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Overview

• What is a plasma?

• Equations of plasma physics (Newton, Maxwell, Boltzmann)

• Mathematical problems in quest for magnetic confinement fusion 

• Adjoint optimization techniques

• Multiscale expansions

• Nonlinearly interacting waves in plasma

• Invention of new numerical algorithms



Solid to liquid to gas to plasma

• Consider ice: There is little kinetic energy compared to the 
magnitude of the potential energy

• Heat is required to break H bonds. Ice melts. Molecules in 
water have more kinetic energy, but still a lot of H bonds

• Heat is required to break the rest of the H bonds. Water boils. 
Gas molecules have a lot of kinetic energy but there are still 
charges bound together

• Heat is required to separate electrons and nuclei. 

• This makes plasma:  A gas of charged particles with 

• Here on Earth, we are attempting to fuse H to release energy

• The typical conditions under which H fuses involve plasmas

K ≫ |U |



Are the laws of physics compatible with 
controlled thermonuclear fusion?
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Are the laws of physics compatible with 
controlled thermonuclear fusion?

Of  course! The stars shine brightly.
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Are the laws of physics compatible with 
controlled thermonuclear fusion?

Of  course! The stars shine brightly.
But can we do it without a gravity assist?

There is some help from quantum mechanics 
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Are the laws of physics compatible with 
controlled thermonuclear fusion?



But can we do it without a gravity assist?
There is some help from quantum mechanics 
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But can we do it without a gravity assist?
There is some help from quantum mechanics 

Are the laws of physics compatible with 
controlled thermonuclear fusion?

E = mc2



One way forward is to use magnetic fields instead of  
gravity, to confine and insulate the reacting plasma.

ITER is under construction in France



Magnetic confinement: Tokamak



Magnetic confinement: Stellarator



The stellarator approach…



The stellarator approach…



The stellarator approach…



Shape optimization problems in stellarator design

Elizabeth Paul Maryland-PPPL Theory Meeting January 22, 2019

MHD equilibrium 
• Given outer boundary shape, !", and 2 free functions, B

determined everywhere in confinement region
• Figures of merit describing configuration are a function of 

boundary shape, # !" (e.g. neoclassical transport)
How should one deform !" to obtain an optimal configuration?

Coil design
• Given desired boundary shape, !", where should one position 

electromagnetic coils such that !" is a magnetic surface? 
• Figures of merit are a function of coil shape or winding 

surface shape
How should one deform coils to obtain desired plasma surface?
How sensitive is a figure of merit to coil displacements?



Describing derivatives with respect to shape
• Consider !(Γ), a	functional	of	some	surface,	Γ
• For displacement of surface, Γ4 = 67 + 9:6 ∶ 67 ∈ Γ , shape derivative is 

:! Γ, :6 = lim4→7
! Γ4 − !(Γ)

9
• Differential change to ! can be written as 

:! Γ, :6 = ∫@ABC :6 ⋅ E S
• The shape gradient, S, describes the differential contribution of local 

perturbations to the surface, :6, to changes in the the function, :!

C. Othmer, J. Math. 

Industry 4, 6 (2014).

Why is S useful?
• Gradient-based optimization

• Local sensitivity analysis

• Quantifying engineering tolerances 

Elizabeth Paul Maryland-PPPL Theory Meeting January 22, 2019



Adjoint methods – the big picture
A linear algebra example

• Consider linear !×! system

#$ = &
• Interested in linear dependence of inner product with $ on 

parameters, Ω = {Ω)})+,-

. = $/0
• Derivative expensive (1(!34)) to compute direct way

6.
6Ω)

= $/ 60
6Ω)

+
6$
6Ω)

/
c

• Compute 6$/6Ω) from perturbed linear system

# 6$
6Ω)

= 6&
6Ω)

− 6#
6Ω)

$
• Instead, solve additional adjoint equation

#/9 = 0
• Compute derivative with 2 solutions of :×: system (x, q)

6.
6Ω)

= $/ 60
6Ω)

+ 9/ <= 6&6Ω)
− 6#
6Ω)

$

• Adjoint methods allow gradient of a function of the 

solution to a system of equations to be computed 

efficiently 

• Useful for optimization within high-dimensional 

spaces with gradient-based methods

• Efficient computation of shape gradient

• Widely used in aerodynamic engineering

Palacios, F. et al, 53rd AIAA Aerospace 
Sciences Meeting, (2015).

Elizabeth Paul Maryland-PPPL Theory Meeting January 22, 2019



Are the laws of physics compatible with 
controlled thermonuclear fusion?
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Are the laws of physics compatible with 
controlled thermonuclear fusion?
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Newton and Maxwell (and Coulomb, and …)

Too much information; we need Boltzmann!



What is kinetic theory?  A quick peek…

Consider a collection of a large number of charged particles which are 
neither created nor destroyed as time goes forward.

The particles move under the influence of their electric and magnetic 
fields,               and              , which may be calculated from Maxwell’s 
equations.

E(x, t) B(x, t)

Under the influence of these fields, each particle moves along a 
classical trajectory                      .  None disappear. xi(t),vi(t)

 According to the laws of classical physics, we have 

(Liouville equation)
DfN

Dt
= 0

Define a function that describes the probability of finding this collection 
of N particles in a specific state:

fN = fN (x1,v1,x2,v2, . . . ,xN ,vN ; t)



Weak coupling

Collective effects 
dominate behavior at 
scales larger than the 
screening radius

DfN

Dt
= 0

This equation looks simple, but remember that      is (6N+1) dimensionalfN

 Important simplification:

* Weakly coupled system of indistinguishable particles if 
Λ ≡ 4πNλ

3

D ≫ 1

“plasma parameter”

Mediated by 
EM fields



Weak coupling:  No high-order correlations

Mathematical machinery of this reduction is “BBGKY” theory

Frequency of two-
body collisions

ν ∼
ln Λ

Λ
ωp ≪ ωp

“Plasma frequency”

Reduces dimensionality of problem radically, to Boltzmann equation:

∂f

∂t
+ v ·

∂f

∂x

+ a ·

∂f

∂v

= C(f, f)

EM fields Two-particle collisions



Fluid theory sometimes suffices

∂f

∂t
+ v ·

∂f

∂x

+ a ·

∂f

∂v

= C(f, f)C(f, f) = 0
Solution of this equation is Maxwell-Boltzman distribution:                  

f ∝

n

T 3/2
exp

−m(v − u)2

2T

Need only keep track of density, momentum and temp: plasma as fluid

Mean-free-path is simply                      .   Take L to be size of interest.

If                     , then structures of size L are Maxwellian in v-space. 

Fluid-like phenomena can be described by 3-D theory (e.g., MHD)               

λmfp ≡

vt

ν

λmfp ≪ L



Kinetic theory when �mfp � L

∂f

∂t
+ v ·

∂f

∂x

+ a ·

∂f

∂v

= C(f, f)

EM fields Two-particle collisions

Boltzmann equation + Maxwell’s equations = kitchen sink
Very frequently, the largest term in the equation is the acceleration due to 
the (self-consistent and/or imposed) magnetic field:  leads to rapid gyration.

Take advantage of this, and work out asymptotically rigorous equations that 
describe all dynamics slower than the gyration:  theory is known as 
“gyrokinetics”.



Basic idea:  Asymptotic, multiscale expansion

Expand Boltzmann and Maxwell equations in powers of epsilon, where

� � ⇥

�c
, �c �

qB

mc
.

Identify relevant physics at each order in epsilon (gyration, turbulence, 
thermodynamics) taking place at different space and time scales.

Key result:  for processes that are slow compared to the gyration, equations 
are reduced in dimensionality (from 6 to 5) but are integro-differential.

Conceptually, particles are replaced by rings whose radii are time-varying.

Interesting turbulent phenomena exist with eddies both large and small, 
compared to a typical “gyroradius”.   Challenging to study!



GK equations describe evolution of guiding centers

• The order-by-order reduction of the Boltzmann equation is achieved by 
repeatedly orbit-averaging the equations, because the orbit-average 
annihilates the largest term at each order -- the gyration.

• One finds an equation for the part of the distribution function which is 
independent of gyro-angle.  The gyro-angle dependent part of the 
distribution function yields a “polarization density”.  

• To find the actual currents and charge densities for Maxwell’s equations, 
one must keep both contributions.  Results in algebraic clutter.

• Key result: the gyroaveraging operation smooths over perturbations that 
are small compared to the gyroradius.  Particles respond to and produce 
small-scale electromagnetic fields, but both are tempered by the spatial 
averaging coming from the rapid (instantaneous, in the theory) gyration.



Kinetic theory when �mfp � L

∂f

∂t
+ v ·

∂f

∂x

+ a ·

∂f

∂v

= C(f, f)

EM fields Two-particle collisions
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“global” equations that simultaneously describe the long and short scales – in fact, we

take scale separation to be a virtue and consistently enforce it within our formalism.

This said, alternative approaches (sometimes termed “modern gyrokinetics”) have many

virtues of their own to recommend them – not least some fascinating mathematics –

and we refer the curious reader to recent reviews [22, 23] where they are presented.

In Section 11, we present a low-Mach-number limit of the system of equations

given in this paper. This limit removes many cumbersome technical complications and

so Sections 11.2–11.6 can be used as a concise summary of the basic structure of our

multiscale hierarchy. It is this set of equations which is implemented in current linked-

flux-tube transport codes [24, 25].

Finally, in Section 12, we finish the paper by summarizing the conclusions of this

work and how they fit into the broader landscape of fusion plasma physics.

2. Fundamental Equations

As our starting point we take the Fokker-Planck kinetic equation for fs, the distribution

function of species s,

dfs

dt
=

@fs

@t
+ v ·rfs +

Zse

ms

✓
eE +

1

c
v ⇥ eB

◆
· @fs
@v

= C [fs] + Ss, (1)

where Zs is the charge of the particles of species s as a multiple of the fundamental charge

e, ms their mass and v their velocity. We will work in Gaussian units throughout with

c the speed of light, eE the electric field and eB the magnetic field (throughout this

work, tildes denote exact fields containing both the mean and the fluctuating parts; see

Section 3.1). On the right hand side, C [f ] is the Landau collision operator and Ss an

arbitrary source term that stands in for all physical processes not yet accounted for, e.g.,

atomic physics, fusion reactions, Bremsstrahlung, radio frequency heating and current

drive.

The electric and magnetic fields obey Maxwell’s equations:

r · eE = 4⇡e%, (2)

r · eB = 0, (3)

@ eB
@t

= � cr⇥ eE, (4)

r⇥ eB =
4⇡

c

ej +
1

c

@ eE
@t

, (5)

where the charge density e% and current ej are

e% =
X

s

Zse

Z
d
3vfs, (6)

ej =
X

s

Zse

Z
d
3vvfs. (7)

Choose good coordinates in velocity space…
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and the new variables are defined by

Rs = r � b⇥w

⌦s

, (64)

"s =
1

2
msv

2 + Zse [�( ) + '0]� Zse� ( ⇤
s
) , (65)

µs =
msw

2
?

2B
, (66)

� =
wk��wk

�� , (67)

where w is the peculiar velocity of the particles with respect to the toroidal rotation:

w = v � u = wkb+ w? (cos# e2 � sin# e1) , (68)

with the toroidal velocity determined by (62), e1 and e2 arbitrary orthogonal unit

vectors perpendicular to the magnetic field (with b = e2 ⇥ e1),‡ and  
⇤ is a flux-like

quantity proportional to the toroidal canonical angular momentum:

 
⇤
s
(r,v) =  (r) +

msc

Zse
(v ·r�)R2 =  +

msc

Zse
(w ·r�)R2 +

BR
2
!( )

⌦s

. (69)

The new velocity variables "s and µs are closely related to conserved quantities of

the particle motion in the mean electromagnetic fields. The magnetic moment µs is

related to the first adiabatic invariant of the particle gyromotion§. The energy variable,

"s, is constructed from the conserved total energy and the conserved quantity  ⇤
s
so that

it is the energy in the rotating frame to lowest order. This can be seen by expanding

�( ⇤
s
) around �( ), yielding

"s =
1

2
msw

2 � 1

2
ms!

2( )R2 + Zse'0 +O(✏Ts). (70)

The kinetic equation (1) can be written in these new variables as

dfs

dt
=
@fs

@t
+ Ṙs ·

@fs

@Rs

+ µ̇s

@fs

@µs

+ "̇s
@fs

@"s
+ #̇

@fs

@#
= C [fs] + Ss, (71)

where ġ = dg/ dt denotes the time derivative of g along a particle orbit. This form

of the kinetic equation follows from the fact that dfs/dt should be independent of the

coordinate system that we use to describe the phase space. If we choose some set of

variables z instead of (r,v) then fs = fs(z, t) and so dfs/dt = @fs/@t+ ż · (@fs/@z). As
this must be independent of our choice of z, (1) implies (71). For more details, see the

discussion surrounding equations (6) and (7) of [46]. Explicit expressions for Ṙs, µ̇s, "̇s,

and #̇ are derived in Appendix A; see (A.9), (A.25), (A.33), and (A.39).

‡ There might be a concern that we might not be able to define such an e1 and e2. This is resolved
in [42], where it is proved that for toroidal confinement devices, one can always make a globally valid
choice of these vectors.
§ If E and B were constant in space and time, then µs would be precisely the adiabatic invariant
associated with a particle’s Larmor gyration. In the more general fields we consider here, µs as given
by (66) is the first term in the infinite asymptotic series for the exact invariant [43, 44, 45].
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and define the perpendicular spatial average h·i? of a function g(r,v, t) by

hg(r,v, t)i? =

Z

�
2
?

d
2r0

?g(r
0
?, l,v, t)

,Z

�
2
?

d
2r?, (15)

where �
2
? is a small surface which is everywhere normal to the magnetic field and has

spatial extent of the order of � in both perpendicular directions. The integrals are taken

at constant v, t and l, where l is the distance along a given field line, or any other field-

aligned coordinate – see Fig. 1. Clearly, an averaged function cannot vary on the small

length scales ⇠ ⇢s, and any function that varies only on the equilibrium length scale

⇠ a is una↵ected by the average. Similarly, the typical fluctuation time scale !
�1 and

Figure 1. A section of a toroidal flux surface showing field lines and, in blue, the
small perpendicular patches �2

? over which fluctuations are averaged in (15). Black
arrows denote the normals to the patches, and are aligned with the magnetic field.

the timescale of the evolution of the mean profiles, taken to be the transport time ⌧E,

are also well separated. Therefore, we can pick an intermediate time T that satisfies

⌧E � T � !
�1 (16)
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Figure 3. A section of the torus showing the regions D( , t) and �( , t) used in
defining the flux-surface average (34), (37) and the surface @D separating these regions.

where V is the velocity with which the boundary of D( , t) moves. The time derivative

in the left-hand side of (41) is taken at constant flux label  . Taking the derivative of

(41) with respect to  and using (37), we find
⌧
@g

@t

�

 

=
1

V 0
@

@ 

Z

D( ,t)

d
3r
@g

@t
=

1

V 0
@

@t

����
 

V
0 hgi

 
� 1

V 0
@

@ 
V

0 hgV ·r i
 
. (42)

Finally, as the boundary of D( , t) is defined to be a constant- surface, we have

@ 

@t
+ V ·r = 0. (43)

As V is defined to be the velocity of a flux surface, we can demand that V has no

component in the surface and so

V = �@ 
@t

r 
|r |2 . (44)

Therefore,
⌧
@g

@t

�

 

=
1

V 0
@

@t

����
 

V
0 hgi

 
+

1

V 0
@

@ 
V

0
⌧
g
@ 

@t

�

 

, (45)

which is the second of the identities we were seeking.

Expand in a small parameter and average in three 
different ways
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Multiplying this by 1+ lnF0s, integrating over all velocities and averaging over the flux

surface, we find⌧Z
d
3wwkb ·

@

@Rs

(F0s lnF0s)

�

 

=

⌧Z
d
3w lnF0sC [F0s]

�

 

. (81)

To lowest order, we can replace all instances of Rs on the left-hand side of this equation

with r and write the velocity-space integral in terms of integrals over "s, µs, # and � at

constant r usingZ
d
3w =

X

�

Z
B(r)d"sdµsd#

m2
s

��wk
�� +O(✏v3ths). (82)

This gives
⌧Z

d
3wwkb ·

@

@Rs

(F0s lnF0s)

�

 

=

*
2⇡

X

�

Z
Bd"sdµs

m2
s
|wk|

wkb ·r (F0s lnF0s)

+

 

=

*
2⇡

X

�

�

Z
d"sdµs

m2
s

B ·r (F0s lnF0s)

+

 

=

⌧
r ·

✓
b

Z
d
3wwkF0s lnF0s

◆�

 

.

(83)

By using (39) to express the action of the flux-surface average on a divergence and

the fact that b · r = 0, we conclude that the above expression vanishes. Therefore,

from (81),
⌧Z

d
3w lnF0sC [F0s]

�

 

= 0. (84)

By Boltzmann’s H-Theorem, (84) implies that F0s is a local Maxwellian [47]. We know

that, by definition, this Maxwellian has density ns, temperature Ts and velocity us,

where us is given by (61).k Thus, F0s can be written as

F0s = ns(r)


ms

2⇡Ts(r)

�3/2
exp

8
<

:�
ms

h
w

2 � 2mswkûks(r) + û
2
ks(r)

i

2Ts(r)

9
=

; , (85)

where

ûks = uks �
!( )I

B
. (86)

This form does not contradict the condition (76) that F0s must be gyrophase-

independent whilst holding Rs, "s and µs fixed because the di↵erence between Rs and

r is higher order. However, we still wish to have F0s expressed in the (Rs, "s, µs, �)

variables. We accomplish this by using (70) to express msw
2 in terms of "s and find

F0s = Ns(Rs)


ms

2⇡Ts(Rs)

�3/2
exp


� "s

Ts(Rs)
�

mswkûks(Rs)

Ts(Rs)

�
+O(✏Fs), (87)

k Formally, (84) implies that all species have the same temperature and mean velocity. We will show
that they do indeed have the same mean velocity, but we will gratuitously retain the species dependence
of the temperature. This will only be of importance when we come to discuss heat transport and so
we defer the discussion of interspecies temperature di↵erences to the end of Section 8.3.
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where

Ns = ns exp

"
�ms!

2( )R2

2Ts

+
Zse'0

Ts

+
msû

2
ks

2Ts

#
, (88)

and we have used the fact that to lowest order the mean fields taken at the guiding-centre

position Rs are the same as when taken at the particle position r.

Inserting F0s, given by (85), back into (80) and dividing through by F0s we get

wkb ·r
✓
lnNs �

3

2
lnTs

◆
+

wk"s

T 2
s

b ·rTs � wkb ·r
✓
mswkûks

Ts

◆
= 0. (89)

This equation must hold for all velocities w, so each term in this equation must vanish

independently. Tackling the second term first, we see that the temperature Ts must be

a flux function to lowest order:

b ·rTs = 0, (90)

so Ts = Ts( ). For the first term to vanish the same must be the case for Ns:

b ·rNs = 0, (91)

so Ns = Ns( ). Turning now to the third term of (89), we see that

2w2
kb ·rûks + ûksb ·rw

2
k = 0, (92)

which can only be solved for arbitrary wk by ûks = 0. Thus, the background Maxwellian

only depends on "s and so is isotropic in w and the lowest-order (sonic) flow is a pure

toroidal rotation: us = u = !( )R2r�. As this flow is species-independent there are

no currents in F0s, since the plasma is quasineutral (52). This is consistent with the

lowest-order Ampère’s Law (53). The vanishing of the parallel component of (61) is in

accord with the well known result [38, 47, 48] that poloidal flow is strongly damped

on the ion-ion collision time, which, in our ordering is, indeed, 1/✏2 shorter than the

timescale of the evolution of the bulk flow.

We can finally write the complete solution for F0s as

F0s = Ns( (Rs))


ms

2⇡Ts( (Rs))

�3/2
e
�"s/Ts( (Rs)). (93)

This form of the distribution function is manifestly gyrophase independent holding Rs

and "s constant and so is consistent with (76). Note that (93) is now the definition

of F0s to all orders in our expansion. Thus, any small terms neglected previously (in,

e.g., (87)), will be automatically included in F1s by virtue of using (93) for F0s in the

equations that determine F1s.

6.2. Gyrotropy of F1s

Substituting (93) back into the first-order kinetic equation (78), we find

⌦s

@

@#
(F1s + �f1s) = �Zse

Ts

w? ·r�'0
F0s. (94)
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Figure 3. A section of the torus showing the regions D( , t) and �( , t) used in
defining the flux-surface average (34), (37) and the surface @D separating these regions.

where V is the velocity with which the boundary of D( , t) moves. The time derivative

in the left-hand side of (41) is taken at constant flux label  . Taking the derivative of

(41) with respect to  and using (37), we find
⌧
@g

@t

�

 

=
1

V 0
@

@ 

Z

D( ,t)

d
3r
@g

@t
=

1

V 0
@

@t

����
 

V
0 hgi

 
� 1

V 0
@

@ 
V

0 hgV ·r i
 
. (42)

Finally, as the boundary of D( , t) is defined to be a constant- surface, we have

@ 

@t
+ V ·r = 0. (43)

As V is defined to be the velocity of a flux surface, we can demand that V has no

component in the surface and so

V = �@ 
@t

r 
|r |2 . (44)

Therefore,
⌧
@g

@t

�

 

=
1

V 0
@

@t

����
 

V
0 hgi

 
+

1

V 0
@

@ 
V

0
⌧
g
@ 

@t

�

 

, (45)

which is the second of the identities we were seeking.
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This pair of equations can now be solved without knowing hE ·Bi
 
and then F

(nc)
s is

given in terms of hE ·Bi
 
by (120). This will be used in solving for the evolution of the

mean magnetic field in Section 7.2 and Section 7.3 (where it is explained how hE ·Bi
 

is calculated).

7.2. Ampère’s Law and the Magnetic Equilibrium

The average of Ampère’s Law (11) over the fluctuations is

j =
c

4⇡
r⇥B, j =

X

s

Zse

Z
d
3wwFs, (123)

where j is first-order (to lowest order, j = 0; see (53)). Using the axisymmetric form

for B (31), we can express r⇥B in terms of derivatives of I and  :

j =
c

4⇡
[rI ⇥r�� (�⇤

 )r�] , (124)

where �⇤ is the Grad-Shafranov operator
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2

@z2

◆
 . (125)

We can now use the complete solution for Fs given by (103) to determine j. This

is done in Appendix C.1 (see (C.17)):
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(126)

and we have defined

K( ) =
X

s

Zse

B

Z
d
3wwkF

(nc)
s

, (127)

with F
(nc)
s given by the neoclassical drift-kinetic equation (119). The fact that K is a

flux function follows directly from (119), and is derived in Appendix C.1 (see (C.15)).

Equation (126) is consistent with this, as can be seen by taking the divergence of

both sides. Note that the perpendicular part of (126) is a statement of force balance

for the mean quantities. Indeed, taking the cross product of it with B and using

R
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(128)

Multiscale Gyrokinetics for Rotating Tokamak Plasmas 27

where we have defined the pressure ps = nsTs and used (96) for Ns( ) and (62) for u.

This is just the balance between the Lorentz force, pressure and inertia.

We will now take three projections of (124): onto r , onto r ⇥ r�, and onto

r�. Taking the projection onto r first, we have, from (124),
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and from (126)

j ·r = 0, (130)

whence
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Therefore, I = I( ) is a flux function.
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(136)

which allows us to determine  as a function of R and z if we know Ns, Ts, ! and I.

This is the generalization of the Grad-Shafranov equation for a rotating plasma.

7.3. Evolution of the Mean Magnetic Field

The results of the previous section complete the solution, including time dependence,

for the magnetic field. We can solve (119) for F (nc)
s to find K( ) in terms of hE ·Bi

 
,

and then use (134) to find hE ·Bi
 
in terms of I( ). We can then use (33) to find I( )

in terms of A and so our expression for

hE ·Bi
 
= �1

c

⌧
@A

@t
·B
�

 

(137)
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Figure 2. The toroidal coordinate system (R,z,�) showing the magnetic axis and flux
surfaces

form of (13) is

B = r⇥A =

✓
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� @Az
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Rr�+

1

R

@ (RA�)

@R
rz � @A�

@z
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where

A = A�r�+ ARrR + Azrz (30)

and we have used (28) to drop all � derivatives. Therefore, the magnetic field can be

written in the usual toroidal decomposition [27]:

B = Ir�+r ⇥r�, (31)

where

 (R, z) = A� = R
2A ·r� (32)

is the poloidal flux function and
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2B ·r�. (33)

The toroidal symmetry guarantees the existence of well-defined flux surfaces [28, 29].

Topologically, these are nested tori. Since B ·r = 0, these surfaces can be labelled by

 . We will see that many mean quantities will only depend on R and z through  (R, z).

3.4. Flux-Surface Averaging and the Motion of Flux Surfaces

It will be convenient to define an average over the surface labelled by  , which we do

as follows [30, 31]. For an arbitrary function g(r),
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� !0
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><

>:
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d
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, Z
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>=

>;
, (34)
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6.5. Summary: The Lowest-Order Solution

Collating the results of the previous subsections we have the solution for fs to first order

in ✏:

fs = Fs + �fs, (102)

Fs = F0s ( (Rs), "s) + F1s (Rs, "s, µs, �) + O
�
✏
2
f
�
, (103)
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2
f
�
, (104)

F0s = Ns( (Rs))
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2⇡Ts( (Rs))

�3/2
e
�"s/Ts( (Rs)), (105)

In the next section, we find equations that determine the gyrophase-independent

functions F1s and hs.

7. Second Order O(✏2⌦sfs): Neoclassical Theory and Gyrokinetics

In order to completely determine the distribution function fs given by (102), we need

equations for F1s and hs. In order to find them, let us substitute the form of fs

summarized in Section 6.5 into the exact kinetic equation (71) and keep only terms

up to second order in ✏:

@hs

@t
+

✓
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Ts
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◆
+ C [F0s + F1s + hs] ,

(106)

where d/dt is the full derivative along a particle orbit as in (71) and we have used the

gyrophase independence of F0s (76), F1s (95) and hs (101).

Equation (106) contains F2s and �f2s, about which we have no information.

However, they only occur under a derivative with respect to # and so we gyroaverage

(106) to find a closed equation that does not contain any second-order distribution

functions:
@hs

@t
+
D
Ṙs

E

R
· @

@Rs

(F0s + F1s + hs) =

h"̇siR
F0s

Ts

+

⌧
d

dt

✓
Zse�'

0

Ts

F0s

◆�

R

+ hC [F0s + F1s + hs]iR,
(107)

where we have used F0s given by (105) and the fact, derived in Appendix A, that

hµ̇siR = O(✏2⌦sµs) (see (A.29)) and h"̇siR = O(✏2⌦sTs) (see (A.35)). As we did for

(78), we can formally consider (106) to be an equation determining the #-dependence

of F2s and �f2s. Under this interpretation, (107) is the solubility constraint that must

be satisfied if the F2s and �f2s found from (106) are to be single-valued in #.

The gyroaverages appearing in (107) are calculated in Appendix A: we use (A.23)

for
D
Ṙs

E

R
and (A.55) for the combination of gyroaverages appearing on the right-hand

To find the shape, density, temperature, etc, 
we need to go to higher order
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(108)

where we have defined the gyrokinetic potential

� = �'� 1

c
v · �A = �'

0 � 1

c
w · �A, (109)

the associated fluctuating velocity field¶

V� =
c

B
b⇥r�, hV�iR =

c

B
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@Rs

+O(✏2vths), (110)

and the guiding-centre drift velocity
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2
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�!2( )RrR� 2wk!( )b⇥rz +
Zse

ms

r'0

�
,

(111)

which consists of, in order of appearance in (111), the curvature drift, the rB drift, the

centrifugal drift, the Coriolis drift, and the mean first-order E ⇥B drift.

The detailed derivation of (108) is given in Appendix A.6. In the rest of this section,

we will use (108) to derive a closed solution for F1s and hs, accurate to first order in

✏, in terms of the unknown functions Ns( ), Ts, !( ), I and  , which parametrise the

equilibrium. Equation (108) can be split into a mean equation (see (112)), which will

determine F1s, and a fluctuating part (see (144)), which will determine hs. We will find

that the mean equation is precisely the neoclassical drift-kinetic equation [37] and the

fluctuating equation is the gyrokinetic equation for a rotating plasma [1, 50]. These two

equations are closed by the mean and fluctuating Maxwell equations, which relate  

and I to F1s (Sections 7.2 and 7.3) and the fluctuating fields to hs (Section 7.5).

7.1. Neoclassical Distribution Function

Averaging (108) over the fluctuations, we obtain

wkb ·
@F1s

@Rs

� hCL [F1s]iR = �VDs ·
@F0s

@Rs

� Zse

Tsc
wkF0s

@A

@t
· b+ hC [F0s]iR, (112)

where we have introduced the linearised collision operator CL [·], linearised about the

Maxwellian part of F0s – for more details on linearised collision operators see [47].

Equation (112) is just the usual neoclassical drift-kinetic equation [37, 47, 38]. Note

¶ This can be shown to consist, physically, of the fluctuating E ⇥B drift in the rotating frame, the
motion of guiding centres along fluctuating field lines and the fluctuating rB drift. This is proved in
detail for gyrokinetics in a non-rotating slab in [49].

EM potentials

Nonlinearities

Drift velocities
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Some definitions:

Result is a 5-D, nonlinear, integro-differential system 
of equations. Remarkably, they can be solved.



Gyrokinetic physics:  Gyration + streaming + drifts

Highly anisotropic, 
because particles stream 
freely along the magnetic 
field lines.

Plane perpendicular to 
magnetic field is special.

Self-consistent currents 
and fields.

E x B drift, flexing, 
stretching and tearing of 
field lines, included.

GK describes field 
perturbations larger and 
smaller than the gyration 
radii.
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In this section, we derive equations for the slow (transport-timescale) evolution of these

functions. We refer to these as the transport equations.

To derive such equations, we will need to go to the next order in our expansion in

✏, namely O(✏3⌦sfs). As we wish to maintain the physical interpretation of evolution

equations for ns, ! and Ts in terms of the transport of particles, momentum, and heat,

we return to the original r and w variables to begin our derivation‡. The averaged form

of (1), written in these variables, is
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+ (u+w) ·rFs +


as �

@u

@t
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�

turb

= C [Fs] + Ss,

(154)

where we have naturally split the particle acceleration into its mean part as and its

fluctuating part �as. The mean acceleration is

as =
Zse

ms
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E +

1

c
(u+w)⇥B

�
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ms

✓
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1

c

@A
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◆
+ ⌦sw ⇥ b, (155)

where we have used the results of Section 4.1. The fluctuating acceleration is

�as =
Zse
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
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c
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+O(✏2vths⌦s),

(156)

where � is defined by (109) and �'0 by (79). Equation (154) will correctly describe the

transport-timescale evolution of Fs if we keep all terms up to order O(✏3⌦sfs). This

clearly requires knowledge of the distribution function including O(✏2fs) corrections.

From the previous two sections, the particle distribution function is

fs = F0s( (Rs), "s) + F1s(Rs, "s, µs, �) + F2s(r,v)

� Zse

Ts

�'
0(r)F0s + hs(Rs, "s, µs, �) + �f2s(r,v) + · · · ,

(157)

where the equilibrium distribution function F0s is given by (93), F1s and hs are obtained

from the neoclassical drift-kinetic equation (112), and the gyrokinetic equation (144),

respectively, and we have absorbed all (as yet unknown) higher-order terms into F2s and

�f2s. The exact electric and magnetic fields are

eE = E + �E = �r��r'0 �r�'� 1

c

@A

@t
� 1

c

@�A

@t
(158)

and

eB = B + �B = I( )r�+r ⇥r�+r⇥ �A. (159)

‡ This is not the only way of deriving equations for Ns, Ts, and !. One could, instead, continue the
procedure of the previous sections, expand (71) to O(✏3⌦sfs), and then derive the transport equations
as solubility conditions for the resulting equation. The reader interested in this approach should see
[68], where such a calculation is performed to derive transport equations for density and temperature
in the “low-flow” regime (i.e., when the lowest-order mean velocity is diamagnetic, us ⇠ ✏vths).
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equation are O(✏3⌦sns), we conclude that we require nsUs correct to order O(✏2nsvths)

to evaluate the divergence. It is clear that the parallel part of the flux will depend on

the gyrophase-independent part of F2s, which we cannot easily find. In contrast, the

perpendicular flux will only depend on the gyrophase-dependent piece of F2s, which we

can find via (160).

To reduce (163) to an equation only containing the perpendicular flux, we apply

the flux-surface average, defined by (34). This results in
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⌦
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↵
 
, (166)

where we have used (39) and (45) to simplify the flux-surface averages of the divergence

and the time derivative. We have combined the radial particle flux§ and the terms due

to the motion of the flux surface into

�s = nsUs ·r + ns

@ 

@t
. (167)

We can write the first term of (167) as

nsUs ·r =

Z
d
3w (w? ·r )Fs =

Z
d
3wR

2
B (v ·r�) @Fs

@#

����
r,wk,w?

, (168)

where v is just shorthand for u+w and we have used

w? ·r = �R
2
Bw · (b⇥r�) = R

2
B (b⇥w) ·r� = �R

2
B
@v

@#

����
r,wk,w?

·r� (169)

and integrated by parts with respect to #. So, in order to calculate the radial flux to

second order, it is su�cient to know @Fs/@# up to second order only.

In Appendix D.1, we perform the explicit evaluation of hnsUs ·r i via the kinetic

equation (160), resulting in (D.10), which we substitute into (167) to find:
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d
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turb
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.

(170)

The first term in the above expression is due to classical collisional transport with F0s

given by (93)k, the second and third terms are due to neoclassical transport with F
(nc)
s

and hE ·Bi
 
calculated as explained in Sections 7.1-7.3¶, and the final term gives the

turbulent contribution to the particle flux in terms of hs, which is the solution of the

§ Whilst this flux is not in the geometrically radial direction, but is in fact the cross-flux-surface flux,
it is both convenient and conventional to refer to it as the radial flux.
k Note that F0s is only Maxwellian to lowest order, so C [F0s] = O(✏2⌦sF0s) is non-zero.
¶ Explicit expressions for the collisional fluxes can be found in [31, 69] or, for the case of non-zero
!( ), in [37, 38, 39].
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The first term in the above expression is due to classical collisional transport with F0s

given by (93)k, the second and third terms are due to neoclassical transport with F
(nc)
s

and hE ·Bi
 
calculated as explained in Sections 7.1-7.3¶, and the final term gives the

turbulent contribution to the particle flux in terms of hs, which is the solution of the

§ Whilst this flux is not in the geometrically radial direction, but is in fact the cross-flux-surface flux,
it is both convenient and conventional to refer to it as the radial flux.
k Note that F0s is only Maxwellian to lowest order, so C [F0s] = O(✏2⌦sF0s) is non-zero.
¶ Explicit expressions for the collisional fluxes can be found in [31, 69] or, for the case of non-zero
!( ), in [37, 38, 39].

And similarly, one can derive equations for the 
momentum and temperature profiles

At next order, the system closes! (non-trivial)



Where are the waves?

• We can look at the linearized (small amplitude) 
equations and find dispersion relations for the waves

• Let us do that briefly, without the complications of 
toroidal geometry



Gyrokinetic Equations

• The drift frequency i!T
⇤ = n0c @F0/@ , where n0 labels the

↵ Fourier harmonic of the perturbation

• The perpendicular drifts (curvature, grad-B) are

!d = k? · B0 ⇥

⇣
mv2

k
b̂ ·rb̂ + µrB0

⌘
/(mB0⌦),

• Potentials for the fields appear as

� = J0(�)

✓
��

vk
c

Ak

◆
+

J1(�)

�

mv2
?

q

�Bk

B
; � ⌘ k?v?/⌦



Gyrokinetic Field Equations

• Maxwell’s equations, neglecting displacement current.

• Poisson’s equation: [r · E = 4⇡⇢]

r
2
?
� = 4⇡

X

s

Z
d3v q


q�

@F0

@✏
+ h exp (iL)

�
,

where L = (v ⇥ b̂ · k?)/⌦ accounts for the gyrophase depen-

dence.

• Preferred velocity space coordinates are (E, µ, ⇠), so that

Z
d3v =

B

m2

Z dE dµ d⇠

|vk|
⌘

1

2⇡

Z
d2v d⇠



• Integrate over the gyrophase to find

r
2
?
� = 4⇡

X

s

Z
d2v q


q�

@F0

@✏
+ J0(�)h

�

• Similarly, Ampere’s law provides the two components of the

perturbed magnetic field:
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B
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#

(Fast waves -> pressure balance)



Linear Dispersion Relation

• Take C = !d = !⇤ = 0 (collisionless, homogenous plasma,

straight field lines)

• Linear GKE is:

�i!h + ikkvkh = �
i!q

T
�F0

• For clarity, consider hydrogenic plasma, with k?⇢e ⌧ 1.



Linear Dispersion Relation

Shear Alfvèn Slow mode
2

4
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Finite Larmor radius coupling

S = 1 + I0i⇣iZ(⇣i) +
Ti
Te

[1 + ⇣eZ(⇣e)]

Cj =
P

s Ij⇣Z(⇣) (Ti/Ts)

Long wavelength limits [small b = (k?⇢i)
2
]:

I0 ⇠ 1� b I1 ⇠ 1�
3

2
b I1 ⇠ 2� 3b



Long wavelength waves (k?⇢i ⌧ 1, � ⇠ 1)

Shear Alfvèn Slow mode
2

4
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Finite Larmor radius coupling

• Shear Alfvèn waves: !2
= k2

k
v2
A

• Slow wave: 1�
�i
2

C2 +
�i
2

C2

1

S = 0



The nonlinear version of this decoupling 
exists and is “Kinetic Reduced 

MagnetoHydroDynamics” or KRMHD
• Kinetic because the model includes phase mixing/Landau damping


• Reduced because the model describes small amplitude, spatially 
anisotropic fluctuations (long wavelengths along B and short 
wavelengths across)


• MHD because the Alfvenic fluctuations are the same as in reduced 
MHD.  


• Just as in MHD, we represent the Alfvenic fluctuations in Elsasser 
variables


• The long wavelength                  kinetic fluctuations are described by 
“Vlasov”-like equations 

(k⊥ρ ≪ 1)



Kinetic Reduced MHD

• Alfven waves decouple: 


• Here,                      and                    . Physically, this is a 
complicated looking way to describe counter-propagating 
Alfven waves in reduced MHD. No compressional effects!


• Kinetic equations for the ions are simple (i=1, 2)


• But the operators are the nonlinear ones
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⇣± = �± 
<latexit sha1_base64="W9B4RptA/6uNvRIHSWBycPzXQeI=">AAACAnicdZDLSgMxFIYzXmu9jboSN8EiuBpmbFG7EApuXI5gL9AZSybNtKFJZkgyQi3Fja/ixoUibn0Kd76NmbaCiv4Q+PjPOZycP0oZVdp1P6y5+YXFpeXCSnF1bX1j097abqgkk5jUccIS2YqQIowKUtdUM9JKJUE8YqQZDc7zevOGSEUTcaWHKQk56gkaU4y0sTr2bnBLNLoOUg7PYOD3Kcwx8BXt2CXXqeY6hlMoVw24Fc8tl6HnuBOVwEx+x34PugnOOBEaM6RU23NTHY6Q1BQzMi4GmSIpwgPUI22DAnGiwtHkhDE8ME4Xxok0T2g4cb9PjBBXasgj08mR7qvftdz8q9bOdHwajqhIM00Eni6KMwZ1AvM8YJdKgjUbGkBYUvNXiPtIIqxNakUTwtel8H9oHDme63iXlVKtNoujAPbAPjgEHjgBNXABfFAHGNyBB/AEnq1769F6sV6nrXPWbGYH/JD19glBv5az</latexit><latexit sha1_base64="W9B4RptA/6uNvRIHSWBycPzXQeI=">AAACAnicdZDLSgMxFIYzXmu9jboSN8EiuBpmbFG7EApuXI5gL9AZSybNtKFJZkgyQi3Fja/ixoUibn0Kd76NmbaCiv4Q+PjPOZycP0oZVdp1P6y5+YXFpeXCSnF1bX1j097abqgkk5jUccIS2YqQIowKUtdUM9JKJUE8YqQZDc7zevOGSEUTcaWHKQk56gkaU4y0sTr2bnBLNLoOUg7PYOD3Kcwx8BXt2CXXqeY6hlMoVw24Fc8tl6HnuBOVwEx+x34PugnOOBEaM6RU23NTHY6Q1BQzMi4GmSIpwgPUI22DAnGiwtHkhDE8ME4Xxok0T2g4cb9PjBBXasgj08mR7qvftdz8q9bOdHwajqhIM00Eni6KMwZ1AvM8YJdKgjUbGkBYUvNXiPtIIqxNakUTwtel8H9oHDme63iXlVKtNoujAPbAPjgEHjgBNXABfFAHGNyBB/AEnq1769F6sV6nrXPWbGYH/JD19glBv5az</latexit><latexit sha1_base64="W9B4RptA/6uNvRIHSWBycPzXQeI=">AAACAnicdZDLSgMxFIYzXmu9jboSN8EiuBpmbFG7EApuXI5gL9AZSybNtKFJZkgyQi3Fja/ixoUibn0Kd76NmbaCiv4Q+PjPOZycP0oZVdp1P6y5+YXFpeXCSnF1bX1j097abqgkk5jUccIS2YqQIowKUtdUM9JKJUE8YqQZDc7zevOGSEUTcaWHKQk56gkaU4y0sTr2bnBLNLoOUg7PYOD3Kcwx8BXt2CXXqeY6hlMoVw24Fc8tl6HnuBOVwEx+x34PugnOOBEaM6RU23NTHY6Q1BQzMi4GmSIpwgPUI22DAnGiwtHkhDE8ME4Xxok0T2g4cb9PjBBXasgj08mR7qvftdz8q9bOdHwajqhIM00Eni6KMwZ1AvM8YJdKgjUbGkBYUvNXiPtIIqxNakUTwtel8H9oHDme63iXlVKtNoujAPbAPjgEHjgBNXABfFAHGNyBB/AEnq1769F6sV6nrXPWbGYH/JD19glBv5az</latexit><latexit sha1_base64="W9B4RptA/6uNvRIHSWBycPzXQeI=">AAACAnicdZDLSgMxFIYzXmu9jboSN8EiuBpmbFG7EApuXI5gL9AZSybNtKFJZkgyQi3Fja/ixoUibn0Kd76NmbaCiv4Q+PjPOZycP0oZVdp1P6y5+YXFpeXCSnF1bX1j097abqgkk5jUccIS2YqQIowKUtdUM9JKJUE8YqQZDc7zevOGSEUTcaWHKQk56gkaU4y0sTr2bnBLNLoOUg7PYOD3Kcwx8BXt2CXXqeY6hlMoVw24Fc8tl6HnuBOVwEx+x34PugnOOBEaM6RU23NTHY6Q1BQzMi4GmSIpwgPUI22DAnGiwtHkhDE8ME4Xxok0T2g4cb9PjBBXasgj08mR7qvftdz8q9bOdHwajqhIM00Eni6KMwZ1AvM8YJdKgjUbGkBYUvNXiPtIIqxNakUTwtel8H9oHDme63iXlVKtNoujAPbAPjgEHjgBNXABfFAHGNyBB/AEnq1769F6sV6nrXPWbGYH/JD19glBv5az</latexit>



These waves interact! (unlike ordinary light)

• Simulation of colliding Alfven waves using AstroGK



Mathematical “angles”

• Deriving the appropriate multi-scale reductions

• Identifying conserved quantities and symmetries

• Identifying exact, nonlinear solutions

• Developing discretizations and numerical algorithms 

• Developing closures (How do unresolved scales affect 
solutions?)

• Optimizing codes (mostly by inventing new algorithms)

• Extracting meaning! —— “I” rather than “AI”



Applications of gyrokinetics:  Nature

The solar wind is a pressure-
driven, outward flow of 
plasma from the sun.  

The pressure should drop as 
the plasma expands, and the 
flow should stagnate.

Why doesn’t this happen?  
Perhaps turbulent heating -- 
in this case, gyrokinetic 
turbulent heating.

What we learn from solar 
wind may be applied to 
astrophysical systems.



The End


