Relativistic Reconnection reconnection <u>heating and IC cooling</u>

Magnetic reconnection energizes particles; Energetic particles radiate; Radiation excites astronomers...

> Featuring PIC codes (in omegapsical order) Zeltron and Vorpal and Tristan-MP

Greg Werner Dmitri Uzdensky Vladimir Zhdankin Mitch Begelman John Mehlhaff Kai Wong (CU Boulder) Sasha Philippov (UC Berkeley) Since about 2014 a new generation of PIC simulations has shown really convincing powerlaw particle distributions from reconnection in:

- 2D
- pair plasma
- zero guide field
- high σ_h
- high σ
- low T_e (cold/nonrel.)
- T_i=T_e

But astrophysical sources have:

- 3D
- pair and/or electron-proton
- some small/large guide field
- maybe $\sigma_h \sim 1$ or 10
- high σ is fine
- etc.

(see also Guo et el 2014, Werner et al 2016...)

The goal of the game

Reconnection simulation setup

Upstream Parameters:

- plasma n_b, T_b
- reversing magnetic field ±B₀x
- guide field B_{gz}
- 14 Plus a Harris layer
 - density to balance upstream B₀ pressure
 - current J_z to balance dB_x/dy

in double-periodic box

with a small initial magnetic field perturbation.

Nominal length scale: $\rho_0 = \frac{m_e c^2}{eB_0}, \rho_c = \sigma \rho_0$ System size: Lx, Ly, and (in 3D) Lz

Formal outline

How do particle (and radiation) spectra vary as we change:

- dimensionality: 2D vs 3D
- guide magnetic field: zero, weak, strong
 - effective magnetization
- mass ratio: positrons vs. protons
 - magnetization
- IC radiaction: weak -> moderately strong
 - radiaction = radiaction reaction (force)

Brief Conclusions

- From 2D, pair, zero guide field, negligible radiaction, we have now explored:
 - 3D pair reconnection (pretty much the same as 2D pair)
 - 2D and 3D with guide field (guide field slows reconnection, steepens NTPA power law)
 - 2D electron-ion (slower ions slow reconnection, steepen electron power law)
 - 2D pair with radiaction (doesn't slow reconnection, steepens high-energy part of power law)

Does the 3D-only relativistic drift-kink instability (RDKI) inhibit particle acceleration? Guide magnetic field may be important: it inhibits RDKI.

from Zenitani & Hoshino, 2008: (i) g_{gz}/B_0

However, more recent simulations (e.g., Sironi & Spitkovsky 2014, Guo et al 2015, Werner & Uzdensky 2017) have suggested that particle acceleration is robust to 3D effects.

5

Despite significant RDKI, 2D and 3D reconnection have similar reconnection rates and NTPA.

3D, L_z=L_x, B_z=0

3D current sheet evolution

Energetics of 2D and 3D reconnection are similar regardless of guide field (for later: guide field has a significant effect) Here L_z is the length in the 3rd dimension.

And 2D and 3D particle spectra are similar

Compressing plasmoids

n/n_b

During reconnection, the in-plane magnetic field compresses plasmoids.

When there's a guide field, that guide field resists compression and slows reconnection (reduced v_A , reduced E/B₀ ~ 0.1 v_A /c). Guide field not only slows reconnection rate, but steepens the NTPA power law.

3D aside: spatial fluctuations -> turbulence?

x is the direction of B₀ reconnecting magnetic field; z is the initial current direction

3D aside: Effect of initial perturbation in 3D (and 2D)

Density of initial Harris layer particles in the middle of the current sheet.

Electron – **Proton**: $m_i/m_e=1836$ (We use the real mass ratio!)

(Why is this possible? In the ultrarelativistic [but nonradiative] limit, ions and positrons have the identical motion. As ions become less relativistic, the scale separation between electrons and ions increases, and simulation becomes more difficult.)

$$\sigma_i = \frac{B_0^2}{4\pi n_b m_i c^2}$$

= (roughly) average magnetic energy per ion, normalized by ion rest mass energy.

σ _i >> 1	-> ultrarelativistic
1/1836 < σ_{i} < 1	-> semirelativistic (electrons are relativistic, ions are sub-rel.)
σ _i << 1/1836	-> nonrelativistic

Semirelativistic electron/ion reconnection energetics: ions are slow energy hogs

Finally, (ultrarelativistic pair) reconnection with IC radiaction

High energy electrons (or positrons) scatter of photons, emitting high energy photons, and experiences radiation reaction (radiaction) force.

If U_{ph} is the photon energy density, then the power loss, for an electron with $\gamma m_e c^2$ is: P_{re}

$$P_{rad} = \frac{4}{3}\sigma_T c U_{ph} \gamma^2$$

Power gain (accel.) in the reconnection electric field E=0.1B₀: $P_{acc} = (0.1)eB_0c$

These 2 forces (powers) balance for $\gamma = \gamma_{rad}$:

$$\gamma_{rad} = \sqrt{\frac{3(0.1)eB_0}{4\sigma_T U_{ph}}}$$

Particles can't gain much more energy than this.

 $\begin{array}{ll} \text{IC scattering doesn't affect basic reconnection dynamics very much} \\ \gamma_{\text{rad}} = \infty \text{ (no cooling)} & \gamma_{\text{rad}} = 2\sigma \text{ (strong cooling)} \end{array}$

color=plasma density (normalized to n_b)

IC cooling has little effect on magnetic energy dissipation, reconnection rate

2D $m_i/m_e=1$ $B_{gz}/B_0=0.25$ $\sigma_h=100$ $\sigma>>1$ $T_e/m_ec^2>>1$ $T_i=T_e$ $\gamma_{rad}/\sigma=1$ to ∞

Strong cooling doesn't alter the amount of magnetic energy transferred to particles...but strong cooling means particles promptly radiate that energy.

IC cooling changes particle spectra significantly: noisy, steeper

Weak cooling: usual hard power law Strong cooling: variable steep power law Intermediate: both power laws

Time-integrated IC photon spectra

Photon power law index alpha = (p-1)/2. Hard slope $p_h=1.9 \rightarrow alpha = 0.45$ (measured 0.5) Steep slope $p_s=3-5 \rightarrow alpha = 1-3$ however: a harder slope means more IC emission, so alpha should be dominated by the hardest $p_{s,min}=3 \rightarrow alpha=1$ (measured 1.1)

In this particular case (ultrarelativistic pair plasma, sigma_h=100, B_gz=B_0/4), adding a soft photon bath changes index from alpha=0.5 to alpha=1.1.

But: for electron-proton reconnection, the perturbation may be significant

Unlike the 2D ultrarelativistic (pair) case, where a small guide field has a small effect and the initial perturbation has no effect, in semirelativistic electron-proton reconnection, the perturbation has a significant effect (e.g., on electron power-law slope).

Brief Conclusions

- From 2D, pair, zero guide field, negligible radiaction, we have now explored:
 - 3D pair reconnection (pretty much the same as 2D pair)
 - 2D and 3D with guide field (guide field slows reconnection, steepens NTPA power law)
 - 2D electron-ion (slower ions slow reconnection, steepen electron power law)
 - 2D pair with radiaction (doesn't slow reconnection, steepens high-energy part of power law)