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Outline

• Brief Aside on Astrophysical Fluid Dynamics

• Background/Context
• Timescale separation and transport equations for tokamak core plasma
• Simulations with GENE

• Numerical Method

• Adiabatic electron simulations
• Evolution of ion pressure only
• With realistic magnetic geometry

• Kinetic electron simulations
• Evolution of ion pressure, electron pressure, and plasma density



Zonal flows (or not?) in rotating, MHD systems



Zonal flows suppressed on a magnetized beta plane

• Quasilinear analysis, but results agreed very well with DNS

• Zonal flows are definitely gone if  
𝜔𝐴

𝜔𝑅
~𝑂(1)

• But even for 
𝜔𝐴

𝜔𝑅
≪ 1, zonal flows suppressed can be suppressed 

at large Prm (small resistivity 𝜂)

• Maxwell stress acts against the growth of zonal flows

• Suppose a uniform azimuthal field 𝑩 = 𝐵0 𝝓
• Setting: 2D beta plane, force the vorticity variable
• Will azimuthal zonal flows grow?

Quasilinear 
analysis,

Constantinou & 
Parker, ApJ
(2018)

arXiv
1805.09847

DNS, 

S. Tobias et al, 
ApJ (2007)

Possibly applicable to:
• stellar interiors (solar tachocline)
• Gas giants (Jupiter’s interior), exoplanets

What about other zonal modes? (magnetic field, pressure, 
etc.)

Conclusion:



Outline: Global gyrokinetic turbulence and transport

• Brief Aside on Astrophysical Fluid Dynamics

• Background/Context
• Timescale separation and transport equations for tokamak core plasma

• Simulations with GENE

• Numerical Method

• Adiabatic electron simulations
• Evolution of ion pressure only

• With realistic magnetic geometry



Global gyrokinetic turbulence + transport

Turbulent fluxes in the core are small, 
resulting in long timescales for the 
evolution of macroscopic profiles, e.g., T(r)

Turbulence time ~ 10 𝜇s 
Energy confinement time ~ 1 s

Direct numerical integration capturing both turbulence and confinement time scales 
computationally expensive!

Assuming a separation of timescales exists, how can we efficiently study the self-
consistent evolution on the long timescale?  How do we bridge the timescale gap?
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Overarching goal: predict both profiles and turbulence in the core of a tokamak

Or: coupling a transport solver and turbulence simulation.  VERY PRACTICAL



Why global versus local simulation

• Nonlocal physical effects that you may not be able to get from local 
models 
• Internal transport barriers

• Smallish tokamaks where 𝜌∗ isn’t so small

• Potentially less sensitive to issues of convergence due to local 
marginal stability

• Potentially computationally cheaper for similar runs because local 
simulations may need large radial box size to converge
• But: less embarrassingly parallel



Multiscale gyrokinetics: rigorous derivation of transport & turbulence eqns

Sugama and Horton (1997, 1998)
Abel et al. (2013)

Ordering:

(Some terms suppressed, for simplicity)

Transport Equations (slow timescale, 1D) Gyrokinetic Equations (fast timescale, 5D)

TRINITY – GS2 (Barnes et al., 2010)  GryfX GX (Highcock et al., JPP 2018)
TGYRO – GYRO (Candy et al. 2009)  

[This talk: global code 
in this formulation]



Numerical method for solving
an implicitly-stepped transport equation

Shestakov, Cohen, Crotinger, LoDestro, Tarditi, Xu, JCP (2003)

Key Elements (more detail on next few slides)
 Represent turbulent flux as diffusive (+ possibly convective)

 Picard iteration with relaxation (no Newton steps) – No Jacobians or Jacobian-vector products 

 Computationally advantageous: A transport timestep may finish with a cost comparable to running a 
single standalone turbulence simulation

 Works with either local or global simulations



Represent turbulent flux as diffusive/convective and use Picard iteration

Introduce a subscript 𝑙 representing iteration: when solving for the 𝑚th
timestep, let 𝑛𝑚,𝑙 be the 𝑙th iterate.  Represent the turbulent flux as diffusive:

This gives a tractable, linear equation to solve for each iterate 𝑛𝑚,𝑙:

Picard iteration:
• Diffusion coefficient 

evaluated at previous iterate
• Gradient at current iterate

Paradigm equation

Nonlinear equation.  
How to solve it?

where

Flux computed in a 
separate turbulence 
simulation

Note: If the effective diffusion coefficient is negative or infinite, can use the convective piece

If it converges, it doesn’t matter how you represented the turbulent flux: it’s the (a) right answer



Contrast with Newton iteration

A Newton-type of iteration would Taylor expand the flux:

This procedure requires calculation of Jacobian terms 𝛿Γ/𝛿𝑛.  Two problems:

• Computationally expensive to calculate Jacobians or Jacobian-vector products – extra 
runs of turbulence simulations for each forward difference

• Fluxes are intrinsically noisy due to statistical fluctuations of turbulence simulations.  
Errors are amplified in the calculation of the Jacobian

• Newton-based method is used by TGYRO (J. Candy et al.) and TRINITY (M. Barnes et al.) for solving the 
transport equation with local gyrokinetic simulations.

• Not clear how to make a Newton-based method work for global gyrokinetic simulations, where turbulence can 
depend on the profiles everywhere (i.e., much more complicated calculation of Jacobians)



Transport solver & handling fluctuations from turbulence simulations 

J.B. Parker et al, plasma (2018)

• Unlike a transport model such as TGLF, turbulence 
simulations have inherent fluctuations in the flux.
• Repeated calculations 𝑄(𝑇𝑖 , 𝑇𝑖

′) give exactly the same answer every 
time from TGLF, but not from a turbulence simulation

• Can run turbulence simulation for very long time to gain 
better statistics (better estimates for the mean fluxes), but 
this is computationally expensive, so you want to get away 
with as little as you can

• What is the right statistical way to characterize the problem?

By the central limit theorem for correlated 
sequences, <q> approaches a normally distributed 
variable if T >> autocorrelation time

Want averaging time T to at least be a few autocorrelation times.  (Actually, want T large 
enough so that the variance of 𝑞 is acceptably small)  



Silicon Valley motto: test often (fail fast)

• Use ARMA modeling techniques 
from time-series analysis to generate 
random noise for quick testing 
purposes
• Temporally correlated or 

spatially correlated

• Test problem: take a solvable model 
where the flux is analytically 
specified; sprinkle in random noise.  
How does convergence fare?

• Quantify it

GENE simulation ARMA Model

J.B. Parker et al, plasma (2018)



Tango

• 1D transport solver; implements the just-described numerical method

• Written in Python, coupled with global GENE
• libtringene.F90 became libtango.F90

• github.com/LLNL/tango



Tango + global GENE simulations (adiabatic electron)

Parker et al., “Bringing Global Gyrokinetic Simulations to the Transport 
Timescale Using a Multiscale Approach”, NF (2018)

• GENE parameters: 

• Domain: 
𝑟

𝑎
∈ [0.1, 0.9]

• a=1.0 m, R0=3.0 m
• Bref=2.5 T,  m = 2m_i
• 𝝆∗= 1/292
• Circular geometry, adiabatic electrons, CBC-like

• Tango parameters:

• Domain: 
𝑟

𝑎
∈ [0, 0.9]

• Looking for a steady-state solution with an applied heat 
source

• Relaxation EWMA parameter 𝛼 = 0.3 (fairly large)
• 50 iterations
• 50 R0/vti per iteration
• Evolving ion pressure only; density profile is prescribed and 

held fixed
• Boundary conditions:

• r=0: Neumann

• r/a = 0.9: Dirichlet, fixed pressure/temperature

• Applied heat source 20 MW localized in 0.15 < r/a < 0.55

2500 R0/vti,  ~35k 
core-hours

Now down to ~1000 
R0/vti



Challenges: Tango + Kinetic Electron simulations

• Main change: 
• Now evolving ion pressure, electron pressure, and plasma density instead of just ion pressure

• Implicit timestep.  Is the numerical method still going to converge for long timesteps?

• How to generalize the numerical method for multiple evolving profiles, when 
cross-field transport channels may exist?

• Challenge: simulations are much slower than with adiabatic electrons, and the 
numerical method still needs to be “tested” and kept close eye on, because 
whether or not it converges (for long timesteps) is uncertain

• It is possible that TGLF may be a suitable stand-in for GENE, for testing the 
generalization of the numerical method

• Want to go to more realistic experimental geometry (e.g., TCV, DIII-D)



Simplest generalization of numerical method

• Represent turbulent transport with “diagonal” transport coefficients 

• Effective transport coefficients are still determined numerically from gyrokinetic 
simulation

• E.g.,

Does it work?



Questions?
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