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Solar magnetism

3 [Credits: Hinode/JAXA]

[Credits: SOHO/NASA]

Global solar cycle dynamics

Small-scale surface dynamics
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Galactic magnetism

4 [Beck et al. VLA/Effelsberg]

M51 magnetic field

[Planck/ESA]

Galactic magnetic field
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Takeaway phenomenological points
• Many astrophysical objects have global, ordered fields 

• Differential rotation, global symmetries and geometry important 

• Coherent structures and MHD instabilities may also be very important 

• Motivation for the development of “large-scale” dynamo theories 

• Lots of “small-scale”, random fields also discovered from the 70s 
• These come hand in hand with global magnetism 

• Simultaneous development of “small-scale dynamo” theory  

• Astrophysical magnetism is in a nonlinear, saturated state  
• Linear theory not the whole story (or using it requires non-trivial justification) 

• Multiple scale interactions expected to be important

5
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Simplest MHD system for dynamo theory
• Incompressible, resistive, viscous MHD 

• Captures a great deal of the dynamo problem 

• Often paired with simple periodic boundary conditions 
• Problematic in some cases 
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r · u = 0 r ·B = 0
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Scales and dimensionless numbers
• System/integral scale  ℓ0, U0 
• Fluid system with two dissipation channels 

• Dimensionless numbers: 

• Kolmogorov viscous scale  ℓν  ~ Re-3/4  ℓ0 , uν  ~ Re-1/4  U0 

• Magnetic resistive scale  ℓη  (Pm-dependent) 

• Another important dimensionless quantity 

• Eddy turnover time 𝜏NL ~ ℓu/u 

• Flow/eddy correlation time 𝜏c
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St =
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The magnetic Prandtl number landscape
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• Wide range of Pm in nature 
• Liquid metals have Pm << 1 

• Computers have Pm ~ O(1) 

• For a collisional hydrogen 
plasma [Te=Ti in K, n in S.I.] 

• Pm<1 and Pm>1 seemingly 
very different situations 

• Naively, Pm>1 makes                                                                         
life easier to magnetic fields

Pm =1

Clusters ?

Liquid metals exp.

Planets

Simulations
Plasma exp.

Galaxies, ISM 
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Numerical evidence 

• Homogeneous, isotropic, non-helical, incompressible, 3D 
turbulent flow of conducting fluid is a small-scale dynamo

10

64x64x64 spectral DNS simulations at Pm=1 

[Meneguzzi, Frisch, Pouquet, PRL, 1981]
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Zel’dovich phenomenology
• Consider incompressible, kinematic dynamo problem  

• Assume that  
• has finite total, energy, no singularity 

•   

• Take simplest possible model of time-evolving “smooth” velocity field 

• Random linear shear:
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B(0, r) = B0(r)

lim
r!1

B0(r) = 0

@B

@t
+ u ·rB = B ·ru+ ⌘�B

u = Cr TrC = 0 [incompressible]

[Zel’dovich et al., JFM 144, 1 (1984)]

r ·B = 0

[think of this as being 3D]
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Stretching and squeezing
• Evolution of vector connecting 2 fluid particles: 

• Consider constant 
• Exponential stretching along first axis 

• In ideal MHD, we thus expect 
• However, perpendicular squeezing implies that even a tiny magnetic 

diffusion matters…is growth still possible in that case ?
12

e1e2e3

c1 > 0 > c2 > c3

“rope”

c1 > c2 > 0 > c3
e1e2

e3

“pancake”

C = diag(c1, c2, c3)
c1 + c2 + c3 = 0

d�ri
dt

= Cik�rk

B2 ⇠ exp(2c1t)



Vienna, July 2017

Magnetic field evolution
• Decompose   

• Diffusive part of evolution ~ 
• super-exponential decay of most Fourier modes because 

• survivors live in an exponentially narrow cone of modes such that                                  

• rope case:
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k3 ⇠ k03 exp(|c3|t)
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b(t,k0) exp (ik(t) · r)d3k0



Vienna, July 2017

Magnetic field evolution (ropes)
• Surviving modes at time t have an initial field 

•   

• This field is stretched along the first axis, so 

• Now, estimate the magnetic field in physical space
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b(t,k0) ⇠ exp (c1t) exp (�|c2|t)

Magnetic field stretches into an asymptotically-decaying rope

B(t, r) ⇠
Z

Bkd
3k0 ⇠ exp(�|c2|t)

⇠ exp [(�|c2|� |c3|)t]⇠ exp [(c1 � |c2|)t]

b1(0,k0) ⇠ b2(0,k0)k02/k01 ⇠ exp(�|c2|t) e3

e1

e2
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Magnetic energy evolution (ropes)
• What about magnetic energy ? 

• Similar conclusions apply in the pancake case, but 

15

Em =

Z
B2(t, r)d3r

B2 ⇠ exp (�2|c2|t)
Volume ⇠ exp(c1t)

Total magnetic energy grows ! (in 3D) 

Volume occupied by the magnetic field grows faster than field decays pointwise

Important: no shrinking along axis 2 and 3 as 
diffusion sets a minimum scale in these directions

Em ⇠ exp [(c1 � 2|c2|)t] ⇠ exp [(|c3|� |c2|)t]

Em ⇠ exp [(c1 � c2)t]

e3

e1

e2

(3D)
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Small-scale dynamo fields at Pm ≥ 1
• Pm=Rm=1250, Re=1 [from Schekochihin et al., ApJ 2004] 

• Folded field structure  
• Reversals at resistive scale 

• Folds coherent over flow scale 

• Field strength and curvature anticorrelated

16

u

B

Critical Rm ~ 60
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• Yes, but much harder 
• Critical Rm~200 

• More complicated than                 
Zel’dovich picture

Small-scale dynamo at low Pm

17

Pm=0.07, Re=6200, Rm=430

Pm=1, Re=440, Rm=440

Pm=1250, Re=1, Rm=1250

[Iskakov et al., PRL 2007]
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Kazantsev-Kraichnan model
• Consider again the following kinematic dynamo problem: 

• This problem can be solved analytically if u is 
• a random Gaussian process with no memory (zero-correlation time) 

• The so-called Kraichnan ensemble 

• Obviously, not your usual turbulent flow, but still… 
• Very useful to understand the properties of small-scale dynamo modes 

• Originally solved by Kazantsev [JETP, 1968]                                                            
[and further explored by Zel’dovich, Ruzmaikin, Sokoloff, Vainshtein,                                                  
Kitchatinov, Vergassola, Vincenzi, Subramanian, Boldyrev, Schekochihin etc.]
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Saturation of small-scale dynamo
• As B gets large-enough, Lorentz force saturates dynamo 

• What is “large-enough “? 

• How does it work ? 

• Historical ideas 
• Batchelor argument [PRSL,1950]:  

• magnetic field is similar to hydrodynamic vorticity 

• should peak at viscous scale, hence saturation for  

• Schlüter-Biermann argument [Z. Naturforsch.,1950]:  

• equipartition at all scales

19

⌦
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↵
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[Meneguzzi et al., PRL 1981]
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Saturation phenomenology
• Geometric structure and orientation of the field matters 

• Magnetic tension                encodes magnetic curvature 

• Reduction of stretching Lyapunov exponents 

• A field realization can only saturate itself 

• Saturation at low Pm  
• Pretty much Terra incognita (no published simulation)

20

Kinematic Saturated 

[Cattaneo et al., PRL 1996]

Saturated magnetic field

Dummy magnetic field

 [Cattaneo & Tobias, JFM 2009]

B ·rB
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Large Pm phenomenology
• Plausible (but not definitive) scenario from simulations                                                     

[Schekochihin et al., ApJ 2002, 2004] 

• Lorentz force first suppresses stretching at viscous scales 

• From there, slower, larger-scale eddies take over stretching 

• B keeps growing and acts on increasingly more energetic eddies… 

• Secular growth regime: 

• Final state:                        after “suppression” of full inertial range 

• “Isotropic MHD turbulence”, folded structure is preserved 

• P[B] not log-normal anymore (likely exponential)
21
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Numerical evidence
• Small-scale helical turbulence can generate large-scale field 

• Critical Rm is O(1), lower than that of the small-scale dynamo 

• Helicity seemingly key for large-scale dynamos (but see later)

23

[Meneguzzi et al., PRL 1981 — again !]
[Brandenburg, ApJ 2001]
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Parker’s mechanism
• Effect of a localized cyclonic swirl on a straight magnetic field 

• In polar geometry, this mechanism can produce axisymmetric poloidal field out                 
of axisymmetric toroidal field — and the converse 

• Kinetic helicity in the swirl is essential   

• This “alpha effect” can mediate statistical dynamo action 
• Ensemble of turbulent helical swirls should have a net effect of this kind 

• Cowling’s theorem does not apply as each swirl is localized (“non-axisymmetric”)

24

[Parker, ApJ 1955] [Moffatt, Les Houches lectures 1973]
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Mean-field approach
• Incompressible, kinematic problem with uniform diffusivity 

• Split fields into large-scale              and fluctuating part 

• To determine the evolution of     we need to know 
• We cannot just sweep fluctuations under the rug: closure problem

25

r · u = 0 r ·B = 0

B = B+ B̃

(` > `0) (` < `0)

@B

@t
= r⇥(u⇥B) + ⌘�B

B

@B

@t
+ u ·rB = B ·ru+r⇥

⇣
ũ⇥ B̃

⌘
+ ⌘�B

u = u+ ũ

E = ũ⇥ B̃

[Any good review covers this, see references]
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Mean-field approach

• Assume linear relation between     and      
• Expand 

• Simplest pseudo-isotropic case:                    ,                        

• For          , we obtain a closed “    “ dynamo equation 

• Exponentially growing solutions with real eigenvalues 

• Max growth rate                               at scale

26

[Warning: hard to justify if  
there is small-scale dynamo !]

B̃ B
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Tangling/shearing  
of mean field

Tricky bit — closure problem ! 
[also known as the “pain in the neck” term]
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Calculation of mean-field coefficients
• We only know how to calculate     and     perturbatively for 

• small correlation times (low Strouhal number             , random waves) 

• low magnetic Reynolds number 

• In both cases we can justify neglecting the tricky term 
• First Order Smoothing Approximation (FOSA, SOCA, Born, quasilinear…)

27

↵ �

tricky “pain in the neck” term G
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⌘
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⇣
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+ ⌘�B̃

⌧c/⌧NL

Rm ⇠ ⌧⌘/⌧NL ⌧ 1

(u=̇0)

O(B̃rms/⌧⌘)O(B̃rms/⌧c) O(B̃rms/⌧NL)

⌧NL = `u/urms ⌧⌘ = `2u/⌘

O(B/⌧NL)

[Steenbeck et al., Astr. Nach. 1966; see H. K. Moffatt’s textbook, CUP 1978;  
Brandenburg & Subramanian, Phys. Rep. 2005]
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Calculation of mean-field coefficients
• Let’s see how the calculation for 

• Neglecting the tricky term and assuming small resistivity,  

• For slowly varying      and short-correlated velocities, this simplifies as 

• The role of kinetic helicity is explicit  

• At low Rm, we have the similar result
28
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Dynamical regime of large-scale dynamos

• When B gets “large enough”, the Lorentz force back-reacts 
• Big questions: what happens then, and what is “large-enough” ? 

• Equipartition argument: saturation when                          , but 

•     and     have very different scales 

• Large-scale dynamos alone produce plenty of small-scale field 

• Equipartition of small-scale fields:             , with   
• Not very astro-friendly:                                       for p=O(1) 

• Possibility of “catastrophic” alpha quenching
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B ũ

b̃2 ⇠ RmpB
2

q = O(1)
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↵0

1 + Rmq (B
2
/B2

eq)

B
2 ⇠ B2

eq/Rm
p ⌧ B2

eq

B
2 ⇠ 4⇡⇢ ũ2 ⌘ B2

eq

b̃2 ⇠ B2
eq

[Brandenburg & Subramanian, Phys. Rep. 2005, and refs. therein: Proctor, 2003; Diamond et al. 2005]
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Quenching issue
• Physical origin of quenching debated: 

• Magnetized fluid has “memory”: possible drastic reduction of statistical 
effects compared to random walk estimates [see review by Diamond et al., 2005] 

• Magnetic helicity conservation argument: 

• in “closed” systems, large-scale field can only reach equipartition                   
on slow, large-scale resistive timescales [e.g. Brandenburg, ApJ 2001] 

• Possible way out of problem is to evacuate magnetic helicity                              
[Blackman & Field, ApJ 2000; see discussion by Brandenburg, Space Sci. Rev. (2009)] 

• Requires open boundary conditions (periodic b.c. not ok) 
• Requires internal fluxes of helicity [Kleeorin et al., Vishniac-Cho etc.]
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d

dt
hA ·BiV = �2⌘ h (r⇥B) ·BiV � hr · FHmi



Vienna, July 2017

Remarks 

• Historically, mean-field models have been at the core of modelling of 
• solar and stellar dynamos — “alpha” provided by cyclonic convection 
• galactic dynamos — “alpha” provided by supernova explosions 

• But classical mean-field theory faces strong limitations 

• Astro turbulence typically has                       and 

• “Co-existence” with fast, small-scale dynamo for    
• pain in the neck term exponentially growing…then what ? 
• linear relation between     and      doubtful 

• Quenching problem 

• Large-scale dynamos are “real” — independently of our limited theories 

• We have to think harder ! (and ask good questions to computers)
31

Rm � 1⌧c/⌧NL ⇠ 1

Rm � 1

b̃ B



Large-scale meets small-
scale and instabilities
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• Large-scale dynamos at largish Rm now 
observed numerically 

• Galloway-Proctor flow + Shear                                                                      
[Tobias & Cattaneo, Nature 2013] 

• “Suppression” principle: shear                                                                              
turns off small-scale dynamo ? 

• Turbulent convection + differential rotation                               
[Hotta et al., Science 2016] 

• Small-scale dynamo                                                                                                                                                                           
reduces turb. diffusion ? 

• Asymptotic behaviour unclear 

• Dynamical theory still terra incognita

Order out of chaos ?

33

Helicity + No shear (Rm=2500)

No helicity + Shear

Helicity + Shear

Lowish Rm

Medium Rm

High Rm
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Other (lack of) twists
• Large-scale dynamo action is possible without net helicity 

• The shear dynamo:                 + non-helical small-scale turbulence  

• Mean-field description in terms of “WxJ” effect [Kleeorin & Rogachevskii] 

• “Incoherent” alpha effect [Silant’ev 2007, Proctor 2007, Brandenburg 2008], etc. 

• Recent developments [Squire & Battacharjee, PRL 2015] 

• Saturated small-scale dynamo in a shear flow can lead to large-scale dynamo

34

t

[Yousef et al., PRL 2008]
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Instability-driven dynamos
• Many astrophysical systems 

• host differential rotation: i.e. there is a background shear flow 
• are prone to non-axisymmetric MHD instabilities 

• This can lead to specific nonlinear forms of dynamo action  
• Analogous to self-sustaining nonlinear process in hydro shear flows  

35

[Rincon et al., PRL 2007;  
Astron. Nachr. 2008;  

Riols et al., JFM 2013]

Non-axisymmetric  
MHD instabilities (MRI, 

magnetic KH etc.)

Weak  axisymmetric 
poloidal magnetic 

field

Non-axisymmetric 
perturbations of u & B

Axisymmetric toroidal  
magnetic field

Omega effect

Nonlinear feedback 
(electromotive force) E = ũ⇥ B̃
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“Solar-like” magnetic buoyancy dynamo
• Shear + Magnetic buoyancy + Kelvin-Helmholtz 

• Coherent, strongly chaotic dynamo action 

• Strongly nonlinear EMF / field relationship

36

[Cline et al., ApJ 2003]
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Accretion disk dynamo
• Keplerian shear flow turbulence is thought to be MRI-driven 

• Possible even in the absence of net                                                                  
magnetic flux [Hawley et al., ApJ 1996] 

• Characterised by dynamical                                                    
reversals of large-scale field 
• Non-axisymmetric MRI of toroidal                                                                    

field critical (magnetic buoyancy) 

37

[Herault et al., PRE 2011]

[Lesur & Ogilvie, A&A 2008][Davis et al., ApJ 2010]
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From subcritical to statistical
• Such dynamos are subcritical / essentially nonlinear 

• “Egg and chicken” problem 

• Non-axisymmetric instability growth requires large-scale field 

• Large-scale field sustainement rests on non-axisymmetric instability  

• Non-axisymmetric    ,     jointly excited by instability: Lorentz force essential  

• Implications 
• No kinematic stage, homoclinic bifurcations 

• Nonlinear EMF/field relationship 

• Statistical theory relevant but difficult   
• Mean-field approach controversial

38

ũ B̃

[Riols et al., A&A 2017]
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Different ideas
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“Test field”-like methods
• Pragmatic strategies have been devised for “astrophysical applications” 

• postulate generalised mean-field form for            (convolution integrals) 

• Measure effective transport coefficients in local simulations 

• Use the results in simpler 2D mean-field models  

• Such procedures 
• produce converged values of transport coefficients 

• reproduce exact results in perturbative kinematic limits 

• TFM-based modelling may be useful, but:  
• no rigorous justification as to why it should be accurate/appropriate (Rm>>1 !) 

• dynamical, tensorial convolution relations            can fit complex dynamics,                        
but could well be degenerate with more physically-grounded nonlinear models 

• it can obfuscate the underlying physics, e.g. when MHD instabilities are involved

40

[Sur et al., MNRAS 2008,  
Brandenburg, Space Sci. Rev. 2009]

E(B)

E(B)
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Kazantsev approaches
• Fokker-Planck equation for the pdf for basic Kazantsev 

• Amplitude pdf: 

• Orientation pdf:                                         w. 

• Overall vector mean-field follows:
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Boldyrev’s large Pm extension of Kazantsev

• Add “viscously” saturated component to velocity field 

• Extra-term in the amplitude pdf equation 

• Amplitude pdf is now a steady Gaussian 

• Isotropization not compensated by growth of amplitude 
• Saturation of mean-field as soon as small-scale field saturates 

• Kazantsev approach to alpha quenching
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+ ũi

k

@

@t
P [B] =

2

4

1

B2

@

@B
B4 @

@B
P [B] +

2

3⌫

1

B2

@

@B
B5P [B]

Kazantsev velocity field



Vienna, July 2017

Further ideas on nonlinear theory
• Relaxation model [Schekochihin et al., ApJ 2002] 

• Subtle dependence of saturated pdf on choice of B in  

• Local anisotropization of velocity field in magnetic folds                           
[Schekochihin et al., PRL 2004] 

• As yet unexplored in the context of large-scale dynamo growth/saturation 

• Variational calculation of non-perturbative instantons
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Tomorrow’s fundamental theory challenges

• Turbulent large and small-scale dynamos  
• Unified, self-consistent nonlinear multiscale statistical dynamo theory 

• Requires physically justified closures  

• Description of asymptotic regimes 

• Re, Rm >> 1, Pm << 1, strong rotation etc. 

• Interactions of different physical and geometrical effects 
• MHD instabilities combined to shear (magnetic buoyancy, MRI etc.) 

• Coherent structures (vortices, zonal flows, tangent cylinders etc.) 

• Plasma effects (batteries, pressure anisotropies, multi-fluid etc.) 

• Reconnexion
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