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MHD	Pedestal	Paradigm	
(Conventional	Wisdom)

¤ EPED model
¤ Based completely on MHD
¤ Predicts width and height of 

pressure pedestal
¤ Consistent with large number 

of experimental discharges

¤ Problems:
¤ Knows nothing about transport 

(i.e. what heating power is 
needed?)

¤ Cannot distinguish between T 
and n (indirectly through 
bootstrap)

¤ Takes pedestal top density as 
input (i.e. part of the answer is 
built in)

KBM

PB



Effect	of	Transport
¤ Typically limits pedestal temperature 

¤ If temperature is limited, density can 
sometimes compensate (if not near 
Greenwald limit)

¤ Typically limites pedestal pressure via 
less favorable PB stability at low 
temperature

¤ Note also: high temperature (not just 
pressure) needed for JET DT
¤ Even at constant pressure fusion gain 

goes down drastically as T decreases

¤ Bottom line: we need to get beyond 
the MHD-only paradigm.  Transport 
matters! 

Maggi	NF	2015



Preliminaries
¤ Much can be inferred from basics

¤ Fundamental nature of transport mechanisms
¤ Sources
¤ Inter-ELM profile evolution
¤ In different channels

¤ Electron heat…......................ce

¤ Ion heat…..............................ci

¤ Electron particles…...............De

¤ Impurity / ion particles…........Dz, Di



Preliminaries:	Candidate	
Transport	Mechanisms

¤ Microtearing modes (MTM).  
¤ Electron heat flux, driven by electron temperature gradients, w*e frequencies

¤ MHD-like (i.e. KBM)
¤ Driven by all gradients, diffusivity in all channels, frequencies ranging from 0 to w*i

¤ ETG

¤ Small scale, electron heat flux, driven by electron temperature gradients, w*e
frequencies

¤ ITG (driven by ion temperature gradient, diverse transport, ion frequencies)



Preliminaries:	Transport	Mechanisms	
have	Very	Different	Properties



Preliminaries:	Sources	based	on	
Very	Different	Mechanisms

¤ Electron, ion heat…....................ce, ci
¤ Flux from the core

¤ Particles…..................................De
¤ Neutral penetration / ionization
¤ Pinch? (Possibly from ITG)

¤ Impurities….................................Dz
¤ Neoclassical impurity pinch

¤ These are difficult to characterize in the pedestal but the 
following are reasonable assumptions:
¤ Ion heat ~ neoclassical (for large r*)
¤ Electron heat larger: needs a turbulent mechanism
¤ Particles difficult to characterize, but De likely smaller than ce,I
¤ Impurities (neoclassical pinch)



Preliminaries:	Sources
Callen NF	2010
Analyzing	DIII-D	pedestal	transport	using	four	edge	codes

De <<	ce ~	2	ci

¤ Smallness of any transport channel gives bound for cMHD.



Smallness	of	Any	Transport	
Channel	Bounds	MHD

ce ~	10	x	De
è
ce >	10	x	cMHD

¤ Example: Callen case:

¤ Second example: Assume ion heat transport is neoclassical
¤ ci = ci,NC ± d 
¤ è ci,MHD, ce,MHD, DMHD < d

¤ To	the	extend	that	diffusivities	are	separated	in	magnitude,	we	can	
bound	contribution	from	MHD

¤ Recall:	sources	/	fluxes	have	widely	varying	origins	(heating	/	
fueling	/	seeding)	èMHD	/	KBM	from	very	basic	considerations	is	
very	unlikely	to	account	for	all	channels



Data	Points	for	Emerging	
Pedestal	Paradigm

¤ Ingredients
¤ Fundamental properties of transport mechanisms
¤ Considerations of sources
¤ Observations of inter-ELM profile evolution
¤ Fluctuation diagnostics
¤ Gyrokinetics

¤ Roughly Split into two categories
¤ Most present-day machines (AUG, DIII-D, C-mod) with 

strong shear suppression of ITG 
¤ JET (transition), ITER (extrapolation)

¤ Emergence of ITG turbulence?



Gyrokinetic Pedestal	Simulations
¤ Is it valid in the pedestal?

¤ Mostly—especially at low r* (testing / development / validation / verification very 
much needed!)

¤ Is it useful? (Yes) [Even experimentalists are buying our results!]

¤ Is there anything better at the moment? (No)

¤ How we run the code (GENE)
¤ ETG: same as usual (but needs very high parallel resolution)
¤ Ion scales:

¤ Some local (not flux tube) with box width comparable to pedestal width (Dirichlet
boundary conditions) (LILO)

¤ Some global.  Challenge is numerical (physical?) instability at high beta.  We’re 
getting better with this.

¤ Global simulations of quasi-coherent modes (MTM) with limited ky wavenumbers 
(2-10).  Justified by limited number of distinct bands observed in experiment.

¤ Things we want to do:
¤ Improve separatrix boundary condition
¤ More robust EM operation
¤ Improvements to underlying model (edge-ordered GK?)



DIII-D	Pedestal	Fluctuations:	Can	Rule	
out	KBM	from	Simple	Considerations



GK	Simulations	Closely	Match	
Experiment



Second	DIII-D	Discharge	(Callen)



Similar	Observations	on	JET	/	
AUG

Perez	et	al	PPCF	2004

Laggner et	al	PPCF	
2016

JET:	‘Washboard’	modes AUG



High	r*	Pedestal	Picture
¤ Magnetic fluctuations observed experimentally appear to 

usually (always?) be MTM and not KBM

¤ Is KBM active?
¤ Often (probably), but its role is limited to density transport (i.e. 

modifying density profile to keep pressure profile at marginal 
stability

¤ ETG and MTM responsible for heat flux

¤ EPED:
¤ A useful 0th order framework for limits / structure of pressure 

profile
¤ Very questionable for predicting / extrapolating to foreign 

parameter regimes

¤ Do things change as r* decreases?



Evidence	Breakdown	of	Shear	Suppression	
on	JET-ILW

Nunes PPCF	‘16

¤ JET is largest tokamak in operation: has 
access to smallest values of r* (although 
still not ITER values)

¤ Neoclassical theory (well supported by 
experiment [e.g., Viezzer NF 2016]) predicts 
shear rates to scale like r*: gExB a r*

¤ With installation of ITER-like wall (ILW), 
degradation of confinement as I, B increase 
(i.e. as r* decreases)

¤ Consistent with emergence of ITG 
turbulence (although other effects are surely 
also at play)

¤ Hatch et al NF ’17: demonstrates ways in 
which transport trends consistent with ILW 
trends (gas puffing, impurity seeding, 
temperature limitation, etc)



¤Expectation: ITG turbulence in pedestal will become 
important at low r*
¤ Perhaps already for JET (under unfavorable conditions)
¤ Likely for ITER
¤ Consistent with present-day r* scalings, which show little 

dependence of pedestal properties on r*
JET	with	ITER-like	Wall

Emergence	of	ITG	Turbulence	at	
Low	r*

Hatch	et	al.	Nuclear	Fusion	2017 Kotschenreuther et	al.	Nuclear	Fusion	2017

ITER-like	Parameters



¤ Pedestal ITG is slab-likeè early decorrelation theories are 
highly relevant
¤ T.	H.	Dupree,	Physics	of	Fluids	15 334	(1972)
¤ K.-C.	Shaing and	E.	C.	Crume Jr,	Phys.	Rev.	Lett.,	63,	2369	(1989).
¤ H.	Biglari,	P.	H.	Diamond,	and	P.	W.	Terry,	Phys.	Fluids	B	2,	1	(1990)
¤ Y.Z.	Zhang	and	S.M.	Mahajan,	Phys.	Fluids	B 4	1385	(1992).	

¤ Start with generic fluid equation

¤ How do fluctuations decay under combined advection from 
shear flow and turbulent flow?

¤ Balanced with generic gradient drive:

Clump	/	Decorrelation Theories	
of	Shear	Suppression



Result:	Prediction	of	Suppression	
Given	Shear	Rate

Solve	polynomial	equation:

For	suppression	level:

For	a	given	shear	rate:

Need	relation	between	nonlinear	diffusivity	and	fluctuation	amplitude:

Anisotropy	Factor:



Experimental	Observations:	
Favorable	Comparisons	with	Zhang-

Mahajan 92
TEXTOR:	Boedo	et	al	Nucl.	Fusion	42	(2002)

LAPD:	Schaffner et	al	Phys.	Plasmas	20 (2013)

Shear	Rate



¤Global simulation (includes 
profile variation)

¤r* scan (fixing other 
dimensionless parameters)

¤Generalization of Zhang-
Mahajan to include intrinsic 
r* effects

¤Er set self-consistently by 
neoclassical

Comparison:	Global	r*	Scan

W

P-
1



¤Strong shear limit:

¤Scaling strongly 
dependent on a
¤ Strong check on 

internal consistency: 
empirical values of 
a consistent with 
asymptotic scaling

Agreement	Also	in	Asymptotic	
Limit

-1.62

-1.84

-1.92

-1.6

-1.58

-1.38

-1.45

-1.32



Implications	for	Pedestal	
Transport

¤ Rough translation:

¤ ITG pedestal transport is 2 factors of r* 
less favorable than gyroBohm, 1 factor 
worse than Bohm (i.e. no scaling with 
gyroradius)

¤ Possible result: severe limitation on 
pedestal top T (like JET-ILW)

¤ Note: This is not only an ITER problem.  
Any low r* device (i.e., ARC) is potentially 
susceptible.  Future machine design 
needs to take this into consideration (good 
divertor would help, etc)



Optimizing	Pedestal	Transport
¤ ExB shear rates likely difficult to modify

¤ Lots of potential avenues for decreasing growth rates:
¤ Pedestal ITG growth rates very sensitive to h = Ln/LT 

(which varies greatly in experimental pedestals)èhow to 
manipulate it? Most obvious: improved divertors to 
decrease separatrix density

¤ Transport strongly decreased by impurity seeding (ion 
dilution)

¤ Geometry: high beta_pol (e.g. hybrid operation) appears to 
be beneficial

Kotsch.	et	al	NF	2017



Interesting	Open	Questions
¤ Multi scale in pedestal

¤ Pedestal ETG is slab-like (isotropic instead of streamers).  Are 
multiscale interactions different?  Interaction with background-shear-
dominated (not ZF mediated) ITG? Interaction with microtearing?

¤ Triple scale interaction?
¤ Very low n MTM
¤ Intermediate ITG
¤ High k ETG

¤ Is there (when?) an ITG particle pinch?

¤ Can we model KBM?  Other MHD modes?

¤ Dynamic interaction between NC and turbulence?

¤ Edge-motivated GK orderings—what changes?

¤ Sepratrix boundary condition, cross-separatrix coupling?



Rederivation of	Zhang-Mahajan
¤Using BDT orbit equations and ZM derivation

(result is very similar to ZM 92)
Construct	two	point	correlation	function

Evolves	(in	center	of	mass	coordinates):	

Take	“moments”	of	Green’s	function:

Resulting	system	of	equations	(algebraic	when	d/dtà w):

Diffusivity:


