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• Understand the parallel boundary condition and how it enables self-
interaction


• Explore effects of self-interaction


• e.g. how it drives intrinsic flow [WORK IN PROGRESS]


• Investigate two strategies for eliminating self-interaction


• Test each strategy to see its impact on heat flux convergence



What’s causing non-convergence?

• Hypothesis: self-interaction through the parallel boundary condition of 
local simulations
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• Typically, the length of the 
flux-tube is just one 
poloidal turn


• Statistical periodicity is 
substituted with exact 
periodicity
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Parallel boundary condition enables self-interaction

• The magnetic field lines at opposing ends of the domain are 
connecting using the “twist-and-shift” boundary condition
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Beer et al. PoP (1995).
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Beer et al. PoP (1995).
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• Align the centers of the parallelograms

Parallel boundary condition enables self-interaction
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Beer et al. PoP (1995).
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• Use periodic copies to fully cover the opposing boundary

Parallel boundary condition enables self-interaction
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Beer et al. PoP (1995).

• Follow field lines through the parallel boundary

Ly

Lx

Parallel boundary condition enables self-interaction
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Beer et al. PoP (1995).

• Applying “twist-and-shift" after just one poloidal turn creates “pseudo-
integer” surfaces

Pseudo-integer

Ly

Lx

Parallel boundary condition enables self-interaction
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Beer et al. PoP (1995).

Pseudo-integer

• Applying “twist-and-shift" after just one poloidal turn creates “pseudo-
integer” surfaces

Ly

Lx

Parallel boundary condition enables self-interaction
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Beer et al. PoP (1995).

Pseudo-integer

• Using of Fourier representation discretizes the aspect ratio of the 
domain because � , which must be a gridpointkx = 0 → kx = 2π ̂sky,min

Ly

Lx = jtwistLy/(2π ̂s)
where jtwist = ℤ ≥ 1

Parallel boundary condition enables self-interaction
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Beer et al. PoP (1995).

Pseudo-integer

• �  is the number of pseudo-integer surfaces in the boxjtwist

Ly

Lx = jtwistLy/(2π ̂s)
where jtwist = ℤ ≥ 1

Parallel boundary condition enables self-interaction



Flow shear layers occur at pseudo-integer surfaces

• One symptom is time-constant radially-localized flow shear layers 
when using kinetic electrons (but not adiabatic electrons)
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Dominski et al. PoP (2015).
Weikl, Peeters et al. PoP (2019).

Waltz et al. PoP (2006).

Ly = 125ρi (time average) Ly = 125ρi (standard deviation)
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• One symptom is time-constant radially-localized flow shear layers 
when using kinetic electrons (but not adiabatic electrons)


• Non-convergence because the spacing of flow shear layers increases 
with �Ly
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Dominski et al. PoP (2015).
Weikl, Peeters et al. PoP (2019).

Waltz et al. PoP (2006).
Flow shear layers occur at pseudo-integer surfaces
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ASIDE: symmetry-breaking drives flow layers?

• Flow is constant, so it can be considered as intrinsic rotation and must 
be driven by symmetry-breaking


• Symmetry-breaking mechanism is variation in turbulence 
characteristics (e.g. profile shearing), but at the �  spatial scale


• One of two effects are needed: magnetic drifts or magnetic shear 
within FLR effects


ρi
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Parra et al. PoP (2011).
Parra et al. PPCF (2015).

Peeters et al. PoP (2005).
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• Flow is constant, so it can be considered as intrinsic rotation and must 
be driven by symmetry-breaking


• Symmetry-breaking mechanism is variation in turbulence 
characteristics (e.g. profile shearing), but at the �  spatial scale


• One of two effects are needed: magnetic drifts or magnetic shear 
within FLR effects
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Parra et al. PoP (2011).
Parra et al. PPCF (2015).

Peeters et al. PoP (2005).
ASIDE: symmetry-breaking drives flow layers?
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• Evidence is that they have the correct symmetry properties (I think)…
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ASIDE: symmetry-breaking drives flow layers?



• …and are fairly universal (but not in toroidal geo. with adiabatic e-)
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ASIDE: symmetry-breaking drives flow layers?



Flow layers are just one type of self-interaction
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Flow layers are just one type of self-interaction
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• Parallel self-interaction is unphysical far from actual integer surfaces:


1. “Dilute” away pseudo-integer surfaces by increasing � 


• Must increase �  proportionally and eventually �  as well

Ly

ny nx

Beer et al. PoP (1995).

DIII-D: 
�Ly ≈ 1250ρi

Eliminating self-interaction by increasing !Ly
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• Parallel self-interaction is unphysical far from actual integer surfaces


2. Weaken self-interaction by extending the parallel domain with �Npol

Beer et al. PoP (1995).
Scott. PoP (1998).

ζ

θ
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2π
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⃗B
• Zonal flows are 

consistent between 
the different poloidal 
turns


• Global consistency is 
not needed in the 
�  limitρ* → 0

Eliminating self-interaction by increasing !Npol
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Beer et al. PoP (1995).
Scott. PoP (1998).
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• Parallel self-interaction is unphysical far from actual integer surfaces


2. Weaken self-interaction by extending the parallel domain with �Npol

• Zonal flows are 
consistent between 
the different poloidal 
turns


• Global consistency is 
not needed in the 
�  limitρ* → 0

Eliminating self-interaction by increasing !Npol
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Beer et al. PoP (1995).
Scott. PoP (1998).

Specify   and  l|| l⊥
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• Parallel self-interaction is unphysical far from actual integer surfaces


2. Weaken self-interaction by extending the parallel domain with �Npol

• Zonal flows are 
consistent between 
the different poloidal 
turns


• Global consistency is 
not needed in the 
�  limitρ* → 0

Eliminating self-interaction by increasing !Npol
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Beer et al. PoP (1995).
Scott. PoP (1998).
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• Parallel self-interaction is unphysical far from actual integer surfaces


2. Weaken self-interaction by extending the parallel domain with �Npol

• Zonal flows are 
consistent between 
the different poloidal 
turns


• Global consistency is 
not needed in the 
�  limitρ* → 0

Eliminating self-interaction by increasing !Npol

Specify   and   (with  )k|| ky Npol = 1
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Beer et al. PoP (1995).
Scott. PoP (1998).
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• Parallel self-interaction is unphysical far from actual integer surfaces


2. Weaken self-interaction by extending the parallel domain with �Npol

• Zonal flows are 
consistent between 
the different poloidal 
turns


• Global consistency is 
not needed in the 
�  limitρ* → 0

Eliminating self-interaction by increasing !Npol

Specify   and   (with  )k|| ky Npol = 2



Eliminating self-interaction by increasing !Npol
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Beer et al. PoP (1995).
Scott. PoP (1998).
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• Parallel self-interaction is unphysical far from actual integer surfaces


2. Weaken self-interaction by extending the parallel domain with �Npol

• Zonal flows are 
consistent between 
the different poloidal 
turns


• Global consistency is 
not needed in the 
�  limitρ* → 0

Specify   and   (with  )k|| ky Npol = 2



Eliminating self-interaction by increasing !Npol
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Beer et al. PoP (1995).
Scott. PoP (1998).
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• Parallel self-interaction is unphysical far from actual integer surfaces


2. Weaken self-interaction by extending the parallel domain with �Npol

• Zonal flows are 
consistent between 
the different poloidal 
turns


• Global consistency is 
not needed in the 
�  limit (no 
domain self-
intersection either)

ρ* → 0

Specify   and   (with  )k|| ky Npol = 2
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• Parallel self-interaction is unphysical far from actual integer surfaces:


2. Weaken self-interaction by extending the parallel domain with � 


• Must increase �  and �  proportionally (without the “flux-tube train”)

Npol

nz nx

Eliminating self-interaction by increasing !Npol
Watanabe et al. PoP (2015).
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Both converge to same result (adiabatic CBC)
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Dimits et al. PoP (2000).
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Typical
box size

Dimits et al. PoP (2000).

25% difference

DIII-D



Both converge to same result (kinetic CBC)
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40% difference

Typical
box size

Dimits et al. PoP (2000).

DIII-D
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Critical gradient is affected less (CBC adiabatic)
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Conclusions
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• Self-interaction at pseudo-integer surfaces:


• drives intrinsic flow


• significantly decreases energy transport


• can be eliminated by increasing �  and/or �  until convergence is 
achieved


• Implementing the flux-tube train could make converged simulations 
cheaper

Ly Npol



Thank you!



GS2 benchmark
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Up-down symmetry breaking mechanisms
Camenen et al. Nucl. Fusion (2011).
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• We want to create nonzero rotation from an initially stationary plasma:


    1) Rotation             2) Gradient in rotation          3) Up-down asymmetry


• Order                       mechanisms (radial profile variation, neoclassic 
flows, …) as well as options 1 and 2 likely weaken significantly in future 
larger machines



Zonal flow consistency (adiabatic)
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Zonal flow consistency (kinetic)
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• Different symbols (i.e. line, circles, crosses) indicate different toroidal 
locations at the same poloidal position
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• …and are fairly universal
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Have not been observed in

toroidal simulations with adiabatic e-;
perhaps because parallel dynamics are 
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Symmetry-breaking drives flow shear layers?


