

Introduction

Solar magnetism

Small-scale surface dynamics

[Credits: Hinode/JAXA]

Galactic magnetism

Takeaway phenomenological points

- Many astrophysical objects have global, ordered fields
 - Differential rotation, global symmetries and geometry important
 - Coherent structures and MHD instabilities may also be very important
 - Motivation for the development of "large-scale" dynamo theories
- Lots of "small-scale", random fields also discovered from the 70s
 - These come hand in hand with global magnetism
 - Simultaneous development of "small-scale dynamo" theory
- Astrophysical magnetism is in a nonlinear, saturated state
 - Linear theory not the whole story (or using it requires non-trivial justification).
 - Multiple scale interactions expected to be important

Simplest MHD system for dynamo theory

- Incompressible, resistive, viscous MHD
 - Captures a great deal of the dynamo problem

Magnetic tension

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla P + \mathbf{B} \cdot \nabla \mathbf{B} + \nu \Delta \mathbf{u} + \mathbf{f}(\mathbf{x}, t)$$

$$\frac{\partial \mathbf{B}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{B} = \mathbf{B} \cdot \nabla \mathbf{u} + \eta \Delta \mathbf{B}$$

$$P = p + \frac{B^2}{2}$$

$$abla \cdot \mathbf{u} = 0$$
 $\nabla \cdot \mathbf{B} = 0$ p and \mathbf{B} rescaled by ho and $(4\pi
ho)^{1/2}$

- Often paired with simple periodic boundary conditions
 - Problematic in some cases

Scales and dimensionless numbers

- System/integral scale ℓ_0 , U_0
- Fluid system with two dissipation channels
 - Dimensionless numbers:

$$Re = \frac{\ell_0 U_0}{\nu} \qquad Rm = \frac{\ell_0 U_0}{\eta} \qquad Pm = \frac{\nu}{\eta}$$

- Kolmogorov viscous scale $\ell_{v} \sim Re^{-3/4} \; \ell_{0} \; , \; u_{v} \sim Re^{-1/4} \; U_{0}$
- Magnetic resistive scale ℓ_η (Pm-dependent)
- Another important dimensionless quantity
 - Eddy turnover time $\tau_{NL} \sim \ell_u/u$
 - Flow/eddy correlation time $au_{\rm C}$

$$\mathrm{St} = rac{ au_{\mathrm{c}}}{ au_{\mathrm{NL}}}$$
 Strouhal/Kubo number

The magnetic Prandtl number landscape

- Wide range of Pm in nature
 - Liquid metals have Pm << 1
 - Computers have Pm ~ O(1)
- For a collisional hydrogen plasma [Te=Ti in K, n in S.I.]

$$Pm = 2.5 \times 10^3 \frac{T^4}{n \ln \Lambda^2}$$

- Pm<1 and Pm>1 seemingly very different situations
 - Naively, Pm>1 makes
 life easier to magnetic fields

Small-scale dynamos

Numerical evidence

 Homogeneous, isotropic, non-helical, incompressible, 3D turbulent flow of conducting fluid is a small-scale dynamo

64x64x64 spectral DNS simulations at Pm=1

[Meneguzzi, Frisch, Pouquet, PRL, 1981]

Zeľdovich phenomenology

[Zel'dovich et al., JFM 144, 1 (1984)]

Consider incompressible, kinematic dynamo problem

$$\frac{\partial \mathbf{B}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{B} = \mathbf{B} \cdot \nabla \mathbf{u} + \eta \Delta \mathbf{B}$$

- Assume that $\mathbf{B}(0,\mathbf{r}) = \mathbf{B}_0(\mathbf{r})$
 - has finite total, energy, no singularity
 - $\bullet \lim_{r \to \infty} \mathbf{B}_0(\mathbf{r}) = 0$
- Take simplest possible model of time-evolving "smooth" velocity field
 - ullet Random linear shear: $oldsymbol{\mathrm{u}} = oldsymbol{\mathsf{Cr}}$ $oldsymbol{\mathrm{Tr}}\,oldsymbol{\mathsf{C}} = oldsymbol{\mathsf{0}}$ [incompressible]

$${
m Tr}\,{
m C}=0$$
 [incompressible]

 $\nabla \cdot \mathbf{B} = 0$

[think of this as being 3D]

Stretching and squeezing

- Evolution of vector connecting 2 fluid particles: $\frac{d\delta r_i}{dt} = \mathsf{C}_{\mathsf{ik}} \delta r_k$
- Consider constant $C = \operatorname{diag}(c_1, c_2, c_3)$
 - Exponential stretching along first axis

$$c_1 > 0 > c_2 > c_3$$

$$c_1 > c_2 > 0 > c_3$$

- In ideal MHD, we thus expect $B^2 \sim \exp(2c_1t)$
 - However, perpendicular squeezing implies that even a tiny magnetic diffusion matters...is growth still possible in that case?

Magnetic field evolution

• Decompose
$$\mathbf{B}(t, \mathbf{r}) = \int \mathbf{b}(t, \mathbf{k}_0) \exp(i\mathbf{k}(t) \cdot \mathbf{r}) d^3 \mathbf{k}_0$$

$$\frac{d\mathbf{b}}{dt} = \mathbf{C}\mathbf{b} - \eta \mathbf{k}^2 \mathbf{b} \qquad \frac{d\mathbf{k}}{dt} = -\mathbf{C}^\mathsf{T}\mathbf{k} \qquad \mathbf{k} \cdot \mathbf{b} = 0$$

- Diffusive part of evolution ~ $\exp\left(-\eta\int_0^t k^2(s)ds\right)$
 - super-exponential decay of most Fourier modes because

$$k_3 \sim k_{03} \exp(|c_3|t)$$

survivors live in an exponentially narrow cone of modes such that

$$\eta \int_0^t k^2(s)ds = O(1)$$

• rope case: $k_{02} \sim \exp(-|c_2|t)$ $k_{03} \sim \exp(-|c_3|t)$

13

Magnetic field evolution (ropes)

- Surviving modes at time t have an initial field
 - $b_1(0, \mathbf{k}_0) \sim b_2(0, \mathbf{k}_0) k_{02}/k_{01} \sim \exp(-|c_2|t)$
 - This field is stretched along the first axis, so

$$\mathbf{b}(t, \mathbf{k}_0) \sim \exp(c_1 t) \exp(-|c_2|t)$$

$$\mathbf{B}(t,\mathbf{r}) \sim \int \mathbf{B}_k d^3 \mathbf{k}_0 \sim \exp(-|c_2|t)$$

$$\sim \exp\left[(c_1 - |c_2|)t\right] \sim \exp\left[(-|c_2| - |c_3|)t\right]$$

Magnetic field stretches into an asymptotically-decaying rope

Magnetic energy evolution (ropes)

What about magnetic energy?

$$E_{\rm m} = \int \mathbf{B}^{2}(t, \mathbf{r}) d^{3}\mathbf{r}$$

$$\text{Volume} \sim \exp(c_{1}t)$$

 $B^2 \sim \exp\left(-2|c_2|t\right)$

Important: no shrinking along axis 2 and 3 as diffusion sets a minimum scale in these directions

$$E_{\rm m} \sim \exp\left[(c_1 - 2|c_2|)t\right] \sim \exp\left[(|c_3| - |c_2|)t\right]_{\text{(3D)}}$$

Total magnetic energy grows! (in 3D)

Volume occupied by the magnetic field grows faster than field decays pointwise

• Similar conclusions apply in the pancake case, but $E_{
m m} \sim \exp\left[(c_1-c_2)t\right]$

Small-scale dynamo fields at Pm ≥ 1

• Pm=Rm=1250, Re=1 [from Schekochihin et al., ApJ 2004]

- Folded field structure
 - Reversals at resistive scale
 - Folds coherent over flow scale

Field strength and curvature anticorrelated

Critical Rm ~ 60

 $\ell_{\eta} \sim \ell_{\nu} \mathrm{Pm}^{-1/2}$

Small-scale dynamo at low Pm

- Yes, but much harder
 - Critical Rm~200
 - More complicated than Zel'dovich picture

Kazantsev-Kraichnan model

Consider again the following kinematic dynamo problem:

$$\frac{\partial \mathbf{B}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{B} = \mathbf{B} \cdot \nabla \mathbf{u} + \eta \Delta \mathbf{B} \qquad \nabla \cdot \mathbf{B} = 0$$

- This problem can be solved analytically if u is
 - a random Gaussian process with no memory (zero-correlation time)
 - The so-called Kraichnan ensemble $\left\langle u^i(\mathbf{x},t)u^j(\mathbf{x}',t') \right\rangle = \kappa^{ij}(\mathbf{r})\delta(t-t')$
- Obviously, not your usual turbulent flow, but still...
 - Very useful to understand the properties of small-scale dynamo modes
- Originally solved by Kazantsev [JETP, 1968]
 [and further explored by Zel'dovich, Ruzmaikin, Sokoloff, Vainshtein,
 Kitchatinov, Vergassola, Vincenzi, Subramanian, Boldyrev, Schekochihin etc.]

18

Saturation of small-scale dynamo

- As B gets large-enough, Lorentz force saturates dynamo
 - What is "large-enough "?
 - How does it work?
- Historical ideas
 - Batchelor argument [PRSL,1950]:

• should peak at viscous scale, hence saturation for $B^2 \sim \delta u_{\nu}^2$

$$\langle B^2 \rangle \sim \mathrm{Re}^{-1/2} \, \langle u^2 \rangle$$
 Sub-equipartition unless Re=1

- Schlüter-Biermann argument [Z. Naturforsch., 1950]:
 - equipartition at all scales $\langle B^2 \rangle \sim \langle u^2 \rangle$

Saturation phenomenology

- Geometric structure and orientation of the field matters
 - Magnetic tension ${f B}\cdot
 abla {f B}$ encodes magnetic curvature
 - Reduction of stretching Lyapunov exponents
 - A field realization can only saturate itself

[Cattaneo et al., PRL 1996]

[Cattaneo & Tobias, JFM 2009]

- Saturation at low Pm
 - Pretty much Terra incognita (no published simulation)

Large Pm phenomenology

- Plausible (but not definitive) scenario from simulations [Schekochihin et al., ApJ 2002, 2004]
 - Lorentz force first suppresses stretching at viscous scales

$$\mathbf{B} \cdot \nabla \mathbf{B} \sim \mathbf{u} \cdot \nabla \mathbf{u} \sim \delta u_{\nu}^2 / \ell_{\nu}$$

$$\sim B^2 / \ell_{\nu} \quad \text{(folded structure)} \qquad \langle B^2 \rangle \sim \mathrm{Re}^{-1/2} \langle u^2 \rangle$$

- From there, slower, larger-scale eddies take over stretching
 - B keeps growing and acts on increasingly more energetic eddies...
 - Secular growth regime: $\langle B^2 \rangle \sim \varepsilon t$
- Final state: $\langle B^2 \rangle \sim \langle u^2 \rangle$ after "suppression" of full inertial range
 - "Isotropic MHD turbulence", folded structure is preserved
- P[B] not log-normal anymore (likely exponential)

Large-scale dynamos

Numerical evidence

- Small-scale helical turbulence can generate large-scale field
 - Critical Rm is O(1), lower than that of the small-scale dynamo

[Meneguzzi et al., PRL 1981 — again!]

FIG. 4. Helical dynamo with driving at intermediate scales (k=5). Temporal variation of kinetic energy (E^V) , magnetic energy (E^M) , and magnetic helicity $(-H^M)$.

Helicity seemingly key for large-scale dynamos (but see later)

Parker's mechanism

Effect of a localized cyclonic swirl on a straight magnetic field

- In polar geometry, this mechanism can produce axisymmetric poloidal field out of axisymmetric toroidal field — and the converse
 - Kinetic helicity in the swirl is essential
- This "alpha effect" can mediate statistical dynamo action
 - Ensemble of turbulent helical swirls should have a net effect of this kind
 - Cowling's theorem does not apply as each swirl is localized ("non-axisymmetric")

Mean-field approach

Incompressible, kinematic problem with uniform diffusivity

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{u} \times \mathbf{B}) + \eta \Delta \mathbf{B}$$

$$\nabla \cdot \mathbf{u} = 0 \qquad \nabla \cdot \mathbf{B} = 0$$

• Split fields into large-scale $(\ell > \ell_0)$ and fluctuating part $(\ell < \ell_0)$

$$\mathbf{B} = \overline{\mathbf{B}} + \tilde{\mathbf{B}}$$
 $\mathbf{u} = \overline{\mathbf{u}} + \tilde{\mathbf{u}}$

$$\frac{\partial \mathbf{B}}{\partial t} + \overline{\mathbf{u}} \cdot \nabla \overline{\mathbf{B}} = \overline{\mathbf{B}} \cdot \nabla \overline{\mathbf{u}} + \nabla \times \left(\overline{\tilde{\mathbf{u}} \times \tilde{\mathbf{B}}} \right) + \eta \Delta \overline{\mathbf{B}}$$

- To determine the evolution of $\overline{\mathbf{B}}$ we need to know $\overline{\mathcal{E}} = \overline{\tilde{\mathbf{u}} \times \tilde{\mathbf{B}}}$
 - We cannot just sweep fluctuations under the rug: closure problem.

Mean-field approach

$$\frac{\partial \tilde{\mathbf{B}}}{\partial t} = \nabla \times \left[\left(\tilde{\mathbf{u}} \times \overline{\mathbf{B}} \right) + \left(\overline{\mathbf{u}} \times \tilde{\mathbf{B}} \right) + \left(\tilde{\mathbf{u}} \times \tilde{\mathbf{B}} \right) - \left(\overline{\tilde{\mathbf{u}} \times \tilde{\mathbf{B}}} \right) \right] + \eta \Delta \tilde{\mathbf{B}}$$

Tangling/shearing of mean field

26

Tricky bit — closure problem!
[also known as the "pain in the neck" term]

• Assume linear relation between $\tilde{\mathbf{B}}$ and $\overline{\mathbf{B}}$

[Warning: hard to justify if there is small-scale dynamo!]

- Expand $(\tilde{\mathbf{u}} \times \tilde{\mathbf{B}})_i = \alpha_{ij} \overline{\mathbf{B}}_j + \beta_{ijk} \nabla_k \overline{\mathbf{B}}_j + \cdots$
- Simplest pseudo-isotropic case: $\alpha_{ij}=\alpha\delta_{ij},\ \beta_{ijk}=\beta\epsilon_{ijk}$
- For $\overline{u}=0$, we obtain a closed " α^2 " dynamo equation $(\eta\ll\beta)$

$$\frac{\partial \overline{\mathbf{B}}}{\partial t} = \nabla \times (\alpha \overline{\mathbf{B}}) + \beta \Delta \overline{\mathbf{B}}$$

alpha effect beta effect ("turbulent" diffusion)

- ullet Exponentially growing solutions with real eigenvalues $\,\gamma = |lpha| k eta k^2 \,$
- Max growth rate $\gamma_{\rm max}=\alpha^2/(4\beta)$ at scale $\ell_{\rm max}=2\beta/\alpha\gg\ell_0$

Calculation of mean-field coefficients

- We only know how to calculate α and β perturbatively for
 - small correlation times (low Strouhal number $au_c/ au_{
 m NL}$, random waves)
 - low magnetic Reynolds number $Rm \sim \tau_{\eta}/\tau_{NL} \ll 1$

$$\begin{split} \frac{\partial \tilde{\mathbf{B}}}{\partial t} &= \nabla \times \left[\left(\tilde{\mathbf{u}} \times \overline{\mathbf{B}} \right) + \left(\tilde{\mathbf{u}} \times \tilde{\mathbf{B}} \right) - \left(\overline{\tilde{\mathbf{u}} \times \tilde{\mathbf{B}}} \right) \right] + \eta \Delta \tilde{\mathbf{B}} \\ O(\tilde{B}_{\mathrm{rms}} / \tau_c) & O(\overline{B} / \tau_{\mathrm{NL}}) & \overline{O(\tilde{B}_{\mathrm{rms}} / \tau_{\mathrm{NL}})} & O(\tilde{B}_{\mathrm{rms}} / \tau_{\eta}) \\ \tau_{\mathrm{NL}} &= \ell_u / u_{\mathrm{rms}} & \mathrm{tricky "pain in the neck" term G} & \tau_{\eta} = \ell_u^2 / \eta \end{split}$$

- In both cases we can justify neglecting the tricky term
 - First Order Smoothing Approximation (FOSA, SOCA, Born, quasilinear...)

[Steenbeck et al., Astr. Nach. 1966; see H. K. Moffatt's textbook, CUP 1978; Brandenburg & Subramanian, Phys. Rep. 2005]

Calculation of mean-field coefficients

- Let's see how the calculation for $au_c/ au_{
 m NL}\ll 1$
 - Neglecting the tricky term and assuming small resistivity,

$$\begin{split} \overline{\tilde{\mathbf{u}}(t) \times \tilde{\mathbf{B}}(t)} &= \tilde{\mathbf{u}}(t) \times \int_0^t \nabla \times \left[\tilde{\mathbf{u}}(t') \times \overline{\mathbf{B}}(t') \right] dt' \\ &= \int_0^t \left[\hat{\alpha}(t - t') \overline{\mathbf{B}(t')} - \hat{\beta}(t - t') \nabla \times \overline{\mathbf{B}} \right] dt' \quad \text{(isotropic case)} \\ \hat{\alpha} &= \frac{1}{3} \overline{\tilde{\mathbf{u}}(t) \cdot \tilde{\boldsymbol{\omega}}(t')} \qquad \qquad \hat{\beta} = \frac{1}{3} \overline{\tilde{\mathbf{u}}(t) \cdot \tilde{\mathbf{u}}(t')} \qquad \qquad \tilde{\boldsymbol{\omega}} = \nabla \times \tilde{\mathbf{u}} \end{split}$$

ullet For slowly varying $\overline{\mathbf{B}}$ and short-correlated velocities, this simplifies as

$$\overline{\tilde{\mathbf{u}}(t) \times \tilde{\mathbf{B}}(t)} = \alpha \overline{\mathbf{B}} - \beta \nabla \times \overline{\mathbf{B}}$$

$$\alpha \simeq -\frac{1}{3} \tau_c \overline{(\tilde{\mathbf{u}} \cdot \tilde{\boldsymbol{\omega}})} \qquad \beta \simeq \frac{1}{3} \tau_c \overline{\tilde{\mathbf{u}}^2}$$

- The role of kinetic helicity is explicit
- At low Rm, we have the similar result $\alpha \simeq -\frac{1}{3}\tau_{\eta}\overline{(\tilde{\mathbf{u}}\cdot\tilde{\boldsymbol{\omega}})}$

Dynamical regime of large-scale dynamos

- When B gets "large enough", the Lorentz force back-reacts
 - Big questions: what happens then, and what is "large-enough"? [Brandenburg & Subramanian, Phys. Rep. 2005, and refs. therein: Proctor, 2003; Diamond et al. 2005]
- Equipartition argument: saturation when $\overline{\bf B}^2 \sim 4\pi \overline{\rho}\, \overline{\hat{\bf u}^2} \equiv B_{\rm eq}^2$, but
 - $\overline{\mathbf{B}}$ and $\tilde{\mathbf{u}}$ have very different scales
 - Large-scale dynamos alone produce plenty of small-scale field
- Equipartition of small-scale fields: $\overline{\tilde{\bf b}^2} \sim B_{\rm eq}^2$, with $\overline{\tilde{b}^2} \sim {\rm Rm}^p \overline{B}^2$
 - Not very astro-friendly: $\overline{{f B}}^2 \sim B_{\rm eq}^2/{
 m Rm}^p \ll B_{\rm eq}^2$ for p=O(1)
 - Possibility of "catastrophic" alpha quenching

$$\alpha(\overline{\mathbf{B}}) = \frac{\alpha_0}{1 + \operatorname{Rm}^q(\overline{\mathbf{B}}^2/B_{eq}^2)} \qquad q = O(1)$$

29

Quenching issue

- Physical origin of quenching debated:
 - Magnetized fluid has "memory": possible drastic reduction of statistical effects compared to random walk estimates [see review by Diamond et al., 2005]
 - Magnetic helicity conservation argument:
 - in "closed" systems, large-scale field can only reach equipartition on slow, large-scale resistive timescales [e.g. Brandenburg, ApJ 2001]
- Possible way out of problem is to evacuate magnetic helicity [Blackman & Field, ApJ 2000; see discussion by Brandenburg, Space Sci. Rev. (2009)]

$$\frac{d}{dt} \langle \mathbf{A} \cdot \mathbf{B} \rangle_V = -2\eta \langle (\nabla \times \mathbf{B}) \cdot \mathbf{B} \rangle_V - \langle \nabla \cdot \mathbf{F}_{\mathcal{H}_m} \rangle$$

- Requires open boundary conditions (periodic b.c. not ok)
- Requires internal fluxes of helicity [Kleeorin et al., Vishniac-Cho etc.]

Remarks

- Historically, mean-field models have been at the core of modelling of
 - solar and stellar dynamos "alpha" provided by cyclonic convection
 - galactic dynamos "alpha" provided by supernova explosions
- But classical mean-field theory faces strong limitations
 - Astro turbulence typically has $au_c/ au_{
 m NL}\sim 1$ and ${
 m Rm}\gg 1$
 - "Co-existence" with fast, small-scale dynamo for $\,{
 m Rm}\gg 1\,$
 - pain in the neck term exponentially growing...then what?
 - linear relation between $\tilde{\mathbf{b}}$ and $\overline{\mathbf{B}}$ doubtful
 - Quenching problem
- Large-scale dynamos are "real" independently of our limited theories
 - We have to think harder! (and ask good questions to computers)

Large-scale meets small-scale and instabilities

Order out of chaos?

Large-scale dynamos at largish Rm now observed numerically

Helicity + No shear

- Galloway-Proctor flow + Shear [Tobias & Cattaneo, Nature 2013]
 - "Suppression" principle: shear turns off small-scale dynamo?
- Turbulent convection + differential rotation [Hotta et al., Science 2016]
 - Small-scale dynamo reduces turb. diffusion?
- Asymptotic behaviour unclear

Dynamical theory still terra incognita

Other (lack of) twists

- Large-scale dynamo action is possible without net helicity
 - The shear dynamo: $\mathbf{u} = Sx\mathbf{e}_y$ + non-helical small-scale turbulence

- Mean-field description in terms of "WxJ" effect [Kleeorin & Rogachevskii]
- "Incoherent" alpha effect [Silant'ev 2007, Proctor 2007, Brandenburg 2008], etc.
- Recent developments [Squire & Battacharjee, PRL 2015]
 - Saturated small-scale dynamo in a shear flow can lead to large-scale dynamo

Instability-driven dynamos

- Many astrophysical systems
 - host differential rotation: i.e. there is a background shear flow
 - are prone to non-axisymmetric MHD instabilities
- This can lead to specific nonlinear forms of dynamo action
 - Analogous to self-sustaining nonlinear process in hydro shear flows

[Rincon et al., PRL 2007; Astron. Nachr. 2008; Riols et al., JFM 2013]

"Solar-like" magnetic buoyancy dynamo

- Shear + Magnetic buoyancy + Kelvin-Helmholtz
 - Coherent, strongly chaotic dynamo action

Strongly nonlinear EMF / field relationship

[Cline et al., ApJ 2003]

Accretion disk dynamo

- Keplerian shear flow turbulence is thought to be MRI-driven
 - Possible even in the absence of net magnetic flux [Hawley et al., ApJ 1996]
- Characterised by dynamical reversals of large-scale field
 - Non-axisymmetric MRI of toroidal field critical (magnetic buoyancy)

From subcritical to statistical

- Such dynamos are subcritical / essentially nonlinear
 - "Egg and chicken" problem
 - Non-axisymmetric instability growth requires large-scale field
 - Large-scale field sustainement rests on non-axisymmetric instability
 - Non-axisymmetric $\tilde{\mathbf{u}}$, $\tilde{\mathbf{B}}$ jointly excited by instability: Lorentz force essential
- Implications
 - No kinematic stage, homoclinic bifurcations
 - Nonlinear EMF/field relationship
- Statistical theory relevant but difficult
 - Mean-field approach controversial

"Test field"-like methods

- Pragmatic strategies have been devised for "astrophysical applications"
 - postulate generalised mean-field form for $\overline{\mathcal{E}}(\overline{\mathbf{B}})$ (convolution integrals)
 - Measure effective transport coefficients in local simulations
 - Use the results in simpler 2D mean-field models

[Sur et al., MNRAS 2008, Brandenburg, Space Sci. Rev. 2009]

- Such procedures
 - produce converged values of transport coefficients
 - reproduce exact results in perturbative kinematic limits

- no rigorous justification as to why it should be accurate/appropriate (Rm>>1!)
- dynamical, tensorial convolution relations $\overline{\mathcal{E}}(\overline{\mathbf{B}})$ can fit complex dynamics, but could well be degenerate with more physically-grounded nonlinear models
- it can obfuscate the underlying physics, e.g. when MHD instabilities are involved

Kazantsev approaches

Fokker-Planck equation for the pdf for basic Kazantsev

$$\frac{\partial}{\partial t}P\left[\mathbf{B}\right] = \frac{\kappa_2}{2}T_{k\ell}^{ij}B^k\frac{\partial}{\partial B^i}B^\ell\frac{\partial}{\partial B^j}P\left[\mathbf{B}\right]$$

$$Strain correlator [3D, incompressible]$$

$$P\left[\mathbf{B}\right] = P\left[B\right]G[\hat{\mathbf{b}}]$$

$$T_{k\ell}^{ij} = -\frac{1}{\kappa_2}\frac{\partial^2\kappa^{ij}(\mathbf{r})}{\partial r^k\partial r^\ell} = \delta^{ij}\delta_{k\ell} - \frac{1}{4}\left(\delta_k^i\delta_\ell^j + \delta_\ell^i\delta_k^j\right)$$

• Amplitude pdf: $\frac{\partial}{\partial t}P[B] = \frac{\kappa_2}{4} \frac{1}{B^2} \frac{\partial}{\partial B} B^4 \frac{\partial}{\partial B} P[B]$

$$P[B](t) = \frac{1}{\sqrt{\pi \kappa_2 t}} \int_0^\infty \frac{dB'}{B'} P_0[B'] \exp\left(-\frac{\left[\ln(B/B') + (3/4)\kappa_2 t\right]^2}{\kappa_2 t}\right)$$
 Log-norma

$$\langle B \rangle = B_0 \exp\left[2\kappa_2 t\right]$$

- Orientation pdf: $G[\hat{\mathbf{b}}] = 1 + \overline{B}^i \hat{\mathbf{b}}^i \exp\left[-2\kappa_2 t\right]$ W. $\frac{\partial \overline{\mathbf{B}}}{\partial t} = \nabla \times (\alpha \overline{\mathbf{B}}) + \beta \Delta \overline{\mathbf{B}}$
- Overall vector mean-field follows: $\langle B^i \rangle = \overline{B}^i B_0/d$

Boldyrev's large Pm extension of Kazantsev

Add "viscously" saturated component to velocity field

$$u_k^i = -\frac{1}{\nu} \left(B^i B^k - \frac{1}{3} \delta^{ik} B^2 \right) + \tilde{u}_k^i \qquad \text{Kazantsev velocity field}$$

Extra-term in the amplitude pdf equation

$$\frac{\partial}{\partial t}P[B] = \frac{\kappa_2}{4} \frac{1}{B^2} \frac{\partial}{\partial B} B^4 \frac{\partial}{\partial B} P[B] + \frac{2}{3\nu} \frac{1}{B^2} \frac{\partial}{\partial B} B^5 P[B]$$

- Amplitude pdf is now a steady Gaussian
- Isotropization not compensated by growth of amplitude
 - Saturation of mean-field as soon as small-scale field saturates
 - Kazantsev approach to alpha quenching

Further ideas on nonlinear theory

Relaxation model [Schekochihin et al., ApJ 2002]

$$\frac{d\mathbf{B}}{dt} = \mathbf{B} \cdot \nabla \tilde{\mathbf{u}} - \tau_r^{-1}(B)\mathbf{B}$$

- Subtle dependence of saturated pdf on choice of B in $au_r^{-1} \sim \frac{B^2}{
 u}$
- Local anisotropization of velocity field in magnetic folds [Schekochihin et al., PRL 2004]

$$\kappa^{ij}(\mathbf{k}) = \kappa^{(i)}(k, |\mu|) \left(\delta^{ij} - \hat{k}_i \hat{k}_j\right) \qquad \hat{\mathbf{b}} = \mathbf{B}/B \quad \hat{\mathbf{k}} = \mathbf{k}/k$$

$$+ \kappa^a(k, |\mu|) \left(\hat{b}^i \hat{b}^j + \mu^2 \hat{k}_i \hat{k}_j - \mu \hat{b}^i \hat{k}_j - \mu \hat{k}_i \hat{b}^j\right) \qquad \mu = \hat{\mathbf{k}} \cdot \hat{\mathbf{b}}$$

- · As yet unexplored in the context of large-scale dynamo growth/saturation
- Variational calculation of non-perturbative instantons

43

Conclusions

Tomorrow's fundamental theory challenges

- Turbulent large and small-scale dynamos
 - Unified, self-consistent nonlinear multiscale statistical dynamo theory
 - Requires physically justified closures
 - Description of asymptotic regimes
 - Re, Rm >> 1, Pm << 1, strong rotation etc.
- Interactions of different physical and geometrical effects
 - MHD instabilities combined to shear (magnetic buoyancy, MRI etc.)
 - Coherent structures (vortices, zonal flows, tangent cylinders etc.)
 - Plasma effects (batteries, pressure anisotropies, multi-fluid etc.)
 - Reconnexion