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Motivation

Gyrokinetics vs Gyrofluids

Gyrofluid models are e�cient, but have to work very hard
(read: most of my academic career thus far) to get good
fidelity
Gyrokinetics is accurate, but have to wait a long time
(read: most of your academic careers) to get results
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Motivation: GryfX results

Improvements to Beer 4+2 GF model: GryfX, a GPU-based
gyrofluid code with gyrokinetic zonal flows
Nonlinear GryfX simulations produce heat fluxes that agree with the
gyrokinetic code GS2

Zonal flow improvements important at low R/LT , produce desired

Dimits shift at R/LT < 6

Nonlinear phase mixing important at larger R/LT

GryfX simulations:

⇠1 hour on 1 GPU + 16 CPU cores

GS2 simulations:

⇠1000 core hours
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Motivation

A goal: Use flux-tube turbulence calculations in multi-scale
simulations like Trinity
GS2 is too expensive, GryfX may not be accurate enough
Want to be able to flexibly interpolate between GK and GF
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Hermite-Laguerre Formulation

GK equation in (vk, µ) coordinates:
@g
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Expand g in Maxwellian-weighted Hermite-Laguerre basis:
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Hermite-Laguerre Formulation

Moments defined by:
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Z
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Direct relation to gyrofluid moments:
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Hermite-Laguerre Formulation

FLR accuracy is tied to Laguerre resolution:
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Important for real space density (appears in quasineutrality)
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Hermite-Laguerre Formulation

General moment equation:
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Note: ` = 0, 1, 2 equations have sources / � from gradients and
parallel electric field

Coupling to higher moments presents closure problem
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Hermite-Laguerre Formulation

Nonlinear term couples all Laguerre moments in convolution:

dG`,m

dt
⌘
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Manifestation of nonlinear phase mixing

Can be seen in 4+2 GF equations, but only 2 Laguerre
moments there

dn

dt
=
@n

@t
+ v ·rn +


1

2
r̂2

?v 

�
·rT? + NLPM

9 / 19



Introduction Hermite-Laguerre Formulation Results

Collision Operator

Model collision operator
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+ ū · v

i
F0

)

= ⌫


1

v2
@

@⇠

✓�
1� ⇠2

� @

@⇠

◆
+

1

v2
@

@v

✓
v2

@

@v
+ v3

◆
� k2?⇢

2

�
h + . . .

C (F0) = 0 X
Conserves number, momentum, energy X
Pitch angle scattering X
H-theorem X
Self adjoint X
dW
dt  0 X
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Collision Operator

Eigenfunctions are Hermite and Laguerre polynomials X

dG0,m

dt
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Free Energy

Hermite-Laguerre projected free energy evolution:
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In the infinite moment limit (just gyrokinetics), free energy
conserved in absence of driving and damping

lim
L,M!1

dW

dt
= D � C,

Also conserved when closing moment series by truncation (i.e.
unevolved moments ! 0)
Must require dW /dt  0 for any other closure choices
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Closures

Options:
Truncation (i.e. set unevolved moments to 0)

For given collisionality, there is a cuto↵ at some L and M

Truncate + a hypercollisionality model to induce cuto↵ at
lower resolution

⇠ �⌫hyper [(`/L)p` + (m/M)pm ]

Use generalized gyrofluid-like closures
Express unevolved moments in terms of lower, evolved
moments by fitting to kinetic dispersion relation
Have derived a general closure (following Smith) in
perpendicular direction (Laguerre) for phase mixing from rB
drift
Deriving similar closure in parallel direction (Hermite) is
complicated by the combination of phase mixing from parallel
convection and curvature drift; still some ideas to try here
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Linear growth rates: convergence
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Linear growth rates: convergence
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Linear growth rates: Smith perpendicular closure
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Rosenbluth-Hinton zonal flow residual
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Rosenbluth-Hinton zonal flow residual
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Conclusions & Future Work

Hermite-Laguerre formulation of gyrokinetics gives flexibility
between gyrofluids and gyrokinetics

Opportunities for dynamic v�resolution refinement, adaptive
closures, etc.

New code (GryfX++) solves H-L system, is ⇠ 3� 4⇥ faster
than GryfX, runs on single GPU (for now)

Will be able to a↵ord better resolution (x and v) than most
GK codes

Can apply to any flux-tube geometry
Already ready to run in general tokamak and stellarator
geometries

Straightforward to extend to electromagnetic (e.g. w/
isothermal electrons)

But maybe some additional closure complications
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Complete Equations
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Complete Equations
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Complete Equations
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Complete Equations

For hydrogenic plasma with Boltzman electrons, the
quasineutrality equation reduces to
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JmG0,m = ⌧�1 [�� hh�ii] + [1� �0(b)]�.
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Conservation terms
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Nonlinear term convolution

dG`,m

dt
⌘ @G`,m

@t
+

1X

k=0

k+mX

n=|k�m|

Ckmn (JnvE ) ·rG`,k

The convolution arises from finite Larmor radius (FLR)-induced coupling.
The convolution coe�cients are given by (Watson)
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