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Overview

I Understanding heat transport in tokamak plasmas is crucial
for the design of future experiments and reactors

I Numerical evidence points towards turbulence as the main
cause for heat transport in tokamak plasmas

I Therefore, we seek to describe the saturated turbulent state
and the mechanisms of its saturation

I We focus on turbulence driven by the ITG instability



Turbulent saturation

I Strongly driven turbulence (i.e. far from marginal stability)
is known to saturate via a "critically balanced" turbulent
cascade (Barnes et al. 2011)

I Close to marginality, however, numerical simulations
suggest that saturation is dominated by strong poloidal
shear flows or "zonal flows" (ZF)

I ZFs help saturation by shearing drift-wave (DW) eddies



Overview

Figure: Zonal flows on Jupiter (Photo by NASA).

I Similar shear flows are seen in other contexts, most notably
the atmosphere of Jupiter



Goals

I Find a simplified model for ZF-DW interactions, which
allows us to make analytical as well as numerical progress

I Determine the mechanism of zonal regulation in the
near-marginal ("Dimits") regime and the reason for its
collapse



Requirements

I A linear ITG instability with no external forcing or
artificial dissipation

I Correct electron physics — modified adiabatic response:

δne =
e(φ− φ)

Te
=
eφ′

Te
, (1)

where φ is the flux-surface (zonal) average of φ and
φ′ ≡ φ− φ is the nonzonal (drift-wave) part of the field

I 2D is not essential (some might view it as too restrictive),
but it allows analytic progress

I An asymptotic limit of the ion gyrokinetic equation in some
physical regime, rather than ad hoc



Magnetic and thermal equilibrium

Figure: Visualisation of the magnetic geometry and domain location.

Define magnetic and temperature gradients:

L−1B = −∂x lnB, L−1T = −∂x lnTi. (2)

Zonal averages are

f(x) =
1

Ly

∫
dy f(x, y). (3)



Approximations

I High-collisionality, long-wavelength

νi � ∂t ∼ k2⊥ρ2i νi, k2⊥ρ2i � 1. (4)

I Cold ions Ti/Te → 0, but finite sound radius

ρs ≡
ρi√
2τ
, τ ≡ Ti

ZTe
. (5)

Applying these approximations to the ion gyrokinetic (GK)
equation (Frieman & Chen 1982), we obtain a system of closed
equations for the electric potential φ and ion temperature
perturbations δTi.



2D 2-fluid ITG Model

∂t
(
ϕ′ −∇2ϕ

)
+
{
ϕ,ϕ′ −∇2ϕ

}
+∇ · {∇ϕ, T}

− ∂y (ϕ+ T ) + κT∂y∇2ϕ = −χ∇4(aϕ− bT ), (6)

∂tT + {ϕ, T}+ κT∂yϕ = χ∇2T. (7)

ϕ =
τLB
2ρs

Zieφ

Ti
is the normalised electric potential,

T =
τLB
2ρs

δT

Ti
is the normalised ion temperature perturbation,

κT ≡
τLB
2LT

is the normalised equilibrium ion temperature gradient,

χ ≡ LB
Ωiρ3s

4

9

√
2

π
νiρ

2
i is the heat diffusivity, and a =

9

40
, b =

67

160
.



2D 2-fluid ITG Model

∂t
(
ϕ′ −∇2ϕ

)
+
{
ϕ,ϕ′ −∇2ϕ

}
+∇ · {∇ϕ, T}

− ∂y (ϕ+ T ) + κT∂y∇2ϕ = −χ∇4(aϕ− bT ),

∂tT + {ϕ, T}+ κT∂yϕ = χ∇2T.

t ≡ 2ρsΩi
LB

tphys is normalised to the magnetic drift frequency,

x ≡
xphys
ρs

, y ≡
yphys
ρs

are normalised the radial and poloidal coords.

The Poisson bracket is {f, g} = ∂xf∂yg − ∂yf∂xg = ẑ · (∇f ×∇g)

The only parameters are κT , χ and the size of the domain.



ITG Instability

Dispersion relation for a mode with ϕ, T ∝ e−iωt+ik·r:

− ω2(1 + k2)− iω
[
−iky(1 + κTk

2) + iχk2
(
1 + (1 + a)k2

)]
+ aχ2k6 − κTk2y − ikyχk2

(
1 + κT (1− b)k2

)
= 0. (8)

Quite involved, in the limit k2 � κ
−1/2
T � 1 we find

Im ω ≈ ky
√
κT , (9)

which transformed to dimensional units gives the familiar

Im ωphys = Ωi
ρ2i ky, phys√
2τLBLT

. (10)



ITG Instability

I Modes are always damped for large k2

I Two independent cut-off mechanisms — finite Larmor
radius effects and collisions

I Assuming ideal cases, we obtain two limits on k2:

k2max, FLR =
1 + 2

√
κT

κT
, (11)

k2max, χ =

(
κTk

2
y

aχ

)1/3

. (12)



ITG Instability

Figure: Linear growth rates of pure DW (kx = 0) Fourier modes.



Conservation Laws

The equations above have the following conservation laws:

∂t

∫
dxdy

1

2
T 2 = κT

∫
dxdy T∂yϕ− χ

∫
dxdy (∇T )2 , (13)

∂t

∫
dxdy

1

2

[
ϕ′

2
+ (∇ϕ)2

]
=

∫
dxdy T∂yϕ+ χ

∫
dxdy (∇2ϕ)

(
a∇2ϕ− b∇2T

)
, (14)

∂t

∫
dxdy

[
1

2
ϕ′

2
+ Tϕ′ +

1

2
(∇T +∇ϕ)2

]
= −χ

∫
dxdy

[ (
∇ϕ′

)
· (∇T ) + a

(
∇2ϕ

)2
+ (1 + a− b)

(
∇2ϕ

) (
∇2T

)
+ (1− b)

(
∇2T

)2 ]
. (15)



Relationship to the Charney-Hasegawa-Mima equation

I Setting κT = 0, T = 0 collapses our equations to the
Charney-Hasegawa-Mima (CHM) equation (Hasegawa &
Mima 1978)

∂t
(
ϕ′ −∇2ϕ

)
+
{
ϕ,ϕ′ −∇2ϕ

}
− ∂yϕ = −aχ∇4ϕ. (16)

I So our model is effectively CHM with a linear instability, cf.
Hasegawa & Wakatani (1983) and Terry & Horton (1983)



Numerical solution

We proceed to integrate the equations above using a
pseudo-spectral algorithm, very similar to the GS2 one.

Let’s watch a film...



Quasi-steady Saturation
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Figure: Zonal profiles for χ = 0.1, κT = 0.36.



Quasi-steady Saturation

Figure: Temperature perturbations for χ = 0.1, κT = 0.36.



Quasi-steady Saturation

Figure: Nonzonal potential, ϕ′, for χ = 0.1, κT = 0.36.



Quasi-steady Saturation

I Zonal shear suppresses DWs throughout most of the domain
I Localised patches of DW turbulence exist in the regions,

where shear vanishes
I The temperature gradient is flattened in the turbulent

regions (cf. Rayleigh–Bénard convection)
I Reminiscent of the "ExB" staircase



Quasi-steady Saturation
However, this state is not steady...
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Figure: Heat flux time evolution for κT = 0.36, χ = 0.1.



Quasi-steady Saturation

The ZF and zonal temperature evolution equations are

∂tϕ = ∂xϕ∂y (ϕ+ T )︸ ︷︷ ︸
≡ Π(x), turb. pol. mom. flux

+ ∂2x(aϕ− bT )︸ ︷︷ ︸
diffusive pol. mom. flux

,

∂tT = ∂x

 T∂yϕ︸ ︷︷ ︸
≡ Qr(x), turb. rad. heat flux

+ χ∂xT︸ ︷︷ ︸
diffusive rad. heat flux

 .

Total radial heat flux through the domain is

Q =
1

Lx

∫
dx Qr(x) =

1

LxLy

∫
dxdy T∂yϕ.



Suppressing Turbulence
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Figure: Variation of zonal shear, ∂2xϕ, in constant-shear regions.

I A particular value of zonal shear is needed to suppress
turbulence

I ZFs, and with them their shear, decay slowly due to
viscosity

I A burst of turbulence re-establishes the zonal profile



Decay of ZF
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Figure: Estimation of shear decay rate.

∂t

∫ xr

xl

dx∂xϕ ≈ aχ∂2xϕ|xrxl = 2aχs, where s = ∂2xϕ is ZF shear.

∂t

∫ xr

xl

dx∂xϕ =
1

2
δd∂ts

=⇒ s = s0 exp

(
−4aχ

dδ
t

)
.



Decay of ZF
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Figure: Numerical validation of shear decay mechanism.



Localised Structures

Figure: Snapshot of T with structures visible.

I Coherent structures (cf. van Wyk et al. 2017) are seen
drifting through the sheared regions

I ZFs fairly undisturbed
I These structures increase heat flux dramatically



Localised Structures
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Figure: Zonal fields with structures.

I Coherent structures (cf. van Wyk et al. 2017) are seen
drifting through the sheared regions

I ZFs fairly undisturbed
I These structures increase heat flux dramatically



Stability of Zonal Profiles

Let us investigate the stability of the zonal shear profile. The
poloidal momentum equation gives

∂tϕ = ∂xϕ∂y (ϕ+ T ) + χ∂2x(aϕ− bT ). (17)

Now suppose we let DW turbulence saturate over this zonal
shear background. Does its turbulent momentum flux restore or
relax the zonal profile?
We investigate the behaviour of ∂xϕ∂yϕ and ∂xϕ∂yT separately.



Stability of Zonal Profiles

Drift-wave turbulence over a zonal background satisfies the
following equations:

(∂t + ∂xϕ∂y)
(
1−∇2

)
ϕ′ − (1−∂3xϕ)∂y

(
ϕ′ + T ′

)
+ κT∂y∇2ϕ′

+∂2xϕ∂x∂yT
′ +
{
ϕ′,−∇2ϕ′

}
+∇ ·

{
∇ϕ′, T ′

}
= −χ∇4(aϕ′ − bT ′), (18)

(∂t + ∂xϕ∂y)T
′ + κT∂yϕ

′ +
{
ϕ′, T ′

}
= χ∇2T ′, (19)

where the highlighted terms are the ZF interaction terms.



Stability of Zonal Profiles

Figure: Momentum flux for DW
turbulence over a fixed zonal
background.
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Figure: Momentum flux with
∂xϕ∂yT turned off.



Stability of Zonal Profiles

Consider a zonal profile of constant zonal shear
∂2xϕ = s = const. We can eliminate the shear term ∂t + sx∂y by
changing coordinates to the "shearing frame"

t′ = t, x′ = x, y′ = y − stx
=⇒ ∂t = ∂t′ − sx∂y′ , ∂y = ∂y′ , ∂x = ∂x′ − st∂y′ .

For a Fourier mode, which keeps its structure in the shearing
frame, we obtain

ky = ky′ , kx = kx′ − stky′ . (20)

Perturbations "drift" in Fourier space due to the zonal shear.



Stability of Zonal Profiles

We can write ∫
dx ∂xϕ∂yϕ =

∑
k

kxky|ϕk|2 (21)

I For s > 0 get positive ky associated with negative kx and
vice-versa.

I For s < 0 get the opposite
I Thus s and

∫
dx ∂xϕ∂yϕ have opposite signs

I So ϕ and
∫
dx ∂xϕ∂yϕ have the same sign



Stability of Zonal Profiles

Using the conservations laws for drift-wave fields in constant
zonal shear profile, we can write

s

∫
dx ∂xϕ∂yT =

∫
dxdy

[
a
(
∇2ϕ′

)2 − b (∇2ϕ′
) (
∇2T

)
− 1

κT
(∇T )2

]
+ ∂t

∫
dxdy

[
ϕ′

2
+
(
∇ϕ′

)
− 1

κT
T 2

]
I In a saturated state ∂t ≈ 0

I Numerically we find that the b term is negligible
I With shear imposed we expect

(
∇2ϕ′

)2 to dominate

Hence
s

∫
dx ∂xϕ∂yT > 0. (22)



Stability of Zonal Profiles
We find that increasing the temperature gradient κT eventually
leads to a break up of the zonal state.
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Figure: Stable χ = 0.5, κT = 1.
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I Beyond the staircase state, the system fails to reach
saturation

I Hypothesis: the transition from saturation to blowup in
this system is equivalent to the transition from the
zonally-dominated Dimits regime to fully developed
turbulence, seen in GK simulations (Dimits 2000)

I Failure to reach saturation in such a state is typical for 2D
systems, since the additional conservation laws in 2D
canoften overconstrain the system and lead to anomalies
(cf.inverse energy cascade in hydrodynamics)

I Saturation in GK simulations beyond Dimits is "critically
balanced" (Barnes et al, 2011), hence fundamentally 3D



Parameter space
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Figure: Visualisation of different regions of parameter space.



Parameter dependence of heat flux
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Figure: Heat flux vs κT .
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Conclusions

I Dimits saturation in 2D turbulence relies on the formation
of an ExB staircase

I Time-averaged heat flux is dominated by
"predator-prey"-like oscillations of bursts of turbulence

I Coherent structures, which survive background shear, are
found

Ideas for the future:
I More analytics in 2D — end of Dimits, coherent structures
I Investigate whether these ideas survive the chaos of 3D

gyrokinetics



Here be supplementary slides



Secondary Instability

How are ZFs generated?
I Zonal (ky = 0) modes are linearly stable
I The fastest growing linear ITG mode is a pure DW, i.e.
kx = 0

I The secondary instability is that of DWs to infinitesimal ZF
perturbations



Secondary Instability
Taking a 4-mode truncation

ϕ = 2Re
[
ϕqe

iqy +
(
ϕ1e

iqy + ϕ−1e
−iqy + ϕ0

)
eipxeγ2t

]
,

we find(
γ22 + p2q2U

) (
γ22 + p2q2V

)
= p4q4W, where

U = 2|ϕq|2 +
2q2Re (ϕqT

∗
q )

1 + p2 + q2
,

V =
2
[
(p2 − q2 − 1)|ϕq|2 + p2|Tq|2 + (2p2 − q2 − 1)Re (ϕqT

∗
q )
]

1 + p2 + q2
,

W =
4p2q2

(1 + p2 + q2)2
[
|Tq|2 + 2Re (ϕqT

∗
q )
] [
|ϕq|2 + Re (ϕqT

∗
q )
]
.

For T = 0 this collapses to the usual Hasegawa-Mima secondary

γHM2 = pq|ϕq|

√
2(1 + q2 − p2)
1 + p2 + q2

.



Secondary Instability
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Figure: Secondary instability growth rates over the most unstable DW
mode.



I Increasing κT decreases the secondary growth rate and span
in Fourier space

I This diminished instability strongly resembles the ETG
secondary of the CHM equation (with adiabatic ion
response)

γHM,ETG
2 = pq|ϕq|

√
2p2

1 + p2
q2 − p2

1 + p2 + q2
.

I Fluid ETG often fails to saturate. This has been associated
with its secondary instability (Dorland et al. 2000)

I In our system ETG always fails to saturate, but the role of
the secondary is unclear



Zonal Stability (linear)

Let us linearise the system for an infinitesimal DW perturbation
over strong zonal fields. We refrain from using a 4-mode model.

(∂t + ∂xϕ∂y)
(
1−∇2

)
ϕ′ − (1−∂3xϕ)∂y

(
ϕ′ + T ′

)
+ (κT−∂xT )∂y∇2ϕ′

+∂2xϕ∂x∂yT
′ − ∂2xT∂x∂yϕ′ = −χ∇4(aϕ′ − bT ′), (23)

(∂t + ∂xϕ∂y)T
′ + (κT−∂xT )∂yϕ′ +

{
ϕ′, T ′

}
= χ∇2T ′, (24)

where the highlighted terms are the ZF interaction terms.
We can heuristically understand the results by Rogers &
Dorland (2000)

γ3 ∝ ky
√
∂3xϕ(x0)∂xT (x0) (25)

in a region where ∂2xϕ = ∂2xT = 0.



Highly dissipative regime
Increasing collisionality leads to oscillating zonal fields

Figure: Zonal flows for χ = 1.2, κT = 2.



Highly dissipative regime
Increasing collisionality leads to oscillating zonal fields

Figure: Zonal temperature for χ = 1.2, κT = 2.


