Cross Scale Interaction Mechanisms: Suppression of the ETG linear instability by ion gyroradius scale turbulence

M.R.Hardman ${ }^{1,2}$, M.Barnes ${ }^{1,2}$, C.M.Roach ${ }^{2}$, F. I. Parra ${ }^{1,2}$
${ }^{1}$ Rudolf Peierls Centre for Theoretical Physics, University of Oxford, UK
${ }^{2}$ CCFE, Culham Science Centre, Abingdon, Oxon, UK

Outline

- Motivation for studying multi-scale turbulence
- Brief introduction to theory of scale-separated ion scale (IS) and electron scale (ES) turbulence
- Insights gained by simulations probing the effect of IS turbulence on ES instabilities

Introduction

Anomalous transport is driven by turbulence,

- IS : at scales where $k \rho_{i} \lesssim 1$
- ES: at scales where $k \rho_{e} \lesssim 1 \ll k \rho_{i}$
- N.B. $\rho_{e} / \rho_{i} \sim\left(m_{e} / m_{i}\right)^{1 / 2} \simeq 1 / 60 \ll 1$
- do all scales matter?
- is cross scale coupling important?
- To answer these questions we take a scale separated approach
- $\left(m_{e} / m_{i}\right)^{1 / 2} \rightarrow 0$

Introduction: do all scales matter?

- simulation evidence where $Q_{e} \sim 10 Q_{e \mathrm{gB}} \sim(?) Q_{i \mathrm{gB}}$ e.g. Jenko and Dorland (2002)
- recent experimental evidence on NSTX Ren et al. (2017)
- Howard et al. (2016) Fig 3:

Ion-Scale Simulation	
Multi-Scale Simulation	
Multi-Scale Components	
High-k (ETG) Contributions Low-k (ITG) Contributions	\bigcirc

Introduction: is cross scale coupling important?

- Fig 2 from Maeyama et al. (2015):

(a) $\beta=0.04 \%$
(b) $\beta=2.0 \%$
- See also

Maeyama et al. (2017); Howard et al. (2016); Bonanomi et al. (2018)
Görler and Jenko (2008); Candy et al. (2007); Waltz et al. (2007)

Introduction: a scale separated approach

A Quick Reminder: Scale separation in local δf turbulence

- scale separation: $\rho_{*}=\rho / a \rightarrow 0 \Rightarrow \quad f=F+\delta f$
- statistical periodicity: $\langle\delta f\rangle_{\text {turb }}=0$
- gyro average: $\left.\langle\cdot\rangle\right|_{\mathbf{R}} ^{\text {gyro }}$
- orderings:

$$
\begin{gathered}
\delta f \sim \rho_{*} F \\
\nabla F \sim \nabla_{\perp} \delta f \sim \rho_{*}^{-1} \nabla_{\|} \delta f \\
\partial_{t} \delta f \sim\left(v_{t} / a\right) \delta f \sim \rho_{*} \Omega \delta f \\
\partial_{t} F \sim \rho_{*}^{3} \Omega F
\end{gathered}
$$

A Quick Reminder: The local δf Gyrokinetic Equation

The gyrokinetic equation for $h=\delta f+(Z e \phi / T) F_{0}$:

$$
\begin{equation*}
\frac{\partial h}{\partial t}+v_{\|} \mathbf{b} \cdot \nabla \theta \frac{\partial h}{\partial \theta}+\left(\mathbf{v}^{M}+\mathbf{v}^{E}\right) \cdot \nabla h+\mathbf{v}^{E} \cdot \nabla F_{0}=\frac{Z e F_{0}}{T} \frac{\partial \varphi}{\partial t}, \tag{1}
\end{equation*}
$$

where,

$$
\begin{equation*}
\varphi=\left.\langle\phi\rangle\right|_{\mathbf{R}} ^{\text {gyro }}, \quad \mathbf{v}^{E}=\frac{c}{B} \mathbf{b} \wedge \nabla \varphi . \tag{2}
\end{equation*}
$$

Closed by quasi-neutrality,

$$
\begin{equation*}
\left.\sum_{\alpha} Z_{\alpha} \int d^{3} \mathbf{v}\right|_{\mathbf{r}} h_{\alpha}=\sum_{\alpha} \frac{Z_{\alpha}^{2} e n_{\alpha}}{T_{\alpha}} \phi(\mathbf{r}) \tag{3}
\end{equation*}
$$

- electrostatic approximation
- zero equilibrium toroidal rotation
- (h for compactness - we later find $g=\left.\langle\delta f\rangle\right|_{\mathbf{R}} ^{\text {gyro }}=h-(Z e \varphi / T) F_{0}$ is more convenient)

Separating IS and ES Turbulence

- scale separation: $\rho_{e} / \rho_{i} \sim v_{t i} / v_{t e} \sim \sqrt{m_{e} / m_{i}} \rightarrow 0, \Rightarrow \delta f=\overline{\delta f}+\widetilde{\delta f}$
- ES statistical periodicity: $\langle\widetilde{\delta f}\rangle^{\mathrm{ES}}=0$
- orderings:

$$
\begin{aligned}
& \nabla_{\perp} \overline{\delta f} \sim \rho_{i}^{-1} \overline{\delta f}, \quad \frac{\partial \overline{\delta f}}{\partial t} \sim \frac{v_{t i}}{a} \overline{\delta f} \\
& \nabla_{\perp} \widetilde{\delta f} \sim \rho_{e}^{-1} \widetilde{\delta f}, \quad \frac{\partial \widetilde{\delta f}}{\partial t} \sim \frac{v_{t e}}{a} \widetilde{\delta f}
\end{aligned}
$$

Separating IS and ES Turbulence: Size of the Fluctuations

- Possible impacts of cross-scale interaction

We show in Hardman et al. (2019) that the only ordering which allows saturated dominant balance is

$$
\begin{equation*}
\nabla F_{0} \sim \nabla_{\perp} \overline{\delta f} \sim \nabla_{\perp} \widetilde{\delta f} \tag{4}
\end{equation*}
$$

resulting in the usual gyro-Bohm ordering,

$$
\begin{gather*}
\frac{e \bar{\phi}}{T} \sim \rho_{i *}, \quad \frac{e \widetilde{\phi}}{T} \sim \rho_{e *} \tag{5}\\
\frac{\bar{h}_{i}}{F_{0 i}} \sim \frac{\bar{h}_{e}}{F_{0 e}} \sim \frac{e \bar{\phi}}{T}, \quad \frac{\widetilde{h}_{e}}{F_{0 e}} \sim \frac{e \widetilde{\phi}}{T}, \quad \frac{\widetilde{h}_{i}}{F_{0 i}} \sim\left(\frac{m_{e}}{m_{i}}\right)^{1 / 4} \frac{e \widetilde{\phi}}{T} \tag{6}
\end{gather*}
$$

(4) \Rightarrow ES eddies can be driven or suppressed by gradients of the IS distribution function
(4) $\Rightarrow \nabla \widetilde{\phi} \sim \nabla \bar{\phi} \Rightarrow$ eddy $\mathrm{E} \times \mathrm{B}$ drifts $v_{\mathrm{E} \times \mathrm{B}}$, are comparable at all scales

Critical balance \Rightarrow parallel correlation lengths are the same for IS and ES eddies
\Rightarrow ES eddies can be sheared by the IS $E \times B$ drift in the direction parallel to the magnetic field

Separating IS and ES Turbulence: Difficult Points

- electrons at IS - fast electron streaming timescales are removed by the orbital average $\langle\cdot\rangle^{\circ}-\bar{h}_{e}=0$ (adiabatic response) for non-zonal passing electrons
- ions at ES - non-locality of the gyro average - adiabatic response
- the parallel boundary condition for the ES flux tubes

Separating IS and ES Turbulence - The Coupled Equations

- IS equations, where the leading-order cross-scale terms are small

$$
\begin{gather*}
\frac{\partial \bar{h}_{i}}{\partial t}+v_{\|} \mathbf{b} \cdot \nabla \theta \frac{\partial \bar{h}_{i}}{\partial \theta}+\left(\mathbf{v}_{i}^{M}+\overline{\mathbf{v}}_{i}^{E}\right) \cdot \nabla \bar{h}_{i}+\overline{\mathbf{v}}_{i}^{E} \cdot \nabla F_{0 i}=\frac{Z_{i} e F_{0 i}}{T_{i}} \frac{\partial \bar{\varphi}_{i}}{\partial t} \tag{7}\\
\frac{\partial \bar{h}_{e}}{\partial t}+\left\langle\mathbf{v}_{e}^{M} \cdot \nabla \alpha\right\rangle^{\circ} \frac{\partial \bar{h}_{e}}{\partial \alpha}+\left\langle\overline{\mathbf{v}}_{e}^{E} \cdot \nabla \bar{h}_{e}\right\rangle^{\circ}+\left\langle\overline{\mathbf{v}}_{e}^{E} \cdot \nabla F_{0 e}\right\rangle^{\circ}=-\frac{e F_{0 e}}{T_{e}} \frac{\partial\left\langle\bar{\varphi}_{e}\right\rangle^{\circ}}{\partial t} \tag{8}\\
\left.\int d^{3} \mathbf{v}\right|_{\mathbf{r}}\left(Z_{i} \bar{h}_{i}-\bar{h}_{e}\right)=\left(\frac{e Z_{i}^{2} n_{i}}{T_{i}}+\frac{e n_{e}}{T_{e}}\right) \bar{\phi} \tag{9}
\end{gather*}
$$

- ES equations, with the new advection and drive terms

$$
\begin{gather*}
\frac{\partial \widetilde{h}_{e}}{\partial t}+v_{\|} \mathbf{b} \cdot \nabla \theta \frac{\partial \widetilde{h}_{e}}{\partial \theta}+\left(\mathbf{v}_{e}^{M}+\widetilde{\mathbf{v}}_{e}^{E}+\overline{\mathbf{v}}_{e}^{E}\right) \cdot \nabla \widetilde{h}_{e}+\widetilde{\mathbf{v}}_{e}^{E} \cdot\left(\nabla \bar{h}_{e}+\nabla F_{0 e}\right)=-\frac{e F_{0 e}}{T_{e}} \frac{\partial \widetilde{\varphi}_{e}}{\partial t} \tag{10}\\
-\int d^{3} \mathbf{v} \left\lvert\, \widetilde{\mathbf{r}}_{e}=\left(\frac{e Z_{i}^{2} n_{i}}{T_{i}}+\frac{e n_{e}}{T_{e}}\right) \widetilde{\phi}\right. \tag{11}
\end{gather*}
$$

Separating IS and ES Turbulence - The Coupled Equations

- IS equations, where the leading-order cross-scale terms are small

$$
\begin{gather*}
\frac{\partial \bar{h}_{i}}{\partial t}+v_{\|} \mathbf{b} \cdot \nabla \theta \frac{\partial \bar{h}_{i}}{\partial \theta}+\left(\mathbf{v}_{i}^{M}+\overline{\mathbf{v}}_{i}^{E}\right) \cdot \nabla \bar{h}_{i}+\overline{\mathbf{v}}_{i}^{E} \cdot \nabla F_{0 i}=\frac{Z_{i} e F_{0 i}}{T_{i}} \frac{\partial \bar{\varphi}_{i}}{\partial t} \tag{7}\\
\frac{\partial \bar{h}_{e}}{\partial t}+\left\langle\mathbf{v}_{e}^{M} \cdot \nabla \alpha\right\rangle^{\circ} \frac{\partial \bar{h}_{e}}{\partial \alpha}+\left\langle\overline{\mathbf{v}}_{e}^{E} \cdot \nabla \bar{h}_{e}\right\rangle^{\circ}+\left\langle\overline{\mathbf{v}}_{e}^{E} \cdot \nabla F_{0 e}\right\rangle^{\circ}=-\frac{e F_{0 e}}{T_{e}} \frac{\partial\left\langle\bar{\varphi}_{e}\right\rangle^{\circ}}{\partial t} \tag{8}\\
\left.\int d^{3} \mathbf{v}\right|_{\mathbf{r}}\left(Z_{i} \bar{h}_{i}-\bar{h}_{e}\right)=\left(\frac{e Z_{i}^{2} n_{i}}{T_{i}}+\frac{e n_{e}}{T_{e}}\right) \bar{\phi} \tag{9}
\end{gather*}
$$

- ES equations, with the new advection and drive terms

$$
\begin{gather*}
\frac{\partial \widetilde{h}_{e}}{\partial t}+v_{\|} \mathbf{b} \cdot \nabla \theta \frac{\partial \widetilde{h}_{e}}{\partial \theta}+\left(\mathbf{v}_{e}^{M}+\widetilde{\mathbf{v}}_{e}^{E}+\overline{\mathbf{v}}_{e}^{E}\right) \cdot \nabla \widetilde{h}_{e}+\widetilde{\mathbf{v}}_{e}^{E} \cdot\left(\nabla \bar{h}_{e}+\nabla F_{0 e}\right)=-\frac{e F_{0 e}}{T_{e}} \frac{\partial \widetilde{\varphi}_{e}}{\partial t} \tag{10}\\
-\int d^{3} \mathbf{v} \left\lvert\, \widetilde{\mathbf{r}}_{e}=\left(\frac{e Z_{i}^{2} n_{i}}{T_{i}}+\frac{e n_{e}}{T_{e}}\right) \widetilde{\phi}\right. \tag{11}
\end{gather*}
$$

N.b. writing (10) in terms of \bar{g}_{e} and \widetilde{g}_{e} shows that the constant in θ piece of $\overline{\mathbf{v}}_{e}^{E}$ can be removed by a rotation \Rightarrow The parallel-to-the-field variation of $\overline{\mathbf{v}}_{e}^{E}$ matters

The Effect of Cross Scale Interaction on the ES ETG Instability

- The coupled equations capture the $O(1)$ effects of IS turbulence on ES fluctuations
- We pick Cyclone Base Case like (CBC) parameters where there is a separation of scales:

- We simulate the IS turbulence to obtain a sample of $\overline{\mathbf{v}}_{e}^{E}$ and $\nabla \bar{g}_{e}$
- We observe the effect on the ES ETG instability:

Strongly driven ETG $\left(a / L_{T_{\mathrm{e}}}=2.3\right)$

- persists in the presence of weakly driven $\left(a / L_{T_{\mathrm{i}}}=1.38\right)$ IS turbulence
- is suppressed by strongly driven ($a / L_{T_{\mathrm{i}}}=2.3$) IS turbulence

Sampling IS Turbulence with $a / L_{T_{i}}=1.38$

- Saturate IS turbulence
- Calculate $\nabla \bar{g}_{e}$
- Calculate $\overline{\mathbf{v}}_{e}^{E}$
- At 6 IS t_{s} times (blue dashes)
- At 6 radial $\left(x_{s}\right) \times 5$ binormal (y_{s}) IS positions (crosses)

Simulations: modification of ES linear physics: CBC $a / L_{T_{i}}=1.38$

Top Right: No IS gradients.
Below: IS gradients from different IS (x_{s}, y_{s}) locations

Moderate suppression

Simulations: modification of ES linear physics: CBC $a / L_{T_{i}}=1.38$

Top Right: No IS gradients.
Below: average ETG growth rate across all sampled IS $\left(x_{s}, y_{s}\right)$ locations and t_{s} times

Weak suppression!

Sampling IS Turbulence with $a / L_{T_{i}}=2.3$

Simulations: modification of ES linear physics: CBC $a / L_{T_{i}}=2.3$

Top Right: No IS gradients.
Below: IS gradients from different IS (x_{s}, y_{s}) locations

Strong suppression!

Simulations: modification of ES linear physics: CBC $a / L_{T_{i}}=2.3$

Top Right: No IS gradients.
Below: average ETG growth rate across all sampled IS $\left(x_{s}, y_{s}\right)$ locations and t_{s} times

Strong suppression!

Simulations: modification of ES linear physics: CBC $a / L_{T_{i}}=2.3$

Top Right: No IS gradients.
Below: average ETG growth rate across all sampled IS $\left(x_{s}, y_{s}\right)$ locations and t_{s} times

INCLUDING ONLY $\nabla \bar{g}_{e}\left(\right.$ with $\left.\overline{\mathbf{v}}_{e}^{E}=0\right)$ weak suppression!

Simulations: modification of ES linear physics: CBC $a / L_{T_{i}}=2.3$

Top Right: No IS gradients.
Below: average ETG growth rate across all sampled IS $\left(x_{s}, y_{s}\right)$ locations and t_{s} times

INCLUDING ONLY $\overline{\mathbf{v}}_{e}^{E}\left(\right.$ with $\left.\nabla \bar{g}_{e}=0\right)$
Strong suppression!

Simulations: A simple model of parallel-to-be-field shear in $\overline{\mathbf{v}}_{e}^{E}$

$$
\begin{equation*}
\overline{\mathbf{v}}_{e}^{E} \cdot \mathbf{k}_{f}=\hat{\omega}_{E} \theta, \tag{12}
\end{equation*}
$$

- Simplest possible form for $\overline{\mathbf{v}}_{e}^{E}$ with local parallel-to-the-field shear (consistent with flux tube \| b.c. Beer et al. (1995))

$$
\begin{align*}
& \left.\frac{\partial \bar{\phi}}{\partial y_{\mathrm{s}}}\right|_{x_{\mathrm{s}}}=-\hat{E},\left.\quad \frac{\partial \bar{\phi}}{\partial x_{\mathrm{s}}}\right|_{y_{\mathrm{s}}}=-\hat{s} \theta \hat{E}, \tag{13}\\
& \hat{\omega}_{E}=0.4\left(\frac{v_{\mathrm{th}, \mathrm{e}}}{a}\right)\left(K_{y} \rho_{\mathrm{th}, \mathrm{e}}\right)\left(\frac{\hat{E}}{T / e a}\right) . \tag{14}
\end{align*}
$$

- (13) leads to $\overline{\mathbf{v}}_{e}^{E} \cdot \mathbf{k}_{f}$ with linear variation e.g. (12) for $K_{x}=0$ (and our parameters)
- maximum ETG growth rate $\gamma^{\max }(\hat{E})$ shows suppression for all $\hat{E} \neq 0$
- \Rightarrow Qualitative explanation of ETG behaviour in the presence of IS turbulence
- suppression when
$\hat{\omega}_{E}=0.4 \times 0.5 \times 1.0\left(\frac{v_{\text {th }, \mathrm{e}}}{a}\right) \sim$
$\gamma^{\max }(\hat{E}=0) \simeq 0.1$

Simulations: A simple model of parallel-to-be-field shear in $\overline{\mathbf{v}}_{e}^{E}$

Top Right: No IS gradients.
Below: ETG growth rate with model $\overline{\mathbf{v}}_{e}^{E}$; (left) $\hat{E}=0.5 T / e a$ (right) $\hat{E}=1.0 T / e a$

Strong suppression!

Conclusions

We have derived coupled, scale-separated equations for IS and ES turbulence.
We assumed

- $\left(m_{e} / m_{i}\right)^{1 / 2} \rightarrow 0$; space and time separation; no other small parameters
- spatial isotropy - IS $l_{\perp} \sim \rho_{\mathrm{th}, \mathrm{i}} ; \mathrm{ES} l_{\perp} \sim \rho_{\mathrm{th}, \mathrm{e}}$
- negligible direct cascade; separation in the fluctuation spectrum

The model

- efficiently captures cross-scale interactions which persist as $\left(m_{e} / m_{i}\right)^{1 / 2} \rightarrow 0$
- is simulated in a system of coupled ES flux tubes nested in an IS flux tube

We found that

- strongly driven ETG $\left(a / L_{T_{\mathrm{e}}}=2.3\right)$
- persists in the presence of weakly driven $\left(a / L_{T_{\mathrm{i}}}=1.38\right)$ IS turbulence
- is suppressed by strongly driven $\left(a / L_{T_{\mathrm{i}}}=2.3\right)$ IS turbulence
- the primary mechanism responsible for the suppression is parallel-to-the-field variation in $\overline{\mathbf{v}}_{e}^{E}$
- a simple model of local parallel-to-the-field variation in the flow qualitatively explains the result

Questions for Future Work

- Can we retain the effect of ES turbulence on IS fluctuations by taking other parameters to be small?
- distance to marginal stability
- zonal to non-zonal amplitude
- By taking other parameters to be small, can we find scalings where the ES fluctuation amplitude is comparable to the IS fluctuation amplitude?
- What is the perpendicular scale of an ETG streamer? Dorland et al. (2000); Jenko et al. (2000); Jenko and Dorland (2002); Guttenfelder and Candy (2011)
- Is it possible to enforce time scale separation if ETG turbulence saturates slowly? Colyer et al. (2017); Nakata et al. (2010)
- What is the effect of IS turbulence on non-linear ETG saturation?
- What changes in this picture with electromagnetic fluctuations?

Thank You for Listening!

The authors would like to thank A. A. Schekochihin, P. Dellar, W. Dorland, S. C. Cowley, J. Ball, A. Geraldini, N. Christen, A. Mauriya, P. Ivanov, Y. Kawazura, J. Parisi, M. Abazorius and O. Beeke for useful discussion. M. R. Hardman would like to thank the Wolfgang Pauli Institute for providing a setting for discussion and funding for travel.
This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053 and from the RCUK Energy Programme [grant number EP/P012450/1]. The views and opinions expressed herein do not necessarily reflect those of the European Commission. The authors acknowledge EUROfusion, the EUROfusion High Performance Computer (Marconi-Fusion), the use of ARCHER through the Plasma HEC Consortium EPSRC grant numbers EP/L000237/1 and $E P / R 029148 / 1$ under the projects e281-gs2, and software support from Joseph Parker through the Plasma-CCP Network under EPSRC grant number EP/M022463/1.
F. Jenko and W. Dorland. Phys. Rev. Lett., 89:225001, 2002.
Y. Ren, E. Belova, N. Gorelenkov, W. Guttenfelder, S.M. Kaye, E. Mazzucato, J.L. Peterson, D.R. Smith, D. Stutman, K. Tritz, W.X. Wang, H. Yuh, R.E. Bell, C.W. Domier, and B.P. LeBlanc. Nuclear Fusion, 57(7):072002, 2017.
N.T. Howard, C. Holland, A.E. White, M. Greenwald, and J. Candy. Nuclear Fusion, 56:014004, 2016.
S Maeyama, Y Idomura, T-H Watanabe, M Nakata, M Yagi, N Miyato, A Ishizawa, and M Nunami. Physical review letters, 114(25):255002, 2015.
S. Maeyama, T.-H. Watanabe, Y. Idomura, M. Nakata, A. Ishizawa, and M. Nunami. Nuclear Fusion, 57:066036, 2017.
N. Bonanomi, P. Mantica, J. Citrin, T. Goerler, and B. Teaca and. Nuclear Fusion, 58:124003, 2018.
T Görler and F Jenko. Physical review letters, 100(18):185002, 2008.
J Candy, R E Waltz, M R Fahey, and C Holland. Plasma Physics and Controlled Fusion, 49(8):1209, 2007.
R E Waltz, J Candy, and M Fahey. Physics of plasmas, 14(5):056116, 2007.
M. R. Hardman, M. Barnes, C. M. Roach, and F. I. Parra. Plasma Physics and Controlled Fusion, 2019.
M. A. Beer, S. C. Cowley, and G. W. Hammett. Physics of Plasmas, 2(7): 2687-2700, 1995.
W. Dorland, F. Jenko, M. Kotschenreuther, and B. N. Rogers. Phys. Rev. Lett., 85:5579-5582, 2000.
F. Jenko, W. Dorland, M. Kotschenreuther, and B. N. Rogers. Physics of Plasmas, 7:1904-1910, 2000.
W. Guttenfelder and J. Candy. Physics of Plasmas, 18:022506, 2011.

G J Colyer, A A Schekochihin, F I Parra, C M Roach, M A Barnes, Y c Ghim, and W Dorland. Plasma Physics and Controlled Fusion, 59:055002, 2017.
M. Nakata, T.-H. Watanabe, H. Sugama, and W. Horton. Physics of Plasmas, 17: 042306, 2010.

Simulations: A simple model of parallel-to-be-field shear in $\overline{\mathbf{v}}_{e}^{E}$

Top Right: ETG growth rate $\gamma(\hat{E})$ for $K_{y} \rho_{\mathrm{th}, \mathrm{e}}=0.57, \hat{\theta}_{0}=0.0$.

Below: (left) corresponding eigenmodes (right) corresponding drift coefficients

Drift Freq. for $K_{y} \rho_{\mathrm{th}, \mathrm{e}}=0.57, \hat{\theta}_{0}=0.00$

Separating IS and ES Turbulence: Technicalities

- We introduce a fast spatial variable \mathbf{r}_{f} and a slow spatial variable \mathbf{r}_{s} and the fast and slow times t_{f}, t_{s}
- In the gyrokinetic equation we send,

$$
\begin{equation*}
\delta f(t, \mathbf{r}) \rightarrow \delta f\left(t_{s}, t_{f}, \mathbf{r}_{s}, \mathbf{r}_{f}\right), \quad \nabla \rightarrow \nabla_{s}+\nabla_{f}, \quad \frac{\partial}{\partial t} \rightarrow \frac{\partial}{\partial t_{s}}+\frac{\partial}{\partial t_{f}} \tag{15}
\end{equation*}
$$

- then asymptotically expand in the mass ratio $\left(m_{e} / m_{i}\right)^{1 / 2}$
- remembering $\nabla_{s} \sim\left(m_{e} / m_{i}\right)^{1 / 2} \nabla_{f}$, and $\partial / \partial t_{s} \sim\left(m_{e} / m_{i}\right)^{1 / 2} \partial / \partial t_{f}$
- explicitly define the ES average,
$\overline{\delta f}\left(t_{s}, \mathbf{r}_{s}\right)=\left\langle\delta f\left(t_{s}, t_{f}, \mathbf{r}_{s}, \mathbf{r}_{f}\right)\right\rangle^{\mathrm{ES}}=\frac{1}{\tau_{c} A} \int_{t_{s}-\tau_{c} / 2}^{t_{s}+\tau_{c} / 2} d t_{f} \int_{A, \mathbf{r}_{s}} d^{2} \mathbf{r}_{f} \delta f\left(t_{s}, t_{f}, \mathbf{r}_{s}, \mathbf{r}_{f}\right)$,
- We assume that,

$$
\begin{equation*}
\delta f\left(t_{s}, t_{f}, \mathbf{r}_{s}, \mathbf{r}_{f}\right)=\delta f\left(t_{s}, t_{f}, \mathbf{r}_{s}, \mathbf{r}_{f}+n \Delta_{c x} \hat{\mathbf{x}}+m \Delta_{c y} \hat{\mathbf{y}}\right), \tag{17}
\end{equation*}
$$

- This enforces $\langle\widetilde{\delta f}\rangle^{\text {ES }}=0$.

Splitting the Quasi-Neutrality Relation

- We split the guiding centre into a slow \mathbf{R}_{s} and a fast \mathbf{R}_{f} part.
- $\mathbf{R}=\mathbf{r}-\rho(\mathbf{r})$, where $\rho(\mathbf{r})$ is the vector gyroradius
- Thus using the periodicity property equation (17) the ES average may be taken over guiding centre or real space coordinates.
- This observation allows us to note that the ES average commutes with the gyro average,

$$
\begin{equation*}
\left\langle\left.\frac{1}{2 \pi} \int_{0}^{2 \pi} d \gamma\right|_{\mathbf{R} \phi} \phi\left(\mathbf{r}_{s}, \mathbf{r}_{f}\right)\right\rangle^{\mathrm{ES}}=\left.\frac{1}{2 \pi} \int_{0}^{2 \pi} d \gamma\right|_{\mathbf{R}}\left\langle\phi\left(\mathbf{r}_{s}, \mathbf{r}_{f}\right)\right\rangle^{\mathrm{ES}}=\left.\frac{1}{2 \pi} \int_{0}^{2 \pi} d \gamma\right|_{\mathbf{R}} \bar{\phi}\left(\mathbf{r}_{s}\right) \tag{18}
\end{equation*}
$$

The splitting of the quasi neutrality relation follows directly,

$$
\begin{align*}
\left.\sum_{\alpha} Z_{\alpha} \int d^{3} \mathbf{v}\right|_{\mathbf{r}} \bar{h}_{\alpha}\left(\mathbf{R}_{s}\right) & =\sum_{\alpha} \frac{Z_{\alpha}^{2} e n_{\alpha}}{T_{\alpha}} \bar{\phi}\left(\mathbf{r}_{s}\right) \tag{19}\\
\sum_{\alpha} Z_{\alpha} \int d^{3} \mathbf{v} \mid \mathbf{r} \widetilde{h}_{\alpha}\left(\mathbf{R}_{s}, \mathbf{R}_{f}\right) & =\sum_{\alpha} \frac{Z_{\alpha}^{2} e n_{\alpha}}{T_{\alpha}} \widetilde{\phi}\left(\mathbf{r}_{s}, \mathbf{r}_{f}\right) \tag{20}
\end{align*}
$$

Addressing the Non-Locality of the Gyro Average

- Taking the gyro average at fixed guiding centre $\left.\langle\cdot\rangle\right|_{\mathbf{R}} ^{\text {gyro }}$, couples multiple \mathbf{r}_{s} points.
- but we aim to find scale separated equations!
- Expanding both the slow and the fast spatial variable in Fourier series we note that,

$$
\begin{gather*}
\widetilde{\varphi}\left(t_{s}, t_{f}, \mathbf{R}_{s}, \mathbf{R}_{f}\right)=\left.\left\langle\widetilde{\phi}\left(t_{s}, t_{f}, \mathbf{r}_{s}, \mathbf{r}_{f}\right)\right\rangle\right|_{\mathbf{R}} ^{\text {gyro }}=\left.\frac{1}{2 \pi} \int_{0}^{2 \pi} d \gamma\right|_{\mathbf{R}} \widetilde{\phi}\left(t_{s}, t_{f}, \mathbf{r}_{s}, \mathbf{r}_{f}\right) \\
=\left.\frac{1}{2 \pi} \int_{0}^{2 \pi} d \gamma\right|_{\mathbf{R}} \sum_{\mathbf{k}_{s}, \mathbf{k}_{f}} \widetilde{\phi}_{\mathbf{k}_{s}, \mathbf{k}_{f}} e^{i \mathbf{k}_{s} \cdot \mathbf{r}_{s}} e^{i \mathbf{k}_{f} \cdot \mathbf{r}_{f}} \\
=\sum_{\mathbf{k}_{s}, \mathbf{k}_{f}} \widetilde{\phi}_{\mathbf{k}_{s}, \mathbf{k}_{f}} e^{i \mathbf{k}_{s} \cdot \mathbf{R}_{s}} e^{i \mathbf{k}_{f} \cdot \mathbf{R}_{f}} J_{0}\left(\left|\left(\mathbf{k}_{s}+\mathbf{k}_{f}\right)\right| \rho\right) \tag{21}
\end{gather*}
$$

for electrons:

- $\left|\mathbf{k}_{f}\right| \rho_{e} \sim 1$ and $\left|\mathbf{k}_{s}\right| \rho_{e} \sim\left(m_{e} / m_{i}\right)^{1 / 2}$
- we can expand the Bessel function to return to a local picture in the slow variable with $O\left(m_{e} / m_{i}\right)^{1 / 2}$ error.
- We will exploit this in scale separation.
for ions:
- $\left|\mathbf{k}_{s}\right| \rho_{i} \sim 1$ and $\left|\mathbf{k}_{f}\right| \rho_{i} \sim\left(m_{e} / m_{i}\right)^{-1 / 2}$.
- we are unable to expand the Bessel function
- we are unable to avoid the coupling of multiple \mathbf{r}_{s} in the equations for ions at ES

Addressing the Non-Locality of the Gyro Average: continued

- we can neglect the ion contribution to ES quasi neutrality
- ion gyroradius \gg ES fluctuation scale length \rightarrow ion can only respond to a large-scale average of ES potential
- $J_{0}\left(\left|\mathbf{k}_{f}\right| \rho_{i}\right) \sim\left(m_{e} / m_{i}\right)^{1 / 4} \ll 1$
- Hence,

$$
\begin{gather*}
\widetilde{\varphi}_{e}\left(t_{s}, t_{f}, \mathbf{R}_{s}, \mathbf{R}_{f}\right)=\sum_{\mathbf{k}_{s}, \mathbf{k}_{f}} \widetilde{\phi}_{\mathbf{k}_{s}, \mathbf{k}_{f}} e^{i \mathbf{k}_{s} \cdot \mathbf{R}_{s}} e^{i \mathbf{k}_{f} \cdot \mathbf{R}_{f}} J_{0}\left(\left|\left(\mathbf{k}_{s}+\mathbf{k}_{f}\right)\right| \rho\right) \\
=-\frac{T_{e}}{n_{e} e} \sum_{\mathbf{k}_{s}, \mathbf{k}_{f}} e^{i \mathbf{k}_{s} \cdot \mathbf{R}_{s}} e^{i \mathbf{k}_{f} \cdot \mathbf{R}_{f}} J_{0}\left(\left|\left(\mathbf{k}_{s}+\mathbf{k}_{f}\right)\right| \rho\right) \int d^{3} \mathbf{v} \widetilde{h}_{e, \mathbf{k}_{s}, \mathbf{k}_{f}} J_{0}\left(\left|\left(\mathbf{k}_{s}+\mathbf{k}_{f}\right)\right| \rho\right) \tag{22}
\end{gather*}
$$

- now we use that,

$$
\begin{equation*}
J_{0}\left(\left|\left(\mathbf{k}_{s}+\mathbf{k}_{f}\right)\right| \rho_{e}\right)=J_{0}\left(\left|\mathbf{k}_{f}\right| \rho_{e}\right)+O\left(\left.\mathbf{k}_{s} \cdot \mathbf{k}_{f} \rho_{e}^{2} \frac{d J_{0}(z)}{d z}\right|_{z=\left|\mathbf{k}_{f}\right| \rho_{e}}\right) \tag{23}
\end{equation*}
$$

- exploit that $\left|\mathbf{k}_{s}\right| \rho_{e} \sim\left(m_{e} / m_{i}\right)^{1 / 2}$ to bring \mathbf{R}_{s} under the velocity integral
- regard \mathbf{R}_{s} as a fixed parameter in the integration, to find,

$$
\begin{gather*}
\widetilde{\varphi}_{e}\left(t_{s}, t_{f}, \mathbf{R}_{s}, \mathbf{R}_{f}\right)=-e\left(\sum_{\nu} \frac{Z_{\nu}^{2} n_{\nu} e^{2}}{T}\right)^{-1} \sum_{\mathbf{k}_{f}} e^{i \mathbf{k}_{f} \cdot \mathbf{R}_{f}} J_{0}\left(\left|\left(\mathbf{k}_{s}+\mathbf{k}_{f}\right)\right| \rho\right) \\
\times\left.\int d^{3} \mathbf{v}\right|_{\mathbf{R}_{s}} \widetilde{h}_{e \mathbf{k}_{f}}\left(\mathbf{R}_{s}\right) J_{0}\left(\left|\mathbf{k}_{f}\right| \rho_{e}\right)\left(1+O\left(\left(m_{e} / m_{i}\right)^{1 / 2}\right)\right) \tag{24}
\end{gather*}
$$

- we can evaluate quasi-neutrality purely locally in the slow variable.

Splitting the Gyrokinetic Equation

- we apply the ES average to the gyrokinetic equation
- we neglect terms which are small by $\left(m_{e} / m_{i}\right)^{1 / 2}$

Ion scale equation:

$$
\begin{equation*}
\frac{\partial \bar{h}}{\partial t_{s}}+v_{\|} \mathbf{b} \cdot \nabla \theta \frac{\partial \bar{h}}{\partial \theta}+\left(\mathbf{v}^{M}+\overline{\mathbf{v}}^{E}\right) \cdot \nabla_{s} \bar{h}+\nabla_{s} \cdot\left\langle\frac{c}{B} \widetilde{h} \widetilde{\mathbf{v}}^{E}\right\rangle^{\mathrm{ES}}+\overline{\mathbf{v}}^{E} \cdot \nabla F_{0}=\frac{Z e F_{0}}{T} \frac{\partial \bar{\varphi}}{\partial t_{s}} . \tag{25}
\end{equation*}
$$

- we subtract the IS equation from the full equation and neglect terms
- The electron equation is orbital averaged to remove fasts electron streaming timescales
- We consistently take $\bar{h}_{e}=0$ for non-zonal passing electrons, for which $\bar{h}_{e} \sim\left(m_{e} / m_{i}\right)^{1 / 2}$
ES equation:

$$
\begin{equation*}
\frac{\partial \widetilde{h}}{\partial t_{f}}+v_{\|} \mathbf{b} \cdot \nabla \theta \frac{\partial \widetilde{h}}{\partial \theta}+\left(\mathbf{v}^{M}+\widetilde{\mathbf{v}}^{E}+\overline{\mathbf{v}}^{E}\right) \cdot \nabla_{f} \widetilde{h}+\widetilde{\mathbf{v}}^{E} \cdot\left(\nabla_{s} \bar{h}+\nabla F_{0}\right)=\frac{Z e F_{0}}{T} \frac{\partial \widetilde{\varphi}}{\partial t_{f}} \tag{26}
\end{equation*}
$$

where

$$
\begin{equation*}
\overline{\mathbf{v}}^{E}=\frac{c}{B} \mathbf{b} \wedge \nabla_{s} \bar{\varphi}, \quad \widetilde{\mathbf{v}}^{E}=\frac{c}{B} \mathbf{b} \wedge \nabla_{f} \widetilde{\varphi} \tag{27}
\end{equation*}
$$

Note that,

- there are two additional terms on the ES, $\widetilde{\mathbf{v}}^{E} \cdot \nabla_{f} \widetilde{h}$ and $\widetilde{\mathbf{v}}^{E} \cdot \nabla_{s} \bar{h}$
- there is one new term at the IS, $\nabla_{s} \cdot\left\langle\frac{c}{B} \widetilde{h} \widetilde{\mathbf{v}}^{E}\right\rangle^{\text {ES }}$
- $\overline{\mathbf{v}}^{E}$ cannot be removed with the boost or a solid body rotation because of the θ dependence of $\bar{\varphi}$

Critical balance

Note $\nabla \widetilde{\phi} \sim \nabla \bar{\phi}$
\Rightarrow eddy $\mathrm{E} \times \mathrm{B}$ drifts $v_{\mathrm{E} \times \mathrm{B}}$, are comparable at all scales

- applying the critical balance argument
- $v_{t e} / \widetilde{l}_{\|} \sim \widetilde{\tau}_{n l}^{-1} \sim \widetilde{v}_{\mathrm{E} \times \mathrm{B}} / \widetilde{l}_{\perp}$
- $v_{t i} / \bar{l}_{\|} \sim \bar{\tau}_{n l}^{-1} \sim \bar{v}_{\mathrm{E} \times \mathrm{B}} / \bar{l}_{\perp}$
- $\tilde{l}_{\|} \sim \bar{l}_{\|}$
\Rightarrow parallel correlation lengths are the same for IS and ES eddies
\Rightarrow parallel correlation length are set by the system size - distance between stabilising inboard midplane regions parallel to the field
$\Rightarrow \widetilde{l}_{\|} \sim \bar{l}_{\|} \sim a$
\Rightarrow ES eddies are long enough to be differentially advected by $\bar{v}_{\mathrm{E} \times \mathrm{B}}$

Scaling Work: the Relative Size of the Fluctuations

- The usual gyro-Bohm ordering is the only ordering which results in non-linearly saturated balance

$$
\begin{gather*}
\frac{e \bar{\phi}}{T} \sim \rho_{i *}, \quad \frac{e \widetilde{\phi}}{T} \sim \rho_{e *} \tag{28}\\
\frac{\bar{h}_{i}}{F_{0 i}} \sim \frac{\bar{h}_{e}}{F_{0 e}} \sim \frac{e \bar{\phi}}{T}, \quad \frac{\widetilde{h}_{e}}{F_{0 e}} \sim \frac{e \widetilde{\phi}}{T}, \quad \frac{\widetilde{h}_{i}}{F_{0 i}} \sim\left(\frac{m_{e}}{m_{i}}\right)^{1 / 4} \frac{e \widetilde{\phi}}{T} \tag{29}
\end{gather*}
$$

- We can show that the following orderings are inconsistent with dominant balance under our assumptions

$$
\begin{gather*}
\frac{e \bar{\phi}}{T} \gg \rho_{i *} \tag{30}\\
\frac{e \widetilde{\phi}}{T} \gg \rho_{e *} \tag{31}\\
\frac{e \bar{\phi}}{T} \ll \rho_{i *}, \quad \frac{e \widetilde{\phi}}{T} \sim \rho_{e *} \tag{32}
\end{gather*}
$$

- The following ordering is possible only when the ES fluctuations are stabilised by the IS turbulence

$$
\begin{equation*}
\frac{e \bar{\phi}}{T} \sim \rho_{i *}, \quad \frac{e \widetilde{\phi}}{T} \ll \rho_{e *} \tag{33}
\end{equation*}
$$

Scaling Work: Neglecting Ions at ES

note that:

- $J_{0}\left(\mathbf{k}_{f} \rho_{i}\right) \sim\left(m_{e} / m_{i}\right)^{1 / 4}$
- so:

$$
\begin{equation*}
\left.\int d^{3} \mathbf{v}\right|_{\mathbf{r}} \widetilde{h}_{i} \sim\left(\frac{m_{e}}{m_{i}}\right)^{1 / 4}\left(\frac{m_{e}}{m_{i}}\right)^{1 / 4} \frac{e n \widetilde{\phi}}{T} \tag{34}
\end{equation*}
$$

Ions at ES can be neglected to $O\left(\left(m_{e} / m_{i}\right)^{1 / 2}\right)$ in the ES equations!
note that:
$-\nabla_{s} \cdot\left\langle\frac{c}{B} \widetilde{h}_{i} \widetilde{\mathbf{v}}_{i}^{E}\right\rangle^{\mathrm{ES}} \sim O\left(\left(m_{e} / m_{i}\right) \overline{\mathbf{v}}_{i}^{E} \cdot \bar{h}_{i}\right)$
Ions at ES can be neglected to $O\left(m_{e} / m_{i}\right)$ in the IS equations!

Scaling Work: which multiscale terms do we keep?

The only remaining multiscale terms are in electron species equations:
note that:

- $\widetilde{\mathbf{v}}_{e}^{E} \cdot \nabla_{s} \bar{h}_{e} \sim \overline{\mathbf{v}}_{e}^{E} \cdot \nabla_{f} \widetilde{h}_{e} \sim \widetilde{\mathbf{v}}_{e}^{E} \cdot \nabla_{f} \widetilde{h}_{e}$
- IS gradients contribute at $O(1)$ to the ES
- IS perpendicular shear in $\overline{\mathbf{v}}_{e}^{E}$ can be neglected to $O\left(\left(m_{e} / m_{i}\right)^{1 / 2}\right)$ at the ES
- $\nabla_{s} \cdot\left\langle\frac{c}{B} \widetilde{h}_{e} \widetilde{\mathbf{v}}_{e}^{E}\right\rangle^{\mathrm{ES}} \sim O\left(\left(m_{e} / m_{i}\right)^{1 / 2} \overline{\mathbf{v}}_{e}^{E} \cdot \bar{h}_{e}\right)$
- back reaction contributes at $O\left(\left(m_{e} / m_{i}\right)^{1 / 2}\right)$ to the electron equation at IS
- small and therefore neglected along with the effect of non-zonal passing electrons

The Parallel Boundary Condition

- ψ : radial, α : field line label, θ : poloidal angle, ζ : toroidal angle
- $\alpha(\zeta, \theta, \psi)=\alpha_{0}+\zeta-q_{0}(\psi) \theta=\alpha_{0}+\zeta-q_{0} \theta+q_{0}^{\prime}\left(\psi-\psi_{0}\right) \theta$
- $\alpha(\zeta, \theta+2 \pi, \psi)-\alpha(\zeta, \theta, \psi)=-2 \pi q_{0}-2 \pi q_{0}^{\prime}\left(\psi-\psi_{0}\right)$

$$
\begin{equation*}
A(\theta+2 \pi, \alpha(\zeta, \theta+2 \pi, \psi), \psi)=A(\theta, \alpha(\zeta, \theta, \psi), \psi) \tag{35}
\end{equation*}
$$

Beer et al. (1995)
\Rightarrow b.c. enforces statistical periodicity on a (ψ, ζ) plane
\Rightarrow b.c. couples in α

The Parallel Boundary Condition

- A) view along the toroidal symmetry axis, of a flux tube, in yellow, with parallel ends in magenta. The flux surface is in grey.
- B) flux tube viewed perpendicular to the toroidal symmetry axis.

The Parallel Boundary Condition

Notation for ES
fluctuations
$\widetilde{A}(\theta+2 \pi \underbrace{, \alpha_{f}, \psi_{f}}_{\text {ES coords }} ; \overbrace{\left.; \alpha_{s}, \psi_{s}\right)}^{\text {IS coords }}$

\Rightarrow ES boundary
condition
$\widetilde{A}\left(\theta, \alpha\left(\zeta, \theta, \psi_{f}\right), \psi_{f} ; \alpha\left(\zeta, \theta, \psi_{s}\right), \psi_{s}\right)$

$$
=\widetilde{A}\left(\theta+2 \pi, \alpha\left(\zeta, \theta+2 \pi, \psi_{f}\right), \psi_{f} ; \alpha\left(\zeta, \theta+2 \pi, \psi_{s}\right), \psi_{s}\right)
$$

$$
(36)
$$

Electrons at IS

