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Outline

I Motivation for studying multi-scale turbulence

I Brief introduction to theory of scale-separated ion scale (IS) and electron
scale (ES) turbulence

I Insights gained by simulations probing the effect of IS turbulence on ES
instabilities
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Introduction

Anomalous transport is driven by turbulence,

I IS : at scales where kρi . 1

I ES : at scales where kρe . 1� kρi

I N.B. ρe/ρi ∼ (me/mi)
1/2 ' 1/60� 1

I do all scales matter?

I is cross scale coupling important?

I To answer these questions we take a scale separated approach

I (me/mi)
1/2 → 0
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Introduction: do all scales matter?

I simulation evidence where
Qe ∼ 10QegB ∼ (?)QigB e.g.

Jenko and Dorland (2002)

I recent experimental evidence on
NSTX Ren et al. (2017)

I Howard et al. (2016) Fig 3:
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Introduction: is cross scale coupling important?

I Fig 2 from Maeyama et al. (2015):

(a) β = 0.04% (b) β = 2.0%

I See also

Maeyama et al. (2017); Howard et al. (2016); Bonanomi et al. (2018)

Görler and Jenko (2008); Candy et al. (2007); Waltz et al. (2007)
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Introduction: a scale separated approach
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A Quick Reminder: Scale separation in local δf turbulence

log

log

I scale separation: ρ∗ = ρ/a→ 0 ⇒ f = F + δf
I statistical periodicity: 〈δf〉turb = 0
I gyro average: 〈·〉|gyroR
I orderings:

δf ∼ ρ∗F

∇F ∼ ∇⊥δf ∼ ρ−1
∗ ∇‖δf

∂tδf ∼ (vt/a)δf ∼ ρ∗Ωδf

∂tF ∼ ρ3∗ΩF
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A Quick Reminder: The local δf Gyrokinetic Equation

The gyrokinetic equation for h = δf + (Zeφ/T )F0:

∂h

∂t
+ v‖b · ∇θ

∂h

∂θ
+ (vM + vE) · ∇h+ vE · ∇F0 =

ZeF0

T

∂ϕ

∂t
, (1)

where,

ϕ = 〈φ〉|gyroR , vE =
c

B
b ∧∇ϕ. (2)

Closed by quasi-neutrality,

∑
α

Zα

∫
d3v|rhα =

∑
α

Z2
αenα

Tα
φ(r). (3)

I electrostatic approximation

I zero equilibrium toroidal rotation

I (h for compactness – we later find g = 〈δf〉|gyroR = h− (Zeϕ/T )F0 is more
convenient)

8 / 26



Separating IS and ES Turbulence

log

log

I scale separation: ρe/ρi ∼ vti/vte ∼
√
me/mi → 0, ⇒ δf = δf + δ̃f

I ES statistical periodicity:
〈
δ̃f
〉ES

= 0

I orderings:

∇⊥δf ∼ ρ−1
i δf,

∂δf

∂t
∼
vti

a
δf

∇⊥δ̃f ∼ ρ−1
e δ̃f ,

∂δ̃f

∂t
∼
vte

a
δ̃f.
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Separating IS and ES Turbulence: Size of the Fluctuations
– Possible impacts of cross-scale interaction

We show in Hardman et al. (2019) that the only ordering which allows saturated
dominant balance is

∇F0 ∼ ∇⊥δf ∼ ∇⊥δ̃f , (4)

resulting in the usual gyro-Bohm ordering,

eφ

T
∼ ρi∗,

eφ̃

T
∼ ρe∗ (5)

hi

F0i
∼

he

F0e
∼
eφ

T
,

h̃e

F0e
∼
eφ̃

T
,

h̃i

F0i
∼
(
me

mi

)1/4 eφ̃

T
(6)

(4) ⇒ ES eddies can be driven or suppressed by gradients of the IS distribution
function

(4) ⇒ ∇φ̃ ∼ ∇φ ⇒ eddy E×B drifts vE×B, are comparable at all scales
Critical balance ⇒ parallel correlation lengths are the same for IS and ES eddies

⇒ ES eddies can be sheared by the IS E ×B drift in the direction parallel to the
magnetic field
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Separating IS and ES Turbulence: Difficult Points

I electrons at IS – fast electron streaming timescales are removed by the orbital
average 〈·〉o – he = 0 (adiabatic response) for non-zonal passing electrons

I ions at ES – non-locality of the gyro average – adiabatic response

I the parallel boundary condition for the ES flux tubes

Gyro-motion

Ion

Electron

11 / 26



Separating IS and ES Turbulence – The Coupled Equations

I IS equations, where the leading-order cross-scale terms are small

∂hi

∂t
+ v‖b · ∇θ

∂hi

∂θ
+ (vMi + vEi ) · ∇hi + vEi · ∇F0i =

ZieF0i

Ti

∂ϕi
∂t

, (7)

∂he

∂t
+
〈
vMe · ∇α

〉o ∂he
∂α

+
〈
vEe · ∇he

〉o
+
〈
vEe · ∇F0e

〉o
= −

eF0e

Te

∂ 〈ϕe〉
o

∂t
, (8)∫

d3v|r(Zihi − he) =

(
eZ2
i ni

Ti
+
ene

Te

)
φ, (9)

I ES equations, with the new advection and drive terms

∂h̃e

∂t
+v‖b·∇θ

∂h̃e

∂θ
+(vMe +ṽEe +vEe )·∇h̃e+ṽEe ·(∇he+∇F0e) = −

eF0e

Te

∂ϕ̃e

∂t
. (10)

−
∫
d3v|rh̃e =

(
eZ2
i ni

Ti
+
ene

Te

)
φ̃, (11)
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Separating IS and ES Turbulence – The Coupled Equations

I IS equations, where the leading-order cross-scale terms are small

∂hi

∂t
+ v‖b · ∇θ

∂hi

∂θ
+ (vMi + vEi ) · ∇hi + vEi · ∇F0i =

ZieF0i

Ti

∂ϕi
∂t

, (7)

∂he

∂t
+
〈
vMe · ∇α

〉o ∂he
∂α

+
〈
vEe · ∇he

〉o
+
〈
vEe · ∇F0e

〉o
= −

eF0e

Te

∂ 〈ϕe〉
o

∂t
, (8)∫

d3v|r(Zihi − he) =

(
eZ2
i ni

Ti
+
ene

Te

)
φ, (9)

I ES equations, with the new advection and drive terms

∂h̃e

∂t
+v‖b·∇θ

∂h̃e

∂θ
+(vMe +ṽEe +vEe )·∇h̃e+ṽEe ·(∇he+∇F0e) = −

eF0e

Te

∂ϕ̃e

∂t
. (10)

−
∫
d3v|rh̃e =

(
eZ2
i ni

Ti
+
ene

Te

)
φ̃, (11)

N.b. writing (10) in terms of ge and g̃e shows that the constant in θ piece of vEe
can be removed by a rotation ⇒ The parallel-to-the-field variation of vEe matters
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The Effect of Cross Scale Interaction on the ES ETG Instability
I The coupled equations capture the O(1) effects of IS turbulence on ES

fluctuations

I We pick Cyclone Base Case like (CBC) parameters where there is a
separation of scales:

10−1 100 101 102

kyρth,i

10−2

10−1

100

γ /(vth,i/a) at θ̂0 = 0
a/LTi

= 2.3

a/LTi
= 1.38

AI

−2 0 2
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0.75

K
y
ρ

th
,e

γ/(vth,e/a)

-0.063
-0.041
-0.019
0.004
0.026
0.049
0.071
0.094

I We simulate the IS turbulence to obtain a sample of vEe and ∇ge
I We observe the effect on the ES ETG instability:

Strongly driven ETG (a/LTe = 2.3)
I persists in the presence of weakly driven (a/LTi

= 1.38) IS turbulence
I is suppressed by strongly driven (a/LTi

= 2.3) IS turbulence
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Sampling IS Turbulence with a/LTi = 1.38

0 2000 4000 6000
ts/(a/vth,i)
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〈 φ2〉xs,ys,θ/(Tρ∗i /e)
2 for a/LTi

= 1.38
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I Saturate IS
turbulence

I Calculate ∇ge
I Calculate vEe
I At 6 IS ts times

(blue dashes)

I At 6 radial (xs) × 5
binormal (ys) IS
positions (crosses)
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Simulations: modification of ES linear physics: CBC a/LTi = 1.38

Top Right: No IS gradients.

Below: IS gradients from different IS
(xs, ys) locations

Moderate suppression
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Simulations: modification of ES linear physics: CBC a/LTi = 1.38

Top Right: No IS gradients.

Below: average ETG growth rate across
all sampled IS (xs, ys) locations and ts
times

Weak suppression!
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Sampling IS Turbulence with a/LTi = 2.3
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I Calculate ∇ge
I Calculate vEe
I At 6 IS ts times

(blue dashes)

I At 6 radial (xs) × 5
binormal (ys) IS
positions (crosses)
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Simulations: modification of ES linear physics: CBC a/LTi = 2.3

Top Right: No IS gradients.

Below: IS gradients from different IS
(xs, ys) locations

Strong suppression!
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Simulations: modification of ES linear physics: CBC a/LTi = 2.3

Top Right: No IS gradients.

Below: average ETG growth rate across
all sampled IS (xs, ys) locations and ts
times

Strong suppression!
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Simulations: modification of ES linear physics: CBC a/LTi = 2.3

Top Right: No IS gradients.

Below: average ETG growth rate across
all sampled IS (xs, ys) locations and ts
times

INCLUDING ONLY ∇ge (with vEe = 0)
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Simulations: modification of ES linear physics: CBC a/LTi = 2.3

Top Right: No IS gradients.

Below: average ETG growth rate across
all sampled IS (xs, ys) locations and ts
times

INCLUDING ONLY vEe (with ∇ge=0)
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Simulations: A simple model of parallel-to-be-field shear in vEe

I Simplest possible form for vEe with
local parallel-to-the-field shear
(consistent with flux tube ‖ b.c.
Beer et al. (1995))

I (13) leads to vEe · kf with linear
variation e.g. (12) for Kx = 0 (and
our parameters)

I maximum ETG growth rate
γmax(Ê) shows suppression for all

Ê 6= 0

I ⇒ Qualitative explanation of ETG
behaviour in the presence of IS
turbulence

I suppression when

ω̂E = 0.4× 0.5× 1.0
(
vth,e
a

)
∼

γmax(Ê = 0) ' 0.1

vEe · kf = ω̂Eθ, (12)

∂φ

∂ys

∣∣∣
xs

= −Ê,
∂φ

∂xs

∣∣∣
ys

= −ŝθÊ, (13)

ω̂E = 0.4
(vth,e

a

)
(Kyρth,e)

(
Ê

T/ea

)
.

(14)
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Ê/(T/ea)
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0.05

γmax /(vth,e/a)
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Simulations: A simple model of parallel-to-be-field shear in vEe

Top Right: No IS gradients.

Below: ETG growth rate with model vEe ;

(left) Ê = 0.5T/ea (right) Ê = 1.0T/ea

Strong suppression!
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Conclusions

We have derived coupled, scale-separated equations for IS and ES turbulence.

We assumed

I (me/mi)
1/2 → 0; space and time separation; no other small parameters

I spatial isotropy – IS l⊥ ∼ ρth,i; ES l⊥ ∼ ρth,e
I negligible direct cascade; separation in the fluctuation spectrum

The model

I efficiently captures cross-scale interactions which persist as (me/mi)
1/2 → 0

I is simulated in a system of coupled ES flux tubes nested in an IS flux tube

We found that
I strongly driven ETG (a/LTe = 2.3)

I persists in the presence of weakly driven (a/LTi
= 1.38) IS turbulence

I is suppressed by strongly driven (a/LTi
= 2.3) IS turbulence

I the primary mechanism responsible for the suppression is parallel-to-the-field
variation in vEe

I a simple model of local parallel-to-the-field variation in the flow qualitatively
explains the result
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Questions for Future Work
I Can we retain the effect of ES turbulence on IS fluctuations by taking other

parameters to be small?
I distance to marginal stability
I zonal to non-zonal amplitude

I By taking other parameters to be small, can we find scalings where the ES
fluctuation amplitude is comparable to the IS fluctuation amplitude?

I What is the perpendicular scale of an ETG streamer? Dorland et al. (2000);
Jenko et al. (2000); Jenko and Dorland (2002); Guttenfelder and Candy
(2011)

I Is it possible to enforce time scale separation if ETG turbulence saturates
slowly? Colyer et al. (2017); Nakata et al. (2010)

I What is the effect of IS turbulence on non-linear ETG saturation?

I What changes in this picture with electromagnetic fluctuations?
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Simulations: A simple model of parallel-to-be-field shear in vEe

Top Right: ETG growth rate γ(Ê) for

Kyρth,e = 0.57, θ̂0 = 0.0.

Below: (left) corresponding eigenmodes
(right) corresponding drift coefficients
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Separating IS and ES Turbulence: Technicalities

I We introduce a fast spatial variable rf and a slow spatial variable rs and the
fast and slow times tf , ts

I In the gyrokinetic equation we send,

δf(t, r)→ δf(ts, tf , rs, rf ), ∇ → ∇s +∇f ,
∂

∂t
→

∂

∂ts
+

∂

∂tf
, (15)

I then asymptotically expand in the mass ratio (me/mi)
1/2

I remembering ∇s ∼ (me/mi)
1/2∇f , and ∂/∂ts ∼ (me/mi)

1/2∂/∂tf
I explicitly define the ES average,

δf(ts, rs) =
〈
δf(ts, tf , rs, rf )

〉ES
=

1

τcA

∫ ts+τc/2

ts−τc/2
dtf

∫
A,rs

d2rf δf(ts, tf , rs, rf ),

(16)

I We assume that,

δf(ts, tf , rs, rf ) = δf(ts, tf , rs, rf + n∆cxx̂ +m∆cyŷ), (17)

I This enforces
〈
δ̃f
〉ES

= 0.
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Splitting the Quasi-Neutrality Relation

I We split the guiding centre into a slow Rs and a fast Rf part.

I R = r− ρ(r), where ρ(r) is the vector gyroradius

I Thus using the periodicity property equation (17) the ES average may be
taken over guiding centre or real space coordinates.

I This observation allows us to note that the ES average commutes with the
gyro average,〈

1

2π

∫ 2π

0
dγ|Rφ(rs, rf )

〉ES

=
1

2π

∫ 2π

0
dγ|R

〈
φ(rs, rf )

〉ES
=

1

2π

∫ 2π

0
dγ|Rφ(rs),

(18)
The splitting of the quasi neutrality relation follows directly,

∑
α

Zα

∫
d3v|rhα(Rs) =

∑
α

Z2
αenα

Tα
φ(rs), (19)

∑
α

Zα

∫
d3v|rh̃α(Rs,Rf ) =

∑
α

Z2
αenα

Tα
φ̃(rs, rf ). (20)
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Addressing the Non-Locality of the Gyro Average
I Taking the gyro average at fixed guiding centre 〈·〉|gyroR , couples multiple rs

points.
I but we aim to find scale separated equations!
I Expanding both the slow and the fast spatial variable in Fourier series we

note that,

ϕ̃(ts, tf ,Rs,Rf ) = 〈φ̃(ts, tf , rs, rf )〉|gyroR =
1

2π

∫ 2π

0
dγ|Rφ̃(ts, tf , rs, rf )

=
1

2π

∫ 2π

0
dγ|R

∑
ks,kf

φ̃ks,kf
eiks·rseikf ·rf

=
∑

ks,kf

φ̃ks,kf
eiks·Rseikf ·Rf J0(|(ks + kf )|ρ), (21)

for electrons:
I |kf |ρe ∼ 1 and |ks|ρe ∼ (me/mi)

1/2

I we can expand the Bessel function to return to a local picture in the slow
variable with O(me/mi)

1/2 error.
I We will exploit this in scale separation.

for ions:
I |ks|ρi ∼ 1 and |kf |ρi ∼ (me/mi)

−1/2.
I we are unable to expand the Bessel function
I we are unable to avoid the coupling of multiple rs in the equations for ions at

ES
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Addressing the Non-Locality of the Gyro Average: continued
I we can neglect the ion contribution to ES quasi neutrality

I ion gyroradius >> ES fluctuation scale length → ion can only respond to
a large-scale average of ES potential

I J0(|kf |ρi) ∼ (me/mi)
1/4 << 1

I Hence,

ϕ̃e(ts, tf ,Rs,Rf ) =
∑

ks,kf

φ̃ks,kf
eiks·Rseikf ·Rf J0(|(ks + kf )|ρ)

= −
Te

nee

∑
ks,kf

eiks·Rseikf ·Rf J0(|(ks+kf )|ρ)

∫
d3v h̃e,ks,kf

J0(|(ks+kf )|ρ) (22)

I now we use that,

J0(|(ks + kf )|ρe) = J0(|kf |ρe) +O

(
ks · kfρ2e

dJ0(z)

dz
|z=|kf |ρe

)
, (23)

I exploit that |ks|ρe ∼ (me/mi)
1/2 to bring Rs under the velocity integral

I regard Rs as a fixed parameter in the integration, to find,

ϕ̃e(ts, tf ,Rs,Rf ) = −e
(∑

ν

Z2
νnνe

2

T

)−1∑
kf

eikf ·Rf J0(|(ks + kf )|ρ)

×
∫
d3v|Rs h̃ekf

(Rs)J0(|kf |ρe)
(

1 +O
(

(me/mi)
1/2
))

(24)

I we can evaluate quasi-neutrality purely locally in the slow variable.
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Splitting the Gyrokinetic Equation
I we apply the ES average to the gyrokinetic equation
I we neglect terms which are small by (me/mi)

1/2

Ion scale equation:

∂h

∂ts
+v‖b·∇θ

∂h

∂θ
+(vM+vE)·∇sh+∇s ·

〈 c
B
h̃ṽE

〉ES
+vE ·∇F0 =

ZeF0

T

∂ϕ

∂ts
. (25)

I we subtract the IS equation from the full equation and neglect terms
I The electron equation is orbital averaged to remove fasts electron streaming

timescales
I We consistently take he = 0 for non-zonal passing electrons, for which
he ∼ (me/mi)

1/2

ES equation:

∂h̃

∂tf
+ v‖b ·∇θ

∂h̃

∂θ
+ (vM + ṽE +vE) ·∇f h̃+ ṽE · (∇sh+∇F0) =

ZeF0

T

∂ϕ̃

∂tf
, (26)

where
vE =

c

B
b ∧∇sϕ, ṽE =

c

B
b ∧∇f ϕ̃. (27)

Note that,
I there are two additional terms on the ES, ṽE · ∇f h̃ and ṽE · ∇sh

I there is one new term at the IS, ∇s ·
〈
c
B
h̃ṽE

〉ES

I vE cannot be removed with the boost or a solid body rotation because of the
θ dependence of ϕ
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Critical balance

Note ∇φ̃ ∼ ∇φ

⇒eddy E×B drifts vE×B, are comparable at all scales

I applying the critical balance argument

I vte/l̃‖ ∼ τ̃−1
nl ∼ ṽE×B/l̃⊥

I vti/l‖ ∼ τ−1
nl ∼ vE×B/l⊥

I l̃‖ ∼ l‖
⇒ parallel correlation lengths are the same for IS and ES eddies

⇒ parallel correlation length are set by the system size – distance between
stabilising inboard midplane regions parallel to the field

⇒ l̃‖ ∼ l‖ ∼ a

⇒ ES eddies are long enough to be differentially advected by vE×B
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Scaling Work: the Relative Size of the Fluctuations
I The usual gyro-Bohm ordering is the only ordering which results in

non-linearly saturated balance

eφ

T
∼ ρi∗,

eφ̃

T
∼ ρe∗ (28)

hi

F0i
∼

he

F0e
∼
eφ

T
,

h̃e

F0e
∼
eφ̃

T
,

h̃i

F0i
∼
(
me

mi

)1/4 eφ̃

T
(29)

I We can show that the following orderings are inconsistent with dominant
balance under our assumptions

I

eφ

T
� ρi∗ (30)

I

eφ̃

T
� ρe∗ (31)

I

eφ

T
� ρi∗,

eφ̃

T
∼ ρe∗ (32)

I The following ordering is possible only when the ES fluctuations are stabilised
by the IS turbulence

I

eφ

T
∼ ρi∗,

eφ̃

T
� ρe∗ (33)
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Scaling Work: Neglecting Ions at ES

note that:

I J0(kfρi) ∼ (me/mi)
1/4

I so: ∫
d3v|rh̃i ∼

(
me

mi

)1/4 (me
mi

)1/4 enφ̃

T
(34)

Ions at ES can be neglected to O
(
(me/mi)

1/2
)

in the ES equations!

note that:

I ∇s ·
〈
c
B
h̃iṽ

E
i

〉ES
∼ O

(
(me/mi)v

E
i · hi

)
Ions at ES can be neglected to O (me/mi) in the IS equations!
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Scaling Work: which multiscale terms do we keep?

The only remaining multiscale terms are in electron species equations:

note that:

I ṽEe · ∇she ∼ vEe · ∇f h̃e ∼ ṽEe · ∇f h̃e
I IS gradients contribute at O(1) to the ES

I IS perpendicular shear in vEe can be neglected to O((me/mi)
1/2) at the ES

I ∇s ·
〈
c
B
h̃eṽEe

〉ES
∼ O((me/mi)

1/2vEe · he)

I back reaction contributes at O((me/mi)
1/2) to the electron equation at IS

I small and therefore neglected along with the effect of non-zonal passing
electrons
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The Parallel Boundary Condition

I ψ: radial, α: field line label,
θ: poloidal angle, ζ: toroidal angle

I α(ζ, θ, ψ) = α0 + ζ − q0(ψ)θ = α0 + ζ − q0θ + q′0(ψ − ψ0)θ

I α(ζ, θ + 2π, ψ)− α(ζ, θ, ψ) = −2πq0 − 2πq′0(ψ − ψ0)

A(θ + 2π, α(ζ, θ + 2π, ψ), ψ) = A(θ, α(ζ, θ, ψ), ψ) (35)

Beer et al. (1995)

⇒ b.c. enforces statistical periodicity on a (ψ, ζ) plane

⇒ b.c. couples in α
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The Parallel Boundary Condition

I A) view along the
toroidal symmetry
axis, of a flux tube,
in yellow, with
parallel ends in
magenta. The flux
surface is in grey.

I B) flux tube viewed
perpendicular to
the toroidal
symmetry axis.
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The Parallel Boundary Condition

Notation for ES
fluctuations

Ã(θ+2π , αf , ψf︸ ︷︷ ︸
ES coords

IS coords︷ ︸︸ ︷
; αs, ψs )

⇒ ES boundary
condition

Ã(θ, α(ζ, θ, ψf ), ψf ;α(ζ, θ, ψs), ψs)

= Ã(θ+2π, α(ζ, θ+2π, ψf ), ψf ;α(ζ, θ+2π, ψs), ψs)
(36)

13 / 14



Electrons at IS
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