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»Compactness” in astrophysics
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gamma-ray bursts)



Dissipative plasma processes:
reconnection, shocks, turbulence damping, discharge

In compact objects these processes occur in dense radiation

—

1) dominant radiative losses

2) “bulk Comptonization” of photons

(turns out more important than thermal Comptonization)

3) extension of radiation spectrum above MeC
4) copious e+- pair creation

5) non-linear self-regulated state (ni / Nions Mph / nion)



Plasma shocks in dense radiation become mediated by photons

—> fundamental change in the shock dissipation mechanism
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Radiative MHD from first principles: “Photon In Cell”

Fluid motion: Lagrangian grid

Radiative transfer: individual photons (Monte-Carlo)

goal: self-consistent solution: radiation + shock structure

AB 2017
Lundman, AB, Vurm 2018
Ito et al. 2018
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Bulk Comptonization in non-relativistic shocks
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upstream e+- creation in
relativistic RMS:
[ph shrinks by ~100

downstream

Z:|: — ni/nion ~ 100 — 300 1if ’Yshﬁsh > 1



Magnetized plasma
o~ 0.01—-0.1

collisionless subshock!

downstream

AB 2017



v Magnetized plasma

Lon o~ 0.01 —0.1
(Ysh — 1)my collisionless subshock!
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Lundman & AB 2018



Synchrotron photon number:

— peaks at low photon energies

— controlled by induced down-scattering limit:
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Shock self-organization

e Dresses itself in pair plasma: 7+ /Njon ~ 100

=> “carries” the explosion photosphere
(delayed shock breakout)

* Feeds itself with photons that mediate the shock:

Nph /Mion ~ 10° — 10°



Shock self-organization

e Dresses itself in pair plasma: 7+ /Njon ~ 100

=> “carries” the explosion photosphere
(delayed shock breakout)

* Feeds itself with photons that mediate the shock:
Nph /Mion ~ 10° — 10°
2 dimensionless parameters:

Ush /€ and medium magnetization O

current work: shock spectrum emerging from photosphere
(Lundman & AB)



II. Magnetic reconnection

— Magnetic flares near accreting black holes
— Flares in magnetars (fireballs)

— Reconnection in pulsar winds and BH corona/jets
(X-ray binaries, AGN, GRBs)
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Reconnection near black holes

Parfrey, Giannious, AB 2015



Self-similar
chain of
plasmoids

Uzdensky et al. 10

= Melzani et al. 14

5 Sironi, Spitkovsky 14
Guo et al.16
Sironi et al.16

Werner et al.16




Parameters of relativistic reconnection

1. Magnetization: B 2U R
MHD T o2 T 2| !
( ) P P in accretion disk
corona/jet

2. Compactness: cooling time vs. light crossing time
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Radiative reconnection
(cooling time << light crossing time)

AB 2017

1. Plasmoids are cool + fast => “chain Comptonization”

2. Energetic photons (>1 MeV) convert to e+- pairs
=> reconnection layer self-feeds with plasma

= 717 ~1



High-energy particles from X-points
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Synchrotron cooling: tg,, ~ — ~107° 2




Compton cooling of growing plasmoids
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Inverse Compton:  tj¢ S

t:lge ~ 10(’11}/6) Sironi et al. 2016

=> Strong cooling of plasmoids of size w > r,/{p



Plasmoid bulk motion
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Power deposited in dL a??2 a <1 — 4242
the plasmoid chain: Jlng > ad=t a>1 =P
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III. Turbulence

(accretion disks, jets, mergers, magnetar flares)



Radiation damping of turbulence cascade
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Radiation damping of turbulence cascade

. 3 / 1/3
cascade power: () ~ hp spectrum: v({) = vy ( )
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Collisionless dissipation regime: [Re > /3
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Turbulent jets in GRBs

¢ = turbulence injection power
divided by total jet power

switch from viscous regime 1
to collisionless dissipation: Tswitch ™ @

Zrake, AB, Lundman 2018



Turbulent jets in GRBs

¢ = turbulence injection power
divided by total jet power

switch from viscous regime 1
to collisionless dissipation: Tswitch ™ @
injected
Compton l
energy balance: (0 — 0¢) T § pe”
T3 U

Zrake, AB, Lundman 2018



Dissipation at high compactness: summary

Luminosity is powered by dissipation of magnetic/kinetic
energy in a compact region filled with dense radiation

“Dissipation machine” (reconnection layer/shock)
self-organizes into a non-linear state, feeding itself with
e+- plasma, photons, and generating the observed spectrum

— a first-principle problem with few parameters can be isolated
from “mud wrestling” — MHD weather around compact objects

Best method of study: direct numerical experiment
(PIC/Vlasov plasma + radiative transfer)



