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OSIRIS code [developed and distributed by the OSIRIS Consortium
(UCLA & IST, Portugal)]:

o 3D, fully kinetic, fully explicit, & relativistic PIC code
o traditionally used for laser wakefield acceleration studies

= New application presented here: massively parallel space/astro UCLA W {FSCE'B\‘E;CAO
plasma turbulence simulations (w/ some code adjustments, e.g., external
forcing, extra diagnostics)

Simulations performed at:

Shaheen Il (KAUST Supercomputing Lab) [~ 50k-core runs], SuperMUC (Leibniz Supercomputing
Centre) [~ 30k-core runs], Hydra (Max Planck Computing and Data Facility) [~ 4k-core runs]




Nature of kinetic turbulence in space/astro plasmas?

| will address two (open) questions:

@ Most relevant linear modes at sub-ion scales?

(a) kinetic Alfvén waves (KAWSs)
(b) whistler waves (WWs)

(c) others (e.g. ion Bernstein modes)
(d) combinations of the above
(e) none

@ Role of kinetic-scale coherent structures?
(2) nonlinear structures dominate and wave physics is not
significant
(b) structures are there but they are not significant
(c) turbulence is a mixture of “coexisting,” mutually exclusive,
structures and waves
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Nature of kinetic turbulence in space/astro plasmas?

| will address two (open) questions:

© Most relevant linear modes at sub-ion scales?
(a) kinetic Alfvén waves (KAWSs)
(b) whistler waves (WWs)
(c) others (e.g. ion Bernstein modes)
(d) combinations of the above
(e) none

= | will argue these seem to be predominantly
KAWs for 5 ~ 1

@ Role of kinetic-scale coherent structures?
(2) nonlinear structures dominate and wave physics is not
significant
(b) structures are there but they are not significant
(c) turbulence is a mixture of “coexisting,” mutually exclusive,
structures and waves

= | will argue argue it is none of the above and
discuss an alternative
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Aspects/regimes covered

Fully kinetic simulation parameters:
e 3, T;/T. ~ 1 (typical solar wind conditions at 1 AU)
e m;/m, =64, 100, L, ~18d;, L, ~2.5-L,
Regime of interest:
o weakly collisional (a.k.a. “collisionless™)
@ strong turbulence (x = 7;/7n; ~ 1)
@ sub-ion scale cascades (1/p; S k1 S 1/pe)
| will focus on:
@ turbulent spectra and field ratios
@ local spectral anisotropy
@ spatial intermittency and turbulent structures
| will not cover (but others will):
@ turbulent heating and/or velocity-space cascades

@ reconnection (in turbulence), particle acceleration, etc.



Spectral field ratios

I will rely on spectral field ratios to identify wavelike

An example [C. Chen et al. (2013)]:
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@ can be directly and quantitatively compared with linear predictions

@ easily accessible in simulations and in situ observations

o well-known with a relatively successful history



Spectral field ratios

I will rely on spectral field ratios to identify wavelike

An example [C. Chen et al. (2013)]:
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ros:

@ can be directly and quantitatively compared with linear predictions
@ easily accessible in simulations and in situ observations
o well-known with a relatively successful history
Cons and critics:
@ typically only order unity agreement with linear predictions
@ additional input is often needed to identify the dominant mode(s)

@ being based on Fourier amplitudes, they ignore intermittency



A first-principles test of KAW turbulence phenomenology

By
3D OSIRIS simulation: /', —
@ Decaying turbulence with an initial spectrum of > \ 3R /
counterpropagating Alfvén waves — n ¢
® ;i ~ fB. ~ 0.5, mi/m, =64 N
e L, ~17d; L, /L, =¢6B(t=0)/By = 0.4 I ‘;} X
GBI /
-~ N
/ ‘r\ \
LA RVONINYT |

Results are compared against the KAW turbulence predictions:

Snel/no)? Snel|/no)?
o Und/ol  1/(5i+262) ~ 1, Ulnelinel 17

® X ~ 7;/Tn ~ 1 (critical balance) = k| < kL with kj o< k¢ (a = 1/3 neglecting dissipative effects
and/or intermittency corrections)



Spectra from the 3D simulation

@ Qualitative agreement with spacecraft measurements, showing spectral slopes around ~ —2.8 at
sub-ion scales

@ The spectral ratios from the 3D fully kinetic simulation agree well with linear KAW predictions
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[PRL 120, 105101 (2018)]

[+ good agreement with a 2D GK sim. (next slide)]




Good agreement with a 2D GK simulation

@ both simulations have §; ~ 8. =~ 0.5

@ GK: 2D decaying turbulence simulation
with m;/m. = 100 [Grosel] et al.,
ApJ 847, 28 (2017)]

@ FK: 3D decaying turbulence with
m;/me = 64
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Local anisotropy and critical balance

@ The anisotropy is scale dependent with ky < ki & kyd; <1 (for k. S

@ Broad agreement with critical balance (x ~ 1) at sub-ion scales
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KAWs seem to play a role, but what about coherent structures?

Question: Would it be possible to calculate a "“coherent structure field ratio”? Perhaps yes!

Use complex-valued Morlet wavelets to obtain for some field “ f":

@ a scale-dependent fluctuation: df(k,,r) x R{f(k.,r)}

e a local spectrum: Ps(ky,r) o< |f(ky,r)|?
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KAWs seem to play a role, but what about coherent structures?

Question: Would it be possible to calculate a "“coherent structure field ratio”? Perhaps yes!

Use complex-valued Morlet wavelets to obtain for some field “ f":

o a scale-dependent fluctuation: &f(k,,r) oc R{f(k.,r)}

e a local spectrum: Ps(ky,r) o< |f(ky,r)|?

We construct 2 sets of generalized field ratios:
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where Exaw = by |2 + [7ie|? is the (normalized) KAW energy density.

= The above are compared against linear KAW predictions
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Joint analysis of simulation and SW data [arXiv:1806.05741]

Externally driven 3D fully kinetic simulation:
@ Langevin antenna [TenBarge et al. (2014)]
® (i~ B~ 0.5, m;/m. =100, L, ~ 19d;
Li/L.~04
@ spatial resolution 9282 x 1920, about 0.5 trillion
particles in total
SW data selection:
@ 7 h interval from Cluster (B data) [Chen et al. (2015)]
(Bi = 0.3, B =~ 0.6)
o 159 s interval from MMS (B & n. data) [Gershman et
al. (2018)] (8; =~ 0.3, B =~ 0.03)

[MMS interval too short for a reliable stat. analysis (results
included for reference; more suitable simultaneous B and n.
traces presently not available)]
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Spatial structure of fluctuations and intermittency

@ the spectra are spatially non-uniform and the fluctuations display non-Gaussian statistics
@ a mixture of sheetlike and filamentary structures is seen

@ 0n, profiles match those of b (= L pressure balance; additional info on backup slide)
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Large-amplitude, turbulent structures preserve KAW signatures
@ reasonable agreement between generalized ratios and KAW predictions (6b1, b, dn. each separately display
signatures of non-Gaussian statistics!)
@ good agreement between the simulation and SW data
@ linear predictions are generally accurate only to order unity (= nonlinear effects)
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Summary

@ For 8. ~ B; ~ 1 (solar wind at 1 AU), the sub-ion-scale fluctuations seem to be predominantly of
kinetic Alfvén type

@ The anisotropy of the kinetic turbulence is scale-dependent and in broad agreement with critical
balance
@ Large-amplitude turbulent structures tend to preserve linear wavelike signatures

= structures could be perhaps viewed as the (critically balanced) “eddies” of KAW turbulence
(similar to MHD range turbulence [e.g., Boldyrev (2006), Howes (2016), Mallet & Schekochihin
(2017)])

=> there is no sudden breakdown of linear predictions within the structures, only gradual deviation
due to nonlinear effects
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Some remarks

o The kj vs. k) scaling might be non-intermittent or very weakly intermittent (backup slide), similar
to MHD [e.g., Mallet et al. (2016)]

o Kinetic range turbulence mlght also be locally 3D anisotropic (:> mterestlng for reconnectlon)
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e One often finds |6b|? ~ [6nc|* < |6b.|* [e.g., Boldyrev & Perez (2012), Chen et al. (2013), this
work] = Analogy with residual energy in MHD turbulence?

@ Can we ignore structures since they preserve KAW-like features? No!
= intermittent structures may significantly affect different heating mechanisms [Mallet et al.,
preprint soon], but their KAW properties could be exploited in theoretical predictions
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