# Ripple modifications to alpha transport in tokamaks & quasisymmetric stellarators

# Peter J. Catto Plasma Science and Fusion Center, MIT

Journal of Plasma Physics 2018-19

QS stellarators & tokamaks are isomorphic (both have a drift kinetic canonical angular momentum constant of motion) can do tokamaks then use  $n \Rightarrow (nM-mN)/(M-qN)$ 

**MIT PSFC** 

# **Overview**

- Alpha & ripple background
- Need to solve  $\alpha$  with  $\nabla \mathsf{B}$  drift, not  $\mathsf{E} \times \mathsf{B}$
- Transit averaged kinetic equation
- Pitch angle scattering stronger than drag
- $\sqrt{v}$  regime diffusivity estimate
- superbanana plateau (sbp) estimate
- Alpha depletion a concern
- Boundary layer analysis
- Comments

# Background

Magnetic ripple  $\delta$  due to N (~ 16-20) toroidal field coils:

$$\delta = (B_{max} - B_{min})/(B_{max} + B_{min}) < 10^{-2}$$

Alphas must heat before being lost

Typically use B = B<sub>0</sub>[1- $\varepsilon$ cos $\vartheta$ - $\delta$ cos(n $\zeta$ )] for a tokamak

Extrema:  $\varepsilon \sin\vartheta + qn\delta \sin(n\zeta) = 0$  for fixed  $\alpha = \zeta - q\vartheta$ 

Assume qn $\delta << \epsilon$ : ripple only affects radial drift

(no ripple trapping  $\Rightarrow$ )



 $\nabla B$  drift causes "orbit loss"

Need tangential drift & streaming  $\Rightarrow$  unperturbed

#### No 1/v regime for alphas

- > D-T: T = 10 keV,  $n_e = 10^{14} \text{ cm}^{-3}$ , B = 5 T, R = 10 m, a = 3 m, and for 3.5 MeV alphas
  - alpha birth speed =  $v_0 \approx 1.3 \times 10^9$  cm/sec
  - alpha gyroradius =  $\rho_0 = v_0/\Omega_0 \approx 5.4$  cm
  - alpha slowing down time =  $\tau_s \approx 0.63$  sec
  - tangential drift frequency =  $\omega \sim \omega_{\alpha \nabla B}$
- >  $R/v_0\tau_s \sim 10^{-6} \Rightarrow$  can transit average
- $\succ \rho_0/a \sim 10^{-2} \Rightarrow$  radial scales >> alpha gyroradius
- $\nabla \mathsf{B}: \ \omega_{\alpha \nabla B} \mathsf{R} \thicksim \mathsf{v}_0 \rho_0 / \mathsf{R} \thicksim 7 \times 10^6 <<\mathsf{v}_i \approx 10^8 \Rightarrow \omega_{\alpha \nabla B} \tau_s \thicksim 4 \times 10^3$

# Alpha collision operator & distribution function

Alpha slowing down tail distribution function satisfies

$$\frac{\text{Ze}}{\text{Mc}}\vec{v}\times\vec{B}\cdot\nabla_{v}f_{s} = C\{f_{s}\} + \frac{S\delta(v-v_{0})}{4\pi v^{2}}$$

 $\alpha \text{ birth \& reaction rates related by } S = n_D n_T \langle \sigma v \rangle_{DT} \&$   $f_s = f_s(\psi, v) = \frac{S(\psi)\tau_s(\psi)H(v_0 - v)}{4\pi[v^3 + v_c^3(\psi)]}$ 

Alpha collision operator

$$C\{f\} = \frac{1}{\tau_{s}} \nabla_{v} \cdot \left[ \left( \frac{v^{3} + v_{c}^{3}}{v^{3}} \right) \vec{v} f + \frac{v_{\lambda}^{3}}{2v^{3}} (v^{2}\vec{I} - \vec{v}\vec{v}) \cdot \nabla_{v} f \right]$$

 $v_c$  = critical speed for equal electron & ion drag &  $v_{\lambda} \sim v_c$ 

The slowing down density for  $v_0^3 >> v_c^3$  is  $n_s = \int d^3 v f_s \simeq S \tau_s \ell n(v_0/v_c)$ 

#### **Transit averaged kinetic equation**

Using  $f = f_s + h$  the transit averaged equation is  $\left. \overline{\vec{v}_{d} \cdot \nabla \psi} \frac{\partial f_{s}}{\partial \psi} + \overline{\vec{v}_{d} \cdot \nabla \alpha} \frac{\partial h_{t}}{\partial \alpha} \right|_{\varepsilon} = \overline{C\{\overline{h}_{t}\}}$ where passing h vanishes  $(\overline{h}_{p}=0)$ ,  $\alpha = \zeta - q\vartheta$  &  $\vec{B} = B\vec{b} = \nabla\alpha \times \nabla\psi = K(\psi, \vartheta, \zeta)\nabla\psi + G(\psi)\nabla\vartheta + I(\psi)\nabla\zeta$ with  $G/qI \sim rB_p/qRB_t \sim \epsilon^2/q^2 \ll 1 \& B_p \Rightarrow$  poloidal field Tangential & radial drifts ( $\rho_{p0} \simeq \rho_0 B_0 / B_p$ ):  $-\overline{\vec{v}_{d}} \cdot \nabla \alpha = \omega \sim (v_{\perp}^{2}/2\Omega)(\partial B/\partial \psi) \sim \rho_{p0} v_{0}/R^{2} \Rightarrow \nabla B \text{ but...}$  $\frac{\overline{\vec{v}_{d}} \cdot \nabla \psi}{RB_{p}} = -\frac{B_{0}(\partial/\partial \alpha)(\oint_{\alpha} d\zeta v_{\parallel}/B)}{RB_{p}\Omega_{0}(\oint_{\alpha} d\zeta/v_{\parallel}B)} \sim \frac{qn\delta}{\epsilon} \frac{\rho_{0}v_{0}}{R}$ 

#### Pitch angle scattering dominates

Trapped fraction  $\epsilon^{1/2}$ 

Tangential rotation =  $\omega \Rightarrow$  boundary layer width w <<  $\epsilon^{1/2}$ 

Pitch angle scatter time  $\tau_{p} = (v_{0}^{3}/v_{\lambda}^{3})\tau_{s} >> \tau_{s} = \text{drag time, but}$  $\overline{C\{\overline{h}\}} \sim \frac{v_{\lambda}^{3}}{\tau_{s}v_{0}^{3}} \frac{\partial^{2}\overline{h}}{\partial\lambda^{2}} \sim \frac{\overline{h}}{\tau_{p}w^{2}} >> \frac{\overline{h}}{\tau_{s}} \Rightarrow w^{2} << \frac{v_{\lambda}^{3}}{v_{0}^{3}} \sim \frac{\tau_{s}}{\tau_{p}} \sim 2 \times 10^{-2}$ 

Balance collisions by tangential drift  $\Rightarrow$  narrow b. layer:  $\overline{h}/w^2 \tau_p \sim \overline{C\{\overline{h}\}} \sim \overline{v}_d \cdot \nabla \alpha \partial \overline{h}/\partial \alpha \sim \omega n \overline{h} \sim \overline{h} n \rho_{p0} v_0 / R^2$ 

w ~ eff. trap. fract: w ~ F ~  $(1/n\omega\tau_p)^{1/2}$  ~  $(rR/qn\rho_0v_0\tau_p)^{1/2}$  <<  $\epsilon^{1/2}$ 

Eff. pitch angle scatter time =  $w^2 \tau_p << \tau_s$  = slowing down  $n\omega \tau_s >> 1$ 

# $\sqrt{v}$ regime diffusivity estimate

- Eff. trapped fraction:  $w \sim F \sim (1/n\omega\tau_p)^{1/2}$
- Effective drift decorrelation time:  $\tau = F^2 \tau_p \sim 1/n\omega$
- $\nabla B$  ripple radial drift:  $V \sim v_0 \rho_0 q n \delta/r$
- Tangential rotation:  $\omega \sim \rho_{p0} v_0 / R^2 \sim q \rho_0 v_0 / r R$
- Eff. radial ripple step:  $\Delta \sim V\tau \sim R\delta$

Crude  $\sqrt{v}$  regime alpha diffusivity:

$$D_{\sqrt{\nu}} \sim F\Delta^2/\tau = (R\delta)^2 (n\omega/\tau_p)^{1/2} = (R\delta)^2 \sqrt{\frac{qn\rho_0 v_0}{rR\tau_p}} \propto \frac{R\delta^2}{T^{3/4}} \sqrt{\frac{nn_e}{B_p}}$$

Galeev *et al.* (1969 thank Grad for "frank & comradely discussions" as in Vienna), Ho & Kulsrud (1987)

#### Superbanana plateau due to a resonance

Sbp occurs because there is a zero at  $\kappa_0^2 \simeq 0.83$ :

$$\omega \simeq -\frac{v^2 [2E(\kappa) - K(\kappa)]}{2R^2 \Omega_p K(\kappa)} \rightarrow \frac{v^2}{4R^2 \Omega_p} \begin{cases} 2 & \kappa^2 \rightarrow 1 \\ \frac{\kappa - \kappa_0}{\kappa_0 (1 - \kappa_0^2)} & \kappa^2 \simeq \kappa_0^2 \end{cases}$$

with  $\lambda = 1/(1 - \varepsilon + 2\varepsilon\kappa^2)$ ,  $\lambda = 2\mu B_0/v^2 \& \lambda - \lambda_0 \sim (\kappa - \kappa_0)\varepsilon$ Now  $\overline{h}/w^2\tau_p \sim \overline{C{\overline{h}}} \sim \overline{v_d} \cdot \nabla\alpha \partial \overline{h}/\partial\alpha \sim w\varepsilon^{-1}\omega n\overline{h} \sim wn\rho_{p0}v_0/rR$ Wider bound. lay:  $w \sim (1/n\omega\tau_p)^{1/3}\&$  Reduced rotation:  $w\varepsilon^{-1}\omega$ Eff. trapped fraction of trapped fraction - normalize by  $\varepsilon^{1/2}$ 

$$\mathbf{F} \sim \mathbf{w}/\varepsilon^{1/2} \sim \varepsilon^{-1/2} (1/n\omega\tau_p)^{1/3}$$

### Superbanana plateau diffusivity estimate

Boundary layer width:  $w \sim (1/n\omega\tau_p)^{1/3}$ 

- Effective trapped fraction:  $F \sim \epsilon^{-1/2} (1/n\omega \tau_p)^{1/3} << 1$
- Effective drift decorrelation time:  $\tau = w^2 \tau_p \sim \tau_p^{1/3} / (n\omega)^{2/3}$
- Smaller tangential rotation =  $w\epsilon^{-1}\omega$  with  $\omega\sim\rho_{\rm p0}v_0/R^2$
- $\nabla B$  ripple radial drift:  $V \sim v_0 \rho_0 q n \delta / r \sim n \omega R \delta$
- Eff. radial ripple step increase:  $\Delta \sim V\tau \sim (n\omega\tau_p)^{1/3}R\delta$

Crude sbp regime alpha diffusivity:  $D_{sbp} \sim F\Delta^2/\tau = (R\delta)^2 n\omega/\sqrt{\epsilon} = \delta^2 n\rho_{p0} v_0/\sqrt{\epsilon} \propto n\delta^2/B_p \sqrt{\epsilon}$ Large  $B_p$  &  $\epsilon$  desirable

# **Comparing diffusivity estimates**

Ratio

$$\frac{D_{sbp}}{D_{\sqrt{v}}} = \frac{(n\omega\tau_p)^{1/2}}{\sqrt{\varepsilon}} = \frac{(n\omega\tau_s v_0^3 / v_\lambda^3)^{1/2}}{\sqrt{\varepsilon}} >> 1$$

so sbp dominates as long as  $n\rho_{p0}/r >> R/v_0\tau_p$ .

To avoid depleting slowing down tail

1

$$>> \frac{\tau_s D_{sbp}}{a^2} = (\frac{R\delta}{a})^2 \frac{n\omega\tau_s}{\sqrt{\epsilon}}$$

allows only small imperfections

$$\delta << \frac{a\epsilon^{1/4}}{R\sqrt{n\omega\tau_s}} \sim 10^{-3} - 10^{-4}.$$

Need a careful boundary layer analysis

# **Stellarator estimates**

A quasisymmetric flux surface mod B closes after M toroidal turns and N toroidal turns:  $B=B_0[1-\epsilon\cos(M\vartheta-N\zeta)]$ 

N = 6 & M =1 (cheat alert: really W7-X so not QS, but close enough) N = 0: quasiaxisymmetry M = 0: quasipoloidal sym. other N & M quasihelical



Quasisymmetric stellarators isomorphic with tokamaks B/B<sub>0</sub> =  $1 - \epsilon \cos \vartheta - \delta \cos(n\zeta) \Rightarrow 1 - \epsilon \cos(M\vartheta - N\zeta) - \Sigma\delta \cos(m\vartheta - n\zeta)$ with  $\Sigma$  a sum over m and n and  $(M-qN)\epsilon >> (m-qn)\delta$ 

Just make replacement  $n \Rightarrow |(nM-mN)/(M-qN)|$ 

#### Superbanana plateau kinetic equation

Inapped satisfy  

$$\frac{v_0^3(2\kappa_0^2-1)\partial^2 f_t}{8\tau_p v^3 \delta \kappa_0^2 \partial \kappa^2} + \frac{v^2(\kappa-\kappa_0)}{4\Omega_p R^2 \kappa_0 (1-\kappa_0^2)} \frac{\partial f_t}{\partial \alpha} = -\frac{B_0 n \delta \lambda v^2}{2\Omega_0} \frac{\partial f_s}{\partial \psi} \cos(qn\pi) \sin(n\alpha)$$
Let  $\chi \equiv (1-\kappa)/8$ ,  $\chi_0 \equiv (1-\kappa_0)/8$ , &  $f_t \equiv \text{Im}[H(\chi)e^{in\alpha}]$  to find  

$$\frac{\partial^2 H}{\partial \chi^2} - is^3(\chi-\chi_0)H = -\Upsilon.$$

Su & Oberman (1968) solved Airy form long ago to find

$$H = \frac{\Upsilon}{s^2} \int_{0}^{\infty} d\tau e^{-is(\kappa_0 - \kappa)\tau/8 - \tau^3/3} \xrightarrow{s(\chi - \chi_0) \to \infty} - \frac{i\Upsilon}{s^3(\chi - \chi_0)} \xrightarrow{\kappa \to 1} \frac{i\Upsilon}{s^3\chi_0}.$$

Use WKB to match to  $\kappa \rightarrow 1$ ,  $\sqrt{\nu}$  boundary layer  $\Rightarrow$  add but  $\sqrt{\nu}$  always small. Particle & energy diffusivity

$$D_{sbp} = \frac{\kappa_0^2 (1 - \kappa_0^2) \delta^2 n \rho_{p0} v_0 \cos^2(qn\pi)}{2\sqrt{2\epsilon} \ell n (v_0/v_c)}$$

#### Superbanana plateau coefficient small

Resonant trapped turn at  $\kappa_0^2 \approx 0.83$  giving  $\kappa_0^2(1 - \kappa_0^2) \approx 0.14$ , reducing coefficient by  $\approx 1/20$ . Therefore, for a tokamak

$$1 >> \frac{\tau_{s} D_{sbp}}{a^{2}} = \left(\frac{R\delta}{a}\right)^{2} \frac{n\omega\tau_{s}}{20\sqrt{\epsilon}},$$

& the resonance is at  $\vartheta_0 \simeq 3\pi/4$ . Need

$$\delta \ll \frac{a\epsilon^{1/4}\sqrt{20}}{R\sqrt{n\omega\tau_s}} \sim 10^{-3} \Rightarrow \text{usual need to keep } \delta \le 10^{-4}.$$
  
Better if  $a\epsilon^{1/4} \& n^{-1} \Rightarrow (M-qN)/(nM-mN)$  larger  
$$\left|\frac{nM-mN}{M-qN}\right| \Rightarrow \begin{cases} n & N=0 & M\epsilon >> (m-qn)\delta & QAS \\ q^{-1}m & M=0 & qN\epsilon >> (m-qn)\delta & QPS \\ nM/qN & m/n << q & N\epsilon >> n\delta & QHS \\ nM/m & m/n >> q & M\epsilon >> m\delta & QHS \end{cases}$$

## **Comments & warnings!**

Superbanana plateau always dominates over  $\sqrt{v}$  for alphas since  $n\rho_{p0}/r >> R/v_0\tau_p$ 

Larger B, a,  $n_e \& \epsilon$ , at lower T better:  $\delta \ll \frac{a\epsilon^{1/4}\sqrt{20}}{R\sqrt{n\omega\tau_s}} \propto a\epsilon^{1/4} \frac{B^{1/2}n_e^{1/2}}{T^{3/4}}$ 

Highly idealized model of a stellarator (it is hard to be so close to QS) & want error fields with  $\left|\frac{M-qN}{nM-mN}\right| >> 1$ 

Superbanana plateau is a transition to a superbanana regime with D linear in v as  $\kappa = \kappa(\psi, \lambda)$  (see Beidler & D'haeseleer 1995 PPCF) or some other regime

