Kinetic Turbulence in Astrophysical Plasmas: Waves and/or Structures?

Daniel Grošelj

Max Planck Institute for Plasma Physics, Garching, Germany

11th Plasma Kinetics Working Meeting, Vienna, July 23rd, 2018

Acknowledgements

Results were produced in collaboration with:

Alfred Mallet (UNH), Chris Chen (QMUL), Nuno Loureiro (MIT), Ravi Samtaney (KAUST), Kai Schneider (I2M-CNRS), Frank Jenko (IPP)

OSIRIS code [developed and distributed by the OSIRIS Consortium (UCLA & IST, Portugal)]:

- 3D, fully kinetic, fully explicit, & relativistic PIC code
- traditionally used for laser wakefield acceleration studies

 \Rightarrow New application presented here: massively parallel space/astro plasma turbulence simulations (w/ some code adjustments, e.g., external forcing, extra diagnostics)

Simulations performed at:

Shaheen II (KAUST Supercomputing Lab) [\sim 50k-core runs], SuperMUC (Leibniz Supercomputing Centre) [\sim 30k-core runs], Hydra (Max Planck Computing and Data Facility) [\sim 4k-core runs]

Nature of kinetic turbulence in space/astro plasmas?

I will address two (open) questions:

- Most relevant linear modes at sub-ion scales?
 - (a) kinetic Alfvén waves (KAWs)
 - (b) whistler waves (WWs)
 - (c) others (e.g. ion Bernstein modes)
 - (d) combinations of the above
 - (e) none

- Sole of kinetic-scale coherent structures?
 - (a) nonlinear structures dominate and wave physics is not significant
 - (b) structures are there but they are not significant
 - (c) turbulence is a mixture of "coexisting," mutually exclusive, structures and waves

Nature of kinetic turbulence in space/astro plasmas?

I will address two (open) questions:

Most relevant linear modes at sub-ion scales?

- (a) kinetic Alfvén waves (KAWs)
- (b) whistler waves (WWs)
- (c) others (e.g. ion Bernstein modes)
- (d) combinations of the above
- (e) none
- \Rightarrow I will argue these seem to be predominantly KAWs for $\beta \sim 1$
- Sole of kinetic-scale coherent structures?
 - (a) nonlinear structures dominate and wave physics is not significant
 - (b) structures are there but they are not significant
 - (c) turbulence is a mixture of "coexisting," mutually exclusive, structures and waves

Nature of kinetic turbulence in space/astro plasmas?

I will address two (open) questions:

Most relevant linear modes at sub-ion scales?

- (a) kinetic Alfvén waves (KAWs)
- (b) whistler waves (WWs)
- (c) others (e.g. ion Bernstein modes)
- (d) combinations of the above
- (e) none
- \Rightarrow I will argue these seem to be predominantly KAWs for $\beta \sim 1$
- Sole of kinetic-scale coherent structures?
 - (a) nonlinear structures dominate and wave physics is not significant
 - (b) structures are there but they are not significant
 - (c) turbulence is a mixture of "coexisting," mutually exclusive, structures and waves
 - \Rightarrow I will argue argue it is none of the above and discuss an alternative

Fully kinetic simulation parameters:

- β , $T_i/T_e \sim 1$ (typical solar wind conditions at 1 AU)
- $m_i/m_e=64,\,100$, $L_\perp\sim 18d_i$, $L_z\sim 2.5\cdot L_\perp$

Fully kinetic simulation parameters:

- β , $T_i/T_e \sim 1$ (typical solar wind conditions at 1 AU)
- $m_i/m_e=64,\,100$, $L_\perp\sim 18d_i$, $L_z\sim 2.5\cdot L_\perp$

Regime of interest:

- weakly collisional (a.k.a. "collisionless")
- strong turbulence ($\chi\approx\tau_l/\tau_{nl}\sim1)$
- sub-ion scale cascades ($1/\rho_i \lesssim k_\perp \lesssim 1/\rho_e)$

Fully kinetic simulation parameters:

- β , $T_i/T_e \sim 1$ (typical solar wind conditions at 1 AU)
- $m_i/m_e=64,\,100$, $L_\perp\sim 18d_i$, $L_z\sim 2.5\cdot L_\perp$

Regime of interest:

- weakly collisional (a.k.a. "collisionless")
- strong turbulence ($\chi\approx\tau_l/\tau_{nl}\sim1)$
- sub-ion scale cascades ($1/
 ho_i \lesssim k_\perp \lesssim 1/
 ho_e$)

I will focus on:

- turbulent spectra and field ratios
- local spectral anisotropy
- spatial intermittency and turbulent structures

Fully kinetic simulation parameters:

- $\beta, T_i/T_e \sim 1$ (typical solar wind conditions at 1 AU)
- $m_i/m_e=64,\,100$, $L_\perp\sim 18d_i$, $L_z\sim 2.5\cdot L_\perp$

Regime of interest:

- weakly collisional (a.k.a. "collisionless")
- strong turbulence ($\chi\approx\tau_l/\tau_{nl}\sim1)$
- sub-ion scale cascades ($1/
 ho_i \lesssim k_\perp \lesssim 1/
 ho_e$)

I will focus on:

- turbulent spectra and field ratios
- local spectral anisotropy
- spatial intermittency and turbulent structures

I will not cover (but others will):

- turbulent heating and/or velocity-space cascades
- reconnection (in turbulence), particle acceleration, etc.

Spectral field ratios

I will rely on spectral field ratios to identify wavelike features:

$$\begin{split} &\frac{(|E_{\perp}|c/v_A)^2}{|B_{\perp}|^2}, \qquad \quad \frac{(|\delta n_e|/n_0)^2}{(|\delta B|/B_0)^2}, \\ &\frac{(|\delta n_e|/n_0)^2}{(|\delta B_{\parallel}|/B_0)^2}, \qquad \quad \frac{|\delta B_{\parallel}|^2}{|\delta B|^2} \end{split}$$

Spectral field ratios

I will rely on spectral field ratios to identify wavelike features:

$\frac{(E_{\perp} c/v_A)^2}{(E_{\perp} c/v_A)^2}$	$(\delta n_e /n_0)^2$
$ B_{\perp} ^2$,	$(\delta B /B_0)^2$
$\frac{(\delta n_e /n_0)^2}{(\delta n_e /n_0)^2}$	$\frac{ \delta B_{\parallel} ^2}{ \delta B_{\parallel} ^2}$
$(\delta B_{\parallel} /B_0)^2$	$ \delta B ^2$

Pros:

- can be directly and quantitatively compared with linear predictions
- easily accessible in simulations and in situ observations
- well-known with a relatively successful history

Spectral field ratios

I will rely on spectral field ratios to identify wavelike features:

$(E_{\perp} c/v_A)^2$	$(\delta n_e /n_0)^2$
,	$\overline{(\delta B /B_0)^2}$,
$(\delta n_e /n_0)^2$	$ \delta B_{\parallel} ^2$
$\overline{(\delta B_{\parallel} /B_0)^2},$	$\delta B ^2$

Pros:

- can be directly and quantitatively compared with *linear* predictions
- easily accessible in simulations and in situ observations
- well-known with a relatively successful history

Cons and critics:

- typically only order unity agreement with linear predictions
- additional input is often needed to identify the dominant mode(s)
- being based on Fourier amplitudes, they ignore intermittency

A first-principles test of KAW turbulence phenomenology

3D OSIRIS simulation:

- Decaying turbulence with an initial spectrum of counterpropagating Alfvén waves
- $\beta_i \approx \beta_e \approx 0.5$, $m_i/m_e = 64$
- $L_{\perp} \approx 17 d_i \ L_{\perp}/L_z = \delta B(t=0)/B_0 = 0.4$

Results are compared against the KAW turbulence predictions:

- $\frac{(|\delta n_e|/n_0)^2}{(|\delta B|/B_0)^2} \sim 1/(\beta_i + 2\beta_i^2) \sim 1$, $\frac{(|\delta n_e|/n_0)^2}{(|\delta B_{\parallel}|/B_0)^2} \sim 1/\beta_i^2$
- $\chi \approx \tau_l / \tau_{nl} \sim 1$ (critical balance) $\Rightarrow k_{\parallel} < k_{\perp}$ with $k_{\parallel} \propto k_{\perp}^{\alpha}$ ($\alpha = 1/3$ neglecting dissipative effects and/or intermittency corrections)

Spectra from the 3D simulation

- \bullet Qualitative agreement with spacecraft measurements, showing spectral slopes around ~ -2.8 at sub-ion scales
- The spectral ratios from the 3D fully kinetic simulation agree well with linear KAW predictions

Good agreement with a 2D GK simulation

- both simulations have $\beta_i \approx \beta_e \approx 0.5$
- GK: 2D decaying turbulence simulation with $m_i/m_e = 100$ [Grošelj *et al.*, ApJ **847**, 28 (2017)]
- FK: 3D decaying turbulence with $m_i/m_e = 64$

Local anisotropy and critical balance

- The anisotropy is scale dependent with $k_{\parallel} < k_{\perp}$ & $k_{\parallel}d_i < 1$ (for $k_{\perp} \lesssim 1/d_e$)
- Broad agreement with critical balance ($\chi\sim 1)$ at sub-ion scales

(2009)]

$$\begin{split} k_{\parallel} &\approx \left(\frac{\left\langle \left| \mathbf{B}_{0,k_{\perp}} \cdot \nabla \delta \mathbf{B}_{k_{\perp}} \right|^{2} \right\rangle}{\langle B_{0,k_{\perp}}^{2} \rangle \langle \delta B_{k_{\perp}}^{2} \rangle} \right)^{1/2} \qquad \text{[Cho \& Lazarian} \\ \chi &\approx \tau_{l} / \tau_{nl} \approx k_{\perp} \delta B_{\perp,k_{\perp}} / (k_{\parallel} B_{0}) \end{split}$$

KAWs seem to play a role, but what about coherent structures?

Question: Would it be possible to calculate a "coherent structure field ratio"? Perhaps yes!

Use complex-valued Morlet wavelets to obtain for some field "f":

- a scale-dependent fluctuation: $\delta f(k_{\perp},{f r})\propto \Re\{\widetilde{f}(k_{\perp},{f r})\}$
- a local spectrum: $P_f(k_\perp,{f r})\propto |\widetilde{f}(k_\perp,{f r})|^2$

KAWs seem to play a role, but what about coherent structures?

Question: Would it be possible to calculate a "coherent structure field ratio"? Perhaps yes!

Use complex-valued Morlet wavelets to obtain for some field "f":

- a scale-dependent fluctuation: $\delta f(k_{\perp},{f r})\propto \Re\{\widetilde{f}(k_{\perp},{f r})\}$
- a local spectrum: $P_f(k_\perp,{f r})\propto |\widetilde{f}(k_\perp,{f r})|^2$

We construct 2 sets of generalized field ratios:

$$\left(\frac{\langle |\delta n_e|^m \rangle}{\langle |\delta b_{\perp}|^m \rangle}\right)^{2/m}, \qquad \left(\frac{\langle |\delta n_e|^m \rangle}{\langle |\delta b_{\parallel}|^m \rangle}\right)^{2/m}, \qquad \left(\frac{\langle |\delta b_{\parallel}|^m \rangle}{\langle |\delta b_{\perp}|^m \rangle}\right)^{2/m}, \qquad m = 1, 2, 3, 4, 5, 6$$

$$\frac{\langle |\tilde{n}_e|^2 |\text{LIM} > \xi \rangle}{\langle |\tilde{b}_{\perp}|^2 |\text{LIM} > \xi \rangle}, \qquad \frac{\langle |\tilde{n}_e|^2 |\text{LIM} > \xi \rangle}{\langle |\tilde{b}_{\parallel}|^2 |\text{LIM} > \xi \rangle}, \qquad \frac{\langle |\tilde{b}_{\parallel}|^2 |\text{LIM} > \xi \rangle}{\langle |\tilde{b}_{\perp}|^2 |\text{LIM} > \xi \rangle}, \qquad \text{LIM} = \frac{\mathcal{E}_{KAW}(k_{\perp}, \mathbf{r})}{\langle \mathcal{E}_{KAW}(k_{\perp}, \mathbf{r}) \rangle_{\mathbf{r}}},$$

where $\mathcal{E}_{KAW} = |\widetilde{b}_{\perp}|^2 + |\widetilde{n}_e|^2$ is the (normalized) KAW energy density.

 \Rightarrow The above are compared against linear KAW predictions

Joint analysis of simulation and SW data [arXiv:1806.05741]

Externally driven 3D fully kinetic simulation:

- Langevin antenna [TenBarge et al. (2014)]
- $\beta_i \approx \beta_e \approx 0.5, \ m_i/m_e = 100, \ L_\perp \approx 19 d_i$ $L_\perp/L_z \approx 0.4$
- spatial resolution $928^2\times1920,$ about 0.5 trillion particles in total

SW data selection:

- 7 h interval from Cluster (B data) [Chen *et al.* (2015)] $(\beta_i \approx 0.3, \beta_e \approx 0.6)$
- 159 s interval from MMS (B & n_e data) [Gershman *et al.* (2018)] ($\beta_i \approx 0.3$, $\beta_e \approx 0.03$)

[MMS interval too short for a reliable stat. analysis (results included for reference; more suitable *simultaneous* \mathbf{B} and n_e traces presently not available)]

Spatial structure of fluctuations and intermittency

- the spectra are spatially non-uniform and the fluctuations display non-Gaussian statistics
- a mixture of sheetlike and filamentary structures is seen
- δn_e profiles match those of δb_{\parallel} ($\Rightarrow \perp$ pressure balance; additional info on backup slide)

 $\Rightarrow \delta b_{\|},\,\delta n_e,$ and δb_{\bot} have similar flatness in range $1/\rho_i \lesssim k_{\bot} \lesssim 1/d_e$

Large-amplitude, turbulent structures preserve KAW signatures

- reasonable agreement between generalized ratios and KAW predictions (δb_{\perp} , δb_{\parallel} , δn_e each separately display signatures of non-Gaussian statistics!)
- good agreement between the simulation and SW data
- linear predictions are generally accurate only to order unity (\Rightarrow nonlinear effects)

Summary

- For $\beta_e \sim \beta_i \sim 1$ (solar wind at 1 AU), the sub-ion-scale fluctuations seem to be predominantly of kinetic Alfvén type
- The anisotropy of the kinetic turbulence is scale-dependent and in broad agreement with critical balance
- Large-amplitude turbulent structures tend to preserve linear wavelike signatures

 \Rightarrow structures could be perhaps viewed as the (critically balanced) "eddies" of KAW turbulence (similar to MHD range turbulence [e.g., Boldyrev (2006), Howes (2016), Mallet & Schekochihin (2017)])

 \Rightarrow there is no sudden breakdown of linear predictions within the structures, only gradual deviation due to nonlinear effects

Some remarks

- The k_{||} vs. k_⊥ scaling *might* be non-intermittent or very weakly intermittent (backup slide), similar to MHD [e.g., Mallet et al. (2016)]
- Kinetic range turbulence *might* also be locally 3D anisotropic (\Rightarrow interesting for reconnection):

- One often finds $|\delta b_{\parallel}|^2 \sim |\delta n_e|^2 \leq |\delta b_{\perp}|^2$ [e.g., Boldyrev & Perez (2012), Chen et al. (2013), this work] \Rightarrow Analogy with residual energy in MHD turbulence?
- Can we ignore structures since they preserve KAW-like features? No!
 ⇒ intermittent structures may significantly affect different heating mechanisms [Mallet et al., preprint soon], but their KAW properties could be exploited in theoretical predictions