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What is the Gkeyll Project?

The Gkeyll Project aims to develop a computational plasma physics tool to
simulate plasmas at (almost) all scales.

• Group of graduate students, postdocs and senior researchers, spanning
multiple institutes (PPPL, PU, Virginia Tech, MIT) working of various
aspects of algorithm development and physics applications.

• Group is focused on developing the Gkeyll code1 and applying it to
various physics problems.

• Spans scales from full kinetic (Vlasov-Maxwell), to EM gyrokinetics to
muti-fluid moment models

• All solvers share common framework, allowing people to work on different
aspects of the code and make an impact on the broader project

1See http://gkeyll.rtfd.io
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Part I: The Vlasov-Maxwell System

The core team: Jason TenBarge, Jimmy Juno, and Petr Cagas,
Mana Francisquez.
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Kinetic physics from first-principles

We would like to solve the Vlasov-Maxwell system, treating it as a
partial-differential equation (PDE) in 6D:

∂fs
∂t

+∇x · (vfs) +∇v · (Fs fs) =

(
∂fs
∂t

)
c

where Fs = qs/ms(E + v × B). The EM fields are determined from
Maxwell equations

∂B

∂t
+∇× E = 0

ε0µ0
∂E

∂t
−∇× B = −µ0J
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Solve VM system efficiently and conserve invariants

We know that the Vlasov-Maxwell system conserves, total number of
particles; total (field + particle) momentum; total (field + particle)
energy; other invariants. Can a numerical scheme be designed that
retains (some or all) of these properties?

For understanding kinetic turbulence and other problems, we would
like a noise-free algorithm that allows studying phase-space structures
correctly, in a noise-free manner.

Explore high-order discontinuous Galerkin algorithms to directly
discretize the Vlasov-Maxwell system.
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DG represents state-of-art for hyperbolic PDEs

DG algorithms hot topic in CFD and applied mathematics.

• First introduced by Reed and Hill in 1973 as a conference paper to solve
steady-state neutron transport equations. More than 2100 citations.

• Some earlier work on solving elliptic equations by Nitsche in 1971
(original paper in German). Introduced the idea of “interior penalty”.
Usually, though, DG is not used for elliptic problems. Paradoxically,
perhaps DG may be even better for certain elliptic/parabolic problems.

• Key paper for nonlinear systems in multiple dimensions is by Cockburn
and Shu (JCP, 141, 199-224, 1998). More than 1700 citations.

• Almost continuous stream of papers in DG, both for fundamental
formulations and applications to physics and engineering problems. This
continues to be an active area of research, and at present DG is
under-utilized in plasma physics.
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What are discontinuous Galerkin schemes?

Discontinuous Galerkin schemes are a class of Galerkin schemes in
which the solution is represented using piecewise discontinuous
functions.

• Galerkin minimization

• Piecewise discontinuous representation
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Essential ideas

Consider a general time-dependent problem on x ∈ [−1, 1]:

f ′(x , t) = G [f ]

where G [f ] is some operator. To approximate it expand f (x) with our basis
functions Pk(x),

f (x , t) ≈ fh(x , t) =
N∑

k=1

fk(t)Pk(x)

This gives discrete system

N∑
k=1

f ′kPk(x) = G [fh]

Question

How to determine f ′k in an optimum manner?
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Essential idea

Answer: Do an L2 minimization of the error, i.e. find f ′k such that the error
as defined by our selected norm is minimized.

EN =

∥∥∥∥∥
N∑

k=1

f ′kPk(x)− G [fh]

∥∥∥∥∥
2

=

∫ 1

−1

[
N∑

k=1

f ′kPk(x)− G [fh]

]2

dx

For minimum error ∂EN/∂f
′
m = 0 for all k = 1, . . . ,N. This leads to the

linear system that determines the coefficients f ′k∫ 1

−1

Pm(x)

(
N∑

k=1

f ′kPk(x)− G [fh]

)
dx = 0

for all m = 1, . . . ,N. This will give

f ′k =
2k + 1

2

∫ 1

−1

Pk(x)G [fh] dx
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What does a typical L2 fit look like?

In discontinuous Galerkin schemes we split interval into cells and use
Galerkin scheme in each cell. This will naturally lead to
discontinuities across cell boundaries.

Figure: The best L2 fit of x4 + sin(5x) with piecewise linear (left) and
quadratic (right) basis functions.
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Weak-equality and recovery

• It is important to remember that the discontinuous Galerkin solution is a
representation of the solution and not the solution itself.

• Notice that even a continuous function will, in general, have a discontinuous
representation in DG.

We can formalize this idea using the concept of weak-equality. Choose an inner
product, for example

(f , g) ≡
∫
I

f (x)g(x) dx .

Definition (Weak equality)

Two functions, f and g are said to be weakly equal if

(ψk , f − g) = 0

for all k = 1, . . . ,N. We denote weak equality by

f
.

= g .
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Weak-equality and recovery

• Notice that weak-equality depends on the function space as well as the
inner-product we selected.

• The Galerkin L2 minimization is equivalent to, for example, restating that

f ′(x , t)
.

= G [f ]

This implies (
ψk , f

′(x , t) − G [f ]
)

= 0

which is exactly what we obtained by minimizing the error defined using the L2

norm.

• Hence, we can say that the DG scheme only determines the solution in the
weak-sense, that is, all functions that are weakly equal to DG representation
can be potentially interpreted as the actual solution.

• This allows a powerful way to construct schemes with desirable properties by
recovering weakly-equal functions using the DG representations.
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We use DG for both Vlasov and Maxwell equations

Start from Vlasov equation written as advection equation in
phase-space:

∂fs
∂t

+∇z · (αfs) = 0

where advection velocity is given by α = (v, q/m(E + v × B)).

To derive the semi-discrete Vlasov equation using a discontinuous
Galerkin algorithm, we introduce phase-space basis functions w(z),
and derive the discrete scheme:∫

Kj

w
∂fh
∂t

dz +

∮
∂Kj

w−n · F̂ dS −
∫
Kj

∇zw ·αhfh dz = 0

13 / 23 Gkyell Continuum (Gyro)kinetics A. Hakim



We use DG for both Vlasov and Maxwell equations

Multiply Maxwell equations by basis ϕ and integrate over a cell. We have
terms like ∫

Ωj

ϕ∇× E︸ ︷︷ ︸
∇×(ϕE)−∇ϕ×E

d3x.

Gauss law can be used to convert one volume integral into a surface integral∫
Ωj

∇× (ϕE) d3x =

∮
∂Ωj

ds× (ϕE)

Using these expressions we can now write the discrete weak-form of Maxwell
equations as∫

Ωj

ϕ
∂Bh

∂t
d3x +

∮
∂Ωj

ds× (ϕ−Êh)−
∫

Ωj

∇ϕ× Eh d
3x = 0

ε0µ0

∫
Ωj

ϕ
∂Eh

∂t
d3x−

∮
∂Ωj

ds× (ϕ−B̂h) +

∫
Ωj

∇ϕ× Bh d
3x = −µ0

∫
Ωj

ϕJh d
3x.
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Is energy conserved? Are there any constraints?

Answer: Yes! If one is careful. We want to check if

d

dt

∑
j

∑
s

∫
Kj

1

2
m|v|2fh dz +

d

dt

∑
j

∫
Ωj

(
ε0

2
|Eh|2 +

1

2µ0
|Bh|2

)
d3x = 0

Proposition

If central-fluxes are used for Maxwell equations, and if |v|2 is projected to
the approximation space, the semi-discrete scheme conserves total (particles
plus field) energy exactly.

The proof is rather complicated, and needs careful analysis of the discrete
equations (See Juno et. al. JCP 2018)

Remark

If upwind fluxes are used for Maxwell equations, the total energy will decay
monotonically. Note that the energy conservation does not depend on the
fluxes used to evolve Vlasov equation.
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A model Fokker-Planck operator implemented

We have implemented the Dougherty Lenard-Bernstein operator
(DLBO) written in the form(

∂fs
∂t

)
c

= − ∂

∂vi
(〈∆vi 〉s fs) +

1

2

∂2

∂vi∂vj

(
〈∆vi∆vj〉s fs

)
.

Instead of the full Fokker-Planck operator we use the simplified
expressions

〈∆vi 〉s = −νs (vi − us,i )

〈∆vi∆vj〉s = 2νsv
2
th,sδij

where v2
th,s = Ts/ms . Note that velocity dependent collision

frequency is not captured. However, it illustrates most of the
difficulties and is a step towards a full Fokker-Planck operator.
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To give and not to count the cost ...

Question: Are continuum schemes competitive compared to PIC schemes in terms
of cost for a given accuracy?

I am not completely sure and it probably depends on what you are looking for.

In general, if one is interested in detailed phase-space structure of distribution
function, then continuum scheme can be very efficient as the lack of noise allows
interpretation of data (for turbulence, for example) easier.

Our recent algorithmic innovations in constructing special basis sets and using
CAS generated code has shown that continuum schemes can be made to scale as
number of basis functions in phase-space. (In standard DG, the schemes usually
scale quadratically or cubially with number of basis functions!). This is potentially
a game-changer as efficiency improves dramatically (at the cost of more complex
code (however, no one really needs to read the code!)).
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Part II: Electromagnetic Gyrokinetics

The core team: Noah Mandell, Tess Bernard, Mana Francisquez
and Greg Hammett.
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A general class of Hamiltonian evolution equations

Evolution of distribution function can be described as Hamiltonian system

∂f

∂t
+ {f ,H} = 0

f (t, z) is distribution function, H(z) is Hamiltonian and {g , f } is the
Poisson bracket operator. The coordinates z = (z1, . . . , zN) label the
N-dimensional phase-space.
Defining α = (ż1, . . . , żN), where ż i = {z i ,H}, gives

∂

∂t
(J f ) +∇z · (Jαf ) = 0

where J is Jacobian of the (potentially) non-canonical coordinates. Note
that flow in phase-space is incompressible, i.e. ∇z · (Jα) = 0.
We need three ingredients: Hamiltonian, Poisson Bracket, and field equation.
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Long wavelength limit of gyrokinetics, straight B field

From the Hamiltonian

H =
1

2
mv2
‖ + µB + qφ

and Poisson bracket

{F ,G} =
1

m

(
∂F

∂z

∂G

∂v‖
− ∂G

∂v‖

∂G

∂z

)
− c

qB
b · ∇F ×∇G .

we obtain a long wavelength limit of gyrokinetics in straight field lines

∂f

∂t
+

∂

∂z

(
v||f
)

+∇ · (~vE f ) +
∂

∂v||

( q

m
E||f

)
= C [f ] + S

The electrostatic field is determined by

−∇⊥ · (ε⊥∇⊥φ) = 4π
∑
s

q

∫
d3vf ≡ 4π%gc

where ε⊥(~x) = c2/v2
A0 = c24πn0(~x)mi/B

2 is the plasma perpendicular
dielectric coefficient.
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Important to preserve quadratic invariants

For any Hamiltonian system we can show that∫
K

H{f ,H} dz =

∫
K

f {f ,H} dz = 0

The first of this leads to conservation of total energy (on use of field
equations), while the second leads to conservation of

∫
K
f 2dz (called

enstrophy for incompressible fluids, and related to entropy).

• Energy conservation in Hamiltonian systems is indirect: we evolve the
distribution function and field equation. In fluid models, in contrast, the
energy conservation is direct, as we evolve the total energy equation (in
addition to density and momentum density equations). Hence, ensuring
energy conservation for Hamiltonian system is non-trivial, and difficult in
finite-volume schemes.

• Energy conservation can be ensured using the famous finite-difference
Arakawa scheme (widely used in climate modeling and one of the
top-twenty algorithms ever published in JCP). However, Arakawa scheme
is dispersive and can lead to huge oscillations for grid-scale modes.
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Can one construct conservative schemes?

Answer: Yes, using a version of discontinuous Galerkin schemes.
Summary:
• Distribution function is discretized using discontinuous basis

functions, while Hamiltonian is assumed to be in a continuous
subspace

• With these assumptions, our algorithm conserves energy exactly,
while can optionally conserve the second quadratic invariant or
decay it monotonically.

• The conservation of total energy is independent of upwinding!
This is a surprising result, as upwinding adds diffusion to the
system. This diffusion is actually desirable, as it gets rid of
grid-scale oscillations.

• Momentum conservation is independent of velocity space
resolution, and converges rapidly with resolution in configuration
space.
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Status of Gyrokinetics in Gkeyll

• Initial ES-GK work by Eric Shi2 led to 5D electrostatic full-F GK simulations of
LAPD and NSTX-like helical SOL with sheath BCs. More recently, Tess
Bernard (PoP 2019) performed simulations of Texas Helimak and compared to
experiments.

• Over past year, we have been rapidly developing a new version of Gkeyll

◦ Moving from nodal to modal DG representation → orthonormal basis
functions, quadrature-free, computer algebra-generated solver kernels
(much easier to generalize to higher dimensionality/polynomial order),
O(10) faster

◦ Much simpler user interface, details abstracted away

• Have reproduced many of Shi’s results with new version of Gkeyll; added
geometry (but no X-point yet)

What about electromagnetics? See G. Hammett talk.
2See 2017 thesis; JPP 2017 paper on LAPD; and PoP 2019 paper on Helical

NSTX-like SOL
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