Electron heating in shocks and reconnection

11th Plasma Kinetics Working Meeting, Vienna, July 23rd 2018

Lorenzo Sironi (Columbia)

200 kpc

with: Xinyi Guo & Michael Rowan (Harvard), Aaron Tran (Columbia)

Electron Heating in Shocks The physical motivation

- Rankine-Hugoniot relation only determines the mean post-shock temperature.
- How is the shock heating distributed between electrons and protons?
- More massive protons dominate energy flux. Naively, one would expect

 $T_{e2}/T_{i2} \simeq m_e/m_i \ll 1$

Electrons will be at least heated adiabatically through shock compression

$$T_{e2,\mathrm{ad}} \le T_{e2} \le T_{i2}$$

Can collisionless processes heat electrons beyond adiabatic? What is the mechanism and how does it depend on flow conditions?

High-beta Shocks

The observational motivation

In some merger shocks in galaxy clusters (high beta), electrons are heated to equipartition.

Simulation Setup

2D simulations of high beta, low Mach number shocks

Particle-in-Cell Code: TRISTAN-MP (Buneman 93, Spitkovsky 05)

Mach number: $M_s = \frac{u_0 + v_{sh}}{C_s} = 3$

plasma beta :
$$\beta_p = \frac{nk_B(T_i + T_e)}{B_0^2/8\pi} = 16$$

Magnetic obliquity θ_B =90 deg

[mass ratio m_i/m_e]

Shock Structure (protons) Reference run with $M_s=3$, $\beta=16$ and $\theta_B=90^\circ$ (perp shock)

The proton temperature anisotropy drives strong longwavelength magnetic waves (mirror and proton cyclotron modes) in the downstream.

Shock Structure (electrons)

Electron-driven waves and entropy increase

-6

-8

-2

 $x - x_{sh} [r_{Li}]$

0

(1) at the shock, and (2) where proton waves grow.

Electron heating

Two heat reservoirs, one transfer mechanism

What are the two heat reservoirs?

$$T_{e,\perp} \propto B$$

As a result of shock compression coupled with flux freezing, B increases $\rightarrow T_{e,\perp}$ increases.

> From flux freezing, $T_{e,\parallel}$ stays the same.

What is the mediator of dq?

We need a mechanism to scatter electrons in pitch angle, so that $T_{e,\parallel}$ increases at the expense of $T_{e,\perp}$ (i.e., a mechanism to break adiabatic invariance). Whistler waves! (self-consistently generated due to $T_{e,\perp} > T_{e \parallel}$)

Model for entropy increase:

$$ds_e = \left[\frac{1}{2}d\ln\left(\frac{T_{e,\parallel}}{(n/B)^2}\right)\right] \left(1 - \frac{T_{e,\parallel}}{T_{e,\perp}}\right) - \frac{de_{w,e}}{T_{e,\perp}}$$

Two ingredients: (a) temperature anisotropy (b) breaking of adiabatic invariance

Whistler waves

Whistlers are present where entropy increases

In [2], field amplification by proton modes induces electron anisotropy, that triggers whistlers.

Model vs simulation

The heating model agrees well with PIC results

Dependence on beta and Mach

The efficiency of irreversible heating is higher at larger M_s

The post-shock temperature is above the 3D adiabatic expectation by

$$\frac{T_{e2} - T_{e,ad}}{T_{e0}} \simeq 0.044 \, M_s \, (M_s - 1)$$

[caveat: we expect some dependence on the field obliquity, with $\theta_B=90^{\circ}$ giving a lower limit in electron entropy increase]

Low-beta Shocks

The observational motivation

Evidence of non-adiabatic electron heating in Earth and Saturn bow shocks (beta~1).

Low-beta Shocks

Electron-proton temperature ratio

- Lower beta shocks show a larger deviation from the adiabatic expectation.
- Evidence for a "universal" electron-to-proton temperature ratio as a function of the magnetosonic Mach number.

Dimensionality and mass ratio

1D not sufficient; 2D ok, independently of the mass ratio

- 1D simulations are insufficient to capture the relevant physics, as well as 2D with out-of-plane field.
- 2D with in-plane background field is consistent with 3D.

• Electron-to-proton temperature ratio is nearly independent of mass ratio.

Hints on the heating physics

Width of the simulation box

• Substantial electron heating only when the 2D simulation box is wider than ~ 1 proton Larmor radius.

• Electron heating happens in "cycles".

Hints on the heating physics Shock reformation and rippling

- Electron heating cycles are correlated with the shock reformation and rippling.
- Evidence for electron-scale waves during heating episodes, with component of E along the background B. No ID yet.

Electron and proton heating in trans-relativistic reconnection (sigma~1)

As a function of beta, sigma, and the guide field strength

$$\beta = \frac{8\pi n_0 k_B T}{B_0^2} \qquad \sigma = \frac{B_0^2}{4\pi w} \qquad B_g/B_0$$

Dependence on beta

 σ =0.1 β =0.01, realistic mass ratio, ZERO guide field

• Low beta: the outflow is fragmented into a number of secondary plasmoids.

Dependence on beta

 σ =0.1 β =0.01, realistic mass ratio, ZERO guide field

• Low beta: the outflow is fragmented into a number of secondary plasmoids.

σ =0.1 β =2, realistic mass ratio, ZERO guide field

• High beta: smooth outflow, no secondary plasmoids.

Characterization of heating

- Blue: upstream region, starting above the current sheet.
- Red: upstream region, starting below the current sheet.
- White/yellow: mix of blue and red particles \rightarrow downstream region.

and then separate adiabatic and irreversible contributions.

Electron heating efficiency (Bg=0)

- Electrons are heated less then protons (for $\sigma \ll 1$, the ratio is ~0.2). See also Werner+18.
- Comparable heating efficiencies:
 - at high beta, when both species already start relativistically hot.
 - in ultra-relativistic ($\sigma \gg 1$) reconnection.

No dependence on the upstream T_e/T_i

- Adiabatic heating (obviously) dependent on the temperature ratio.
- Irreversible heating nearly independent of the temperature ratio.

Dependence on Bg/B0

 σ =0.3 β =0.003, realistic mass ratio

 $B_{g}/B_{0}=0.0$

 $B_g/B_0=0.1$

 $B_g/B_0 = 0.3$

Dependence on Bg/Bo

• At low beta: electrons are heated less then protons for $B_g/B_0 < 1$, but most of the dissipated energy (~90-95%) goes into electrons for $B_g/B_0 > 1$.

• In agreement with non-relativistic PIC (Tenbarge+14) and GK calculations (Numata & Loureiro 15, Kawazura+ today).

Electron heating in high-beta low Mach number shocks:

Electron heating in trans-relativistic reconnection:

• For $B_g/B_0=0$, electrons are heated less then protons (for $\sigma \ll 1$, the ratio is ~0.2).

Comparable heating efficiencies at high beta, when both species already start relativistically hot.

• At low beta: electrons are heated less then protons for $B_g/B_0<1$, but most of the dissipated energy (~90-95%) goes into electrons for $B_g/B_0>1$.