dp_{\perp}}{dt} = \frac{1}{B} \frac{dB}{dt} - v \frac{p_{\perp} - p_{\parallel}}{p_{\perp}}$$

$$\Delta \equiv \frac{p_{\perp} - p_{\parallel}}{D_{\perp}} \sim \frac{1}{2} \frac{1}{B} \frac{dB}{dt} = \frac{\gamma}{2}$$

 p_{\perp}

v B dt

 ν

Mirror instability

kinetic simulation of turbulent dynamo

Rincon et al. 2016

Mirror instability

Diffusion in magnetic mirrors in presence of weak collisions

Mirror instability

Diffusion in magnetic mirrors in presence of weak collisions

Monte Carlo modeling of 1D particle motion in static mirrors in presence of weak collisions

1/10 suppression of electron diffusion

1/5 suppression of electron conduction

Outline

- Efficiency of thermal conduction in the ICM
- Suppression mechanisms
 - Local suppression/enhancement by turbulence
 - Mirror instability
 - Whistler instability
- o Summary

Heat-flux-induced whistler instability heat flux <-> asymmetry of electron distribution function $f = f_0 + \varepsilon f_1, \varepsilon = \lambda_{mfp}/L_T \quad q_{\parallel} \sim \varepsilon m_e n_e v_{th}^3$ wave phase speed perturbation Maxwell transverse whistler wave along field $\omega/k \ll v_{th,e}$ 3 f_1 2 $v_{\, { m L}}/v_{ m th}$ -1 -2-2-12 3 -30 1 $v_{\parallel}/v_{\rm th}$

Marginal heat flux

heat flux <-> asymmetry of electron distribution function

 $\epsilon\beta = 1$ using heat flux ->

 $q_{\parallel} \sim \beta^{-1} m_e n_e v_{th}^3$

Oblique vs. parallel

$$f = f_0 + \varepsilon f_1, \varepsilon = \lambda_{mfp}/L_T \quad q_{\parallel} \sim \varepsilon m_e n_e v_{th}^3$$

parallel whistlers have E rotating opposite to gyration of cold-ward electrons!

Quasilinear saturation

Simulations of the instability $\delta B_z/|\langle \mathbf{B} \rangle|$

PIC code TRISTAN (Buneman 1993)

- Absorbing BC for waves along *x*
- Reflective BC for particles *x*: particle gains new velocity after reflection from wall; sustained temperature gradient
- o Ions do not move
- Initial electron distribution is isotropic; particle density set to keep pressure uniform

use runs with varying β and T_1/T_2 : $\beta = (10, 15, 25, 40)$ $T_1/T_2 = (1.5, 2, 3)$

Simulations of the instability

 $t\!=\!0\omega_c^{-1}$

• Absorbing BC for waves along *x*

- Reflective BC for particles *x*: particle gains new velocity after reflection from wall; sustained temperature gradient
- Ions do not move
- Initial electron distribution is isotropic; particle density set to keep pressure uniform

use runs with varying β and T_1/T_2 : $\beta = (10, 15, 25, 40)$ $T_1/T_2 = (1.5, 2, 3)$

Simulations of the instability

 $\delta B_z / |\langle \mathbf{B} \rangle|$

100

Comparison with theory

Comparison with theory

Relevance for galaxy clusters

modified Spitzer parallel heat flux (Coulomb collisions) :

$$q_{\parallel S} \approx 0.5 m_e n_e v_{th}^3 \frac{\lambda_e}{L_T + 4\lambda_e}$$

Heat flux regulated by instability:

$$q_{\parallel W} \approx 1.5 \beta_e^{-1} m_e n_e v_{th}^3 \frac{\lambda_e}{L_T + 4\lambda_e}$$

Suppression factor:

$$S_W \approx \frac{3}{\beta_e} \left(\frac{L_T}{\lambda_e} + 4 \right)$$

 $\beta_e = 100, \lambda_e = 20 \text{ kpc} \rightarrow S_W^{min} \sim 1/10; S_W \sim 1/4, L_T = 100 \text{ kpc}$

Heat flux and whistlers in solar wind

- 1. apparent beta-dependent limits on HF
- 2. mostly parallel whistlers
- 3. weak correlation between heat fluxes and whistler occurrence (selection effect?)
- 4. small amplitude (~0.01 B₀) consistent with QL estimate
- 5. strong effect of temperature anisotropy

Heat flux and whistlers in solar wind

- 1. apparent beta-dependent limits on HF
- 2. mostly parallel whistlers
- 3. weak correlation between heat fluxes and whistler occurrence (selection effect?)
- 4. small amplitude (~0.01 B₀) consistent with QL estimate
- 5. strong effect of temperature anisotropy

Tong+ 2018

Tong+ 2019

Heat flux and whistlers in solar wind

Tong+ 2018

Tong+ 2019

- 1. mostly parallel whistlers
- 2. weak correlation between heat fluxes and whistler occurrence (selection effect?)
- 3. small amplitude (~0.01 B₀) consistent with QL estimate

WPI 8/2019

Summary

- Field-line draping likely explains survival of temperature fluctuations on scales ~10-100 kpc.
- Turbulence may enhance magnetic insulation locally or promote heat exchange at Pr~1.
- Mirror instability can produce suppression of parallel thermal conductivity ~1/5.
- Heat-flux induced whistlers may suppress heat fluxes at strong thermal gradients.