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An Astrophysics Problem

Matter in discs accretes onto central black hole.
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An Astrophysics Problem

Matter in discs accretes onto central black hole.
In order for this accretion to happen,
angular momentum needs to be transported.

In order for it to be transported fast enough,
a certain level of turbulence is needed.

In order for that turbulence to be sustained, O INAE e s
it must be constantly converting energy into heat at a certain rate.
If all of that heat were radiated out,

(some) discs (eg Sgr A*) would be a lot more luminous than observed.
In order for luminosity to stay low,

one possibility is for turbulence to thermalise on ions, not electrons
(taking the energy with them into the black hole, without radiating).
ly, Question: how is energy injected into turbulence by Keplerian shear

partitioned between ions & electrons,
as a function of local plasma conditions, viz., 8iand 77/72?

This question 1s meaningful in a weakly collisional plasma,
where Coulomb equilibration between species 1s slow:
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A state with different T; and 1. 1s out of equilibrium (has free energy).

However, we do not know of any linear instabilities that feed off that.
The only equilibration mechanism we know 1s collisions: slow!

Is there a nonlinear mechanism for nature to be impatient and push
the two species towards equilibrium?
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This problem can be cast in fundamental physics terms:

A state with different T; and 1. 1s out of equilibrium (has free energy).

However, we do not know of any linear instabilities that feed off that.
The only equilibration mechanism we know 1s collisions: slow!

Is there a nonlinear mechanism for nature to be impatient and push
the two species towards equilibrium?

L.e., is turbulence redistributive: I; > T. — (i < (. and vice versa,
or inequality-enhancing: T > 1. — (; > (. and vice versar?

And how does that depend on thermal-magnetic energy ratio §i?
(this 1n fact turns out to be much more important)

This is a plasma physics problem
because in MHD the two species move together.



Global Zoo to Local Universality sy
General philosophy 1s that, whatever the global specifics of a particular®
system, they all happen at MHD scales, where ions and electrons move
together, so energy partition between is as yet undecided.

At sufficiently small (but still MHD) scales, turbulence becomes universal,
viz., anisotropic (k, > k I) MHD turbulence in a strong mean field.

So our problem can be solved in 2 homogeneous box, into which
energy 1s (artificially) injected at a given rate.
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“compressive” ( 51w L OBy, (Of) ) perturbations energetically decouple

at the outer scale and cannot exchange energy in the MHD inertial range.
The compressive cascade 1s passively advected by the Alfvénic one.
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It can be shown rigorously that cascades of Alfvénic (u ., 0B ) and
“compressive” ( 51w L OBy, (Of) ) perturbations energetically decouple

at the outer scale and cannot exchange energy in the MHD inertial range.
The compressive cascade 1s passively advected by the Alfvénic one.
[AAS et al. 2009, Ap]S 182, 310]

In the solar wind, observationally, most of the energy 1s in the Alfvénic
cascade; we do not know whether it 1s so elsewhere 1n Nature.

In our simulations, we only injected Alfvénic perturbations.
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energy 1s (artificially) injected at a given rate.

Around k| p; ~ 1, 1ons and electrons decouple, with the former
no longer able to catch up with the latter.
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General philosophy is that, whatever the global specifics of a partlcular‘#“
system, they all happen at MHD scales, where ions and electrons move
together, so energy partition between is as yet undecided.

At sufficiently small (but still MHD) scales, turbulence becomes universal,
viz., anisotropic (k, s |) MHD turbulence in a strong mean field.

So our problem can be solved in 2 homogeneous box, into which
energy 1s (artificially) injected at a given rate.

Around k| p; ~ 1, 1ons and electrons decouple, with the former
no longer able to catch up with the latter.

This changes the nature of turbulence:
from cascade of Alfvén waves (, — kyva, EL ~uy ~98 B,)
+ compressive perturbations
to “kinetic Alfvén waves” (KAW, w x k Iv. akipi, E|, ~k,;0B))
, electron heating
+ phase-space cascade of ion entropy (linear & nonlinear phase mixing)

l, ion heating Qi
[AAS et al. 2009, Ap]S 182, 310]
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previous, full-GK calculations by Howes et al. 2008, 2011,
Told et al. 2015, Banon Navarro et al. 2016 could only afford
to do one point: i =1, Ti;/T. =1
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,| In low-beta GK plasmas,
CAVEATS: energy partition is decided
» GK does not have at the outer (MHD) scale!

stochastic ion heating
[Chandran 2010]

» We might not be tesolving multiscale reconnection heating
[cf. Rowan, Sironi, Narayan 2017]
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[same result found by Told et al. 2015 in full two-species GK]
Non-asymptotic case: a bit of this, a bit of that...
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High Beta

Alfvén waves at high §; are
heavily damped and stop prop %atmg
around k) p. = 1, p, ~ p; ;3__
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Alfvén waves at high §; are
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w/kj |va, =y/lkj|va

1 Alfvén waves
0.1} 5%"'

. &
0.01f ./

0.01 0.1

[Kawazura et al. 2018, arX1v:1807.07702]
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High Beta

Alfvén waves at high g are

heavily damped and stop prop %atmg
around k| p. = 1, p, ~ p; 3_

[PiWioi]

w/kj |va, =y/lki|va

Alfvén waves
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Atk p. > 1, like an overdamped oscillator:
magnetic fields (displacements) not damped
velocities heavily damped



High Beta

Alfvén waves at high i are
heavily damped and stop prop %atmg
i 13_

around k| p, =1, p, ~
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Atk p. > 1, like an overdamped oscillator:

0.1

! K. pi
10 i

Magnetic-only cascade
(fields advected

by p*-scale motions)

magnetic fields (displacements) not damped _/

velocities heavily damped



High Beta

Alfvén waves at high §; are
heavily damped and stop prop %atmg
around k) p. = 1, p, ~ p; 43__

,IOO + e ———

10-2F

Magnetic-only cascade
(fields advected
by p*-scale motions)

10-8 VIS. DAMPED (384PH3-Bgp1)
" " " PR | "

1 10 100 f -
) R Reminiscent of high-Pm MHD

turbulence at subviscous scales
[Kawazura et al. 2018, arXiv:1807.07702]
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an order-unity fraction of cascaded
energy is converted into ion heat
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What fraction 1s what numerics tell us, viz.,

Qi/Qe ~30 Magnetic-only cascade

(fields advected

by p*-scale motions)
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High Beta

Alfvén waves at high i are 10OFT
heavily damped and stop propa%ating
around k; p. =1, p, ~ p;i3.

/4 107 1F
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Since Imw ~ |kj|va ~ 7, at Kipe ~ 1,
an order-unity fraction of cascaded
energy is converted into ion heat Shall
&

10~4%

What fraction 1s what numerics tell us, viz.,
VQ(/{ Q;; 20 v and why i Magnetic-only cascade
Why this, .exact y, and why it saturates (fields advected

is to do with

» how efficient Landau damping is in
a turbulent environment [cf. AAS et al. 2016, JPP 82, 905820212: echo effect]

» how efficiently energy is channeled from magnetic to KAW cascade

by p*-scale motions)




Phase-Space Cascades
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» Atlow beta, i-e energy partition happens at MHD (outer) scale:
Qi/ Qe = compressive/Alfvénic
» At high beta, i-¢ energy partition happens just above ion Larmor scale;

for an Alfvénic cascade, Q:;/Qe — 30
There 1s a new regime of turbulence, resembling high-Pm MHD
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» Astrophysically, this amount of ion heating is not dominant enough
to explain low luminosity of Sgr A” without assuming low accretion
enabled by significant outflows;

within that, the very low electron heating at low beta turns out
to be crucial for the jet showing up in emission
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» Atlow beta, i-e energy partition happens at MHD (outer) scale:
Qi/ Qe = compressive/Alfvénic
» At high beta, i-¢ energy partition happens just above ion Larmor scale;

for an Alfvénic cascade, Q:;/Qe — 30
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» Astrophysically, this amount of ion heating is not dominant enough
to explain low luminosity of Sgr A" without assuming low accretion

enabled by significant outflows;

within that, the very low electron heating at low beta turns out
to be crucial for the jet showing up in emission

> A take-away for those interested in fundamental plasma physics:
turbulence is indifferent to species inequality
(heating is independent of Ti/I¢)

and indeed promotes disequilibration of species
(hotter ions at high i and hotter electrons at low 5))

[Kawazura et al. 2018, arXiv:1807.07702]



