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OSIRIS code [developed and distributed by the OSIRIS Consortium
(UCLA & IST, Portugal)]:

3D, fully kinetic, fully explicit, & relativistic PIC code
traditionally used for laser wakefield acceleration studies

⇒ New application presented here: massively parallel space/astro
plasma turbulence simulations (w/ some code adjustments, e.g., external
forcing, extra diagnostics)

Simulations performed at:
Shaheen II (KAUST Supercomputing Lab) [∼ 50k-core runs], SuperMUC (Leibniz Supercomputing
Centre) [∼ 30k-core runs], Hydra (Max Planck Computing and Data Facility) [∼ 4k-core runs]
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Nature of kinetic turbulence in space/astro plasmas?

I will address two (open) questions:
1 Most relevant linear modes at sub-ion scales?

(a) kinetic Alfvén waves (KAWs)
(b) whistler waves (WWs)
(c) others (e.g. ion Bernstein modes)
(d) combinations of the above
(e) none

⇒ I will argue these seem to be predominantly
KAWs for β ∼ 1

2 Role of kinetic-scale coherent structures?
(a) nonlinear structures dominate and wave physics is not

significant
(b) structures are there but they are not significant
(c) turbulence is a mixture of “coexisting,” mutually exclusive,

structures and waves

⇒ I will argue argue it is none of the above and
discuss an alternative
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Aspects/regimes covered

Fully kinetic simulation parameters:
β, Ti/Te ∼ 1 (typical solar wind conditions at 1 AU)
mi/me = 64, 100, L⊥ ∼ 18di, Lz ∼ 2.5 · L⊥

Regime of interest:
weakly collisional (a.k.a. “collisionless”)
strong turbulence (χ ≈ τl/τnl ∼ 1)
sub-ion scale cascades (1/ρi . k⊥ . 1/ρe)

I will focus on:
turbulent spectra and field ratios
local spectral anisotropy
spatial intermittency and turbulent structures

I will not cover (but others will):
turbulent heating and/or velocity-space cascades
reconnection (in turbulence), particle acceleration, etc.
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Spectral field ratios
I will rely on spectral field ratios to identify wavelike
features:

(|E⊥|c/vA)2

|B⊥|2
,

(|δne|/n0)2

(|δB|/B0)2 ,

(|δne|/n0)2

(|δB‖|/B0)2 ,
|δB‖|2

|δB|2

An example [C. Chen et al. (2013)]:

Pros:
can be directly and quantitatively compared with linear predictions
easily accessible in simulations and in situ observations
well-known with a relatively successful history

Cons and critics:
typically only order unity agreement with linear predictions
additional input is often needed to identify the dominant mode(s)
being based on Fourier amplitudes, they ignore intermittency
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A first-principles test of KAW turbulence phenomenology

3D OSIRIS simulation:
Decaying turbulence with an initial spectrum of
counterpropagating Alfvén waves
βi ≈ βe ≈ 0.5, mi/me = 64
L⊥ ≈ 17di L⊥/Lz = δB(t=0)/B0 = 0.4

Results are compared against the KAW turbulence predictions:
(|δne|/n0)2

(|δB|/B0)2 ∼ 1/(βi + 2β2
i ) ∼ 1, (|δne|/n0)2

(|δB‖|/B0)2 ∼ 1/β2
i

χ ≈ τl/τnl ∼ 1 (critical balance) ⇒ k‖ < k⊥ with k‖ ∝ kα⊥ (α = 1/3 neglecting dissipative effects
and/or intermittency corrections)
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Spectra from the 3D simulation

Qualitative agreement with spacecraft measurements, showing spectral slopes around ∼ −2.8 at
sub-ion scales
The spectral ratios from the 3D fully kinetic simulation agree well with linear KAW predictions

[PRL 120, 105101 (2018)]

[+ good agreement with a 2D GK sim. (next slide)]
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Good agreement with a 2D GK simulation

both simulations have βi ≈ βe ≈ 0.5
GK: 2D decaying turbulence simulation
with mi/me = 100 [Grošelj et al.,
ApJ 847, 28 (2017)]
FK: 3D decaying turbulence with
mi/me = 64
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Local anisotropy and critical balance

The anisotropy is scale dependent with k‖ < k⊥ & k‖di < 1 (for k⊥ . 1/de)
Broad agreement with critical balance (χ ∼ 1) at sub-ion scales

k‖ ≈

(〈∣∣B0,k⊥ · ∇δBk⊥

∣∣2〉
〈B2

0,k⊥
〉〈δB2

k⊥
〉

)1/2

[Cho & Lazarian (2009)]

χ ≈ τl/τnl ≈ k⊥δB⊥,k⊥/(k‖B0)
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KAWs seem to play a role, but what about coherent structures?

Question: Would it be possible to calculate a “coherent structure field ratio”? Perhaps yes!

Use complex-valued Morlet wavelets to obtain for some field “f”:
a scale-dependent fluctuation: δf(k⊥, r) ∝ <{f̃(k⊥, r)}
a local spectrum: Pf (k⊥, r) ∝ |f̃(k⊥, r)|2

We construct 2 sets of generalized field ratios:(
〈|δne|m〉
〈|δb⊥|m〉

)2/m

,

(
〈|δne|m〉
〈|δb‖|m〉

)2/m

,

(
〈|δb‖|m〉
〈|δb⊥|m〉

)2/m

, m = 1, 2, 3, 4, 5, 6

〈|ñe|2 |LIM > ξ〉
〈|̃b⊥|2 |LIM > ξ〉

,
〈|ñe|2 |LIM > ξ〉
〈|̃b‖|2 |LIM > ξ〉

,
〈|̃b‖|2 |LIM > ξ〉
〈|̃b⊥|2 |LIM > ξ〉

, LIM = EKAW (k⊥, r)〈
EKAW (k⊥, r)

〉
r

,

where EKAW = |̃b⊥|2 + |ñe|2 is the (normalized) KAW energy density.

⇒ The above are compared against linear KAW predictions
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Joint analysis of simulation and SW data [arXiv:1806.05741]

Externally driven 3D fully kinetic simulation:
Langevin antenna [TenBarge et al. (2014)]
βi ≈ βe ≈ 0.5, mi/me = 100, L⊥ ≈ 19di
L⊥/Lz ≈ 0.4
spatial resolution 9282 × 1920, about 0.5 trillion
particles in total

SW data selection:
7 h interval from Cluster (B data) [Chen et al. (2015)]
(βi ≈ 0.3, βe ≈ 0.6)
159 s interval from MMS (B & ne data) [Gershman et
al. (2018)] (βi ≈ 0.3, βe ≈ 0.03)

[MMS interval too short for a reliable stat. analysis (results
included for reference; more suitable simultaneous B and ne

traces presently not available)]
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Spatial structure of fluctuations and intermittency
the spectra are spatially non-uniform and the fluctuations display non-Gaussian statistics
a mixture of sheetlike and filamentary structures is seen
δne profiles match those of δb‖ (⇒ ⊥ pressure balance; additional info on backup slide)
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⇒ δb‖, δne, and δb⊥ have similar flatness in range
1/ρi . k⊥ . 1/de
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Large-amplitude, turbulent structures preserve KAW signatures
reasonable agreement between generalized ratios and KAW predictions (δb⊥, δb‖, δne each separately display
signatures of non-Gaussian statistics!)
good agreement between the simulation and SW data
linear predictions are generally accurate only to order unity (⇒ nonlinear effects)
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Summary

For βe ∼ βi ∼ 1 (solar wind at 1 AU), the sub-ion-scale fluctuations seem to be predominantly of
kinetic Alfvén type

The anisotropy of the kinetic turbulence is scale-dependent and in broad agreement with critical
balance

Large-amplitude turbulent structures tend to preserve linear wavelike signatures
⇒ structures could be perhaps viewed as the (critically balanced) “eddies” of KAW turbulence
(similar to MHD range turbulence [e.g., Boldyrev (2006), Howes (2016), Mallet & Schekochihin
(2017)])

⇒ there is no sudden breakdown of linear predictions within the structures, only gradual deviation
due to nonlinear effects
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Some remarks

The k‖ vs. k⊥ scaling might be non-intermittent or very weakly intermittent (backup slide), similar
to MHD [e.g., Mallet et al. (2016)]
Kinetic range turbulence might also be locally 3D anisotropic (⇒ interesting for reconnection):

One often finds |δb‖|2 ∼ |δne|2 . |δb⊥|2 [e.g., Boldyrev & Perez (2012), Chen et al. (2013), this
work] ⇒ Analogy with residual energy in MHD turbulence?
Can we ignore structures since they preserve KAW-like features? No!
⇒ intermittent structures may significantly affect different heating mechanisms [Mallet et al.,
preprint soon], but their KAW properties could be exploited in theoretical predictions
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