Waves in Turbulent, Active Media
 William Dorland Aug 8, 2019

Overview

- What is a plasma?
- Equations of plasma physics (Newton, Maxwell, Boltzmann)
- Mathematical problems in quest for magnetic confinement fusion
- Adjoint optimization techniques
- Multiscale expansions
- Nonlinearly interacting waves in plasma
- Invention of new numerical algorithms

Solid to liquid to gas to plasma

- Consider ice:There is little kinetic energy compared to the magnitude of the potential energy
- Heat is required to break H bonds. Ice melts. Molecules in water have more kinetic energy, but still a lot of H bonds
- Heat is required to break the rest of the H bonds. Water boils. Gas molecules have a lot of kinetic energy but there are still charges bound together
- Heat is required to separate electrons and nuclei.
- This makes plasma: A gas of charged particles with $K \gg|U|$
- Here on Earth, we are attempting to fuse H to release energy
- The typical conditions under which H fuses involve plasmas

Are the laws of physics compatible with controlled thermonuclear fusion?

$\mathbf{F}=m \mathbf{a}$

$$
\mathbf{F}=q\left(\mathbf{E}+\frac{\mathbf{v} \times \mathbf{B}}{c}\right) \quad E=m c^{2}
$$

$i \hbar \frac{\partial \Psi}{\partial t}=\mathbf{H} \Psi \quad \mathbf{F}=-\frac{G m_{1} m_{2}}{r^{2}} \hat{\mathbf{r}} \quad \mathbf{F}=\frac{q_{1} q_{2}}{r^{2}} \hat{\mathbf{r}}$
$\frac{1}{c}\left(\frac{\partial \mathbf{E}}{\partial t}+4 \pi \mathbf{J}\right)=\nabla \times \mathbf{B} \quad \frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}=-\nabla \times \mathbf{E}$
$\nabla \cdot \mathbf{B}=0$

Are the laws of physics compatible with controlled thermonuclear fusion?

$\mathbf{F}=m \mathbf{a}$

$$
\mathbf{F}=q\left(\mathbf{E}+\frac{\mathbf{v} \times \mathbf{B}}{c}\right) \quad E=m c^{2}
$$

$i \hbar \frac{\partial \Psi}{\partial t}=\mathbf{H} \Psi \quad \mathbf{F}=-\frac{G m_{1} m_{2}}{r^{2}} \hat{\mathbf{r}} \quad \mathbf{F}=\frac{q_{1} q_{2}}{r^{2}} \hat{\mathbf{r}}$
$\frac{1}{c}\left(\frac{\partial \mathbf{E}}{\partial t}+4 \pi \mathbf{J}\right)=\nabla \times \mathbf{B} \quad \frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}=-\nabla \times \mathbf{E}$
$\nabla \cdot \mathbf{B}=0$
Of course! The stars shine brightly.

Are the laws of physics compatible with controlled thermonuclear fusion?

$$
\begin{array}{lll}
\mathbf{F}=m \mathbf{a} & \mathbf{F}=q\left(\mathbf{E}+\frac{\mathbf{v} \times \mathbf{B}}{c}\right) & E=m c^{2} \\
i \hbar \frac{\partial \Psi}{\partial t}=\mathbf{H} \Psi & \mathbf{F}=-\frac{G m_{1} m_{2}}{r^{2}} \hat{\mathbf{r}} & \mathbf{F}=\frac{q_{1} q_{2}}{r^{2}} \hat{\mathbf{r}}
\end{array}
$$

$\frac{1}{c}\left(\frac{\partial \mathbf{E}}{\partial t}+4 \pi \mathbf{J}\right)=\nabla \times \mathbf{B} \quad \frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}=-\nabla \times \mathbf{E}$
$\nabla \cdot \mathbf{B}=0 \quad$ Of course! The stars shine brightly.
But can we do it without a gravity assist? There is some help from quantum mechanics

Are the laws of physics compatible with controlled thermonuclear fusion?

Are the laws of physics compatible with controlled thermonuclear fusion?

Are the laws of physics compatible with controlled thermonuclear fusion?

But can we do it without a gravity assist? There is some help from quantum mechanics

ITER is under construction in France

One way forward is to use magnetic fields instead of gravity, to confine and insulate the reacting plasma.

Magnetic confinement:Tokamak

Magnetic confinement: Stellarator

The stellarator approach...

The stellarator approach...

The stellarator approach...

Shape optimization problems in stellarator design

MHD equilibrium

- Given outer boundary shape, S_{P}, and 2 free functions, \boldsymbol{B} determined everywhere in confinement region
- Figures of merit describing configuration are a function of boundary shape, $f\left(S_{P}\right)$ (e.g. neoclassical transport)
How should one deform S_{P} to obtain an optimal configuration?

Coil design

- Given desired boundary shape, S_{P}, where should one position electromagnetic coils such that S_{P} is a magnetic surface?
- Figures of merit are a function of coil shape or winding surface shape
How should one deform coils to obtain desired plasma surface? How sensitive is a figure of merit to coil displacements?

Describing derivatives with respect to shape

- Consider $f(\Gamma)$, a functional of some surface, Γ
- For displacement of surface, $\Gamma_{\epsilon}=\left\{\boldsymbol{r}_{0}+\epsilon \delta \boldsymbol{r}: \boldsymbol{r}_{0} \in \Gamma\right\}$, shape derivative is

$$
\delta f(\Gamma, \delta \boldsymbol{r})=\lim _{\epsilon \rightarrow 0} \frac{f\left(\Gamma_{\epsilon}\right)-f(\Gamma)}{\epsilon}
$$

- Differential change to f can be written as

$$
\delta f(\Gamma, \delta r)=\int_{\Gamma} d^{2} x \delta \boldsymbol{r} \cdot n S
$$

- The shape gradient, S, describes the differential contribution of local perturbations to the surface, δr, to changes in the the function, δf
Why is S useful?
- Gradient-based optimization
- Local sensitivity analysis
- Quantifying engineering tolerances

Adjoint methods - the big picture

- Adjoint methods allow gradient of a function of the solution to a system of equations to be computed efficiently
- Useful for optimization within high-dimensional spaces with gradient-based methods
- Efficient computation of shape gradient
- Widely used in aerodynamic engineering

$C_{\text {L }}$ surace sensitivity
$1.41 \mathrm{E}-02$
$1.04 \mathrm{E}-02$
6.61 E .03
$2.86 \mathrm{E}-03$
$-8.98 \mathrm{E}-04$
$-4.65 \mathrm{E}-03$
$-8.41 \mathrm{E}-03$
$-1.22 \mathrm{E}-02$
-1.59 E
$-1.97 \mathrm{E}-02$

$L_{\text {. }}$ Upper surface

Lower surface

A linear algebra example

- Consider linear $M \times M$ system

$$
\overleftrightarrow{A} x=b
$$

- Interested in linear dependence of inner product with \boldsymbol{x} on parameters, $\Omega=\left\{\Omega_{i}\right\}_{i=1}^{N}$

$$
{ }^{1} F=\boldsymbol{x}^{T} \boldsymbol{c}
$$

- Derivative expensive $\left(\mathcal{O}\left(M^{3} N\right)\right)$ to compute direct way

$$
\frac{\partial F}{\partial \Omega_{i}}=\boldsymbol{x}^{T}\left(\frac{\partial \boldsymbol{c}}{\partial \Omega_{i}}\right)+\left(\frac{\partial \boldsymbol{x}}{\partial \Omega_{i}}\right)^{T} \boldsymbol{c}
$$

- Compute $\partial \boldsymbol{x} / \partial \Omega_{i}$ from perturbed linear system

$$
\overleftrightarrow{\boldsymbol{A}} \frac{\partial \boldsymbol{x}}{\partial \Omega_{i}}=\left(\frac{\partial \boldsymbol{b}}{\partial \Omega_{i}}-\frac{\partial \overleftrightarrow{\boldsymbol{A}}}{\partial \Omega_{i}} \boldsymbol{x}\right)
$$

- Instead, solve additional adjoint equation

$$
\overleftrightarrow{\boldsymbol{A}}^{T} \boldsymbol{q}=\boldsymbol{c}
$$

- Compute derivative with 2 solutions of $M \times M$ system $(\boldsymbol{x}, \boldsymbol{q})$

$$
\frac{\partial F}{\partial \Omega_{i}}=\boldsymbol{x}^{T}\left(\frac{\partial \boldsymbol{c}}{\partial \Omega_{i}}\right)+\boldsymbol{q}^{T}\left(\frac{\partial \boldsymbol{b}}{\partial \Omega_{i}}-\frac{\partial \overleftrightarrow{\boldsymbol{A}}}{\partial \Omega_{i}} \boldsymbol{x}\right)
$$

Newton and Maxwell (and Coulomb, and ...)

$\mathbf{F}=m \mathbf{a} \quad \mathbf{F}=q\left(\mathbf{E}+\frac{\mathbf{v} \times \mathbf{B}}{c}\right) \quad E=m c^{2}$
$i \hbar \frac{\partial \Psi}{\partial t}=\mathbf{H} \Psi \quad \mathbf{F}=-\frac{G m_{1} m_{2}}{r^{2}} \hat{\mathbf{r}} \quad \mathbf{F}=\frac{q_{1} q_{2}}{r^{2}} \hat{\mathbf{r}}$
$\frac{1}{c}\left(\frac{\partial \mathbf{E}}{\partial t}+4 \pi \mathbf{J}\right)=\nabla \times \mathbf{B} \quad \frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}=-\nabla \times \mathbf{E}$
$\nabla \cdot \mathbf{B}=0$

Newton and Maxwell (and Coulomb, and ...)

$\mathbf{F}=m \mathbf{a}$

$$
\mathbf{F}=q\left(\mathbf{E}+\frac{\mathbf{v} \times \mathbf{B}}{c}\right)
$$

$$
\mathbf{F}=\frac{q_{1} q_{2}}{r^{2}} \hat{\mathbf{r}}
$$

$\frac{1}{c}\left(\frac{\partial \mathbf{E}}{\partial t}+4 \pi \mathbf{J}\right)=\nabla \times \mathbf{B}$
$\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}=-\nabla \times \mathbf{E}$
$\nabla \cdot \mathbf{B}=0$
Too much information; we need Boltzmann!

What is kinetic theory? A quick peek...

Consider a collection of a large number of charged particles which are neither created nor destroyed as time goes forward.

The particles move under the influence of their electric and magnetic fields, $\mathbf{E}(\mathbf{x}, t)$ and $\mathbf{B}(\mathbf{x}, t)$, which may be calculated from Maxwell's equations.

Under the influence of these fields, each particle moves along a classical trajectory $\mathbf{x}_{i}(t), \mathbf{v}_{i}(t)$. None disappear.

Define a function that describes the probability of finding this collection of N particles in a specific state:

$$
f_{N}=f_{N}\left(\mathbf{x}_{1}, \mathbf{v}_{1}, \mathbf{x}_{2}, \mathbf{v}_{2}, \ldots, \mathbf{x}_{N}, \mathbf{v}_{N} ; t\right)
$$

According to the laws of classical physics, we have

$$
\frac{D f_{N}}{D t}=0
$$

(Liouville equation)

Weak coupling

$$
\frac{D f_{N}}{D t}=0
$$

This equation looks simple, but remember that f_{N} is $(6 N+1)$ dimensional Important simplification:

* Weakly coupled system of indistinguishable particles if

Weak coupling: No high-order correlations

Mathematical machinery of this reduction is "BBGKY" theory
Reduces dimensionality of problem radically, to Boltzmann equation:

Two-particle collisions

Fluid theory sometimes suffices

$$
\frac{\partial f}{\partial t}+\mathrm{v} \cdot \frac{\partial f}{\partial \mathrm{x}}+\mathbf{a} \cdot \frac{\partial f}{\partial \mathrm{v}}=\mathrm{C}(f, f)=0
$$

Solution of this equation is Maxwell-Boltzman distribution:

$$
f \propto \frac{n}{T^{3 / 2}} \exp \frac{-m(\mathbf{v}-\mathbf{u})^{2}}{2 T}
$$

Need only keep track of density, momentum and temp: plasma as fluid Mean-free-path is simply $\lambda_{\operatorname{mfp}} \equiv \frac{v_{t}}{\nu}$. Take L to be size of interest.

If $\lambda_{\operatorname{mfp}} \ll L$, then structures of size L are Maxwellian in v-space. Fluid-like phenomena can be described by 3-D theory (e.g., MHD)

Kinetic theory when $\lambda_{\operatorname{mfp}} \gg L$

$$
\frac{\partial f}{\partial t}+\mathbf{v} \cdot \frac{\partial f}{\partial \mathbf{x}}+\mathbf{a} \cdot \frac{\partial f}{\partial \mathbf{v}}=C(f, f)
$$

Boltzmann equation + Maxwell's equations = kitchen sink
Very frequently, the largest term in the equation is the acceleration due to the (self-consistent and/or imposed) magnetic field: leads to rapid gyration.

Take advantage of this, and work out asymptotically rigorous equations that describe all dynamics slower than the gyration: theory is known as "gyrokinetics".

Basic idea: Asymptotic, multiscale expansion

Expand Boltzmann and Maxwell equations in powers of epsilon, where

$$
\epsilon \equiv \frac{\omega}{\Omega_{c}}, \quad \Omega_{c} \equiv \frac{q B}{m c} .
$$

Identify relevant physics at each order in epsilon (gyration, turbulence, thermodynamics) taking place at different space and time scales.

Key result: for processes that are slow compared to the gyration, equations are reduced in dimensionality (from 6 to 5) but are integro-differential.

Conceptually, particles are replaced by rings whose radii are time-varying. Interesting turbulent phenomena exist with eddies both large and small, compared to a typical "gyroradius". Challenging to study!

GK equations describe evolution of guiding centers

- The order-by-order reduction of the Boltzmann equation is achieved by repeatedly orbit-averaging the equations, because the orbit-average annihilates the largest term at each order -- the gyration.
- One finds an equation for the part of the distribution function which is independent of gyro-angle. The gyro-angle dependent part of the distribution function yields a "polarization density".
- To find the actual currents and charge densities for Maxwell's equations, one must keep both contributions. Results in algebraic clutter.
- Key result: the gyroaveraging operation smooths over perturbations that are small compared to the gyroradius. Particles respond to and produce small-scale electromagnetic fields, but both are tempered by the spatial averaging coming from the rapid (instantaneous, in the theory) gyration.

Kinetic theory when $\lambda_{\text {mfp }} \gg L$

$$
\frac{d f_{s}}{d t}=\frac{\partial f_{s}}{\partial t}+\boldsymbol{v} \cdot \nabla f_{s}+\frac{Z_{s} e}{m_{s}}\left(\widetilde{\boldsymbol{E}}+\frac{1}{c} \boldsymbol{v} \times \widetilde{\boldsymbol{B}}\right) \cdot \frac{\partial f_{s}}{\partial \boldsymbol{v}}=C\left[f_{s}\right]+S_{s}
$$

Choose good coordinates in velocity space...

$$
\frac{d f_{s}}{d t}=\frac{\partial f_{s}}{\partial t}+\dot{\boldsymbol{R}}_{s} \cdot \frac{\partial f_{s}}{\partial \boldsymbol{R}_{s}}+\dot{\mu}_{s} \frac{\partial f_{s}}{\partial \mu_{s}}+\dot{\varepsilon}_{s} \frac{\partial f_{s}}{\partial \varepsilon_{s}}+\dot{\vartheta} \frac{\partial f_{s}}{\partial \vartheta}=C\left[f_{s}\right]+S_{s}
$$

Expand in a small parameter and average in three different ways

$$
F_{0 s}=n_{s}(\boldsymbol{r})\left[\frac{m_{s}}{2 \pi T_{s}(\boldsymbol{r})}\right]^{3 / 2} \exp \left\{-\frac{m_{s}\left[w^{2}-2 m_{s} w_{\|} \hat{u}_{\| s}(\boldsymbol{r})+\hat{u}_{\| s}^{2}(\boldsymbol{r})\right]}{2 T_{s}(\boldsymbol{r})}\right\}
$$

$$
F_{0 s}=N_{s}\left(\psi\left(\boldsymbol{R}_{s}\right)\right)\left[\frac{m_{s}}{2 \pi T_{s}\left(\psi\left(\boldsymbol{R}_{s}\right)\right)}\right]^{3 / 2} e^{-\varepsilon_{s} / T_{s}\left(\psi\left(\boldsymbol{R}_{s}\right)\right)}
$$

$$
\begin{aligned}
\Delta^{*} \psi= & -4 \pi R^{2} \sum_{s} n_{s}\left\{T_{s} \frac{d \ln N_{s}}{d \psi}+\left[Z_{s} e \varphi_{0}-\frac{1}{2} m_{s} \omega^{2}(\psi) R^{2}+T_{s}\right] \frac{d \ln T_{s}}{d \psi}\right\} \\
& -4 \pi R^{2}\left(\sum_{s} m_{s} n_{s} R^{2}\right) \omega(\psi) \frac{d \omega}{d \psi}-I(\psi) \frac{d I}{d \psi}
\end{aligned}
$$

$$
\Delta^{*} \psi=\left(\frac{\partial^{2}}{\partial R^{2}}-\frac{1}{R} \frac{\partial}{\partial R}+\frac{\partial^{2}}{\partial z^{2}}\right) \psi
$$

To find the shape, density, temperature, etc, we need to go to higher order

$$
\begin{aligned}
& f_{s}=F_{s}+\delta f_{s}, \\
& F_{s}=F_{0 s}\left(\psi\left(\boldsymbol{R}_{s}\right), \varepsilon_{s}\right)+F_{1 s}\left(\boldsymbol{R}_{s}, \varepsilon_{s}, \mu_{s}, \sigma\right)+\mathrm{O}\left(\epsilon^{2} f\right), \\
& \delta f_{s}=-\frac{Z_{s} e}{T_{s}} \delta \varphi^{\prime}(\boldsymbol{r}) F_{0 s}+h_{s}\left(\boldsymbol{R}_{s}, \varepsilon_{s}, \mu_{s}, \sigma\right)+\mathrm{O}\left(\epsilon^{2} f\right), \\
& F_{0 s}=N_{s}\left(\psi\left(\boldsymbol{R}_{s}\right)\right)\left[\frac{m_{s}}{2 \pi T_{s}\left(\psi\left(\boldsymbol{R}_{s}\right)\right)}\right]^{3 / 2} e^{-\varepsilon_{s} / T_{s}\left(\psi\left(\boldsymbol{R}_{s}\right)\right)},
\end{aligned}
$$

Result is a 5-D, nonlinear, integro-differential system of equations. Remarkably, they can be solved.

$$
\begin{aligned}
& {\left[\frac{\partial}{\partial t}+\boldsymbol{u}\left(\boldsymbol{R}_{s}\right) \cdot \frac{\partial}{\partial \boldsymbol{R}_{s}}\right] h_{s}+w_{\|} \boldsymbol{b} \cdot \frac{\partial}{\partial \boldsymbol{R}_{s}}\left(F_{1 s}+h_{s}\right)+\left(\boldsymbol{V}_{\mathrm{D} s}+\left\langle\boldsymbol{V}_{\chi}\right\rangle_{\boldsymbol{R}}\right) \cdot \frac{\partial}{\partial \boldsymbol{R}_{s}}\left(F_{0 s}+h_{s}\right)} \\
& =\frac{Z_{s} e F_{0 s}}{T_{s}}\left[\frac{\partial}{\partial t}+\boldsymbol{u}\left(\boldsymbol{R}_{s}\right) \cdot \frac{\partial}{\partial \boldsymbol{R}_{s}}\right]\langle\chi\rangle_{\boldsymbol{R}}-\frac{m_{s} F_{0 s}}{T_{s}}\left[\frac{I w_{\|}}{B}+\omega(\psi) R^{2}\right] \frac{d \omega}{d \psi}\left\langle\boldsymbol{V}_{\chi}\right\rangle_{\boldsymbol{R}} \cdot \nabla \psi \\
& \quad-\frac{Z_{s} e}{T_{s} c} w_{\|} F_{0 s} \frac{\partial \boldsymbol{A}}{\partial t} \cdot \boldsymbol{b}+\left\langle C\left[F_{0 s}+F_{1 s}+h_{s}\right]\right\rangle_{\boldsymbol{R}},
\end{aligned}
$$

Some definitions:

$$
\begin{aligned}
\chi=\delta \varphi-\frac{1}{c} \boldsymbol{v} \cdot \delta \boldsymbol{A}=\delta \varphi^{\prime}-\frac{1}{c} \boldsymbol{w} \cdot \delta \boldsymbol{A} \\
\boldsymbol{V}_{\chi}=\frac{c}{B} \boldsymbol{b} \times \nabla \chi, \quad\left\langle\boldsymbol{V}_{\chi}\right\rangle_{\boldsymbol{R}}=\frac{c}{B} \boldsymbol{b} \times \frac{\partial\langle\chi\rangle_{\boldsymbol{R}}}{\partial \boldsymbol{R}_{s}} \\
\begin{aligned}
\boldsymbol{V}_{\mathrm{D} s}=\frac{\boldsymbol{b}}{\Omega_{s}} \times & {\left[w_{\|}^{2} \boldsymbol{b} \cdot \nabla \boldsymbol{b}+\frac{1}{2} w_{\perp}^{2} \nabla \ln B\right.} \\
& \left.\quad-\omega^{2}(\psi) R \nabla R-2 w_{\|} \omega(\psi) \boldsymbol{b} \times \nabla z+\frac{Z_{s} e}{m_{s}} \nabla \varphi_{0}\right]
\end{aligned}
\end{aligned}
$$

EM potentials
Nonlinearities
Drift velocities

Gyrokinetic physics: Gyration + streaming + drifts

Highly anisotropic, because particles stream freely along the magnetic field lines.

Plane perpendicular to magnetic field is special.

Self-consistent currents and fields.

ExB drift, flexing, stretching and tearing of field lines, included.

GK describes field perturbations larger and smaller than the gyration radii.

At next order, the system closes! (non-trivial)

$$
\begin{aligned}
& f_{s}=F_{0 s}\left(\psi\left(\boldsymbol{R}_{s}\right), \varepsilon_{s}\right)+F_{1 s}\left(\boldsymbol{R}_{s}, \varepsilon_{s}, \mu_{s}, \sigma\right)+F_{2 s}(\boldsymbol{r}, \boldsymbol{v}) \\
& \quad-\frac{Z_{s} e}{T_{s}} \delta \varphi^{\prime}(\boldsymbol{r}) F_{0 s}+h_{s}\left(\boldsymbol{R}_{s}, \varepsilon_{s}, \mu_{s}, \sigma\right)+\delta f_{2 s}(\boldsymbol{r}, \boldsymbol{v})+\cdots \\
& \left.\frac{1}{V^{\prime}} \frac{\partial}{\partial t}\right|_{\psi} V^{\prime}\left\langle n_{s}\right\rangle_{\psi}+\frac{1}{V^{\prime}} \frac{\partial}{\partial \psi} V^{\prime}\left\langle\Gamma_{s}\right\rangle_{\psi}=\left\langle S_{s}^{(n)}\right\rangle_{\psi} \\
& \begin{array}{l}
\left\langle\Gamma_{s}\right\rangle_{\psi}= \\
\end{array} \quad \begin{array}{l}
\left\langle d^{3} \boldsymbol{w}\left(\frac{\boldsymbol{w} \times \boldsymbol{b}}{\Omega_{s}} \cdot \nabla \psi\right) C\left[F_{0 s}\right]\right\rangle_{\psi}+\left\langle\int d^{3} \boldsymbol{w} F_{s}^{(\mathrm{nc})} \boldsymbol{V}_{\mathrm{D} s} \cdot \nabla \psi\right\rangle_{\psi} \\
\quad-\left\langle n_{s}\right\rangle_{\psi} I(\psi) \frac{\langle\boldsymbol{E} \cdot \boldsymbol{B}\rangle_{\psi}}{\left\langle B^{2}\right\rangle_{\psi}}+\left\langle\left\langle\int d^{3} \boldsymbol{w}\left\langle h_{s} \boldsymbol{V}_{\chi}\right\rangle_{\boldsymbol{r}} \cdot \nabla \psi\right\rangle_{\mathrm{turb}}\right\rangle_{\psi}
\end{array} .
\end{aligned}
$$

And similarly, one can derive equations for the momentum and temperature profiles

Where are the waves?

- We can look at the linearized (small amplitude) equations and find dispersion relations for the waves
- Let us do that briefly, without the complications of toroidal geometry

Gyrokinetic Equations

- The drift frequency $i \omega_{*}^{T}=n_{0} c \partial F_{0} / \partial \psi$, where n_{0} labels the α Fourier harmonic of the perturbation
- The perpendicular drifts (curvature, grad-B) are

$$
\omega_{d}=\mathrm{k}_{\perp} \cdot \mathrm{B}_{0} \times\left(m v^{2} \hat{\mathrm{~b}} \cdot \nabla \hat{\mathrm{~b}}+\mu \nabla B_{0}\right) /\left(m B_{0} \Omega\right),
$$

- Potentials for the fields appear as

$$
\chi=J_{0}(\gamma)\left(\Phi-\frac{v_{\|}}{c} A_{\|}\right)+\frac{J_{1}(\gamma)}{\gamma} \frac{m v_{\perp}^{2}}{q} \frac{\delta B_{\|}}{B} ; \quad \gamma \equiv k_{\perp} v_{\perp} / \Omega
$$

Gyrokinetic Field Equations

- Maxwell's equations, neglecting displacement current.
- Poisson's equation: $\quad[\nabla \cdot \mathrm{E}=4 \pi \rho]$

$$
\nabla_{\perp}^{2} \Phi=4 \pi \sum_{s} \int d^{3} v q\left[q \Phi \frac{\partial F_{0}}{\partial \epsilon}+h \exp (i L)\right]
$$

where $L=\left(\mathrm{v} \times \hat{\mathrm{b}} \cdot k_{\perp}\right) / \Omega$ accounts for the gyrophase dependence.

- Preferred velocity space coordinates are (E, μ, ξ), so that

$$
\int d^{3} v=\frac{B}{m^{2}} \int \frac{d E d \mu d \xi}{|v \||} \equiv \frac{1}{2 \pi} \int d^{2} v d \xi
$$

- Integrate over the gyrophase to find

$$
\nabla_{\perp}^{2} \Phi=4 \pi \sum_{s} \int d^{2} v q\left[q \Phi \frac{\partial F_{0}}{\partial \epsilon}+J_{0}(\gamma) h\right]
$$

- Similarly, Ampere's law provides the two components of the perturbed magnetic field:

$$
\begin{aligned}
\nabla_{\perp}^{2} A_{\|}=-\frac{4 \pi}{c} \sum_{s} \int d^{2} v q v_{\|} J_{0}(\gamma) h & {\left[\hat{\mathrm{~b}} \cdot \nabla \times \mathrm{B}=\frac{4 \pi J_{\|}}{c}\right] } \\
\frac{\delta B_{\|}}{B}=-\frac{4 \pi}{B^{2}} \sum_{s} \int d^{2} v m v_{\perp}^{2} \frac{J_{1}(\gamma)}{\gamma} h & {\left[4 \pi \delta p_{\perp}+\frac{\delta B_{\|}}{B}=0\right] }
\end{aligned}
$$

Linear Dispersion Relation

- Take $C=\omega_{d}=\omega_{*}=0$ (collisionless, homogenous plasma, straight field lines)
- Linear GKE is:

$$
-i \omega h+i k_{\|} v_{\|} h=-\frac{i \omega q}{T} \chi F_{0}
$$

- For clarity, consider hydrogenic plasma, with $k_{\perp} \rho_{e} \ll 1$.

Linear Dispersion Relation

$$
\begin{gathered}
\text { Shear Alfvèn } \\
{\left[\left(\frac{k_{\|} v_{A}}{\omega}\right)^{2}-\left(\frac{1-\mathcal{I}_{0}}{k_{\perp}^{2} \rho_{i}^{2}}\right)\left(1-\frac{1-\mathcal{I}_{0}}{S}\right)\right]\left[1-\frac{\beta_{i}}{2} C_{2}+\frac{\beta_{i}}{2} \frac{C_{1}^{2}}{S}\right]} \\
=\frac{\beta_{i}}{2}\left(\frac{1}{k_{\perp}^{2} \rho_{i}^{2}}\right)\left[\left(1-\mathcal{I}_{1}\right)-\left(1-\mathcal{I}_{0}\right) \frac{C_{1}}{S}\right]^{2}
\end{gathered}
$$

Finite Larmor radius coupling

$$
\begin{aligned}
& S=1+\mathcal{I}_{0 i} \zeta_{i} Z\left(\zeta_{i}\right)+\frac{T_{i}}{T_{e}}\left[1+\zeta_{e} Z\left(\zeta_{e}\right)\right] \\
& C_{j}=\sum_{s} \mathcal{I}_{j} \zeta Z(\zeta)\left(T_{i} / T_{s}\right)
\end{aligned}
$$

Long wavelength limits [small $b=\left(k_{\perp} \rho_{i}\right)^{2}$]:
$\mathcal{I}_{0} \sim 1-b$

$$
\mathcal{I}_{1} \sim 1-\frac{3}{2} b
$$

$$
\mathcal{I}_{1} \sim 2-3 b
$$

Long wavelength waves $\left(k_{\perp} \rho_{i} \ll 1, \beta \sim 1\right)$

$$
\begin{aligned}
& \text { Shear Alfivèn Slow mode } \\
& {\left[\left(\frac{k_{\|} v_{A}}{\omega}\right)^{2}-1\right]\left[1-\frac{\beta_{i}}{2} C_{2}+\frac{\beta_{i}}{2} \frac{C_{1}^{2}}{S}\right]} \\
& =0
\end{aligned}
$$

Finite Larmor radius coupling

- Shear Alfvèn waves:

$$
\omega^{2}=k_{\|}^{2} v_{A}^{2}
$$

- Slow wave:

$$
1-\frac{\beta_{i}}{2} C_{2}+\frac{\beta_{i}}{2} \frac{C_{1}^{2}}{S}=0
$$

The nonlinear version of this decoupling exists and is "Kinetic Reduced MagnetoHydroDynamics" or KRMHD

- Kinetic because the model includes phase mixing/Landau damping
- Reduced because the model describes small amplitude, spatially anisotropic fluctuations (long wavelengths along B and short wavelengths across)
- MHD because the Alfvenic fluctuations are the same as in reduced MHD.
- Just as in MHD, we represent the Alfvenic fluctuations in Elsasser variables
- The long wavelength $\left(k_{\perp} \rho \ll 1\right)$ kinetic fluctuations are described by "Vlasov"-like equations

Kinetic Reduced MHD

- Alfven waves decouple:

$$
\left(\frac{\partial}{\partial t} \mp v_{A} \frac{\partial}{\partial z}\right) \omega^{ \pm}=-\left[\zeta^{\mp}, \omega^{ \pm}\right]-\left[\partial_{i} \zeta^{\mp}, \partial_{i} \zeta^{ \pm}\right]
$$

- Here, $\omega^{ \pm}=\nabla_{\perp}^{2} \zeta^{ \pm}$and $\zeta^{ \pm}=\Phi \pm \Psi$. Physically, this is a complicated looking way to describe counter-propagating Alfven waves in reduced MHD. No compressional effects!
- Kinetic equations for the ions are simple ($i=1,2$)

$$
\frac{d g^{(i)}}{d t}+v_{\|} \nabla_{\|} g^{(i)}+v_{\|} F_{0} \nabla_{\|} \phi^{(i)}=0
$$

- But the operators are the nonlinear ones

$$
d / d t=\partial / \partial t+\mathbf{v} \cdot \nabla \quad \text { and } \quad \nabla_{\|}=v_{A} \partial / \partial z+\mathbf{b} \cdot \nabla
$$

These waves interact! (unlike ordinary light)

- Simulation of colliding Alfven waves using AstroGK

Current density, jz

-8.00
6.22
-4.44
-2.67
-889
--.889
-2.67
-4.44
--6.22
--8.00

Mathematical "angles"

- Deriving the appropriate multi-scale reductions
- Identifying conserved quantities and symmetries
- Identifying exact, nonlinear solutions
- Developing discretizations and numerical algorithms
- Developing closures (How do unresolved scales affect solutions?)
- Optimizing codes (mostly by inventing new algorithms)
- Extracting meaning! ___ "l" rather than "Al"

Applications of gyrokinetics: Nature

The solar wind is a pressuredriven, outward flow of plasma from the sun.

The pressure should drop as the plasma expands, and the flow should stagnate.

Why doesn't this happen? Perhaps turbulent heating -in this case, gyrokinetic turbulent heating.

What we learn from solar wind may be applied to astrophysical systems.

The End

