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Motivation

• Boundary conditions needed for fluid codes used to simulate 
the SOL plasma

• Ones currently used [1] are obtained using fluid equations: aim 
is to obtain boundary conditions using a kinetic treatment

• Could be used with drift kinetic/gyrokinetic codes of SOL
• Interesting problem from a purely theoretical point of view: 

generalizing gyrokinetics to strongly distorted orbits in the 
magnetic presheath geometry

[1] J. Loizu, P. Ricci, F.D. Halpern and S. Jolliet, Phys. Plasmas 19, 122307 (2012).
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Geometry of divertor region

S

A

C

W

α

γ

ε

ζ

θ ψ

B

x

y

z

Scrape Off 
Layer

main 
plasma

divertor targets

private 
plasma

CA
S

θ ψ
ζ

3

Assume α << 1



Boundary layers
Width Estimate*

Collisional presheath αλmfp 100 mm

Magnetic presheath [2] ρi 0.7 mm

Debye sheath λD 0.02 mm

⇒λD << ρi << αλmfp

*Estimates using data from [3]
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[2] R Chodura, Phys. Fluids 25 (1982)
[3] F. Militello and W. Fundamenski, Plasma Phys. Control. Fusion 53, 095002 (2011)



The magnetic presheath
• Focus on ion Larmor radius scale!
• Quasineutral Zni(x)=ne(x)
• Use Boltzmann electrons

• Ion orbits heavily distorted by the strong presheath electric field
• Ion density obtained with kinetic treatment 
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• Equations of motion:

Orbit position x̄ = x + (1/Ω)vy

Perpendicular 
energy

U⟂ = ½vx
2 + 

½vy
2 + Zeφ/mi

Total energy U = U⟂ +  ½vz
2 

Bx
zy

E

Ion trajectories with α=0
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• Motion periodic if particle is 
trapped around a minimum of 
the effective potential

�(x, x̄) =
1

2
⌦2 (x� x̄)2 +

Ze�(x)

mi



• Total energy U conserved
• Over small time intervals have ~ closed orbits (rings below)
• α << 1 => adiabatic invariant:
• Ion trajectories conserve ! and U to lowest order across magnetic 

presheath [4]

Ion trajectories in system with α<<1

[4] R.H. Cohen and D.D. Ryutov, Phys. Plasmas 5, 808 (1998)
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• Orbit parameters x̄ and U⟂ slowly varying: ˙̄
x ' �↵vz
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Closed orbit ion density
• Distribution function F constant when written in terms of μ and U
• If boundary condition at x→∞ is F(μ, U), closed ion orbits have 

distribution function F(!, U) across the whole magnetic presheath!
• Ion density = integral in velocity of F, holding particle position x fixed
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[5] A. Geraldini, F. I. Parra and F. Militello, Plasma Phys. Control. Fusion 59, 025015 (2017)

• To compute it, change velocity space variables (vx, vy, vz) ! (U⟂, x̄, U) [5]
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Open orbit ion density
• Closed orbit density is not 

enough to solve for electrostatic 
potential in magnetic presheath

• Largeness of potential drop φ0 <—> smallness of ion density at x=0
• Quantifying φ0 requires keeping contribution to ion density at x=0 

which comes from open orbits
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• Calculated ni,open(x) which has size √α ≲ ni,open(x)/n∞ ≲ α
• With the open orbits included, recover known scaling for potential 

drop φ0 across magnetic presheath e�
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Conditions on distribution function 
• Asymptotic analysis of boundary layers 

leads to solvability conditions at interface 
between different layers

• Define sonic speed cs=√(Te/mi)
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[6] K.-U. Riemann, J. Phys. D: Appl. Phys. 24, 493-518 (1991)
[7] E. R. Harrison and W. B. Thompson, Proc. Phys. Soc. 74, 

145 (1959)
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• We solve magnetic presheath numerically by 
using a distribution function that marginally 
satisfies Chodura condition at x→∞

• Should find Bohm condition satisfied at x=0
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Numerical results: electrostatic potential
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• Exploited conservation of total energy and adiabatic invariant to solve for ion 
distribution function in magnetic presheath

• For a given potential profile, found expressions for lowest order density of ions 
throughout magnetic presheath including open orbits that matter near x=0

• Developed a code that computes ion density and iterates over potential until 
quasineutrality is solved (with Boltzmann electrons)

• Derived kinetic form of Chodura's condition

• Numerical results consistent with kinetic Bohm condition at Debye sheath

• Ions entering the Debye sheath are “colder” at smaller angles 

Future work: 

• Solve the magnetic presheath numerically for different distribution functions and 
Te/Ti ratios

• Study collisional layer to find correct boundary distribution function at magnetic 
presheath entrance

Conclusion
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