### Frequency Spectrum of Outward (e+) and Inward (e-) Propagating Alfven Waves



- Solar-wind turbulence is mostly non-compressive (dn/n<sub>0</sub> << dB/B<sub>0</sub>)
- Incompressible MHD turbulence should have an *f*<sup>-5/3</sup> inertial-range power spectrum
- Problem solved.

Helios measurements at 0.3 AU (Tu & Marsch 1995)

## Not so fast !



Helios measurements at 0.3 AU (Tu & Marsch 1995)

## Parametric Instability in the Low-β Solar Wind

- An outward-propagating Alfven wave (AW) decays into an outward-propagating slow magnetosonic wave ("slow wave") and an inward-propagating AW.
- I will focus on fast solar wind at r < 0.3 AU.
- I'll take β to be small. (β ~ 0.25 at r=0.3 AU, and β is smaller at smaller r.)
- I'll use weak turbulence theory: ω<sub>nl</sub>/ω<sub>linear</sub> ~ (δν<sub>rms</sub>/ν<sub>A</sub>)<sup>2</sup> ~ 1/4 at r=0.4 AU. Even smaller at smaller *r*. (No k<sub>z</sub> =0 problem as in incompressible MHD.)

## Weak Compressible MHD Turbulence at Low Beta

- Perturbation theory to describe wave-wave interactions. ( $\omega_{nonlinear} << \omega_{linear}$ )
- Add collisionless damping terms post facto. (Strong slow-wave damping.)
- Resonant 3-wave interactions:

$$- \omega_k = \omega_p + \omega_q$$
$$- \vec{k} = \vec{p} + \vec{q}$$

 $\vec{B}_0 = B_0 \hat{z}$ 

- $A_k^{\pm} = 3D$  power spectrum of Alfvén waves propagating in  $\pm z$  direction.
- $S_k^{\pm} = 3D$  power spectrum of slow waves propagating in  $\pm z$  direction.
- $F_k = 3D$  power spectrum of fast waves propagating in **k** direction.

$$\frac{\partial S_{k}^{\pm}}{\partial t} = \frac{\pi}{4v_{A}} \int d^{3}p \, d^{3}q \, \delta(\mathbf{k} - \mathbf{p} - \mathbf{q}) \Big[ \delta(q_{z}) 4k_{\perp}^{2} \overline{m}^{2} \left(A_{q}^{+} + A_{q}^{-}\right) \left(S_{p}^{\pm} - S_{k}^{\pm}\right) + \delta(p - q)k_{z}^{2} l^{2} F_{p} F_{-q} + \delta(p_{z} - q_{z})k_{z}^{2} l^{2} A_{p}^{+} A_{q}^{-} + \delta(p_{z} + q)k_{z}^{2} \overline{l}^{2} \left(A_{p}^{+} F_{q} + A_{p}^{-} F_{-q}\right) + \delta(p_{z} - q)k_{z}^{2} \overline{l}^{2} \left(A_{p}^{+} F_{-q} + A_{p}^{-} F_{q}\right) \Big] - 2\gamma_{s,k}^{\pm} S_{k}^{\pm},$$

$$\begin{split} \frac{\partial A_{k}^{+}}{\partial t} &= \frac{\pi}{4v_{A}} \int d^{3}p \, d^{3}q \, \delta(\mathbf{k} - \mathbf{p} - \mathbf{q}) \bigg\{ \delta(q_{z}) 8(k_{\perp} n \overline{m})^{2} A_{q}^{-} \left(A_{p}^{+} - A_{k}^{+}\right) + \delta(k_{z} + p_{z} + q) k_{z} \Lambda_{q-pk} \left(k_{z} A_{p}^{-} F_{-q} + p_{z} F_{-q} A_{k}^{+} + q A_{p}^{-} A_{k}^{+}\right) \\ &+ \delta(k_{z} + p_{z} - q) k_{z} \Lambda_{q-pk} \left(k_{z} A_{p}^{-} F_{q} + p_{z} F_{q} A_{k}^{+} - q A_{p}^{-} A_{k}^{+}\right) + \delta(k_{z} - p + q) k_{z} M_{pk-q} \left(k_{z} F_{p} F_{-q} - p F_{-q} A_{k}^{+} + q F_{p} A_{k}^{+}\right) \\ &+ \delta(q - k_{z}) p_{z} A_{k}^{+} \bigg[ 2(k_{z} + p_{z}) F_{q} + p_{z} q \frac{\partial F_{q}}{\partial q} \bigg] + \delta(q + k_{z}) p_{z} A_{k}^{+} \bigg[ 2(k_{z} + p_{z}) F_{-q} + p_{z} q \frac{\partial F_{-q}}{\partial q} \bigg] \\ &+ \varepsilon^{-2} k_{z}^{2} \left(S_{p}^{+} + S_{p}^{-}\right) \bigg[ \delta(q - k_{z}) \overline{m}^{2} \left(F_{q} - A_{k}^{+}\right) + \delta(q + k_{z}) \overline{m}^{2} \left(F_{-q} - A_{k}^{+}\right) + \delta(p_{z}) m^{2} \left(A_{q}^{+} - A_{k}^{+}\right) \\ &+ \delta(k_{z} + q_{z}) m^{2} \left(A_{q}^{-} - A_{k}^{+}\right) \bigg] + \delta(q_{z} + k_{z}) 4k_{z}^{2} A_{k}^{+} \frac{\partial}{\partial q_{z}} \left(q_{z} A_{q}^{-}\right) \bigg\} - 2\gamma_{a,k}^{+} A_{k}^{+}, \end{split}$$

$$\begin{aligned} \frac{\partial F_{k}}{\partial t} &= \frac{\pi}{4v_{A}} \int d^{3}p \, d^{3}q \, \delta(\mathbf{k} - \mathbf{p} - \mathbf{q}) \bigg\{ 9\sin^{2}\theta \Big[ \delta(k - p - q)kqF_{p} \big(F_{q} - F_{k}\big) + \delta(k + p - q)k \big(kF_{-p}F_{q} + pF_{q}F_{k} - qF_{-p}F_{k}\big) \Big] \\ &+ \delta(k - p_{z} + q_{z})k\Lambda_{kpq} \big(kA_{p}^{+}A_{q}^{-} - p_{z}A_{q}^{-}F_{k} + q_{z}A_{p}^{+}F_{k}\big) + \delta(k - p_{z} - q)kM_{kpq} \big(kA_{p}^{+}F_{q} - p_{z}F_{q}F_{k} - qA_{p}^{+}F_{k}\big) \\ &+ \delta(k + p_{z} - q)kM_{-k - p - q} \big(kA_{p}^{-}F_{q} + p_{z}F_{q}F_{k} - qA_{p}^{-}F_{k}\big) + \delta(k - q)k^{-3}p_{z}F_{k} \bigg[k_{z}\frac{\partial}{\partial q} \left(q^{4}F_{q}\right) - k^{2}q_{z}\frac{\partial}{\partial q} \left(q^{2}F_{q}\right)\bigg] \\ &+ \varepsilon^{-2}k^{2} \left(S_{p}^{+} + S_{p}^{-}\right) \bigg[\delta(k - q)m^{2} \left(F_{q} - F_{k}\right) + \delta(k - q_{z})\overline{m}^{2} \left(A_{q}^{+} - F_{k}\right) + \delta(k + q_{z})\overline{m}^{2} \left(A_{q}^{-} - F_{k}\right)\bigg] \\ &+ \delta(k - q_{z})p_{z}F_{k} \bigg(2k_{z}A_{q}^{+} + kp_{z}\frac{\partial A_{q}^{+}}{\partial q_{z}}\bigg) + \delta(k + q_{z})p_{z}F_{k} \bigg(2k_{z}A_{q}^{-} - kp_{z}\frac{\partial A_{q}^{-}}{\partial q_{z}}\bigg)\bigg\} - 2\gamma_{f,k}F_{k},
\end{aligned}$$

$$\begin{split} \frac{\partial S_{k}^{\pm}}{\partial t} &= \frac{\pi}{4v_{A}} \int d^{3}p \, d^{3}q \, \delta(\mathbf{k} - \mathbf{p} - q) \Big[ \delta(q_{z}) 4k_{\perp}^{2} \overline{m}^{2} \left(A_{q}^{+} + A_{q}^{-}\right) \left(S_{p}^{\pm} - S_{k}^{\pm}\right) + \delta(p - q)k_{z}^{2}l^{2}F_{p}F_{-q} + \delta(p_{z} - q_{z})k_{z}^{2}l^{2}A_{p}^{+}A_{q}^{-} \\ &+ \delta(p_{z} + q)k_{z}^{2}\overline{l}^{2} \left(A_{p}^{+}F_{q} + A_{p}^{-}F_{-q}\right) + \delta(p_{z} - q)k_{z}^{2}\overline{l}^{2} \left(A_{p}^{+}F_{-q} + A_{p}^{-}F_{q}\right) \Big] - 2\gamma_{s,k}^{\pm}S_{k}^{\pm}, \\ \mathbf{perpendicular Alfven-wave cascade} \\ \frac{\partial A_{k}^{\pm}}{\partial t} &= \frac{\pi}{4v_{A}} \int d^{3}p \, d^{3}q \, \delta(\mathbf{k} - \mathbf{p} - q) \Big[ \delta(q_{z})8(k_{\perp}n\overline{m})^{2}A_{q}^{-} \left(A_{p}^{+} - A_{k}^{+}\right) + \delta(k_{z} + p_{z} + q)k_{z}\Lambda_{q-pk} \left(k_{z}A_{p}^{-}F_{-q} + p_{z}F_{-q}A_{k}^{+} + qA_{p}^{-}A_{k}^{+}\right) \\ &+ \delta(k_{z} + p_{z} - q)k_{z}\Lambda_{q-pk} \left(k_{z}A_{p}^{-}F_{q} + p_{z}F_{q}A_{k}^{+} - qA_{p}^{-}A_{k}^{+}\right) + \delta(k_{z} - p + q)k_{z}M_{pk-q} \left(k_{z}F_{p}F_{-q} - pF_{-q}A_{k}^{+} + qF_{p}A_{k}^{+}\right) \\ &+ \delta(q - k_{z})p_{z}A_{k}^{+} \left[ 2(k_{z} + p_{z})F_{q} + p_{z}q \frac{\partial F_{q}}{\partial q} \right] + \delta(q + k_{z})p_{z}A_{k}^{+} \left[ 2(k_{z} + p_{z})F_{-q} + p_{z}q \frac{\partial F_{-q}}{\partial q} \right] \\ &+ \varepsilon^{-2}k_{z}^{2} \left(S_{p}^{+} + S_{p}^{-}\right) \left[ \delta(q - k_{z})\overline{m}^{2} \left(F_{q} - A_{k}^{+}\right) + \delta(q + k_{z})\overline{m}^{2} \left(F_{-q} - A_{k}^{+}\right) + \delta(p_{z})m^{2} \left(A_{q}^{-} - A_{k}^{+}\right) \right] \\ &+ \delta(k_{z} + q_{z})m^{2} \left(A_{q}^{-} - A_{k}^{+}\right) \right] + \delta(q_{z} + k_{z})4k_{z}^{2}A_{k}^{+} \frac{\partial}{\partial q_{z}} \left(q_{z}A_{q}^{-}\right) \right\} - 2\gamma_{a,k}^{+}A_{k}^{+}, \end{split}$$

$$\begin{aligned} \frac{\partial F_k}{\partial t} &= \frac{\pi}{4v_A} \int d^3p \, d^3q \, \delta(\mathbf{k} - \mathbf{p} - \mathbf{q}) \left\{ 9\sin^2\theta \Big[ \delta(k - p - q)kqF_p(F_q - F_k) + \delta(k + p - q)k(kF_{-p}F_q + pF_qF_k - qF_{-p}F_k) \Big] \\ &+ \delta(k - p_z + q_z)k\Lambda_{kpq} \left(kA_p^+A_q^- - p_zA_q^-F_k + q_zA_p^+F_k\right) + \delta(k - p_z - q)kM_{kpq} \left(kA_p^+F_q - p_zF_qF_k - qA_p^+F_k\right) \\ &+ \delta(k + p_z - q)kM_{-k-p-q} \left(kA_p^-F_q + p_zF_qF_k - qA_p^-F_k\right) + \delta(k - q)k^{-3}p_zF_k \left[k_z\frac{\partial}{\partial q} \left(q^4F_q\right) - k^2q_z\frac{\partial}{\partial q} \left(q^2F_q\right)\right] \\ &+ \varepsilon^{-2}k^2 \left(S_p^+ + S_p^-\right) \left[\delta(k - q)m^2 \left(F_q - F_k\right) + \delta(k - q_z)\overline{m}^2 \left(A_q^+ - F_k\right) + \delta(k + q_z)\overline{m}^2 \left(A_q^- - F_k\right)\right] \\ &+ \delta(k - q_z)p_zF_k \left(2k_zA_q^+ + kp_z\frac{\partial A_q^+}{\partial q_z}\right) + \delta(k + q_z)p_zF_k \left(2k_zA_q^- - kp_z\frac{\partial A_q^-}{\partial q_z}\right)\right\} - 2\gamma_{f,k}F_k, \end{aligned}$$

passive-scalar mixing

$$\frac{\partial S_{k}^{\pm}}{\partial t} = \frac{\pi}{4v_{A}} \int d^{3}p \, d^{3}q \, \delta(\mathbf{k} - \mathbf{p} - \mathbf{q}) \left[ \delta(q_{z}) 4k_{\perp}^{2} \overline{m}^{2} \left(A_{q}^{+} + A_{q}^{-}\right) \left(S_{p}^{\pm} - S_{k}^{\pm}\right) + \delta(p - q)k_{z}^{2} l^{2} F_{p} F_{-q} + \delta(p_{z} - q_{z})k_{z}^{2} l^{2} A_{p}^{+} A_{q}^{-} + \delta(p_{z} - q_{z})k_{z}^{2} \overline{l}^{2} \left(A_{p}^{+} F_{q} + A_{p}^{-} F_{-q}\right) + \delta(p_{z} - q)k_{z}^{2} \overline{l}^{2} \left(A_{p}^{+} F_{-q} + A_{p}^{-} F_{q}\right) \right] - 2\gamma_{s,k}^{\pm} S_{k}^{\pm},$$

$$\begin{aligned} \frac{\partial A_{k}^{+}}{\partial t} &= \frac{\pi}{4v_{A}} \int d^{3}p \, d^{3}q \, \delta(\mathbf{k} - \mathbf{p} - \mathbf{q}) \bigg\{ \delta(q_{z}) \delta(k_{\perp} n \overline{m})^{2} A_{q}^{-} \left(A_{p}^{+} - A_{k}^{+}\right) + \delta(k_{z} + p_{z} + q) k_{z} \Lambda_{q-pk} \left(k_{z} A_{p}^{-} F_{-q} + p_{z} F_{-q} A_{k}^{+} + q A_{p}^{-} A_{k}^{+}\right) \\ &+ \delta(k_{z} + p_{z} - q) k_{z} \Lambda_{q-pk} \left(k_{z} A_{p}^{-} F_{q} + p_{z} F_{q} A_{k}^{+} - q A_{p}^{-} A_{k}^{+}\right) + \delta(k_{z} - p + q) k_{z} M_{pk-q} \left(k_{z} F_{p} F_{-q} - p F_{-q} A_{k}^{+} + q F_{p} A_{k}^{+}\right) \\ &+ \delta(q - k_{z}) p_{z} A_{k}^{+} \bigg[ 2(k_{z} + p_{z}) F_{q} + p_{z} q \frac{\partial F_{q}}{\partial q} \bigg] + \delta(q + k_{z}) p_{z} A_{k}^{+} \bigg[ 2(k_{z} + p_{z}) F_{-q} + p_{z} q \frac{\partial F_{-q}}{\partial q} \bigg] \\ &+ \varepsilon^{-2} k_{z}^{2} \left(S_{p}^{+} + S_{p}^{-}\right) \bigg[ \delta(q - k_{z}) \overline{m}^{2} \left(F_{q} - A_{k}^{+}\right) + \delta(q + k_{z}) \overline{m}^{2} \left(F_{-q} - A_{k}^{+}\right) + \delta(p_{z}) m^{2} \left(A_{q}^{+} - A_{k}^{+}\right) \\ &+ \delta(k_{z} + q_{z}) m^{2} \left(A_{q}^{-} - A_{k}^{+}\right) \bigg] + \delta(q_{z} + k_{z}) 4k_{z}^{2} A_{k}^{+} \frac{\partial}{\partial q_{z}} \left(q_{z} A_{q}^{-}\right) \bigg\} - 2\gamma_{a,k}^{+} A_{k}^{+}, \end{aligned}$$

$$\begin{aligned} \frac{\partial F_k}{\partial t} &= \frac{\pi}{4v_A} \int d^3p \, d^3q \, \delta(\mathbf{k} - \mathbf{p} - \mathbf{q}) \bigg\{ 9\sin^2\theta \Big[ \delta(k - p - q)kqF_p \big(F_q - F_k\big) + \delta(k + p - q)k \big(kF_{-p}F_q + pF_qF_k - qF_{-p}F_k\big) \Big] \\ &+ \delta(k - p_z + q_z)k\Lambda_{kpq} \big(kA_p^+A_q^- - p_zA_q^-F_k + q_zA_p^+F_k\big) + \delta(k - p_z - q)kM_{kpq} \big(kA_p^+F_q - p_zF_qF_k - qA_p^+F_k\big) \\ &+ \delta(k + p_z - q)kM_{-k - p - q} \big(kA_p^-F_q + p_zF_qF_k - qA_p^-F_k\big) + \delta(k - q)k^{-3}p_zF_k \bigg[k_z \frac{\partial}{\partial q} \big(q^4F_q\big) - k^2q_z \frac{\partial}{\partial q} \big(q^2F_q\big)\bigg] \\ &+ \varepsilon^{-2}k^2 \big(S_p^+ + S_p^-\big) \bigg[\delta(k - q)m^2 \big(F_q - F_k\big) + \delta(k - q_z)\overline{m}^2 \big(A_q^+ - F_k\big) + \delta(k + q_z)\overline{m}^2 \big(A_q^- - F_k\big)\bigg] \\ &+ \delta(k - q_z)p_zF_k \bigg(2k_zA_q^+ + kp_z \frac{\partial A_q^+}{\partial q_z}\bigg) + \delta(k + q_z)p_zF_k \bigg(2k_zA_q^- - kp_z \frac{\partial A_q^-}{\partial q_z}\bigg)\bigg\} - 2\gamma_{f,k}F_k, \end{aligned}$$

$$\frac{\partial S_{k}^{\pm}}{\partial t} = \frac{\pi}{4v_{A}} \int d^{3}p \, d^{3}q \, \delta(\mathbf{k} - \mathbf{p} - \mathbf{q}) \Big[ \delta(q_{z}) 4k_{\perp}^{2} \overline{m}^{2} \left(A_{q}^{+} + A_{q}^{-}\right) \left(S_{p}^{\pm} - S_{k}^{\pm}\right) + \delta(p - q)k_{z}^{2} l^{2} F_{p} F_{-q} + \delta(p_{z} - q_{z})k_{z}^{2} l^{2} A_{p}^{+} A_{q}^{-} + \delta(p_{z} + q)k_{z}^{2} \overline{l}^{2} \left(A_{p}^{+} F_{q} + A_{p}^{-} F_{-q}\right) + \delta(p_{z} - q)k_{z}^{2} \overline{l}^{2} \left(A_{p}^{+} F_{-q} + A_{p}^{-} F_{q}\right) \Big] - 2\gamma_{s,k}^{\pm} S_{k}^{\pm},$$

$$\frac{\partial A_{k}^{+}}{\partial t} = \frac{\pi}{4v_{A}} \int d^{3}p \, d^{3}q \, \delta(\mathbf{k} - \mathbf{p} - \mathbf{q}) \left\{ \delta(q_{z}) 8(k_{\perp} n \overline{m})^{2} A_{q}^{-} \left(A_{p}^{+} - A_{k}^{+}\right) + \delta(k_{z} + p_{z} + q) k_{z} \Lambda_{q-pk} \left(k_{z} A_{p}^{-} F_{-q} + p_{z} F_{-q} A_{k}^{+} + q A_{p}^{-} A_{k}^{+}\right) \\
+ \delta(k_{z} + p_{z} - q) k_{z} \Lambda_{q-pk} \left(k_{z} A_{p}^{-} F_{q} + p_{z} F_{q} A_{k}^{+} - q A_{p}^{-} A_{k}^{+}\right) + \delta(k_{z} - p + q) k_{z} M_{pk-q} \left(k_{z} F_{p} F_{-q} - p F_{-q} A_{k}^{+} + q F_{p} A_{k}^{+}\right) \\
+ \delta(q - k_{z}) p_{z} A_{k}^{+} \left[2(k_{z} + p_{z}) F_{q} + p_{z} q \frac{\partial F_{q}}{\partial q}\right] + \delta(q + k_{z}) p_{z} A_{k}^{+} \left[2(k_{z} + p_{z}) F_{-q} + p_{z} q \frac{\partial F_{-q}}{\partial q}\right] \\
+ \varepsilon^{-2} k_{z}^{2} \left(S_{p}^{+} + S_{p}^{-}\right) \left[\delta(q - k_{z}) \overline{m}^{2} \left(F_{q} - A_{k}^{+}\right) + \delta(q + k_{z}) \overline{m}^{2} \left(F_{-q} - A_{k}^{+}\right) + \delta(p_{z}) m^{2} \left(A_{q}^{+} - A_{k}^{+}\right) \right] + \delta(q_{z} + k_{z}) 4k_{z}^{2} A_{k}^{+} \frac{\partial}{\partial q_{z}} \left(q_{z} A_{q}^{-}\right) \right\} - 2\gamma_{a,k}^{+} A_{k}^{+},$$

$$\begin{aligned} \frac{\partial F_{k}}{\partial t} &= \frac{\pi}{4v_{A}} \int d^{3}p \, d^{3}q \, \delta(\mathbf{k} - \mathbf{p} - \mathbf{q}) \bigg\{ 9\sin^{2}\theta \Big[ \delta(k - p - q)kqF_{p} \big(F_{q} - F_{k}\big) + \delta(k + p - q)k \big(kF_{-p}F_{q} + pF_{q}F_{k} - qF_{-p}F_{k}\big) \Big] \\ &+ \delta(k - p_{z} + q_{z})k\Lambda_{kpq} \big(kA_{p}^{+}A_{q}^{-} - p_{z}A_{q}^{-}F_{k} + q_{z}A_{p}^{+}F_{k}\big) + \delta(k - p_{z} - q)kM_{kpq} \big(kA_{p}^{+}F_{q} - p_{z}F_{q}F_{k} - qA_{p}^{+}F_{k}\big) \\ &+ \delta(k + p_{z} - q)kM_{-k - p - q} \big(kA_{p}^{-}F_{q} + p_{z}F_{q}F_{k} - qA_{p}^{-}F_{k}\big) + \delta(k - q)k^{-3}p_{z}F_{k} \bigg[k_{z}\frac{\partial}{\partial q} \big(q^{4}F_{q}\big) - k^{2}q_{z}\frac{\partial}{\partial q} \big(q^{2}F_{q}\big)\bigg] \\ &+ \varepsilon^{-2}k^{2} \big(S_{p}^{+} + S_{p}^{-}\big) \bigg[\delta(k - q)m^{2} \big(F_{q} - F_{k}\big) + \delta(k - q_{z})\overline{m}^{2} \big(A_{q}^{+} - F_{k}\big) + \delta(k + q_{z})\overline{m}^{2} \big(A_{q}^{-} - F_{k}\big)\bigg] \\ &+ \delta(k - q_{z})p_{z}F_{k} \bigg(2k_{z}A_{q}^{+} + kp_{z}\frac{\partial A_{q}^{+}}{\partial q_{z}}\bigg) + \delta(k + q_{z})p_{z}F_{k} \bigg(2k_{z}A_{q}^{-} - kp_{z}\frac{\partial A_{q}^{-}}{\partial q_{z}}\bigg)\bigg\} - 2\gamma_{f,k}F_{k},
\end{aligned}$$

$$\begin{aligned} \frac{\partial S_{k}^{\pm}}{\partial t} &= \frac{\pi}{4v_{A}} \int d^{3}p \, d^{3}q \, \delta(\mathbf{k} - \mathbf{p} - \mathbf{q}) \Big[ \delta(q_{z}) 4k_{\perp}^{2} \overline{m}^{2} \left(A_{q}^{+} + A_{q}^{-}\right) \left(S_{p}^{\pm} - S_{k}^{\pm}\right) \,+\, \delta(p - q) k_{z}^{2} l^{2} F_{p} F_{-q} \,+\, \delta(p_{z} - q_{z}) k_{z}^{2} l^{2} A_{p}^{+} A_{q}^{-} \\ &+\, \delta(p_{z} + q) k_{z}^{2} \overline{l}^{2} \left(A_{p}^{+} F_{q} + A_{p}^{-} F_{-q}\right) \,+\, \delta(p_{z} - q) k_{z}^{2} \overline{l}^{2} \left(A_{p}^{+} F_{-q} + A_{p}^{-} F_{q}\right) \Big] - 2\gamma_{s,k}^{\pm} S_{k}^{\pm}, \end{aligned}$$

$$\frac{\partial A_{k}^{+}}{\partial t} = \frac{\pi}{4\nu_{A}} \int d^{3}p \, d^{3}q \, \delta(\mathbf{k} - \mathbf{p} - \mathbf{q}) \left\{ \delta(q_{z}) 8(k_{\perp}n\overline{m})^{2}A_{q}^{-}\left(A_{p}^{+} - A_{k}^{+}\right) + \delta(k_{z} + p_{z} + q)k_{z}\Lambda_{q-pk}\left(k_{z}A_{p}^{-}F_{-q} + p_{z}F_{-q}A_{k}^{+} + qA_{p}^{-}A_{k}^{+}\right) \\
+ \delta(k_{z} + p_{z} - q)k_{z}\Lambda_{q-pk}\left(k_{z}A_{p}^{-}F_{q} + p_{z}F_{q}A_{k}^{+} - qA_{p}^{-}A_{k}^{+}\right) + \delta(k_{z} - p + q)k_{z}M_{pk-q}\left(k_{z}F_{p}F_{-q} - pF_{-q}A_{k}^{+} + qF_{p}A_{k}^{+}\right) \\
+ \delta(q - k_{z})p_{z}A_{k}^{+}\left[2(k_{z} + p_{z})F_{q} + p_{z}q\frac{\partial F_{q}}{\partial q}\right] + \delta(q + k_{z})p_{z}A_{k}^{+}\left[2(k_{z} + p_{z})F_{-q} + p_{z}q\frac{\partial F_{-q}}{\partial q}\right] \\
+ \varepsilon^{-2}k_{z}^{2}\left(S_{p}^{+} + S_{p}^{-}\right)\left[\delta(q - k_{z})\overline{m}^{2}\left(F_{q} - A_{k}^{+}\right) + \delta(q + k_{z})\overline{m}^{2}\left(F_{-q} - A_{k}^{+}\right) + \delta(p_{z})m^{2}\left(A_{q}^{+} - A_{k}^{+}\right) \\
+ \delta(k_{z} + q_{z})m^{2}\left(A_{q}^{-} - A_{k}^{+}\right)\right] + \delta(q_{z} + k_{z})4k_{z}^{2}A_{k}^{+}\frac{\partial}{\partial q_{z}}\left(q_{z}A_{q}^{-}\right)\right\} - 2\gamma_{a,k}^{+}A_{k}^{+},$$
"radial" fast-wave cascade

$$\begin{aligned} \frac{\partial F_{k}}{\partial t} &= \frac{\pi}{4\nu_{A}} \int d^{3}p \, d^{3}q \, \delta(\mathbf{k} - \mathbf{p} - \mathbf{q}) \left\{ 9 \sin^{2}\theta \Big[ \delta(k - p - q)kqF_{p} \big(F_{q} - F_{k}\big) + \delta(k + p - q)k \big(kF_{-p}F_{q} + pF_{q}F_{k} - qF_{-p}F_{k}\big) \Big] \\ &+ \delta(k - p_{z} + q_{z})k\Lambda_{kpq} \big(kA_{p}^{+}A_{q}^{-} - p_{z}A_{q}^{-}F_{k} + q_{z}A_{p}^{+}F_{k}\big) + \delta(k - p_{z} - q)kM_{kpq} \big(kA_{p}^{+}F_{q} - p_{z}F_{q}F_{k} - qA_{p}^{+}F_{k}\big) \\ &+ \delta(k + p_{z} - q)kM_{-k - p - q} \big(kA_{p}^{-}F_{q} + p_{z}F_{q}F_{k} - qA_{p}^{-}F_{k}\big) + \delta(k - q)k^{-3}p_{z}F_{k} \bigg[k_{z}\frac{\partial}{\partial q} \left(q^{4}F_{q}\right) - k^{2}q_{z}\frac{\partial}{\partial q} \left(q^{2}F_{q}\right)\bigg] \\ &+ \varepsilon^{-2}k^{2} \left(S_{p}^{+} + S_{p}^{-}\right) \bigg[\delta(k - q)m^{2} \left(F_{q} - F_{k}\right) + \delta(k - q_{z})\overline{m}^{2} \left(A_{q}^{+} - F_{k}\right) + \delta(k + q_{z})\overline{m}^{2} \left(A_{q}^{-} - F_{k}\right)\bigg] \\ &+ \delta(k - q_{z})p_{z}F_{k} \bigg(2k_{z}A_{q}^{+} + kp_{z}\frac{\partial A_{q}^{+}}{\partial q_{z}}\bigg) + \delta(k + q_{z})p_{z}F_{k} \bigg(2k_{z}A_{q}^{-} - kp_{z}\frac{\partial A_{q}^{-}}{\partial q_{z}}\bigg)\bigg\} - 2\gamma_{f,k}F_{k}, \end{aligned}$$

parametric instability

$$\frac{\partial S_{k}^{\pm}}{\partial t} = \frac{\pi}{4\nu_{A}} \int d^{3}p \, d^{3}q \, \delta(\mathbf{k} - \mathbf{p} - \mathbf{q}) \Big[ \delta(q_{z}) 4k_{\perp}^{2} \overline{m}^{2} \left(A_{q}^{+} + A_{q}^{-}\right) \left(S_{p}^{\pm} - S_{k}^{\pm}\right) + \delta(p - q) k_{z}^{2} l^{2} F_{p} F_{-q} + \delta(p_{z} - q_{z}) k_{z}^{2} l^{2} A_{p}^{+} A_{q}^{-} + \delta(p_{z} - q) k_{z}^{2} \overline{l}^{2} \left(A_{p}^{+} F_{q} + A_{p}^{-} F_{-q}\right) + \delta(p_{z} - q) k_{z}^{2} \overline{l}^{2} \left(A_{p}^{+} F_{-q} + A_{p}^{-} F_{q}\right) \Big] - 2\gamma_{s,k}^{\pm} S_{k}^{\pm},$$

$$\begin{split} \frac{\partial A_{k}^{+}}{\partial t} &= \frac{\pi}{4v_{A}} \int d^{3}p \, d^{3}q \, \delta(\mathbf{k} - \mathbf{p} - \mathbf{q}) \bigg\{ \delta(q_{z}) 8(k_{\perp} n \overline{m})^{2} A_{q}^{-} \left(A_{p}^{+} - A_{k}^{+}\right) + \delta(k_{z} + p_{z} + q) k_{z} \Lambda_{q-\rho k} \left(k_{z} A_{p}^{-} F_{-q} + p_{z} F_{-q} A_{k}^{+} + q A_{p}^{-} A_{k}^{+}\right) \\ &+ \delta(k_{z} + p_{z} - q) k_{z} \Lambda_{q-\rho k} \left(k_{z} A_{p}^{-} F_{q} + p_{z} F_{q} A_{k}^{+} - q A_{p}^{-} A_{k}^{+}\right) + \delta(k_{z} - p + q) k_{z} M_{\rho k-q} \left(k_{z} F_{P} F_{-q} - p F_{-q} A_{k}^{+} + q F_{p} A_{k}^{+}\right) \\ &+ \delta(q - k_{z}) p_{z} A_{k}^{+} \bigg[ 2(k_{z} + p_{z}) F_{q} + p_{z} q \frac{\partial F_{q}}{\partial q} \bigg] + \delta(q + k_{z}) p_{z} A_{k}^{+} \bigg[ 2(k_{z} + p_{z}) F_{-q} + p_{z} q \frac{\partial F_{-q}}{\partial q} \bigg] \\ &+ \varepsilon^{-2} k_{z}^{2} \left(S_{p}^{+} + S_{p}^{-}\right) \bigg[ \delta(q - k_{z}) \overline{m}^{2} \left(F_{q} - A_{k}^{+}\right) + \delta(q + k_{z}) \overline{m}^{2} \left(F_{-q} - A_{k}^{+}\right) + \delta(p_{z}) m^{2} \left(A_{q}^{+} - A_{k}^{+}\right) \\ &+ \delta(k_{z} + q_{z}) m^{2} \left(A_{q}^{-} - A_{k}^{+}\right) + \delta(q + k_{z}) \overline{m}^{2} \left(F_{-q} - A_{k}^{+}\right) + \delta(p_{z}) m^{2} \left(A_{q}^{+} - A_{k}^{+}\right) \\ &+ \delta(k_{z} + q_{z}) m^{2} \left(A_{q}^{-} - A_{k}^{+}\right) + \delta(q + k_{z}) \overline{m}^{2} \left(q_{z} A_{q}^{-}\right) \bigg\} - 2\gamma_{a,k}^{+} A_{k}^{+}, \\ \\ \begin{array}{l} \mathbf{parametric instability} \\ \frac{\partial F_{k}}{\partial t} &= \frac{\pi}{4v_{A}} \int d^{3}p \, d^{3}q \, \delta(\mathbf{k} - \mathbf{p} - \mathbf{q}) \bigg\{ 9 \sin^{2}\theta \bigg[ \delta(k - p - q) kqF_{p} \left(F_{q} - F_{k}\right) + \delta(k + p - q) k \left(kF_{-p}F_{q} + pF_{q}F_{k} - qF_{-p}F_{k}\right) \bigg] \\ &+ \delta(k - p_{z} + q_{z}) k \Lambda_{kpq} \left(kA_{p}^{+} A_{q}^{-} - p_{z}A_{q}F_{k} + q_{z}A_{p}^{+}F_{k}\right) + \delta(k - p_{z} - q) kM_{kpq} \left(kA_{p}^{+} F_{q} - p_{z}F_{q}F_{k} - qF_{-p}F_{k}\right) \bigg] \\ &+ \delta(k - p_{z} - q) kM_{-k - p - q} \left(kA_{p}^{-} F_{q} + p_{z}F_{q}F_{k} - qA_{p}^{-}F_{k}\right) + \delta(k - p_{z} - q) kM_{kpq} \left(kA_{p}^{+} F_{q} - p_{z}A_{q}^{-} F_{k}\right) \bigg] \\ &+ \delta(k - q_{z}) p_{z}F_{k} \bigg( 2k_{z}A_{q}^{+} + k_{z}\frac{\partial A_{q}^{+}}{\partial q_{z}} \bigg) + \delta(k - q_{z}) \overline{m}^{2} \left(A_{q}^{-} - k_{p}z \frac{\partial A_{q}^{-}}{\partial q}\right) \bigg\} - 2\gamma_{f,k}F_{k}, \end{aligned}$$

$$\frac{\partial S_{k}^{\pm}}{\partial t} = \frac{\pi}{4v_{A}} \int d^{3}p \, d^{3}q \, \delta(\mathbf{k} - \mathbf{p} - \mathbf{q}) \Big[ \delta(q_{z}) 4k_{\perp}^{2} \overline{m}^{2} \left(A_{q}^{+} + A_{q}^{-}\right) \left(S_{p}^{\pm} - S_{k}^{\pm}\right) + \delta(p_{z} - q)k_{z}^{2} l^{2} F_{p} F_{-q} + \delta(p_{z} - q_{z}) k_{z}^{2} l^{2} A_{p}^{+} A_{q}^{-} + \delta(p_{z} - q_{z}) k_{z}^{2} l^{2} A_{p}^{+} A_{q}^{-} + \delta(p_{z} - q)k_{z}^{2} \overline{l}^{2} \left(A_{p}^{+} F_{q} + A_{p}^{-} F_{-q}\right) + \delta(p_{z} - q)k_{z}^{2} \overline{l}^{2} \left(A_{p}^{+} F_{-q} + A_{p}^{-} F_{q}\right) \Big] - 2\gamma_{s,k}^{\pm} S_{k}^{\pm},$$

$$\frac{\partial A_{k}^{+}}{\partial t} = \frac{\pi}{4v_{A}} \int d^{3}p \, d^{3}q \, \delta(\mathbf{k} - \mathbf{p} - \mathbf{q}) \left\{ \delta(q_{z}) 8(k_{\perp} n \overline{m})^{2} A_{q}^{-} \left(A_{p}^{+} - A_{k}^{+}\right) + \delta(k_{z} + p_{z} + q) k_{z} \Lambda_{q-pk} \left(k_{z} A_{p}^{-} F_{-q} + p_{z} F_{-q} A_{k}^{+} + q A_{p}^{-} A_{k}^{+}\right) \\
+ \delta(k_{z} + p_{z} - q) k_{z} \Lambda_{q-pk} \left(k_{z} A_{p}^{-} F_{q} + p_{z} F_{q} A_{k}^{+} - q A_{p}^{-} A_{k}^{+}\right) + \delta(k_{z} - p + q) k_{z} M_{pk-q} \left(k_{z} F_{p} F_{-q} - p F_{-q} A_{k}^{+} + q F_{p} A_{k}^{+}\right) \\
+ \delta(q - k_{z}) p_{z} A_{k}^{+} \left[2(k_{z} + p_{z}) F_{q} + p_{z} q \frac{\partial F_{q}}{\partial q}\right] + \delta(q + k_{z}) p_{z} A_{k}^{+} \left[2(k_{z} + p_{z}) F_{-q} + p_{z} q \frac{\partial F_{-q}}{\partial q}\right] \\
+ \frac{\epsilon^{-2} k_{z}^{2} \left(S_{p}^{+} + S_{p}^{-}\right) \left[\delta(q - k_{z}) \overline{m}^{2} \left(F_{q} - A_{k}^{+}\right) + \delta(q + k_{z}) \overline{m}^{2} \left(F_{-q} - A_{k}^{+}\right) + \delta(p_{z}) m^{2} \left(A_{q}^{+} - A_{k}^{+}\right) - \\
+ \delta(k_{z} + q_{z}) m^{2} \left(A_{q}^{-} - A_{k}^{+}\right) \right] + \delta(q_{z} + k_{z}) 4k_{z}^{2} A_{k}^{+} \frac{\partial}{\partial q_{z}} \left(q_{z} A_{q}^{-}\right) \right\} - 2\gamma_{a,k}^{+} A_{k}^{+},$$
Parametric instability when slow waves are strongly damped

$$\begin{aligned} \frac{\partial F_{k}}{\partial t} &= \frac{\pi}{4v_{A}} \int d^{3}p \, d^{3}q \, \delta(\mathbf{k} - \mathbf{p} - \mathbf{q}) \bigg\{ 9 \sin^{2} \theta \Big[ \delta(k - p - q) kq F_{p} \big( F_{q} - F_{k} \big) + \delta(k + p - q) k \big( kF_{-p}F_{q} + pF_{q}F_{k} - qF_{-p}F_{k} \big) \Big] \\ &+ \delta(k - p_{z} + q_{z}) k \Lambda_{kpq} \big( kA_{p}^{+}A_{q}^{-} - p_{z}A_{q}^{-}F_{k} + q_{z}A_{p}^{+}F_{k} \big) + \delta(k - p_{z} - q) k M_{kpq} \big( kA_{p}^{+}F_{q} - p_{z}F_{q}F_{k} - qA_{p}^{+}F_{k} \big) \\ &+ \delta(k + p_{z} - q) k M_{-k-p-q} \big( kA_{p}^{-}F_{q} + p_{z}F_{q}F_{k} - qA_{p}^{-}F_{k} \big) + \delta(k - q) k^{-3} p_{z}F_{k} \bigg[ k_{z} \frac{\partial}{\partial q} \big( q^{4}F_{q} \big) - k^{2}q_{z} \frac{\partial}{\partial q} \big( q^{2}F_{q} \big) \bigg] \\ &+ \epsilon^{-2}k^{2} \big( S_{p}^{+} + S_{p}^{-} \big) \bigg[ \delta(k - q)m^{2} \big( F_{q} - F_{k} \big) + \delta(k - q_{z})\overline{m}^{2} \big( A_{q}^{+} - F_{k} \big) + \delta(k + q_{z})\overline{m}^{2} \big( A_{q}^{-} - F_{k} \big) \bigg] \\ &+ \delta(k - q_{z}) p_{z}F_{k} \bigg( 2k_{z}A_{q}^{+} + kp_{z} \frac{\partial A_{q}^{+}}{\partial q_{z}} \bigg) + \delta(k + q_{z}) p_{z}F_{k} \bigg( 2k_{z}A_{q}^{-} - kp_{z} \frac{\partial A_{q}^{-}}{\partial q_{z}} \bigg) \bigg\} - 2\gamma_{f,k}F_{k}, \end{aligned}$$

$$\begin{aligned} \frac{\partial S_{k}^{+}}{\partial t} &= \frac{\pi}{4v_{A}} \int d^{3}p \, d^{3}q \, \delta(\mathbf{k} - \mathbf{p} - \mathbf{q}) \Big[ \delta(q_{z})Ak^{2}\overline{m^{2}} \left(A_{q}^{+} + A_{q}^{-}\right) \left(S_{p}^{\pm} - S_{k}^{\pm}\right) + \delta(p_{z} - q)k^{2}z^{2}F_{p}F_{-q} + \delta(p_{z} - q_{z})k^{2}z^{2}A_{p}^{+}A_{q}^{-} \\ &+ \delta(p_{z} + q)k^{2}z^{2} \left(A_{p}^{+}F_{q} + A_{p}^{-}F_{q}\right) + \delta(p_{z} - q)k^{2}z^{2} \left(A_{p}^{+}F_{q} + A_{p}^{-}F_{q}\right) \Big] - 2i^{+}_{s,k}S_{k}^{+}, \end{aligned}$$

$$\begin{aligned} \frac{\partial A_{k}^{+}}{\partial t} &= \frac{\pi}{4v_{A}} \int d^{3}p \, d^{3}q \, \delta(\mathbf{k} - \mathbf{p} - \mathbf{q}) \bigg\{ \frac{\delta(q_{z})}{k(z_{z})} \left(A_{z}^{+} - A_{z}^{+}\right) + \delta(k_{z} + p_{z} + q)k_{z}A_{q - pk} \left(k_{z}A_{p}^{-}F_{-q} + p_{z}E_{-q}A_{k}^{+} + qA_{p}^{-}A_{k}^{+}\right) \\ &+ \delta(k_{z} + p_{z} - q)k_{z}A_{q - pk} \left(k_{z}A_{p}^{-}F_{q} + p_{z}E_{q}A_{k}^{+} - qA_{p}^{-}A_{k}^{+}\right) + \delta(k_{z} - p + q)k_{z}M_{pk-q} \left(k_{z}F_{p}F_{-q} - pE_{-q}A_{k}^{+} + qF_{p}A_{k}^{+}\right) \\ &+ \delta(k_{z} + p_{z} - q)k_{z}A_{q - pk} \left(k_{z}A_{p}^{-}F_{q} + p_{z}E_{q}A_{p}^{+}A_{k}^{-} - qA_{p}^{-}A_{k}^{+}\right) + \delta(k_{z} - p_{z} + q)k_{z}M_{pk-q} \left(k_{z}F_{p}F_{-q} - pE_{-q}A_{k}^{+} + qF_{p}A_{k}^{+}\right) \\ &+ \delta(k_{z} + k_{z})P_{z}A_{k} \left[ 2(k_{z} + p_{z})F_{q} + p_{z}q^{0}A_{q}^{-}A_{k}^{+} \right] + \delta(q_{z} + k_{z})pzA_{k} \left[ 2(k_{z} + p_{z})F_{-q} + p_{z}q^{0}A_{q}^{-}A_{k}^{+} \right) \\ &+ \delta(k_{z} - q_{z})m^{2}\left(A_{q} - A_{k}^{+}\right) \right] + \delta(q_{z} + k_{z})\overline{m^{2}}\left(F_{-q} - A_{k}^{+}\right) + \delta(p_{z})m^{2}\left(A_{q}^{+} - A_{k}^{+}\right) \\ &+ \delta(k_{z} + q_{z})m^{2}\left(A_{q} - A_{k}^{+}\right) \right] + \delta(q_{z} + k_{z})4k^{2}_{z}A_{k}^{+}\frac{\partial}{\partial q_{z}}\left(q_{z}A_{q}\right) \right] - 2\gamma_{a,k}^{+}A_{k}^{+}, \text{ parametric instability when slow waves are strongly damped \\ \frac{\partial F_{k}}{\partial t} - \frac{\pi}{4v_{A}}\int d^{3}p \, d^{3}q \, \delta(\mathbf{k} - \mathbf{p} - q) \left\{ 0\sin^{2}\theta \left[ \delta(k_{-} - p_{z})kqE_{p}\left(F_{q} - F_{k}\right) + \delta(k_{-} - p_{z})kM_{kpq}\left(kA_{p}^{+}F_{q} - P_{z}F_{k} - qA_{p}^{-}F_{k}\right) \right] \\ &+ \delta(k_{-} - p_{z} - q)kM_{kpq}\left(kA_{p}^{+}A_{q}^{-} - P_{z}A_{q}^{-}E_{k} + q_{z}A_{p}^{+}E_{k}\right) + \delta(k_{-} - p_{z} - q)kM_{kpq}\left(kA_{p}^{+}F_{q} - P_{z}F_{k}^{-}A_{q}A_{p}^{-}F_{k}\right) \\ &+ \delta(k_{z} - p_{z} - q)kM_{-k-p-q}\left(kA_{p}^{-}F_{q} - P_{z}A_{q}^{-}E_{k} + q$$

$$+ \frac{\delta(k-q_z)p_zF_k\left(2k_zA_q^+ + kp_z\frac{\partial A_q^+}{\partial q_z}\right)}{\partial q_z} + \frac{\delta(k+q_z)p_zF_k\left(2k_zA_q^- - kp_z\frac{\partial A_q^-}{\partial q_z}\right)}{\partial q_z}\right) - 2\gamma_{f,k}F_k,$$

 $+ \mathbf{v}_p$  )

U(r

 $\langle \mathbf{D}p \rangle$ 

N

## Integrate the Wave Kinetic Equations over $k_{\perp}$

$$E^{\pm}(k_z,t) = \int dk_x dk_y A^{\pm}(k_x,k_y,k_z,t)$$

$$\frac{\partial E^{+}}{\partial t} = \frac{\pi}{v_{\rm A}} k_z^2 E^{+} \frac{\partial}{\partial k_z} \left( k_z E^{-} \right)$$
$$\frac{\partial E^{-}}{\partial t} = \frac{\pi}{v_{\rm A}} k_z^2 E^{-} \frac{\partial}{\partial k_z} \left( k_z E^{+} \right)$$

The wave kinetic equations allow for obliquely propagating waves, but these integrated equations depend only on the parallel wavenumber k<sub>z</sub> and t.

### Alfven Wave Frequency Decreases Slightly During Each Parametric Decay

$$k_z = p_z + q_z$$

$$k_z v_A = p_z c_s - q_z v_A$$

$$k_z v_A = (k_z - q_z)c_s - q_z v_A$$

$$k_z (v_A - c_s) = -q_z (v_A + c_s)$$

$$k_z \left(\frac{v_A - c_s}{v_A + c_s}\right) = -q_z \quad (\text{ Note: } c_s / v_A \sim \beta^{1/2} \ll 1)$$

$$k_z (1 - 2\beta^{1/2}) = -q_z$$



### Linear Limit

"Pump-wave" amplitude fixed ( $E^+ = \text{constant}$ ):

$$\frac{\partial E^{-}}{\partial t} = \frac{\pi}{v_{\rm A}} k_z^2 E^{-} \frac{\partial}{\partial k_z} \left( k_z E^{+} \right)$$

$$\gamma \equiv \frac{\partial \ln E^-}{\partial t} = \frac{\pi}{v_{\rm A}} k_z^2 \frac{\partial}{\partial k_z} \left( k_z E^+ \right)$$

 $E^-$  grows exponentially if  $E^+ \propto k^{\alpha^+}$  with  $\alpha^+ > -1$ .

This result was found by Cohen & Dewar (1974) for parallelpropagating waves at low beta, assuming slow waves are strongly damped.

## Conservation of Wave Quanta and Inverse Cascade

(Chandran 2018)  $E^{\pm}(k_z,t) = \int dk_x dk_y A^{\pm}(k_x,k_y,k_z,t)$ 

$$\frac{\partial E^{+}}{\partial t} = \frac{\pi}{v_{\rm A}} k_z^2 E^{+} \frac{\partial}{\partial k_z} \left( k_z E^{-} \right)$$
$$\frac{\partial E^{-}}{\partial t} = \frac{\pi}{v_{\rm A}} k_z^2 E^{-} \frac{\partial}{\partial k_z} \left( k_z E^{+} \right)$$

Divide previous two eqns by  $k_z v_A$  and add:

$$\frac{\partial}{\partial t} \left( \frac{E^+ + E^-}{k_z v_A} \right) = \frac{\partial}{\partial k_z} \left( \frac{\pi k_z^2 E^+ E^-}{v_A^2} \right) \qquad \text{inverse cascade of wave quanta}$$
$$\longrightarrow \int_{-\infty}^{\infty} dk_z \left( \frac{E^+ + E^-}{k_z v_A} \right) = \text{ constant} \qquad \text{conservation of wave quanta}$$
$$(wave action)$$

## **Exact Solutions to Wave Kinetic Equation**

(Chandran 2018)

$$\frac{\partial E^{+}}{\partial t} = \frac{\pi}{v_{\rm A}} k_z^2 E^{+} \frac{\partial}{\partial k_z} \left( k_z E^{-} \right)$$
$$\frac{\partial E^{-}}{\partial t} = \frac{\pi}{v_{\rm A}} k_z^2 E^{-} \frac{\partial}{\partial k_z} \left( k_z E^{+} \right)$$

$$E^{\pm}(k_z, t) = \frac{c^{\pm}}{k_z},$$

$$E^{\pm}(k_z,t) = \frac{a^{\pm}(t)}{k_z^2} \qquad a^{\pm}(t) = \frac{a_0^{\pm}(a_0^{\pm} - a_0^{\mp})}{a_0^{\pm} - a_0^{\mp}e^{-\pi(a_0^{\pm} - a_0^{\mp})t/v_{\rm A}}},$$

(can also construct truncated versions of these solutions, and combinations of  $k_z^{-1}$  and  $k_z^{-2}$  solutions)



 $e^{\pm} = \frac{2\pi E^{\pm}}{U} = \text{frequency spectrum}$ (via Taylor's hypothesis. U = solar-wind speed = 733 km/s.)

Alfven speed = 150 km/s. Initial dominant frequency (maximum of  $fe_f$ ) is 0.01 Hz.

$$e^+(f,t=0) = \frac{\sigma^+(f/f_0)^{-0.5}}{1+(f/f_0)^{1.5}}$$



Linear stage: the inward waves grow fastest at the largest wavenumbers where the spectrum is flatter than 1/f.





### Same Simulation, Plotted over a Smaller Frequency Range, out to 32 Hrs



dotted lines in upper left show evolutionary tracks of spectral peaks in an approximate analytic solution

#### **Comparison Between Numerical Solution and Helios Measurements**

108 108 = 8 hrt 107 107  $Hz^{-1}$  $Hz^{-1}$ 106 106 റു | ຸ S S  $(km^2)$  $(km^{2})$ 105 105 e °+ ч Ф 95 % 104 104 1000 1000 10-5 0.0001 0.001 0.01 10-5 10-4  $10^{-3}$ f (Hz) Frequency (Hz.) 0.29 AU 733 km s<sup>-1</sup> Alfven speed = 150 km/s. Initial dominant frequency (maximum of  $f \ge E_f$ ) is 0.01 Hz. Tu & Marsch (1995) Alfven travel time to 0.29 AU is 12 hours.

Helios Measurements

$$\frac{\partial E^{\pm}}{\partial t} = \frac{\pi}{v_{\rm A}} k_z^2 E^{\pm} \frac{\partial}{\partial k_z} \left( k_z E^{\mp} \right)$$

$$E^{\mp} \propto k_z^{\alpha^{\mp}} \longrightarrow \frac{\partial}{\partial t} \ln E^{\pm} \propto (1 + \alpha^{\mp}) k_z^{2 + \alpha^{\mp}}$$

$$E^{\pm} \text{ damps} \qquad E^{\pm} \text{ damps} \qquad E^{\pm} \text{ grows} \text{ and flattens}$$

$$E^{\pm} \text{ damps} \qquad A^{\pm} \text{ damps} \qquad A^{\pm} \text{ damps}$$

-2

$$E^{\mp} \propto k_z^{\alpha^{\mp}} \longrightarrow \frac{\partial}{\partial t} \ln E^{\pm} \propto (1 + \alpha^{\mp}) k_z^{2 + \alpha^{\mp}}$$



$$E^{\mp} \propto k_z^{\alpha^{\mp}} \longrightarrow \frac{\partial}{\partial t} \ln E^{\pm} \propto (1 + \alpha^{\mp}) k_z^{2 + \alpha^{\mp}}$$



$$E^{\mp} \propto k_z^{\alpha^{\mp}} \longrightarrow \frac{\partial}{\partial t} \ln E^{\pm} \propto \left(1 + \alpha^{\mp}\right) k_z^{2 + \alpha^{\mp}}$$



$$E^{\mp} \propto k_z^{\alpha^{\mp}} \longrightarrow \frac{\partial}{\partial t} \ln E^{\pm} \propto (1 + \alpha^{\mp}) k_z^{2 + \alpha^{\mp}}$$



$$E^{\mp} \propto k_z^{\alpha^{\mp}} \longrightarrow \frac{\partial}{\partial t} \ln E^{\pm} \propto (1 + \alpha^{\mp}) k_z^{2 + \alpha^{\mp}}$$



# **Future Directions**

- assess the errors introduced by weak turbulence theory (via, e.g., numerical simulations)
- determine how results are modified as beta approaches unity.
- better treatment of slow-wave damping
- interplay between parametric instability and other types of nonlinear interactions, as well as linear non-WKB reflection.
- effects of solar-wind expansion and radial evolution

## **Conclusion and Predictions**

- Alfven-wave turbulence is a leading candidate for explaining the heating and acceleration of the solar wind.
- The origin of the 1/f frequency spectrum of outward-propagating Alfven waves is an important unsolved problem.
- Here I have argued that in the fast solar wind, a 1/f magnetic spectrum at sub-hour timescales emerges dynamically between 10 Rs and 60 Rs via parametric instability and inverse cascade.
- Prediction: the 1/f range is much broader at 60 Rs than at 10 Rs.
- Prediction: the 1/f range spreads out in both directions from the initial energy-dominating frequency (at which *fe<sub>f</sub>* is maximized). As PSP gets closer to the Sun, the 1/f range that it sees in fast wind will narrow from both the high and low-frequency ends, eventually disappearing at small enough r.