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Electron Heating in Shocks

The physical motivation

Rankine-Hugoniot relation only determines the mean post-shock temperature.

How is the shock heating distributed between electrons and protons?

More massive protons dominate energy flux. Naively, one would expect
To/Tio ~m./m; <K 1
Electrons will be at least heated adiabatically through shock compression
Te2,0a0 < Tep < T3

Can collisionless processes heat electrons beyond adiabatic? What is the
mechanism and how does it depend on flow conditions?



High-beta Shocks

The observational motivation

In some merger shocks in galaxy clusters (high beta), electrons are heated to equipartition.
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Simulation Setup

2D simulations of high beta, low Mach number shocks

Particle-in-Cell Code: TRISTAN-MP (Buneman 93, Spitkovsky 05)

y The simulation is performed in the post- Uy + Vg,
' shock (downstream) rest frame Mach number: M, = — =3
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The electron and ion distributions are
initialized as drifting Maxwellians




Shock Structure (protons)

Reference run with Ms=3, =16 and 88=90" (perp shock)
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(Guo, Sironi, Narayan 2017a)

The proton temperature anisotropy drives strong long-
wavelength magnetic waves (mirror and proton
cyclotron modes) in the downstream.



Shock Structure (electrons)

Electron-driven waves and entropy increase

Flux freezing:

B xn

,,,,,,,,,,,,,,,,, —-ﬂ | Double adiabatic:
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e The electron temperature anisotropy at the shock
drives short-wavelength (whistler) waves.

.« Two preferential locations of entropy generation:
""" 5 % 2 o 2 (1)atthe shock, and (2) where proton waves grow.



Electron heating

Two heat reservoirs, one transfer mechanism

What are the two heat reservoirs?

hot Te. 1 < B | Asaresult of shock compression
coupled with flux freezing,
B increases — Te, 1 INCreases.

cold T, || o (n/B)*|  From flux freezing,
Te, stays the same.

What is the mediator of dq?

We need a mechanism to scatter electrons in pitch angle, so that Te | increases
at the expense of Te,, (i.e., a mechanism to break adiabatic invariance).
Whistler waves! (self-consistently generated due to T¢, . >T¢ )

Model for entropy increase: Two ingredients:

1 T. | T. i de,, . (a) temperature anisotropy
ds. =||=dIn —— I — : — — |(b) breaking of adiabatic
2" \(n/B)?

1(—:,¢ le 1 Invariance

e




Whistler waves

Whistlers are present where entropy increases

In [1], shock compression induces electron
anisotropy, that triggers whistler waves.
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In [2], field amplification by proton modes induces
electron anisotropy, that triggers whistlers.
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Model vs simulation

The heating model agrees well with PIC results

Reference run with Ms=3, 3=16, 88=90" (perp shock) and m/me=49
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The entropy increase is
remarkably independent of
mass ratio.
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Dependence on beta and Mach

The efficiency of irreversible heating is higher at larger Ms
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The post-shock temperature is above the 3D adiabatic expectation by
TeQ _ Te
Te()

[caveat: we expect some dependence on the field obliquity, with
08=90" giving a lower limit in electron entropy increase]

29~ 0.044 M, (M, — 1)



Low-beta Shocks

The observational motivation

Evidence of non-adiabatic electron heating in Earth and Saturn bow shocks (beta~1).
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Low-beta Shocks

Electron-proton temperature ratio

2D shock heating, m;/m.= 49
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e Lower beta shocks show a larger deviation from the adiabatic expectation.

e Evidence for a “universal” electron-to-proton temperature ratio as a function
of the magnetosonic Mach number.



Dimensionality and mass ratio

1D not sufficient; 2D ok, independently of the mass ratio
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* 1D simulations are insufficient to e Electron-to-proton temperature ratio
capture the relevant physics, as well as is nearly independent of mass ratio.

2D with out-of-plane field.

e 2D with in-plane background field is
consistent with 3D.



Hints on the heating physics

Width of the simulation box

n=49, M,=17,53,=0.25

10-1rLi: 1
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| o Substantial electron
| heating only when the
N 2D simulation box is

wider than ~ 1 proton

_| Larmor radius.

| « Electron heating
happens in “cycles”.



Hints on the heating physics

Shock reformation and rippling
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e Electron heating cycles are correlated with the shock reformation and rippling.

e Evidence for electron-scale waves during heating episodes,
with component of E along the background B. No ID yet.



Electron and proton heating
in trans-relativistic reconnection
(sigma~1)

As a function of beta, sigma, and the guide field strength
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Dependence on beta

0=0.1 B=0.01, realistic mass ratio, ZERO guide field
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e Low beta: the outflow is fragmented into a number of secondary plasmoids.
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Dependence on beta

0=0.1 B=0.01, realistic mass ratio, ZERO guide field
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e Low beta: the outflow is fragmented into a number of secondary plasmoids.
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e High beta: smooth outflow, no secondary plasmoids.



Characterization of heating

. . upstream region, starting above the current sheet.
. . upstream region, starting below the current sheet.
e White/yellow: mix of and particles — downstream region.
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Define total electron heating as EAZERIN: o m;/me unit rest mass.

Oe down — 9(\_,111) O=dimensionless temperature.

i\['l’(‘.,t.()t. = -

alternatively, o m;/me (Shay et al. 2014)

and then separate adiabatic and irreversible contributions.



Electron heating efficiency (Bg=0)

Electron-to-overall heating ratio

The curves extend
up to Bmax~1/(40)

10 10° 10° 10" 10°
B (Rowan, LS &
Narayan 2017)

» Electrons are heated less then protons (for o« 1, the ratio is ~0.2).
See also Werner+18.

e Comparable heating efficiencies:
- at high beta, when both species already start relativistically hot.
- in ultra-relativistic (o>1) reconnection.



Electrons

Protons

No dependence on the upstream Te/T

Adiabatic heating

Irreversible heating
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Narayan 2017)

e Adiabatic heating (obviously) dependent on the temperature ratio.

e Irreversible heating nearly independent of the temperature ratio.



Dependence on Bgy/Bo

0=0.3 B=0.003, realistic mass ratio
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Dependence on By/Bo

Electron-to-overall heating ratio (0=0.1)

The curves extend
up to Bmax~1/(40')

(Rowan, LS &
Narayan, in prep)

e At low beta: electrons are heated less then protons for B4/Bo<1, but
most of the dissipated energy (~90-95%) goes into electrons for By/Bo>1.

e In agreement with non-relativistic PIC (Tenbarge+14) and GK calculations
(Numata & Loureiro 15, Kawazura+ today).



Summary

Electron heating in high-beta low Mach number shocks:

[\\ ( ) } proton J nearly isotropic
~—_ \J] anisotropic ] instabilities . . \ protons;
and proton reflection ) generate pitch-angle scattering
/ protons /| (proton cyclotron / proton entropy
l/ \ % and mirror) W production

shock
compression of
the frozen-in field

[

] nearly isotropic
electron J y P

electron entropy
production

[ ' \ anisotropic : g : \ electrons;
combined with electron \J P ) instabilities pitch-angle scattermg/

iabatic i i electrons :
adiabatic invariance / (whistler) 1
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Electron heating in trans-relativistic reconnection:
e For Bg/Bo=0, electrons are heated less then protons (for o« 1, the ratio is ~0.2).

Comparable heating efficiencies at high beta, when both species already start relativistically hot.

» At low beta: electrons are heated less then protons for Bg/Bo<1, but most of the dissipated
energy (~90-95%) goes into electrons for By/Bo>1.




