Modelling Coupled Ion and Electron Scale Turbulence in Magnetic Confinement Fusion Plasmas

M.R.Hardman1,2, M.Barnes1,2, C.M.Roach2
1Rudolf Peierls Centre for Theoretical Physics, University of Oxford, UK
2CCFE, Culham Science Centre, Abingdon, Oxon, UK
Anomalous transport is driven by turbulence,
- at scales where $k\rho_i \lesssim 1$ - ion scale
- at scales where $k\rho_e \sim 1$ - electron scale

We want to answer the following questions:
- do all scales matter?
- is cross scale coupling important?

To answer these questions we take a scale separated approach
Introduction: do all scales matter?

- Simulation evidence where \(Q_e \sim Q_{igB} \sim \sqrt{m_i/m_e} Q_{egB} \) e.g. Jenko and Dorland (2002)
- Recent experimental evidence on NSTX Ren et al. (2017)
- Howard et al. (2016) Fig 3:
Introduction: is cross scale coupling important?

- Fig 2 from Maeyama et al. (2015):
Introduction: can we reduce the mass ratio?

Fig 5 from Howard et al. (2015):
Introduction: a scale separated approach

The ion scale flux tube
An electron scale flux tube
A Quick Reminder: The Gyrokinetic Equation

The gyrokinetic equation:

\[
\frac{\partial h}{\partial t} + v_\parallel \mathbf{b} \cdot \nabla \theta \frac{\partial h}{\partial \theta} + (\mathbf{v}_M + \mathbf{v}_E) \cdot \nabla h + \mathbf{v}_E \cdot \nabla F_0 = \frac{ZeF_0}{T} \frac{\partial \phi}{\partial t},
\]

(1)

where,

\[
\mathbf{v}_E = \frac{c}{B} \mathbf{b} \wedge \nabla \phi.
\]

(2)

Closed by quasi-neutrality,

\[
\sum_{\alpha} Z_\alpha e \left(\int d^3v |r h_\alpha \right) = \sum_{\alpha} \frac{Z_\alpha^2 e^2 n_\alpha}{T_\alpha} \phi(r).
\]

(3)

Ingredients:

- a kinetic equation for \(f\)
- scale separation: \(\rho_* = \rho/a \rightarrow 0\), \(f = F + \delta f\)
- statistical periodicity: \(\langle \delta f \rangle_{\text{turb}} = 0\)
- orderings: \(\delta f \sim \rho_* F\), \(\nabla F \sim \nabla_\perp \delta f \sim \rho_*^{-1} \nabla_\parallel \delta f\)
Separating Ion and Electron Scale Turbulence

Using the ingredients:

- scale separation: \(\sqrt{m_e/m_i} \to 0 \), an electron scale average, \(\langle \cdot \rangle \)
- scale separation: \(\langle \delta f \rangle = \bar{\delta f} \), \(\delta f = \bar{\delta f} + \tilde{\delta f} \)
- electron scale statistical periodicity: \(\langle \tilde{\delta f} \rangle = 0 \)
- orderings:

\[
\nabla_\perp \bar{\delta f} \sim \rho_i^{-1} \bar{\delta f}, \quad \frac{\partial \bar{\delta f}}{\partial t} \sim \frac{v_{ti}}{a} \bar{\delta f}, \quad \nabla_\perp \tilde{\delta f} \sim \rho_e^{-1} \tilde{\delta f}, \quad \frac{\partial \tilde{\delta f}}{\partial t} \sim \frac{v_{te}}{a} \tilde{\delta f}.
\]

we can derive the coupled equations!
The Coupled Equations

- ion scale equations, with new back reaction term:

\[
\frac{\partial \tilde{h}_i}{\partial t} + v_\parallel \mathbf{b} \cdot \nabla \theta \frac{\partial \tilde{h}_i}{\partial \theta} + (\mathbf{v}_M + \mathbf{v}_E) \cdot \nabla \tilde{h}_i + \mathbf{v}_E \cdot \nabla F_{0i} = \frac{Z_i e F_{0i}}{T_i} \frac{\partial \bar{\varphi}_i}{\partial t},
\]

(4)

\[
\frac{\partial \tilde{h}_e}{\partial t} + v_\parallel \mathbf{b} \cdot \nabla \theta \frac{\partial \tilde{h}_e}{\partial \theta} + (\mathbf{v}_M + \mathbf{v}_E) \cdot \nabla \tilde{h}_e + \mathbf{v}_E \cdot \nabla F_{0e} + \nabla \cdot \left(\frac{c}{B} \tilde{h}_e \bar{\mathbf{v}}_E \right) = - \frac{e F_{0e}}{T_e} \frac{\partial \bar{\varphi}_e}{\partial t},
\]

(5)

\[
\int d^3 \mathbf{v} |_{r} (Z_i e \tilde{h}_i - e \tilde{h}_e) = \left(\frac{e^2 Z_i^2 n_i}{T_i} + \frac{e^2 n_e}{T_e} \right) \bar{\phi},
\]

(6)

- electron scale equations, with the new advection and drive terms:

\[
\frac{\partial \tilde{h}_e}{\partial t} + v_\parallel \mathbf{b} \cdot \nabla \theta \frac{\partial \tilde{h}_e}{\partial \theta} + (\mathbf{v}_M + \mathbf{v}_E + \mathbf{v}_E) \cdot \nabla \tilde{h}_e + \mathbf{v}_E \cdot (\nabla \bar{h}_e + \nabla F_{0e}) = - \frac{e F_{0e}}{T_e} \frac{\partial \bar{\varphi}_e}{\partial t}.
\]

(7)

\[
- \int d^3 \mathbf{v} |_{r} e \tilde{h}_e = \left(\frac{e^2 Z_i^2 n_i}{T_i} + \frac{e^2 n_e}{T_e} \right) \bar{\phi},
\]

(8)
The Coupled Equations: Sticky Points

Deriving parallisable coupled equations requires dealing with:

- non-locality of the gyro average
- the relative size of fluctuations - gyro Boehm scaling
- ions at electron scales
- the parallel boundary condition (*)

(*) Not yet resolved!
Visualising the Ion Scale $E \times B$ Velocity with θ
multigs2 runs N+1 instances of gs2 and handles communication of gradients and fluxes between them

\[\nabla \bar{h}_e \quad \nabla E_e \]

\[\nabla \cdot \left(\vec{v}_{Ee} \bar{h}_e \right) \]
Electron Scale Simulations: Modification of the Linear Growth Rate
Electron Scale Simulations: Modification of the Linear Growth Rate

\[\Phi/(\rho_{\text{ref}}/a)(T_{\text{ref}}/e) \text{ at } t = 163.25625/(a/v_{\text{ref}}) \]
Electron Scale Simulations: Modification of the Linear Growth Rate

\[\gamma \left(\frac{a}{v_{ti}} \right) \]

\[x \text{ index} \]

\[0 \quad 20 \quad 40 \quad 60 \quad 80 \quad 100 \quad 120 \]
Electron Scale Simulations: Modification of the Linear Growth Rate

\[\frac{d(\delta T)}{dx} \]

\[\theta \]

\[\text{ix=1} = 22 \]
\[\text{=22} \]
\[\text{=43} \]
\[\text{=64} \]
\[\text{=85} \]
\[\text{=106} \]
Electron Scale Simulations

\[\Phi^2 / (\rho_i/a)^2 (T_i/e)^2 \]

![Graph showing the relationship between \(t (v_{ti}/a) \) and \(\Phi^2 / (\rho_i/a)^2 (T_i/e)^2 \) for different values of \(a/L_{Te} \).]
Electron Scale Simulations

\[\frac{\Phi^2}{(\rho_i/a)^2(T_i/e)^2} \]

![Graph showing electron scale simulations with different curves and annotations](image)

- Blue curve: \(a/L_{Te} = 3.28 \)
- Orange curve: \(a/L_{Te} = 2.6 \)
- Green curve: \(a/L_{Te} = 1.92 \)
Electron Scale Simulations

\[\Phi^2(k_y) \]

\[t(v_t/a) \]

\[10^{-7} \]

\[10^{-6} \]

\[10^{-5} \]

\[10^{-4} \]

\[10^{-3} \]

\[10^{-2} \]

\[k_y = 0.0 \]

\[k_y = 2.5 \]

\[k_y = 5.0 \]

\[k_y = 7.5 \]

\[k_y = 10.0 \]

\[k_y = 12.5 \]

\[k_y = 15.0 \]

\[k_y = 17.5 \]

\[k_y = 20.0 \]

\[k_y = 22.5 \]

\[k_y = 25.0 \]

\[k_y = 27.5 \]

\[k_y = 30.0 \]

\[k_y = 32.5 \]

\[k_y = 35.0 \]

\[k_y = 37.5 \]

\[k_y = 40.0 \]

\[k_y = 42.5 \]

\[k_y = 45.0 \]

\[k_y = 47.5 \]

\[k_y = 50.0 \]

\[k_y = 52.5 \]
Summary

Conclusions:
- we have derived coupled equations for the ion and electron scale turbulence
- the electron scale terms have been implemented in gs2
- we have begun a search for a suitable proof of concept case for simulation

Future Work:
- understanding the electron scale equation through simulation
- including the back reaction in simulations

Should We Expect Cross Scale Interaction?

Yes! Because:

- electron scale eddies have $\tilde{l}_\perp \sim \rho_e$
- ion scale eddies have $\bar{l}_\perp \sim \rho_i$
- ambient gradient argument $\Rightarrow \tilde{h}_e \sim \rho_e^* F_{0e}, \quad \bar{h}_e \sim \rho_i^* F_{0e}$
- $\Rightarrow \nabla \tilde{h}_e \sim \nabla \bar{h}_e \sim \nabla F_{0e}$

\Rightarrow gradients of the distribution function are comparable at all scales
\Rightarrow electron scale eddies can be driven by ion scale gradients

- applying the same argument to $E = -\nabla \phi$
- $\Rightarrow \nabla \tilde{\phi} \sim \nabla \bar{\phi}$

\Rightarrow eddy $E \times B$ drifts $v_{E \times B}$, are comparable at all scales

- applying the critical balance argument
- $v_{te} / \tilde{l}_\parallel \sim \tilde{l}^{-1} \sim \tilde{v}_{E \times B} / \tilde{l}_\perp$
- $v_{ti} / \bar{l}_\parallel \sim \bar{l}^{-1} \sim \bar{v}_{E \times B} / \bar{l}_\perp$
- $\tilde{l}_\parallel \sim \bar{l}_\parallel$

\Rightarrow parallel correlation lengths are the same for ion scale and electron scale eddies
\Rightarrow electron scale eddies are long enough to be differentially advected by $\bar{v}_{E \times B}$
Separating Ion and Electron Scale Turbulence: Technicalities

- We introduce a fast spatial variable \(r_f \) and a slow spatial variable \(r_s \) and the fast and slow times \(t_f, t_s \).
- In the gyrokinetic equation we send,

\[
\delta f(t, r) \rightarrow \delta f(t_s, t_f, r_s, r_f), \quad \nabla \rightarrow \nabla_s + \nabla_f, \quad \frac{\partial}{\partial t} \rightarrow \frac{\partial}{\partial t_s} + \frac{\partial}{\partial t_f},
\]

(9)

- then asymptotically expand in the mass ratio \((m_e/m_i)^{1/2}\)
- remembering \(\nabla_s \sim (m_e/m_i)^{1/2} \nabla_f \), and \(\partial/\partial t_s \sim (m_e/m_i)^{1/2} \partial/\partial t_f \)
- explicitly define the electron scale average,

\[
\overline{\delta f}(t_s, r_s) = \left\langle \delta f(t_s, t_f, r_s, r_f) \right\rangle = \frac{1}{\tau_c A} \int_{t_s - \tau_c/2}^{t_s + \tau_c/2} dt_f \int_A d^2 r_f \delta f(t_s, t_f, r_s, r_f),
\]

(10)

- We assume that,

\[
\delta f(t_s, t_f, r_s, r_f) = \delta f(t_s, t_f, r_s, r_f + n \Delta_{cx} \hat{x} + m \Delta_{cy} \hat{y}),
\]

(11)

- This enforces \(\left\langle \delta f \right\rangle = 0 \).
Splitting the Quasi-Neutrality Relation

- We split the guiding centre into a slow R_s and a fast R_f part.
- $R = r - \rho(r)$, where $\rho(r)$ is the vector gyroradius.
- Thus using the periodicity property equation (11) the electron scale average may be taken over guiding centre or real space coordinates.
- This observation allows us to note that the electron scale average commutes with the gyro average,

$$\left\langle \frac{1}{2\pi} \int_0^{2\pi} d\gamma |_R \phi(r_s, r_f) \right\rangle = \frac{1}{2\pi} \int_0^{2\pi} d\gamma |_R \left\langle \phi(r_s, r_f) \right\rangle = \frac{1}{2\pi} \int_0^{2\pi} d\gamma |_R \tilde{\phi}(r_s), \right\rangle$$

(12)

The splitting of the quasi neutrality relation follows directly,

$$\sum_\alpha Z_\alpha e(\int d^3v |_r \tilde{h}_\alpha(R_s)) = \sum_\alpha \frac{Z_\alpha^2 e^2 n_\alpha}{T_\alpha} \phi(r_s),$$

(13)

$$\sum_\alpha Z_\alpha e(\int d^3v |_r \tilde{h}_\alpha(R_s, R_f)) = \sum_\alpha \frac{Z_\alpha^2 e^2 n_\alpha}{T_\alpha} \tilde{\phi}(r_s, r_f).$$

(14)
Addressing the Non-Locality of the Gyro Average

- Taking the gyro average at fixed guiding centre \(\langle \cdot \rangle_{\text{gyro}}^R \), couples multiple \(r_s \) points.
- but we aim to find parallelisable equations!
- Expanding both the slow and the fast spatial variable in Fourier series we note that,

\[
\tilde{\varphi}(t_s, t_f, R_s, R_f) = \langle \tilde{\varphi}(t_s, t_f, r_s, r_f) \rangle_{\text{gyro}}^R = \frac{1}{2\pi} \int_0^{2\pi} d\gamma |R| \tilde{\varphi}(t_s, t_f, r_s, r_f)
\]

\[
= \frac{1}{2\pi} \int_0^{2\pi} d\gamma |R| \sum_{k_s, k_f} \tilde{\phi}_{k_s, k_f} e^{i k_s \cdot R_s} e^{i k_f \cdot R_f} e^{-i (k_s + k_f) \cdot \rho} = \sum_{k_s, k_f} \tilde{\phi}_{k_s, k_f} e^{i k_s \cdot R_s} e^{i k_f \cdot R_f} J_0(||(k_s + k_f)|| \rho),
\]

(15)

for electrons:
- \(|k_f| \rho_e \sim 1 \) and \(|k_s| \rho_e \sim (m_e/m_i)^{1/2}\)
- we can expand the Bessel function to return to a local picture in the slow variable with \(O(m_e/m_i)^{1/2} \) error.
- We will exploit this in parallelisation.

for ions:
- \(|k_s| \rho_i \sim 1 \) and \(|k_f| \rho_i \sim (m_e/m_i)^{-1/2}\).
- we are unable to expand the Bessel function
- we are unable to avoid the coupling of multiple \(r_s \) in the equations for ions at electron scale
assume we can neglect the ion contribution to electronscale quasi neutrality,

\[\tilde{\varphi}_e(t_s, t_f, R_s, R_f) = \sum_{k_s, k_f} \tilde{\varphi}_{k_s, k_f} e^{i k_s \cdot R_s} e^{i k_f \cdot R_f} J_0(||(k_s + k_f)||\rho) \]

\[= -\frac{T_e}{n_e e} \sum_{k_s, k_f} e^{i k_s \cdot R_s} e^{i k_f \cdot R_f} \int d^3v \tilde{h}_{e, k_s, k_f} J_0^2(||(k_s + k_f)||\rho) \]

\[= -\frac{T_e}{n_e e} \sum_{k_s, k_f} e^{i k_s \cdot R_s} e^{i k_f \cdot R_f} \int d^3v \tilde{h}_{e, k_s, k_f} J_0^2(||(k_s + k_f)||\rho) \] (16)

now we use that,

\[J_0(||(k_s + k_f)||\rho) = J_0(||k_f||\rho) + O(k_s \cdot k_f \rho e^2 \frac{dJ_0(z)}{dz} |z = ||k_f||\rho e) \] (17)

exploit that \(||k_s||\rho e \sim (m_e/m_i)^{1/2} \) to bring \(R_s \) under the velocity integral

regard \(R_s \) as a fixed parameter in the integration, to find,

\[\tilde{\varphi}_e(t_s, t_f, R_s, R_f) = -\frac{T_e}{n_e e} \sum_{k_f} e^{i k_f \cdot R_f} \int d^3v |R_s\tilde{h}_{e k_f}(R_s) J_0^2(||k_f||\rho) (1 + O(m_e/m_i)^{1/2}) \] (18)

we can evaluate quasi-neutrality purely locally in the slow variable.
Splitting the Gyrokinetic Equation

- we apply the electronscale average to the gyrokinetic equation
- we neglect terms which are small by \((m_e/m_i)^{1/2}\)

Ion scale equation:

\[
\frac{\partial \bar{h}}{\partial t_s} + v_\parallel \mathbf{b} \cdot \nabla \theta \frac{\partial \bar{h}}{\partial \theta} + (v_M + \bar{v}_E) \cdot \nabla_s \bar{h} + \nabla_s \cdot \left\langle \frac{c}{B} \bar{h} \bar{v}_E \right\rangle + \bar{v}_E \cdot \nabla F_0 = \frac{ZeF_0}{T} \frac{\partial \bar{\varphi}}{\partial t_s}. \tag{19}
\]

- we subtract the ion scale equation from the full equation and neglect terms

Electron scale equation:

\[
\frac{\partial \tilde{h}}{\partial t_f} + v_\parallel \mathbf{b} \cdot \nabla \theta \frac{\partial \tilde{h}}{\partial \theta} + (v_M + \tilde{v}_E + \bar{v}_E) \cdot \nabla_f \tilde{h} + \tilde{v}_E \cdot (\nabla_s \tilde{h} + \nabla F_0) = \frac{ZeF_0}{T} \frac{\partial \tilde{\varphi}}{\partial t_f}, \tag{20}
\]

where

\[
\tilde{v}_E = \frac{c}{B} \mathbf{b} \wedge \nabla_s \bar{\varphi}, \quad \tilde{v}_E = \frac{c}{B} \mathbf{b} \wedge \nabla_f \tilde{\varphi}. \tag{21}
\]

Note that,

- there are two additional terms on the electron scale, \(\tilde{v}_E \cdot \nabla_f \tilde{h}\) and \(\tilde{v}_E \cdot \nabla_s \tilde{h}\)
- there is one new term at the ion scale, \(\nabla_s \cdot \left\langle \frac{c}{B} \bar{h} \bar{v}_E \right\rangle\)
- \(\bar{v}_E\) cannot be removed with the boost or a solid body rotation because of the \(\theta\) dependence of \(\bar{\varphi}\)
Scaling Work: the Relative Size of the Fluctuations

- if we assume the following scalings:

\[
\bar{h}_i \sim \frac{e\Phi}{T} F_{0i}, \quad \bar{h}_e \sim \frac{e\Phi}{T} F_{0e}, \quad \bar{h}_i \sim \left(\frac{m_e}{m_i}\right)^{1/4} \frac{e\Phi}{T} F_{0i},
\]

\[
\bar{h}_e \sim \left(\frac{m_e}{m_i}\right)^{1/2} \frac{e\Phi}{T} F_{0e} \text{ - parallel gradient term,} \quad \bar{h}_e \sim \frac{e\Phi}{T} F_{0e} \text{ - } \theta \text{ constant piece. (22)}
\]

- Then we can show that:

\[
\frac{e\phi}{T} \sim \rho_e^*, \quad \frac{e\phi}{T} \sim \rho_i^*
\]

(23)
note that:

- \(J_0(k_f \rho_i) \sim (m_e/m_i)^{1/4} \)
- so:

\[
\int d^3v|\tilde{h}_i| \sim (\frac{m_e}{m_i})^{1/4}(\frac{m_e}{m_i})^{1/4}\frac{en\tilde{\phi}}{T} \tag{24}
\]

Ions at electron scales can be neglected to \(O((m_e/m_i)^{1/2}) \) in the electronscale equations!

note that:

- \(\nabla_s \cdot \left\langle \frac{c}{B} \tilde{h}_i \tilde{v}_{Ei} \right\rangle \sim O((m_e/m_i)^{3/4}\tilde{v}_{Ei} \cdot \tilde{h}_i) \)

Ions at electron scales can be neglected to \(O((m_e/m_i)^{3/4}) \) in the ion scale equations!
Scaling Work: which multiscale terms do we keep?

The only remaining multiscale terms are in electron species equations:

note that:

- \(\tilde{v}_{EE} \cdot \nabla_s \tilde{h}_e \sim \tilde{v}_{EE} \cdot \nabla_f \tilde{h}_e \sim \tilde{v}_{EE} \cdot \nabla_f \tilde{h}_e \)
- ion scale gradients contribute at \(O(1) \) to the electron scale
- ion scale shear can be neglected to \(O((m_e/m_i)^{1/2}) \) at the electron scale

\[
\nabla_s \cdot \left\langle \frac{c}{B} \tilde{h}_e \tilde{v}_{EE} \right\rangle \sim O((m_e/m_i)^{1/2} \tilde{v}_{EE} \cdot \tilde{h}_e)
\]

- back reaction contributes at \(O((m_e/m_i)^{1/2}) \) to the electron equation at ion scales
- small but can be self consistently included
Substituting for the gyro Bohm scalings of the potential we find that,

$$\frac{\tilde{Q}_i}{\tilde{Q}_i} \sim \left(\frac{m_e}{m_i} \right), \quad \frac{\tilde{Q}_e}{\tilde{Q}_e} \sim \left(\frac{m_e}{m_i} \right)^{1/2}, \quad \overline{Q}_i \sim \overline{Q}_e.$$ (25)
The Parallel Boundary Condition

using the field line label $\alpha = \xi - q(\psi)\theta \simeq \xi - q_0\theta - q'_0(\psi - \psi_0)$ the fluctuations take the form:

$$A(\theta, \alpha, \psi) = \sum_{n_0,\theta_0} A_{n_0,\theta_0}(\theta)e^{in_0((\alpha-\alpha_0)+q_0\theta_0+q'_0(\psi-\psi_0))} \tag{26}$$

the parallel boundary condition in these variables is, Beer et al. (1995),

$$A_{n_0,\theta_0+2\pi N}(\theta + 2\pi N) = A_{n_0,\theta_0}(\theta) \tag{27}$$

If we have parametric ionscale coordinate ($\bar{\alpha}, \bar{\psi}$) dependence then this boundary condition should become:

$$A_{n_0,\theta_0+2\pi N}(\theta + 2\pi N, \bar{\alpha}(\theta + 2\pi N), \bar{\psi}) = A_{n_0,\theta_0}(\theta, \bar{\alpha}(\theta), \bar{\psi}), \tag{28}$$

where $\alpha(\theta + 2\pi N) - \alpha(\theta) \simeq -q_02\pi N - q'_02\pi N(\psi - \psi_0)$

which would couple the electronscale flux tubes together!