Magnetic reconnection in relativistic astrophysical jets

Lorenzo Sironi (Columbia)

9th Plasma Kinetics Working Group Meeting, August 3rd 2016 with: Giannios, Komissarov, Lyutikov, Petropoulou, Porth, Spitkovsky

Relativistic magnetic reconnection

What is the long-term evolution of relativistic magnetic reconnection?

Dynamics and particle spectrum

Hierarchical reconnection

2D PIC simulation of $\sigma {=} 10$ electron-positron reconnection

• The current sheet breaks into a series of secondary islands (e.g., Loureiro+ 07, Bhattacharjee+ 09, Uzdensky+ 10, Huang & Bhattacharjee 12, Takamoto 13).

- The field energy is transferred to the particles at the X-points, in between the magnetic islands.
- Localized regions exist at the X-points where E>B.

Inflows and outflows

2D PIC simulation of $\sigma {=} 10$ electron-positron reconnection

2D σ =10 with no guide field ω_{p} t=45

- Inflow into the layer is non-relativistic, at $v_{in} \sim 0.1$ c (Lyutikov & Uzdensky 03, Lyubarsky 05).
- Outflow from the X-points is ultra-relativistic, reaching the Alfven speed $v_A = c \sqrt{rac{\sigma}{1+\sigma}}$

<u>3D σ=10 reconnection with no guide field</u>

In 3D, the in-plane tearing mode and the out-of-plane drift-kink mode coexist.
The drift-kink mode is the fastest to grow, but the physics at late times is governed by the tearing mode, as in 2D.

The particle energy spectrum

• At late times, the particle spectrum approaches a power law $dn/d\gamma \propto \gamma^{-p}$

• The max energy grows linearly with time, if the evolution is not artificially inhibited by the boundaries.

The power-law slope

2D electron-positron

(LS & Spitkovsky 14, see also Melzani+14, Guo+14,15, Werner+16)

The power-law slope is harder for higher magnetizations.

Particle acceleration mechanisms

The highest energy particles

Two acceleration phases: (1) at the X-point; (2) in between merging islands

(2) Fermi process in between islands

• The particles are

accelerated by a Fermi-like process in between merging islands (Guo+14, Nalewajko+15).

- Island merging is essential to shift up the spectral cutoff energy.
- In the Fermi process, the rich get richer. But how do they get rich in the first place?

(1) Acceleration at X-points

- In cold plasmas, the particles are tied to field lines and they go through X-points.
- The particles are accelerated by the reconnection electric field at the X-points (Zenitani & Hoshino 01). The energy gain can vary, depending on where the particles interact with the sheet.
- The same physics operates at the main X-point and in secondary X-points.

Plasmoids in relativistic reconnection

Plasmoids in reconnection layers

electron-positron $\sigma = 10$ $ct_{lab}/L = 0.0$ L~1600 c/ ω_p

_	0.1		Density							30
y , [L	0.0	flow				B ₀		flow		10
	0.1	out						out		$\frac{3}{1}$
	-0.1									0
. [L]	0.1		Magnetic energy					_		100
	0.0								-	10
У	-0.1	_						_		10 1
	-0.1									0
	0.1		Kinetic energy					_		100
y , [L	0.0					en al consègnétiques en anglis			-	
	0.4							-		10 1
	-0.1									ô
y , [L]	0.1		Outflow momentum							2
	0.0							_ 		0
	0.4	_						_		- 0
	-0.1									-2
	-1	0.1	-().5		(0.5	1.	0	
					لىل ، ھ					

Plasmoid space-time tracks

We can follow individual plasmoids in space and time.

First they grow, then they go:

• First, they grow in the center at non-relativistic speeds.

• Then, they accelerate outwards approaching the Alfven speed ~ *c*.

Plasmoid fluid properties

Plasmoids fluid properties:

- they are nearly spherical, with Length/Width~1.5 (regardless of the plasmoid width w).
- they are over-dense by ~ a few with respect to the inflow region (regardless of *w*).
- $\varepsilon_{\rm B} \sim \sigma$, corresponding to a magnetic field compressed by $\sim \sqrt{2}$ (regardless of *w*).
- $\varepsilon_{kin} \sim \varepsilon_B \sim \sigma \rightarrow equipartition$ (regardless of *w*).

Plasmoid statistics

Cumulative distribution of size

Cumulative distribution of magnetic flux

Differential distributions of magnetic flux

First they grow, then they go

σ =10 electron-positron

The plasmoid width *w* grows in the plasmoid rest-frame at a constant rate of ~0.1 c (~ reconnection inflow speed), weakly dependent on the magnetization.

• Universal relation for the plasmoid acceleration:

$$\Gamma \frac{v_{\text{out}}}{c} \simeq \sqrt{\sigma} \tanh\left(\frac{0.1}{\sqrt{\sigma}}\frac{x}{w}\right)$$

(LS, Giannios & Petropoulou 16)

Non-thermal particles in plasmoids

σ =10 electron-positron

• The *comoving* particle spectrum of large islands is a power law, with the same slope as the overall spectrum from the layer (so, harder for higher σ).

- The low-energy cutoff scales as $\propto \sqrt{\sigma}$, the highenergy cutoff scales as $\propto w$, corresponding to a Larmor radius ~0.2 w (a confinement criterion).
- Small islands show anisotropy along z (along the reconnection electric field).
 Large islands are nearly isotropic.

(LS, Giannios & Petropoulou 16)

From microscoPIC scales to blazars

Let us measure the system length L in units of the post-reconnection Larmor radius:

 $r_{0,\rm hot} = \sigma \frac{mc^2}{eB_0}$

Relativistic reconnection is a self-similar process, in the limit $L \gg r_{0,hot}$:

• The width of the biggest ("monster") islands is a fixed fraction of the system length L (~0.1-0.2 L), regardless of L/r_{0,hot}.

• At large L (L/ $r_{0,hot} \gtrsim 300$), the Larmor radius of the highest energy particles is a fixed fraction of the system length L (~0.03-0.05 L), regardless of L/ $r_{0,hot}$.

 \rightarrow Hillas criterion of relativistic reconnection (e.g., for UHECRs).

Summary

• Relativistic magnetic reconnection ($\sigma \ge 1$) is an efficient particle accelerator, in 2D and 3D. In 3D, the drift-kink mode is unimportant for the long-term evolution.

• Relativistic reconnection can efficiently produce non-thermal particles, in the form of a power-law tail with slope between -4 and -1 (harder for higher magnetizations), and maximum energy growing linearly with time.

• Plasmoids generated in the reconnection layer are in rough energy equipartition between particle and magnetic energy. They grow in size near the center at a rate ~0.1 *c*, and then accelerate outwards up to a four-velocity $\sim \sqrt{\sigma}$.

• "Monster" plasmoids of size ~0.2 L are generated once every ~2.5 L/c, their particle distribution is quasi-isotropic and they contain the highest energy particles, whose Larmor radius is ~0.05 L (*Hillas criterion of relativistic reconnection*).

• Explosive reconnection driven by large-scale stresses is fast (~ few dynamical times), efficient and can produce hard spectra, in both 2D and 3D.