Turbulent selt-interaction through the parallel
boundary condition in local gyrokinetic simulations
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Outline

» Understand the parallel boundary condition and how it enables self-
iInteraction

« Explore effects of self-interaction
* e.g. how it drives intrinsic flow [WORK IN PROGRESS]
* Investigate two strategies for eliminating self-interaction

» Test each strategy to see its impact on heat flux convergence



What’s causing non-convergence”

» Hypothesis: self-interaction through the parallel boundary condition of
local simulations o

* Typically, the length of the
flux-tube is just one
poloidal turn

O e
- Statistical periodicity is A. /
substituted with exact g
periodicity ; >4



Parallel boundary condition enables self-interaction

Beer et al. PoP (1995).

- The magnetic field lines at opposing ends of the domain are
connecting using the “twist-and-shift” boundary condition
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Parallel boundary condition enables self-interaction

Beer et al. PoP (1995).

» Align the centers of the parallelograms
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Parallel boundary condition enables self-interaction

Beer et al. PoP (1995).

» Use periodic copies to fully cover the opposing boundary
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Parallel boundary condition enables self-interaction

Beer et al. PoP (1995).

* Follow field lines through the parallel boundary
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Parallel boundary condition enables self-interaction

Beer et al. PoP (1995).

« Applying “twist-and-shift" after just one poloidal turn creates “pseudo-
integer” surfaces
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Parallel boundary condition enables self-interaction

Beer et al. PoP (1995).

» Using of Fourier representation discretizes the aspect ratio of the

domain because k, = 0 — k, = 2zsk,,,,;,, which must be a gridpoint
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Parallel boundary condition enables self-interaction

Beer et al. PoP (1995).

* Jisy 1S the number of pseudo-integer surfaces in the box
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Flow shear layers occur at pseudo-integer surfaces

Waltz et al. PoP (2006).
Dominski et al. PoP (2015).

Weikl, Peeters et al. PoP (2019).
« One symptom is time-constant radially-localized flow shear layers
when using kinetic electrons (but not adiabatic electrons)

— L, = 125p; (time average) - L, = 125p, (standard deviation)
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Flow shear layers occur at pseudo-integer surfaces

Waltz et al. PoP (2006).
Dominski et al. PoP (2015).

Weikl, Peeters et al. PoP (2019).
« One symptom is time-constant radially-localized flow shear layers
when using kinetic electrons (but not adiabatic electrons)
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* Non-convergence because the spacing of flow shear layers increases
with Ly
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ASIDE: symmetry-breaking drives flow layers?

Peeters et al. PoP (2005).
Parra et al. PoP (2011).

Parra et al. PPCF (2015).

* Flow Is constant, so it can be considered as intrinsic rotation and must
be driven by symmetry-breaking

- Symmetry-breaking mechanism is variation in turbulence
characteristics (e.g. profile shearing), but at the p; spatial scale

« One of two effects are needed: magnetic drifts or magnetic shear
within FLR effects
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ASIDE: symmetry-breaking drives flow layers?

Peeters et al. PoP (2005).
Parra et al. PoP (2011).

Parra et al. PPCF (2015).

* Flow Is constant, so it can be considered as intrinsic rotation and must
be driven by symmetry-breaking

- Symmetry-breaking mechanism is variation in turbulence
characteristics (e.g. profile shearing), but at the p; spatial scale
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ASIDE: symmetry-breaking drives flow layers?

- Evidence is that they have the correct symmetry properties (I think)...
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ASI

DE: symmetry-breaking drives flow layers?
- ...and are fairly universal (but not in toroidal geo. with adiabatic e-)
N — ITG, toroidal, kinetic
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Flow layers are just one type of self-interaction
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Flow layers are just one type of self-interaction
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“liminating self-interaction by increasing Ly

Beer

et al. PoP (1995).

» Parallel self-interaction is unphysical far from actual integer surfaces:

1. “Dilute” away pseudo-integer surfaces by increasing Ly
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. Must increase n, proportionally and eventually n_ as well
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“liminating self-interaction by increasing NV,

Beer et al. PoP (1995).
Scott. PoP (1998).

- Parallel self-interaction is unphysical far from actual integer surfaces

2. Weaken self-interaction by extending the parallel domain with Npol

- Zonal flows are
consistent between
the different poloidal
turns

 Global consistency is
not needed In the

21



“liminating self-interaction by increasing NV,

Beer et al. PoP (1995).

Scott. PoP (1998).

» Parallel self-interaction is unphysical far from actual integer surfaces

2. Weaken self-interaction by extending the parallel domain with Npol
Specify m and n

- Zonal flows are 27 it MR my

consistent between '

the different poloidal
turns

- Global consistency is
not needed in the

P — 0 limit 0 o



“liminating self-interaction by increasing NV,

Beer et al. PoP (1995).

Scott. PoP (1998).

» Parallel self-interaction is unphysical far from actual integer surfaces

2. Weaken self-interaction by extending the parallel domain with Npol

Specify [ and [}

- Zonal flows are Dy it
consistent between
the different poloidal

turns
v,
- Global consistency is
not needed in the p——



“liminating self-interaction by increasing NV,

Beer et al. PoP (1995).

Scott. PoP (1998).

» Parallel self-interaction is unphysical far from actual integer surfaces

2. Weaken self-interaction by extending the parallel domain with Npol

Specify & and ky (With N, = 1)

- Zonal flows are 27
consistent between
the different poloidal
turns

e

- Global consistency is
not needed in the




“liminating self-interaction by increasing NV,

Beer et al. PoP (1995).

Scott. PoP (1998).

» Parallel self-interaction is unphysical far from actual integer surfaces

2. Weaken self-interaction by extending the parallel domain with IV,,,,;

- Zonal flows are
consistent between
the different poloidal
turns

- Global consistency is
not needed in the

P — 0 limit
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“liminating self-interaction by increasing NV,

Beer et al. PoP (1995).

Scott. PoP (1998).

» Parallel self-interaction is unphysical far from actual integer surfaces

2. Weaken self-interaction by extending the parallel domain with IV,,,,;

- Zonal flows are
consistent between
the different poloidal
turns

- Global consistency is
not needed in the

P — 0 limit
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“liminating self-interaction by increasing NV,

Beer et al. PoP (1995).

Scott. PoP (1998).

» Parallel self-interaction is unphysical far from actual integer surfaces

2. Weaken self-interaction by extending the parallel domain with IV,,,,;

- Zonal flows are
consistent between
the different poloidal
turns

- Global consistency is
not needed in the
P+« — 0 limit (no
domain self-
intersection either)
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“liminating self-interaction by increasing NV,

Watanabe et al. PoP (2015).

» Parallel self-interaction is unphysical far from actual integer surfaces:

2. Weaken self-interaction by extending the parallel domain with Npol
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- Must increase n, and n, proportionally (without the “flux-tube train®)
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Both converge to same result (adiabatic CBCO)

Dimits et al. PoP (2000).
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Both converge to same result (adiabatic CBCO)

Dimits et al. PoP (2000).
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Critical gradient is affected less (C
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Conclusions

» Self-interaction at pseudo-integer surfaces:
» drives intrinsic flow

* significantly decreases energy transport

- can be eliminated by increasing L, and/or N, ,; until convergence is
achieved

- Implementing the flux-tube train could make converged simulations
cheaper
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GS2 benchmark
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Up-down symmetry breaking mechanisms

Camenen et al. Nucl. Fusion (2011).

- We want to create nonzero rotation from an initially stationary plasma:

1) Rotation 2) Gradient in rotation |  3) Up-down asymmetry |

* Order px = p; / a mechanisms (radial profile variation, neoclassic
flows, ...) as well as options 1 and 2 likely weaken significantly in future
larger machines
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Symmetry-breaking drives flow shear layers”

« ...and are fairly universal
y — |T@G, toroidal, kinetic

«iinetic

z-adiabatic

- Have not been observed in
§ toroidal simulations with adiabatic e-; § diabatic (-§)
1 § perhaps because parallel dynamics are §
S “ ; governed by eleec;ltrons and
= 1 diab 0
~ | | e V)3 8
SRz b
s ‘ ‘ ' A T
S
S
-1 -
-0 | | ‘ | | |
30 20 -10 0 10 20 0
X (p) %



