Turbulent self-interaction through the parallel boundary condition in local gyrokinetic simulations

Justin Ball, S. Brunner, and Ajay C.J. Swiss Plasma Center, EPFL

> 12th Vienna Plasma Kinetics Working Meeting 1 August 2019

Outline

- Understand the parallel boundary condition and how it enables selfinteraction
- Explore effects of self-interaction
 - e.g. how it drives intrinsic flow [WORK IN PROGRESS]
- Investigate two strategies for eliminating self-interaction
- Test each strategy to see its impact on heat flux convergence

What's causing non-convergence?

- Hypothesis: self-interaction through the parallel boundary condition of local simulations
- Typically, the length of the flux-tube is just one poloidal turn
- Statistical periodicity is substituted with exact periodicity

Parallel boundary condition enables self-interaction

Beer et al. *PoP* (1995).

• The magnetic field lines at opposing ends of the domain are connecting using the "twist-and-shift" boundary condition Inboard <u>Outboard</u> $\rightarrow \nabla x$ L_{v}

Parallel boundary condition enables self-interaction

Beer et al. *PoP* (1995).

• Align the centers of the parallelograms

• Use periodic copies to fully cover the opposing boundary

• Follow field lines through the parallel boundary

 Applying "twist-and-shift" after just one poloidal turn creates "pseudointeger" surfaces

 Applying "twist-and-shift" after just one poloidal turn creates "pseudointeger" surfaces

• j_{twist} is the number of pseudo-integer surfaces in the box

Flow shear layers occur at pseudo-integer surfaces

Waltz et al. *PoP* (2006).

Dominski et al. PoP (2015).

Weikl, Peeters et al. PoP (2019).

 One symptom is time-constant radially-localized flow shear layers when using kinetic electrons (but not adiabatic electrons)

Flow shear layers occur at pseudo-integer surfaces

Waltz et al. PoP (2006).

Dominski et al. PoP (2015).

Weikl, Peeters et al. PoP (2019).

 One symptom is time-constant radially-localized flow shear layers when using kinetic electrons (but not adiabatic electrons)

- Non-convergence because the spacing of flow shear layers increases with $L_{\rm y}$

Peeters et al. PoP (2005).

Parra et al. *PoP* (2011). Parra et al. *PPCF* (2015).

- Flow is constant, so it can be considered as intrinsic rotation and must be driven by symmetry-breaking
- Symmetry-breaking mechanism is variation in turbulence characteristics (e.g. profile shearing), but at the ρ_i spatial scale
- One of two effects are needed: magnetic drifts or magnetic shear within FLR effects

$$\frac{\partial}{\partial t} \left(h_s - \frac{Z_s e F_{Ms}}{T_s} J_0\left(k_\perp \rho_s\right) \phi \right) + v_{||} \hat{b} \cdot \vec{\nabla} h_s + i \vec{k}_\perp \cdot \vec{v}_{Ms} h_s + a_{||s} \frac{\partial h_s}{\partial v_{||}} + \left\{ h_s, J_0\left(k_\perp \rho_s\right) \phi \right\}$$
$$= i \frac{k_y}{B} J_0\left(k_\perp \rho_s\right) \phi F_{Ms} \left[\frac{1}{L_n} + \left(\frac{m_s v^2}{2T_s} - \frac{3}{2}\right) \frac{1}{L_T} \right]$$

Peeters et al. PoP (2005).

Parra et al. *PoP* (2011). Parra et al. *PPCF* (2015).

- Flow is constant, so it can be considered as intrinsic rotation and must be driven by symmetry-breaking
- Symmetry-breaking mechanism is variation in turbulence characteristics (e.g. profile shearing), but at the ρ_i spatial scale
- One of two effects are needed: magnetic drifts or magnetic shear within FLR effects

$$\frac{\partial}{\partial t} \left(h_s - \frac{Z_s e F_{Ms}}{T_s} J_0\left(k_\perp \rho_s\right) \phi \right) + v_{||} \hat{b} \cdot \vec{\nabla} h_s + i \vec{k}_\perp \cdot \vec{v}_{Ms} h_s + a_{||s} \frac{\partial h_s}{\partial v_{||}} + \left\{ h_s, J_0\left(k_\perp \rho_s\right) \phi \right\}$$
$$= i \frac{k_y}{B} J_0\left(k_\perp \rho_s\right) \phi F_{Ms} \left[\frac{1}{L_n} + \left(\frac{m_s v^2}{2T_s} - \frac{3}{2}\right) \frac{1}{L_T} \right]$$

• Evidence is that they have the correct symmetry properties (I think)...

Flow layers are just one type of self-interaction

Flow layers are just one type of self-interaction

19

Eliminating self-interaction by increasing L_y

Beer et al. *PoP* (1995).

• Parallel self-interaction is unphysical far from actual integer surfaces:

• Must increase n_v proportionally and eventually n_x as well

Eliminating self-interaction by increasing N_{pol}

Beer et al. *PoP* (1995).

Scott. PoP (1998).

- Parallel self-interaction is unphysical far from actual integer surfaces
- 2. Weaken self-interaction by extending the parallel domain with N_{pol}
 - Zonal flows are consistent between the different poloidal turns
 - Global consistency is not needed in the $\rho_* \rightarrow 0$ limit

Ŕ

Eliminating self-interaction by increasing $N_{\ensuremath{\textit{pol}}}$

Beer et al. *PoP* (1995).

Scott. PoP (1998).

- Parallel self-interaction is unphysical far from actual integer surfaces
- 2. Weaken self-interaction by extending the parallel domain with N_{pol}
 - Zonal flows are consistent between the different poloidal turns
 - Global consistency is not needed in the $\rho_* \rightarrow 0$ limit

Eliminating self-interaction by increasing $N_{\ensuremath{\textit{pol}}}$

Beer et al. *PoP* (1995).

Scott. PoP (1998).

- Parallel self-interaction is unphysical far from actual integer surfaces
- 2. Weaken self-interaction by extending the parallel domain with N_{pol}
 - Zonal flows are consistent between the different poloidal turns
 - Global consistency is not needed in the $\rho_* \rightarrow 0$ limit

Beer et al. *PoP* (1995).

Scott. PoP (1998).

- Parallel self-interaction is unphysical far from actual integer surfaces
- 2. Weaken self-interaction by extending the parallel domain with N_{pol}
 - Zonal flows are consistent between the different poloidal turns
 - Global consistency is not needed in the $\rho_* \rightarrow 0$ limit

Specify $k_{||}$ and k_{y} (with $N_{pol} = 1$)

Eliminating self-interaction by increasing N_{pol} Beer et al. PoP (1995).

- Scott. PoP (1998).
- Parallel self-interaction is unphysical far from actual integer surfaces
- 2. Weaken self-interaction by extending the parallel domain with N_{pol}
 - Zonal flows are consistent between the different poloidal turns
 - Global consistency is not needed in the $\rho_* \rightarrow 0$ limit

Eliminating self-interaction by increasing $N_{pol}\,$

Beer et al. *PoP* (1995).

Scott. PoP (1998).

- Parallel self-interaction is unphysical far from actual integer surfaces
- 2. Weaken self-interaction by extending the parallel domain with N_{pol}
 - Zonal flows are consistent between the different poloidal turns
 - Global consistency is not needed in the $\rho_* \rightarrow 0$ limit

Beer et al. PoP (1995).

Scott. PoP (1998).

Eliminating self-interaction by increasing N_{pol}

- Parallel self-interaction is unphysical far from actual integer surfaces
- 2. Weaken self-interaction by extending the parallel domain with N_{pol}
 - Zonal flows are consistent between the different poloidal turns
 - Global consistency is not needed in the $\rho_* \rightarrow 0$ limit (no domain selfintersection either)

Eliminating self-interaction by increasing N_{pol} Watanabe et al. PoP (2015).

- Parallel self-interaction is unphysical far from actual integer surfaces:
- 2. Weaken self-interaction by extending the parallel domain with N_{pol} 0.45 $N_{pol} = 1$ 0.4 $N_{pol} = 2$ 0.35 0.3 0.25 Ē 0.2 0.15 0.1 0.05 0 -80 -60 -40 -20 20 40 60 80 -100 0 100
- Must increase n_z and n_x proportionally (without the "flux-tube train")

Χ (ρ_i)

Both converge to same result (adiabatic CBC)

Dimits et al. PoP (2000).

Both converge to same result (adiabatic CBC)

Dimits et al. PoP (2000).

Both converge to same result (kinetic CBC)

Dimits et al. PoP (2000).

Critical gradient is affected less (CBC adiabatic)

Conclusions

- Self-interaction at pseudo-integer surfaces:
 - drives intrinsic flow
 - significantly decreases energy transport
 - can be eliminated by increasing $L_{\!y}$ and/or $N_{\!pol}$ until convergence is achieved
- Implementing the flux-tube train could make converged simulations cheaper

GS2 benchmark

Up-down symmetry breaking mechanisms

Camenen et al. Nucl. Fusion (2011).

• We want to create nonzero rotation from an initially stationary plasma:

• Order $\rho_* \equiv \rho_i/a$ mechanisms (radial profile variation, neoclassic flows, ...) as well as options 1 and 2 likely weaken significantly in future larger machines

Zonal flow consistency (adiabatic)

• Different symbols (i.e. line, circles, crosses) indicate different toroidal locations at the same poloidal position

Zonal flow consistency (kinetic)

 Different symbols (i.e. line, circles, crosses) indicate different toroidal locations at the same poloidal position

Symmetry-breaking drives flow shear layers?

