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What is the Dimits Shift?
Drift waves are generated by the free energy available through
linear instabilities such as gradients. These drift waves can

themselves generated zonal flows, which in turn can ’quench’
drift-wave turbulence.
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Figure: Energy diagram of a the typical drift wave/zonal flow interaction. 2 / 19



What is the Dimits Shift?
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Figure: An illustration of the Dimits shift by the sudden appearance of
turbulent heat flux Q with increasing temperature gradient ∇T .
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What is the Dimits Shift?

▶ Ion temperature gradients can cause turbulence to develop in
toroidal plasmas, driving heat diffusion.

The Dimits shift is the nonlinear upshift of the
critical temperature gradient that marks the

onset of turbulence.

▶ This is caused by a shearing away of turbulent streamers by
poloidal zonal flows (ZF).

▶ The zonal flows have their own instabilities.

▶ Andris Dimits and others noticed this shift in gyrokinetic
simulations in the ’90s.
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Big Picture

These are our goals:

▶ We want to calculate the Dimits shift.

▶ We want to use a statistical framework to make our results as
general as possible.

▶ We want to use the simplest models and closures possible,
and then build up.
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The Second Order Cumulant Expansion (CE2)

We want to use a simple statistical closure. As an example, let’s
take the 2D incompressible Navier-Stokes equations with stream
function φ and vorticity ζ = ∇2φ,

∂tζ + ∂yφ∂xζ − ∂xφ∂yζ = ν∇2ζ.

Decompose field into average φ(y) ≡ L−1
y

∫
dy φ(x, y) and

fluctuation quantities φ′ = φ− φ. The resulting equations are

(∂t − ν∂2
x)U + ∂xu′v′ = 0,

(∂t − ν∇2)ζ ′ + U∂yζ
′ + v′∂2

xU =((((((((((
v′ · ∇w′ − v′ · ∇w′,

where v′ = {v′, u′} = ∇φ′, and U ≡ ∂xφ. Neglecting the terms on
the RHS result in the quasi-linear equations.
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The Second Order Cumulant Expansion (CE2)

Then we can instead use the two-point covariance

Φ(x, x, y, t) =
1

Ly

∫ Ly

0
dy φ′(x1, y1, t)φ

′(x2, y2, t)

where we’ve defined sum x = 1
2(x1 + x2) and difference

x = x1 − x2 coordinates.

Then Z ≡ ∇2
+∇2

−Φ where
∇2

± ≡ (∂x ± ∂x/2)
2 + ∂2

y . We can then form new equations of
motion for the statistical quantities

(∂t − ν∂2
x)U(x) = −1

2
∂x(∂x∂yΦ)x=y=0,

(∂t − 2ν∇2
+∇2

−)Z = −(U+ − U−)∂yZ − (U ′′
+∇2

− − U ′′
−∇2

+)∂yΦ,

where U± ≡ U(x± x/2). These are the CE2 equations that evolve
the Gaussian statistics of the original system.
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Motivation

The Dimits shift has been observed in simple systems

▶ Kolesnikov and Krommes observed a Dimits shift in a
two-field ITG model.

▶ Numata et. al./Farrell and Ioannou have seen a Dimits shift
in the Hasegawa-Wakatani system.

Some progress has been made in calculating the shift.

▶ Rogers et. al. made preliminary estimates of the shift in 2000.

▶ Kolesnikov and Krommes calculated the shift exactly for a
simplified truncation.

Lots of progress has been made with the CE2 closure:

▶ Captures the essential physics of zonal flow/drift wave
interactions.

▶ Great success in the context of planetary atmospheres and the
zonostrophic/modulational instability.
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Two-field Model Equations
We consider a slab model in Cartesian coordinates with constant
B = b0ẑ. The xyz axis is analogous to

x → r,

y → θ,

z → ϕ.

We use a two field model with ion density ni and temperature T .
We also only consider perturbations of the electrostatic potential
φ, so that our drift velocity is the E×B velocity

vE×B = ẑ×∇φ.

The electrostatic potential can be related to the density via the
Poisson equation.

We include a background temperature gradient ∇T = −L−1
T x̂ and

the curvature drift term v∇B = −2ϵρ∗ŷ where ϵ is the inverse
aspect ratio and ρ∗ = ρs/a. This captures the toroidal ITG mode.
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Two-field Model Equations
Consider the curl of vE×B,

∇⊥ × vE×B = ∇⊥ × (ẑ×∇⊥φ) = ∇2
⊥φ.

The equations we then consider are

∂ζ

∂t
+ ẑ×∇⊥φ · ∇⊥ζ + 2ϵρ∗

∂T

∂y
= −ανζ,

∂T

∂t
+ ẑ×∇⊥φ · ∇⊥T +

1

LT

∂ϕ

∂y
= −ανT.

Here,
ζ ≡ ∇2

φ = −ni

is the modified vorticity,

∇2 ≡ ∇2
⊥ − α.

is the modified Laplacian and α is an operator such that it’s zero
acting on zonal modes and 1 otherwise.

10 / 19



Two-field Model Equations
Consider the curl of vE×B,

∇⊥ × vE×B = ∇⊥ × (ẑ×∇⊥φ) = ∇2
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Two-field Model Equations
We can linearize our equations by Fourier analysis with ∂X = ik
and ∂t = λ.

−λ(1 + k2)ϕ+ 2ϵρ∗ikyT = αν(1 + k2)ϕ,

λT +
ikyϕ

LT
= −ανT.

Define

ωd ≡ 2ϵρ∗ky
1 + k2

ωT ≡ kyL
−1
T

This leads to the dispersion relation

(λ+ ν)2 = ωTωd.

The condition for linear stability is

ν2 > ωTωd.
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One-field Toy Model
We can also construct a one-field model that mimics the growth
rates of the unstable branch,

dζ

dt
= γ

∂2φ

∂y2
− αµζ + αν∇2

⊥ζ.

with ζ = (∇2
⊥ − α)φ.

▶ Cross between Modified-Hasegawa-Mima and
Kuramoto-Sivashinsky.

▶ Allows purely zonal solutions.
▶ Has a linear instability that’s stabilized by damping and

viscosity.

This has most unstable mode with kx = 0 and

k2y =

√
γ

ν
− 1.

Stability requirement

γ <
(√

µ+
√
ν
)2

.
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One-field Toy Model

We also consider the quasi-linear version of the one-field toy model

∂tζ
′ = −U∂yζ

′ − v′∂2
xU + γ∂2

yφ
′ − µζ ′ + ν∇2ζ ′,

∂tU = −∂xu′v′.

and the CE2 statistical closure

∂tZ =− (U+ − U−)∂yZ +
(
U ′′
+∇

2
− − U ′′

−∇
2
+

)
Φ

+ γ∂2
y(∇

2
+ +∇2

−)Φ− 2
(
µ+ ν∇2

+∇2
−
)
Z,

∂tU =− 1

2
∂x(∂x∂yΦ)x=y=0,

where ∇2
± ≡ ∇2

± − 1.

QUESTION: Do these simplified models exhibit a Dimits shift?
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Numerical Results

Now I’ll show some movies for
various Direct Numerical
Simulations (DNS) of some of
the systems in question.
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Analytics: Four-mode Truncation (4MT)

The Fourier transform of the one-field model equation gives

∂tϕk = γkϕk − 1

αk + k2

∑
k1,k2

k1,xk2,y(α2 − α1 + k22 − k21)×

ϕk1ϕk2δ(k− k1 − k2).

Considering only the modes p = (0, py), q = (qx, 0), and sidebands
r± = (±qx, py), we have the four mode truncation (4MT)

∂tϕp = γpϕp +
qxp

3
y

1 + p2y

(
ϕqϕr− − ϕ∗

qϕr+

)
,

∂tϕr+ = γrϕr+ +
qxpy
1 + r2

(p2y − q2x)ϕpϕq,

∂tϕ
∗
r− = γrϕ

∗
r− − qxpy

1 + r2
(p2y − q2x)ϕ

∗
pϕq,

∂tϕq = qxpy
(
ϕr+ϕ

∗
p − ϕ∗

r−ϕp

)
.
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Analytics: Four-mode Truncation (4MT)
Let us just consider the linear growth phase with an exponentially
growing drift wave mode ϕp = eγptϕ0.

WLOG, we let ϕ∗
0 = ϕ0.

Defining β ≡ qxpy(p
2
y − q2x)/(1 + r2), the remaining equations

become

∂tϕ
∗
r− = γrϕ

∗
r− − βϕqe

γptϕ0,

∂tϕr+ = γrϕr+ + βϕqe
γptϕ0,

∂tϕq = qxpy
(
ϕr+ − ϕ∗

r−

)
eγptϕ0.

This can be solved for ϕq,

ϕ′′
q − (γp + γr)ϕ

′
q − 2qxpyβϕ

2
0e

2γptϕq = 0,

with asymptotic behaviour

ϕq ∼ exp{γ−1
p

√
2qxpyβϕ2

0e
γpt + γrt/2}.

Compare with standard modulational instability growth rate,

λ = ±
√

2qxpyβϕ2
0 − (ωp − ωr)2.
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Future Work

▶ Bifurcation analysis leading up to an amplitude equation?..
No.

▶ Statistical work using CE2:
▶ Start with some ensemble-averaged initial condition for the

covariance matrix.
▶ Evolve to get some zonal spectrum in a statistical sense.
▶ Determine stability of the zonal spectrum.

Problem:

The ensemble average of noise will be homogeneous.

⇓

No zonal flow generation.

Solution: One must carefully do a conditional ensemble average
of the initial state.
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Summary

▶ Simplified models that exhibit the Dimits shift have been
proposed.

▶ These models have been reformulated under the CE2
statistical framework.

▶ Numerical work has been performed, demonstrating rich
behaviour in the models.

▶ Preliminary analytical work has already revealed important
difference from the standard modulational stability.
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