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Why the interest in the tangential electric field?

The tangential electric field produces a radial E × B drift that affects the
radial flux of moderate- to high-Z impurities [Garćıa-Regaña, PPCF (2013)].

It has been ignored for a long time in stellarator neoclassical calculations
(sometimes this is justified, but not always). Recently, some codes have started
to calculate it. Comparisons between EUTERPE and SFINCS in
[Garćıa-Regaña, NF (2017)].

The tangential magnetic drift has
traditionally been ignored as well (again,
sometimes this is justified, sometimes not).
Global simulations with FORTEC-3D that
include it, recently reported [Matsuoka, PoP
(2015)], [Huang, PoP (2017)].

In situations in which the tangential
magnetic drift counts, the behavior of the
tangential electric field is particularly
interesting.
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Coordinates on phase space

Spatial coordinates {ψ, α, l}, where

I ψ ∈ [0, ψmax] determines the magnetic surface and has dimensions of
length,

I α ∈ [0, 2π) is an angle that labels magnetic field lines on the surface,
I l ∈ [0, lmax(ψ, α)) is the arc length along the field line.

Then, the magnetic field can be expressed as1

B = Ψ′t(ψ)∇ψ ×∇α.

Velocity coordinates {E , µ, σ}, where

I E = v2/2 + Zeϕ/m is the total energy per mass unit, ϕ(ψ(x), α(x), l(x))
is the electrostatic potential, Ze is the charge of the species, e is the
proton charge and m is the mass.

I µ is the magnetic moment,
I σ = v||/|v|||, with v|| = σ

√
2(E − µB − Zeϕ/m) .

1Primes denote derivatives with respect to ψ.
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Drift-kinetic and quasineutrality equations

The equation for the ion2 distribution function F (ψ(x), α(x), l(x), E , µ, σ) is

ẋ · ∇F = Cii [F ,F ],

with

ẋ · ∇l = v|| ∼ O(vt),

ẋ · ∇ψ = vd · ∇ψ ∼ O(ρ∗vt),

ẋ · ∇α = vd · ∇α ∼ O(ρ∗vtR
−1
0 ).

Here, vd := vM + vE is the sum of the magnetic and E × B drifts, vt is the
thermal speed, R0 ∼ |∇ lnB|−1 is a characteristic macroscopic length and
ρ∗ = ρ/R0 is the normalized Larmor radius.

Denoting by Ne the electron density, the quasineutrality equation reads

Z

∫
Fd3v = Ne .

In a mass ratio expansion
√
me/m� 1, Cie is negligible and only the adiabatic

response of the electrons counts in the quasineutrality equation.
2We omit the subscript “i” for almost every ion quantity.
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Drift-kinetic equation at low collisionality3: lowest-order

Take a maximal ordering ν∗ ∼ ρ∗ � 1, where ν∗ = νiiR0/vt .

I This includes the limits ν∗ � ρ∗ � 1 and ρ∗ � ν∗ � 1.

Expand the distribution function in ρ∗ as

F = F0 + F1 + . . . ,

where F1 ∼ ρ∗F0 is negligible in this talk.

To lowest order in ρ∗, the drift-kinetic equation gives

v||∂lF0 = 0.

F0 is determined by averages over l of the drift-kinetic equation to next order
in ρ∗.

3We do not include aspect ratio factors in the theoretical discussion. If the inverse
aspect ratio ε is small, low collisionality means ν∗ � ε3/2.

Iván Calvo, CIEMAT, Madrid Tangential electric field in stellarators close to omnigeneity 5 / 23



Drift-kinetic equation at low collisionality: next order

Passing particles∫ 2π

0

dα

∫ lmax(ψ,α)

0

1

|v|||
Cii [F0,F0]dl = 0.

Trapped particles

− ∂ψJ∂αF0 + ∂αJ∂ψF0 =
∑
σ

ZeΨ′t
m

∫ lb2

lb1

1

|v|||
Cii [F0,F0]dl ,

conveniently expressed in terms of the
second adiabatic invariant,

J(ψ, α, E , µ) := 2

∫ lb2

lb1

|v|||dl .
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Second adiabatic invariant and perpendicular drifts

2

∫ lb2

lb1

1

|v|||
vd · ∇ψ dl =

m

ZeΨ′t
∂αJ; 2

∫ lb2

lb1

1

|v|||
vd · ∇α dl = − m

ZeΨ′t
∂ψJ

Without further assumptions, ∂αJ|∇α| ∼ ∂ψJ|∇ψ|, and the drift-kinetic
equation for trapped particles,

− ∂ψJ∂αF0 + ∂αJ∂ψF0 =
∑
σ

ZeΨ′t
m

∫ lb2

lb1

1

|v|||
Cii [F0,F0]dl ,

is radially non-local.

If the aspect ratio and the radial electric field are sufficiently large, the
tangential component of vE dominates and the equation becomes radially
non-local. But this is not the most general situation.
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Omnigeneous stellarators4: ∂αJ = 0
∂αJ = 0 ∂αJ 6= 0

In these figures we plot B(Θ, ζ), where Θ and ζ are Boozer angles.

Expansions around omnigeneity [Calvo, PPCF (2017)]

B = B0 + δB1, 0 ≤ δ � 1, where B0 is omnigeneous.

If |∇B1|/|∇B0| � δ−1, no new wells are created and a linear expansion holds,
I J(ψ, α) = J(0)(ψ) + δJ(1)(ψ, α) + . . . .

We always assume that B is stellarator-symmetric, B(−Θ,−ζ) = B(Θ, ζ).
4[Cary, PoP (1997)], [Landreman, PoP (2012)], [Parra, NF (2015)]
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Radially local, linear equations when δ � 1

ϕ(ψ, α, l) = ϕ0(ψ) + δϕ(1)(ψ, α, l) + . . .

Change velocity coordinates to v =
√

2(E − Zeϕ0(ψ)/m) and
λ = µ[E − Zeϕ0(ψ)/m]−1.

F0 = FM + δg (1) + . . .

I FM is a Maxwellian distribution constant on flux surfaces,

FM(ψ, v) = n(ψ)

(
m

2πT (ψ)

)3/2

exp

(
− mv2

2T (ψ)

)
.

I g (1) vanishes for passing trajectories, does not depend on l and can be

chosen such that
∫ 2π

0
g (1)dα = 0.

Keeping terms linear in δ, the system of equations consisting of the
drift-kinetic equation and the quasineutrality equation

I is linear in g (1) and ϕ(1),
I is radially local,
I rigorously includes the tangential magnetic drift.
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Radially local, linear equations when δ � 1

Drift-kinetic equation

− ∂ψJ(0)∂αg
(1) + ∂αJ

(1)ΥFM =
∑
σ

ZeΨ′t
m

∫ lb20

lb10

dl

|v (0)
|| |

C
`(0)
ii [g (1)],

Quasineutrality equation(
Z

T
+

1

Te

)
ϕ(1) =

2π

en

∫ ∞
0

dv

∫ B−1

B−1
0,max

dλ
v3B0

|v (0)
|| |

g (1),

with

∂ψJ
(0) = −

∫ lb20

lb10

λv∂ψB0 + 2Ze/(mv)ϕ′0√
1− λB0

dl ,

J(1) = −
∫ lb20

lb10

λvB1 + 2Ze/(mv)ϕ(1)

√
1− λB0

dl ,

Υ =
n′

n
+

T ′

T

(
mv2

2T
− 3

2

)
+

Zeϕ′0
T

.

Superindices (0) mean that B is replaced by B0 in the corresponding quantity.
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KNOSOS (KiNetic Orbit-Averaging SOlver for
Stellarators) code5

It solves these equations with maximal ordering ν∗ ∼ ρ∗.
I For the moment, C

`(0)
ii is a pitch-angle scattering operator.

In what follows, we discuss analytically the scalings and spatial structure
of ϕ(1) in the 1/ν,

√
ν and superbanana-plateau collisionality regimes.

We complement the discussion with calculations by KNOSOS in an
‘academic’ stellarator close to omnigeneity.

For B0, we use the field given in
[Landreman, PoP (2012)]. Take
average magnitude B00 = 3.2 T,
ι = 1.05, inverse aspect ratio
ε = ψ/R0 = 0.067, R0 = 6 m and
number of periods N = 4.

B1 ∝ cos(2Θ).

H plasma, ρ∗ = 5.6 · 10−4,
Ti = 10 keV.

5First calculations with KNOSOS presented in [Velasco, EPS Conference (2017)].
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1/ν regime: ρ∗ � ν∗ � 1

∂ψJ
(0)∂αg

(1) �
∑
σ

ZeΨ′t
m

∫ lb20

lb10

dl

|v (0)
|| |

C
`(0)
ii [g (1)]

g (1) ∼ ρ∗
ν∗

FM

Zeϕ(1)

T
∼ ρ∗
ν∗

J(1) ≈ J
(1)
B = −

∫ lb20

lb10

λvB1√
1− λB0

dl

The drift-kinetic equation does not contain ϕ(1),∑
σ

ZeΨ′t
m

∫ lb20

lb10

|v (0)
|| |
−1C

`(0)
ii [g (1)]dl = ∂αJ

(1)
B ΥFM .

From the quasineutrality equation,

ϕ(1) =

(
Z

T
+

1

Te

)−1
2πB0

en

∫ ∞
0

dvv3

∫ B−1

B−1
0,max

dλ|v (0)
|| |
−1g (1).

ϕ(1) is stellarator antisymmetric.
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1/ν regime: ρ∗ � ν∗ � 1

In this figure, ν∗ ≈ 10−2 and ϕ′0 = −10 kV/m.
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ν∗ � ρ∗ � 1: It depends on the zeroes of ∂ψJ
(0)

The zeroes of ∂ψJ
(0) correspond to points of phase space where the average

tangential E × B and magnetic drifts cancel each other.

The condition ∂ψJ
(0) = 0 can be conveniently expressed as

λ∂ψB0(ψ, λ) = −2Zeϕ′0(ψ)

mv2
,

where

(·) =
1

τ
(0)
b

∑
σ

∫ lb20

lb10

(·)|v (0)
|| |
−1dl , τ

(0)
b (ψ, v , λ) = 2

∫ lb20

lb10

|v (0)
|| |
−1dl .

A necessary condition for this equation to have solutions for v . vt is

Zeϕ′0
T

.
1

R0
.

Regarding transport:

I ν∗ � ρ∗ and ∂ψJ
(0) 6= 0 (at least for v . vt):

√
ν regime.

I ν∗ � ρ∗ and ∂ψJ
(0) = 0 at some point in phase space (with v . vt):

superbanana-plateau regime.
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ν∗ � ρ∗ � 1 and ∂ψJ
(0) never vanishes

∑
σ

ZeΨ′t
m

∫ lb20

lb10

|v (0)
|| |
−1C

`(0)
ii [g (1)]dl � ∂ψJ

(0)∂αg
(1)

Solution of the drift-kinetic equation to lowest order in ν∗/ρ∗, g
(1) = g0 + . . . ,

g0 =
1

∂ψJ(0)

(
J(1) − 1

2π

∫ 2π

0

J(1)dα

)
ΥiFi0.

ϕ(1) is found from the quasineutrality equation, that takes the form(
Z

T
+

1

Te

)
ϕ(1) =

2πB0

en

∫ ∞
0

dv v3

∫ B−1

B−1
0,max

dλ|v (0)
|| |
−1g0.

Zeϕ(1)/T ∼ (ν∗)
0(ρ∗)

0.

ϕ(1) is stellarator symmetric.

This is the way to calculate ϕ(1) in a plasma in the
√
ν regime. g0 does not

give radial transport (this is produced by a layer of size ∆
√
ν

λ ∼ (ν∗/ρ∗)
1/2 � 1

in the coordinate λ), but however determines ϕ(1).
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ν∗ � ρ∗ � 1 and ∂ψJ
(0) never vanishes

ν∗ ≈ 2.2 · 10−4

ϕ′0 = −10 kV/m
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ν∗ � ρ∗ � 1 and ∂ψJ
(0) = 0 for some value of λ

Assume that ∂ψJ
(0)(ψ, v , λr ) = 0 has one solution, λr (ψ, v).

Expand the drift-kinetic equation around the position of the resonance,

∂λ∂ψJ
(0)
r (λ− λr )∂αgrl + νλk∂

2
λgrl =

(
∂αJ

(1)
B,r + ∂αĴ

(1)
ϕ

)
ΥFM ,

where k(ψ, v) = O(B−2
0 R0ρ

−1
∗ ), subindices r indicate that the corresponding

quantity is evaluated at λ = λr (ψ, v) and Ĵ
(1)
ϕ is an approximation around λr of

J(1)
ϕ = −2Ze

mv

∫ lb20

lb10

ϕ(1)

√
1− λB0

dl .

grl is localized in a layer B0∆sb−p
λ ∼ (ν∗/ρ∗)

1/3 � 1 and

grl ∼ (B0∆sb−p
λ )−1FM .

This layer is responsible for superbanana-plateau transport.

grl does not have definite parity with respect to stellarator symmetry
transformations.
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Quasineutrality equation when ν∗ � ρ∗ � 1 and

∂ψJ
(0) = 0 for some value of λ

In principle, the two pieces

gout
0 = g0 −

ΥFM

(λ− λr )∂λ∂ψJ(0)
r

(
J

(1)
B,r −

1

2π

∫ 2π

0

J
(1)
B,rdα + Ĵ

(1)
ϕ −

1

2π

∫ 2π

0

Ĵ
(1)
ϕ dα

)

and grl contribute to the quasineutrality equation on an equal footing.

(
Z

T
+

1

Te

)
ϕ(1) =

2πB0

en

∫ ∞
0

dv

∫ B−1

B−1
0,max

dλ
v3gout

0

|v (0)
|| |

+

∫ ∞
vmin

dv

∫
∆sb−p
λ

dλ
v3grl

|v (0)
|| |


Two subcases:

2Zie[mv2λr∂λ∂ψB0(ψ, λr )]−1ϕ′0 � ∆sb−p
λ

2Zie[mv2λr∂λ∂ψB0(ψ, λr )]−1ϕ′0 � ∆sb−p
λ More interesting. And new.
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Quasineutrality equation when ν∗ � ρ∗ � 1 and

∂ψJ
(0) = 0 for some value of λ

(
Z

T
+

1

Te

)
ϕ(1) =

2π

en

∫ ∞
0

dv

∫ B−1

B−1
0,max

dλ
v3B0

|v (0)
|| |

gout
0

+
2πB0

en

∫ ∞
vmin

dv v2
∫ λL(l)

−∞
dλ

grl√
λr |∂lB0(lL)|(l − lL)− (λ− λr )B0(lL)

+
2πB0

en

∫ ∞
vmin

dv v2
∫ λR (l)

−∞
dλ

grl√
λr |∂lB0(lR)|(lR − l)− (λ− λr )B0(lR)

+
2πB0

en

∫ ∞
vmin

dv v2

[
1√

1− λrB0(l)
−

1√
λr |∂lB0(lL)|(l − lL)

−
1√

λr |∂lB0(lR)|(lR − l)

]∫ ∞
−∞

dλ grl.

Let lL and lR denote the bounce points of the trajectory λ = λr . The red term
diverges at l = lL and l = lR .
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Scalings of ϕ(1) when ν∗ � ρ∗ � 1 and ∂ψJ
(0) = 0 for

some value of λ

If 2Zie[miv
2λr∂λ∂ψB0(λr )]−1ϕ′0 � ∆sb−p

λ ,

the dependence of λr on v is strong enough

for the integral over v to smooth out the

divergence of 1/
√

1− λrB0(l) at l = lL and

l = lR . Then,

I Zeϕ(1)/T ∼ (ν∗)
0(ρ∗)

0.

If 2Zie[miv
2λr∂λ∂ψB0(λr )]−1ϕ′0 � ∆sb−p

λ ,

λr is approximately independent of v and no

such smoothing happens. Then,

I Zeϕ(1)/T ∼ (ν∗/ρ∗)
−1/6,

when |l − lj | ∼ B0∆sb−p
λ R0, j = L,R.
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ν∗ � ρ∗ � 1, ∂ψJ
(0) = 0 for some value of λ and ϕ′0 = 0

Collisionality scan from ν∗ ≈ ρ∗ = 5.6 · 10−4 to ν∗ ≈ 5 · 10−8.

 0

 0.5

 1

 0  0.5  1

Θ
/(2
π

)

ζ/(2π/N)

-4x10-3

-2x10-3

0x100

2x10-3

4x10-3

eϕ
(1

)  / 
T i

Iván Calvo, CIEMAT, Madrid Tangential electric field in stellarators close to omnigeneity 21 / 23



ν∗ � ρ∗ � 1, ∂ψJ
(0) = 0 for some value of λ and ϕ′0 = 0

Collisionality scan from ν∗ ≈ ρ∗ = 5.6 · 10−4 to ν∗ ≈ 5 · 10−8.

 0

 0.5

 1

 0  0.5  1

Θ
/(2
π

)

ζ/(2π/N)

-4x10-3

-2x10-3

0x100

2x10-3

4x10-3

eϕ
(1

)  / 
T i

Iván Calvo, CIEMAT, Madrid Tangential electric field in stellarators close to omnigeneity 21 / 23



ν∗ � ρ∗ � 1, ∂ψJ
(0) = 0 for some value of λ and ϕ′0 = 0

Collisionality scan from ν∗ ≈ ρ∗ = 5.6 · 10−4 to ν∗ ≈ 5 · 10−8.

 0

 0.5

 1

 0  0.5  1

Θ
/(2
π

)

ζ/(2π/N)

-4x10-3

-2x10-3

0x100

2x10-3

4x10-3

eϕ
(1

)  / 
T i

Iván Calvo, CIEMAT, Madrid Tangential electric field in stellarators close to omnigeneity 21 / 23



ν∗ � ρ∗ � 1, ∂ψJ
(0) = 0 for some value of λ and ϕ′0 = 0

Collisionality scan from ν∗ ≈ ρ∗ = 5.6 · 10−4 to ν∗ ≈ 5 · 10−8.

 0

 0.5

 1

 0  0.5  1

Θ
/(2
π

)

ζ/(2π/N)

-4x10-3

-2x10-3

0x100

2x10-3

4x10-3

eϕ
(1

)  / 
T i

Iván Calvo, CIEMAT, Madrid Tangential electric field in stellarators close to omnigeneity 21 / 23



ν∗ � ρ∗ � 1, ∂ψJ
(0) = 0 for some value of λ and ϕ′0 = 0

Collisionality scan from ν∗ ≈ ρ∗ = 5.6 · 10−4 to ν∗ ≈ 5 · 10−8.

 0

 0.5

 1

 0  0.5  1

Θ
/(2
π

)

ζ/(2π/N)

-4x10-3

-2x10-3

0x100

2x10-3

4x10-3

eϕ
(1

)  / 
T i

Iván Calvo, CIEMAT, Madrid Tangential electric field in stellarators close to omnigeneity 21 / 23



ν∗ � ρ∗ � 1, ∂ψJ
(0) = 0 for some value of λ and ϕ′0 = 0

Collisionality scan from ν∗ ≈ ρ∗ = 5.6 · 10−4 to ν∗ ≈ 5 · 10−8.

 0

 0.5

 1

 0  0.5  1

Θ
/(2
π

)

ζ/(2π/N)

-4x10-3

-2x10-3

0x100

2x10-3

4x10-3

eϕ
(1

)  / 
T i

Iván Calvo, CIEMAT, Madrid Tangential electric field in stellarators close to omnigeneity 21 / 23



ν∗ � ρ∗ � 1, ∂ψJ
(0) = 0 for some value of λ and ϕ′0 = 0

Collisionality scan from ν∗ ≈ ρ∗ = 5.6 · 10−4 to ν∗ ≈ 5 · 10−8.

 0

 0.5

 1

 0  0.5  1

Θ
/(2
π

)

ζ/(2π/N)

-4x10-3

-2x10-3

0x100

2x10-3

4x10-3

eϕ
(1

)  / 
T i

Iván Calvo, CIEMAT, Madrid Tangential electric field in stellarators close to omnigeneity 21 / 23



ν∗ � ρ∗ � 1, ∂ψJ
(0) = 0 for some value of λ and ϕ′0 = 0

Collisionality scan from ν∗ ≈ ρ∗ = 5.6 · 10−4 to ν∗ ≈ 5 · 10−8.

 0

 0.5

 1

 0  0.5  1

Θ
/(2
π

)

ζ/(2π/N)

-4x10-3

-2x10-3

0x100

2x10-3

4x10-3

eϕ
(1

)  / 
T i

Iván Calvo, CIEMAT, Madrid Tangential electric field in stellarators close to omnigeneity 21 / 23



ν∗ � ρ∗ � 1, ∂ψJ
(0) = 0 for some value of λ and ϕ′0 = 0

Collisionality scan from ν∗ ≈ ρ∗ = 5.6 · 10−4 to ν∗ ≈ 5 · 10−8.

 0

 0.5

 1

 0  0.5  1

Θ
/(2
π

)

ζ/(2π/N)

-4x10-3

-2x10-3

0x100

2x10-3

4x10-3

eϕ
(1

)  / 
T i

Iván Calvo, CIEMAT, Madrid Tangential electric field in stellarators close to omnigeneity 21 / 23



ν∗ � ρ∗ � 1, ∂ψJ
(0) = 0 for some value of λ and ϕ′0 = 0

Collisionality scan from ν∗ ≈ ρ∗ = 5.6 · 10−4 to ν∗ ≈ 5 · 10−8.

 0

 0.5

 1

 0  0.5  1

Θ
/(2
π

)

ζ/(2π/N)

-4x10-3

-2x10-3

0x100

2x10-3

4x10-3

eϕ
(1

)  / 
T i

Iván Calvo, CIEMAT, Madrid Tangential electric field in stellarators close to omnigeneity 21 / 23



ν∗ � ρ∗ � 1, ∂ψJ
(0) = 0 for some value of λ and ϕ′0 = 0

Collisionality scan from ν∗ ≈ ρ∗ = 5.6 · 10−4 to ν∗ ≈ 5 · 10−8.

 0

 0.5

 1

 0  0.5  1

Θ
/(2
π

)

ζ/(2π/N)

-4x10-3

-2x10-3

0x100

2x10-3

4x10-3

eϕ
(1

)  / 
T i

Iván Calvo, CIEMAT, Madrid Tangential electric field in stellarators close to omnigeneity 21 / 23



ν∗ � ρ∗ � 1, ∂ψJ
(0) = 0 for some value of λ and ϕ′0 = 0

Collisionality scan from ν∗ ≈ ρ∗ = 5.6 · 10−4 to ν∗ ≈ 5 · 10−8.
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ν∗ � ρ∗ � 1, ∂ψJ
(0) = 0 for some value of λ and ϕ′0 = 0
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Future work

Extend the theory and the code to treat more general deviations from
omnigeneity.

Evaluate the impact of ϕ(1) on the radial transport of main ions and
impurities in regimes where the tangential magnetic drift is important.

Analyze how all this depends on the aspect ratio of the stellarator.
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