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Weibel instability

reduced mass ratio mp=me ¼ 100. Long-term simulations
with a realistic proton-to-electronmass ratiomp=me ¼ 1836
were performed in two spatial dimensions up to t ≈ 104ω−1

pe
with Lx¼103c=ωpe, Ly¼450c=ωpe, Δx¼Δy¼0.1c=ωpe,
andΔtωpe ¼ 0.07. In the 2D setup, the thermal parameter is
Δγ ¼ kBTe=mec2 ¼ 20, whereas it could be reduced to
Δγ ¼ 0.015 in the 3D case due to the lower mass ratio,
guaranteeing the electrostatic character of the shock [21].
In this configuration, similar to the configuration

employed in recent experiments [6,7], two symmetric
shocks moving in opposite directions (along x) are
launched from the contact discontinuity at the center of
the simulation box, where the two plasma shells initially
come in contact. The region between the two shocks
defines the downstream of the two nonlinear structures.
Early in the shock formation process, we observe the
generation of a magnetic field in the downstream region
between the two shock fronts. This is illustrated in Fig. 1,
where the field structure is presented after the electrostatic
shocks have reached a quasisteady state. A strong longi-
tudinal electric field has already formed at the shock front.
At the same time, a strong perpendicular magnetic field has
been generated, which is well confined to the downstream
region of the shock. Unlike Weibel mediated shocks [4],
the magnetic field in the shock front and in the upstream
region is very small. The filamentary field structure in the
downstream region indicates the Weibel instability as
the driving mechanism, reinforced by the time scales of
the process (∼tens of ω−1

pe) and the transverse length scale
of the filaments early in time (∼a few c=ωpe).
Several 2D simulations with proper velocities u0 ¼

0.005–0.1 and Δγ ¼ 0.01–20, corresponding to electron
thermal energies kBTe in the range ∼5 keV to 10 MeV

were performed in order to study the magnetic field
formation process in electrostatic shocks in more detail.
This parameter range covers astrophysical conditions, e.g.,
with estimated quasar temperatures of ∼107 K [32], or
laser-plasma interactions, where hot electrons can easily be
generated with Te;hot up to several MeV.
The 2D simulations reproduce the same magnetic field

generation mechanism with the field confined to the down-
stream region of the shock. The magnetic field energy
averaged over x2 in the center of the shock downstream
region is represented in Fig. 2(a) for u0 ¼ 0.1 and Δγ ¼ 10.
After a linear increase, at t ≈ 300ω−1

pe the field growth
saturates, and a quasisteady value εB ≈ 0.01ε0 ≈ 0.002ðε0 þ
εthÞ is reached, where ε0 ¼ n0mpðγ0 − 1Þc2 represents
the kinetic energy density of the ions, εth ≈ 3Δγ=2 is the
thermal energy density of the electrons, and εB is themagnetic
field energy density. This field structure can then seed the
filamentation on the longer ion time scale and, thus, sustain a
high level of ϵB covering the full downstream region for times
at least as long as t ≈ 104ω−1

pe .
We now analyze the different instabilities that can arise

in initially unmagnetized counterstreaming electron-ion
flows. For our range of parameters, the electron current
filamentation instability is suppressed since the flows are
hot [33,34]. Moreover, the cold ion-ion–filamentation
instability, which has been considered in connection with
recent experiments, has a maximum theoretical growth rate
σi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2=γ0Þ

p
β0ωpi ¼ 3.3 × 10−3ωpe, and a saturation

field B≃mγ20σ
2
i =qkiux0 with γ0 the Lorentz factor of the

counterpropagating flows, proper velocity in the x direction
ux0 ¼ βx0γ0, and wave number ki at the maximum growth
rate σi [34], yielding a saturated magnetic field of only
B ¼ 1.5 × 10−3mecωpe=e, clearly below the field values
up toB ≈ 2mecωpe=e observed in the simulations. It is then
clear that only an instability associated with the shock
formation process can lead to magnetic field generation on
the relevant time scales.
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FIG. 1 (color online). Shock formation in the 3D simulation for
mass ratio mp=me ¼ 100, u0 ¼ %0.015, and Δγ ¼ 0.015:
(a) Perpendicular electromagnetic field, (b) box-averaged electro-
static field hE1i (black), and 2D slice of magnetic field in (a) at
z ¼ 30c=ωpe showing the extension of the filaments. Time is
tωpe ¼ 460.
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FIG. 2 (color online). Temporal evolution of (a) normalized
magnetic energy density and (b) thermal velocities vth;∥ (dash
dotted), vth;⊥ (dotted), and anisotropy A (solid) in a 2D simulation
with mp=me ¼ 1836, u0 ¼ %0.1, and Δγ ¼ 10 measured over
Δx1 ¼ 0.7c=ωpe at the center of the simulation box. The black
dashed line in (a) is expð2σmtÞ.
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WI with ultra-intense laser beam

(Stockem et al. '14)
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linear instability: filamentation 

saturation: k ρ ~1 or γ Ωbounce ~1 

nonlinear stage: coalescence 

deeply nonlinear regime: -?-



Collisionless shocks with WI

(Martins et al. '09)



Collisionless shocks with WI

highly viscosity motions => effective collisionality 

(Sim. stollen from Anatoly)



Weibel turbulence @ shock & foreshock

(Keshet et al. '09) (MM et al. '09)
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Consider a group of suprathermal particles with some characteristic 
energy and Larmor scale, propagating in the upstream

B(k)

k1/rL

large-scale 
(acts as if 
homogeneous)

small-scale 
(acts a la collisions)



2 key regimes

Consider a group of suprathermal particles with some characteristic 
energy and Larmor scale, propagating in the upstream

B(k)

k1/rL

large-scale 
(acts as if 
homogeneous)

small-scale 
(acts a la collisions)

B-field does not suppress WI 
on scales below a Larmor 
scale (Bret, et al. '16, ...)



2 key regimes

Consider a group of suprathermal particles with some characteristic 
energy and Larmor scale, propagating in the upstream

B(k)

k1/rL

large-scale 
(acts as if 
homogeneous)

small-scale 
(acts a la collisions)

Unexplored



Transport in Weibel turbulence 
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Weibel simulations by Haugboelle, Frederiksen, Nordlund (circa 2004)



Effective collisionality 

Pitch angle diffusion

An electron is deflected by one radian, i.e. ∆p⊥/p ∼ 1. Thus:

(Keenan, MM '15, '16; MM '17)
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where a volume-averaged square magnetic field, hB2i, and
perpendicular rms velocity, hv2?i1/2, have been substituted for
B

2 and v?.
Although the correlation length, �B , lacks a formal defini-

tion, it is often defined via the two-point autocorrelation tensor
[36]. The correlation length tensor, which is formally depen-
dent on path and time, is defined as

�

ij
B(r̂, t) ⌘

Z 1

0

R

ij(r, t)

R

ij(0, 0)
dr, (2)

where

R

ij(r, t) ⌘ hBi(x, ⌧)Bj(x+ r, ⌧ + t)i
x,⌧ (3)

and we make no distinction between co-variant and contra-
variant components. Let B

k,⌦ be the spatial and tem-
poral Fourier transform of the magnetic field, B

k,⌦ =R
B(x, t)e�i(k·x�⌦t) dxdt, where k and ⌦ are the corre-

sponding wave vector and frequency, respectively. Then it is
often convenient to define a complementary spectral correla-
tion tensor for the field �ij(k,⌦), such that

Rij(r, t) = (2⇡)�4

Z
�ij(k,⌦)e

ik·r�i⌦t dk d⌦. (4)

The spectral correlation tensor, �ij(k,⌦), naturally connects
statistical properties of the field to its spectral characteristics.

In order to proceed further, one needs to know the full
three-dimensional spectrum of the magnetic field generated
by the Weibel instability. In general, Weibel turbulence is
anisotropic. One can expect however that in the deeply non-
linear regime, it may tend to isotropy. Thus, we are making
now a strong simplifying assumption of the isotropy and time-
independence. Together with r · B = 0, these assumptions
require the spectral correlation tensor to be of the form

�ij(k,⌦) =
1

2V
|Bk|2

⇣
�ij � k̂ik̂j

⌘
2⇡�(⌦), (5)

where V is the volume of the space considered, k̂ is the unit
vector in the direction of the wave vector, and �ij is the Kro-
necker delta. The normalization has been chosen such thatP

Rii(0, 0) = hB2i
x,⌧ = hB2i.

Since only the component of the magnetic field perpendic-
ular to the particle trajectory is relevant, we choose an inte-
gration path in Eq. (2) to be along v? and only consider a
transverse magnetic field component, and choose r = xx̂ and
i = j = z. The magnetic field correlation length becomes

�B ⌘ �

zz
B (x̂, t) =

Z 1

0

R

zz(xx̂, t)

R

zz(0, 0)
dx. (6)

Using Eqs. (3)–(6), noting that B
k

is only a function of |k| ⌘
k and integrating over dx and all solid angles in dk, we finally
obtain [34]
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By its physical meaning, the correlation length represents a
characteristic wave number of turbulence, �B ⇡ k

�1
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Finally, the collision frequency is defined as the inverse
time during which the rms pitch-angle deflection becomes of
order one radian, thus D↵↵⌫
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eff = h↵2i ⇠ 1. Using Eqs. (1)
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(8)
where we used that hv2?i = (2/3)v2th for an isotropic particle
distribution with vth being the characteristic thermal speed.

III. QUASI-COLLISIONAL WEIBEL INSTABILITY

Let us consider the electron Weibel instability in the uni-
form, static, charge-neutralizing background of protons. (Nu-
merical simulations indicate that the ion-driven Weibel in-
stability proceeds similar to the electron-driven one, even
though the electrons need not be forming a uniform charge-
neutralizing background.) For simplicity, we assume the dis-
tribution of the electrons is represented by two cold, counter-
propagating streams. Here we follow the derivations in Refs.
[37, 38]. The governing equations are

@na

@t

�r · ja = 0, (9)

@pa

@t

+ va ·rpa = �(E+ va ⇥B)� ⌫eff(pa � pā),(10)

r⇥E = �@B

@t

, (11)

r⇥B =
@E

@t

+
X

a

ja, (12)

r ·E = 1�
X

a

na, (13)

where ja = �nava and va = pa/
p
1 + p

2
a. The index

a = 1, 2 denotes the the two counter-streaming electron pop-
ulations and ā denotes the counterpart of a, that is ā = 2
if a = 1 and ā = 1 if a = 2. Hereafter, the densities
are normalized by the uniform density n0, velocities by the
speed of light c and frequencies by the plasma frequency
!p = (4⇡e2n0/m)1/2. Obviously the first (continuity) equa-
tion in the system is derivable from the last two (Ampere and
Poisson) equations.

Now, we assume that the electron streams are initially
propagating along x-direction, that is v0,a = v0,ax̂. The
Weibel instability is also characterized by current neutral-
ity,
P

a n0,av0,a = 0, thus there is no initial magnetic field.
We assume that the growing magnetic field will be in the z-
direction, B = Bẑ and the perturbed velocities and electric
fields lie in the orthogonal, x-y-plane.The Weibel instability
is a transverse instability, so we dismiss longitudinal electro-
static perturbations by considering perturbations of the form
e

(ikyy�i!t).



... more accurately:

Effective turbulent collisional frequency

(MM'17; Keenan & MM, PRE'13, PoP'15, PRE'15a, PRE'15b, JPP'16a, JPP'16b)

Field autocorrelation tensor and effective correlation length tensor

Sometimes (homogeneity, isotropy, stationarity)  
it can be simplified:
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where we used that hv2?i = (2/3)v2th for an isotropic particle
distribution with vth being the characteristic thermal speed.
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if a = 1 and ā = 1 if a = 2. Hereafter, the densities
are normalized by the uniform density n0, velocities by the
speed of light c and frequencies by the plasma frequency
!p = (4⇡e2n0/m)1/2. Obviously the first (continuity) equa-
tion in the system is derivable from the last two (Ampere and
Poisson) equations.

Now, we assume that the electron streams are initially
propagating along x-direction, that is v0,a = v0,ax̂. The
Weibel instability is also characterized by current neutral-
ity,
P

a n0,av0,a = 0, thus there is no initial magnetic field.
We assume that the growing magnetic field will be in the z-
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Figure 1. (Color online) Average square pitch-angle vs. time (in sim-
ulation units). Relevant parameters are N

p

= 2000, kmin = 4⇡/5,
kmax = 8⇡, hB2i1/2 = 0.01, and µ = 3. The particle velocities in
each case range from 1

8 c to 1
512 c (by multiples of two). The curves

appear with increasing average slope as � decreases. As � decreases,
eventually ⇢ ⇠ 1 (at � = c

128 , i.e. the fifth most sloped, “green” line
), after which the deflection angle becomes large, and pitch-angle
diffusion breaks down.
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Figure 2. (Color online) Average square pitch-angle vs. time (in
simulation units). Relevant parameters are N

p

= 2000, kmin = ⇡,
kmax = 8⇡, and µ = 3. hB2i1/2 ranges from 5⇥ 10�4 to 0.032, by
multiples of two. The particle velocities range (in the opposite order)
from 1

256 c to 1
4 c. These two parameters, hB2i and �, vary in such a

way as to keep ⇢ = 24.5. The curves appear with increasing slope as
� decreases. Clearly, the linear form of the curves is retained in all
seven cases.

As expected, the breakdown in linear behavior, and hence dif-
fusion, occurs when ⇢ ⇠ 1. Later, we did the same experi-
ment, only this time we varied hB2i in such a way as to keep
⇢ constant (⇢ = 24.5). In this way, each case is securely in
the small-scale regime. In Figure 2, we see that the linear be-
havior of h↵2i vs time is preserved for all velocities, as antici-
pated. Consequently, our assumption of a small ↵

�

is valid, as
long as ⇢ > 1. With the existence of pitch-angle diffusion es-
tablished, we then proceeded to compare the slope of h↵2i vs
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Figure 3. (Color online) Pitch-angle diffusion coefficient, D
↵↵

vs
the logarithm (base 2) of the inverse normalized particle velocity,
log2(�

�1). The (blue) empty “squares” indicate the D

↵↵

obtained
directly from simulation (as the slope of h↵2i vs. time), while the
(red) filled “triangles" are the analytical, given by Eq. (13), pitch-
angle diffusion coefficients. Simulation parameters are identical to
those used in Figure 2.

time (the numerical pitch-angle diffusion coefficient) to Eq.
(13). In Figure 3, the numerically obtained diffusion coeffi-
cients from Figure 2 are compared to the analytical result of
Eq. (13). In each, the theoretical and numerical results differ
only by a small factor of O(1).

Next, we tested the correlation length dependence, i.e.
whether or not the numerical simulations agree with Eq. (11).
With kmin = ⇡ and kmax = 8⇡, we varied the magnetic spec-
tral index, µ from 2 to 5. This is plotted in Figure 4, where the
numerical diffusion coefficient closely matches the analytical
result.

In Figure 5, the numerical diffusion coefficient is plotted
against the analytical coefficient for the same range of µ val-
ues, but now the kmin, kmax, and � values differ among the
three (with ⇢ fixed to 24.5). Included are the results of Figure
4. All three cases give a nearly linear relationship between
the numerical and analytical coefficients, with slopes approx-
imately equal to unity. Another concern worth addressing is
the dependence of the numerical diffusion coefficient on the
total number of simulation particles. In Figure 6, a test case
was repeated with an increasing number of simulation par-
ticles. The number of particles was increased from 500 to
64000, by factors of 2. There is little variation to be seen in
the numerical result, as the number of particles is increased.
Next, we explored the trans-relativistic jitter radiation regime
by calculating the radiation spectra, using Eq. (24), with vari-
able simulation parameters. We aimed to test the radiation
spectra’s dependence upon the key turbulent parameters: kmin,
kmax, hB2i, and µ, as well as the particle velocity, v. To start,
we considered the kmin dependence. In Figure 7, we have plot-
ted spectra for an initially isotropically distributed, monoener-
getic, ensemble of trans-relativistic electrons (v = 0.5c) mov-
ing through sub-Larmor-scale magnetic turbulence with three
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getic relativistic electrons in the sub-Larmor-scale magnetic
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which is called the jitter frequency. Similarly, the high-
frequency break is

!

b

= �

2
kmaxc. (21)

C. Non-relativistic jitter radiation

In contrast, radiation from non-relativistic particles is not
beamed along a narrow cone of opening angle, �✓. The
jitter parameter is, consequently, without meaning in the
non-relativistic radiation regime. Instead, the “dimensionless
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Given the magnetic spectral distribution exhibited by Eq. (14),
k
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⇠ kmin, so

⇢ = kminrL. (23)

As we shall see below, the radiation spectrum in this regime
markedly differs from the single-harmonic cyclotron spec-
trum. We call this radiation “pseudo-cyclotron” radiation or
“non-relativistic jitter” radiation.

Regardless of the regime, the radiation spectrum (which is
the radiative spectral energy, dW per unit frequency, d!, and
per unit solid-angle, d⌘) seen by a distant observer is obtained
from the equation [32, 33]
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In this equation, r(t) is the particle’s position at the retarded
time t, k ⌘ n̂!/c is the wave vector which points along n̂

from r(t) to the observer and �̇ ⌘ d�/dt. Since the observer
is distant, n̂ is approximated as fixed in time to the origin of
the coordinate system. This fully relativistic equation is ob-
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Next, integrating Eq. (26) over all solid-angles gives the
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To proceed further, we use our previous assumption that
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where B
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is the temporal variation of the magnetic field along
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The quantity, Bi⇤

k,⌦B
j

k,⌦, is proportional to the Fourier im-
age of the two-point auto-correlation tensor – i.e. Eq. (10).
Thus, with Eqs. (27), (30), (34), and (10), the angle-averaged
radiation spectrum of a non-relativistic electron moving in
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where a volume-averaged square magnetic field, hB2i, and
perpendicular rms velocity, hv2?i1/2, have been substituted for
B

2 and v?.
Although the correlation length, �B , lacks a formal defini-

tion, it is often defined via the two-point autocorrelation tensor
[36]. The correlation length tensor, which is formally depen-
dent on path and time, is defined as
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where
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and we make no distinction between co-variant and contra-
variant components. Let B

k,⌦ be the spatial and tem-
poral Fourier transform of the magnetic field, B

k,⌦ =R
B(x, t)e�i(k·x�⌦t) dxdt, where k and ⌦ are the corre-

sponding wave vector and frequency, respectively. Then it is
often convenient to define a complementary spectral correla-
tion tensor for the field �ij(k,⌦), such that

Rij(r, t) = (2⇡)�4
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�ij(k,⌦)e

ik·r�i⌦t dk d⌦. (4)

The spectral correlation tensor, �ij(k,⌦), naturally connects
statistical properties of the field to its spectral characteristics.

In order to proceed further, one needs to know the full
three-dimensional spectrum of the magnetic field generated
by the Weibel instability. In general, Weibel turbulence is
anisotropic. One can expect however that in the deeply non-
linear regime, it may tend to isotropy. Thus, we are making
now a strong simplifying assumption of the isotropy and time-
independence. Together with r · B = 0, these assumptions
require the spectral correlation tensor to be of the form

�ij(k,⌦) =
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2V
|Bk|2

⇣
�ij � k̂ik̂j

⌘
2⇡�(⌦), (5)

where V is the volume of the space considered, k̂ is the unit
vector in the direction of the wave vector, and �ij is the Kro-
necker delta. The normalization has been chosen such thatP

Rii(0, 0) = hB2i
x,⌧ = hB2i.

Since only the component of the magnetic field perpendic-
ular to the particle trajectory is relevant, we choose an inte-
gration path in Eq. (2) to be along v? and only consider a
transverse magnetic field component, and choose r = xx̂ and
i = j = z. The magnetic field correlation length becomes
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Using Eqs. (3)–(6), noting that B
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is only a function of |k| ⌘
k and integrating over dx and all solid angles in dk, we finally
obtain [34]
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By its physical meaning, the correlation length represents a
characteristic wave number of turbulence, �B ⇡ k

�1
B .

Finally, the collision frequency is defined as the inverse
time during which the rms pitch-angle deflection becomes of
order one radian, thus D↵↵⌫

�1
eff = h↵2i ⇠ 1. Using Eqs. (1)

and (7), we have
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where we used that hv2?i = (2/3)v2th for an isotropic particle
distribution with vth being the characteristic thermal speed.

III. QUASI-COLLISIONAL WEIBEL INSTABILITY

Let us consider the electron Weibel instability in the uni-
form, static, charge-neutralizing background of protons. (Nu-
merical simulations indicate that the ion-driven Weibel in-
stability proceeds similar to the electron-driven one, even
though the electrons need not be forming a uniform charge-
neutralizing background.) For simplicity, we assume the dis-
tribution of the electrons is represented by two cold, counter-
propagating streams. Here we follow the derivations in Refs.
[37, 38]. The governing equations are
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where ja = �nava and va = pa/
p
1 + p

2
a. The index

a = 1, 2 denotes the the two counter-streaming electron pop-
ulations and ā denotes the counterpart of a, that is ā = 2
if a = 1 and ā = 1 if a = 2. Hereafter, the densities
are normalized by the uniform density n0, velocities by the
speed of light c and frequencies by the plasma frequency
!p = (4⇡e2n0/m)1/2. Obviously the first (continuity) equa-
tion in the system is derivable from the last two (Ampere and
Poisson) equations.

Now, we assume that the electron streams are initially
propagating along x-direction, that is v0,a = v0,ax̂. The
Weibel instability is also characterized by current neutral-
ity,
P

a n0,av0,a = 0, thus there is no initial magnetic field.
We assume that the growing magnetic field will be in the z-
direction, B = Bẑ and the perturbed velocities and electric
fields lie in the orthogonal, x-y-plane.The Weibel instability
is a transverse instability, so we dismiss longitudinal electro-
static perturbations by considering perturbations of the form
e

(ikyy�i!t).

(Keenan & MM, PRE'13, PoP'15, PRE'15a, PRE'15b)
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r⇥E = �@B

@t

, (11)

r⇥B =
@E

@t

+
X

a

ja, (12)

r ·E = 1�
X

a

na, (13)

where ja = �nava and va = pa/
p
1 + p

2
a. The index

a = 1, 2 denotes the the two counter-streaming electron pop-
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Let us consider the electron Weibel instability in the uni-
form, static, charge-neutralizing background of protons. (Nu-
merical simulations indicate that the ion-driven Weibel in-
stability proceeds similar to the electron-driven one, even
though the electrons need not be forming a uniform charge-
neutralizing background.) For simplicity, we assume the dis-
tribution of the electrons is represented by two cold, counter-
propagating streams. Here we follow the derivations in Refs.
[37, 38]. The governing equations are
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r⇥E = �@B

@t

, (11)

r⇥B =
@E

@t

+
X

a

ja, (12)

r ·E = 1�
X

a

na, (13)

where ja = �nava and va = pa/
p
1 + p

2
a. The index

a = 1, 2 denotes the the two counter-streaming electron pop-
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FIG. 1. Dispersion curves, <(!) and =(!) vs k, obtained by equating the term in the square brackets in Eq. (20) to zero. Two modes have
large real frequencies and are slightly damped by ⌫eff. The other two modes have zero real frequencies; one is damped and one is unstable,
which is the Weibel mode.

FIG. 2. Roots in the complex <(!)-=(!) plane for 0  k  2. The
color code is the same as in Fig. 1.

Upon solving the system of linearized equations (9)-(13),
one obtains the following dispersion relation (see Ref. [37]
for the general treatment):
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��1/2 is the Lorentz factor.
Analysis of this equation is still cumbersome, so we further

simplify equations by assuming that the interpenetrating elec-
tron streams are of the same densities, n0,1 = n0,2 = 0.5,

and therefore the same speed, i.e., v0,1 = �v0,2. We intro-
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where
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The eigenmode that factored out represents the standard
relativistic plasma oscillation, ! = ±��1/2

0 , where ! has a
vanishing imaginary part. Obviously, it is not affected by the
effective collisionality.

The term in the square brackets of Eq. (20) yields four so-
lutions, one of them corresponds to the Weibel instability. The
roots and dispersion curves are shown in Figs. 1, 2. These re-
sults differ from those obtained in Ref. [37], where the param-
eter like ⌫eff/! in our notations was treated as a real-valued
constant, which is incorrect. Among the four roots, two modes
have large real frequencies and are slightly damped by colli-
sions. The other two modes have vanishing real frequencies;
one mode is damped and one is purely growing. The latter,
unstable mode is the Weibel instability. Note that in our treat-
ment of the cold plasma, the mode is unstable for an arbitrarily
large k. In reality, there is a maximum k, which depends on
the thermal velocity spread, see Ref. [28] for the extensive
analysis and discussion.

Since, the Weibel instability is a purely growing mode in
our analysis, we define the growth rate as � = i!. It is, thus,
a solution to the equation
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The solutions to it are shown in Fig. 3 for various values of
the effective quasi-collisional frequency in the range 0.01 
⌫eff  100. The classical Weibel dispersion relation (with
⌫eff = 0) is also shown for reference. It is seen that the growth
rate is suppressed by collisionality but never goes to zero for
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FIG. 1. Dispersion curves, <(!) and =(!) vs k, obtained by equating the term in the square brackets in Eq. (20) to zero. Two modes have
large real frequencies and are slightly damped by ⌫eff. The other two modes have zero real frequencies; one is damped and one is unstable,
which is the Weibel mode.
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Upon solving the system of linearized equations (9)-(13),
one obtains the following dispersion relation (see Ref. [37]
for the general treatment):

!

2(1�A1)(1�A2)� k

2(1�A1)(1+A3)+A4 = 0, (14)

where

A1 =
X

a

n0,a

�0,a!
2
, (15)

A2 =
X

a

n0,a

�3
0,a!

2
, (16)

A3 =
X

a

n0,av
2
0,a

�0,a!
02 , (17)

A4 =

 
X

a

n0,av0,a

�0,a!
2

! 
X

a

n0,av0,a

�0,a!
02

!
, (18)

!

02 = !

2 ! + 2i⌫eff

! + i(1 + v0,ā/v0,a)⌫eff
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ment of the cold plasma, the mode is unstable for an arbitrarily
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sults differ from those obtained in Ref. [37], where the param-
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constant, which is incorrect. Among the four roots, two modes
have large real frequencies and are slightly damped by colli-
sions. The other two modes have vanishing real frequencies;
one mode is damped and one is purely growing. The latter,
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eter like ⌫eff/! in our notations was treated as a real-valued
constant, which is incorrect. Among the four roots, two modes
have large real frequencies and are slightly damped by colli-
sions. The other two modes have vanishing real frequencies;
one mode is damped and one is purely growing. The latter,
unstable mode is the Weibel instability. Note that in our treat-
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Analysis of this equation is still cumbersome, so we further

simplify equations by assuming that the interpenetrating elec-
tron streams are of the same densities, n0,1 = n0,2 = 0.5,

and therefore the same speed, i.e., v0,1 = �v0,2. We intro-
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The eigenmode that factored out represents the standard
relativistic plasma oscillation, ! = ±��1/2

0 , where ! has a
vanishing imaginary part. Obviously, it is not affected by the
effective collisionality.

The term in the square brackets of Eq. (20) yields four so-
lutions, one of them corresponds to the Weibel instability. The
roots and dispersion curves are shown in Figs. 1, 2. These re-
sults differ from those obtained in Ref. [37], where the param-
eter like ⌫eff/! in our notations was treated as a real-valued
constant, which is incorrect. Among the four roots, two modes
have large real frequencies and are slightly damped by colli-
sions. The other two modes have vanishing real frequencies;
one mode is damped and one is purely growing. The latter,
unstable mode is the Weibel instability. Note that in our treat-
ment of the cold plasma, the mode is unstable for an arbitrarily
large k. In reality, there is a maximum k, which depends on
the thermal velocity spread, see Ref. [28] for the extensive
analysis and discussion.

Since, the Weibel instability is a purely growing mode in
our analysis, we define the growth rate as � = i!. It is, thus,
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The solutions to it are shown in Fig. 3 for various values of
the effective quasi-collisional frequency in the range 0.01 
⌫eff  100. The classical Weibel dispersion relation (with
⌫eff = 0) is also shown for reference. It is seen that the growth
rate is suppressed by collisionality but never goes to zero for
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FIG. 1. Dispersion curves, <(!) and =(!) vs k, obtained by equating the term in the square brackets in Eq. (20) to zero. Two modes have
large real frequencies and are slightly damped by ⌫eff. The other two modes have zero real frequencies; one is damped and one is unstable,
which is the Weibel mode.

FIG. 2. Roots in the complex <(!)-=(!) plane for 0  k  2. The
color code is the same as in Fig. 1.
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FIG. 3. Quasi-collisional Weibel instability growth rates in the non-relativistic and relativistic regimes, �0 = 1.2 and �0 = 20, respectively.
The curves, from top to bottom, correspond to ⌫eff = 0, 10�2, 10�1, 1, 10, 100. The vertical line denotes where k = 1.

any finite ⌫eff. For small quasi-collisionalities, ⌫eff ⌧ 1, the
small-k regime is suppressed the most, where is becomes � /
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2 instead of the classical � / k scaling, for �0 ⇠ 1. In
the relativistic limit, �0 � 1, there appears a second break at
low k, with the intermediate scaling � / k
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from Eq. (22) by considering appropriate limits: � ⌧ ⌫eff and
⌫eff ⌧ � ⌧ �m, together with k � ��3/2

0 or k ⌧ ��3/2
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.The position of the main break, i.e., the minimum k at which
the growth rate is still close to the maximum is approximately
km ⇠ ��1/2

0 . At large values of ⌫eff, the overall growth rate
decreases as approximately � / 1/⌫eff.

The maximum growth rate can be obtained by observing
that � ! �m ⇠ const. as k ! 1. Eq. (22) in this limit
becomes
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where �0 = v0/
p
�0 is the maximum growth rate of the clas-

sical Weibel instability. Note that the obtained growth rate
depends on both the amplitude of the magnetic fluctuations,
hB2i and the effective correlation length of the field, �B .

IV. DISCUSSION

Results obtained in previous sections allow us to estimate
the back-reaction of the generated fields on the instability. We
stress, that our treatment differs from the standard quasilin-
ear theory, in which the response of the particle distribution
function is computed as a perturbation and then substituted
back into the general dispersion relation. Our approach also
differs from the conventional non-linear approach which con-
siders the evolution of current filaments when the instability
has already been saturated [25, 29]. In contrast to standard ap-
proaches, we have considered here a case when the anisotropy
of the particle distribution function is maintained in the unsta-
ble (streaming) state. In this case, the generated fields are af-
fecting the instability via pitch-angle scattering of the stream-
ing particles – a clear-cut of “quasi-collisions”.

The back-reaction via quasi-collisions is of great impor-
tance for astrophysical collisionless shocks, both relativistic
and non-relativistic, in GRBs and supernova remnants. At
such shocks, an almost steady-state, yet unstable, particle dis-
tribution is formed in the vicinity of the shock front in the
upstream region because of particle reflection and injection at
the shock. Thus, the instability in the near-upstream region is
manifestly in the “quasi-nonlinear” regime. Furthermore, as
the shock evolves, it populates the far-upstream region with
suprathermal particles and cosmic rays which generate the
magnetic field on longer temporal and spatial scales [10]. An
analytical self-similar model of such a foreshock has been de-
veloped, but it assumed that the growth rate of the instability
is not substantially modified by the self-generated fields [11].
We can now check this assumption.

For estimates, it is reasonable to assume that the character-
istic scale of the turbulence is set by the low-k modes with the
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IV. DISCUSSION

Results obtained in previous sections allow us to estimate
the back-reaction of the generated fields on the instability. We
stress, that our treatment differs from the standard quasilin-
ear theory, in which the response of the particle distribution
function is computed as a perturbation and then substituted
back into the general dispersion relation. Our approach also
differs from the conventional non-linear approach which con-
siders the evolution of current filaments when the instability
has already been saturated [25, 29]. In contrast to standard ap-
proaches, we have considered here a case when the anisotropy
of the particle distribution function is maintained in the unsta-
ble (streaming) state. In this case, the generated fields are af-
fecting the instability via pitch-angle scattering of the stream-
ing particles – a clear-cut of “quasi-collisions”.

The back-reaction via quasi-collisions is of great impor-
tance for astrophysical collisionless shocks, both relativistic
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such shocks, an almost steady-state, yet unstable, particle dis-
tribution is formed in the vicinity of the shock front in the
upstream region because of particle reflection and injection at
the shock. Thus, the instability in the near-upstream region is
manifestly in the “quasi-nonlinear” regime. Furthermore, as
the shock evolves, it populates the far-upstream region with
suprathermal particles and cosmic rays which generate the
magnetic field on longer temporal and spatial scales [10]. An
analytical self-similar model of such a foreshock has been de-
veloped, but it assumed that the growth rate of the instability
is not substantially modified by the self-generated fields [11].
We can now check this assumption.

For estimates, it is reasonable to assume that the character-
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maximum growth rate, thus kB ⇠ ��1/2
0 . Restoring dimen-

sional factors, we have

�B ⇠ (c/!p)�
1/2
0 . (25)

Then, from Eq. (8) or (1), one has
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where we defined the generalized plasma � as
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From Eq. (24), the quasi-nonlinear, amplitude-dependent
growth rate becomes
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, if � � 1,
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If the unstable particle distribution is not maintained, the
free energy of the instability is the initial particle distribution
anisotropy. Then, the field energy should not exceed the ki-
netic energy of the particle streams, hence � > 1 if v0 ⌧ c

and � > 1/2 if �0 � 1, so that ⌫eff . �0. Numerical sim-
ulations of the instability itself, as well as of the collisionless
shocks, show similar results that the magnetic energy density

does not usually exceed about 10% of the kinetic energy den-
sity, i.e., � & 10. Thus, the influence of quasi-collisions in-
duced by the self-generated field on the instability growth rate
is not substantial at collisionless shocks in weakly magnetized
media, including astrophysical shocks in GRBs. One should
bear in mind, however, the long-term simulations of a shock
show that the overall magnetic field strength keeps gradually
increasing with time due to the cosmic rays driving the insta-
bility in the foreshock [10]. Thus, the role of quasi-collisions
may greatly increase if � becomes small.

V. CONCLUSIONS

In this parer, we studied the role of pitch-angle scattering
of particles in sub-Larmor-scale magnetic fields, referred to
as ‘quasi-collisions’, on the growth rate of the Weibel insta-
bility. The general formalism of such a non-linear effect has
been presented. The results can describe the back-reaction
of the self-generated magnetic fields on the instability growth
rate in a deeply nonlinear regime, beyond the domain of ap-
plicability of the quasilinear theory. Hence, we colloquially
refer to it as the ‘quasi-nonlinear’. The estimate of the mag-
nitude of the effect for the foreshock conditions of collision-
less shocks in weakly magnetized plasmas and astrophysical
shocks in GRBs in particular is presented.
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bear in mind, however, the long-term simulations of a shock
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increasing with time due to the cosmic rays driving the insta-
bility in the foreshock [10]. Thus, the role of quasi-collisions
may greatly increase if � becomes small.
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been presented. The results can describe the back-reaction
of the self-generated magnetic fields on the instability growth
rate in a deeply nonlinear regime, beyond the domain of ap-
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less shocks in weakly magnetized plasmas and astrophysical
shocks in GRBs in particular is presented.

ACKNOWLEDGMENTS

The author is grateful to the the Institute for Theory and
Computation at Harvard University for support and hospitality
and acknowledges DOE support via grant DE-SC0016368.

[1] Weibel, E.S. 1959, Phys. Rev. Lett., 2, 83
[2] Fried, B. D. 1959, Physics of Fluids, 2, 337
[3] Medvedev, M. V., & Loeb, A. 1999, Astrophys. J., 526, 697
[4] Nishikawa, K.-I., Hardee, P., Richardson, G., Preece, R., Sol,

H., Fishman, G. J. 2003, Astrophys. J., 595, 555
[5] Silva, L. O., Fonseca, R. A., Tonge, J. W., Dawson, J. M., Mori,

W. B., Medvedev, M. V. 2003, Astrophys. J. Lett., 596, L121
[6] Frederiksen, J. T., Hededal, C. B., Haugbølle, T., & Nordlund,

Å. 2004, Astrophys. J. Lett., 608, L13
[7] Nishikawa, K.-I., Hardee, P., Richardson, G., Preece, R., Sol,

H., Fishman, G. J. 2005, Astrophys. J., 622, 927
[8] Spitkovsky, A. 2008, Astrophys. J. Lett., 673, L39
[9] Nishikawa, K.-I., Niemiec, J., Hardee, P. E., Medvedev, M.,

Sol, H., Mizuno, Y., Zhang, B., Pohl, M., Oka, M., Hartmann,
D. H. 2009, Astrophys. J. Lett., 698, L10

[10] Keshet, U., Katz, B., Spitkovsky, A., & Waxman, E. 2009, As-
trophys. J. Lett., 693, L127

[11] Medvedev, M. V., & Zakutnyaya, O. V. 2009, Astrophys. J.,
696, 2269

[12] Kamble, A., Soderberg, A. M., Chomiuk, L., Margutti, R.,
Medvedev, M., Milisavljevic, D., Chakraborti, S., Chevalier,
R., Chugai, N., Dittmann, J., Drout, M., Fransson, C., Nakar,
E., Sanders, N. 2014, Astrophys. J., 797, 2

[13] Swisdak, M., Liu, Y.-H., & Drake, J. F. 2008, Astrophys. J.,
680, 999

[14] Liu, Y.-H., Swisdak, M., & Drake, J. F. 2009, Physics of Plas-
mas, 16, 042101

[15] Tatarakis, M., Beg, F. N., Clark, E. L., Dangor, A. E., Edwards,
R. D., Evans, R. G., Goldsack, T. J., Ledingham, K. W., Nor-
reys, P. A., Sinclair, M. A., Wei, M.-S., Zepf, M., Krushelnick,
K. 2003, Phys. Rev. Lett., 90, 175001

[16] Ren, C., Tzoufras, M., Tsung, F. S., Mori, W. B., Amorini, S.,
Fonseca, R. A., Silva, L. O., Adam, J. C., Heron, A. 2004,
Phys. Rev. Lett., 93, 185004

[17] Huntington, C. M., 2012, Ph.D. Thesis.
[18] Mondal, S., Narayanan, V., Ding, W. J., Lad, A. D., Hao, B.,

Ahmad, S., Wang, W. M., Sheng, Z. M., Sengupta, S., Kaw,
P., Das, A,, Kumar, G. R. 2012, Proceedings of the National
Academy of Science USA, 109, 8011

[19] Kugland, N. L., Ryutov, D. D., Chang, P.-Y., Drake, R. P., Fik-
sel, G., Froula, D. H., Glenzer, S. H., Gregori, G., Grosskopf,
M., Koenig, M., Kuramitsu, Y., Kuranz, C., Levy, M. C., Liang,
E., Meinecke, J., Miniati, F., Morita, T., Pelka, A., Plechaty, C.,
Presura, R., Ravasio, A., Remington, B. A., Reville, B., Ross,
J. S., Sakawa, Y., Spitkovsky, A., Takabe, H., Park, H.-S. 2012,
Nature Physics, 8, 809

Growth rate vs self-generated field strength

5

maximum growth rate, thus kB ⇠ ��1/2
0 . Restoring dimen-

sional factors, we have

�B ⇠ (c/!p)�
1/2
0 . (25)

Then, from Eq. (8) or (1), one has

⌫eff ⇠
!p

�1/2
0 �

v0

c

, (26)

where we defined the generalized plasma � as

� ⌘ �0n0(mv

2
0/2)

hB2i/8⇡ . (27)

From Eq. (24), the quasi-nonlinear, amplitude-dependent
growth rate becomes

�m(�) ⇠ !p

�1/2
0

v0

c

⇥
⇢

1� �

�1
, if � � 1,

�, if � ⌧ 1.
(28)

If the unstable particle distribution is not maintained, the
free energy of the instability is the initial particle distribution
anisotropy. Then, the field energy should not exceed the ki-
netic energy of the particle streams, hence � > 1 if v0 ⌧ c

and � > 1/2 if �0 � 1, so that ⌫eff . �0. Numerical sim-
ulations of the instability itself, as well as of the collisionless
shocks, show similar results that the magnetic energy density

does not usually exceed about 10% of the kinetic energy den-
sity, i.e., � & 10. Thus, the influence of quasi-collisions in-
duced by the self-generated field on the instability growth rate
is not substantial at collisionless shocks in weakly magnetized
media, including astrophysical shocks in GRBs. One should
bear in mind, however, the long-term simulations of a shock
show that the overall magnetic field strength keeps gradually
increasing with time due to the cosmic rays driving the insta-
bility in the foreshock [10]. Thus, the role of quasi-collisions
may greatly increase if � becomes small.

V. CONCLUSIONS

In this parer, we studied the role of pitch-angle scattering
of particles in sub-Larmor-scale magnetic fields, referred to
as ‘quasi-collisions’, on the growth rate of the Weibel insta-
bility. The general formalism of such a non-linear effect has
been presented. The results can describe the back-reaction
of the self-generated magnetic fields on the instability growth
rate in a deeply nonlinear regime, beyond the domain of ap-
plicability of the quasilinear theory. Hence, we colloquially
refer to it as the ‘quasi-nonlinear’. The estimate of the mag-
nitude of the effect for the foreshock conditions of collision-
less shocks in weakly magnetized plasmas and astrophysical
shocks in GRBs in particular is presented.

ACKNOWLEDGMENTS

The author is grateful to the the Institute for Theory and
Computation at Harvard University for support and hospitality
and acknowledges DOE support via grant DE-SC0016368.

[1] Weibel, E.S. 1959, Phys. Rev. Lett., 2, 83
[2] Fried, B. D. 1959, Physics of Fluids, 2, 337
[3] Medvedev, M. V., & Loeb, A. 1999, Astrophys. J., 526, 697
[4] Nishikawa, K.-I., Hardee, P., Richardson, G., Preece, R., Sol,

H., Fishman, G. J. 2003, Astrophys. J., 595, 555
[5] Silva, L. O., Fonseca, R. A., Tonge, J. W., Dawson, J. M., Mori,

W. B., Medvedev, M. V. 2003, Astrophys. J. Lett., 596, L121
[6] Frederiksen, J. T., Hededal, C. B., Haugbølle, T., & Nordlund,
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