Stochastic echoes and fluidization

Romain Meyrand (at SHINE meeting this week)

also: Anjor Kanekar, Bill Dorland, Alex Schekochihin

11th Plasma Kinetics meeting, 2018

Kinetic Reduced MHD

Alfven waves decouple:

$$\left(\frac{\partial}{\partial t} \mp v_A \frac{\partial}{\partial z}\right) \omega^{\pm} = -\left[\zeta^{\mp}, \omega^{\pm}\right] - \left[\partial_i \zeta^{\mp}, \partial_i \zeta^{\pm}\right]$$

- This is in Elsasser potential form. Decoupling occurs because perpendicular wavelengths are long compared to ion gyroradius — this is a convenient feature of KRMHD
- Kinetic equations for the ions are simple

$$\frac{dg^{(i)}}{dt} + v_{\parallel} \nabla_{\parallel} g^{(i)} + v_{\parallel} F_0 \nabla_{\parallel} \phi^{(i)} = 0$$

But the operators are the nonlinear ones

$$d/dt = \partial/\partial t + \mathbf{v} \cdot \nabla$$
 and $\nabla_{\parallel} = v_A \partial/\partial z + \mathbf{b} \cdot \nabla$

Kinetic Reduced MHD

- The electrons are isothermal with zero gyroradius. B_0 is straight.
- The two ion distributions are essentially the lowest two Laguerre moments. The rest of the Laguerre's are passive.
- The physical perturbations of density and magnetic field strength can be obtained from a linear combination of the integrals of the two ion distributions (over parallel velocity).
- So this is a physically meaningful ordering that allows us to study Landau and Barnes damping in a nonlinear, electromagnetic context.
- How are the inertial range compressive perturbations thermalized?
- Basic question: Do we really need high resolution for g?

Kinetic Reduced MHD

- Without collisions or Alfven waves, compressive fluctuations damp, by Landau or Barnes mechanism
- Finite amplitude Alfven waves change the fate of the energy in the compressive fluctuations
- Our approach:
 - Force critically balanced Alfvenic turbulence (random forcing around the box scale)
 - Force compressive fluctuations separately (random forcing around the box scale, proportional to $v_{\parallel} F_0(v_{\parallel})$ in v-space)
 - Measure spectra and infer fluxes of free energy thru phase space

Findings

- Compressive perturbations develop a parallel cascade
- This increases the parallel wavenumber and thus the Landau damping rate
- Small scales do not develop in v-space. Dissipation is mainly at small spatial scales
- Compressive fluctuations behave on average like a (generalized) fluid a fluid described by more moments than usual.
- On average, stochastic echoes inhibit flux of free energy to small v-scales
- Consistent with electrostatic findings (Parker, Kanekar, et Al).
- Implies opportunity exists for more efficient v-space representation

Measured dissipation

Measured dissipation and forcing used

Flux in m and wavenumber

Flux in m and wavenumber

Density fluctuations in the perpendicular plane (snapshot)

Density fluctuation spectra

Field lines painted with density fluctuations

Spectrum of density fluctuations along magnetic field lines

What is going on here? Why are the fluctuations steeper than this? Isn't energy pouring into small scales in *v*-space?

What is going on here? Why are the fluctuations steeper than this? Isn't energy pouring into small scales in *v*-space?

What should we expect to see in the solar wind (generically)?

- Assuming the basic processes are generic, how can we take advantage of fluidization in fusion device modeling?
- Working through conceptual ideas for reactors, we need to be able to treat high beta — existing GK codes labor to describe EM fluctuations.
 Opportunity?

- Assuming the basic processes are generic, how can we take advantage of fluidization in fusion device modeling?
- Working through conceptual ideas for reactors, we need to be able to treat high beta — existing GK codes labor to describe EM fluctuations.
 Opportunity? Project with P Gourdain, D Langone and R Gaur:

- Assuming the basic processes are generic, how can we take advantage of fluidization in fusion device modeling?
- Working through conceptual ideas for reactors, we need to be able to treat high beta — existing GK codes labor to describe EM fluctuations.
 Opportunity? Project with P Gourdain, D Langone and R Gaur:

Gyrokinetic stability

- Assuming the basic processes are generic, how can we take advantage of fluidization in fusion device modeling?
- Working through conceptual ideas for reactors, we need to be able to treat high beta — existing GK codes labor to describe EM fluctuations.
 Opportunity? Project with P Gourdain, D Langone and R Gaur
- Nonlinear simulations will be very demanding
- Need to develop more robust closure ideas (or basis for iterative scheme) to get this done. Michael Nastac is here to talk about this family of issues.
- Fluidization tells us that the situation is not always hopeless!